
Discrete Applied Mathematics 146 (2005) 134–145
www.elsevier.com/locate/dam

A very elementary presentation of the Hannenhalli–Pevzner
theory

Anne Bergeron
LACIM, Université du Québec à Montréal, C.P. 8888 Succ. Centre-Ville, Montréal, Que., Canada H3C 3P8

Received 28 February 2002; received in revised form 7 February 2003; accepted 23 April 2004
Available online 15 December 2004

Abstract

In 1995, Hannenhalli and Pevzner gave a first polynomial solution to the problem of finding the minimum number of reversals
needed to sort a signed permutation. Their solution, as well as subsequent ones, relies on many intermediary constructions, such as
simulations with permutations on 2n elements, and manipulation of various graphs. Here we give the first completely elementary
treatment of this problem. We characterizesafe reversalsandhurdlesworking directly on the original signed permutation.
Moreover, our presentation leads to polynomial algorithms that can be efficiently implemented using bit-wise operations.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Reversal distance; Signed permutations

1. Introduction

In the last 10 years, beginning with[7], many papers have been devoted to the subject of computing thereversal distance
between two permutations. Areversal�(i, j) transforms a permutation

�= (�1 · · · �i �i+1 · · · �j · · · �n)

to �′ = (�1 · · · �j · · · �i+1 �i · · · �n)

and thereversal distancebetween two permutations is the minimum number of reversals that transform one into the other.
From a problem of unknown complexity, it graduated to an NP-Hard problem[3], but an interesting variant was proven to be

polynomial[4]. In thesignedversion of the problem, each element of the permutation has a plus or minus sign, and a reversal
�(i, j) transforms� to

�′ = (�1 · · · − �j · · · − �i+1 − �i · · · �n).

Permutations, and their reversals, are useful tools in the comparative study of genomes. The genome of a species can be thought
of as a set of ordered sequences of genes, the ordering devices being the chromosomes, each gene having an orientation given by
its location on the DNA double strand. Different species often share similar genes that were inherited from common ancestors.
However, these genes have been shuffled by mutations that modified the content of chromosomes, the order of genes within a
particular chromosome, and/or the orientation of a gene. Comparing two sets of similar genes appearing along a chromosome
in two different species yields two (signed) permutations. It is widely accepted that the reversal distance between these two
permutations provides a good estimate of the evolutionary distance between the two species.

E-mail address:bergeron.anne@uqam.ca(A. Bergeron).

0166-218X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2004.04.010

http://www.elsevier.com/locate/dam
mailto:bergeron.anne@uqam.ca

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 135

Computing the reversal distance between signed permutations is a delicate task, since some reversals unexpectedly affect deep
structures in permutations. In 1995, Hannenhalli and Pevzner proposed the first polynomial algorithm to solve it[4], developing
along the way a theory of how and why some permutations were particularly resistant to sorting by reversals. It is of no surprise
that the labelfortresswas assigned to specially acute cases.

Hannenhalli and Pevzner relied on several intermediate constructions that have been simplified since[1,2,5], but grasping
all the details remains a challenge. All the criteria given for choosing asafereversal involve the construction of an associate
permutation on 2n points, and the analysis of cycles and/or connected component of graphs associated with this permutation.

In this paper, we present an elementary treatment of the sorting of theoriented componentsof a permutation, together with a
new definition of the concept ofhurdle, that further simplifies the definition given in[5]. Our first algorithm is so simple that,
for example, sorting a permutation of length 20,by hand, should be easy and straightforward.

The next section presents the basic algorithms. Section 3 contains the necessary links to the Hannenhalli–Pevzner theory,
and the proofs of the claims in Section 2. Finally, in the last section, we discuss complexity issues, and we give abit-vector
implementation of the sorting algorithm that runs inO(n2) bit-vector operations, or inO(n3/w) operations, wherew is the
word-size of the processor.

2. Basic sorting

The problem of computing the distance between two permutations is often recast as the problem of computingd(�), the
reversal distance between a permutation� and the identity permutation(1 2· · · n). In this paper, we focus on the reconstruction
of one possible sequence of reversals that realizesd(�), also called thesorting by reversals problem. As usual, we will assume
that the permutation isframedby 0 andn+ 1, and that those extra elements are always positive:

�= (0 �1 �2 · · · �n n+ 1).

