
A Path Clustering Heuristic for Scheduling
Task Graphs onto a Grid

L. F. Bittencourt, E. R. M. Madeira, F. R. L. Cicerre, L. E. Buzato
{luiz.bittencourt,edmundo,fcicerre,buzato}@ic.unicamp.br

Institute of Computing, State University of Campinas
PO 6176, Campinas, São Paulo, Brazil

1. INTRODUCTION
Task scheduling is an NP-Complete problem and efficient

scheduling is very important for achieving good performance.
We propose a heuristic for scheduling task graphs onto a grid
infrastructure that supports dependent task execution. The
baseline of the Path Clustering Heuristic (PCH) algorithm
is to select a path from the DAG and schedule the nodes on
this path onto the same processor.

The proposed algorithm was developed based on Xavantes
grid middleware and its programming model [1]. The mid-
dleware arranges the resources in groups, aiming to execute
dependent tasks in near resources, reducing the communi-
cation costs and increasing the performance on process ex-
ecution. In Xavantes, Controllers are control elements that
specify the tasks execution order and they are also respon-
sible for transmitting data between dependent tasks. Con-
trollers are specified in the programming model and each
task is subordinated to a controller.

2. PROPOSED ALGORITHM
The PCH algorithm uses some attributes calculated for

each task: Priority, Weight (Computation Cost), Commu-

nication Cost, Earliest Start Time (EST) and Estimated

Finish Time (EFT). All the information necessary to com-
pute these attributes is given by the programming model or
by the infrastructure. Initially, we assume a virtual homo-
geneous system composed of an unbounded number of the
best processor available connected by links with the highest
bandwidth available. Each task is scheduled on a different
processor on the virtual system, then the algorithm com-
putes the initial attribute values of each node.

In the task selection and clustering step, the node ni with
the highest Priority is selected and added to the cluster clsk.
Next, the algorithm performs a depth-first search on the
task graph starting on ni, always selecting the not scheduled
successor ns that has the highest Ps + ESTs and adding it
to the cluster clsk, until ns has no succesors.

To select a resource to a cluster, the EFT of each node
in the cluster is calculated and the EST of the successor of
the last node in the cluster is calculated. A cluster clsk is
scheduled on the resource that gives the smallest EST for
the successor of clsk. Finally, the Weights and ESTs are
recomputed. The task selection and the processor selection
steps are repeated while there are unscheduled nodes.

With all nodes scheduled, each controller must be assigned
to a processor that minimizes the communication with its
nodes and with its subcontrollers. The policy of creating
clusters based on sequential tasks in the task graph helps

in reducing the controller communication overhead. The
controller selected to be scheduled is a random choice among
that which have all subcontrollers already scheduled. The
resource selected to suit a controller is that which minimizes
the communication between the controller and its tasks, and
the controller and its subcontrollers.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Controllers
High Comm

No Controllers
High Comm

Controllers
Med Comm

No Controllers
Med Comm

Controllers
Low Comm.

No Controllers
Low Comm.

N
um

be
r

of
 b

es
t s

ch
ed

ul
es

Number of Best Schedules

HEFT PCH Same Schedule

Figure 1: Number of best schedules of each algorithm.

We compared PCH algorithm with HEFT algorithm [2].
The results in Figure 1 show that PCH gives good results
when controllers are considered, as expected and desired.

3. CONCLUSION
We present a heuristic for task scheduling in the Xa-

vantes grid middleware. For the task graphs supported by
Xavantes, the strategy gives good performance when con-
trollers are considered with time complexity O(pv3).

Future works include making the algorithm schedules only
part of the DAG in advance, then scheduling the remaining
nodes in real time. Here, how many nodes the algorithm is
supposed to schedule in advance is the question that comes
up. Also, rescheduling nodes that are in resources with poor
performance can minimize the running time.

The authors thank CNPq, and WebMaps and Agroflow
projects for the financial support.

4. REFERENCES
[1] F. R. L. Cicerre, E. R. M. Madeira, and L. E. Buzato.

A hierarchical process execution support for grid
computing. To appear in Concurrency and

Computation: Practice and Experience, 2005.

[2] H. Topcuoglu, S. Hariri, and M.-Y. Wu.
Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans.

Parallel Distrib. Syst., 13(3):260–274, 2002.

