Available online at www.sciencedirect.com

o DISCRETE
scusnce@mnec-r APPLIED

MATHEMATICS
ELSEVIER Discrete Applied Mathematics 146 (2005) 134—145

www.elsevier.com/locate/dam

A very elementary presentation of the Hannenhalli-Pevzner
theory

Anne Bergeron
LACIM, Université du Québec a Montréal, C.P. 8888 Succ. Centre-Ville, Montréal, Que., Canada H3C 3P8

Received 28 February 2002; received in revised form 7 February 2003; accepted 23 April 2004
Available online 15 December 2004

Abstract

In 1995, Hannenhalli and Pevzner gave a first polynomial solution to the problem of finding the minimum number of reversals
needed to sort a signed permutation. Their solution, as well as subsequent ones, relies on many intermediary constructions, such a
simulations with permutations om2lements, and manipulation of various graphs. Here we give the first completely elementary
treatment of this problem. We characterigafe reversalsaind hurdlesworking directly on the original signed permutation.
Moreover, our presentation leads to polynomial algorithms that can be efficiently implemented using bit-wise operations.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Reversal distance; Signed permutations

1. Introduction

In the last 10 years, beginning wiffi], many papers have been devoted to the subject of computimgvhesal distance
between two permutations.sversalp(i, j) transforms a permutation

T= (Mg ¢ W Mgl v Wi oo Tp)
'[O7I/=(7Il S TG Tyl TG)

and thereversal distanc®etween two permutations is the minimum number of reversals that transform one into the other.

From a problem of unknown complexity, it graduated to an NP-Hard prof8gnbut an interesting variant was proven to be
polynomial[4]. In thesignedversion of the problem, each element of the permutation has a plus or minus sign, and a reversal
p(i, j) transformsr to

/
T=(T e =Wy o — Wiyl — TG o Tp).

Permutations, and their reversals, are useful tools in the comparative study of genomes. The genome of a species can be though
of as a set of ordered sequences of genes, the ordering devices being the chromosomes, each gene having an orientation given t
its location on the DNA double strand. Different species often share similar genes that were inherited from common ancestors.
However, these genes have been shuffled by mutations that modified the content of chromosomes, the order of genes within a
particular chromosome, and/or the orientation of a gene. Comparing two sets of similar genes appearing along a chromosome
in two different species yields two (signed) permutations. It is widely accepted that the reversal distance between these two
permutations provides a good estimate of the evolutionary distance between the two species.

E-mail addressbergeron.anne@uqgam.¢a Bergeron).

0166-218X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2004.04.010

http://www.elsevier.com/locate/dam
mailto:bergeron.anne@uqam.ca

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 135

Computing the reversal distance between signed permutations is a delicate task, since some reversals unexpectedly affect dee
structures in permutations. In 1995, Hannenhalli and Pevzner proposed the first polynomial algorithm tg4jpldevieloping
along the way a theory of how and why some permutations were particularly resistant to sorting by reversals. It is of no surprise
that the labefortresswas assigned to specially acute cases.

Hannenhalli and Pevzner relied on several intermediate constructions that have been simplifigd Zfjcéut grasping
all the details remains a challenge. All the criteria given for choosiegfareversal involve the construction of an associate
permutation on 2 points, and the analysis of cycles and/or connected component of graphs associated with this permutation.

In this paper, we present an elementary treatment of the sorting ofihr@ed componentsf a permutation, together with a
new definition of the concept dfurdle, that further simplifies the definition given [B]. Our first algorithm is so simple that,
for example, sorting a permutation of length B§,hand should be easy and straightforward.

The next section presents the basic algorithms. Section 3 contains the necessary links to the Hannenhalli-Pevzner theory,
and the proofs of the claims in Section 2. Finally, in the last section, we discuss complexity issues, and weitgreetar
implementation of the sorting algorithm that runs(im?) bit-vector operations, or ilfﬁ(n3/w) operations, wherev is the
word-size of the processor.