An oriented pair(�i , �j), i < j , is a pair of consecutive integers, that is|�i | − |�j | =±1, with opposite signs. For example, the
oriented pairs of the permutation

(0 3 1 6 5 − 2 4 7)

are(1,−2) and(3,−2).
Oriented pairs are useful, in the sense that they indicate reversals that create consecutive elements of the permutation that are

also consecutive integers. For example, the pair(1,−2) induces the reversal

(0 3 1 6 5 − 2 4 7),

(0 3 1 2 − 5 − 6 4 7),

creating the consecutive integers 1 2. Note that the reverse of a pair of consecutive integers, such as−2 − 1, is also a pair of
consecutive integers.

In general, the reversal induced by an oriented pair(�i , �j) will be

�(i, j − 1), if �i + �j =+1 and

�(i + 1, j), if �i + �j =−1.

Note that reversals that create consecutive integers are always induced by oriented pairs. Such a reversal is called anoriented
reversal. We define thescoreof an (oriented) reversal as the number of oriented pairs in the resulting permutation. For example,
the score of the reversal

(0 3 1 6 5 − 2 4 7),

(0 − 5 − 6 − 1 − 3 − 2 4 7)

is 4, since the resulting permutation has four oriented pairs. Computing the score of a reversal is tedious but elementary, and we
will discuss efficient algorithms too do so in Section 4. The fact that oriented reversals have a beneficial effect on the ordering
of a permutation suggests a first sorting strategy.

Algorithm 1. As long as� has an oriented pair, choose the oriented reversal that has maximal score.

136 A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145

For example, the scores of two oriented pairs(1,−2) and(3,−2) of the permutation

(0 3 1 6 5 − 2 4 7)

are, respectively, 2 and 4. So we choose the reversal induced by(3,−2), yielding the new permutation

(0 − 5 − 6 − 1 −3 − 2 4 7).

This permutation has now four oriented pairs(0,−1), (−3, 4), (−5, 4) and(−6, 7), all of which have score 2, except(−3, 4).
Acting on this pair yields

(0 − 5 − 6 −1 2 3 4 7)

which has four oriented pairs. Note here that the score of the pair(0,−1) is 0. The corresponding oriented reversal would produce
a permutation with no oriented pair, and the algorithm would stop, in this case with an unsorted permutation. Fortunately, the pair
(−1, 2) has a positive, and maximal, score and we get, in a similar way, the last two necessary reversals to sort the permutation

(0 − 5 −6 1 2 3 4 7),

(0 −5 − 4 − 3 − 2 − 1 6 7),

(0 1 2 3 4 5 6 7).

Interestingly enough, this elementary strategy is sufficient to optimally sort most random permutations and almost all permutations
that arise from biological data. The strategy is also optimal, and we will prove in the next section the following claim.

Claim 1. If the strategy of Algorithm1applies k reversals to a permutation�, yielding a permutation�′, thend(�)= d(�′)+ k.

The output of Algorithm 1 will be a permutation of positive elements. Most reversal applied to such permutations will create
oriented pairs, but the choice of an optimal reversal is delicate. We discuss this problem in the next paragraph.

2.1. Sorting positive permutations

Let� be a signed permutation with only positive elements, and assume that� is reduced, that is� does not contain consecutive
integers. Suppose also that� is framed by 0 andn + 1 and consider, as in[5], the circular order induced by setting 0 to be the
successor ofn+ 1.

Define aframed intervalin � as an interval of the form

i �j+1 �j+2 · · · �j+k−1 i + k,

such that all integers betweeni andi + k belong to the interval[i · · · i + k]. For example, consider the permutation

(0 2 5 4 3 6 1 7).

The whole permutation is a framed interval. But we have also the interval: 2 5 4 3 6, which can be reordered as 2 3 4 5 6, and,
by circularity, the interval6 1 7 0 2, which can be reordered as 6 7 0 1 2, since 0 is the successor of 7.

