
Computational Geometry:Methods and ApplicationsJianer ChenComputer Science DepartmentTexas A&M UniversityFebruary 19, 1996

Chapter 1IntroductionGeometric objects such as points, lines, and polygons are the basis of abroad variety of important applications and give rise to an interesting setof problems and algorithms. The name geometry reminds us of its earliestuse: for the measurement of land and materials. Today, computers are beingused more and more to solve larger-scale geometric problems. Over the pasttwo decades, a set of tools and techniques has been developed that takesadvantage of the structure provided by geometry. This discipline is knownas Computational Geometry.The discipline was named and largely started around 1975 by Shamos,whose Ph.D. thesis attracted considerable attention. After a decade of devel-opment the �eld came into its own in 1985, when three components of anyhealthy discipline were realized: a textbook, a conference, and a journal.Preparata and Shamos's book Computational Geometry: An Introduction[23], the �rst textbook solely devoted to the topic, was published at aboutthe same time as the �rst ACM Symposium on Computational Geometry washeld, and just prior to the start of a new Springer-Verlag journal Discrete andComputational Geometry. The �eld is currently thriving. Since 1985, sev-eral texts, collections, and monographs have appeared [1, 10, 18, 20, 25, 26].The annual symposium has attracted 100 papers and 200 attendees steadily.There is evidence that the �eld is broadening to touch geometric modelingand geometric theorem proving. Perhaps most importantly, the �rst studentswho obtained their Ph.D.s in computer science with theses in computationalgeometry have graduated, obtained positions, and are now training the nextgeneration of researchers.Computational geometry is of practical importance because Euclidean1

2 INTRODUCTIONspace of two and three dimensions forms the arena in which real physicalobjects are arranged. A large number of applications areas such as patternrecognition [28], computer graphics [19], image processing [22], operationsresearch, statistics [4, 27], computer-aided design, robotics [25, 26], etc., havebeen the incubation bed of the discipline since they provide inherently geo-metric problems for which e�cient algorithms have to be developed. A largenumber of manufacturing problems involve wire layout, facilities location,cutting-stock and related geometric optimization problems. Solving thesee�ciently on a high-speed computer requires the development of new geo-metrical tools, as well as the application of fast-algorithm techniques, andis not simply a matter of translating well-known theorems into computerprograms. From a theoretical standpoint, the complexity of geometric algo-rithms is of interest because it sheds new light on the intrinsic di�culty ofcomputation.In this book, we concentrate on four major directions in computationalgeometry: the construction of convex hulls, proximity problems, searchingproblems and intersection problems.

Chapter 2Algorithmic FoundationsFor the past twenty years the analysis and design of computer algorithmshas been one of the most thriving endeavors in computer science. The funda-mental works of Knuth [14] and Aho-Hopcroft-Ullman [2] have brought orderand systematization to a rich collection of isolated results, conceptualizedthe basic paradigms, and established a methodology that has become thestandard of the �eld. It is beyond the scope of this book to review in detailthe material of those excellent texts, with which the reader is assumed tobe reasonably familiar. It is appropriate however, at least from the point ofview of terminology, to brie
y review the basic components of the languagein which computational geometry will be described. These components arealgorithms and data structures. Algorithms are programs to be executed ona suitable abstraction of actual \von Neumann" computers; data structuresare ways to organize information, which, in conjunction with algorithms,permit the e�cient and elegant solution of computational problems.2.1 A Computational modelMany formal models of computation appear in the literature. There is nogeneral consensus as to which of these is the best. In this book, we willadopt the most commonly-used model. More speci�cally, we will adoptrandom access machines (RAM) as our computational model.3

4 ALGORITHMIC FOUNDATIONSRandom access machine (RAM)A random access machine (RAM) models a single-processor computer witha random access memory.A RAM consists of a read-only input tape, a write-only output tape, aprogram and a (random access) memory. The memory consists of registerseach capable of holding a real number of arbitrary precision. There is alsono upper bound on the memory size. All computations take place in theprocessor. A RAM can access (read or write) any register in the memory inone time unit when it has the correct address of that register.The following operations on real numbers can be done in unit time by arandom access machine :1) Arithmetic operations: �, =, +, �, log, exp, sin.2) Comparisons3) Indirect access2.2 Complexity of algorithms and problemsThe following notations have become standard:� O(f(n)) : the class C1 of functions such that for any g 2 C1, there is aconstant cg such that f(n) � cgg(n) for all but a �nite number of n's.Roughly speaking, O(f(n)) is the class of functions that are at mostas large as f(n).� o(f(n)) : the class C2 of functions such that for any g 2 C2,limn!1 g(n)=f(n) = 0. Roughly speaking, o(f(n)) is the class of func-tions that are less than f(n).�
(f(n)) : the class C3 of functions such that for any g 2 C3, there is aconstant cg such that f(n) � cgg(n) for all but a �nite number of n's.Roughly speaking,
(f(n)) is the class of functions which are at leastas large as f(n).� !(f(n)) : the class C4 of functions such that for any g 2 C4,limn!1 f(n)=g(n) = 0. Roughly speaking, !(f(n)) is the class offunctions that are larger than f(n).� �(f(n)) : the class C5 of functions such that for any g 2 C5, g(n) =O(f(n) and g(n) =
(f(n)). Roughly speaking, �(f(n)) is the classof functions which are of the same order as f(n).

DATA STRUCTURE 5Complexity of algorithmsLet A be an algorithm implemented on a RAM. If for an input of size n, Ahalts after m steps, we say that the running time of the algorithm A is mon that input.There are two types of analyses of algorithms: worst case and expectedcase. For the worst case analysis, we seek the maximum amount of time usedby the algorithm for all possible inputs. For the expected case analysis wenormally assume a certain probabilistic distribution on the input and studythe performance of the algorithm for any input drawn from the distribu-tion. Mostly, we are interested in the asymptotic analysis, i.e., the behaviorof the algorithm as the input size approaches in�nity. Since expected caseanalysis is usually harder to tackle, and moreover the probabilistic assump-tion sometimes is di�cult to justify, emphasis will be placed on the worstcase analysis. Unless otherwise speci�ed, we shall consider only worst caseanalysis.De�nition Let A be an algorithm. The time complexity of A is O(f(n))if there exists a constant c such that for every integer n � 0, the runningtime of A is at most c � f(n) for all inputs of size n.Complexity of problemsWhile time complexity for an algorithm is �xed, this is not so for problems.For example, Sorting can be implemented by algorithms of di�erent timecomplexity. The time complexity of a known algorithm for a problem gives usthe information about at most how much time we need to solve the problem.We would also like to know the minimum amount of time we need to solvethe problem.De�nition A function u(n) is an upper bound on the time complexity of aproblem P if there is an algorithm A solving P such that the running timeof A is u(n). A function l(n) is a lower bound on the time complexity of aproblem P if any algorithm solving P has time complexity at least l(n).

6 ALGORITHMIC FOUNDATIONS2.3 A data structure supporting set operationsA set is a collection of elements. All elements of a set are di�erent, whichmeans no set can contain two copies of the same element.When used as tools in computational geometry, elements of a set usuallyare normal geometric objects, such as points, straight lines, line segments,and planes in Euclidean spaces.We shall sometimes assume that elements of a set are linearly orderedby a relation, usually denoted \<" and read \less than" or \precedes". Forexample, we can order a set of points in the 2-dimensional Euclidean spaceby their x-coordinates.Let S be a set and let u be an arbitrary element of a universal set of whichS is a subset. The fundamental operations occurring in set manipulation are:� MEMBER(u; S): Is u 2 S?� INSERT(u; S): Add the element u to the set S.� DELETE(u; S): Remove the element u from the set S.When the universal set is linearly ordered, the following operations are veryimportant:� MINIMUM(S): Report the minimum element of the set S.� SPLIT(u; S): Partition the set S into two sets S1 and S2, so that S1contains all the elements of S which are less than or equal to u, andS2 contains all the elements of S which are larger than u.� SPLICE(S; S1; S2): Assuming that all elements in the set S1 are lessthan any element in the set S2, form the ordered set S = S1 [S2.We will introduce a special data structure: 2-3 trees, which representsets of elements and support the above set operations e�ciently.De�nition A 2-3 tree is a tree such that each non-leaf node has two orthree children, and every path from the root to a leaf is of the same length.The proof of the following theorem is straightforward and left to thereader.

DATA STRUCTURE 7Theorem 2.3.1 A 2-3 tree of n leaves has height O(logn).A linearly ordered set of elements can be represented by a 2-3 tree byassigning the elements to the leaves of the tree in such a way that for anynon-leaf node of the tree, all elements stored in its �rst child are less thanany elements stored in its second child, and all elements stored in its secondchild are less than any elements stored in its third child (if it has a thirdchild).Each non-leaf node v of a 2-3 tree keeps three pieces of information forthe corresponding subtree.� L(v) : the largest element stored in the subtree rooted at its �rst child.� M(v) : the largest element stored in the subtree rooted at its secondchild.� H(v) : the largest element stored in the subtree rooted at its thirdchild (if it has one).2.3.1 MemberThe algorithm for deciding the membership of an element in a 2-3 tree isgiven as follows, where T is a 2-3 tree, t is the root of T , and u is the elementto be searched in the tree.Algorithm MEMBER(T, u)BEGINIF T is a leaf node then report properlyELSE IF L(t) >= u then MEMBER(child1(T), u)ELSE IF M(t) >= u then MEMBER(child2(T), u)ELSE IF t has a third childTHEN MEMBER(child3(T), u)ELSE report failure.ENDSince the height of the tree is O(logn), and the algorithm simply follows apath in the tree from the root to a leaf, the time complexity of the algorithmMEMBER is O(logn).

8 ALGORITHMIC FOUNDATIONS2.3.2 InsertTo insert a new elment x into a 2-3 tree, we proceed at �rst as if we weretesting membership of x in the set. However, at the level just above theleaves, we shall be at a node v that should be the parent of x. If v has onlytwo children, we simply make x the third child of v, placing the children inthe proper order. We then adjust the information contained by the node vto re
ect the new situation.Suppose, however, that x is the fourth child of the node v. We cannothave a node with four children in a 2-3 tree, so we split the node v into twonodes, which we call v and v0. The two smallest elements among the fourchildren of v stay with v, while the two larger elements become children ofnode v0. Now, we must inset v0 among the children of p, the parent of v.The problem now is solved recursively.One special case occurs when we wind up splitting the root. In that casewe create a new root, whose two children are the two nodes into which theold root was split. This is how the number of levels in a 2-3 tree increases.The above discussion is implemented as the following algorithms, whereT is a 2-3 tree and x is the element to be inserted.Algorithm INSERT(T, x)BEGIN1. Find the proper node v in the tree T such thatv is going to be the parent of x;2. Create a leaf node d for the element x;3. ADDSON(v, d)ENDWhere the procedure ADDSON is implemented by the following recursivealgorithm, which adds a child d to a non-leaf node v in a 2-3 tree.Algorithm ADDSON(v, d)BEGIN1. IF v is the root of the tree, add the node d properly.Otherwise, do the following.2. IF v has two children, add d directly3. ELSE3.1. Suppose v has three children c1, c2, and c3. Partition c1,

DATA STRUCTURE 9c2, c3 and d properly into two groups (g1, g2) and (g3, g4).Let v be the parent of (g1, g2) and create a new node v' andlet v' be the parent of (g3, g4).3.2. Recursively call ADDSON(father(v), v').ENDAnalysis: The algorithm INSERT can �nd the proper place in the tree forthe element x in O(logn) time since all it needs to do is to follow a pathfrom the root to a leaf. Step 2 in the algorithm INSERT can be done inconstant time. The call to the procedure ADDSON in Step 3 can result inat most O(logn) recursive calls to the procedure ADDSON since each callwill jump at least one level up in the 2-3 tree, and each recursive call takesconstant time to perform Steps 1, 2, and 3.1 in the algorithm ADDSON. SoStep 3 in the algorithm INSERT takes also O(logn) time. Therefore, theoverall time complexity of the algorithm INSERT is O(logn).2.3.3 MinimumGiven a 2-3 tree T we want to �nd out the minimum element stored inthe tree. Recall that in a 2-3 tree the numbers are stored in leaf nodesin ascending order from left to right. Therefore the problem is reduced togoing down the tree, always selecting the left most link, until a leaf node isreached. This leaf node should contain the minimum element stored in thetree. Evidently, the time complexity of this algorithm is O(logn) for a 2-3tree with n leaves.Algorithm MINIMUM(T, min)BEGINIF T is a leaf THENmin := T;ELSE call MINIMUM(child1(T), min);END2.3.4 DeleteWhen we delete a leaf from a 2-3 tree, we may leave its parent v with onlyone child. If v is the root, delete v and let its lone child be the new root.Otherwise, let p be the parent of v. If p has another child, adjacent to v on

10 ALGORITHMIC FOUNDATIONSeither the right or the left, and that child of p has three children, we cantransfer the proper one of those three to v. Then v has two children, and weare done.If the children of p adjacent to v have only two children, transfer the lonechild of v to an adjacent sibling of v, and delete v. Should p now have onlyone child, repeat all the above, recursively, with p in place of v.Summarizing these discussions together, we get the algorithm DELETE,as shown below. Where procedure DELETE() is merely a driver for sub-procedure DEL() in which the actual work is done.The variables done and 1son in DEL() are boolean
ags used to indicatesuccessful deletion and to detect the case when a node in the tree has onlyone child, respectively.In the worst case we need to traverse a path in the tree from root to aleaf to locate the node to be deleted, then from that leaf node to the root,in case that every non-leaf node on the path has only two children in theoriginal 2-3 tree T . Thus the time complexity of DELETE algorithm for atree with n nodes is O(logn).Algorithm DELETE(T, x)BEGINCall DEL(T, x, done, 1son);IF done is true THENIF 1son is true THEN T := child1(T)ELSE x was not found in T, handle properlyENDAlgorithm DEL(T, x, done, 1son)BEGIN1. IF children of T are leaves THEN process properly, i.e., ifx is found, delete it; update the variables done and 1son;2. ELSE IN CASE OFx <= L(T): son := child1(T);L(T) < x <= M(T): son := child2(T);M(T) < x <= H(T): son := child3(T);3. Call DEL(son, x, done, 1son1);4. IF 1son1 is true THEN4.1. IF the node T has another child b that has three children,THEN reorganize the grandchildren among the nodes son and

DATA STRUCTURE 11b to make both have two children, and set 1son := false;4.2. ELSE make the only child of the node son a child of asibling of it, and delete the node son from T. If T hasonly one child then set 1son := true.END2.3.5 SpliceSplicing two trees into one big tree is a special case of the more generaloperation of merging two trees. Splice assumes that all the keys in one of thetrees are larger than all those in the other tree. This assumption e�ectivelyreduces the problem of merging the trees into \pasting" the smaller tree intoa proper position in the larger tree. \Pasting" the smaller tree is actuallyno more than performing an ADDSON operation to a proper node in thelarger tree.To be more speci�c, let T1 and T2 be 2-3 trees which we wish to splice intothe 2-3 tree T , where all keys in T1 are smaller than those in T2. Furthermore,assume that the height of T1 is less than or equal to that of T2 so that T1 is\pasted" to T2 as a left child of a leftmost node at the proper level in T2. Inthe case where the heights are equal, both T1 and T2 are made children ofthe common root T ; otherwise the proper level in T2 is given byheight(T2)� height(T1)� 1It is clear that the algorithm SPLICE runs in time O(logn). In fact,the running time is proportional to the height di�erence height(T2) �height(T1)� 1.The implementation of the algorithm SPLICE is given below.Algorithm SPLICE(T, T1, T2){ Suppose that all elements in T1 are less than any elements in T2,and that the height of T1 is at most that of T2. Other cases canbe dealt with similarly.}BEGINIF height(T1) = height(T2)THEN make T a parent of T1 and T2.ELSEWHILE height(T2)-1 > height(T1) DO

12 ALGORITHMIC FOUNDATIONST2 := child1(T2)Call ADDSON(T2, T1).END2.3.6 SplitBy splitting a given 2-3 tree T into two 2-3 trees, T1 and T2, at a givenelement x, we mean to split the tree T in such a way that all elements in Tthat are less than or equal to x go to T1 while the remaining elements in Tgo to T2.The idea is as follows: as the tree is searched for x, we store the subtreesto the left and right of the traversed path (split path). For this purpose twostacks are used, one for each side of the split path. As we go deeper intoT , subtrees are pushed into the proper stack. Finally, the subtrees in eachstack are spliced together to form the desired trees T1 and T2, respectively.The algorithm is given as follows.Algorithm SPLIT(T, x, T1, T2){Split T into T1 and T2 such that all elements in T1 are lessthan or equal to x, and all elements in T2 are greater than x.The stacks S1 and S2 are used to store the subtrees to the leftand right of the path in the 2-3 tree T from the root to theleaf x, respectively.}BEGIN1. WHILE T is not leaf DOIF x <= L(T) THENS2 <-- child3(T), child2(T);T := child1(T);IF L(T) < x <= M(T) THENS1 <-- child1(T); S2 <-- child3(T);T := child2(T);IF M(T) < x <= H(T) THENS1 <-- child1(T), child2(T);T := child3(T);{Reconstruct T1}2. T1 <-- S1;3. WHILE S1 is not empty DOt <-- S1;Call SPLICE(T1, t, T1);

DATA STRUCTURE 13{Reconstruct T2}4. T2 <-- S2;5. WHILE S2 is not empty DOt <-- S2;Call SPLICE(T2, T2, t);ENDIt is easy to see that the WHILE loop in Step 1 takes time O(logn). Theanalysis for the rest of the algorithm is a bit more complicated. Note thatthe use of the stacks S1 and S2 to store the subtrees guarantees that theheight of a subtree closer to a stack top is less than or equal to the height ofthe subtree immediately deeper in the stack. A crucial observation is thatsince we splice shorter trees �rst (which are on the top part of the stacks),the di�erence between the heights of two trees to be spliced is always verysmall. In fact, the total time spent on splicing all these subtrees is boundedby O(logn). We give a formal proof as follows.Assume that the subtrees stored in stack S1 aret1; t2; � � � ; tr (2:1)in the order from the stack top to stack bottom. Let h(t) be the height ofthe 2-3 tree t. According to the algorithm SPLIT, we haveh(t1) � h(t2) � � � � � h(tr)and no three consecutive subtrees in the stack have the same height. Thus,we can partition sequence (1) into \segments" which contains the subtreesof the same height in the sequence:s1; s2; � � � ; sqEach si either is a single subtree or consists of two consecutive subtrees ofthe same height in sequence (1). Moreover, q � logn. Let h(si) be theheight of the subtrees contained in the segment si. We haveh(s1) < h(s2) < � � �< h(sq)The WHILE loop in Step 3 �rst splices the subtrees in segment s1 intoa single 2-3 tree T (1)1 , then recursively splices the 2-3 tree T (i�1)1 and thesubtrees in segment si into a 2-3 tree T (i)1 , for i = 2; : : : ; q. We have thefollowing lemma.

14 ALGORITHMIC FOUNDATIONSLemma 2.3.2 For all i = 2; : : : ; q, we haveh(si�1) � h(T (i�1)1) � h(si) < h(si+1) < � � �< h(sq)proof. That h(s1) � h(T (1)1) is fairly clear since T (1)1 is obtained bysplicing subtrees in the segment s1. For i > 2, since T (i�1)1 is obtained bysplicing the tree T (i�2)1 and the subtrees in si�1, and the subtrees in si�1 haveheight h(si�1). Thus, the height of the 2-3 tree T (i�1)1 is at least h(si�1).Now we prove the rest inequalities.Since the 2-3 tree T (1)1 is obtained by splicing the subtrees in the segments1, and segment s1 contains at most two subtrees, both of height h(s1). Thus,the height of the 2-3 tree T (1)1 is at most h(s1) + 1, which is not larger thanh(s2). Thus, the lemma is true for the case i = 2.Now assume that the lemma is true for the case i� 1,h(T (i�1)1) � h(si) < h(si+1) < � � � < h(sq)We consider the height of the 2-3 tree T (i)1 .If the segment si is a single subtree ti of height h(si), then splicing thetree T (i�1)1 of height at most h(si) and the tree ti of height h(si) results ina 2-3 tree T (i)1 of height at most h(si) + 1, which is not larger than h(si+1).Now suppose that the segment si consists of two subtrees t0i and t00i ofheight h(si). Since the height of the tree T (i�1)1) is at most h(si) by theinductive hypothesis, splicing the trees T (i�1)1) and t0i results in a 2-3 tree T 0of height at most h(si) + 1. Moreover, according the algorithm SPLICE, ifthe height of T 0 is h(si) + 1, then the root of T 0 has only two children. Nowsplice the trees T 0 and t00i into the 2-3 tree T (i)1 : If the height of the tree T 0is smaller than h(si) + 1, then splicing T 0 and the subtree t00i of height h(si)results in a tree T (i)1 of height at most h(si) + 1, which is not larger thanh(si+1). On the other hand, if the height of the tree T 0 is h(si) + 1, thenthe root of T 0 has only two children, thus splicing T 0 and t00i will not createa new root and the resulting tree T (i)1 has height h(si) + 1, again not largerthan h(si+1). This concludes that we always haveh(T (i)1) � h(si+1) < h(si+2) < � � � < h(sq)This completes the induction proof and shows the correctness of thelemma.

GEOMETRIC GRAPHS 15Now we are ready for the following theoremTheorem 2.3.3 The WHILE loop in Step 3 of the algorithm SPLIT takestime O(logn).proof. First we study the complexity of constructing the 2-3 tree T (i)1from the 2-3 tree T (i�1)1 and the trees in the segment si. According toLemma 2.3.2, we have h(T (i�1)1) � h(si)Thus, if si is a single subtree ti, then according the analysis of the timecomplexity of the algorithm SPLICE, the time of splicing T (i�1)1 and ti isbounded by a constant timesh(si)� h(T (i�1)1)On the other hand, if si consists of two subtrees t0i and t00i , then thetime for splicing T (i�1)1 and t0i is again bounded by a constant times h(si)�h(T (i�1)1). Moreover, note that the height of the resulting tree T 0 fromsplicing T (i�1)1 and t0i is either h(si) or h(si) + 1, and that the height ofthe subtree t00i is h(si). Thus, splicing T 0 and t00i takes only constant time.Therefore, in this case, the total time to construct T (i)1 from T (i�1)1 and si isbounded by a constant timesh(si)� h(T (i�1)1) + 1Therefore, to construct the �nal 2-3 tree T (q)1 , the total time of theWHILE loop in Step 3 is bounded by a constant timesqXi=2(h(si)� h(T (i�1)1) + 1)By Lemma 2.3.2, we have h(si�1) � h(T (i�1)1). Thus, the time complexityof the WHILE loop in Step 3 is bounded by a constant timesqXi=2(h(si)� h(si�1) + 1)which is equal to h(sq) � h(s1) + q. Since all quantities h(sq), h(s1), andq are bounded by log n, we conclude that the WHILE loop in Step 3 takestime O(logn).The same proof shows that the WHILE loop in Step 5 also takes timeO(logn). In conclusion, the algorithm SPLIT takes time O(logn).

16 ALGORITHMIC FOUNDATIONS2.4 Geometric graphs in the planeA graph G = (V;E) is planar if it can be embedded in the plane withoutedge crossings.A planar embedding of a planar graph G = (V;E) is a mapping of eachvertex in V to a point in the plane and each edge in E to a simple curvebetween the two images of extreme vertices of the edge, so that no two imagesof edges intersect except at their endpoints. The image of the mapping iscalled a geometric graph in the plane.If all edges of a geometric graph G are straight-line segments in the plane,G is called a planar straight-line graph, or PSLG. A PSLG G determines ingeneral a subdivision of the plane. Each region R of the subdivision, togetherwith the edges of G that are on the boundary of R, forms a polygon in theplane.Euler's formulaLet v; e and f denote the number of vertices, edges and regions (includingthe unbounded region) of a PSLG, respectively. The famous Euler's formularelates these parameters by v � e+ f = 2if we have an additional property that each vertex has degree at least 3then we can prove the following relations:v � 23ee � 3f � 6f � 23ev � 2f � 4e � 3v � 6f � 2v � 4That is, we have �(v) = �(e) = �(f)Therefore, for a planar graph, the number of vertices, the number of edges,and the number of regions are all linearly related.

GEOMETRIC GRAPHS 17
v

v
v

v

f f
f

fe e
e

e e
e

1

2 3

4
1 2

3

4
1

2
3

4 5

6Figure 2.1: The planar imbedding of K4Doubly Connected Edge List (DCEL)Given a planar imbedding I of the complete graph K4, as depicted in Fig-ure 2.1, what information should we keep for this imbedding? Of course, theset of vertices, and the set of edges of K4 should be kept. Moreover, it isalso necessary to keep the information about the regions of the imbedding I .To represent the information of the regions, we must know which edge willfollow which edge when we travel around a vertex counterclockwise, i.e., wemust know the cyclic ordering for the edges incident on each vertex of theimbedding I .The Doubly Connected Edge List (DCEL) is an e�cient data structureto represent a PSLG. The main component of DCEL for a PSLG G is theedge node. There is a one-to-one correspondence between the edges of Gand edge nodes in the corresponding DCEL. An edge node consists of fourinformation �elds V 1; V 2; F1 and F2, and two pointer �elds P1 and P2.The �elds V 1 and V 2 contain the starting vertex and ending vertex of theedge, respectively. (So we give each edge of the PSLG G an orientation.This orientation can be de�ned arbitrarily.) The �elds F1 and F2 containthe names of the regions which lie respectively to the left and right of theedge oriented from V 1 to V 2. The pointer P1 (or P2) points to the edgenode containing the �rst edge encountered after the edge (V 1; V 2) when oneproceeds counterclockwise around V 1 (or V 2). Therefore, the edge P1 is the

18 ALGORITHMIC FOUNDATIONSedge following the edge (V 1; V 2) at the vertex V 1, while the edge P2 is theedge following the edge (V 1; V 2) at the vertex V 2 in the imbedding I(G).The following is the DCEL for the PSLG, which is the complete graphK4 in Figure 2.1.V 1 V 2 F1 F2 P1 P2e1 v2 v1 f4 f1 e6 e3e2 v1 v3 f4 f2 e1 e5e3 v1 v4 f2 f1 e2 e4e4 v4 v2 f3 f1 e5 e1e5 v3 v4 f3 f2 e6 e3e6 v2 v3 f3 f4 e4 e2Note that the space used by a DCEL to represent a PSLG is linear tothe number of edges of the PSLG.Suppose that the set of vertices of a PSLG G is fv1; � � � ; vng, and the setof regions of G is ff1; � � � ; fmg. We have another two arrays HV [1::n] andHF [1::m], where HV [i] points to an edge node in the DCEL such that oneedge end of the corresponding edge is vi, for i = 1; � � � ; n, and HF [j] pointsto an edge node on the DCEL such that the corresponding edge is on theboundary of the region fj , for j = 1; � � � ; m.Using DCEL of G we can travel the boundary of each region of G or theedges incident on a vertex of G. The following is an algorithm for travelingthe boundary of a region when the DCEL of G is given. (The algorithm fortraveling the edges incident on a vertex of G is given in [23].)Algorithm TRACE-REGION(i){ Trace the boundary edges of the region i. }BEGIN1. a := HF[i];2. a0 := a;3. IF (DCEL[a][F1] = i) THENa := DCEL[a][P1];ELSE a := DCEL[a][P2];4. WHILE (a <> a0) DOIF (DCEL[a][F1] = i) THENa := DCEL[a][P1]ELSE a := DCEL[a][P2];END.

GEOMETRIC GRAPHS 19For example, if we start with HF [3] = 4, and use the DCEL for theplanar imbedding I of the complete graph K4, then we will get the regionf3 as e4, e5, and e6.Note that if the rotation of edges incident on each vertex of the PSLG Gis given in counterclockwise order in a DCEL, then the regions are traveledclockwise by the above algorithm. On the other hand, if the rotation of edgesincident on each vertex of the PSLG G is given in clockwise order in a DCEL,then the regions are traveled counterclockwise by the above algorithm. Givena PSLG G, it is easy to see that a DCEL for G in which the rotation ofedges incident on each vertex of G is given in counterclockwise order can betransformed in linear time into a DCEL for G in which the rotation of edgesincident on each vertex of G is given in clockwise order, and vice versa. Thedetailed implementation of this transformation is straightforward and left tothe reader as an exercise.