2. Basic sorting

The problem of computing the distance between two permutations is often recast as the problem of cafiputitng
reversal distance between a permutati@nd the identity permutatiofl 2--- »). In this paper, we focus on the reconstruction
of one possible sequence of reversals that readizel also called theorting by reversals probleris usual, we will assume
that the permutation isamedby 0 andr + 1, and that those extra elements are always positive:

n=0mny 72 - 1y n+1).

An oriented pair(r;, n;),i < j, is a pair of consecutive integers, thatrg| — |r ;| = 1, with opposite signs. For example, the
oriented pairs of the permutation

©O 316 5 -2 47

are(1, —2) and(3, —2).
Oriented pairs are useful, in the sense that they indicate reversals that create consecutive elements of the permutation that are
also consecutive integers. For example, the (dair-2) induces the reversal

©O 316 5 -2 47,
© 312 -5 -6 47,

creating the consecutive integers 1 2. Note that the reverse of a pair of consecutive integers;-sich asis also a pair of
consecutive integers.
In general, the reversal induced by an oriented paiy= ;) will be

pl,j—01, if m +rj=+1 and
pli+1,j), ifm+mn ==L

Note that reversals that create consecutive integers are always induced by oriented pairs. Such a reversal isratitgian
reversal. We define thecoreof an (oriented) reversal as the number of oriented pairs in the resulting permutation. For example,
the score of the reversal

(0.3 1 6 5 -2 4 7,
o -5 -6 -1 -3 -2 47

is 4, since the resulting permutation has four oriented pairs. Computing the score of a reversal is tedious but elementary, and we
will discuss efficient algorithms too do so in Section 4. The fact that oriented reversals have a beneficial effect on the ordering
of a permutation suggests a first sorting strategy.

Algorithm 1. As long ast has an oriented pajrchoose the oriented reversal that has maximal score

136 A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145

For example, the scores of two oriented palts—2) and(3, —2) of the permutation
@0 3 16 5 -249Y
are, respectively, 2 and 4. So we choose the reversal induce] by), yielding the new permutation
o -5 -6 -1 -3 -2 4 7.

This permutation has now four oriented paigs —1), (—3, 4), (-5, 4) and(—6, 7), all of which have score 2, except3, 4).
Acting on this pair yields

© -5 -6 -1 2 3 4 7

which has four oriented pairs. Note here that the score of thé@airl) is 0. The corresponding oriented reversal would produce
a permutation with no oriented pair, and the algorithm would stop, in this case with an unsorted permutation. Fortunately, the pair
(—1, 2) has a positive, and maximal, score and we get, in a similar way, the last two necessary reversals to sort the permutation

O -5 -6 1 2 3 47,

O -5 -4 -3 -2 —-16 7,

©O 12 3 456 7

Interestingly enough, this elementary strategy is sufficient to optimally sort most random permutations and almost all permutations
that arise from biological data. The strategy is also optimal, and we will prove in the next section the following claim.

Claim 1. If the strategy of Algorithni applies k reversals to a permutatianyielding a permutation’, thend (r) =d(z') + k.

The output of Algorithm 1 will be a permutation of positive elements. Most reversal applied to such permutations will create
oriented pairs, but the choice of an optimal reversal is delicate. We discuss this problem in the next paragraph.

2.1. Sorting positive permutations

Letn be a signed permutation with only positive elements, and assumeittaducedthat ist does not contain consecutive
integers. Suppose also thats framed by 0 ana + 1 and consider, as iib], the circular order induced by setting O to be the
successor of + 1.

Define aframed intervain = as an interval of the form

[Mjp1 Tjg2 - Tjk-1 i +k,
such that all integers betweeandi + k belong to the intervdli - - - i + k]. For example, consider the permutation
O 2 5 4 3 6 1 7.