Definition 2. If � is reduced, ahurdle in � is a framed interval that contains no shorter framed interval.

Claim 3. Hurdles as defined in Definition2 are the same hurdles that are defined in[4,5].

When a permutation has only one or two hurdles, 1 reversal is sufficient to create enough oriented pairs in order to completely
sort the permutation with Algorithm 1. Two operations are introduced in[4], the first one ishurdle cuttingwhich consist in
reversing the segment betweeni andi + 1 of a hurdle

i�j+1�j+2 · · ·i + 1 · · · �j+k−1i + k.

This reversal is sufficient to sort all the interval using Algorithm 1. For example, the following permutation contains only one
hurdle

(0 2 4 3 1 5).

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 137

The reversal of elements 2, 4 and 3 cuts the hurdle, and the resulting permutation

(0 − 3 − 4 − 2 1 5)

can be sorted with 4 reversals by Algorithm 1.
The second operation ishurdle merging, which acts on the endpoints of two hurdles:

i · · · i + k · · · i′ · · · i′ + k′,

and does the reversal�(i + k, i′). If a permutation has only two hurdles, merging them will produce a permutation that can be
completely sorted by Algorithm 1.

Thus, for example, merging the two hurdles in the permutation

(0 2 5 4 3 6 1 7)

yields the permutation

(0 2 5 4 3 − 6 1 7),

which can be sorted in 5 reversals using Algorithm 1.
Merging and cutting hurdles in a permutation that contains more than two hurdles must be managed carefully. Indeed, cutting

some hurdles can create new ones!

Definition 4. A simple hurdle is a hurdle whose cutting decreases the number of hurdles. Hurdles that are not simple are called
super hurdles.

For example, the permutation(0 2 5 4 3 6 1 7) has two hurdles. Cutting and sorting the hurdle 2 5 4 3 6 yields the permu-
tation,

(0 2 3 4 5 6 1 7),

which, by collapsing the sequence 2 3 4 5 6, reduces to

(0 2 1 3),

which has only one hurdle.
However, the permutation(0 2 4 3 5 1 6 8 7 9) also contains two hurdles, and when one cuts the hurdle 2 4 3 5, the resulting

reduced permutation is

(0 2 1 3 5 4 6),

which still has two hurdles.
The following algorithm is adapted from[5], and is discussed originally in[4].

Algorithm 2. If a permutation has2k hurdles, k�2, merge any two non-consecutive hurdles. If a permutation has2k + 1
hurdles, k�1, then if it has one simple hurdle, cut it; If it has none, merge two non-consecutive hurdles, or consecutive ones if
k = 1.

Together with Algorithm 1, Algorithm 2 can be used to optimally sort any signed permutation. Permutations that are not
already reduced can always be reduced by merging consecutive integers, and by renumbering all the elements.

This completes the first part of the paper, and, in the next section, we turn to the task of proving our various claims.

3. Selected results from the Hannenhalli–Pevzner theory

The exposition of the complete results of the Hannenhalli–Pevzner theory is beyond the scope of this paper, and the reader
is referred to the original paper[4], or the book on computational molecular biology by Pevzner[6]. Instead, we will show the
soundness of our algorithms by directly using thearc overlap graphintroduced in[5].

138 A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145

0 92 1 5 10 87 11 12 4 3 13
3 5 4 6 -2 7

6
0 -1

Fig. 1. The Breakpoint Graph of�= (0 − 1 3 5 4 6 − 2 7).

(0, 1)

(6, 7)

(2, 3)(12, 13)

(4, 5)(10, 11)

(8, 9)

Fig. 2. The arc overlap graph of�= (0 − 1 3 5 4 6 − 2 7).

The first construction is thebreakpoint graphassociated with�. Each positive elementx in the permutation� is replaced by
the sequence 2x − 1 2x, and each negative element−x by the sequence 2x 2x − 1. For example,

�= (0 − 1 3 5 4 6 − 2 7)

becomes

�′ = (0 2 1 5 6 9 10 7 8 11 12 4 3 13).