20 ALGORITHMIC FOUNDATIONS

Chapter 3Geometric PreliminariesAccording to the nature of the geometric objects involved, we can identifybasically �ve categories into which the entire collection of geometric problemscan be conveniently classi�ed, i.e., convexity, proximity, geometric searching,intersection, and optimization.In this chapter, we will give the precise de�nitions of these problemsand give an \intuitive" discussion on the mathematical background of them.Some of our statements and proofs are informal. This is because of the factthat some geometric theorems are \intuitively obvious" but no easy proofsare known though many great mathematicians have tried. An example isthe following famous \Jordan Curve Theorem", which will actually serve asa fundamental basis for all of our discussions.Jordan Curve Theorem Let C be a simple closed curve in theplane, then the plane is subdivided into an interior region and anexterior region such that every curve connecting a point in theinterior region and a point in the exterior region must intersectthe curve C.The k-dimensional Euclidean space Ek is the space of all k-tuples(x1; � � � ; xk) of real numbers xi, 1 � i � k. The distance between two pointsp1 = (x1; � � � ; xk) and p2 = (y1; � � � ; yk) in the k-dimensional space is de�nedby d(p1; p2) = (kXi=1 jyi � xij2)1=221

22 GEOMETRIC PRELIMINARIESThe line passing through the points p1 and p2 can be parameterized by�p1 + (1� �)p2where � ranges over the reals. If we restrict � to the interval [0, 1], then wehave a representation for a line segment, denoted p1p2, with the points p1and p2 as its extreme points.More generally, suppose k + 1 independent points p0, p1, � � �, pk belongto a k-dimensional hyperplane. Then the hyperplane is parameterized by�0p0 + �1p1 + � � �+ �kpkwhere Pki=0 �i = 1. If we further restrict all �i � 0, then we have therepresentation for a simplex on k + 1 points.Given a triangle � with edges A, B and C, the angle � between the twoedges B and C can be obtained by the following formula:� = arccos jBj2 + jCj2 � jAj22 � jBj � jCj (3:1)where jAj, jBj, and jCj denote the lengths of the edges A, B, and C, respec-tively.Suppose that � is a triangle in the plane E2 with the vertices p1 =(x1; y1), p2 = (x2; y2) and p3 = (x3; y3). Then the signed area of � is half ofthe determinant D(p1; p2; p3) = ������� x1 y1 1x2 y2 1x3 y3 1 ������� (3:2)where the sign is positive if (p1p2p3) form a counterclockwise cycle, andnegative if (p1p2p3) form a clockwise cycle. We say that the path from pointp1 through the line segment p1p2 to point p2 then through the line segmentp2p3 to point p3 is a left turn if D(p1; p2; p3) is positive, otherwise, we saythe path makes a right turn.With the formulas (8.1) and (8.3), given three points p1, p2, and p3 inthe plane E2, we can determine completely the value of the angle from theline segment p1p2 to the line segment p1p3 (denote this angle by 6 p2p1p3).A line L on the plane can be represented by a linear equation:Ax+By + C = 0

CONVEX HULLS 23such that a point p = (x; y) is on the line if and only if the coordinates of psatisfy the equation. A half plane de�ned by the line L can be representedby either Ax+By + C � 0or Ax+By + C � 03.1 Convex hullsA subset L � Ek is a convex set if for every pair p1, p2 of points in L, theline segment p1p2 is entirely in L.Theorem 3.1.1 The intersection of convex sets is convex.proof. Let Si, i = 1; 2; � � � ; be convex sets. Denote by S the intersectionof all these Si's. We prove that S is again convex.Let p1 and p2 be two points in S. Since S is the intersection of all Si's,p1 and p2 are also points in each set Si, i = 1; 2; � � �. Since each Si is convex,by de�nition, the entire line segment p1p2 is in Si, for i = 1; 2; � � �, thus inthe intersection S of all these Si's.De�nition Let L � Ek. The convex hull CH(L) of L is the smallestconvex set containing L.Given n points in the plane, we want to �nd their convex hull. Thisproblem is as fundamental to computational geometry as sorting to generalalgorithms. It is also a vehicle for the solution of a number of apparentlyunrelated questions arising in computational geometry. The construction ofthe convex hull of a �nite set of points has also found applications in manyareas, such as in pattern recognition, in image processing, in Robotics, andin stock cutting and allocation.Theorem 3.1.2 Let L � Ek. The convex hull CH(L) of L equals the inter-section of all convex sets containing L in Ek.proof. Let S be the intersection of all convex sets containing L in Ek.By theorem 3.1.1, S is convex, and obviously contains L. Now we prove that

24 GEOMETRIC PRELIMINARIESS is the smallest such set. Let S 0 be an arbitrary convex set containing L.Then by the de�nition of S, S is the intersection of S 0 and other convex setscontaining L, therefore, S is a subset of S 0. That is, S is contained in everyconvex set containing L, so S is the smallest such set.A polygon in Ek is a �nite set of line segments satisfying the followingtwo conditions:1. every endpoint is shared by exactly 2 line segments; and2. no proper subset has Property 1.Now we study our problems in the plane E2, i.e., the 2-dimensionalEuclidean space.Given a polygon P in the plane E2, P is a simple polygon if there is nopair of nonconsecutive edges sharing a point. For any simple polygon in theplane, we can apply the Jordan Curve Theorem to divide the plane into theinterior and the exterior of the simple polygon. For a simple polygon P ,we will use P to refer to either the boundary of P , or the boundary plusthe interior of P . The reader should not be confused from the contents.A polygon P is called a convex polygon if P is a simple polygon and theboundary plus the interior of P is a convex set in E2.Theorem 3.1.3 The convex hull of a �nite set S of points in E2 is a simplepolygon. Moreover, each hull vertex must be a point in the set S.proof. We give an informal, but intuitive proof here. A formal proof canbe found in [17].1. The convex hull CH(S) of the �nite set S must be connected. Other-wise, let p1 and p2 be two points in two distinct connected componentsof CH(S). Then the line segment p1p2 would not be entirely in CH(S).2. The convex hull CH(S) must be a bounded area. In fact, since Sconsists of �nite number of points, we must be able to draw a circle Cof a �nite radius in the plane such that all points of S are inside C.The circle C is obviously convex. Now by de�nition, the convex hullCH(S) is contained in the circle C.3. Let p1 and p2 be two points in S such that all points of S are onone side of the straight line through p1 and p2, then the line segment

CONVEX HULLS 25p1p2 is on the boundary of the convex hull CH(S). First of all, the linesegment p1p2 must be contained in CH(S). Moreover, since the halfplane H1 determined by the straight line through points p1 and p2 andcontaining all points of S is a convex set containing the set S, so theconvex hull CH(S) is contained in H1. Therefore, no point on the otherside of the line segment p1p2 can be in CH(S). That is, p1p2 is on theboundary of the convex hull CH(S).4. All points on the boundary of CH(S) must be on a line segment p1p2,where p1 and p2 are points in the set S. Suppose that p is not sucha point and p is on the boundary of CH(S). If we \slightly" move thepart of the boundary of CH(S) near the point p so that the resultingarea is properly contained in CH(S), is still convex, and contains allpoints in the set S, then we get a convex set that contains all pointsof the set S, and is \smaller" than CH(S), contradicting the de�nitionof convex hulls.Therefore, the boundary of the convex hull CH(S) must consist of a�nite set G of line segments of which the end-points are points in the setS. Suppose that a line segment p1p2 is on the boundary of CH(S). Withoutloss of generality, we can suppose that the points of the set S are on our leftwhen we travel along the straight line L through p1 and p2 in the directionfrom p1 to p2. Now if we rotate the line L counterclockwise around the pointp2, the line L will eventually hit a �rst point p3 of the set S. It is obviousto see that now the line segment p2p3 is also on the boundary of CH(S).Moreover, there is no other point p in S that can make the line segment p2pon the boundary of CH(S) if we assume that no three points in the set S areco-linear (the proof can be modi�ed properly for the general case), since thepoints p1 and p3 must lie on di�erent sides of the straight line through p2p.Now based on the new line and the hull vertex p3, we can �nd the next hullvertex, etc.. This process must be stopped eventually since there are only�nite number of points in the set S. Therefore, we will eventually hit a pointp in the set S that has been decided earlier to be a hull vertex. The point pmust be the point p1 since all other hull vertices found have already had thetwo line segments incident on them, which are on the boundary of CH(S).Therefore, we have enclosed the points of the set S by a closed simple cycle,which is a simple polygon P = fp1; p2; � � � ; pkg. No point p in the interior ofP can be on the boundary of CH(S) since any straight line through the pointp will intersect with a boundary edge of the polygon P , thus have points in

26 GEOMETRIC PRELIMINARIESthe set S on both of its sides. Therefore, the simple polygon P is the convexhull CH(S).3.2 Proximity problemsThe examples of proximity problems include CLOSEST-PAIR, ALL-NEAREST-NEIGHBORS, EUCLIDEAN-MINIMUM-SPANNING-TREE,TRIANGULATION, and MAXIMUM-EMPTY-CIRCLE.Proximity problems arise in many applications where physical or math-ematical objects are represented as points in space. Examples include thefollowing:� clustering: a number of entities are grouped together if they are suf-�ciently close to one another;� classi�cation: a new pattern to be classi�ed is assigned to the class ofits closest (classi�ed) neighbor; and� air-tra�c control: the two airplanes that are closest are the two mostin danger.We will restrict ourselves to 2-dimensions. The input to these problemsis a set S of n points in the plane. The distance between points in S will bethe Euclidean distance between the points.� CLOSEST-PAIRFind a pair of points in the set S which are closest.� ALL-NEAREST-NEIGHBORSFor every point in the set S, �nd a point that is nearest to it.� EUCLIDEAN-MINIMUM-SPANNING-TREEFind an interconnecting tree of minimum total length whose verticesare the points in the set S.� TRIANGULATIONJoin the points in the set S by non-intersecting straight line segmentsso that every region interior to the convex hull of S is a triangle.

PROXIMITY PROBLEMS 27
H(p , p)i j

p
pi
j

Figure 3.1: The points that are closer to pi than to pj� MAXIMUM-EMPTY-CIRCLEFind a largest circle containing no points of the set S yet whose centeris interior to the convex hull of S.The problems posed above are related in the sense that they all deal withthe respective distances among points in the plane. In the following, we willintroduce a single geometric structure, called the Voronoi diagram, whichcontains all of the relevant proximity information in only linear space.Let us get some motivation from the CLOSEST-PAIR problem. Let Sbe a set of n points in the plane. For any two points pi and pj in S, the set ofpoints closer to pi than to pj is just the half-plane containing pi that is de�nedby the perpendicular bisector of the segment pipj . See Figure 3.1. Denotethis half-plane by H(pi; pj) (note that H(pi; pj) 6= H(pj; pi)). Therefore, theset Vi of points in the plane that are closer to the point pi than to any otherpoints in the set S is the intersection of the setsH(pi; pj) for all pj 2 S�fpigVi =\j 6=iH(pi; pj)Each H(pi; pj) is a half-plane so it is convex. By Theorem 3.1.1, the setVi, which is the intersection of these convex sets H(pi; pj), is also convex. Itis also easy to see that the set Vi is in fact a convex polygonal region. Observe

28 GEOMETRIC PRELIMINARIESthat every point in the plane must belong to some region Vi. Moreover, noset Vi can be empty since all points in a small enough disc centered at thepoint pi must be in Vi.Thus these n convex polygonal regions V1, V2, � � �, Vn partition the planeinto a convex net. Motivated by this discussion, we introduce the followingde�nition.De�nition A Voronoi diagram of a set S = fp1; � � � ; png of n planar pointsis a partition of the plane into n regions V1, V2, � � �, Vn such that any pointin the region Vi is closer to the point pi than to any other point in the setS. The convex polygonal region Vi is called the Voronoi polygon of the pointpi in S. The vertices of the diagram are called Voronoi vertices and the linesegments of the diagram are called Voronoi edges. The Voronoi diagram ofa set S is denoted by Vor(S). Note that Voronoi vertices are in general notthe points in the set S.3.3 IntersectionsIntersection problems and their variations arise in many disciplines, such asarchitectural design, computer graphics, pattern recognition, etc. An archi-tectural design cannot place two interpenetrable objects to share a commonregion. When displaying objects on a 2-dimensional display device, obscuredportions (or intersecting portions) should be eliminated to enhance realism,a long standing problem known as hidden line/surface elimination problem[19]. In integrated circuit design two distinct components must be separatedby a certain distance, and the detection of whether or not the separationrule is obeyed can be cast as an instance of intersection problems; since thetask may involve thousands of objects, fast algorithms for detecting or re-porting intersecting or overlapping objects are needed. Another motivationfor studying the complexity of intersection algorithms is that light may beshed on the inherent complexity of fundamental geometric problems. Forexample, how di�cult is it to decide if a given polygon with n vertices issimple or how much time is needed to determine if any two of n given objectsin the plane, such as polygons, line segments, etc., intersect?We list a few typical geometric intersection problems.� SEGMENT INTERSECTION

SEARCHING 29Given n line segments in the plane, �nd all intersections.� HALF-PLANE INTERSECTIONGiven n half-planes in the plane, compute their common intersection.� POLYGON INTERSECTIONGiven two polygons P and Q with m and n vertices, respectively, com-puter their intersection.3.4 Geometric searchingThis geometric problem is well motivated by the following Post O�ce Prob-lem proposed by Knuth [14]: Given a �xed map of n post o�ces, for anarbitrary query point, which is the nearest post o�ce? The solution to thisproblem is simple: compare the distance between the query point and eachpost o�ce and �nd the nearest one. The time complexity of this algorithmis obviously O(n). It is also easy to see that to �nd the nearest post o�ce, atleast n comparisons are needed, since if the algorithm does not compute thedistance between the query point and some post o�ce, then we are alwaysable to construct an input instance such that the query point is closest to theuncompared post o�ce so that the algorithm outputs an incorrect answer.Therefore, for a single query point, the above simple algorithm is actuallyoptimal.On the other hand, suppose that we have, say, n query points and weare asking the nearest post o�ce for each query point. If we again applythe above algorithm, then it takes time O(n) to �nd the nearest post o�cefor each query point, so totally we need time O(n2) to �nd the nearest posto�ces for all query points. Now it seems that the time O(n2) is not necessary.For example, after we have computed the distance between the �rst querypoint and each of the post o�ce and found the nearest post o�ce for the�rst query point, it seems that we can save some information about the posto�ces and use this information to speed up the computation of nearest posto�ce for the latter query points. Even more cleverly, we can �rst organizethe post o�ces into an easy-search structure such that searching the nearestpost o�ce for each query point can be done very e�ciently on the organizedstructure.One candidate of these smart structures is the Voronoi diagram, intro-duced in Section 2.2. Given n post o�ces, regarding them as a set S of n

30 GEOMETRIC PRELIMINARIESpoints in the plane, we �rst construct the Voronoi diagram Vor(S) for theset S. Then �nding the nearest post o�ce for a query point is reduced tolocating the query point in a Voronoi polygon of Vor(S).This is a typical geometric searching problem, called point location prob-lem: Suppose that we have a subdivision G of the plane and we want to knowin which region of G a given query point is located. In the simplest case, wehave only one query point. Then we can search the point in each region ofG directly to �nd the region containing the point. A one-time query of thistype is called single shot. However, we may have many query points andwant to �nd the containing region for each query point. Such queries arecalled repetitive-mode queries.In the case of repetitive-mode queries, it may be worthwhile to arrangethe subdivision G into a more organized structure to facilitate searching.Therefore, when we are considering the problem of repetitive-mode queries,we are interested in three computational resources: the preprocessing timethat is used to convert the given subdivision G into an organized structure,the storage that is used to store the organized structure, and the query timethat is needed to locate each query point.Suppose that the input subdivision G has n vertices. In general, wecannot expect that the preprocessing time is less than O(n) since even read-ing the input subdivision G takes time
(n). Similarly, we cannot expectthat the storage used for the organized structure is less than O(n) sinceeven storing the unorganized structure, the subdivision G itself needs
(n)space. Finally, as pointed out by Knuth [14], any algorithm for searchingan ordered table of length n by means of comparisons can be representedas a binary tree of n leaves, thus in the worst case, the searching time is atleast
(logn). While the point location problem is clearly a generalizationof searching, we conclude that the query time of the point location problemis at least
(logn).

Chapter 4Geometric SweepingGeometric sweeping technique is a generalization of a technique called planesweeping, that is primarily used for 2-dimensional problems. In most cases,we will illustrate the technique for 2-dimensional cases. The generalizationto higher dimensions is straightforward. This technique is also known as thescan-line method in computer graphics, and is used for a variety of applica-tions, such as shading, polygon �lling, among others.The technique is intuitively simple. Suppose that we have a line in theplane. To collect the geometric information we are interested in, we slidethe line in some way so that the whole plane will be \scanned" by the line.While the line is sweeping the plane, we stop at some points and update ourrecording. We continue this process until all interesting objects are collected.There are two basic structures associated with this technique. One is forthe sweeping line status, which is an appropriate description of the relevantinformation of the geometric objects at the sweeping line, and the other isfor the event points, which are the places we should stop and update ourrecording. Note that the structures may be implemented in di�erent datastructures under various situations. In general, the data structures shouldsupport e�cient operations that are necessary for updating the structureswhile the line is sweeping the plane.4.1 Intersection of line segmentsThe geometric sweeping technique can be best illustrated by the followingexample. Recall the SEGMENT INTERSECTION problem:Given n line segments in the plane, �nd all intersections.31

32 GEOMETRIC SWEEPINGSuppose that we have a vertical line L. We sweep the plane from leftto right. At every moment, the sweeping line status contains all segmentsintersecting the line L, sorted by the y-coordinates of their intersecting pointswith L. The sweeping line status is modi�ed whenever one of the followingthree cases occurs:1. The line L hits the left-end of a segment S. In this case, the segment Swas not seen before and it may have intersections with other segmentson the right side of the line L, so the segment S should be added tothe sweeping line status;2. The line L hits the right-end of a segment S. In this case, the segmentS cannot have any intersections with other segments on the right sideof the line L, so the segment S can be deleted from the sweeping linestatus;3. The line L hits an intersection of two segments S1 and S2. In thiscase, the relative positions of the segments S1 and S2 in the sweepingline status should be swapped, since the segments in the sweeping linestatus are sorted by the y-coordinates of their intersection points withthe line L.It is easy to see that the sweeping line status of the line L will not bechanged when it moves from left to right unless it hits either an endpointof a segment or an intersection of two segments. Therefore, the set of eventpoints consists of the endpoints of the given segments and the intersectionpoints of the segments. We sort the event points by their x-coordinates.We use two data structures EVENT and STATUS to store the eventpoints and the sweeping line status, respectively, such that the set opera-tions MINIMUM, INSERT, and DELETE can be performed e�ciently (forexample, they can be 2-3 trees). At very beginning, we suppose that the lineL is far enough to the left so that no segments intersect L. At this moment,the sweeping line status is an empty set. We sort all endpoints of the seg-ments by their x-coordinates and store them in EVENT. These are the eventpoints at which the line L should stop and update the sweeping line status.However, the list is not complete since an intersection point of two segmentsshould also be an event point. Unfortunately, these points are unknown towe at beginning. For this, we update the structure EVENT in the followingway. Whenever we �nd an intersection point of two segments while the lineL is sweeping the plane, we add the intersection point to EVENT. But how

SEGMENT INTERSECTION 33do we �nd these intersection points? Note that if the next event point to behit by the sweeping line L is an intersection point of two segments S1 andS2, then the segments S1 and S2 should be adjacent in the sweeping linestatus. Therefore, whenever we change the adjacency relation in STATUS,we check for intersection points for new adjacent segments. When the lineL reaches the left-most endpoint of the segments, all possible intersectionpoints are collected.These ideas are summarized by the following algorithm.Algorithm SEGMENT-INTERSECTIONGiven: n segments S1, S2, ... SnOutput: all intersections of these segments{ Implicitly, we use a vertical line L to sweep the plane. At anymoment, the segments intersecting L are stored in STATUS, sortedby the y-coordinates of their intersection points with the lineL. The event points stored in EVENT are sorted by their x-coor-dinates }BEGIN1. Sort the endpoints of the segments and put them in EVENT;2. STATUS = {};3. WHILE EVENT is not empty DO BEGINp = MINIMUM(EVENT);DELETE p from EVENT;IF p is a right-end of some segment SLet Si and Sj be the two segments adjacent to S in STATUS;IF p is an intersection point of S with Si or SjREPORT(p);DELETE S from STATUS;IF Si and Sj intersect at p1 and x(p1) >= x(p)INSERT p1 into EVENTELSE IF p is a left-end of some segment SINSERT S into STATUS;Let Si and Sj be the adjacent segments of S in STATUS;IF p is an intersection point of S with Si or SjREPORT(p);IF S intersects Si at p1, INSERT p1 into EVENT;IF S intersects Sj at p2, INSERT p2 into EVENTELSE IF p is an intersection point of segments Si and Sjsuch that Si is on the left of Sj in STATUS

34 GEOMETRIC SWEEPINGREPORT(p);swap the positions of Si and Sj in STATUS;Let Sk be the segment left to Sj and let Sh be the segmentright to Si in STATUS;IF Sk and Sj intersect at p1 and x(p1) > x(p)INSERT p1 into EVENT;IF Sh and Si intersect at p2 and x(p2) > x(p)INSERT p2 into EVENT;END; {WHILE}END.Let us analyze the algorithm. Step 1, sorting the 2n endpoints of thesegments, can be done in time O(n logn), if we employ an e�cient sortingalgorithm, for example, the MergeSort. Step 2 takes constant time O(1). Tocount the time spent by the WHILE loop, suppose there are m intersectionpoints for these n segments. In the WHILE loop, each segment is insertedthen deleted from the structure STATUS exactly once, and each event pointis inserted then deleted from the structure EVENT exactly once. There aren+m event points. If we suppose that the operations MINIMUM, INSERT,and DELETE can all be done in time O(logN) on a set of N elements, thenprocessing each segment takes at most O(logn) time, and processing eachevent point takes at most O(log(n+m)) time. Therefore, the algorithm runsin time O(n logn) + O(1) + n �O(logn) + (n+m)�O(log(n+m))= O((n+m) log(n +m))Observe that m is at most n2, so log(n + m) = O(logn). Thus weconclude that the algorithm SEGMENT-INTERSECTION runs in timeO((n+m) logn).We remark that the time complexity of the above algorithm depends onthe number m of intersection points of the segment and the algorithm isnot always e�cient. For example, when the number m is of order
(n2),then the algorithm runs in time O(n2 logn), which is even worse than thestraightforwardmethod that picks every pair of segments and computes theirintersection point. On the other hand, if the number m is of order
(n),then the algorithm runs e�ciently in time O(n logn).

4.2. CONSTRUCTING CONVEX HULLS 354.2 Constructing convex hulls4.2.1 Jarvis's MarchWe start with a most straightforward method, Jarvis's March, which is alsoknown as gift wrapping method.The idea is based on the observation we gave in the proof of Theo-rem 3.1.3. Given a set S of n points in the plane, suppose we move astraight line L sweeping the plane until L hits a point p1 of S. The pointp1 must be on the boundary of the convex hull CH(S) of S since at thismoment, all points of S are in one side of the line L and the point p1 is onthe line L. Now we rotate the line L around the point p1, say counterclock-wise, until L hits another point p2 of S. The segment p1p2 is then on theboundary of the convex hull CH(S) since again all points of S are in one sideof the line L and the segment p1p2 is on the line L. Now we rotate the lineL around p2 counterclockwise until L hits a third point p3 of S, then theline segment p2p3 is the second boundary edge of CH(S), Continuethis process until we come back to the �rst point p1. The convex hull CH(S)then is constructed.This process can also be regarded as a \wrapping" process. Suppose we�x an end of a rope on a point p1 that is known to be a hull vertex. Thenwe try to \wind" the points by the rope (or \wrap" the points by the rope).The rope obviously gives us the boundary of the convex hull when it comesback to the point p1.There are a few things we should mention in the above process. First ofall, the sweeping manner is special: the line L is rotated around a point inthe plane; secondly, the sweeping line status is very simple: it contains atany moment a single point that is the hull vertex most recently discovered;�nally, the even points are the hull vertices.Let us study the above process in detail. Suppose at some moment in themiddle of the process, the consecutive hull vertices which have been foundare p1, p2, � � �, pi. What point should be the next hull vertex? Obviously, thepoint pi+1 �rst touched by the rope should be it, when we rotate the ropearound the point pi. That is, the angle 6 pi�1pipi+1 should be the largest.We implement this idea into the following algorithm.Algorithm JARVIS'S MARCHGiven: a set S of n points in the plane

36 GEOMETRIC SWEEPINGOutput: the convex hull CH(S) of SBEGINLet p(1) be the point in the set S that has the smallesty-coordinate;Let p(2) be the point in the set S such that the slope ofthe line segment p(1)-p(2) is the smallest, with respectto the x-axis;PRINT(p(1), p(2));i := 2 ;WHILE p(i) <> p(1) DOLet p(i+1) be the point in the set S such that the angle<p(i-1)p(i)p(i+1) is the largest;i := i + 1 ;PRINT(p(i));END.Time complexity of Jarvis's MarchSuppose there are k hull vertices in CH(S). The points p1 and p2 areobviously hull vertices. Moreover, it is also clear that to �nd the points p1and p2 takes time O(n), assuming S has n points. To �nd each next hullvertex pi+1, we check the angle 6 pi�1pip for each point p in the set S. ThusStep 4 spends time O(n) on each hull vertex. Therefore, Jarvis's March runsin time O(kn).If k is small compared with n, for instance, if k is bounded by a constant,then Jarvis's March runs in linear time. However, if k is larger, such ask =
(n), then the time complexity of Jarvis's March is
(n2).4.2.2 Graham ScanLook at Jarvis's algorithm. Each time based on the most recent hull vertexp and the most recent hull edge e, we �nd the next hull vertex by choosingthe point p0 which makes the angle between e and pp0 largest. To �nd sucha point p0, we have to compute the angle between the segments e and pq forall points q in the set S. For each hull vertex, we have to perform this kindof computations. Therefore, in this process, even though we have found outthat a point p is not quali�ed for the next hull vertex, we still cannot excludethe possibility that the point p is quali�ed for a later hull vertex. This is thereason that we have to consider the point again and again. A point can beconsidered up to n times in the worst case. A possible improvement is that

CONVEX HULLS 37we presort the set of points in some way so that once we �nd that a point isnot quali�ed for the next hull vertex, then we can exclude the point forever.For example, let p0, p1 and p2 be three distinct hull vertices of the convexhull CH(S) for the set S. Suppose that the line segment p1p2 is known to beon the boundary of the convex hull CH(S). Then the line segments p0p forall points p of S that are between the angle 6 p1p0p2 should be entirely in thetriangle �p0p1p2. Therefore, if we start with the point p1, scan the points ofthe set S, based on the point p0, counterclockwise, and keep a record for thelength of the line segment p0p for each point of S we have visited, then oncewe reach the point p2, we can eliminate all points we have visited betweenthe points p1 and p2. This elimination is permanent, i.e., once a point iseliminated, it will be ignored forever.This idea is implemented by the following well-known algorithm, knownas Graham Scan algorithm.Algorithm GRAHAM SCANGiven: a set S of n points in the planeOutput: the convex hull CH(S) of S{St is a stack}BEGIN1. Let p(0) be the point in S that has the smallest y-coordinate.{ Without loss of generality, we can suppose that p(0) is theorigin, otherwise, we make a coordinate transformation }2. Sort the points in the set S - p(0) by their polar angles.Let the sorted list of the points beL' = { p(1), p(2), ..., p(n-1) }{in increasing polar angle ordering.}3. LetL = { p(1), p(2), ..., p(n-1), p(n) }where p(n) = p(0);q(1) = p(0); q(2) = p(1); PUSH(St, q(1));PUSH(St, q(2)); i = 2; j = 2;4. WHILE i <= n DOIF q(j-1)q(j)p(i) is a left turnTHEN q(j+1) = p(i);PUSH(St, q(j+1));i++;j++

38 GEOMETRIC SWEEPINGELSE POP(St);j--;END.In Graham Scan, the sweeping line rotates around a �xed point p0. Allpoints in the set S are event points. Since the event points are presorted inStep 2, it takes only constant time to �nd the next event point in the sortedlist L. This makes Graham Scan very e�cient.Let us consider the time complexity of the algorithm in detail. Step 1 canbe done by comparing the y-coordinates of all points in the set S, thus it takestime O(n); Step 2 can be done by any O(n logn) time sorting algorithm, forexample, MergeSort; Step 3 obviously takes constant time. To discuss thetime complexity of the loop in Step 4, observe that each point of the setS can be pushed into the stack St and then popped out of the stack atmost once. Whenever a point is popped out from the stack, it will neverbe considered any more. Therefore, there are at most 2n stack pushes andpops. Now each execution of the loop in Step 4 either pushes a point into thestack (Step 4.2) or pops a point out the stack (Step 4.3). Thus the loop isexecuted at most 2n times. Since each execution of the loop obviously takesconstant time, we conclude that the total time taken by Step 4 is boundedby O(n).Therefore, the time complexity of Graham Scan is O(n logn).We remark that most of the time in Graham Scan algorithm is spent onStep 2's sorting. Besides sorting, Graham Scan runs in linear time.The Step 2 in Graham Scan sorts the points in the given set S by theirpolar angles. This involves in trigonometric operations. Although we haveassumed that our RAMs can perform trigonometric operations in constanttime, trigonometric operations can be very time consuming in a real com-puter. We present a modi�ed version of Graham Scan which avoids usingtrigonometric operations.The idea is as follows. Suppose we are given a set S of n points in theplane. We add a new point p0 to the set S such that p0's y-coordinate issmaller than that of any point in the set S. Then we perform Graham Scanon this new set. Draw a line segment p0p for each point p in the set S. Itcan be easily seen that if the point p0 moves toward the negative directionof the y-axis, these line segments are getting more and more parallel eachother. Imagining that eventually p0 reaches the in�nite point along thenegative direction of the y-axis, then all these line segments become vertical

FARTHEST PAIR 39rays originating from the points of the set S. Now the ordering of the polarangles of the points of S around p0 is identical with the ordering of thex-coordinates of these points. (In fact, p0 does not have to be the in�nitepoint, when p0 is far enough from the set S, the above statement shouldbe true.) Therefore, the convex hull of the new set can be constructed by�rst sorting the points in S by their x-coordinates instead of their polarangles. It is also easy to see that the convex hull of the new set consists oftwo vertical rays, originating from the two points pmin and pmax in the setS with smallest and largest x-coordinates, respectively, and the part UH ofthe convex hull of the original set S. This part UH of the convex hull CH(S)is in fact the upper hull of CH(S) in the sense that all points of the set S liebetween the vertical lines x = xmin and x = xmax and below the part UH .Similarly, the lower hull of the convex hull CH(S) can be constructed by theidea of adding an in�nite point in the positive direction of the y-axis. Theconvex hull CH(S) is simply the circular catenation of the upper hull andthe lower hull.Now we give the formal algorithm as follows.Algorithm MODIFIED GRAHAM SCANGiven: a set S of n points in the planeOutput: the convex hull CH(S) of S;BEGINSort the points of the set S in decreasing x-coordinateordering;Let pmax and pmin be the points of S that have thelargest and smallest x-coordinates, respectively.Suppose pmax = (x, y), let p(0) = (x, y-1),and p(1) = pmax;Perform Graham Scan on the sorted list until the pointpmin is included as a hull vertex;The ordered list of hull vertices found in this processminus the point p(0) is the upper hull;Construct the lower hull similarly;Catenate the upper hull and lower hull to form the convexhull CH(S).ENDThe Modi�ed Graham Scan obviously also takes time O(n logn).