The whole permutation is a framed interval. But we have also the interval: 2 5,4vBiéh can be reorderedas 2 3 4 5 6, and,
by circularity, the intervab 1 7 0 2 which can be reordered as 6 7 0 1 2, since 0 is the successor of 7.

Definition 2. If = is reduced, &urdlein = is a framed interval that contains no shorter framed interval.
Claim 3. Hurdles as defined in Definitiohare the same hurdles that are defined4rb].

When a permutation has only one or two hurdles, 1 reversal is sufficient to create enough oriented pairs in order to completely
sort the permutation with Algorithm 1. Two operations are introducef@dlinthe first one ishurdle cuttingwhich consist in
reversing the segment betweiesnd; + 1 of a hurdle

imjamji2- i+ 1 mjpp_1i + k.

This reversal is sufficient to sort all the interval using Algorithm 1. For example, the following permutation contains only one
hurdle

(0 2 4 3 1 5.

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 137

The reversal of elements 2, 4 and 3 cuts the hurdle, and the resulting permutation
O -3 -4 -2 1 H

can be sorted with 4 reversals by Algorithm 1.
The second operation isirdle mergingwhich acts on the endpoints of two hurdles:

Peeit kil i+ K

and does the reversali + k, i’). If a permutation has only two hurdles, merging them will produce a permutation that can be
completely sorted by Algorithm 1.
Thus, for example, merging the two hurdles in the permutation

O 2 5 4 36 17
yields the permutation
O 2 5 4 3 -6 1 7,

which can be sorted in 5 reversals using Algorithm 1.
Merging and cutting hurdles in a permutation that contains more than two hurdles must be managed carefully. Indeed, cutting
some hurdles can create new ones!

Definition 4. A simple hurdle is a hurdle whose cutting decreases the number of hurdles. Hurdles that are not simple are called
super hurdles

For example, the permutatidd 2 5 4 3 6 1 7 has two hurdles. Cutting and sorting the hurdle 2 5 4 3 6 yields the permu-
tation,

O 2 3 45 6 17,
which, by collapsing the sequence 2 3 4 5 6, reduces to
0 21 3,

which has only one hurdle.
However, the permutatio® 2 4 35 1 6 8 7 9also contains two hurdles, and when one cuts the hurdle 2 4 3 5, the resulting
reduced permutation is

O 2 1 3 5 4 ¢,

which still has two hurdles.
The following algorithm is adapted frofs], and is discussed originally [d].

Algorithm 2. If a permutation ha®k hurdles k> 2, merge any two non-consecutive hurdlésa permutation ha®k + 1
hurdles k > 1, then if it has one simple hurdleut it; If it has none merge two non-consecutive hurdles consecutive ones if
k=1.

Together with Algorithm 1, Algorithm 2 can be used to optimally sort any signed permutation. Permutations that are not
already reduced can always be reduced by merging consecutive integers, and by renumbering all the elements.
This completes the first part of the paper, and, in the next section, we turn to the task of proving our various claims.

3. Selected results from the Hannenhalli-Pevzner theory
The exposition of the complete results of the Hannenhalli-Pevzner theory is beyond the scope of this paper, and the reader

is referred to the original papét], or the book on computational molecular biology by PevZ6grinstead, we will show the
soundness of our algorithms by directly using #ne overlap graphintroduced in5].

138 A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145

NN

o 2 1 5 6 9 10 7 8 11 12 4 3 13
0 -1 3 5 4 6 -2 7

Fig. 1. The Breakpoint Graphaf=(0 —13546 —2 7).

01

(12, 13) ‘\(2, 3)

(10, 11) Q (4, 5)
(8,9) 6,7)

Fig. 2. The arc overlap graphaf=(0 —13546 —27).

The first construction is thiereakpoint graptassociated withr. Each positive elementin the permutatior is replaced by
the sequencex2— 1 2x, and each negative element by the sequencex22x — 1. For example,

=0 —-1 3 5 4 6 -2 7
becomes
=0 2 15 6 9 10 7 8 11 12 4 3 13

Reversalg (i, j) of = are simulated by unsigned reversal& — 1, 2j) in n’.