Reversals�(i, j) of � are simulated by unsigned reversals�(2i − 1, 2j) in �′.
The elements of�′ are the vertices of the breakpoint graph. Straight edges join every other pair of consecutive elements of�′,

starting with 0, and curved edges, calledarcs, join every other pair of consecutive integers, starting with(0, 1).
Every connected component of the breakpoint graph is a cycle, which is a consequence of the fact that each vertex has exactly

two incident edges. The graph ofFig. 1has 2 cycles.
Thesupportof an arc is the interval of elements of�′ between, and including, its endpoints. Two arcsoverlapif their support

intersect, without proper containment. An arc isoriented if its support contains an odd number of elements, otherwise it is
unoriented. In Fig. 1, the oriented arcs are(0, 1) and(4, 5). Note that an arc is oriented if and only if its endpoints are images
of an oriented pair of the original permutation.

Thearc overlap graphis the graph whose vertices are arcs of the breakpoint graph, and whose edges join overlapping arcs.
The overlap graph corresponding to the breakpoint graph ofFig. 1 is illustrated inFig. 2, in which each vertex is labeled by an
arc(2x, 2x + 1). Orientedvertices—those for which the corresponding arc is oriented—are marked by black dots. Orientation
extends to connected components in the sense that a connected component with at least one oriented vertex is oriented. It is easy
to show that a vertex is oriented if and only if its degree is odd (see Lemma 5).

There is a natural bijection between the vertices of the overlap graph and pairs of (unsigned) consecutive integersx and
x + 1 in the original permutation. Indeed, a pair of consecutive integers will generate four consecutive integers in the unsigned
permutation: 2x − 1, 2x, 2x + 1, and 2x + 2. The vertex(2x, 2x + 1) is associated with the pairx andx + 1. For example, the
oriented pair(3,−2) in � corresponds to the vertex(4, 5) in the overlap graph. We will refer to thereversal induced by a vertex
meaning the reversal induced by the corresponding oriented pair of the original permutation. The following lemmas, mostly
from [5], pinpoint the important relations between a signed permutation and its overlap graph, and will help to prove Claim 1 of
Section 2.

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 139

becomes

becomes

Reversed interval

Reversed interval

w
u

v

v v

v u

w w
u

u

w

Fig. 3. Complementation of subgraphs.

Lemma 5. A vertex has an odd degree if and only if it is oriented.

Proof. Let 2x − 1, 2x, 2x + 1, and 2x + 2, be the four integers associated with the oriented pair(�i , �j). Since�i and�j

have different signs, the positions of 2x and 2x+ 1 will not have the same parity in the unsigned permutation. Thus, the interval
between 2x and 2x + 1 has an odd length, implying that it overlaps an odd number of other intervals. On the other hand, any
interval that overlaps an odd number of intervals must have an odd length. Therefore, the positions of its endpoints must have
different parities, implying that the corresponding pair of consecutive integers is oriented.�

Lemma 6. If one performs the reversal corresponding to an oriented vertexv, the effect on the overlap graph will be to
complement the subgraph induced byv and its adjacent vertices.

Proof. The reversal corresponding to an oriented vertexv has the effect of collapsing the associated interval, thusv will become
isolated. Letu andw be two intervals overlappingv, meaning that exactly one of their endpoints lies in the interval spanned by
v. The reversal induced byv will reverse these two points. Here, a picture (Fig. 3) is worth a thousand words. �

Lemma 7. If one performs the reversal corresponding to an oriented vertexv, each vertex adjacent tov will change its
orientation.

Proof. Sincev is oriented, it has an odd number 2k + 1 of adjacent vertices. Letw be a vertex adjacent tov, with j neighbors
also adjacent tov. With the reversal,wwill loosej + 1 neighbors, and gain 2k − j new ones. Thus the degree ofwwill change
by 2k − 2j − 1, changing its orientation.�

Lemma 8. The score of the oriented reversal corresponding to an oriented vertexv is given by

T + U −O − 1,

where T is the total number of oriented vertices in the graph, U is the number of unoriented vertices adjacent tov, and O is the
number of oriented vertices adjacent tov.