40 GEOMETRIC SWEEPING4.3 The farthest pair problemThe problem we shall discuss in this section is formally de�ned as follows:FARTHEST-PAIRFind a pair of points in a given set which are farthest.A brute force algorithm is to examine every pair of points to �nd themaximum distance thus determined. The brute force algorithm obviouslyruns in time O(n2).To get a more e�cient algorithm, let us �rst investigate what kind ofproperties a farthest pair of points in a set has. Let us suppose that S is aset of n points in the plane, and call a segment linking two farthest pointsin the set S a diameter of the set S.Lemma 4.3.1 Let uv be a diameter of the set S. Let lu and lv be twostraight lines that are perpendicular to the segment uv such that lu passesthrough u and lv passes through v. Then all points of S are contained in theslab between lu and lv.proof. Without loss of generality, suppose that the segment uv is horizon-tal and the point u is on the left of the point v. Draw a circle C centered atu of radius juvj, then the line lv is tangent to C because lv is perpendicularto uv. Thus the circle C is entirely on the left of the line lv. Since v is thefarthest point in the set S from the point u, all points of S are containedin the circle C. Consequently, all points of S are on the left of the line lv.Similarly, we can prove that all points of S are on the right of the line lu.Therefore, all points of the set S are between the lines lu and lv.Corollary 4.3.2 Let uv be a diameter of the set S, then the points u andv are hull vertices of CH(S).proof. As we discussed in Chapter 2, a point p in S is a hull vertex ofCH(S) if and only if there is a line passing through p such that all points ofS are on one side of the line.Let u and v be two hull vertices of CH(S). The vertices u and v are calledan antipodal pair if we can draw two parallel supporting lines lu and lv ofCH(S) such that lu passes through u and lv passes through v, and the convexhull CH(S) is entirely contained in the slab between the lines lu and lv.

FARTHEST PAIR 41Corollary 4.3.3 Let uv be a diameter of the set S, then u and v are anantipodal pair.proof. By Corollary 4.3.2, u and v are hull vertices of CH(S). ByLemma 4.3.1, we can draw two parallel lines lu and lv such that lu passesthrough u, that lv passes through v, and that all points of S are containedin the slab between lu and lv. The slab between lu and lv is clearly a convexset. Since the convex hull CH(S) of S is the smallest convex set containingall points of S, i.e., the convex hull CH(S) is contained in all convex setscontaining all points of S, so the convex hull CH(S) is contained in the slabbetween the lines lu and lv.According to Lemma 4.3.1 and its corollaries, to �nd a farthest pair ofa set S of n points in the plane, we only need to �nd a farthest pair of thehull vertices of the convex hull CH(S). Moreover, we only need to considerthe antipodal pairs on the convex hull CH(S). This greatly simpli�es ourproblem. We now consider the following problem: given a vertex u of aconvex polygon P , what vertices of P can constitute an antipodal pair withthe vertex u? To answer this question, we suppose that the vertices of theconvex polygon P are given in counterclockwise ordering: fu1; u2; � � � ; umg.For simplicity, we say that a vertex ui of P is the farthest from an edgeuk�1uk of P if ui is the farthest vertex in P from the straight line on whichuk�1uk lies.Lemma 4.3.4 Let uk�1uk be an edge of P . We scan the vertices of Pin counterclockwise order, starting with the vertex uk. Let ui be the �rstfarthest vertex from the edge uk�1uk. Then no vertex between uk and ui canconstitute an antipodal pair with uk.proof. Without loss of generality, suppose that the edge uk�1uk is hori-zontal and the vertex uk is on the right of the vertex uk�1. First note thatfor any vertex ui of P , the angle between the edge uiui+1 and the x-axisis between 0 and 2�. Let � be the angle between the edge ukuk+1 and thex-axis. Suppose that �1 (�2) is the angle between the edge ui�1ui (uiui+1)and the x-axis. Since P is convex, �1 � �2. See Figure 4.1 for illustration.It is easy to see that the vertex ui constitutes an antipodal pair with thevertex uk if and only if the angle region [�1; �2] contains an angle between �and � + �. Let uj be a vertex between uk and ui, (uj 6= uk ; ui). Then uj isnot farthest from the edge uk�1uk. Thus the angle between the edge ujuj+1

42 GEOMETRIC SWEEPING
u u

u
u

u
u

k-1 k

k+1

i-1
i

i +1
α

α

α

1

2

Figure 4.1: The convex polygon Pand the x-axis, and the angle between the edge uj�1uj and the x-axis are allstrictly less than �. That is, the vertex uj does not constitute an antipodalpair with uk .Lemma 4.3.5 Let uk�1uk be an edge of P . We scan the vertices of P incounterclockwise order, starting with the vertex uk. Let ur be the last far-thest vertex from the edge uk�1uk. Then no vertex between ur and uk�1 (incounterclockwise ordering on the boundary of P) can constitute an antipodalpair with uk�1.proof. Completely similar to the proof of Lemma 4.3.4.Now it is clear how we �nd all antipodal pairs on the convex polygon P :starting with an edge uk�1uk , we scan the vertices of P counterclockwise untilwe hit the �rst farthest vertex ui from the edge uk�1uk . By Lemma 4.3.4,ui is the �rst vertex of P that constitutes an antipodal pair with the vertexuk . Now we continue scanning the vertices until we hit a vertex ur thatis the last farthest vertex to the edge ukuk+1. By Lemma 4.3.5, ur is thelast vertex that constitutes an antipodal pair with the vertex uk . Now avertex constitutes an antipodal pair with uk if and only if it is between uiand ur. Moreover, since we suppose that no three vertices of P are co-linear,there are at most two farthest vertices from an edge on P . The algorithm of�nding all antipodal pairs of a convex polygon P is given in detail as follows.

FARTHEST PAIR 43Algorithm ANTIPODAL-PAIRSGiven: a convex polygon P = { u(1),, u(m) } incounterclockwise orderingOutput: all antipodal pairs of PBEGIN1. Starting with the edge {u(0), u(1)}, where we letu(0) be the vertex u(m). Set k = 1 and i = 2.2. WHILE u(i) is not a farthest vertex from the edge{u(k-1), u(k)}i = i + 1;3. { At this point u(i) is a farthest vertex from theedge {u(k-1), u(k)}. }WHILE u(i) is not a farthest vertex from the edge{u(k), u(k+1)}OUTPUT [u(k), u(i)] as an antipodal pair;i = i + 1;4. { At this point u(i) is the first farthest vertexfrom the edge {u(k), u(k+1)}. We check if u(i)is the last farthest vertex from the edge{u(k), u(k+1)}. }IF u(i+1) is also a farthest vertex from the edge{u(k), u(k+1)}OUTPUT [u(k), u(i)], [u(k+1), u(i)] asantipodal pairs;i = i + 1;5. { Now u(i) must be the last vertex that can consti-tute an antipodal pair with u(k). }OUTPUT [u(k), u(i)] as an antipodal pair;6. IF k < m, THENk = k + 1;GOTO Step 3;END.The addition i = i + 1 in the algorithm should be \(mod m)", that is,if i = m, then i + 1 = 1. Note that the distance from a vertex ui to theline on which the edge uk�1uk lies is proportional to the area of the triangle4(uiuk�1uk), therefore the vertex ui is the farthest from the edge uk�1uk ifand only if the area of the triangle 4(uiuk�1uk) is less than neither the areaof the triangle 4(ui�1uk�1uk) nor the area of the triangle 4(ui+1uk�1uk).An intuitive description of the above algorithm is that we use two parallel

44 GEOMETRIC SWEEPINGlines to sandwich the convex polygon P , then rotate the lines along theboundary of P , keeping the lines in parallel. We report all pairs of verticesof P that are at some moment on the two parallel lines at the same time,respectively, when we rotate the lines.The analysis of the algorithm is straightforward. We keep two pointers kand i. In constant time, at least one pointer is advanced. Since the pointerk is from 1 to m and the pointer i marches the convex polygon P at mosttwice (the pointer i stops at the last farthest vertex from the edge umu1),we conclude that the time complexity of the algorithm is bounded by O(m).A further improvement can be made in the above algorithm if we observethat when the pointer i reaches the vertex um, then all antipodal pairs haveactually been found. In fact, if the pointer i is advanced from the vertexum to the vertex u1, then we are considering the vertex u1 as a candidatethat constitutes an antipodal pair with some other vertex of P . However,all vertices that constitute antipodal pairs with u1 have been found whenthe pointer k is advanced from the vertex u1 to the vertex u2. Since thisimprovement does not change the asymptotical order of the time complexityof the algorithm, we will not discuss it in detail.Now we give the algorithm for the FARTHEST-PAIR problem.Algorithm FARTHEST-PAIRGiven: a set S of n points in the planeOutput: the farthest pairBEGIN1. Construct the convex hull CH(S) of S;2. Call ANTIPODAL-PAIRS on CH(S);3. Scan the result of Step 2 and select the pairwith the longest distance.END.By the discussions given in this section, the above algorithm �nds thefarthest pair for a given set S correctly. Moreover, the algorithm runs intime O(n logn) since it is dominated by the �rst step.

4.4. TRIANGULATIONS 454.4 TriangulationsTRIANGULATING a set S of n points in the plane is to joint the pointsin the set S by non-intersecting straight line segments so that every regioninterior to the convex hull of S is a triangle. In this section we shall discuss amore general version of TRIANGULATION: given a set S of n points in theplane and a set E of non-intersecting straight line segments whose endpointsare the points in S, construct a triangulation T (S) of S such that all thesegments in the set E appear in the triangulation T (S).Recall that a planar straight line graph (PSLG) G = (S;E) is a �niteset S of points in the plane plus a set E of non-intersecting straight linesegments whose endpoints are the points in the set S. We always supposethat a PSLG G is represented by a doubly-connected edge list (DCEL).The problem we shall discuss is called Constrained Triangulation.CONSTRAINED TRIANGULATIONGiven a PSLG G = (S;E), construct a triangulation T (S) of S such thatall segments of E are edges of T (S).4.4.1 Triangulating a monotone polygonWe �rst discuss the problem for a special class of PSLG's, called monotonepolygon.A chain C = (v1; v2; � � � ; vr) is a PSLG with a point set S =fv1; v2; � � � ; vrg and a segment set E = f(vi; vi+1) j 1 � i � n � 1g. Achain C is monotone with respect to a straight line l if any straight lineorthogonal to l intersects the chain C at at most one point.De�nition A polygon P is said to be monotone with respect to a straightline l if P is a simple polygon and the boundary of P can be decomposedinto two chains monotone with respect to the straight line l.If a polygon P is monotone with respect to the y-axis, we simply saythat the polygon P is monotone.We �rst solve the following problem: given a monotone polygon P , tri-angulate the interior of P . That is, we add edges to the polygon P so thateach region in the interior of P is a triangle.

46 GEOMETRIC SWEEPINGA vertex u of a polygon P is visible from a vertex v if we can drawa straight line segment s connecting u and v such that the interior of thesegment s is entirely in the interior of the polygon P . In particular, a vertexis not visible from any of its adjacent neighbors. Moreover, note that avertex v is visible from a vertex u if and only if the vertex u is visible fromthe vertex v.The method we are going to use is a \greedy" method. Standing at eachvertex v of the polygon P , we look through the interior of the polygon Pand see which vertex of the polygon P is visible. Whenever we �nd thata vertex u of the polygon P is visible from the vertex v, we add an edgebetween the vertices v and u. Keeping doing this until no vertex of P isvisible from the vertex v, then we move to another vertex v0 of P and addedges to those vertices that are visible from v0, an so on. Note that oncethere is no vertex visible from a vertex v of P , then no vertex can becomea visible vertex from v later, since the only operation we are performing isadding edges to the interior of the polygon P . Therefore, once we add edgesto a vertex v of P so that there is no vertex of P visible from v, we do nothave to come back and check the vertex v again. Moreover, if the interiorof the polygon P is not triangulated, then there must be a pair of vertices vand u between which we can add a new edge e without edge-crossing. Butthis implies that the vertex u is still visible from the vertex v before we addthe new edge e. Thus, if we process all vertices of P such that from anyvertex v of P there is no visible vertex, then we must have triangulated theinterior of the polygon P .The above method is principally valid for triangulating any PSLG. How-ever, to �nd all visible vertices from a vertex of a general PSLG may betime-consuming. On the other hand, if the PSLG is a monotone polygon,then the process above can be done very e�ciently.The following is the algorithm of triangulating a monotone polygon P .We process the vertices, in the way described above, in the ordering ofdecreasing y-coordinate. A stack STACK is used to store those vertices ofP that have been processed such that no processed vertices are still visiblefrom a vertex in the STACK and each vertex in the STACK is still visiblefrom some unprocessed vertices of P .Algorithm TRIANGULATING-MONOTONE-POLYGONGiven: a monotone polygon POutput: a triangulation of P

TRIANGULATIONS 47BEGIN1. Sort the vertices of P in decreasing y-coordinate,Let the sorted list beL = { v(1), v(2),, v(n) }2. Push the vertices v(1) and v(2) into the stackSTACK. Let i = 3.3. Suppose that the vertices in the STACK areSTACK = { u(1), u(2),, u(s) }where u(s) is the top and u(1) is the bottom.4. IF v(i) is adjacent to u(1) but not to u(s){ we will prove later that in this case, stackvertices u(2), u(3),, u(s) are all visiblefrom v(i). } THENadd edges {v(i), u(2)}, {v(i), u(3)},,{v(i), u(s)}, pop all STACK vertices, thenpush u(s) and v(i) into the STACK;i++;GOTO Step 7;5. IF v(i) is adjacent to u(s) but not to u(1){ in this case, u(s) is not visible from v(i), wecheck if any other STACK vertices are visiblefrom v(i). } THENWHILE the second top vertex of the STACK(call it u') is visible from v(i) DOadd an edge {v(i), u'};pop the top vertex from STACK;PUSH v(i) into STACK;i++;GOTO Step 7;6. IF v(i) is adjacent to both u(s) and u(1){ in this case, v(i) is the last vertex in thelist L, and all STACK vertices except u(s) andu(1) are visible from v(i). } THENadd edges {v(i), u(2)}, {v(i), u(3)},,{v(i), u(s-1)};POP all STACK vertices and STOP.7. IF i <= n, go back to Step 3.END.We �rst discuss the correctness of the algorithm. Each execution of theloop Step 3 - Step 6 results in a PSLG. Let the PSLG after processing thevertex vi be Gi. (So G0 = P and Gn should be a triangulation of P .)

48 GEOMETRIC SWEEPINGWe prove that the following properties are always maintained for all Gi's.Suppose the STACK content is fu1; u2; � � � ; usg.Properties of Gi1. The STACK contains at least two vertices for G0, G1, � � �, Gn�1.2. The STACK vertices fu1; � � � ; usg is a monotone chain on the boundaryof some region Pi of Gi that is a monotone polygon.3. The processed vertices that are not in the STACK are not visible fromany vertex of Gi.4. No STACK vertex is visible from any other STACK vertex in Gi.If for each Gi, the above properties are maintained, then since for Gn,all vertices of P are processed and the STACK is empty, by Property 3, novertex of Gn is visible from any other vertex of Gn. As we discussed earlierin this section, the PSLG Gn must be a triangulation.We prove by induction that the above four properties are always main-tained by every PSLG Gi. For G0, the properties are trivially maintainedbecause of Step 1 and Step 2. Now suppose that the properties are alsomaintained for the PSLG Gi�1. To obtain Gi, we execute Step 3 - Step 6based on Gi�1.Property 1 is obviously maintained, since if i < n then either Step 4or Step 5 is executed. But both of them leave at least two vertices in theSTACK.To maintain Property 2, note that by inductive hypothesis, all processedvertices that are not in STACK for Gi�1 are not visible from any vertexof Gi�1, that is, all the regions incident to those vertices must be triangles.Thus the edges to be added in Step 4 or Step 5 must be within the monotonepolygon Pi. Moreover, the vertex vi is the only new vertex added to theSTACK and the y-coordinate of vi is less than that of any STACK vertex.Finally, the vertex vi is always connected to the top vertex in STACK beforevi is pushed into STACK. These observations make sure that Property 2 isalso maintained for Gi.Now let us consider Property 3. For those processed vertices that are notin STACK for Gi�1, they are not visible from any vertices of Gi�1, thus theyare also not visible from any vertices of Gi since Gi is obtained by addingedges to Gi�1. Suppose that ur is a vertex that is in the STACK for Gi�1but popped out by Step 4, by Step 5, or by Step 6.

TRIANGULATIONS 49If ur is popped by Step 4, then r < s. The vertex ur is visible fromneither a vertex in STACK nor a processed vertex that is not in STACK, bythe inductive hypothesis. Moreover, the edge viur+1 blocks ur from beingvisible from any unprocessed vertex. The same proof applies to the case thatur is popped by Step 6.If ur is popped by Step 5, then at some moment in the \While" loop ofStep 5, ur is the top vertex of STACK. Let u0 be the second top vertex ofthe STACK. The vertex ur is popped because the edge viu0 is added. Sincevi has a smaller y-coordinate than ur, the edge viu0 blocks ur from beingvisible from any unprocessed vertex.Therefore, if ur is popped from the STACK for Gi�1 when we are con-structing Gi, then ur is no longer visible from any vertex of Gi.Finally, consider Property 4. If Step 4 is executed, the STACK containstwo adjacent vertices us and vi, so Property 4 is obviously maintained. IfStep 5 is executed, then we add an edge between the second top vertex u0of STACK and vi when u0 is visible from vi. We keep doing this until thesecond top vertex u0 of STACK is no longer visible from vi. At this point, noother STACK vertex could be visible from vi since otherwise, let u00 be the�rst vertex in STACK that is visible from vi, then it is easy to see that u00should also be visible from the �rst top vertex of STACK, contradicting ourinductive hypothesis. This proves that Property 4 can always be maintained.By the above discussion, it can also be realized that if Step 4 is the case,then all STACK vertices u2, u3, � � �, us are visible from the vertex vi. Infact, if u2 is not visible from vi, then the edge viu2 must intersects someedge of Gi�1. Since vertices vi, u1, u2, � � �, us are consecutive vertices on theboundary of Pi�1 (remember that in this case we suppose that vi is adjacentto u1), if viu2 intersects some edges of Gi�1, then viu2 must also intersectthe chain C = fu1; u2; � � � ; usg on the boundary of Pi�1. But this impliesthat some vertex on the chain C is visible from the vertex u1, contradictingour inductive hypothesis. Similarly, we can prove that after adding edgesviu2, viu3, � � �, viur�1, the vertex ur is still visible from the vertex vi, forr = 3; � � � ; s.This completes the discussion of the correctness of the algorithm.The analysis of the algorithm is easier. Since the polygon P is monotone,there are two vertices v0 and vr of P with the largest and the smallest y-coordinates, respectively. Moreover, the boundary of the polygon P can bedecomposed into two monotone chainsC = (u0; u1; � � � ; uk) and C 0 = (u00; u01; � � � ; u0h)

50 GEOMETRIC SWEEPINGwhere u0 = u00 = v0 and uk = u0h = vr and the vertices in both chains C andC0 are in decreasing y-coordinate ordering. We can merge the two chains Cand C 0 in linear time to obtain the list L of vertices of the polygon P sortedby decreasing y-coordinate. Therefore, Step 1 of the algorithm takes lineartime.Within the loop of Step 4 - Step 7, we add each new edge in constanttime. Since the �nal triangulation Gn is a planar graph that has at mostO(n) edges, so the total time for adding new edges is bounded by O(n).Finally, since each vertex of P is pushed into then popped out the stackSTACK exactly once, the total time is again bounded by O(n).We close this subsection with the conclusion that the problem of trian-gulating a monotone polygon can be solved in linear time.4.4.2 Triangulating a general PSLGNow we consider the problem of triangulating a general PSLG. Given ageneral PSLG G of n points, letF = fP1; P2; � � � ; Prgbe the set of regions of G. If each region of G is a monotone polygon, wecan use the following method to triangulate G: use the TRACE-REGIONalgorithm in Section 1.4 to �nd all regionsP1; P2; � � � ; PrLet #Pi be the number of edges of the polygon Pi, which is also the numberof vertices of Pi. Then the region Pi can be constructed in time O(#Pi).Therefore, to �nd all regions of G takes timeO(#P1) + O(#P2) + � � �+ O(#Pr) = O(#P1 + #P2 + � � �+ #Pr)Since each edge of G is used by exactly two regions of G in their bound-ary, (#P1 + #P2 + � � � + #Pr) is twice the number of edges of G, whichis bounded by O(n) since G is a planar graph. That is, the regions of Gcan be constructed in linear time. Now we triangulate each region Pi of Gusing the algorithm TRIANGULATING-MONOTONE-POLYGON given inthe last subsection. The time for triangulating the monotone polygon Pi isbounded by O(#Pi). Therefore, triangulating all regions of G takes lineartime. It is easy to see that putting all these triangulated regions together toget a triangulation of G can also be done in linear time. We conclude that

TRIANGULATIONS 51if all regions of a PSLG G are monotone polygons then the triangulation ofG can be done in linear time.Therefore, the problem of triangulating a general PSLG G is reduced tothe problem of converting the PSLG G into a PSLG G0 such that all regionsof G0 are monotone polygons. Without loss of generality, we suppose thatour PSLG G has no two points with the same y-coordinate (otherwise wecan achieve this by rotating the coordinate system slightly). Let us �rstintroduce some de�nitions.Let G be a PSLG and let v be a point of G. An edge fu; vg is an upperedge of v if the y-coordinate of u is larger than that of v, and an edge fw; vgis a lower edge of v if the y-coordinate of w is smaller than that of v. A vertexv of G is regular if either v is the vertex of G with maximum or minimumy-coordinate or v has both upper edges and lower edges.De�nition Let G be a PSLG. G is a regular PSLG if every vertex of G isa regular vertex.Note that if G is a regular PSLG, then G must be connected. In fact,suppose that G is not connected, let v0 and v00 be the vertices of maximumy-coordinate of two di�erent connected components of G, respectively. Thenboth v0 and v00 have no upper edges, so one of them must be an unregularvertex of G.Lemma 4.4.1 If G is a regular PSLG, then all regions of G are monotonepolygons.proof. Suppose that G is a regular PSLG but a region P of G is nota monotone polygon. Let v0 be the vertex of P that has the largest y-coordinate. Since P is a simple polygon and no vertex of P has the samey-coordinate as v0, when a horizontal straight line l is close enough to thevertex v0, l intersects P at exactly two points. Because P is not monotone,there must be some horizontal lines intersecting P at more than two points.Let r0 = supfr j the line y = r intersects P at more than two points.gLet l0 be the horizontal straight line y = r0. There are two possible cases.The line l0 intersects P at two points. Then since a slight moving downof the line l0 would make the line intersect more than two points, there mustbe a vertex v of P on the line l0 such that the vertex v has two lower edges.