The elements of’ are the vertices of the breakpoint graph. Straight edges join every other pair of consecutive elendents of
starting with 0, and curved edges, calkds join every other pair of consecutive integers, starting Whl).

Every connected component of the breakpoint graph is a cycle, which is a consequence of the fact that each vertex has exactly
two incident edges. The graph Big. 1 has 2 cycles.

Thesupportof an arc is the interval of elements gfbetween, and including, its endpoints. Two avesrlapif their support
intersect, without proper containment. An arcoigentedif its support contains an odd number of elements, otherwise it is
unoriented In Fig. 1, the oriented arcs ai®, 1) and (4, 5). Note that an arc is oriented if and only if its endpoints are images
of an oriented pair of the original permutation.

Thearc overlap graphis the graph whose vertices are arcs of the breakpoint graph, and whose edges join overlapping arcs.
The overlap graph corresponding to the breakpoint graptigpflis illustrated inFig. 2, in which each vertex is labeled by an
arc(2x, 2x + 1). Orientedvertices—those for which the corresponding arc is oriented—are marked by black dots. Orientation
extends to connected components in the sense that a connected component with at least one oriented vertex is oriented. It is eas
to show that a vertex is oriented if and only if its degree is odd (see Lemma 5).

There is a natural bijection between the vertices of the overlap graph and pairs of (unsigned) consecutivexiatedjers
x + 1 in the original permutation. Indeed, a pair of consecutive integers will generate four consecutive integers in the unsigned
permutation: 2 — 1, 2x, 2x + 1, and 2 + 2. The vertex2x, 2x + 1) is associated with the pairandx + 1. For example, the
oriented pairn3, —2) in = corresponds to the vertés, 5) in the overlap graph. We will refer to thieversal induced by a vertex
meaning the reversal induced by the corresponding oriented pair of the original permutation. The following lemmas, mostly
from [5], pinpoint the important relations between a signed permutation and its overlap graph, and will help to prove Claim 1 of
Section 2.

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 139

W W
v u v u
becomes m

Reversed interval

w w
v u v u
becomes m /\.

Reversed interval

Fig. 3. Complementation of subgraphs.

Lemma 5. A vertex has an odd degree if and only if it is oriented

Proof. Let 2x — 1, 2v, 2x + 1, and 2 + 2, be the four integers associated with the oriented @airr ;). Sincer; andr;

have different signs, the positions of 2nd 2 + 1 will not have the same parity in the unsigned permutation. Thus, the interval
between 2 and 2 + 1 has an odd length, implying that it overlaps an odd number of other intervals. On the other hand, any
interval that overlaps an odd number of intervals must have an odd length. Therefore, the positions of its endpoints must have
different parities, implying that the corresponding pair of consecutive integers is orieriied.

Lemma 6. If one performs the reversal corresponding to an oriented vertethe effect on the overlap graph will be to
complement the subgraph inducedibgnd its adjacent vertices

Proof. The reversal corresponding to an oriented vertaas the effect of collapsing the associated interval, thui#l become
isolated. Letu andw be two intervals overlapping, meaning that exactly one of their endpoints lies in the interval spanned by
v. The reversal induced hywill reverse these two points. Here, a pictukégy(3) is worth a thousand words. OJ

Lemma 7. If one performs the reversal corresponding to an oriented vertezach vertex adjacent to will change its
orientation

Proof. Sincew is oriented, it has an odd numbet 2 1 of adjacent vertices. Lat be a vertex adjacent tg with j neighbors
also adjacent to. With the reversalyw will loose j + 1 neighbors, and gaink2- j new ones. Thus the degreewivill change
by 2k — 2j — 1, changing its orientation.