Proof. This follows trivially from the preceding lemmas.�

We now state a basic result that is proved, in different ways, in[4,5]. Define anoriented componentof the overlap graph as
a connected component that contains at least one oriented vertex, otherwise the component isunoriented. A safereversal is a
reversal that does not create new unoriented components, except for isolated vertices. The following theorem states that safe
reversals, when they exist, always decrease the distance by 1.

Theorem 9 (Hannenhalli and Pevzner[4]). Any sequence of oriented safe reversals is optimal.

The difficulties in sorting oriented components lie in the detection of safe reversals. Hannenhalli and Pevzner deal with the
problem by computing several statistics on cycles and breakpoints of various graphs. Kaplan et al.[5] solve it by searching
for particular cliques in the overlap graph. The next theorem argues that the elementary strategy of choosing the reversal with
maximal score is optimal, thus proving Claim 1.

140 A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145

0 123 4 7 8 11 9 10 13 5 6 1 214 15 16 17

Fig. 4. The breakpoint graph of�= (0 2 4 6 5 7 3 8 1 9).

Theorem 10. An oriented reversal of maximal score is safe.

Proof. Suppose that vertexv has maximal score, and that the reversal induced byv creates a new unoriented componentC
containing more than one vertex. At least one of the vertices inCmust have been adjacent tov, since the only edges affected by
the reversal are those between vertices adjacent tov. Letw be a vertex formerly adjacent tov and contained inC, and consider
the scores ofv andw:

score(v)= T + U −O − 1,

score(w)= T + U ′ −O ′ − 1.

All unoriented vertices formerly adjacent tov must have been adjacent tow. Indeed, an unoriented vertex adjacent tov and not
towwill become oriented, and connected tow, contrary to the assumption thatC is unoriented. Thus,U ′�U.

All oriented vertices formerly adjacent towmust have been adjacent tov. If this was not the case, an oriented vertex adjacent
tow but not tov would remain oriented, again contradicting the fact thatC is unoriented. Thus,O ′�O.

Now, if both O ′ = O andU ′ = U , verticesv andw have the same set of adjacent vertices, and complementing the sub-
graph ofv and its adjacent vertices will isolate bothv andw. Therefore, we must have thatscore(w) > score(v), which is a
contradiction. �

3.1. Hurdles

The goal of this section is to prove Claim 3. We assume that� is a positive and reduced permutation. These assumptions are
equivalent to saying that the overlap graph has no oriented components, all of which can be cleared by Algorithm 1, and no
isolated vertices.

Consider again the circular order, this time on the interval[0..2n− 1], induced by setting 0 to be the successor of 2n− 1. The
spanof a set of verticesX in the overlap graph is the minimum interval that contains, in the circular order, all vertices inX. For
example, consider the permutation

�= (0 2 4 6 5 7 3 8 1 9),

whose breakpoint graph and arc overlap graphs are illustrated inFigs. 4and5. The three connected components of its arc overlap
graph have spans:

[4, 15] = [4 7 8 11 12 9 10 13 14 5 6 15]
[8, 13] = [8 11 12 9 10 13]
[16, 3] = [16 1 2 17 0 3].

Hurdles are defined in[4] as unoriented components which are minimal with respect to the order induced by span inclusion.
Moreover, in[5], it is shown that the span of a connected component is always of the form[2i, 2j − 1]. The following lemmas
and theorem detail the relationships between connected components and framed intervals, substantiating the second claim of
Section 2.

Lemma 11. Framed intervals of the form[i, j] in a permutation on n elements are in one-to-one correspondence with framed
intervals of the form[2i, 2j − 1] in the corresponding unsigned permutation on2n elements.

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 141

(0, 1)

(2, 3)

(4, 5)

(6, 7)

(8, 9)(10, 11)

(12, 13)

(14, 15)

(16, 17)

Fig. 5. The arc overlap graph of�= (0 2 4 6 5 7 3 8 1 9).