52 GEOMETRIC SWEEPINGSince l0 intersects P at two points, v is not v0. However, v has no upperedges since each vertex of P is incident to exactly two edges of P , so v isnot a regular vertex and G is not a regular PSLG.On the other hand, suppose that l0 intersects P at more than two points,then a slight moving up of the line l0 would make the line intersect exactlytwo points. Thus one of those intersecting points of l0 and P must be avertex of P without upper edges. But this again contradicts the assumptionthat G is regular.Therefore, the region P must be a monotone polygon.Therefore, the TRIANGULATION problem for regular PSLGs can bedone in linear time. In the next subsection, we will show that givena general PSLG G, in time O(n logn) we can convert G into a regularPSLG by adding edges to G. Consequently, the problem CONSTRAINED-TRIANGULATION can be solved in time O(n logn).Remark:Chazelle [8] has recently proven that triangulating a simple polygon (notnecessarily a monotone polygon) can be done in linear time. Since for aconnected PSLG G, the regions of G can be constructed in linear time, andeach region is a simple polygon, we use Chazelle's linear time algorithm totriangulate each region of G then put them together. This gives us a lineartime algorithm for triangulating a connected PSLG.4.4.3 Regularization of PSLGsWe thereby have the following problem.REGULARIZATION-PSLGGiven a general PSLG G, add edges to G so that the resulting PSLG isregular.Intuitively, to regularize a PSLG, we add an upper edge to a vertex ifit does not have an upper edge, and add a lower edge to a vertex if it doesnot have a lower edge. The problem is, how do we add the edges so thatedge-crossing is avoided. Therefore, when we are working on a vertex of aPSLG G, we should have enough information about the local environmentof the vertex. But how do we maintain and update the information about

TRIANGULATIONS 53the local environment e�ciently when we move from one vertex to anothervertex?Again, the plane sweeping technique helps. Let V = fv1; v2; � � � ; vng bethe vertex set of a PSLG G. Without loss of generality, suppose that no twovertices in V have the same y-coordinate.1 We �rst sort the vertices in Vby their y-coordinate. Then we sweep the plane by a horizontal line frombottom up. The sweeping stops at each vertex of G and check if the vertexhas an upper edge. If the vertex does not have an upper edge we add onefor it. Then we sweep the plane once again from top down to add loweredges for those vertices without lower edges. After these two sweepings,every vertex has at least one upper edge (except for the vertex with themaximum y-coordinate) and at least one lower edge (except for the vertexwith the minimum y-coordinate). Thus the PSLG becomes regular. Wediscuss the bottom-up sweeping in detail. The top-down sweeping can behandled similarly.Without loss of generality, suppose that the list fv1; v2; � � � ; vng is thesorted list of vertices of the PSLG G in ascending y-coordinate. Considerthe sweeping line l at vertex vi, where i < n. The sweeping line l partitionsthe PSLG G into three parts G1, G2 and G3. G1 is the \past history"containing those vertices of G that are below the line l and have at leastone upper edge each, and those edges of G that are entirely below the linel. G2 is the \current status" containing the vertices of G that are eitheron the line l or below the line l and have no upper edges, and those edgesof G that intersect the line l. G3 is the \unknown future" containing thevertices and edges of G that are entirely above the line l. The elements inG1 are \nice" elements that we have seen and we know that they do notmake trouble for us. The elements in G2 are \current" elements that weshould process. The elements in G3 are unknown elements to us since wehave not seen them during the bottom-up sweeping. Therefore, the processof the plane sweeping is a process of updating the current status G2 whenwe pass through a vertex v of the PSLG G. This is easy to see that duringthe sweeping between two consecutive vertices in the list fv1; v2; � � � ; vng, thecurrent status G2 is invariant. The current status G2 only changes when wepass through a vertex of the PSLG G. This is the reason why our sweepingis discrete (i.e., the sweeping only stops at the vertices of G and updates thecurrent status).We require that between two intersecting edges of G in G2 that are1In fact, with a minor modi�cation, our algorithms will also work for the general case.

54 GEOMETRIC SWEEPINGconsecutive on the line l, there is at most one \hanged vertex", i.e., a vertexthat is below the line l and has no upper edges. This condition can be easilymaintained since when a second hanged vertex is added between the edges,we can connect it to the �rst hanged vertex by a new edge thus give the �rsthanged vertex an upper edge and unhang it.The current status G2 can be maintained in the following way when weare passing through a vertex vi: we �rst search the nearest left edge e1 andthe nearest right edge and er of vi in G2. Let e2, � � �, er�1 be the loweredges incident on vi in counterclockwise ordering. We then check if there isa hanged vertex vh between a pair (ej ; ej+1) of edges, for j = 1; � � � ; r � 1.If there is one then we add a new edge between vi and vh and unhang thevertex vh. Then we delete the lower edges of vi from G2 and add the upperedges of vi to G2. If vi has no upper edges, then we hang vi between thetwo nearest edges e1 and er in G2. Sweeping all vertices from v1 to vn andupdating G2 and G dynamically, we will �nally �nish adding upper edges tothe vertices of G. It is easy to see that after this process, each vertex of G,except vn, has at least one upper edge.Therefore, the following operations should be done e�ciently on G2 byour algorithm: �nding the edges e1, e2, � � �, er in G2 such that e1 and er arethe nearest left and the nearest right edges of the vertex vi in G2, respectively,and e2, � � �, er�1 are the lower edges incident on vi; deleting an edge fromG2; and adding an edge to G2.Note that if we lower the sweeping line l a little bit, the intersecting pointsof the line l and the edges e1, e2, � � �, er are consecutive on l. Therefore, ifwe put the edges in G2 in a list in the ordering of their intersections withthe line l, then the edges e1, e2, � � �, er correspond to a consecutive sublistof the list.A proper data structure for e�ciently implementing the above operationsis a 2-3 tree T . The edges in G2 are ordered from left to right according tothe ordering of their intersections with the line l. Hanged vertices in G2 arehanged between consecutive leaves in the tree T .The following algorithm is based on the above discussion.Algorithm ADD-UPPER-EDGESGiven: a PSLG G of n vertices, represented by a DCELOutput: a PSLG G', obtained by adding edges to G suchthat each vertex of G' (except the highestone) has at least one upper edge.

TRIANGULATIONS 55BEGIN1. Sort the vertices of G in increasing y-coordinates,let { v(1),, v(n) } be the sorted vertex list;2. Create an empty 2-3 tree T; insert the upper edgesof v(1) into T if they exist , otherwise hang v(1);3. FOR i = 2 up to n DO3a. Using the x-coordinate of the vertex v(i) tofind two edges e(1) and e(r) in T that are thenearest left and the nearest right edges ofv(i) in T. All the edges e(2),, e(r-1)that are between e(1) and e(r) in the tree Tare lower edges of v(i).3b. For j = 1 to r-1IF there is a hanged vertex v(h) betweene(j) and e(j+1) THENadd a new edge {v(h), v(i)};unhang v(h);3c. Delete the lower edges e(2),, e(r-1) ofv(i) from T if they exist;3d. IF v(i) has upper edges THENinsert the upper edges of v(i) into TELSEhang v(i) between the nearest left andright edges e(1) and e(r) if i <> n.END.We give the analysis of the algorithm. Step 1 can be done in time (n logn)by any optimal sorting algorithm. Since each leaf of T corresponds to an edgein G and G is a planar graph, T contains at most O(n) leaves. Consequently,the depth of the tree T is at most O(logn). Thus Step 3a can be done intime O(logn) for each vertex of G. Each vertex of G can be hanged andunhanged at most once so the total time used to hang and unhang verticesof G is bounded by O(n). Finally, each edge of G is inserted exactly once(at its lower endpoint) then deleted exactly once (at its upper endpoint) inthe tree T , thus the time spent on inserting and deleting a single edge ofG is bounded by O(logn). Summarizing all these discussions, we concludethat the algorithm ADD-UPPER-EDGES has time complexity O(n logn).

56 GEOMETRIC SWEEPING

Chapter 5Divide and ConquerDivide and Conquer is a classical problem solving technique and has provenits value for geometric problems as well. This technique normally involvespartitioning of the original problem into several subproblems, recursivelysolving each subproblem, and then combining the solutions to the subprob-lems to obtain the solution to the original problem. A general form of adivide and conquer algorithm is as follows:Algorithm DIVIDE AND CONQUERGiven: A problem P of size nOutput: A solution to PBEGIN0. IF n = 1 THENSolve the problem P directly and STOP;1. Divide the problem P into k subproblems of size n/k;2. Recursively solve each subproblem;3. Combine the solutions to the subproblems to obtaina solution to the problem P;END.The \size" of the problem P is a reasonable measure of the quantity ofinput data. For example, if the problem is to construct the convex hull of aset S of points in the plane, then the size of the problem can be the numberof points in the given set S. 57

58 DIVIDE AND CONQUERTo make the algorithm e�cient, we in general expect that Step 1 ofdividing into subproblems and Step 3 of combining subsolutions can be donein linear time.Now we analyze the algorithm. Suppose that the time complexity of thealgorithm is T (n) on problems of size n. We assume reasonably that when theproblem has size 1, the problem can be solved in constant time, i.e., T (1) = b,where b is a constant. By our assumption, Step 1 and Step 3 can be done intime cn, where c is again a constant. Recursively, each subproblem of sizen=k can be solved in time T (n=k). So to solve all subproblems, Step 2 takestime kT (n=k). Therefore, the time complexity of the algorithm DIVIDEAND CONQUER can be expressed by the following recurrenceT (1) = bT (n) = kT (n=k) + cnIt is an easy exercise to obtain the closed form for the function T (n), asstated by the following theorem.Theorem 5.0.2 If Step 1 and Step 2 can be done in linear time, then thealgorithm DIVIDE AND CONQUER runs in timeT (n) = O(n logn)5.1 Convex hulls againIn this section, we present two divide and conquer algorithms for construct-ing convex hulls for sets of points in the plane, MERGEHULL and QUICK-HULL, which are the analogues of the famous sorting algorithms MERGE-SORT and QUICKSORT, respectively.The idea of MERGEHULL is exactly like that of MERGESORT. Givena set S of n points in the plane, we �rst split S into two subsets S1 and S2of roughly equal size, then we separately construct the convex hulls CH(S1)and CH(S2) for each of the sets S1 and S2. Finally, we merge the two hullsinto a larger hull for the original set S.Some details are worth to discuss. To make our merge process easier,we would like to let the two hulls CH(S1) and CH(S2) disjoint. This can bedone by letting the subset S1 be the half of S with smaller x-coordinates,while letting the subset S2 be the half with larger x-coordinates. There are

CONVEX HULLS 59two di�erent ways to split the set into such two sets. One is to use a lineartime algorithm, developed by Blum, Floyd, Pratt, Rivest, and Tarjan [5], to�nd the point p with the median x-coordinate, then spit S into S1 and S2according to p. Another way is to presort the set S by x-coordinates, thenfor a sorted list, the median can always be found in linear time. We willadopt the second approach.The following is the detailed MERGEHULL algorithm.Algorithm MERGEHULLGiven: a set S of n points in the planeOutput: the convex hull of SBEGIN1. Sort S by x-coordinates;2. Call MHULL(S)END.The subroutine MHULL(S) is as follows.Algorithm MHULL(S)Given: a set S of n points in the plane, sorted byx-coordinateOutput: the convex hull of SBEGIN1. IF S contains less than four points, construct theconvex hull CH(S) directly. Otherwise, do thefollowing.2. Split S into two subsets S_1 and S_2 of roughlyequal size, such that the x-coordinate of any pointin S_1 is less than the x-coordinate of any pointin S_2;3. Recursively call MHULL(S_1) and MHULL(S_2) toconstruct the convex hulls CH(S_1) and CH(S_2);4. MERGE(CH(S_1), CH(S_2)) to obtain CH(S).END.

60 DIVIDE AND CONQUERAll that is left to specify is how to perform the subroutineMERGE(CH(S1), CH(S2)). For this, we must �nd two lines: one that istangent to the top of both CH(S1) and CH(S2) (the upper bridge) and onethat is tangent to the bottom of both hulls (the lower bridge). Let u(S1)and l(S1) be the vertices in set S1 that are on the upper and lower bridges,respectively (similarly de�ne u(S2) and l(S2)). Then all vertices in CH(S1)proceeding clockwise from u(S1) to l(S1) can be discarded. Similarly, allvertices in CH(S2) proceeding counterclockwise from u(S2) to l(S2) can bediscarded. All the remaining vertices form the convex hull CH(S).Now we �nd the upper bridge (lower bridge is a symmetric operation).Let us assume that the convex hulls of CH(S1) and CH(S2) are each storedas a doubly-linked list. In constant time, we can add a point , delete a point,or �nd the clockwise or counterclockwise neighbor of a point. Suppose wehad a guess for the endpoints of the upper bridge. How can we verify theguess? Suppose we guess that some line l through p 2 CH(S1) is tangentto the hull CH(S1) at point p. Let p0 and p00 be the two neighbors of thepoint p in the hull CH(S1). The line l is tangent to the top of CH(S1) atthe point p if and only if both points p0 and p00 are on or below the line l.Therefore, to construct the upper bridge, we can pick any hull vertexp from CH(S1) and any hull vertex q from CH(S2) and let l be the linethrough p and q. Now we try to \lift" the line l as much as possible with thecondition that l intersects both hulls CH(S1) and CH(S2). Once we cannotlift the line l anymore, the line l must be tangent to the top of both CH(S1)and CH(S2), i.e., l is the upper bridge of CH(S1) and CH(S2). Note that ifthe two neighbors p0 and p00 of the point p are on the two sides of the line l,we can always use \signed triangle area" to decide which neighbor is abovethe line l.We give the detailed algorithm as follows.Algorithm UpperBridge(CH(S_1), CH(S_2))Given: two convex hulls CH(S_1) and CH(S_2) thatare separated by a vertical line such thatCH(S_1) is on the left of the lineOutput: the upper bridge of CH(S_1) and CH(S_2)BEGIN1. Let p be the point in CH(S_1) with the smallestx-coordinate, and let q be the point in CH(S_2)

CONVEX HULLS 61with the largest x-coordinate. Let L be theline through p and q;2. WHILE L is not the upper bridge DO2.1. WHILE there is a neighbor p' of p in CH(S_1)above the line L, replace the point p by thepoint p' and construct the new line L;2.2. WHILE there is a neighbor q' of q in CH(S_2)above the line L, replace the point q by thepoint q' and construct the new line L;END.The lower bridge of CH(S1) and CH(S2) can be found by an algorithmwhich is identical with the algorithm UpperBridge except that the word\above" is replaced by the word \below".In the worst case, the line l in the algorithm UpperBridge passes throughevery hull vertices of CH(S1) and every hull vertices of CH(S2). Then thealgorithm must stop. Therefore, the running time of the algorithm Upper-Bridge is at most linear to the number of hull vertices of the two hulls, whichis bounded by the number of points in the set S1 [S2. To merge two hullswhich are separated by a vertical line, it su�ces to �nd the upper and lowerbridges, delete a partial hull from each of the hulls, and catenate the remain-ing parts of the hulls with the upper and lower bridges properly. All thesecan be obviously done in time O(n) if the set S1 [S2 contains n points andthe convex hulls are stored as doubly-linked lists. We conclude that the timecomplexity of the subroutine MERGE is O(n).Now we analyze the time complexity of the algorithm MERGEHULL. Ifan O(n logn) time sorting algorithm is used, then the time of the algorithmMERGEHULL equals O(n logn) plus the time of the algorithm MHULL.Since the set S is presorted by x-coordinates, Step 2 of the algorithmMHULL(S), i.e., splitting S into S1 and S2 can be done in time O(n). Bythe analysis above, Step 4 of the algorithm can also be done in time O(n).Moreover, since the set S is presorted by x-coordinates, when we pass thesets S1 and S2 to the recursive calls MHULL(S1) and MHULL(S2), the setsS1 and S2 are also presorted by x-coordinates. Thus the subroutine MHULLdirectly applies. Now by the discussion at the beginning of this chapter, weconclude that the time complexity of the algorithm MHULL is O(n logn).As in MERGESORT, MERGEHULL splits the given input S carefully(into two equal size subsets), then merges carefully the two hulls which areobtained by recursive calls. The algorithm is in some sense very \stable".

62 DIVIDE AND CONQUERThat is, the time complexity is almost invariant for all inputs. On the otherhand, QUICKSORT randomly splits the given list of numbers, recursivelycalls the subroutine, then simply catenates the two sorted sublists. There-fore, much less work is done besides the two recursive calls. The worst casetime complexity of QUICKSORT is bad. However, for most inputs (or manyinputs), QUICKSORT runs even fast than MERGESORT.This discussion motivates the derivation of the following QUICKHULLalgorithm, which is analogous to QUICKSORT, and has a bad worst casetime complexity and, in general a good \average time complexity".Algorithm QUICKHULL(S)Given: a set S of n points in the planeOutput: the convex hull of SBEGIN1. Find the points p_min and p_max in S, withthe smallest and largest x-coordinates,respectively;2. Let S' be the subset of points in S that areabove the line L through p_min and p_max,and let S'' be the set of points in S thatare below the line L;3. Call UpperHULL(S', p_min, p_max) andLowerHULL(S'', p_min, p_max);4. Catenate the upper and lower hulls.END.Where the subroutines UpperHULL and LowerHULL are similar. Weonly give the UpperHULL as follows.Algorithm UpperHULL(S, l, r)Given: a set S of points in the plane such thatall points in S are above the line Lthrough the points l and r.Output: Find the the convex hull for S + {l, r}BEGIN1. Find a point p in S that is furthest to the

THE VORONOI DIAGRAM 63line L;2. Let S_1 be the subset of S that contains allthe points above the line through l and p,and let S_2 be the subset of S that containsall the points above the line through p and r;3. Recursively call UpperHULL(S_1, l, p) andUpperHULL(S_2, p, r);4. Catenate the two parts obtained in Step 3;END.Similar to QUICKSORT, it can be proved that in the worst case, thetime complexity of the algorithm QUICKHULL is
(n2). While with areasonable assumption on the probability distribution of the points in theset S, the running time of the algorithm QUICKHULL is O(n logn). Weleave the discussions to the interested reader.5.2 The Voronoi diagramWe �rst recall the de�nition of a Voronoi diagram.De�nition A Voronoi diagram of a set S = fp1; � � � ; png of n points inthe plane is a partition of the plane into n regions V1, V2, � � �, Vn such thatany point in the region Vi is closer to the point pi than to any other pointin the set S.The convex polygonal region Vi is called the Voronoi polygon of the pointpi in S. The vertices of the diagram are called Voronoi vertices and the linesegments of the diagram are called Voronoi edges. The Voronoi diagram ofa set S is denoted by Vor(S). Note that Voronoi vertices are in general notthe points in the set S.We �rst prove some interesting and important properties about Voronoidiagrams. Throughout our proofs, we need to make a crucial assumption.(This assumption can be eliminated but some properties will no longer holdand the proofs will become much harder.)ASSUMPTIONNo four points in the set S are co-circular.With this assumption, the Voronoi diagram has a simple structure.

64 DIVIDE AND CONQUER
e

e

e

e

1
2

3

k
vV

V V1
2

kFigure 5.1: A Voronoi vertex and its incident Voronoi edgesLemma 5.2.1 Every Voronoi vertex has degree exactly three.proof. Any Voronoi vertex is the intersection of a set of Voronoi edges.Let e1, e2, � � �, ek be a sequence of Voronoi edges incident on a Voronoi vertexv, such that the edge ei is common to the Voronoi polygons Vi�1 and Vi fori = 2; 3; � � � ; k, and edge e1 is common to the Voronoi polygons Vk and V1.Without loss of generality, we suppose that Vi is the Voronoi polygon of thepoint pi in the set S, for i = 1; � � � ; k. See Figure 5.1.Since the Voronoi vertex v is on e1, v is equidistant from the points pkand p1. Similarly, since the Voronoi vertex v is on ei, for i = 2; � � � ; k, v isequidistant from the points pi�1 and pi. Therefore, v is equidistant from allpoints pi, for i = 1; � � � ; k. This implies that all these points pi, i = 1; � � � ; k,are on the circle whose center is v with the radius jvp1j. Since no four pointsin the set S can be co-circular, we conclude k � 3.If k = 2, then both e1 and e2 are common to the Voronoi polygons V1and V2. Hence they both belong to the perpendicular bisector of the segmentp1p2. Therefore, the vertex v is in fact an interior point of some Voronoiedge, so it is not a Voronoi vertex, a contradiction.Finally, if k = 1. Then both sides of the edge e1 are in the same Voronoipolygon V1, so the Voronoi polygon is not convex, again a contradiction.This proves that k must be exactly 3.Suppose that we have constructed the Voronoi diagram for the set S of npoints in the plane. The following lemma tells us that for any point pi in S,

THE VORONOI DIAGRAM 65
p pi j

pk

C

u

v

e

e
e

1

2Figure 5.2: The nearest points de�nes a Voronoi edgethe nearest point in S can be found by \locally" looking at the correspondingVoronoi polygon Vi.Lemma 5.2.2 The nearest neighbor of every given point pi in S has aVoronoi edge that bounds the Voronoi polygon Vi of the point pi.proof. Let pi and pj be two points in the given set S, and supposethat pj is the nearest neighbor of pi. Let v be the midpoint of the segmentpipj . Draw a circle C of radius jpivj whose center is pi. We �rst show thatthe circle C is completely contained in the Voronoi polygon Vi. Supposeotherwise that e were a Voronoi edge of Vi that contains a point u that isin the interior of C. (See Figure 5.2.) Then e must lie on the perpendicularbisector of a segment pipk, where pk is a point in S and pk 6= pj (since theperpendicular bisector of pipj is tangent to the circle C). Therefore, we musthave jpipkj � 2jpiuj < 2jpivj = jpipj jSo pi is closer to pk than to pj , contradicting the assumption that pj is thenearest neighbor of pi.Therefore, the circle C is completely contained in the Voronoi polygonVi. Since any point in the segment vpj is closer to pj than to pi and the pointv is on the circle C, the point v must be on the boundary of the Voronoipolygon Vi. Now we show that v is an interior point of some Voronoi edge onthe boundary of Vi. Suppose otherwise, v is a Voronoi vertex. Let e1 and e2

66 DIVIDE AND CONQUERbe the Voronoi edges on the boundary of Vi such that e1 and e2 intersect atv. Since Vi is convex, the angle 6 e1ve2 must be less than �. See Figure 5.2.But then at least one of the edges e1 and e2 intersects the interior of thecircle C. This is impossible by our discussion above. Therefore, there isexactly one Voronoi edge e1 of Vi that passes through v. The edge e1 mustbe tangent to the circle C otherwise e1 intersects the interior of the circle C.Thus, the edge e1 is on the perpendicular bisector of the segment pipj , i.e.,the edge e1 is de�ned by the point pj .For each Voronoi vertex v, by Lemma 5.2.1, there are exactly threeVoronoi polygons Vi, Vj , and Vk incident on v. Let pi, pj , and pk be thethree corresponding points in the set S. By the proof of Lemma 5.2.1, thepoint v is equidistant from these three points pi, pj , and pk . Denote by C(v)the unique circle de�ned by pi, pj , and pk. The circle C(v) is centered at vand has radius jvpij.Lemma 5.2.3 For any Voronoi vertex v, the circle C(v) contains no pointsof the set S in its interior.proof. Let pi, pj , and pk be the three points in the set S which de�nethe circle C(v). Then by the de�nition of C(v), v is on the boundary of theVoronoi polygons Vi, Vj , and Vk, which correspond to the points pi, pj , andpk of the set S, respectively. Now by the de�nition of Voronoi polygons, inthe set S, the points pi, pj , and pk are the three closest points of the pointv. If there is another point ph in S that is in the interior of C(v), then vwould be closer to the point ph than to any of the three points pi, pj , andpk. This is a contradiction.Now we discuss the relationship between CONVEX HULL and theVoronoi diagram.Let r be a semi-in�nite ray originating from a �nite point p0. For anypoint p on the ray r, denote by rp the ray obtained by cutting away thesegment p0p (excluding the point p) from the ray r.Lemma 5.2.4 Two points in the set S are consecutive hull vertices of theconvex hull CH(S) if and only if the two corresponding Voronoi polygonsshare a Voronoi edge that is a semi-in�nite ray.proof. Let p1 and p2 be two points in the set S, and let V1 and V2 be thetwo corresponding Voronoi polygons in Vor(S), respectively.

THE VORONOI DIAGRAM 67Suppose that the points p1 and p2 are two consecutive hull vertices ofthe convex hull CH(S). Then the segment p1p2 is an edge on the boundaryof the convex hull CH(S). Let l be the straight line that passes through thesegment p1p2, then one side of l contains no points of the set S. Let r be asemi-in�nite ray in the side of l that contains no points of S such that theray r is on the perpendicular bisector of the segment p1p2, and originatesfrom the middle point of the segment p1p2. Let p be a point on the ray r,draw a circle Cp centered at the point p with the radius jpp1j. Imagine thatthe point p travels along the ray r toward in�nity. Then the radius of thecircle Cp is getting larger and larger and the circle Cp is getting closer andcloser to the straight line l (more precisely, for any �xed point pl on the linel, the circle Cp can be arbitrarily close to pl when the radius of the circleCp is large enough). Since no points of the set S are in the same side of theline l as the point p, and the set S contains only �nitely many points, theremust be a point p0 on the ray r such that for any point p on the ray r thatis beyond the point p0, no points of the set S, except the points p1 and p2,is contained in the interior or on the boundary of the circle Cp. That is, allpoints on the ray r that are beyond the point p0 are closer to the points p1and p2 than to any other points in the set S. By the de�nition of Voronoiedges, therefore, the entire semi-in�nite ray rp0 must be contained in theboundary of the Voronoi polygons V1 and V2. That is, the Voronoi polygonsV1 and V2 share a Voronoi edge that is a semi-in�nite ray.Conversely, if the Voronoi polygons V1 and V2 share a Voronoi edge thatis a semi-in�nite ray r. Then every point on the ray r is equidistant from thepoints p1 and p2, by the de�nition of a Voronoi polygon, thus the ray r is onthe perpendicular bisector of the segment p1p2. Draw a circle Cp centeredat a point p on the ray r such that Cp passes through the points p1 and p2.Then for any point p on the ray r, the circle Cp contains no other pointsof the set S in its interior. Let the point p travel along the ray r towardin�nity, then the circle Cp is getting closer and closer to the straight line lthat passes through the segment p1p2, and Cp never contains any points ofthe set S in its interior. Since the set S is �nite, we conclude that one sideof the line l contains no points of the set S. This implies that the segmentp1p2 is an edge on the boundary of the convex hull CH(S). Therefore, thepoints p1 and p2 are consecutive hull vertices of the convex hull CH(S)1Every hull vertex p of the convex hull CH(S) has a neighbor hull vertex p0.By Lemma 5.2.4, the corresponding Voronoi polygons V and V 0 share a semi-1For simplicity, we suppose that no three points of the set S are co-linear.