Lemma 8. The score of the oriented reversal corresponding to an oriented veiitegiven by
T+U-0-1,

where T is the total number of oriented vertices in the grdps the number of unoriented vertices adjaceni tand O is the
number of oriented vertices adjacentuto

Proof. This follows trivially from the preceding lemmas[]

We now state a basic result that is proved, in different wayp},B]. Define anoriented componerdf the overlap graph as
a connected component that contains at least one oriented vertex, otherwise the comporaignsed A safereversal is a
reversal that does not create new unoriented components, except for isolated vertices. The following theorem states that safe
reversals, when they exist, always decrease the distance by 1.

Theorem 9 (Hannenhalli and Pevzngd]). Any sequence of oriented safe reversals is optimal

The difficulties in sorting oriented components lie in the detection of safe reversals. Hannenhalli and Pevzner deal with the
problem by computing several statistics on cycles and breakpoints of various graphs. Kaplgdb]esa\e it by searching
for particular cliques in the overlap graph. The next theorem argues that the elementary strategy of choosing the reversal with
maximal score is optimal, thus proving Claim 1.

140 A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145

LN

0 3 4 7 8 11 12 9 10 13 14 5 6 15 16 1 2 17

Fig. 4. The breakpointgraphaf=(0246573819

Theorem 10. An oriented reversal of maximal score is safe

Proof. Suppose that vertex has maximal score, and that the reversal induced byeates a new unoriented componént
containing more than one vertex. At least one of the vertic€sritust have been adjacentipsince the only edges affected by
the reversal are those between vertices adjacantltet w be a vertex formerly adjacent toand contained i€, and consider
the scores ob andw:

score(v) =T+ U — O —1,
score(w)=T +U — 0" —1.

All unoriented vertices formerly adjacenttanust have been adjacento Indeed, an unoriented vertex adjacent tand not
to w will become oriented, and connectedapcontrary to the assumption th@atis unoriented. Thus/’ > U.

All oriented vertices formerly adjacent tomust have been adjacentitolf this was not the case, an oriented vertex adjacent
to w but not tov would remain oriented, again contradicting the fact tba unoriented. Thusp’ < 0.

Now, if both O’ = 0 andU’ = U, verticesv andw have the same set of adjacent vertices, and complementing the sub-
graph ofv and its adjacent vertices will isolate batreandw. Therefore, we must have thetore(w) > score(v), which is a
contradiction. [

3.1. Hurdles

The goal of this section is to prove Claim 3. We assumethata positive and reduced permutation. These assumptions are
equivalent to saying that the overlap graph has no oriented components, all of which can be cleared by Algorithm 1, and no
isolated vertices.

Consider again the circular order, this time on the intef@aP» — 1], induced by setting 0 to be the successornf2l. The
spanof a set of verticeX in the overlap graph is the minimum interval that contains, in the circular order, all vertiée$or
example, consider the permutation

=0 2 4 6 57 3 8 1 9

whose breakpoint graph and arc overlap graphs are illustratédsn4ands. The three connected components of its arc overlap
graph have spans:

[4, 15]=[4781112910131456 15
[8, 13]=[8 11129 10 1B
[16, 3]=[16121703.

Hurdles are defined if4] as unoriented components which are minimal with respect to the order induced by span inclusion.
Moreover, in[5], it is shown that the span of a connected component is always of thg2or8y — 1]. The following lemmas

and theorem detail the relationships between connected components and framed intervals, substantiating the second claim of
Section 2.