Proof. The endpointsi andj of a framed interval[i, j] will be mapped, respectively, to the pairs 2i − 1, 2i, and 2j − 1, 2j . All
integers betweeni andj appear in the interval[i, j], if and only if all the integers between 2i and 2j − 1 appear in the interval
[2i, 2j − 1]. �

Lemma 12. Any framed interval[2i, 2j − 1] is the span of a union of connected components.

Proof. If [2i, 2j − 1] is a framed interval, it contains exactly the integers between 2i and 2j − 1, thus the only arcs in this
interval are:(2i, 2i+1), (2i+2, 2i+3), . . . , (2j −2, 2j −1), and no other arc intersects this set. Therefore, the corresponding
set of vertices is not connected to any other vertex.�

Lemma 13. The span[2i, 2j − 1] of a connected component is always a framed interval.

Proof. If vertex(2i, 2i+ 1) is connected to(2j − 2, 2j − 1), there must be a sequence of intersecting arcs linking 2i to 2j − 1.

...

2 2 +1 2 -2 2 -1i i j j

Any arc with only one endpoint between 2i and 2j − 1 would therefore intersect one of the arcs in the sequence, and would be
part of the connected component, so there are none. Thus, if integer 2k is in the interval, then 2k + 1 is also in the interval, and
if i �k < j − 1, then 2k + 2 is also in the interval. �

Theorem 14. If � is reduced, an unoriented component is minimal if and only if its span is a framed interval that contains no
other.

Proof. By Lemma 13, the span of a connected component is always a framed interval. If the component is minimal with respect
to span inclusion, by Lemma 12, its span cannot contain properly another framed interval.

On the other hand, a framed interval[2i, 2j −1] that contains no other yields a single connected componentCwhose vertices
endpoints are exactly the integers between 2i and 2j − 1. Thus the vertices ofC are consecutive on the circle, and component
C is minimal. �

Using Lemma 11, Theorem 14 gives an elementary characterization of the concept of hurdles, that does not rely on the
construction of the overlap graph.

4. Settling scores

Algorithm 1 has a straightforward naive implementation: in order to find a safe reversal, perform each possible oriented
reversal on the original permutation, and count the number of resulting oriented reversals. Since there areO(n) oriented reversal

142 A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145

(0, 1)

(6, 7)(8, 9)

(10, 11) (4, 5)

(2, 3)(12, 13)

Fig. 6. The arc overlap graph of(0 3 1 6 5 − 2 4 7).

in a given permutation onn elements, and since computing the number of oriented reversals in a permutation can be done in
O(n) operations, this yields anO(n3) algorithm for sorting a permutation onn elements.

However, performing a reversal, or computing its score, is a “local” operation on the overlap graph, and this locality suggests
the possibility of a parallel algorithm to keep the scores and to compute the effects of a reversal. The parallelism of the algorithm
will exploit the inherent parallelism of basic operations of a processor.We will work with bit-vectors, and use only three operations
on these vectors: the exclusive-or operator⊕; the conjunction∧; and the negation−.

Subsets of vertices of the arc overlap graph will be represented bycharacteristicsbit-vectors: Ifs is a subset of the{0, . . . , n},
then the bold symbols is the bit-vector:

s= (s0, . . . , sn) wheresi =
{

1 if i ∈ s,

0 otherwise.

4.1. The data structure

Given an arc overlap graph, we first construct a bit-matrix in which each linevi is the set of adjacent vertices to arc(2i, 2i+1).
For example, consider the permutation(0 3 1 6 5 − 2 4 7), whose arc overlap graph is illustrated inFig. 6.

The bit-matrix associated with this graph is the following:

v0 v1 v2 v3 v4 v5 v6

v0 0 0 1 1 0 0 0

v1 0 0 1 0 1 0 1

v2 1 1 0 1 1 0 1

v3 1 0 1 0 1 0 1

v4 0 1 1 1 0 1 0

v5 0 0 0 0 1 0 1

v6 0 1 1 1 0 1 0

p 0 1 1 0 0 0 0

s 0 1 3 2 0 2 0

The last two lines contain, respectively, the parityp, or orientation, of the vertex, and the scores= U − O of the associated
reversal. [The score of a reversal was defined in Section 3 asT + U −O − 1, whereT is the total number of oriented reversals
in the original permutation. Since we want to maximize scores, and sinceT − 1 is constant for all reversals, it is only necessary
to maximizeU −O.]