68 DIVIDE AND CONQUERin�nite ray, therefore, the Voronoi polygon V corresponding to the point pmust be unbounded. Conversely, if a Voronoi polygon V is unbounded, thenV must share a semi-in�nite ray with another unbounded Voronoi polygonV 0. Again by Lemma 5.2.4, the two corresponding points p and p0 of theset S are consecutive hull vertices of the convex hull CH(S), therefore, thepoint p corresponding to the Voronoi polygon V must be a hull vertex. Thisproves the following corollary.Corollary 5.2.5 A Voronoi polygon V of Vor(S) is unbounded if and onlyif the corresponding point of the set S is a hull vertex of CH(S).Finally, we need a lemma to consider how much space is needed to rep-resent a Voronoi diagram of a set of n points in the plane.Lemma 5.2.6 The Voronoi diagram contains at most 2n�3 vertices, 3n�5edges and n regions.proof. Since the regions of a Voronoi diagram Vor(S) are Voronoi poly-gons that one-to-one correspond to the points of the set S, thus the Voronoidiagram Vor(S) of the set S has exactly n regions.Every semi-in�nite ray of the Voronoi diagram Vor(S) can be written inthe form (v; �), where v is the Voronoi vertex from which the ray originatesand � is the polar angle of the ray. Introduce a new vertex w. Replace eachray (v; �) of the Voronoi diagram Vor(S) by a �nite edge (v; w), which maybe a curve, not necessarily a straight line. The resulting picture is a planarimbedding I of a �nite graph G that has the same number of regions andthe same number of edges as the Voronoi diagram Vor(S). The number ofvertices of I is one more than that of the Voronoi diagram Vor(S). Let V ,E, and F be the number of vertices, the number of edges and the numberof regions of the imbedding I . By Euler's formulaV �E + F = 2By the above discussion, F = n. Moreover, we have 3V � 2E since eachvertex of the graph G has degree at least 3 (note that there are at leastthree semi-in�nite rays in the Voronoi diagram Vor(S), since the convex hullCH(S) has at least three hull vertices, so by Lemma 5.2.4, Vor(S) has atleast three unbounded Voronoi polygons). Combining these two relations,we get V � 2n� 4

CONSTRUCTING VORONOI DIAGRAM 69Remember that the number of vertices of the graph G is one more than thatof the Voronoi diagram Vor(S), we conclude that the number of vertices ofthe Voronoi diagram Vor(S) is at most 2n� 3.Now apply Euler's formula again, we obtainE � 3n � 5Therefore, the number of vertices, the number of edges, and the numberof regions of a Voronoi diagram are all of order O(n).We can use the Doubly-Connected Edge List (DCEL), as introduced inSection 1.4 to represent in computers a Voronoi diagram of a set of pointsin the plane. For this we need a slight generalization. For each unboundedVoronoi polygon V in a Voronoi diagram, we call the semi-in�nite ray r ofV the �rst ray of V if when we travel from in�nity along the ray r towardthe Voronoi vertex from which r originates, the region V is on our right.The other semi-in�nite ray of V is called the last ray of V . Now given asemi-in�nite ray r of a Voronoi diagram, suppose that r is the last ray ofa Voronoi polygon Vi. Then in the edge node corresponding to the ray r,the pointer P2 will point to the semi-in�nite ray that is the �rst ray of theVoronoi polygon Vi. Moreover, each region V , which is a Voronoi polygonof the Voronoi diagram, can be named by its corresponding point in the setS.5.3 Constructing the Voronoi diagramIn this section, we present an algorithm that constructs the Voronoi diagramgiven a set S of n planar points. The algorithm runs in time O(n logn).The algorithm is the standard divide-and-conquer method. We �rst givea rough sketch of the algorithm as follows.Algorithm VORONOI DIAGRAMGiven: a set S of n points in the planeOutput: the Voronoi diagram Vor(S) of SBEGIN1. Presort the points in the set S by x-coordinate;

70 VORONOI DIAGRAM2. Call the subroutine Voronoi(S)END.Where the subroutine Voronoi(S) is given as follows.Algorithm Voronoi(S)Given: a set S of n points in the plane, sortedby x-coordinatesOutput: the Voronoi diagram Vor(S) of SBEGIN1. Split the set S into two approximately equalsize subsets S_L and S_R by a vertical lineL such that all points in S_L are in the leftside of L and all points in S_R are in theright side of L;2. Recursively call Voronoi(S_L) and Voronoi(S_R);3. Merge Vor(S_L) and Vor(S_R) to construct Vor(S).END.Step 1 in the algorithm Voronoi(S) can be done in linear time, since thegiven set S is sorted by x-coordinate. If the merge part (Step 3) in thealgorithm Voronoi(S) can also be done in linear time, then by the standardtechnique in Algorithm Analysis, the algorithm Voronoi(S) runs in timeO(n logn). Consequently, the algorithm VORONOI DIAGRAM runs in timeO(n logn).Therefore, the problem of constructing the Voronoi diagram of the setS in time O(n logn) is reduced to the problem of merging in linear timethe two Voronoi diagrams Vor(SL) and Vor(SR) into the Voronoi diagramVor(S), where SL and SR are two sets separated by a vertical line l andSL [SR = S.Consider the Voronoi diagrams Vor(S), Vor(SL), and Vor(SR). We �rstdiscuss what of Vor(S) can be missing in Vor(SL) and Vor(SR). Let e bea Voronoi edge of Vor(S) de�ned by two points pi and pj of S, that is, e isa Voronoi edge on the boundary between the Voronoi polygons Vi and Vjof the points pi and pj , respectively. By the de�nition of Voronoi polygons,the points pi and pj are the closest points in the set S to the points on theedge e. If both pi and pj are in the set SL, then the points pi and pj must

CONSTRUCTING VORONOI DIAGRAM 71be the closest points in the set SL to the points on the edge e since the setSL is a subset of the set S. Therefore, the edge e must be also present in theVoronoi diagram Vor(SL), either as a Voronoi edge or as part of a Voronoiedge of Vor(SL). Similarly, if both pi and pj are in the set SR, then the edgee must be also present in the Voronoi diagram Vor(SR), either as a Voronoiedge or as part of a Voronoi edge of Vor(SR). Therefore, a Voronoi edge eof Vor(S) that is missing in both Vor(SL) and Vor(SR) must be de�ned bytwo points such that one is in the set SL and the other is in the set SR.Let � be the subgraph of Vor(S) that consists of the Voronoi edges ofVor(S) that are de�ned by the pairs (pi; pj) of points in S such that pi 2 SLand pj 2 SR. We do not presume that � is a connected graph. We �rstdiscuss what � looks like.Lemma 5.3.1 Each vertex of � has degree exactly 2.proof. Since each vertex v of � is also a Voronoi vertex of Vor(S), byLemma 5.2.1, the degree of v is at most 3 in �. Suppose that e1, e2, ande3 are the three Voronoi edges incident at v in the Voronoi diagram Vor(S),and that V1, V2, and V3 are the Voronoi polygons incident at v such that e1is between V1 and V2, e2 is between V2 and V3, and e3 is between V3 and V1.Let p1, p2, and p3 be the three points in the set S that correspond to theVoronoi polygons V1, V2, and V3, respectively.If the vertex v has degree 3 in �, then all Voronoi edges e1, e2, and e3are in �. Since e1 is in �, by the de�nition of �, without loss of generality,we can suppose that the point p1 is in the set SL and the point p2 is in theset SR. Then because e2 is between V2 and V3 and e2 is in �, the point p3must be in the set SL. Finally, because e3 is between V3 and V1 and e3 isin �, we must also have that p1 is in SR. This gives us a contradiction thatthe point p1 is in both sets SL and SR. Therefore, the vertex v cannot havedegree 3 in �.If the vertex v has degree 1 in �. Then suppose that the unique Voronoiedge that is incident on v and in � is e1. Thus we can suppose, without lossof generality, that the point p1 is in the set SL and the point p2 is in the setSR. However, now if the point p3 is in the set SL then the edge e2 should bein �, while if the point p3 is in the set SR, then the edge e3 should be in �,either case contradicts the assumption that the vertex v has degree 1 in �.This proves that each vertex of � has degree 2 in �.Therefore, each connected component of � is either a closed simple cycle,or a simple chain whose both ends are semi-in�nite rays.

72 VORONOI DIAGRAM
v

vl l

v v

v v

1

1

2

2

p
p p1

2

3
v3Figure 5.3: A horizontal line separating v from v1 and v2.Recall that a chain C is said to be monotone if any horizontal line inter-sects the chain C in exactly one point.Lemma 5.3.2 Every connected component of � is monotone. In otherwords, every horizontal line cuts a connected component of � at exactly onepoint.proof. First we prove that no edge in � can be horizontal. Suppose thatan edge e in � is horizontal. Let pL and pR be the two points in the set Sthat de�ne the edge e, pL 2 SL and pR 2 SR. Then the segment pLpR isvertical, contradicting the fact that the sets SL and SR are separated by avertical line.Now suppose that a connected component C of � is not monotone. Sinceeach vertex in � has degree exactly 2 (Lemma 5.3.1), we must be able to�nd a vertex v on C whose two adjacent vertices are v1 and v2 such that ahorizontal line l separates v from v1 and v2. See Figure 5.3.Without loss of generality, suppose that v is below the line l, and that v1and v2 are above the line l. The vertex v is a Voronoi vertex in the Voronoidiagram Vor(S), and v1 and v2 are two adjacent Voronoi vertices in Vor(S).Suppose that the third Voronoi vertex adjacent to v is v3. The vertex v3must be below the horizontal line l since each Voronoi polygon has to beconvex and each Voronoi vertex has degree exactly 3, by Lemma 5.2.1. Letp1, p2, and p3 be the three points in the set S, such that edge fv; v1g isde�ned by p1 and p2, the edge fv; v2g is de�ned by p2 and p3, and the edgefv; v3g is de�ned by p3 and p1. See Figure 5.3. Without loss of generality,suppose that the point p2 is in the set SL, then both points p1 and p3 arein the set SR. However, it is easy to see that we can draw two vertical linesl1 and l2 such that p1 is on the left side of l1 and p2 is on the right side of

CONSTRUCTING VORONOI DIAGRAM 73
C C

e
p

p
1

1

2

2Figure 5.4: Two separated chains in �l1, while p2 is on the left side of l2 and p3 is on the right side of l2. Butthis contradicts the assumption that the sets SL and SR are separated by avertical line.This proves that the connected component C of � must be monotone.So no connected component of � can be a cycle. Finally, we investigatehow many connected components � can have.Lemma 5.3.3 The graph � has exactly one connected component.proof. First at all, � must have at least one connected component sincethe Voronoi diagram is connected, so there is at least one Voronoi edge thatbounds two Voronoi polygons corresponding to a pair of points that are fromthe sets SL and SR, respectively.Now suppose that there are more than one connected components in�. By Lemma 5.3.1 and Lemma 5.3.2, all these connected components aremonotone chains, and no two of them intersect. Let C1 and C2 be the twoadjacent chains in �, i.e., there is no other chain in � that is between theslice bounded by C1 and C2. Suppose also that C1 is on the left of C2. SeeFigure 5.4. Then all Voronoi polygons of Vor(S) that are between C1 andC2 correspond to points in a single set of SL and SR. Suppose all of themcorrespond to points in set SL. Now look at any edge e on C1. The edgee must be de�ned by a point p1 that is between the slice of C1 and C2 andthereby in the set SL and a point p2 that is on the left side of C1. SeeFigure 5.4. By the de�nition of �, the point p2 is in the set SR. It is easy

74 VORONOI DIAGRAMto see that there is a vertical line such that the point p2 is on its left whilethe point p1 is on its right. However, this contradicts the fact that all pointsin SR should be on the right of all points in SL. On the other hand, if allVoronoi polygons between C1 and C2 correspond to points in the set SR,then we can similarly derive a contradiction by considering an edge on thechain C2.This proves that � consists of a single monotone chain.Since � is a single monotone chain, and two end edges of � must be semi-in�nite rays, we can talk about the \left side" and the \right side" of thechain �. By the discussion above, we know that only the edges in � couldbe missing in the Voronoi diagrams Vor(SL) and Vor(SR). Thus, we needto add the chain � to the graph Vor(SL)[Vor(SR) to construct the Voronoidiagram Vor(S).Now we discuss what should be deleted from Vor(SL) and Vor(SR) inorder to construct Vor(S).Lemma 5.3.4 Let e be a Voronoi edge or part of a Voronoi edge of Vor(SL).The edge e disappears in Vor(S) if and only if e entirely lies on the right sideof �. Similarly, if e0 is a Voronoi edge or part of a Voronoi edge of Vor(SR),then e0 disappears in Vor(S) if and only if e entirely lies on the left side of�.proof. First of all, no point in SL can be on the right side of �, otherwise,we would be able to �nd a point p in SL such that the Voronoi polygon of phas a boundary edge e on �. This would give a point in the set SR that ison the left of the point p, contradicting the de�nition of the sets SL and SR.Let e be a Voronoi edge or part of a Voronoi edge of Vor(SL) that entirelylies on the right side of �. Let e be de�ned by two points p1 and p2 in theset SL. If e is present in the Voronoi diagram Vor(S), then the closest pointsin S to a point p on the edge e would be p1 and p2. That is, the point pis in (the boundary of) the Voronoi polygon V1 in Vor(S) that correspondsto the point p1. Since V1 must be convex, the segment p1p must be in V1.Moreover, since the point p1 is in the interior of V1, the segment p1p in factdoes not intersect any Voronoi edges in Vor(S) except the edge e. However,since the point p1 is on the left side of � and the point p is on the rightside of �, and � partitions the plane into two separated parts, the segmentp1p must intersect � at some point. That is, the segment p1p must intersectsome Voronoi edge of Vor(S) that is not e, since e is de�ned by two vertices

CONSTRUCTING VORONOI DIAGRAM 75in SL while each edge on � is de�ned by a point in SL and a point in SR.This is a contradiction. Therefore, the edge e of Vor(SL) must disappear inVor(S).This actually proves that for any point p on the right side of �, the closestpoint in the set S must be a point in the set SR.Similarly, a Voronoi edge or part of a Voronoi edge of Vor(SR) thatentirely lies on the left side of � disappears in Vor(S).On the other hand, let e be a Voronoi edge or part of a Voronoi edge ofVor(SL) that lies entirely on the left side of �. Suppose that e is de�nedby two points p1 and p2 in the set SL. By the discussion above, the closestpoints in S to the points of e are still the points in the set SL. Therefore,the two closest points in the set S to the points in e are still the points p1and p2. That is, e is still on the boundary of the two Voronoi polygons V1and V2 in Vor(S) corresponding to the points p1 and p2, respectively, i.e., eis still present in the Voronoi diagram Vor(S).This completes the proof.By Lemmas 5.3.1, 5.3.2, 5.3.3, and 5.3.4, we can use the following algo-rithm to construct the Voronoi diagram Vor(S) from the Voronoi diagramsVor(SL) and Vor(SR).Algorithm MERGE(Vor(S_L), Vor(S_R))Given: the Voronoi diagrams Vor(S_L) and Vor(S_R)Output: the Voronoi diagram Vor(S)BEGIN1. Construct the separating chain SIGMA;2. Delete all edges and partial edges of Vor(S_L) that areentirely on the right side of SIGMA;3. Delete all edges and partial edges of Vor(S_R) that areentirely on the left side of SIGMA;END.None of the steps can be obviously done in linear time. In the remainingof this section, we will discuss how to construct the separating chain �. Atthe meantime, we �nd all intersections of � with Vor(SL) and Vor(SR), anddelete the proper edges and partial edges from Vor(SL) and Vor(SR).First we consider how to construct the two semi-in�nite rays of the chain�. Let the two semi-in�nite rays of the chain � be l1 and l2. Suppose that

76 VORONOI DIAGRAMl1 is the Voronoi edge of Vor(S) that is shared by two unbounded Voronoipolygons V1 and V2 of two points p1 and p2 in the set S, respectively. ByLemma 5.2.4, the points p1 and p2 are two consecutive hull vertices of theconvex hull CH(S), and the ray l1 is on the perpendicular bisector of thesegment p1p2. Since l1 is in �, we can suppose that the point p1 is in theset SL and the point p2 is in the set SR. Therefore, the segment p1p2 is infact a supporting bridge of the two convex hulls CH(SL) and CH(SR) (seeSection 4.1 and note that the two sets SL and SR are separated by a verticalline). Similarly, the ray l2 is on the perpendicular bisector of the othersupporting bridge of the two convex hulls CH(SL) and CH(SR). Therefore,if the two convex hulls CH(SL) and CH(SR) are known, then we can �nd thetwo bridges of CH(SL) and CH(SR) in linear time (see Section 4.1). Withthese two bridges, the two semi-in�nite rays of � can be found in constanttime. Note that at meantime, we have also constructed in linear time theconvex hull CH(S) of the set S as a by-product, which can be used for thelater induction steps. Therefore, the algorithm of constructing the chain �looks as follows.Algorithm CONSTRUCTING-SIGMAGiven: the Voronoi diagrams Vor(S_L) and Vor(S_R)and the convex hulls CH(S_L) and CH(S_R)Output: the separating chain SIGMA and the convexhull CH(S)BEGIN1. Find the upper bridge b_u and the lower bridgeb_l of the two convex hulls CH(S_L), CH(S_R);2. Construct the perpendicular bisectors l_u andl_l of the bridges b_u and b_l, respectively;3. With the bridges b_u and b_l, construct theconvex hull CH(S);4. traverse the chain SIGMA in the direction ofdecreasing y, starting from the infinite endof the upper ray l_u of SIGMA, construct SIGMAedge by edge, until the lower ray l_l isreached;END.Step 1 and Step 3 can be done in linear time, by the discussion of Sec-

CONSTRUCTING VORONOI DIAGRAM 77tion 4.1. Step 2 can be easily done in constant time. We must discuss howStep 4 is done in linear time. In the meantime, we also have to discuss how we�nd the intersections of � with the Voronoi diagrams Vor(SL) and Vor(SR),and delete proper edges and partial edges from Vor(SL) and Vor(SR) andconstruct the Voronoi diagram Vor(S).Remember that we can use Doubly-Connected-Edge-List (DCEL) to rep-resent a Voronoi diagram. We suppose that the Voronoi diagrams Vor(SL)and Vor(SR) are represented by two DCELs. Moreover, we suppose thatthe rotation of edges incident on each vertex of Vor(SL) is given in coun-terclockwise order in the corresponding DCEL, while the rotation of edgesincident on each vertex of Vor(SR) is given in clockwise order. Therefore,the regions of Vor(SL) will be traced clockwise, while the regions of Vor(SR)will be traced counterclockwise, by the algorithm TRACE-REGION givenin Section 1.4.Now suppose inductively that we are traversing the chain � in the di-rection of decreasing y, and we are in the intersection area of the Voronoipolygon VL of Vor(SL) of some point pL 2 SL and the Voronoi polygon VRof Vor(SR) of some point pR 2 SR. Since in this area, the closest point ofSL is pL and the closest point of SR is pR, we must follow the perpendicularbisector of the segment pLpR, in the direction of decreasing y. Suppose alongthis direction, we are traversing an edge e0 in �. We keep going along thisdirection until we hit an Voronoi edge e of Vor(SL) or of Vor(SR). Withoutloss of generality, suppose that e is a Voronoi edge of Vor(SR). The edge eis on the boundary of the Voronoi polygon VR, so e must be de�ned by thepoint pR and another point p0R 2 SR. Let the Voronoi polygon of the pointp0R in Vor(SR) be V 0R. If we keep going the same direction, we will cross theedge e and enter the Voronoi polygon V 0R of Vor(SR). Now the closest pointin the set SR is the point p0R. The closest point in the set SL is still the pointpL. Therefore, to continue traversing the chain �, we should go along theperpendicular bisector of the segment pLp0R, in the direction of decreasing y.To make this change, at the intersection of the chain � and the edge e, wesimply switch our direction from the perpendicular bisector of pLpR to theperpendicular bisector of pLp0R, both in the direction of decreasing y. Nowwe are on the next edge of the chain �. We inductively work in this way to�nd the next edge of the chain �, and so on, until we hit the low ray ll of �.Note that we have no di�culty to initialize this process. We can startat a point p on the upper ray lu that is \far enough" from the upper bridgebu = (pL; pR), where pL 2 SL and pR 2 SR. Then we must be in theintersection area of the Voronoi polygon of pL in Vor(SL) and the Voronoi

78 VORONOI DIAGRAMpolygon of pR in Vor(SL).Summarizing this discussion, we get the following algorithm.Algorithm CONSTRUCTING-SIGMABEGIN1. Let p_0 be a point on the upper ray l_u thatis far enough from the upper bridgeb_u = (p_L, p_R), where p_L is in S_L, andp_R is in S_R. Let l_0 be the semi-infiniteray originating from the point p_0 that hasthe opposite direction of the ray l_u, and letV_L and V_R be the Voronoi polygons of thepoints p_L and p_R in the Voronoi diagramsVor(S_L) and Vor(S_R), respectively;2. IF l_0 is not identical with the lower ray l_lTHEN2.1. Compute the point q_L that is the intersectionof l_0 with the boundary of V_L, and computethe point q_R that is the intersection of l_0with the boundary of V_R;2.2 IF p_0 is closer to q_L than to q_R, THENsuppose that the point q_L is on a Voronoi edgee_L of Vor(S_L) that is defined by the pointp_L and another point p_L' in S_L, then letp_0 = q_L, and let l_0 be the semi-infinite rayoriginating from q_L that is on the perpendicularbisector of the segment {p_L', p_R} in the directionof decreasing y. Finally, let the current Voronoipolygon V_L of Vor(S_L) be the Voronoi polygon ofthe point p_L';2.3. IF p_0 is closer to q_R than to q_L THENupdate the parameters p_0, l_0, and V_R similarly;3. Go back to Step 2.END.As we mentioned before, Step 1 can be done in constant time when weknow the upper and lower bridges of the convex hulls CH(SL) and CH(SR).The loop of Step 2 - Step 6 can be executed at most O(n) times since eachexecution of the loop �nds one more edge on the chain � and as a subgraphof Vor(S), the chain � contains at most O(n) edges. Within each execution

CONSTRUCTING VORONOI DIAGRAM 79of the loop, Step 4 and Step 5 take at most constant time since we only needsome local modi�cations.The remaining question is how much time is needed to �nd the intersect-ing points qL and qR in each execution of the loop of Step 2 - Step 6.Knowing p0, l0, VL and VR, we can trace the boundary edges of the poly-gon VL to �nd a boundary edge of VL that contains the point pL. Similarlywe can �nd the point pR. However, since the chain � can contain up to
(n)edges and the polygons VL and VR can have up to
(n) boundary edges,this straightforward algorithm would run in time
(n2) to �nd the chain �.Therefore, in order to construct � in linear time, we must not trace eachVoronoi polygon of the Voronoi diagrams Vor(SL) and Vor(SR) too manytimes during the entire process of constructing the chain �.Lemma 5.3.5 Suppose that the chain � is traversed in the direction of de-creasing y. Let VL be a Voronoi polygon of the Voronoi diagram Vor(SL). Ifthe chain � makes a turn at an interior point of VL, then the turn must bea right turn. Similarly, if the chain � makes a turn at an interior point ofsome Voronoi polygon of Vor(SR), then the turn must be a left turn.proof. Suppose that the point in SL corresponding to the Voronoi polygonVL in Vor(SL) is pL. Let v1v2v3 be a turn of the chain � in the directionof decreasing y, where v2 is an interior point of VL. Then vertices v1 andv3 are also in VL, since at an exit of VL, the chain must make another turn.(However, v1 and v3 may be on the boundary of VL.) Since VL is convex, thesegments v1v2 and v2v3 are entirely contained in VL. Therefore, the closestpoint in the set SL to the points on v1v2 and v2v3 is still pL. Let V bethe Voronoi diagram of the point pL in the Voronoi diagram Vor(S). By thede�nition of the chain �, the segments v1v2 and v2v3 are two consecutiveboundary edges of V . When we traverse from v1 to v2 then to v3, the pointpL must be on our right, because v1v2 and v2v3 are on the chain � and allpoints of SL are on our right when we traverse � in the direction of decreasingy. Since V is a convex polygon, the turn we make at the point v2 must bea right turn.By this lemma, we can �nd the point qL and qR in the algorithmCONSTRUCTING-SIGMA as follows. Suppose that we entered the Voronoipolygon VL at the point p0, which is on a boundary edge e0 of VL. Startingfrom the edge e0, trace the region VL clockwise, using the algorithm TRACE-REGION in Section 1.4, until we �nd the boundary edge eL that intersects

80 VORONOI DIAGRAM
q

q

V l
l
L

p0e0

eL L

R 0
0newFigure 5.5: � makes only right turn in VLthe ray l0 at point qL. (Note there is only one such a boundary edge of VL.)Similarly �nd the point qR. If the point p0 is closer to the point qR than tothe point qL, then the chain � makes a turn at the point qR. Since the pointqR is in the interior of VL, by Lemma 5.3.5, the turn of � at qR must be aright turn. We modify the parameters p0, l0, and VR properly. Now we haveto �nd the intersection of the new l0 with VL again. However, since the turnof the chain � at the point qR is a right turn, the new l0 cannot intersect anyedges between the edges e0 and eL we have already traced. See Figure 5.5.Therefore, to �nd the intersection of VL and the new l0, we can trace theregion VL starting from the edge eL. If the chain � eventually exits VL, thenwe must come to an exit edge eE of VL for � before we trace back to theedge e0. Therefore, to traverse the partial chain of � in the Voronoi polygonVL from the entering edge e0 to the exit edge eE , we only have to trace theboundary edges of VL between the edge e0 and the edge eE clockwise.This is still not the end, however. Although traversing a continuouspartial chain of � in the Voronoi polygon VL can be done e�ciently, theremay be more than one continuous partial chain of � that are contained inthe Voronoi polygon VL. We must prove that traversing all these continuouspartial chains of � in VL can also be done e�ciently. Let P1 and P2 be twocontinuous partial chains of � such that P1 enters VL at an edge e0 and exitsVL at an edge eE , while P2 enters VL at an edge e00 and exits VL at an edgee0E . As we discuss above, to traverse P1, we need to trace the boundary edgesof VL between the edge e0 and eE clockwise. As we explained in the proof

CONSTRUCTING VORONOI DIAGRAM 81of Lemma 5.3.5, the partial chains P1 and P2 are all on the boundary of theVoronoi polygon V of the point pL in the Voronoi diagram Vor(S). Sinceall turns on P1 are right turn, the area in VL between P1 and the partialboundary of VL we have traced is excluded from the Voronoi polygon V ofthe point pL in the Voronoi diagram Vor(S). Now the partial chain P2 isalso on the boundary of the Voronoi polygon V , so P2 cannot enter or exitVL from an edge that is between e0 and eE . Therefore, the edges e00 and e0Emust be among those untraced boundary edges of VL (including the edgese0 and eE). In other words, the sequence of the boundary edges of VL wetrace for P1 and the sequence of the boundary edges of VL we trace for P2are internally disjoint. This conclusion is easily generalized to more thantwo continuous partial chains of � in the Voronoi polygon VL.Therefore, for a boundary edge of VL at which no partial chain of �enters or exits, our algorithm traces it at most once. On the other hand, fora boundary edge of VL at which some partial chains of � enter and/or exit,each visit of the edge produces a new edge on the chain �. Therefore, thetotal time of the traversing of the chain � is bounded by O(n�+mL), wheren� is the number of edges on the chain �, and mL is the sum of the regionsizes over all regions of Vor(SL). Since n� is bounded by n, the number ofpoints in the set S, andmL equals two times the number of edges of Vor(SL),which is bounded by 3n, by Lemma 5.2.6, the total time to construct thechain � is bounded by O(n).The traversing of the chain � in a Voronoi polygon VR of the Voronoidiagram Vor(SR) can be done symmetrically. Here since the rotation ofedges incident on each vertex of Vor(SR) is clockwise in the DCEL, theregions of Vor(SR) are traced counterclockwise. Completely similar as wedid in Lemma 5.3.5, we can prove that if � makes a turn at an interior pointof VR, then the turn must be a left turn. Therefore, the chain � can also betraversed e�ciently in the Voronoi polygons of Vor(SR), and the total timeis also bounded by O(n).Finally we explain how to delete the edges and partial edges of Vor(SL)that are on the right side of � and the edges and partial edges of Vor(SR)that are on the left side of �. Note that when we traverse the chain � in thedirection of decreasing y, we can �nd all intersections of � with the Voronoidiagrams Vor(SL) and Vor(SR). Therefore, it is easy for us to decide whichpart of the Voronoi diagrams should be thrown away.Therefore, we conclude that the running time of the algorithm MERGE(Vor(SL), Vor(SR)) is O(n). Consequently, the running time of the algorithmVORONOI DIAGRAM is O(n logn).

82 VORONOI DIAGRAMTheorem 5.3.6 Given a set S of n points in the plane, the Voronoi diagramof S can be constructed in time O(n logn).