Lemma 11. Framed intervals of the forrfi, j] in a permutation on n elements are in one-to-one correspondence with framed
intervals of the fornj2i, 2; — 1] in the corresponding unsigned permutationnelements

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 141

0,1)
(16, 17) OAO 2.3)
(14, 15) (4,5)
(12, 13) 6,7)
(10, 11) (8,9

Fig. 5. The arc overlap graphaf=(0246573819

Proof. The endpoints andj of a framed intervali, j] will be mapped, respectively, to the pairs21, 2, and 2/ — 1, 2;. All
integers betweenandj appear in the intervdl, /1, if and only if all the integers betweeri and 2/ — 1 appear in the interval
[2i,2j—1]. O

Lemma 12. Any framed interval2i, 2j — 1] is the span of a union of connected components

Proof. If [2i,2j — 1] is a framed interval, it contains exactly the integers betweean® 2/ — 1, thus the only arcs in this
interval are(2i, 2i +1), (2i +2,2i +3), ..., (2j —2,2j — 1), and no other arc intersects this set. Therefore, the corresponding
set of vertices is not connected to any other vertdx.

Lemma 13. The sparf2i, 2j — 1] of a connected component is always a framed interval

Proof. If vertex(2i, 2i + 1) is connected t62j — 2, 2j — 1), there must be a sequence of intersecting arcs linkirig 2j — 1.

2i 2i+1 2 -2 2-1

Any arc with only one endpoint between &nd 2/ — 1 would therefore intersect one of the arcs in the sequence, and would be
part of the connected component, so there are none. Thus, if integein2the interval, then2+ 1 is also in the interval, and
if i<k<j—1,then2 + 2is also in the interval. O

Theorem 14. If x is reducegan unoriented component is minimal if and only if its span is a framed interval that contains no
other.

Proof. By Lemma 13, the span of a connected component is always a framed interval. If the component is minimal with respect
to span inclusion, by Lemma 12, its span cannot contain properly another framed interval.

On the other hand, a framed intery2i, 2; — 1] that contains no other yields a single connected compdDeiitose vertices
endpoints are exactly the integers betweeard 2/ — 1. Thus the vertices o€ are consecutive on the circle, and component
Cis minimal. O

Using Lemma 11, Theorem 14 gives an elementary characterization of the concept of hurdles, that does not rely on the
construction of the overlap graph.

4. Settling scores

Algorithm 1 has a straightforward naive implementation: in order to find a safe reversal, perform each possible oriented
reversal on the original permutation, and count the number of resulting oriented reversals. Since thereaiented reversal

142 A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145

0,1

(12, 13) K\ (2, 3)

(10, 11) @.5)

8,9) 6,7)

Fig. 6. The arc overlap graph @ 316 5 -2 4 7).

in a given permutation on elements, and since computing the number of oriented reversals in a permutation can be done in
(O(n) operations, this yields ati(n) algorithm for sorting a permutation gnelements.

However, performing a reversal, or computing its score, is a “local” operation on the overlap graph, and this locality suggests
the possibility of a parallel algorithm to keep the scores and to compute the effects of a reversal. The parallelism of the algorithm
will exploit the inherent parallelism of basic operations of a processor. We will work with bit-vectors, and use only three operations
on these vectors: the exclusive-or operaothe conjunctiom; and the negatior-.

Subsets of vertices of the arc overlap graph will be representeddmacteristicdit-vectors: Ifsis a subset of th&0, . . ., n},
then the bold symbdiis the bit-vector:

1 ifies,

$=(S0. .-, %) wheres; = {O otherwise

4.1. The data structure

Given an arc overlap graph, we first construct a bit-matrix in which eaclvjlisehe set of adjacent vertices to &2z, 2i + 1).
For example, consider the permutati@n3 1 6 5 — 2 4 7), whose arc overlap graph is illustratedriy. 6.
The bit-matrix associated with this graph is the following:

Vo V1 Va V3 V4 Vs Vg
V|0 011000
vi[0 0010101
V21101101
vs/1 010101
vi0111010
vs|0 000101
Vel0 111010
pl0110000
s|lo132020

The last two lines contain, respectively, the paptyor orientation, of the vertex, and the scere U — O of the associated
reversal. [The score of a reversal was defined in Sectionf3-ad/ — O — 1, whereT is the total number of oriented reversals
in the original permutation. Since we want to maximize scores, and $ireé is constant for all reversals, it is only necessary
to maximizeU — 0.]