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 143

We will discuss efficient ways to initialize the structure and to adjust scores in Sections 4.2 and 4.3.
Given the vectorsp ands, selecting the oriented reversal with maximal score is elementary. In the above example, vertex 2

would be the selected candidate.
The interesting part is how a reversal affects the structure. These effects are summarized in the following algorithm, which

recalculates the bit-matrixv, the parity vectorp, and the score vectors, following the reversal associated to vertexi, whose set
of adjacent vertices is denoted byvi .

1. s← s+ vi
2. vi i ← 1
3. for each vertexj adjacent toi do
4. if j is oriented
5. s← s+ vj
6. vjj ← 1

7. vj ← vj ⊕ vi
8. s← s+ vj
9. else
10. s← s− vj
11. vjj ← 1

12. vj ← vj ⊕ vi
13. s← s− vj
14.p← p⊕ vi

The logic behind the algorithm is the following. Since vertexi will become unoriented and isolated, each vertex adjacent toi
will automatically gain a point of score in step 1. Next, ifj is a vertex adjacent toi, vertices adjacent toj after the reversal are
either existing vertices that were adjacent toj and not adjacent toi, or vertices that were adjacent toi but not toj. This is the
definition of the exclusive-or operator⊕.

The exceptions to this rule arei andj themselves, and this problem is solved by setting the diagonal bits to 1 before computing
vj ⊕ vi in steps 6 and 11.

If j is oriented, each of its former adjacent vertices will gain one point of score, sincej will become unoriented, and each of its
new adjacent vertices will gain one point of score. We thus add these points of score with two instructions sandwiching step 6.
Note that a vertex thatstaysconnected toj will gain a total of two points. For unoriented vertices, the gains are converted to losses.

The amount of work done to process a reversal corresponding to vertexi, in terms of vector operations, is thus proportional
to the number of adjacent vertices to vertexi.

4.2. Representing the scores

The additions and subtractions to adjust the score vector are the usual arithmetic operations performed component-wise. In
order to have a truly bit-vector implementation, we represented the score vectors as a� log(n)� × n bit-matrix, each column
containing the binary representation of a score. Thekth line of the matrix is referred to assk. With this representation, component-
wise addition of a bit-vectorv to s can be realized with the following:

1. for k from 1 to � log(n)�
2. t← v
3. v← v∧ sk
4. sk ← t⊕ sk
Subtraction is implemented in a similar way. A side benefit of this structure is that the selection of the next reversal can be also
done in parallel, by “sifting” the score matrix through the parity vector. The setc of candidates contains initially all the oriented
vertices. Going from the higher bit of scores to the lower, if at least one of the candidates has biti set to 1, we eliminate all
candidates for which biti is 0.

1. c← p
2. i ← �log(n)�
3.while i �0 do
4. while (c∧ si)= 0
5. i ← i − 1
6. if i �0
7. c← c∧ si
8. i ← i − 1

144 A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145

At the end of the loop,c is the set of oriented vertices of maximal score.

4.3. Initializing the data structure

We saw, in Section 3, that the overlap graph of a signed permutation�= (�1�2 · · · �n) containsn+ 1 vertices corresponding
to the arcs joining 2x and 2x + 1 in the equivalent unsigned permutation. In this section, we will construct a representation
of the overlap graph without explicitly referring to the unsigned permutation, thus removing one more step between the actual
algorithm, and the original formulation of the problem.

The construction is based on the following simple lemma. LetI be a set of intervals with distinct endpoints in an ordered set
S. Denote an intervali ∈ I by the ordered pair(bi , ei) of its endpoints. Define the setsli andri as follows:

ri = {j ∈ I | bj < ei < ej },
li = {j ∈ I | bj < bi < ej }.

The setri is the set of intervalsj in I that contains the right endpoint of intervali, and the setli is the set of intervalsj in I that
contains the left endpoint of intervali. We have the following.