Chapter 6Prune and SearchPrune and Search is a technique originally used for �nding medians developedby Blum, Floyd, Pratt, Rivest, and Tarjan [5]. The technique, as applied tomedian �nding, throws out a constant fraction of the numbers during eachiteration of a loop. Solving the recurrence gives us an O(n) time algorithmfor �nding a median.Let us have a more detailed review of the above algorithm. To �nd themedian of a list, we �rst generalize the problem a little bit. We considerthe problem of �nding the kth smallest number of a list L of n numbers, foran arbitrary k. We �rst divide the n numbers into n=5 groups, each of 5numbers, then �nd the median for each of the groups. Let L0 be the list ofthese n=5 medians. Recursively �nd the median m of the list L0. It can beproved that m is greater than or equal to at least one fourth of the numbersin the original list L, and also less than or equal to at least one fourth of thenumbers in the original list L. Therefore, the number m partitions the listL into two sublists L1 and L2 such that all numbers in L1 are less than orequal to m and all numbers in L2 are greater than or equal to m. Moreover,the size of each of these two sublists L1 and L2 is at least one fourth ofthe original list L. Now if the sublist L1 contains at least k numbers, thenrecursively call the algorithm to �nd the kth smallest number in the list L1.On the other hand, if the sublist L1 contains h numbers such that h < k,then recursively call the algorithm to �nd the (k� h)th smallest number inthe sublist L2. In any case, the size of the sublist we are going to work on isat most three fourth of the size of the original list L. The detailed discussionof this algorithm can be found in [2], Section 3.5.Let us analyze the above Median Finding algorithm. Suppose that the83

84 PRUNE AND SEARCHtime complexity of the algorithm is T (n) on inputs of size n. Then to �ndthe median of the list L0 of the n=5 medians takes time T (n=5). Since bothlists L1 and L2 are of size at most 3n=4, to �nd the kth smallest numberin the list L1 or to �nd the (h � k)th smallest number in the list L2 takestime at most T (3n=4). It is also clear that the computation for the rest ofthe algorithm can be done in time bn, where b is a constant. Therefore, thefunction T (n) satis�es the following recurrence.T (n) = T (n=5) + T (3n=4)+ bnLet g be an integer such that g � 20b and g � T (1), then it is not di�cultto prove, by induction, that T (n) � gnThat is, T (n) = O(n).A general form of a prune and search algorithm can be described, infor-mally, as following.Algorithm PRUNE AND SEARCHGiven: a problem P of size nOutput: a solution S of the problemBEGIN0. IF the size n of P is smallSolve P directly and STOP;1. `Prune' the problem P into k smaller problemsP1, P2, ..., Pk, of size (c_1)n, (c_2)n, ...,(c_k)n, respectively, such that(c_1) + (c_2) + ... + (c_k) <= c < 1where c is a fixed constant;2. Recursively solve the problems P1, P2, ..., Pk;3. Use the results of Step 2 to derive a solutionfor the problem P;END.Suppose that the time complexity of the algorithm PRUNE ANDSEARCH is T (n), and suppose that Step 1 and Step 3 of the algorithmtake time F (n). Then the function T (n) can be represented by the followingrecurrence: T (n) = T (c1n) + T (c2) + � � �+ T (ck) + F (n)

KIRKPATRICK-SEIDEL'S ALGORITHM 85The time complexity T (n) of the algorithm PRUNE AND SEARCH canbe obtained by solving the above recurrence. In particular, if the functionF (n) is O(n), then it can be proved that the function T (n) is also O(n).6.1 Kirkpatrick-Seidel's algorithm for convexhullsWe present a prune and search algorithm for constructing convex hulls, whichis due to Kirkpatrick and Seidel [13].Let us �rst consider the following problem.Problem:given two sets SL and SR of points in the plane, such that there is avertical line l such that SL is on the left of l and SR is on the right of l, howdo we �nd the upper bridge of SL and SR, i.e., the line passing through apoint in SL and a point in SR such that all points in SL and SR are on orbelow the line?In the algorithm MERGEHULL, we know that when the convex hullsof both sets SL and SR are known, the upper bridge can be constructed inlinear time by lifting a line segment between SL and SR until the segmentcannot be lifted anymore. However, constructing the convex hulls for SL andSR itself takes
(n logn) time, which is too much to us. What we expect isa linear time algorithm solving this problem.The prune and search technique is used to solve the above problem. Themain idea involves �nding a \suitable" line in O(n) time, a line that allowsus to throw away a constant fraction of the points as candidates for thebridge. We then recurse on the remaining points.De�nition An upper supporting line of a set S of points in the planecontains at least one point of S, and all points of S lie below or on the line.Now let Lp be an upper supporting line of the set SL[SR passing througha point p of SL, and suppose that Lp is not an upper bridge of SL and SR,also let p0q0 be a line segment where p0; q0 2 SL [SR. If the slope of p0q0is not less than the slope of Lp, then it is easy to see that the line segmentp0q0 cannot be contained in the upper bridge of SL and SR. In particular,the point p0 cannot be on the upper bridge. Similarly, if Lq is an uppersupporting line of the set SL [SR passing through a point q of SR, and

86 PRUNE AND SEARCHsuppose that Lq is not an upper bridge of SL and SR, and p00q00 is a linesegment where p00; q00 2 SL [SR. If the slope of p00q00 is not larger than theslope of Lq, then the line segment p00q00 cannot be in the upper bridge of SLand SR. In particular, the point q00 cannot be on the upper bridge.This crucial observation gives us the following algorithm to solve theabove problem.Algorithm UpperBridge(S, l)Given: a set S of n points in the plane and a verticalline l separating S into a left subset S_L anda right subset S_ROutput: the upper bridge of the sets S_L and S_RBEGIN1. Arbitrarily pair up the points of S:(p_1, q_1), (p_2, q_2), ..., (p_{n/2}, q_{n/2});2. Let the slope of the segment [p_i, q_i] be s_i,i = 1, ..., n. Using the Median Findingalgorithm to find a pair (p_l, q_l) such thatthe slope s_l of it is the median ins_1, s_2, ..., s_{n/2};3. Construct an upper supporting line L with theslope s_l. To do this, draw a line with theslope s_l through each point in S. Then takethe line that has the highest intersection withthe y-axis;4. If L passes through points in both S_L and S_R,then L is the upper bridge we want, so we stopand return; Otherwise, we do the following steps;5. If L passes through only points in S_L, then scanthe list of pairs (p_i, q_i) we made in Step 1.If the slope of a segment [p_i, q_i] is not lessthan the slope of the supporting line L, thenthrow away the point p_i;6. If L passes through only points in S_R, then scanthe list of pairs (p_i, q_i) we made in Step 1.If the slope of a segment [p_i, q_i] is not largerthan the slope of the supporting line L, thenthrow away the point q_i;7. Let S' be the set of the remaining points of S,recursively call UpperBridge(S', l).END.

KIRKPATRICK-SEIDEL'S ALGORITHM 87The correctness of the algorithm UpperBridge can be proved using thediscussion preceding the algorithm: we never delete the points on the upperbridge. Now let us consider the time complexity of the algorithm. Step 1,Step 3 and Step 4 can be obviously done in time O(n). Step 2 can be donein linear time using the Median Finding algorithm described before. Now letus consider how many points are left for the recursive call of the algorithmin Step 7. Since the slope sl of L is the median of the slopes of the segmentspiqi, for i = 1; � � � ; n=2, if Step 5 is executed, at least half of the segments piqihave a slope not less than sl. So the corresponding points pi are thrown away.Therefore, at least one fourth of the points in S are thrown away. Similarly,if Step 6 is executed, also at least one fourth points in S are thrown away.Therefore, at most three fourth points in S are left for the recursive call inStep 7. Let T (n) be the time complexity of the algorithm UpperBridge, thenwe have the following recurrence relation:T (n) = O(n) + T (3n4)It is easy to obtain that T (n) = O(n). Therefore, the algorithm UpperBridgeruns in linear time.With this preparation, now we are able to present Kirkpatrick-Seidelalgorithm as follows.Algorithm KIRKPATRICK-SEIDEL(S)Given: a set S of n points in the planeOutput: the convex hull of SBEGIN1. Let p_min and p_max be the points in S withthe smallest and the largest x-coordinates,respectively, let the line through p_min andp_max be L;2. Split the set S into two subsets S' and S'',such that S' is the set of points of S abovethe line L, and S'' is the set of points ofS below the line L;3. Call UpperHull(S', p_min, p_max);4. Call LowerHull(S'', p_min, p_max);END.

88 PRUNE AND SEARCHStep 1 and Step 2 of the algorithm KIRKPATRICK-SEIDEL can be donein linear time. The subroutines UpperHull and LowerHull are similar. Weonly discuss the subroutine UpperHull as follows.Algorithm UpperHull(S, p_min, p_max)Given: a set S of n points in the plane thatare all above the line through thepoints p_min and p_max, which are alsopoints in SOutput: the upper hull of the set SBEGIN1. Using the Median Finding algorithm to find avertical line L_d which divides the set Sinto two equal size subsets S_L and S_R;2. Call UpperBridge(S, L_d) to construct theupper bridge [p_l p_r] of S_L and S_R, wherep_l is in S_L and p_r is in S_R;3. Let S' be the set of points in S that areabove the line through p_min and p_l, and letS'' be the set of points in S that are abovethe line through p_r and p_max;4. Recursively call UpperHull(S', p_min, p_l) andUpperHull(S'', p_r, p_max);5. Merge the results of Step 4 with the upperbridge [p_l p_r] properly;END.Now let us consider the time complexity of the algorithm UpperHull.Suppose that there are k points of the set S on the convex hull CH(S). LetT (n; k) be the time complexity of the algorithm. Step 1 takes time O(n)by the Median Finding algorithm. Step 2 takes time O(n) by our analysisof the algorithm UpperBridge. Step 3 and Step 5 can be obviously done intime O(n). Now suppose that there are k0 hull vertices of CH(S) containedin the set S 0, and k00 hull vertices of CH(S) contained in the set S 00. Then therecursive calls in Step 4 takes time at most T (n=2; k0) + T (n=2; k00), wherek0+ k00 = k, since it is easy to see that S 0 � SL and S 00 � SR. Therefore, wehave the following recurrence relation.T (n; k) = T (n=2; k0) + T (n=2; k00) + O(n)

POINT LOCATION 89We can prove by induction on k that T (n; k) = O(n log k). The detailedproof is left to the reader.Thus KIRKPATRICK-SEIDEL algorithm runs in time O(n logk). Whenk is small, KIRKPATRICK-SEIDEL algorithm is not worse than Jarvis'March that has the time complexity O(kn) (even better), and when k islarge, it is still not worse than Graham Scan, since k is always less than orequal to n. However, KIRKPATRICK-SEIDEL algorithm has very nastyconstants because the algorithm to �nd the median is hard to program. So,in the real world, people use Graham Scan.Finally, we brie
y discuss the di�erence between MERGEHULL,QUICKHULL and KIRKPATRICK-SEIDEL algorithm. KIRKPATRICK-SEIDEL algorithm has the advantages in both MERGEHULL and QUICK-HULL. It divides the given set evenly, likeMERGEHULL, and merges partialhulls e�ciently, like QUICKHULL. The time complexity of MERGEHULLhas a factor logn instead of log k because in the two recursive calls, manypoints that are in the convex hulls of the two subsets but not in the convexhull of the original set are introduced. In QUICKHULL, the median point ofthe given set S may unfortunately be not a hull vertex, therefore algorithmwould not work if we simply replace the furthest point in the algorithm bythe median point.6.2 Point location problemsIn the remaining of this chapter, we discuss the point location problems.We �rst present a simple algorithm, the slab method, which runs in O(n2)preprocessing time, O(n2) storage, and O(logn) query time, where the ge-ometric sweeping technique is used in the preprocessing. Then we give anoptimal algorithm for the point location problem, Kirkpatrick's algorithm,which runs in O(n) preprocessing time, O(n) storage, and O(logn) querytime for connected PSLGs, where the re�nement method, which is a varietyof prune and search technique, is used.6.2.1 Complexity measures and a simple exampleSuppose that we have a PSLG G, and we want to know in which region ofG a given query point is located. In the simplest case, we have only onequery point. Then we can search the point in each region of G directly to�nd the region containing the point. A one-time query of this type is calledsingle shot. However, we may have many query points and want to �nd the

90 PRUNE AND SEARCHcontaining region for each query point. Such queries are called repetitive-mode queries.In the case of repetitive-mode queries, it may be worthwhile to arrangethe PSLG G into a more organized structure to facilitate searching. There-fore, when we are considering the problem of repetitive-mode queries, we areinterested in three computational resources: the preprocessing time that isused to convert the given PSLG into an organized structure, the storage thatis used to store the organized structure, and the query time that is neededto locate each query point.Suppose that the input PSLG G has n vertices. In general, we cannotexpect that the preprocessing time is less than O(n) since even readingthe input PSLG G takes time
(n). Similarly, we cannot expect that thestorage used for the organized structure is less than O(n) since even storingthe unorganized structure, the PSLG G itself needs
(n) space. Finally,as pointed out by Knuth [14], any algorithm for searching an ordered tableof length n by means of comparisons can be represented as a binary treeof n leaves, thus in the worst case, the searching time is at least
(logn).While the point location problem is clearly a generalization of searching,we conclude that the query time of the point location problem is at least
(logn).Let us consider a simple example. Suppose that the PSLG G is a convexpolygon P of n vertices. So the vertices of P are given in, say, counter-clockwise ordering fv1; v2; � � � ; vng. We �rst organize P by the followingalgorithm:Algorithm PREPROCESSING (P)Given: a convex polygon POutput: an organized structure L for PBEGIN1. Find an internal point p_0 of P;2. For each edge {v_i, v_(i+1)} of P, i = 1, ..., n,(where we let v_(n+1) = v_1) construct the wedgeW_i formed by the ray started at the point p_0and passing through v_i (call it the starting rayof the wedge W_i) and the ray started at p_0 andpassing through v_(i+1) (call it the ending rayof the wedge W_i);3. Sort the wedges { W_i | 1 <= i <= n } by the slopesof their starting ray. Let the sorted list be L;4. Attach the edge {v_i, v_(i+1)} to the element of L

POINT LOCATION 91corresponding to the wedge W_i, for i = 1, ..., n;END.With the list L, we can locate each query point by the following algo-rithm.Algorithm QUERY (q)Given: a query point q and the organized structureL of POutput: an answer to "the point q is inside P?"BEGIN1. Compute the slope of the ray started at p_0 andpassing through q;2. Using binary search on the list L to locate thepoint q in a wedge W_i;3. The point q is inside the convex polygon P if andonly if the point q is inside the triangle formedby the wedge W_i and the edge {v_i, v_(i+1)};END.Now we analyze the above algorithms.Preprocessing timeThe preprocessing is implemented by the algorithm PREPROCESSING.The internal point p0 of P can be found by, for example, computing the cen-troid of the triangle determined by any three vertices of the convex polygonP . Thus Step 1 takes constant time. Step 2 takes time O(n) because giventwo points, the equation of the ray passing through them can be constructedin constant time. To consider Step 3, we suppose, without loss of generality,that the slope of the starting ray of the wedge W1 is 0 (otherwise, we rotatethe system to make this). Then the wedges, sorted by their starting rays,are exactly in the order W1, W2, � � �, Wn. Since we can read the edges of Pin counterclockwise ordering, the wedges can be read exactly in the sortedordering. Therefore, Step 3 to construct the list L, together with Step 4to attach edges to the list L, takes time O(n). We conclude that the totalpreprocessing time is O(n)Storage

92 PRUNE AND SEARCHSince the equation of each ray is a linear equation of two variables, whichcan be represented in constant space, each element of the list L takes constantspace. Consequently, the list L takes O(n) space.Query timeLocating each query point is implemented by the algorithm QUERY (q).It is easy to see that Step 1 in the algorithm takes constant time, whileStep 2 in the algorithm takes O(logn) time. Finally, knowing the two raysforming the wedge Wi and the edge fvi; vi+1g, we can determine in constanttime if the query point is inside the triangle formed by the wedge and theedge.We conclude with the following theorem.Theorem 6.2.1 Point location problem on convex polygons can be solvedwith O(n) preprocessing time, O(n) storage, and O(logn) query time.6.2.2 Slab methodNow we consider the point location problem on general PSLGs. Let G bea PSLG with n vertices. Through each vertex of G, we draw a horizontalline. The plane is subdivided by these horizontal lines into \slabs". SinceG is a PSLG, there is no edge-crossing in G and since we have drawn ahorizontal line through each vertex of G, in the interior of each slab, thereis neither edge intersection nor vertex of G. Therefore, the edge segmentsof G contained in a slab can be ordered from left to right. If we constructa list of edge segments, ordered from left to right, for each slab, then thealgorithm for locating a query point will look as follows, where L is a listof slabs, sorted by y-coordinate (that is, any point in slab L[j] has a largery-coordinate than a point in slab L[i] for i < j). Each element L[i] in thelist L also has a pointer to a list li of edge segments in the correspondingslab, ordered from left to right.Algorithm LOCATING (p_0)Given: a query point p_0, and a PSLG G representedby a list L of slabs. Each slab L[i] isassociated with a list l_i of edge segmentsin the slab ordered from left to rightOutput: a region of G that contains the point p_0

POINT LOCATION 93BEGIN1. Using the y-coordinate y_0 of the point p_0,we perform binary search in the list L to finda slab L[i] that contains the point p_0;2. Using the x-coordinate x_0 of the point p_0,we perform binary search in the list l_i tofind a pair of edge segments e_1 and e_2 suchthat the point p_0 is between these two edgesegments;END.There are exactly n vertices of G, therefore, the binary search in Step 1of the algorithm can be done in time O(logn). Moreover, since G is a planargraph it has O(n) edges. Each edge of G can contribute at most one edgesegment to a slab. Thus each slab contains O(n) edge segments. Therefore,the binary search in Step 2 of the algorithm can also be done in time O(logn).Two consecutive edge segments in a slab correspond to a unique region ofthe PSLG G. So if we attach the region name to each pair of consecutiveedge segments in each slab, then after Step 2 of the above algorithm, we canread directly the name of the region that contains the point p0. We concludethat the query time of this slab method is O(logn).Now we discuss how we produce and store the sorted list L and the sortedlists li. As the analysis given above, each list li contains at most O(n) edgesegments, thus the space we used to store the lists L and li's is bounded byO(n2). This storage cannot be improved since some PSLG does have thestructure such that there are
(n2) edge segments in the slabs. Figure 6.1gives an example of such a PSLG.A straightforward method to produce these lists is to sort the vertices ofG by y-coordinate �rst to get the sorted list L of the slabs, then for each slabL[i], sort the edge segments in the slab to get the sorted list li. Then thetime complexity to obtain the list L is O(n logn), and the time complexity toobtain all the lists li, i = 1; 2; � � � ; n+1 will be O((n+1)n log n) = O(n2 log n).Can we do better?Again we exploit the idea of geometric sweeping. We maintain the edgesegments of a slab in a 2-3 tree and let the edge segments be ordered fromleft to right in the tree. When we move up from one slab to another slab, welook at those vertices on the boundary of the two slabs. We delete the loweredges and insert the upper edges for these vertices. The resulting 2-3 tree

94 PRUNE AND SEARCH
Figure 6.1: A PSLG containing
(n2) edge segmentsthen represents exactly the list of the edge segments, ordered from left toright, of the next slab. We print the leaves of each 2-3 tree, from left to right,and obtain the lists li for i = 1; � � � ; n + 1. The following is the algorithmof the preprocessing of the slab method. For simplicity, we assume that notwo vertices of the PSLG G have the same y-coordinate. If this conditionis not satis�ed, we either rotate the coordinate system slightly, or make astraightforward modi�cation on the algorithm.Algorithm PREPROCESS (G)Given: a PSLG G, represented by a DCELOutput: the lists L and l_i for i = 1, ..., n+1BEGIN1. Sort the vertices of G by increasing y-coordinate.Let the sorted list of the vertices of G be{ v_1, v_2, ..., v_n }Then construct the list L;(each slab L[i] of L, i = 1, ..., n+1, is

POINT LOCATION 95associated with two vertices v_{i-1} and v_iof G, one is on the lower boundary and the otheris on the upper boundary of the slab, where v_0has a very large negative y-coordinate while v_(n+1)has a very large positive y-coordinate.)2. For slab L[1], construct an empty 2-3 tree T_1.The list l_1 for the slab L[1] is also empty;Set k = 2;3. Look at the vertex v_(k-1), delete all lower edgesof the vertex v_(k-1) from the tree T_(k-1) andinsert all upper edges of the vertex v_(k-1) intothe tree T_(k-1). The resulting tree T_k is the2-3 tree for the slab L[k].4. Read the leaves of the 2-3 tree T_k, from leftto right, and produce the list l_k;5. If k <= n then k = k + 1 and go back to Step 3;END.It is obvious that the above algorithm is correct. Now we analyze thealgorithm. Step 1 takes time O(n logn) by using any optimal sorting algo-rithm. Consider the loop of Step 3 - Step 5. Since each slab contains atmost O(n) edge segments, all 2-3 trees Tk, k = 1; � � � ; n+ 1, have size O(n).Consequently, the depth of each 2-3 tree Tk is bounded by O(logn). There-fore, each edge insertion and edge deletion can be done in time O(logn).Each edge of G is inserted exactly once into some 2-3 tree Tk then deletedexactly once from some other 2-3 tree Tk0 . Moreover, given the vertex vk�1,all the edges of G incident to vk�1 can be found by an algorithm calledTRACE-VERTEX, which is similar to the algorithm TRACE-REGION inSection 1.4, in time proportional to the number of these edges (we supposethat the PSLG G is represented by a DCEL). Thus each of the lower edgesand upper edges of vk�1 in Step 3 can be found in constant time. Therefore,the time of insertion and deletion of an edge of the PSLG G is bounded byO(logn) for the whole algorithm. Consequently, the total time of the algo-rithm taken by Step 3 is bounded by O(n logn) since G contains O(n) edges.Now to read the leaves of the 2-3 tree Tk from left to right, we can use, say,depth �rst search on the tree Tk. (For the discussion of depth �rst search ofa graph, see [2].) The time to read the tree Tk and then to produce the listlk thus is bounded by some constant times the number of nodes in the treeTk, which is bounded by O(n). Therefore, the total time of the algorithmtaken by Step 4 is bounded by O(n2). This cannot be improved as we have

96 PRUNE AND SEARCHseen, some PSLG contain
(n2) many edge segments.Thus the time complexity of the algorithm PREPROCESS is boundedby O(n logn) + O(n logn) + O(n2) = O(n2)We conclude with the following theorem.Theorem 6.2.2 Using the slab method solving the point location problem,the preprocessing time is O(n2), the storage is O(n2), and the query time isO(logn).6.2.3 Re�nement method I: on rectanglesThe re�nement method for point location problem is a variety of the pruneand search technique. To motivate the re�nement method for the pointlocation problem, we �rst consider a class of simple PSLGs.Let X = (x1; x2; � � � ; xm) and Y = (y1; y2; � � � ; ym) be two lists of m realnumbers sorted in increasing order. De�ne a PSLG G as follows: G hasn = m2 vertices vi;j = (xi; yj), i; j = 1; 2; � � � ; m. For 2 � i; j � m � 1,the vertex vi;j is adjacent to exactly four vertices vi;j�1, vi;j+1, vi�1;j andvi+1;j . The vertex v1;j (resp. vn;j) for 2 � j � m � 1 is adjacent to thevertices v1;j�1, v1;j+1 and v2;j (resp. vn;j�1, vn;j+1, and vn�1;j). The vertexvi;1 (resp. vi;n) for 2 � i � m � 1 is adjacent to the vertices vi�1;1, vi+1;1and vi;2 (resp. vi�1;n, vi+1;n, and vi;n�1). Finally, the vertex v1;1 is adjacentto v1;2 and v2;1, the vertex v1;n is adjacent to v1;n�1 and v2;n, the vertex vn;1is adjacent to vn;2 and vn�1;1, and the vertex vn;n is adjacent to vn�1;n andvn;n�1. Call the whole PSLG an m�m rectangle with the index sets X andY . Figure 6.2 pictures a 5� 5 rectangle.Clearly, the point location problem on this kind of PSLGs can be simplydone by doing two binary searchings, one on the list X and the other on thelist Y . Alternatively, we can also locate a query point p0 = (x0; y0) in thefollowing way: compare the value x0 with the middle number xm=2 in thelist X and determine that the point p0 is in the left rectangle Rl boundedby the vertices v1;1, vm=2;1, vm=2;m and v1;m or in the right rectangle Rrbounded by the vertices vm=2;1, vm;1, vm;m and vm=2;m. Suppose that p0is in the left rectangle Rl. Now we compare the value y0 with the middlenumber ym=2 in the list Y to determine that the point p0 is in the upperrectangle Rl;u bounded by the vertices v1;m=2, vm=2;m=2, vm=2;m and v1;m orin the lower rectangle Rl;l bounded by the vertices v1;1, vm=2;1, vm=2;m=2 and

POINT LOCATION 97
x x x x xy

y

y
y
y

v

1

2

3
4

5

1 2 3 4 5

33,Figure 6.2: A 5� 5 rectangle with the center vertex v3;3v1;m=2. Thus two comparisons restrict the point p0 to an (m=2) � (m=2)subrectangle. Now we recursively work on the (m=2)� (m=2) rectangle.Let Rm be an m�m rectangle with index setsX = (x1; � � � ; xm) and Y = (y1; � � � ; ym)A vertex vi;j is the center vertex of Rm if i = j = m0 = dm=2e. Note thatto determine which (m=2)� (m=2) subrectangle a query point p0 is in, weonly need two values from the index sets: the middle number xm0 in thelist X and the middle number ym0 in the list Y . But (xm0 ; ym0) is just thecoordinates of the center vertex vm0;m0 of the rectangle Rm. Therefore, them�m rectangle Rm can be organized in the following way: construct a treeTm whose root N0 is attached with the center vertex vm0;m0 of Tm. Thereare four children of the root N0, corresponding to the four (m=2) � (m=2)subrectangles of Rm obtained by dividing Rm by a horizontal line and avertical line passing through the center vertex vm0;m0 . The algorithm ofconstructing this tree is presented as follows:Algorithm CONSTRUCTING-TREE(R_m)Given: a PSLG R_m that is an m by m rectangleOutput: a hierarchy tree T_mBEGIN1. If R_m is a 2 by 2 rectangle, then R_m is a

98 PRUNE AND SEARCHsingle region. Create a tree node for R_mand attach the name of the region to thenode; STOP.2. { R_m is not a single region. }Create a node N_m for R_m, attach the centervertex v_(m_0,m_0) of R_m to N_m. Draw ahorizontal line and a vertical line passingthrough the center vertex v_(m_0,m_0) that dividesthe rectangle R_m into four (m/2) by (m/2)subrectangles;3. Recursively call the algorithm CONSTRUCTING-TREEon the four (m/2) by (m/2) subrectangles. Letthe resulting four trees be T_1, T_2, T_3, andT_4;4. Let T_1, T_2, T_3 and T_4 be the children of thenode N_m;END.Each leaf in the tree Tm corresponds uniquely to a region of the rectangleRm, and each internal node of the tree Tm corresponds to a vertex of Rm.Since there are n = m2 vertices and O(n) regions in the rectangle Rm, weconclude that the number of nodes of the tree Tm is bounded by O(n).Moreover, since we spend constant time to create a node in the tree Tm, thetotal time of constructing the tree Tm is bounded by O(n).Since the tree Tm is very balanced: each internal node of Tm has exactlyfour children, and since the tree Tm has O(n) nodes, we conclude that thedepth of the tree Tm is bounded by O(logn).This is the preprocessing for the point location problem on rectangles.Given a query point p0, it is easy to locate p0 in an m�m rectangle Rmwith the help of the tree Tm, as shown by the following algorithm.Algorithm LOCATING (p_0)Given: a query point p_0 and the hierarchytree T_mOutput: the region that contains the point p_0BEGIN1. First use the four corner vertices v_(1,1),v_(m,1), v_(m,m) and v_(1,m) to determine

POINT LOCATION 99if p_0 is contained in the rectangle R_m.If p_0 is out R_m, report so and STOP.2. { p_0 is inside R_m. }Starting by the root N_0 of the tree T_m,compare p_0 with the center point of R_mto find a child of N_0 that corresponds toan (m/2) by (m/2) rectangle R_(m/2) containingthe point p_0;3. Recursively search p_0 in the rectangle R_(m/2);END.It is clear that the algorithm LOCATING runs in time O(logn) for eachquery point p0.Therefore, the point location problem on rectangles can be solved byO(n) preprocessing time, O(n) storage, and O(logn) query time.Let us summarize the above idea: We �rst locate the query point into alarge m�m rectangle Rm, then we re�ne the rectangle Rm into four smaller(m=2)� (m=2) rectangles by dividing the rectangle Rm by a horizontal lineand a vertical line passing through the center vertex of Rm, then we recur-sively locate the point p0 in one of these smaller rectangles.Two properties we have used heavily in this method:� A father and its children have the same geometric shape (here arerectangles), so the recursive call is e�ective.� Each father has only constant many children so that in constant timewe can move one level down in the search tree Tm.6.2.4 Re�nement method II: on general PSLGsNow we try to extend the idea in the last section to solve the point locationproblem on general PSLGs. The algorithm discussed in this section is dueto Kirkpatrick [12].All the geometric objects in the re�nement method on rectangles aresimple rectangles. Moreover, it is easy to re�ne a rectangle into four smallerrectangles by a horizontal line and a vertical line. However, in a generalPSLG, a region can be an arbitrary simple polygon, and it is not guaranteedthat a simple polygon can be re�ned into smaller polygons of the sameshape. Therefore, we must �rst �x a geometric shape we are going to use. Itis natural to consider the simplest geometric shape, the triangles. However,