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 143

We will discuss efficient ways to initialize the structure and to adjust scores in Sections 4.2 and 4.3.

Given the vectorp ands, selecting the oriented reversal with maximal score is elementary. In the above example, vertex 2
would be the selected candidate.

The interesting part is how a reversal affects the structure. These effects are summarized in the following algorithm, which
recalculates the bit-matrix the parity vectop, and the score vectay following the reversal associated to vertewhose set
of adjacent vertices is denoted 1y

l.s< s+

2.vi; <1

3.for each vertex adjacent td do
4. if jis oriented

5 S <« S+
6 ij<—1
7. Vi <V DV
8 S <« S+
9 else

10. S« S—V
11. vjj<—1
12. Vi <V DV
13. S« S—V
1l4.p<—pay;

The logic behind the algorithm is the following. Since verisxll become unoriented and isolated, each vertex adjacent to
will automatically gain a point of score in step 1. Nextj i§ a vertex adjacent tq vertices adjacent tpafter the reversal are
either existing vertices that were adjacen} sBnd not adjacent tg or vertices that were adjacentitbut not toj. This is the
definition of the exclusive-or operatey.

The exceptions to this rule arandj themselves, and this problem is solved by setting the diagonal bits to 1 before computing
V; @V in steps 6 and 11.

If j is oriented, each of its former adjacent vertices will gain one point of score, jsivit&ecome unoriented, and each of its
new adjacent vertices will gain one point of score. We thus add these points of score with two instructions sandwiching step 6.
Note that a vertex thataysconnected tpwill gain a total of two points. For unoriented vertices, the gains are converted to losses.

The amount of work done to process a reversal corresponding to veiteberms of vector operations, is thus proportional
to the number of adjacent vertices to veriex

4.2. Representing the scores

The additions and subtractions to adjust the score vector are the usual arithmetic operations performed component-wise. In
order to have a truly bit-vector implementation, we represented the score sexdt@[log(n)] x n bit-matrix, each column
containing the binary representation of a score.Kthéine of the matrix is referred to &g. With this representation, component-
wise addition of a bit-vectov to s can be realized with the following:

1.for kfrom 1to [log(n)]

2. t<v

3. V< VA S

4. Sk < td ¢

Subtraction is implemented in a similar way. A side benefit of this structure is that the selection of the next reversal can be also
done in parallel, by “sifting” the score matrix through the parity vector. The sétandidates contains initially all the oriented
vertices. Going from the higher bit of scores to the lower, if at least one of the candidates hasthi 1, we eliminate all
candidates for which bitis 0.

l.c<p

2.i < [log(n)]

3.whilei >0do

4, while (cA§) =0

5. i<—i—1
6. ifi>0

7. C<CAS
8. i<«—i—1

144 A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145

At the end of the loopc is the set of oriented vertices of maximal score.
4.3. Initializing the data structure

We saw, in Section 3, that the overlap graph of a signed permutatio(rz,7s - - - n,) contains: + 1 vertices corresponding
to the arcs joining 2 and 2 + 1 in the equivalent unsigned permutation. In this section, we will construct a representation
of the overlap graph without explicitly referring to the unsigned permutation, thus removing one more step between the actual
algorithm, and the original formulation of the problem.

The construction is based on the following simple lemma.lltet a set of intervals with distinct endpoints in an ordered set
S Denote an interval € I by the ordered paif;, ¢;) of its endpoints. Define the sd{sandr; as follows:

ri={j E[|bj<ei<€j},
|i:{j€I|bj<bi<ej}.

The setr; is the set of intervalgin | that contains the right endpoint of intervahnd the sef; is the set of intervalgin | that
contains the left endpoint of intervalWe have the following.

Lemma 15. The set; of intervals that overlap i in | is given by; = 1; & r;j.