Lemma 15. The setvi of intervals that overlap i in I is given by: vi = li ⊕ ri .

Starting with a signed permutation�= (�1�2 · · · �n), we first read the elements from left to right. Leta represent the set of
arcs for which exactly one endpoint has been read. Initially,a is the set {0}, corresponding to the arc(0, 1). When element�i is
read, we have to process two arcs:(2�i − 2, 2�i − 1) and(2�i , 2�i + 1). In increasing order, if�i is positive, and decreasing
order, otherwise. Processing an arc(2j, 2j + 1) is done by the following instructions:

1. if aj = 0
2. aj ← 1 (* First endpoint of arc(2j, 2j + 1)*)
3.else(* Second endpoint *)
4. aj ← 0
5. vj ← a (* a is the setrj *)

We then repeat the process in the reverse order, reading the permutation from right to left, initializinga to the set{n}, and
changing the last instruction tovj ← vj ⊕ a. The parity vectorp is initialized in this loop with the instructionp← p⊕ vj .

Once the bit-matrixv is computed, the scores are initialized by either adding or subtracting eachvj , depending on its parity,
to an initial null matrix of scores.

4.4. Analysis

The formal analysis of the algorithm of Section 4.1 raises interesting questions. For example, what is an elementary operation?
Except for a few control statements, the only operations used by the algorithm are very efficient bit-wise logical operators on
words of sizew, typically 32 or 64, depending on implementation. The most expensive instructions in the main loop are additions
and subtractions, such as

s← s+ vj ,

wheres is a bit-matrix of sizen log(n), andvj is a bit-vector of sizen. Such an operation requires a total of(2n log(n))/w

elementary operations with the loop described in Section 4.2. Hopefully, log(n) is much smaller thanw, and, in the range of
biologically meaningful values,n is often a small multiple ofw. In the actual implementation, the loop is controlled by the value
of log(maximal score) which tends to be much less than log(n). We thus have a, very generous,O(n) estimate for the instructions
in the main loop.

The overall work done by the algorithm depends on the total numberv of vertices adjacent to vertices of maximal score. We
can easily bound it byn2, noting that the numberdof reversals needed to sort the permutation is bounded byn, and the degree of
a vertex is also bounded byn. We thus get anO(n3) estimate for the algorithm, assuming that logn < w. However, in practical
applications, such as[8], this algorithm outperforms consistently classical algorithms with smaller theoretical complexity.

References

[1] D. Bader, B. Moret, M. Yan, A linear-time algorithm for computing inversion distance between signed permutations with an experimental
study, J. Comput. Biol. 8 (5) (2001) 483–491.

A. Bergeron /Discrete Applied Mathematics 146 (2005) 134–145 145

[2] P. Berman, S. Hannenhalli, Fast Sorting by Reversal, CPM 1996, Lecture Notes in Comput. Sci., vol. 1075, Springer, Berlin, 1996, pp.
168–185.

[3] A. Caprara, Sorting by Reversals is Difficult, RECOMB 1997, ACM Press, New York, 1997, pp. 75–83.
[4] S. Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J.Assoc.

Comput. Mach. 46 (1) (1999) 1–27.
[5] H. Kaplan, R. Shamir, R. Tarjan, A faster and simpler algorithm for sorting signed permutations by reversals, SIAM J. Comput. 29 (3) (1999)

880–892.
[6] P. Pevzner, Computational Molecular Biology, MIT Press, Cambridge, MA, 2000, 314p.
[7] D. Sankoff, Edit Distances for Genome Comparisons Based on Non-Local Operations, CPM 1992, Lecture Notes in Comput. Sci., vol. 644,

Springer, Berlin, 1992, pp. 121–135.
[8] A. Siepel, An Algorithm to Find all Sorting Reversals, RECOMB 2002, ACM Press, New York, 2002, pp. 281–290.

	A very elementary presentation of the Hannenhalli--Pevzner theory
	Introduction
	Basic sorting
	Sorting positive permutations

	Selected results from the Hannenhalli--Pevzner theory
	Hurdles

	Settling scores
	The data structure
	Representing the scores
	Initializing the data structure
	Analysis

	References