100 PRUNE AND SEARCHnot every PSLG can be obtained by re�ning a triangle. Extra care shouldbe taken to make our idea work.A PSLG G is completely triangulated if G is connected and the boundaryof every region of G (including the unbounded region) is a triangle. We�rst discuss how to convert a general PSLG into a completely triangulatedPSLG.Given a general PSLG G which is not completely triangulated. We �rstadd a big triangle 4 that encloses the whole G. This can be done by �rstscanning the vertices of G to �nd the minimum x0 of the x-coordinates ofthe vertices of G, the minimum y0 of the y-coordinates of the vertices of G,and the maximum z0 of the values x+ y where (x; y) is a vertex of G. Nowthe triangle formed by the horizontal line lh : y = y0 � 1, the vertical linelv : x = x0 � 1, and the line l : x + y = z0 + 1 will enclose the whole PSLGG. Let the PSLG consisting of G and 4 be G0. Now triangulating G0 givesus a completely triangulated PSLG G0.Delete an internal vertex v from G0 and let the resulting PSLG be G00. Ifthe vertex v has degree k in the PSLG G0, then G00 has all its regions beingtriangles except one region that is a k-gon Pk . To make G00 have the samegeometric property as G0, we retriangulate the k-gon Pk of G00. Of course,we can perform the above operation on other vertices of G0 as well providedthat the vertices we delete are not adjacent to each other in G0. Let G1 bethe new completely triangulated PSLG obtained by this kind of deleting-vertex-then-retriangulating operation on a set of non-adjacent vertices ofG0. All regions of G0 are regions of G1 except those that disappear when wedelete the vertices of G0 (call these regions old triangles). All regions of G1are regions of G0 except those that are created when we retriangulate thenon-triangle regions resulting from deleting vertices in G0 (call these regionsnew triangles). We set a pointer from a new triangle to an old triangle if theirintersection is not empty. Note that the new PSLG G1 has less vertices thanthe old PSLG G0. The old PSLG G0 thus can be regarded as a re�nementof the new PSLG G1.This solves our �rst problem: the inverse of the deleting-vertex-then-retriangulating operation re�nes a completely triangulated PSLG G1 intoa larger completely triangulated PSLG G0 (here \larger" means containingmore vertices and more regions. In this sense, the regions of G0 are \smaller"than that of G1).The query algorithm now goes as follows: suppose that we have locateda query point p0 in a new triangle 4, then we look at all old triangles thatintersect the new triangle 4 and determine which old triangle contains the

POINT LOCATION 101query point p0.However, how many old triangles intersect the new triangle 4? Andhow many completely triangulated PSLGs should we go through in orderto locate the query point p0 in a triangle of the original PSLG? In order toachieve an O(logn) query time, we must move from one completely trian-gulated PSLG to another completely triangulated PSLG in constant time,and go through at most O(logn) completely triangulated PSLGs to reachthe original completely triangulated PSLG. For this purpose, we require thatthe vertices to be deleted from one completely triangulated PSLG in orderto construct the next PSLG satisfy the following conditions:1. All these vertices should be internal vertices, that is, they are not thethree hull vertices of the completely triangulated PSLG.2. No two of these vertices are adjacent.3. The degree of these vertices is small.4. There are enough vertices of the current completely triangulated PSLGto be deleted.The �rst condition makes all our PSLGs completely triangulated. Thesecond condition ensures that the relationship between new triangles and oldtriangles simple, that is, an old triangle incident to a deleted vertex v canonly intersect those new triangles that are obtained by retriangulating thesimple polygon resulting from deleting the vertex v from G0. The secondand the third conditions together ensure that each old triangle intersects veryfew new triangles, and each new triangle intersects very few old triangles.Finally, the fourth condition ensures that the rate of the size-shrinking of thecompletely triangulated PSLGs is fast so that a query point goes throughvery few completely triangulated PSLGs to reach the original PSLG.The existence of a set of vertices of a completely triangulated PSLG thatsatis�es all conditions above is proved by a pure combinatorial countingtechnique.Let G be a completely triangulated PSLG. Suppose that the set of ver-tices, the set of edges, and the set of regions of G are V , E, and F , respec-tively. Since G is a planar imbedding, by Euler's formula:jV j � jEj+ jF j = 2Since G is a completely triangulated PSLG, each region of G has exactly 3boundary edges. On the other hand, each edge of G is a boundary edge for

102 PRUNE AND SEARCHexactly two regions. This gives us3jF j = 2jEjReplacing jF j in Euler's formula by 23 jEj, we obtainjEj = 3jV j � 6 < 3jV jLet deg(v) be the degree of the vertex v, then each vertex v of G incidentto exactly deg(v) edge-ends. On the other hand, each edge has exactly twoedge-ends, thus we have Xv is a vertex of Gdeg(v) = 2jEj < 6jV jTherefore, at least half of the vertices of G have degree less than 12. If weexclude the three hull vertices of G, then there are at least jV j=2�3 verticesof G that have degree less than 12. For each vertex of degree less than 12,there are at most 11 adjacent vertices, thus there are at least (jV j=2� 3)=12vertices of degree less than 12 in G such that no two of them are adjacent.When jV j � 48, we have (jV j=2�3)=12 � jV j=48. Therefore, for an arbitrarycompletely triangulated PSLG G with n vertices, with n � 48, we can �ndat least n=48 internal non-adjacent vertices of G of degree less than 12.This analysis gives us the following algorithm to construct a searchinghierarchy TG.Algorithm CONSTRUCT-HIERARCHY(G)Given: a general PSLG GOutput: a searching hierarchy T_G for thepoint location problem on GBEGIN1. Add an enclosing triangle that contains the wholeG, then triangulate the resulting PSLG. Let thecompletely triangulated PSLG be G_0;2. Using the TRACE-REGION algorithm in Section 1.4 tofind all triangles of G_0. For each triangle ofG_0, create a node in level 0 in the hierarchy T_G;3. Set k = 0;4. Suppose that the PSLG G_k contains n_k vertices.Find at least (n_k)/48 internal non-adjacent

POINT LOCATION 103vertices of G_k that have degree less than 12;5. For each vertex v found in Step 4, delete v fromG_k, and retriangulate the simple polygon resultingfrom this deletion. For each new triangle obtainedfrom this retriangulation, create a node in levelk+1 of the hierarchy T_G and set a pointer fromthis node in the hierarchy T_G to a node corres-ponding to an old triangle incident to the vertexv in G_k if the intersection of the old triangleand the new triangle is not empty.6. Let the resulting completely triangulated PSLG beG_(k+1), then set k = k + 1. If the PSLG hasmore than 48 vertices, go back to Step 4.END.We analyze the algorithm of constructing the hierarchy. Suppose that thenumber of vertices of G0 is n, which is three more than that of the originalPSLG G, and that each completely triangulated PSLG Gk is representedby a doubly-connected edge list (DCEL). As we discussed before, It takesO(n) time to construct an enclosing triangle. Then the triangulation takestime O(n logn) if the PSLG is a general PSLG, or takes time O(n) if thePSLG is connected (triangulating a connected PSLG in linear time is a recentbreakthrough due to Chazelle [8]). Therefore, Step 1 of the algorithm takestime O(n logn) for a general PSLG G and takes time O(n) for a connectedPSLG G.The TRACE-REGION algorithm takes time O(n) to �nd all regions,therefore, Step 2 of the algorithm takes time O(n).By the analysis given above, each PSLG Gk contains at least nk=48internal non-adjacent vertices of degree less than 12. To �nd these vertices ofGk, we simply scan the DCEL for Gk (using a TRACE-VERTEX algorithmthat is similar to the algorithm TRACE-REGION), whenever we �nd avertex v of degree less than 12, we take v and mark all vertices adjacent to v\unusable". We scan the list of vertices of Gk and ignore those \unusable"vertices. In this way, by the analysis we gave above, we can �nd at leastnk=48 internal non-adjacent vertices of degree less than 12. In this process,we scan each vertex of Gk at most once and scan each edge of Gk at mosttwice. Therefore, Step 4 of the algorithm takes time O(nk) for the PSLGGk.For each vertex v found in Step 4, since the degree of v is less than 12,there are at most 11 triangles incident to v. Moreover, deleting v results in

104 PRUNE AND SEARCHa simple polygon of at most 11 vertices since v has degree less than 12, so atmost 9 new triangles are created when we retriangulate the simple polygon.Consequently, each new triangle intersects at most 11 old triangles and eachold triangle intersects at most 9 new triangles. Therefore, each node of a newtriangle has at most 11 pointers to nodes of old triangles, and a node for anew triangle together with its pointers to the old triangles can be created inconstant time. So to produce the level k + 1 in the hierarchy TG takes timeproportional to the number of regions in the PSLG Gk+1, which is boundedby O(nk+1) where nk+1 is the number of vertices of Gk+1. It is also easy tosee that constructing the DCEL for the PSLG Gk+1 from the DCEL for thePSLG Gk also takes time O(nk+1).Therefore, the total time used in Step 4 - Step 6 to build up the hierarchyTG is bounded byO(n0) + O(n1) + � � �+O(nh) = O(n0 + n1 + � � �+ nh)if the hierarchy TG has h+ 1 levels.n0 = n. Since G1 is obtained from G0 by deleting at least n0=48 vertices,so we have n1 � (47=48)n. A simple induction proves that nk � (47=48)knfor all k � 1. Therefore,O(n0 + n1 + � � �+ nh)� O(n+ (47=48)n+ � � �+ (47=48)hn)< O(n+ (47=48)n+ � � �+ (47=48)hn+ � � �)= O(n1�(47=48))= O(n)That is, the total time to build up the hierarchy TG for the completelytriangulated PSLG G0 is bounded by O(n). Consequently, the hierarchy TGcontains O(n) nodes thus can be stored in space O(n).Now the searching algorithm for a query point in the hierarchy TG isstraightforward.Algorithm LOCATING (p_0)Given: a query point p_0 and the hierarchy structureT_G for a PSLG GOutput: the region of G that contains the point p_0BEGIN

EXERCISES 1051. In the highest level of the hierarchy T_G, locatethe point p_0 into one of the triangles;2. Suppose p_0 is in a node N_0 of the hierarchy T_G.Check each triangle whose node in the hierarchyT_G is pointed by a pointer from N_0 to find anode N' whose triangle contains the point p_0;3. IF N' is at level 0, then we have located thepoint p_0 into a triangle in the original PSLG.ELSE let N_0 = N' and go back to Step 2;END.Since a point p0 is contained in a new triangle after the retriangulationif and only if it is contained in some old triangle before the vertex deletion,the point p0 is contained in the triangle corresponding to the node N0 ifand only if it is contained in a triangle whose corresponding node in thehierarchy TG is pointed by a pointer fromN0. Therefore, the above algorithmLOCATING(p0) correctly �nds a triangle in the original PSLG that containsthe point p0. Since each pointer in the hierarchy TG is always from a higherlevel to a lower level and each node in the hierarchy has at most 11 pointers,the searching time of the algorithm LOCATING is proportional to the depthof the hierarchy TG. Let nk be the number of vertices of the PSLG Gk, fork = 0; 1; � � �, then as analyzed above, we have nk � (47=47)kn, and we stopproducing more levels when we reach nk � 48. This gives us immediatelyThe number of levels in the hierarchy TG = O(logn)We summarize the above results in the following theorems.Theorem 6.2.3 For a general PSLG G, the point location problem can besolved with O(n logn) preprocessing time, O(n) space, and O(logn) querytime.Theorem 6.2.4 For a connected PSLG G, the point location problem canbe solved with O(n) preprocessing time, O(n) space, and O(logn) query time.6.3 Exercises1. Based on the idea described in the text, design a linear time algorithmthat �nds the median given a set of numbers.

106 PRUNE AND SEARCH2. Design an algorithm to solve the following problem: given a set S ofN points in the plane, with preprocessing, decide for a query pointif the point is in a triangle whose three vertices are points of S. Ifit is, output the three vertices of the triangle (if there are more thanone such triangles, pick any one of them). Analyze your algorithm forquery time, preprocessing time, and space.3. Solve the Point Location Problem for the set of PSLGs whose faces areof size at most 5. What are the query time, preprocessing time andspace of your algorithm?4. Given a PSLG G such that the number of intersection points of anyvertical line and G is bounded by 50. Moreover, a sorted list of thevertices of the PSLG G is also given. Discuss the preprocessing time,space, and query time of the point location problem on G.5. A k-monotone polygon with respect to a line l is a simple polygon whichcan be decomposed inot k chains monotone with respect to the line l.Let k be a �xed constant. Design an algorithm to solve Point LocationProblem for k-monotone polygons, i.e., given a k-monotone polygonP , with preprocessing, determine if a query point is internal to P .Analyze your algorithm for query time, preprocessing time and space.6. Given two sets of points Sp = fp1; � � � ; png and Sq = fq1; � � � ; qmg. Foreach point in Sq, �nd the closest point in Sp. Solve this problem forthe case(1). m is much larger than n, say m = 2n;(2). m is much smaller than n, say m = log logn.Do you use the same algorithm to solve the problem for both cases oryou use di�erent algorithms for the two cases? Give a detailed analysisfor yours algorithm(s).7. A point p is said to be dominated by a point q if both x- and y-coordinates of p are no greater than those of q, respectively. Solvethe following problem: given a set S of n points in the plane, withpreprocessing allowed, for each query point q, �nd the number of pointsin S dominated by q. That are the preprocessing time, storage, andquery time of your algorithm?

EXERCISES 1078. Suppose that we can construct the kth order Voronoi diagram in timeO(k2N logN). Analyze the query time, preprocessing time, and thestorage for the k-Nearest Points Problem.9. Let p1 = (x1; y1) and p2 = (x2; y2) be two points in the plane. We saythat point p1 dominates point p2 if x1 � x2 and y1 � y2.Let S be a set of points in the plane. A point p 2 S is a maximalelement if p is not dominated by any other point in S.Solve the following problem:Given a set of n points in the plane, let k denote the number of maximalelements in this set. Design a divide-and-conquer algorithm of timeO(n log k) for �nding these maximal elements. Prove the correctnessof your algorithm.

108 PRUNE AND SEARCH

Chapter 7ReductionsLet P and P 0 be two problems. We say that the problem P can be reducedto the problem P 0 in time O(t(n)), express it asP /t(n) P 0if there is an algorithm T solving the problem P in the following way.1. For any input x of size n to the problem P , convert x in time O(t(n))into an input x0 to the problem P 0;2. Call a subroutine to solve the problem P 0 on input x0;3. Convert in time O(t(n)) the solution to the problem P 0 on input x0into a solution to the problem P on input x.Note that the subroutine in Step 2 that solves the problem P 0 is unspec-i�ed. If the problem P 0 can be solved e�ciently, then the problem P canalso be solved e�ciently, as explained by the following theorem.Lemma 7.0.1 Suppose that a problem P is reduced to a problem P 0 in timeO(t(n)) P /t(n) P 0and that the problem P 0 can be solved in time O(T (n)). Then the problemP can be solved in time O(t(n) + T (O(t(n)))).proof. Suppose that the algorithm T gives a O(t(n))-time reductionfrom the problem P to the problem P 0, and suppose that an algorithm A0109

110 REDUCTIONSsolves the problem P 0 in time O(T (n)). The problem P can be solved bythe algorithm T , in whose Step 2, calling a subroutine to solve the problemP 0 on input x0, we use the algorithm A0.To analyze the algorithm T , note that Step 1 and Step 3 of the algo-rithm T take time O(t(n)), as we have assumed. Since Step 1 takes timeO(t(n)), the size of x0 is also bounded by O(t(n)). Therefore, in Step 2 ofthe algorithm T , the algorithm A0 of time complexity O(T (n)) on inputs ofsize n takes time O(T (O(t(n)))) on input x0, which is of size O(t(n)). Thisconcludes that the running time of the algorithm T is bounded byO(t(n)) + O(T (O(t(n)))) = O(t(n) + T (O(t(n))))The reduction technique plays an important role in the study of complex-ity of geometric problems, both for deriving lower bounds and for designinge�cient algorithms. In this chapter, we will study how to use this tech-nique to design e�cient geometric algorithms, and in the next chapter, wewill explain how we use this technique to derive lower bounds for geometricproblems.We close this introductory section by the following corollary, which willbe heavily used in our discussion.Corollary 7.0.2 Suppose that a problem P is reduced to a problem P 0 inlinear time P /n P 0If the problem P 0 can be solved by an algorithm in time O(T (n)), with T (n) =
(n) and T (O(n)) = O(T (n)), then the problem P can also be solved in timeO(T (n)).proof. As shown in Lemma 7.0.1, the problem P can be solved bythe algorithm T in time O(n + T (O(n))). By our assumption, T (O(n)) =O(T (n)). Moreover, T (n) =
(n). Therefore, the time complexity of thealgorithm T in this special case is bounded byO(n+ O(T (n))) = O(T (n))Notice that most of the complexity functions T (n) we use in this book,such as n, n logn, nk , and nk logh n satisfy the conditions T (n) =
(n) andT (O(n)) = O(T (n)).

7.1. CONVEX HULL AND SORTING 1117.1 Convex hull and sortingConsider the algorithm of Graham Scan for constructing convex hulls ofpoints in the plane. If a given set S of n points in the plane is sorted byx-coordinates, then the Graham Scan algorithm needs only linear time toconstruct the convex hull for S. In fact, it is not hard to see thatCONVEX HULL /n SORTINGby the following argument. Given an instance of CONVEX HULL, whichis a set S of n points in the plane, we can simply regard S as an instanceof SORTING if we let the x-coordinate of a point p in S be the \key" ofthe point p. Therefore, we can simply translates instances of the problemCONVEX HULL to instances of the problem SORTING. Now the solutionof SORTING on input S is a list of the points in S which is sorted by thex-coordinates. The generalized Graham Scan algorithm shows that with thissolution to the SORTING, the convex hull CH(S) of the set S, which is thesolution of CONVEX HULL on the input S, can be constructed in timeO(n).It is interesting that we can prove that the problem SORTING can alsobe reduced to the problem CONVEX HULL in linear time.Theorem 7.1.1 SORTING /n CONVEX HULLproof. Given a list L of n real numbers x1, x2, � � �, xn, which is an instanceto the problem SORTING, we can suppose that all of them are non-negativesince otherwise, we �rst scan the list and �nd the \most negative" numberx, then add �x to each given number to make all non-negative.We �rst scan the list to �nd the largest number xmax. Now for eachnumber xi in the given list L, we convert xi into a point pi in the plane suchthat the polar angle of pi is 2� xixmax and the distance between pi and theorigin O is 1 (so the point pi is on the unit circle). Let S be the set of allthese n points p1, p2, � � �, pn in the plane. The set S is an instance of theproblem CONVEX HULL. Note that the set S can be obtained from the listL in time O(n), since all we do is to scan the list L at most twice, then foreach number xi, we spend constant time to obtain the corresponding pointpi.

112 REDUCTIONSSince the unit circle itself is convex, the n points in the set S must be allon the convex hull CH(S). Therefore, when the solution CH(S) is returnedback for the problem CONVEX HULL on the input S, we must get the hullvertices of S in counterclockwise ordering. If we suppose that we start withthe point with the smallest polar angle, then the hull vertices must be givenin increasing ordering of their polar angles. But since the polar angle of apoint in the set S is proportional to the value of the corresponding numberin the list L, the list of the polar angles of the points times xmax2� given incounterclockwise ordering on CH(S) gives the sorted list of the numbers ofthe list L. Therefore, given the solution for the problem CONVEX HULLon the input S, we can obtain the solution for the problem SORTING onthe input L, that is a sorted list of the n numbers of L, by �rst �nding thepoint with the smallest polar angle, then scanning the convex hull CH(S) incounterclockwise ordering and multiplying the polar angle of each point byxmax2� . This can obviously done in linear time.Let P and P 0 be two problems, and let t(n) be a function of n. If wehave both P /t(n) P 0 and P 0 /t(n) Pthen we say that the problems P and P 0 are equivalently complex up to at(n)-time reduction, and express asP �t(n) P 0When two problems are equivalently complex up to a linear time reduc-tion, then if one of them can be solved in time O(T (n)), where T (n) =
(t(n)) and T (O(n)) = O(T (n), then by Corollary 7.0.2, the other can alsobe solved in time O(T (n)).By the above discussions, we have already shownSORTING �n CONVEX HULLIn fact, construction of convex hulls for sets of points in the plane isa generalization of sorting. In sorting n numbers, we are asked to �nd theordering of a set of points in the real line, while in constructing a convex hull,we are asked to �nd the ordering of polar angles, relative to an interior pointof the convex hull, of the \extreme points". The di�erence is that in sorting,every given number will appear in the �nal sorted list, while in constructinga convex hull, we also have to make the decision whether a given point is anon-extreme point, and if yes, exclude it from the �nal output list. On the

CLOSEST-PAIR 113other hand, as we have discussed in the section, sorting is not easier at allthan constructing convex hulls for points in the plane.7.2 Closest pair and all nearest neighborAccording to the de�nition of the Voronoi diagram (a partition of the planeinto regions such that each region is the locus of points closer to a point ofthe set S than to any other point of S), it is not surprising that the problemsCLOSEST-PAIR and ALL-NEAREST-NEIGHBOR can be solved e�cientlythrough the Voronoi diagram. Recall that the problem CLOSEST-PAIR isto �nd the closest pair in a set of n points in the plane, while the problemALL-NEAREST-NEIGHBOR is that given a set S of n points in the plane,for each point of S, �nd the nearest neighbor in S. Finally, let VORONOI-DIAGRAM denote the problem of constructing the Voronoi diagram for agiven set of n points in the plane.Theorem 7.2.1ALL-NEAREST-NEIGHBOR /n VORONOI-DIAGRAMproof. Suppose that a set S of n points in the plane is an input to theproblem ALL-NEAREST-NEIGHBOR, we pass the input S to VORONOI-DIAGRAM directly. The solution of VORONOI-DIAGRAM on the inputS will be the Voronoi diagram Vor(S) of the set S. By Lemma 5.2.2, foreach point pi in the set S, the nearest neighbor of pi in S de�nes a non-degenerate Voronoi edge for the Voronoi polygon Vi of pi. Therefore, bytracing the boundary of the Voronoi polygon of each point in the set S, wecan �nd the nearest point for each point in the set S. This is the solutionof the problem ALL-NEAREST-NEIGHBOR. Given the Voronoi diagramVor(S) of the set S, each Voronoi polygon can be traced by the algorithmTRACE-REGION given in Section 1.4 in time proportional to the numberof edges on the boundary of the polygon. Since each Voronoi edge is onthe boundary of exactly two Voronoi polygons, the sum of boundary edgesof all Voronoi polygons in Vor(S) equals twice the number of edges in theVoronoi diagram Vor(S). We conclude that tracing all Voronoi polygonsof the Voronoi diagram Vor(S), thus �nding the nearest neighbor for eachpoint in the set S when the Voronoi diagram Vor(S) is given, takes timeproportional to the number of edges of Vor(S), that is of order O(n) sincethe Voronoi diagram is a planar graph.

114 REDUCTIONSSince the Voronoi diagram of a set of n points can be constructed in timeO(n logn) (Theorem 5.3.6), by Corollary 7.0.2, we obtainCorollary 7.2.2 The problem ALL-NEAREST-NEIGHBOR can be solvedin time O(n logn).It is easy to see that given a set S of n points in the plane, the solutionof the problem CLOSEST-PAIR can be obtained from the solution of theproblem ALL-NEAREST-NEIGHBORS in linear time, that is,CLOSEST-PAIR /n ALL-NEAREST-NEIGHBORby simply computing the distance between each point and its nearest neigh-bor, then taking the point that has the shortest distance to its nearest neigh-bor. By Corollary 7.2.2, the problem ALL-NEAREST-NEIGHBOR can besolved in time O(n logn). Therefore by Corollary 7.0.2, we haveCorollary 7.2.3 The problem CLOSEST-PAIR can be solved in timeO(n logn).7.3 TriangulationGiven a Voronoi diagram Vor(S) for the set S of n points in the plane. Wedraw a segment pipj for each pair of points pi and pj that de�ne a Voronoiedge in Vor(S). Let D(S) be the collection of these segments, which is calledthe straight-line dual of the Voronoi diagram Vor(S).We prove that the straight-line dual D(S) of the Voronoi diagram Vor(S)is a triangulation of the set S. For this, we must show that the straight-linedual D(S) partitions the convex hull CH(S) of the set S into triangles suchthat 1) no two triangles overlap in the interior, and 2) every point inthe convex hull CH(S) (more precisely, every point in the area bounded bythe convex hull CH(S)) must be contained in at least one such triangles.Each Voronoi vertex v is incident to exactly three Voronoi edges e1, e2,and e3, and exactly three Voronoi polygons V1, V2, and V3 of three pointsp1, p2, and p3 in the set S. Each of the edges e1, e2, and e3 is de�ned bya pair of the points p1, p2, and p3. Therefore, the segments p1p2, p2p3, andp3p1 are all in the straight-line dual D(S) of Vor(S). Thus, each Voronoivertex v corresponds to a triangle 4p1p2p3 in the straight-line dual D(S).Denote by 4(v) the triangle 4p1p2p3. On the other hand, since a Voronoi

TRIANGULATION 115
q

q'

C(v) C(v')Figure 7.1: Two circumcircles intersect at q and q0edge is incident on two Voronoi vertices, each segment in the straight-linedual D(S) is a boundary edge of two such triangles 4(v) and 4(v0), wherev and v0 are two Voronoi vertices in Vor(S).Lemma 7.3.1 No two triangles 4(v) and 4(v0) overlap in the interior,where v and v0 are two di�erent Voronoi vertices in Vor(S).proof. Let 4(v) and 4(v0) be two arbitrary triangles in the straight-linedual D(S) of the Voronoi diagram Vor(S). Let C(v) and C(v0) be the cir-cumcircles of the triangles 4(v) and 4(v0), respectively. If the circumcirclesC(v) and C(v0) do not overlap in the interior, then of course the triangles4(v) and 4(v0) do not overlap in the interior. So we suppose that C(v) andC(v0) do overlap in the interior. Note that each of the circumcircles C(v)and C(v0) contains exactly three points in the set S on its boundary, andby Lemma 5.2.3, no point of S is contained in the interior of C(v) or C(v0).Moreover, C(v) and C(v0) cannot be coincide otherwise at least four pointsin the set S would be co-circular. Moreover, no one of the circles C(v) andC(v0) can be entirely contained in the other, since otherwise some point ofthe set S would be contained in the interior of C(v) or C(v0), contradictingto Lemma 5.2.3. So the boundaries of the circumcircles C(v) and C(v0) mustintersect at exactly two points q and q0. See Figure 7.1.The two points q and q0 partition the circle C(v) into two disjoint curves,one is entirely contained in the circle C(v0) and the other is completelyoutside the circle C(v0). No vertex of the triangle 4(v) can be on the curveof C(v) that is entirely contained in the circle C(v0) otherwise that vertex,which is a point in the set S, would be in the interior of the circle C(v0),contradicting Lemma 5.2.3. Thus the three vertices of 4(v) must be on thecurve of C(v) that is outside C(v0). Similarly, the three vertices of 4(v0) are

116 REDUCTIONS
q q'

v
v'

q"
p p

pp

1

2

3

4

Figure 7.2: A point q outside all triangleson the curve of C(v0) that is outside C(v). Therefore, the three vertices of thetriangle 4(v) and the three vertices of the triangle 4(v0) must be separatedby the segment qq0, so the triangles 4(v) and 4(v0) do not overlap in theinterior.Lemma 7.3.2 Every point in the convex hull CH(S) is contained in sometriangle 4(v) for some Voronoi vertex v of Vor(S).proof. Suppose that the lemma is not true and that some point q inCH(S) is not contained in any such triangles. Then we can �nd a triangle4(v), where v is a Voronoi vertex of Vor(S), and an interior point q0 inthe triangle 4(v) such that the segment qq0 intersects no triangles in D(S)except the triangle 4(v). Moreover, we can suppose that the segment qq0intersects4(v) at a unique point that is not a vertex of4(v). This conditioncan be always satis�ed since we can move the point q0 slightly in the triangle4(v).Therefore, we can suppose that the triangle 4(v) has three vertices p1,p2, and p3, that the segment qq0 intersects the edge p1p2 of 4(v) at aninternal point q00, and that no points on the segment qq00 (excluding thepoint q00) are contained in any triangle 4(u) for some Voronoi vertex u.See Figure 7.2. Then the point p3 and the point q are on di�erent sides ofthe segment p1p2. Since both points q and p3 are contained in the convexhull CH(S), the segment p1p2 cannot be a boundary edge of CH(S). Lete = fv; v0g be the Voronoi edge de�ned by p1 and p2 (note that the vertex vmust be an end-point of e), then by Lemma 5.2.4, e is a �nite edge since thepoints p1 and p2 are not consecutive hull vertices on CH(S). So the Voronoi