Starting with a signed permutation= (n172 - - - 1,), we first read the elements from left to right. laetepresent the set of
arcs for which exactly one endpoint has been read. Initialily,the set {0}, corresponding to the &i@, 1). When element; is
read, we have to process two ar@r; — 2, 2n; — 1) and(2x;, 2rn; + 1). In increasing order, ifi; is positive, and decreasing
order, otherwise. Processing an &2¢, 2 + 1) is done by the following instructions:

lifa; =0
2. a; < 1(*Firstendpoint of arg2j, 2j + 1)*)
3. else(* Second endpoint *)
5. v < a(* aisthe set; *)
We then repeat the process in the reverse order, reading the permutation from right to left, initealiaittee set{n}, and
changing the last instruction t < vj & a. The parity vectop is initialized in this loop with the instructiop <~ p® v;.
Once the bit-matriw is computed, the scores are initialized by either adding or subtractingvgatdpending on its parity,
to an initial null matrix of scores.

4.4. Analysis

The formal analysis of the algorithm of Section 4.1 raises interesting questions. For example, what is an elementary operation?
Except for a few control statements, the only operations used by the algorithm are very efficient bit-wise logical operators on
words of sizew, typically 32 or 64, depending on implementation. The most expensive instructions in the main loop are additions
and subtractions, such as

S < s+V,

wheres is a bit-matrix of sizen log(n), andvj is a bit-vector of sizen. Such an operation requires a total(@f log(n))/w
elementary operations with the loop described in Section 4.2. Hopefullys)lagy much smaller thamw, and, in the range of
biologically meaningful values is often a small multiple ofv. In the actual implementation, the loop is controlled by the value
of log(maximal scorgwhich tends to be much less than {(ag We thus have a, very generodgn) estimate for the instructions
in the main loop.

The overall work done by the algorithm depends on the total numbéwrertices adjacent to vertices of maximal score. We
can easily bound it byz, noting that the numbetof reversals needed to sort the permutation is boundexi diyd the degree of
a vertex is also bounded loy We thus get af/(n3) estimate for the algorithm, assuming that log: w. However, in practical
applications, such g8], this algorithm outperforms consistently classical algorithms with smaller theoretical complexity.

References

[1] D. Bader, B. Moret, M. Yan, A linear-time algorithm for computing inversion distance between signed permutations with an experimental
study, J. Comput. Biol. 8 (5) (2001) 483—491.

A. Bergeron/Discrete Applied Mathematics 146 (2005) 134—145 145

[2] P. Berman, S. Hannenhalli, Fast Sorting by Reversal, CPM 1996, Lecture Notes in Comput. Sci., vol. 1075, Springer, Berlin, 1996, pp.
168-185.

[3] A. Caprara, Sorting by Reversals is Difficult, RECOMB 1997, ACM Press, New York, 1997, pp. 75-83.

[4] S.Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J. Assoc.
Comput. Mach. 46 (1) (1999) 1-27.

[5] H. Kaplan, R. Shamir, R. Tarjan, A faster and simpler algorithm for sorting signed permutations by reversals, SIAM J. Comput. 29 (3) (1999)
880-892.

[6] P. Pevzner, Computational Molecular Biology, MIT Press, Cambridge, MA, 2000, 314p.

[7] D. sankoff, Edit Distances for Genome Comparisons Based on Non-Local Operations, CPM 1992, Lecture Notes in Comput. Sci., vol. 644,
Springer, Berlin, 1992, pp. 121-135.

[8] A. Siepel, An Algorithm to Find all Sorting Reversals, RECOMB 2002, ACM Press, New York, 2002, pp. 281-290.

	A very elementary presentation of the Hannenhalli--Pevzner theory
	Introduction
	Basic sorting
	Sorting positive permutations

	Selected results from the Hannenhalli--Pevzner theory
	Hurdles

	Settling scores
	The data structure
	Representing the scores
	Initializing the data structure
	Analysis

	References