MINIMUM SPANNING TREE 117vertex v0 is not the in�nite point, and v0 must correspond to a triangle 4(v0)in the straight-line dual D(S). By the de�nition of 4(v0), two vertices of4(v0) must be the points p1 and p2, and the other vertex p4 of 4(v0) mustbe di�erent from the point p3 since v 6= v0. Since the two triangles 4(v)and 4(v0) do not overlap in the interior, by Lemma 7.3.1, the two pointsp3 and p4 must be on di�erent sides of the segment p1p2. Consequently,however, some points on the segment qq00 which are very close to the pointq00 would be contained in the interior of the triangle 4(v0). This contradictsour assumption that no points on qq00 (excluding q00) is contained in any suchtriangles. This contradiction shows that q must belong to a triangle 4(w)for some Voronoi vertex w in Vor(S).By Lemma 7.3.1 and Lemma 7.3.2, we obtain immediately that thestraight-line dual D(S) of the Voronoi diagram Vor(S) is a triangulationof the set S. This triangulation of S is called the Delaunay Triangulation ofthe set S.Theorem 7.3.3 TRIANGULATION /n VORONOI-DIAGRAM.proof. Given a set S of n points in the plane, which is an input to theproblem TRIANGULATION, we simply pass S to the problem VORONOI-DIAGRAM. The solution to VORONOI-DIAGRAM on input S is theVoronoi diagram Vor(S) of S. Then from the Voronoi diagram Vor(S), weconstruct the Delaunay Triangulation D(S) of S by tracing all the Voronoiedges of Vor(S). If the Voronoi diagram Vor(S) is given by a DCEL, then itis easy to see that the Delaunay Triangulation D(S) of S can be constructedfrom Vor(S) in linear time.Since the Voronoi diagram of a set of n points in the plane can be con-structed in time O(n logn), by Corollary 7.0.2, we haveCorollary 7.3.4 The problem TRIANGULATION can be solved in timeO(n logn). In particular, the Delaunay triangulation D(S) of a set S of npoints in the plane can be constructed in time O(n logn).7.4 Euclidean minimum spanning treeConsider the following problem: given a set S of n points in the plane,interconnect all the points by straight line segments so that the total length

118 REDUCTIONSof the segments is minimum. This problem has an obvious application incomputer networking where we want to interconnect all the computers atminimum cost.It is easy to see that the resulting connected PSLG after the above in-terconnection must be a tree. In fact, if the resulting PSLG were not a tree,then we would be able to �nd a cycle, delete an edge from the cycle, and stillkeep the PSLG connected. But this would contradict the assumption thatthe resulting connected PSLG has the minimum total length of its edges.This tree is called a Euclidean minimum spanning tree (EMST) of the setS. In general, the Euclidean minimum spanning tree of a set is not unique.The problem of �nding Euclidean minimum spanning tree for a set ofpoints in the plane is closely related to the following problem of �nding theminimum weight spanning tree: given a weighted graph G, �nd a spanningtree of G with the minimum total weight. In fact, the problem of �ndingEuclidean minimum spanning tree can be reduced to the problem of �ndingminimum weight spanning tree, as we illustrate as follows.Let S be a set of n points in the plane. To construct a Euclidean mini-mum spanning tree of S, we can regard S as a weighted complete graph GSof n vertices, such that the weight of an edge e = fp; p0g in GS , where p andp0 are two points in S, is the Euclidean distance between p and p0. There-fore, a Euclidean minimum spanning tree of the set S is a minimum weightspanning tree of the graph GS , and vice versa. There are a few e�cient algo-rithms constructing the minimum weight spanning tree for weighted graphs.For example, Kruskal's algorithm [15] constructs the minimum weight span-ning tree for a weighted graph with m edges in time O(m logm). However,the complete graph GS has
(n2) edges. Therefore, a direct application ofKruskal's algorithm to the complete graph GS would result in an O(n2 logn)time algorithm for constructing a Euclidean minimum spanning tree for theset S.Interesting enough, with the help of the Voronoi diagram and the Delau-nay Triangulation of the set S, a single preprocessing can eliminate most ofthe edges of the complete graph GS from our consideration.Lemma 7.4.1 Partition the set S into two non-empty disjoint subsets S1and S2. If p1p2 is the shortest line segment such that p1 2 S1 and p2 2 S2,then the line segment p1p2 is an edge in the Delaunay Triangulation D(S).proof. Suppose that the segment p1p2 is not an edge in D(S). Then theperpendicular bisector of p1p2 contains no Voronoi edge of Vor(S). Let V1

MINIMUM SPANNING TREE 119
q

p

p

p

1

2

3e

V1Figure 7.3: p1p2 intersects V1 at qbe the Voronoi polygon of the point p1 in the Voronoi diagram Vor(S), andsuppose that the segment p1p2 intersects the Voronoi polygon V1 at a pointq that is on the Voronoi edge e of V1 in Vor(S). (The point p2 cannot becontained in V1 (including the boundary of V1) since V1 is the locus of pointscloser to p1 than to any other points in S.) Suppose that the Voronoi edgee is de�ned by the point p1 and another point p3 in S. See Figure 7.3. Bythe de�nition, the points p1 and p3 are the closest points in S to the pointson the edge e. Therefore,jp1p2j = jp1qj+ jqp2j > jp1qj+ jqp3j � jp1p3jMoreover, since we have 6 qp3p1 = 6 p3p1q, and the point q is an internalpoint of the segment p1p2, we must have6 p2p3p1 > 6 qp3p1 = 6 p3p1q = 6 p3p1p2Therefore, we have jp1p2j > jp2p3jNow we obtain a contradiction, since both segments p2p3 and p1p3 are shorterthan the segment p1p2. Now if p3 2 S1 we pick p2p3, and if p3 2 S2 we pickp1p3. No matter what set the point p3 is in, we are always able to �nd asegment with one end in S1 and the other end in S2 such that the segment is

120 REDUCTIONSshorter than p1p2. This contradicts the assumption that p1p2 is the shortestsuch segment.This contradiction proves that the segment p1p2 must be an edge in theDelaunay Triangulation D(S) of the set S.Lemma 7.4.2 Let p1 and p2 be two points in the set S. The segment p1p2is an edge of some Euclidean minimum spanning tree if and only if there isa partition of the set S into two non-empty sets S1 and S2 such that p1p2 isthe shortest segment with one end in S1 and the other end in S2.proof. Suppose that p1p2 is an edge of a Euclidean minimum spanningtree T . Then deleting the edge p1p2 from T results in two disjoint subtreesT1 and T2. Let S1 and S2 be the sets of points in S that are the vertices ofthe trees T1 and T2, respectively. S1 and S2 obviously form a partition ofthe set S and each of the sets S1 and S2 contains exactly one of the pointsp1 and p2. We claim that the segment p1p2 is the shortest segment with oneend in S1 and the other end in S2. In fact, if pp0 is a shorter segment withone end in S1 and the other end in S2, then in the tree T , replacing thesegment p1p2 by the segment pp0 would give us a Euclidean spanning tree T 0of S such that the sum of the edge lengths of T 0 is less than the sum of theedge lengths of T . This contradicts the fact that T is a Euclidean minimumspanning tree.Conversely, suppose that there is a partition of S into two non-emptysubsets S1 and S2 such that p1p2 is the shortest segment with one end inS1 and the other end in S2. Let T be a Euclidean minimum spanning treeof S. If T contains p1p2, then we are done. Otherwise, adding the segmentp1p2 to T results in a unique simple cycle C. Since the segment p1p2 is onthe cycle C and p1 and p2 are in di�erent sets of S1 and S2, there mustbe another segment pp0 on the cycle such that the points p and p0 are indi�erent sets of S1 and S2. Since p1p2 is the shortest segment with twoends in di�erent sets of S1 and S2, the segment pp0 is at least as long as thesegment p1p2. Replacing the segment pp0 in T by the segment p1p2 givesus a new Euclidean spanning tree T 0 of S such that the sum of the edgelengths of T 0 is not larger than the sum of the edge lengths of T . Since T isa Euclidean minimum spanning tree of S, the sum of the edge lengths of T 0must be the same as that of T . Therefore, T 0 is also a Euclidean minimumspanning tree and T 0 contains the segment p1p2.Corollary 7.4.3 If a segment p1p2 is an edge of some Euclidean minimum

MINIMUM SPANNING TREE 121spanning tree of the set S, then p1p2 is an edge in the Delaunay TriangulationD(S) of the set S.proof. The proof follows from Lemma 7.4.1 and Lemma 7.4.2 directly.Therefore, the Delaunay Triangulation D(S) contains all segments thatare in Euclidean minimum spanning trees of the set S. Now if we regardD(S) as a weighted graph GD(S) in which the weight of a segment p1p2in D(S) is the Euclidean distance between the two points p1 and p2, thena Euclidean minimum spanning tree of the set S is a minimum weightedspanning tree of the graph GD(S). This suggests the following algorithm.Algorithm EMST(S)Given: a set of n points in the planeOutput: a Euclidean minimum spanning tree of SBEGIN1. Construct the Delaunay triangulation D(S);2. Construct a weighted graph G_D(S) that isisomorphic to D(S) such that the weight of anedge {p_i, p_j} in G_D(S) is the length of thecorresponding edge in D(S);3. Apply Kruskal's algorithm to find a minimumweight spanning tree T for G_D(S). This treeT is a Euclidean minimum spanning tree for S;END.The analysis of the algorithm EMST is straightforward. By Corol-lary 7.3.4, Step 1 for constructing the Delaunay triangulation D(S) canbe done in time O(n logn). To construct the graph GD(S), we simply com-pute the length of each edge in D(S). Since D(S) is a planar graph of npoints, the number of edges of GD(S) is bounded by O(n) (see Section 1.4).So Step 2 can also be done in time O(n). Kruskal's algorithm runs in timeO(m logm) on weighted graphs with m edges. Since the graph GD(S) hasonly O(n) many edges, the application of Kruskal's algorithm on CD(S) takestime O(n logn). This gives the following theorem.Theorem 7.4.4 Given a set S of n points in the plane, the Euclidean min-imum spanning tree of S can be constructed in time O(n logn).

122 REDUCTIONSFor the reason of completeness, we give a description of Kruskal's algo-rithm. Since the algorithm has been well studied in the course of AlgorithmAnalysis, we give only a brief outline of the algorithm and omit most of thedetails. The interested reader is referred to [2].Kruskal's algorithm �nds the minimum weight spanning tree for aweighted graph G by simply adding edges one at a time, at each step us-ing the lightest edge that does not form a cycle. This algorithm graduallybuilds up the tree one edge at a time from disconnected components. Thecorrectness of the algorithm follows from a theorem for weighted graphs thatis similar to our Lemma 7.4.2.To implement Kruskal's algorithm, suppose that the number of verticesof the graph G is n, and the number of edges of the graph G is m. We �rstpresort all edges of G by their weight, then try to add the edges in order.The presorting of edges of G takes time O(m logm). We then maintain aforest F , which is a list of disjoint subtrees in the graph G. Each tree T inthe forest F is represented by a UNION-FIND tree whose leaf-nodes containthe vertices of the tree T 1 (to distinguish the trees in the forest F , whichare the trees in the weighted graph G, from the UNION-FIND trees thatrepresent the trees in F , we call the vertices of the trees in F vertices, whilecall the vertices of the UNION-FIND trees nodes). Initially, the forest Fis a list of n trivial trees, each is a single vertex of G. Pick the next edgee = fv; ug from the sorted list of edges of G, and check if v and u are in thesame UNION-FIND tree in the forest F . This can be done by two FINDoperations followed by checking if the roots of the two UNION-FIND treesare identical. If v and u are in the same UNION-FIND tree in the forest F ,then adding e would result in a cycle in the forest F . So we should throwthe edge e. On the other hand, if v and u are in di�erent UNION-FINDtrees in the forest F , then the edge e does not form a cycle in the forest F ,so we should add the edge e to the forest F . This is equivalent to mergingthe two UNION-FIND trees containing the vertices v and u in F . Thiscan be done by a single UNION operation. We keep adding edges until theforest F contains a single tree, which is the minimum weight spanning treeof the weighted graph G. Since for each edge in the graph, at most threeUNION-FIND operations are performed, to construct the �nal minimumweight spanning tree, we need at most 3m UNION-FIND operations. Thiscan be done in time O(m�(m)), where �(m) = o(log(m)) (see [2], Section 4.71For detailed discussion of UNION-FIND problem, the reader is referred to [2], Sec-tion 4.7.

MAX-EMPTY-CIRCLE 123for detailed discussion). Now since m�(m) = o(m logm), we conclude thatthe running time of the Kurskal's algorithm isO(m logm) + O(m�(m)) = O(m logm)7.5 Maximum empty circleGiven a set S of n points in the plane, the problem MAXIMUM-EMPTY-CIRCLE is to �nd a largest circle that contains no points of the set S andwhose center is internal to the convex hull of the set S. We will call such acircle the maximum empty circle of the set S. The maximum empty circleof a set S can be speci�ed by its center and its radius.We �rst discuss where the center of the maximum empty circle can belocated.Lemma 7.5.1 The center of the maximum empty circle of the set S mustbe either a Voronoi vertex of Vor(S), or the intersection of a Voronoi edgeof Vor(S) and a boundary edge of the convex hull CH(S).proof. Suppose that C is a maximum empty circle of the set S such thatC is centered at a point c.Since C is the maximum empty circle, the boundary of the circle C mustcontain at least one point of the set S, otherwise, we can increase the radiusof C (without moving the center c of C) to get a larger empty circle.If the boundary of C contains only one point p in the set S, then we canmove the center c of C away from the point p and increase the radius of C.This contradicts our assumption that C is the maximum empty circle.Consequently, the center c of the circle C cannot be in the interior of anyVoronoi polygon V of a point p of the set S, since otherwise, the point p isthe only closest point in S to the center c, so the boundary of the circle Ccannot contain any other points of S except p.Therefore, the point c must be on a Voronoi edge of Vor(S) and theboundary of the circle C contains at least two points of the set S. Nowsuppose that c is not a Voronoi vertex of Vor(S), then there are exactly twopoints p and p0 of the set S on the boundary of the circle C. If c is notalready on the convex hull, we can move it along the perpendicular bisectorof p and p0 away from both p and p0 (without getting out of the convex hullCH(S)), and increase the radius of the circle C. This again contradicts theassumption that C is the maximum empty circle of S.

124 REDUCTIONSTherefore, the center c of the maximum empty circle must be either aVoronoi vertex in Vor(S), or an intersection of a Voronoi edge and a boundaryedge of the convex hull of S.Let c be a Voronoi vertex of Vor(S) or an intersection of a Voronoiedge and a boundary edge of CH(S). The radius of the largest empty circlecentered at c can be computed easily. In fact, if c is a Voronoi vertex ofVor(S), then c is equidistant from three points in the set S and no points ofS is in the interior of the circle de�ned by these three points (Lemma 5.2.3).Therefore, the circle de�ned by these three points must be the largest emptycircle centered at c. On the other hand, if c is an intersection of a Voronoiedge and a boundary edge of CH(S), then exactly two points p and p0 in Sare closest to c, so the largest empty circle centered at c must have radiusjcpj = jcp0j.If the Voronoi diagram is given by a DCEL, then in constant time, we cancompute the radius of the largest empty circle centered at a Voronoi vertexv, by an algorithm TRACE-VERTEX, which is similar to the algorithmTRACE-REGION in Section 1.4, to trace all incident Voronoi edges and allincident Voronoi polygons of the vertex v. (Note that a Voronoi vertex hasdegree exactly 3.) Since the Voronoi diagram Vor(S) has only O(n) Voronoivertices (Lemma 5.2.6), in linear time we can construct all largest emptycircles that are centered at the Voronoi vertices of Vor(S). Note that not allthese circles are candidates of the maximum empty circle of S: those largestempty circles that are centered at a Voronoi vertex that is outside the convexhull CH(S) are disquali�ed. We will discuss later how to �nd these Voronoivertices that are outside the convex hull CH(S).Now let us discuss the points that are intersections of Voronoi edgesand the boundary edges of CH(S). The �rst question is: how many suchintersections can we have?Lemma 7.5.2 There are at most O(n) intersections of Voronoi edges andthe boundary edges of CH(S).proof. Since the convex hull CH(S) is convex, a Voronoi edge, whichis a single straight line segment or a single straight semi-in�nite ray, canintersect CH(S) at at most two points. Moreover, by Lemma 5.2.6, theVoronoi diagram Vor(S) has at most O(n) Voronoi edges.The following observation is also important.

MAX-EMPTY-CIRCLE 125Lemma 7.5.3 Each boundary edge of the convex hull CH(S) intersects atleast one Voronoi edge of Vor(S).proof. If a boundary edge e = fv; v0g of CH(S) does not intersect anyVoronoi edge, then the whole segment vv0 is contained in a single Voronoipolygon of Vor(S). But this is impossible, since the points on vv0 that arevery close to the point v should be contained in the Voronoi polygon of v,while the points on vv0 that are very close to the point v0 should be containedin the Voronoi polygon of v0.For simplicity, call the intersections of the Voronoi edges of Vor(S) andthe boundary edges of CH(S) that are not a Voronoi vertex, the intersectingpoints. An intersecting point p2 is the successor of an intersecting point p1if the partial chain on the boundary of the convex hull CH(S) from p1 to p2,in clockwise ordering, contains no other intersecting points.Lemma 7.5.4 If we trace the boundary of a Voronoi polygon clockwise,starting from an intersecting point p and leaving the convex hull, then wemust encounter at least another intersecting point. The �rst intersectingpoint after p we encounter must be the successor of p.proof. Let the Voronoi polygon we are going to travel be V . Since thepoint p is on the boundary of V and is an intersecting point, the Voronoipolygon V must have at least one vertex inside the convex hull CH(S) and atleast one vertex outside the convex hull CH(S). Now since we are travelingthe boundary of V and leaving the convex hull CH(S), we must eventuallycome back and enter the convex hull CH(S) in order to reach the vertices ofV that are inside CH(S). Therefore, the boundary of the polygon V mustintersect CH(S) at at least another point. Let p0 be the �rst intersecting pointafter p we encounter. Since both the partial chain of V between p and p0,and the partial chain of CH(S) between p and p0 make only right turns, andbecause both V and CH(S) are convex, the partial chain of CH(S) betweenp and p0 must be entirely contained in the Voronoi polygon V . That impliesthat no intersecting points are between the points p and p0 on the partialchain of CH(S). Therefore, the intersecting point p0 is the successor of theintersecting point p.Now it is quite clear how we �nd all intersecting points. We start with anintersecting point p, travel the Voronoi polygon in the direction of leaving the

126 REDUCTIONSconvex hull CH(S). We will encounter another intersecting point p0, whichis the successor of the intersecting point p. At the point p0, we reverse thetraveling direction and start traveling the adjacent Voronoi polygon from thepoint p0, again in clockwise order and in the direction of leaving the convexhull CH(S). We will hit the successor of p0, etc.. We keep doing this untilwe come back to the �rst intersecting point.We summarize this in the following algorithm.Algorithm FIND-ALL-INTERSECTIONSGiven: the Voronoi diagram Vor(S) and the convexhull CH(S) of a set S of n pointsOutput: all the intersecting points of Vor(S) andCH(S)BEGIN1. Find an intersecting point p_0;2. Let p = p_0;3. Travel a Voronoi polygon clockwise in the directionof leaving the convex hull CH(S), starting from thepoint p to find the successor p' of p;4. If p' <> p_0 then replace p by p' and go back toStep 3;END.We analyze the algorithm. Suppose that the Voronoi diagram Vor(S) isgiven by a DCEL and the convex hull CH(S) is given by a circular doubly-linked list.To �nd the �rst intersecting point p0, we pick any boundary edge e ofthe convex hull CH(S). Then we scan the DCEL representing the Voronoidiagram Vor(S) edge by edge and check which intersects e. By Lemma 7.5.3,e intersects at least one Voronoi edge in Vor(S). So in linear time, we will�nd a Voronoi edge that intersects e and obtain the �rst intersecting pointp0. So Step 1 of the algorithm can be done in linear time.Starting from an intersecting point p, we travel the part of the Voronoipolygon that is outside the convex hull CH(S). By Lemma 7.5.4, we willencounter the successor of p. For this, we have to check, for each Voronoiedge e we are traveling, if e intersects the convex hull CH(S). This seemsto need
(n) time to check all boundary edges of the convex hull CH(S)

MAX-EMPTY-CIRCLE 127for each Voronoi edge e. Fortunately, since each boundary edge of CH(S)contains at least one intersecting point (Lemma 7.5.3), the successor of pmust be either on the boundary edge e of CH(S) where p is located, or on theboundary edge of CH(S) that is next to e. Therefore, for each Voronoi edgee we are traveling, we only have to check two boundary edges on CH(S).So each Voronoi edge can be processed in constant time. Moreover, eachVoronoi edge that is outside the convex hull CH(S) is traveled at most twicesince each Voronoi edge is on the boundary of exactly two Voronoi polygons.Therefore, the total time spent on Step 3 and Step 4 in the algorithm FIND-ALL-INTERSECTIONS is bounded by the number of Voronoi edges thatare outside the convex hull CH(S), which is in turn bounded by the numberof Voronoi edges of the Voronoi diagram Vor(S), which is, by Lemma 5.2.6,bounded by O(n).Thererfore, the time complexity of the algorithm FIND-ALL-INTERSECTIONS is bounded by O(n).Finally, we discuss how to determine if a Voronoi vertex v is inside or out-side the convex hull CH(S). In the algorithm FIND-ALL-INTERSECTIONS,all the Voronoi vertices we encounter are outside the convex hull CH(S). Sowe can simply mark them and not use them as potential candidates of thecenter of the maximum empty circle. The question is, can there be anyVoronoi vertex that is outside the convex hull CH(S) and not encounteredby our algorithm FIND-ALL-INTERSECTIONS? The answer is NO, as ex-plained by the following paragraph.Suppose that v is a Voronoi vertex of Vor(S) and that v is outside ofthe convex hull CH(S). Let v be on the boundary of some Voronoi polygonV . The Voronoi polygon V cannot be completely outside the convex hullVor(S), since otherwise the corresponding point of the set S would be outsidethe convex hull Vor(S). So the polygon V intersects CH(S) at at least twopoints. Let p and p0 be two intersecting points of the polygon V and theconvex hull CH(S) such that the vertex v is contained in the partial chainon the boundary of V from p to p0 in clockwise ordering, and that no otherintersecting points are on this partial chain. Then the algorithm FIND-ALL-INTERSECTIONS will eventually encounter the intersecting point p andtrace this partial chain from p to p0. Now the vertex v must be encountered.Summarizing the above discussions gives us the following algorithm forsolving the problem MAXIMUM-EMPTY-CIRCLE.Algorithm MAXIMUM-EMPTY-CIRCLE

128 REDUCTIONSGiven: a set S of n points in the planeOutput: the maximum empty circle of SBEGIN1. Construct the Voronoi diagram Vor(S) and theconvex hull CH(S);2. Call the subroutine FIND-ALL-INTERSECTIONS tofind all intersecting points of Vor(S) and CH(S),and mark all Voronoi vertices that are outsidethe convex hull CH(S);3. For each q of such intersecting points, computethe largest empty circle centered at q;4. For each unmarked Voronoi vertex v, compute thelargest empty circle centered at v;5. The largest among the largest empty circlesconstructed in Step 3 and Step 4 is the maximumempty circle of S;END.Step 1 takes time O(n logn), by Theorem 5.3.6 and by, say, the GrahamScan algorithm. Step 2 takes linear time, as we have discussed above. Theother steps in the algorithm trivially take only linear time, by Lemma 5.2.6and Lemma 7.5.2. Therefore, we obtain the following theorem.Theorem 7.5.5 The problem MAXIMUM-EMPTY-CIRCLE can be solvedin time O(n logn).7.6 All-farthest vertexThe \inverse" of the problem ALL-NEAREST-NEIGHBOR is the problemALL-FARTHEST-NEIGHBOR, in which we are asked to �nd the farthestneighbor for each point of a given set. The ALL-FARTHEST-NEIGHBORproblem can be solved through the Farthest Neighbor Voronoi Diagram.It can be shown that given a set S of n points in the plane, the Far-thest Neighbor Voronoi Diagram of S can be constructed in time O(n logn).Moreover, with the Farthest Neighbor Voronoi Diagram, the problem ALL-FARTHEST-NEIGHBOR can be solved in anotherO(n logn) time, using thetechniques of point location, as we discussed in Chapter 5. Therefore, theALL-FARTHEST-NEIGHBOR problem can be solved in time O(n logn).

ALL-FARTHEST VERTEX 129
v

vv

v

v

v
v

v

1

2

3

4
5

6

7

8Figure 7.4: The vertices v1 and v3 are not an antipodal pairIn this section, we will discuss a restricted version of the problem ALL-FARTHEST-NEIGHBOR, the all-farthest-vertex problem for the set of ver-tices of a convex polygon. The goal is for each vertex of the convex polygon�nd the farthest vertex. Since the problem is \simpler" than the generalproblem, we expect a better algorithm, say, a linear time algorithm for solv-ing this problem.Let us �rst formally de�ne the ALL-FARTHEST-VERTEX problem.ALL-FARTHEST-VERTEXFor each vertex v of a convex polygon P , �nd a vertex of P that is farthestfrom v.It would seem a simple generalization of the algorithm for �nding thediameter of a convex polygon, as we showed in Section 3.3. That is, thefarthest vertex of a vertex v must be a vertex that constitutes an antipodalpair with v. We �rst show that this intuition is incorrect.Look at the Figure 7.4. The vertex v3 is obviously the farthest vertexfrom the vertex v1. However, since the vertex v5 is the �rst farthest vertexfrom the edge v8v1, by Lemma 4.3.4, the vertices v1 and v3 are not anantipodal pair.To solve the problem ALL-FARTHEST-VERTEX, we �rst make an as-sumption that for each vertex v of P , the distances from v to any two verticesu and w of P are di�erent. This assumption loses no generality since we cande�ne the distance from v to a vertex u to be a triple D(v; u) = (d; x; y),

130 REDUCTIONS
∞

∞

-

-Figure 7.5: The matrix MPwhere d is the Euclidean distance between v and u, while x and y are thex- and y-coordinates of the vertex u, respectively. The distance D(v; u) isordered lexicographically.2 With this assumption, each vertex of P has aunique farthest neighbor.7.6.1 A monotone matrixLet the vertices of a convex polygon P be given in counterclockwise order(v1; v2; � � � ; vn). It is convenient to describe the problem ALL-FARTHEST-VERTEX in terms of an n � (2n � 1) matrix MP pictured in Figure 7.5.In the ith row of MP , the cell (i; i+ k) holds the distance D(vi; vk0) (wherek0 = ((i+ k � 1) (mod n)) + 1), for 1 � i � n and 0 � k � n � 1. All othercells of MP hold �1. Solving the problem ALL-FARTHEST-VERTEX isequivalent to �nding the maximal element in each row of the matrix MP .Note that we are not actually constructing the matrix MP in the imple-mentation of our algorithm. There are
(n2) elements in the matrix MP , soeven writing the matrix MP out takes time
(n2). Instead, we keep a listfor the indices of the rows and a list for the indices of the columns of thematrix MP . Given a pair of indices (i; j), the element with the index (i; j)in the matrix MP can be computed in constant time.The matrix MP has a very nice property, called monotone property.2Note that the distance D(v; u) is not symmetric, that is, in general, D(v; u) 6= D(u; v).However, if D(v;u) is the largest then the vertex u must be one of the vertex of P thathas the farthest Euclidean distance from the vertex v.

ALL-FARTHEST VERTEX 131De�nition An n�m matrix M = (ai;j) is monotone if for any two pairs(i1; i2) and (j1; j2) of indices, where 1 � i1 < i2 � n and 1 � j1 < j2 � m,the 2� 2 submatrix of M ai1j1 ai1j2ai2j1 ai2j2 !has the property that it is not simultaneously possible that ai1j1 < ai1j2 andai2j1 > ai2j2 .Lemma 7.6.1 The matrix MP is monotone.proof. Given a 2� 2 submatrix of MP a bc d !taken from the i1th and i2th rows and j1th and j2th columns of the matrixMP , where i1 < i2 and j1 < j2. Suppose by contradiction that we have a < band c > d. Then b and c cannot be �1.The number a cannot be �1. Otherwise since b 6= �1 and a is on theleft of b in the matrix MP and a = �1, so c must be �1 since c is in thesame column as a and c is below a. But by our assumption, c is not �1.Similarly, the number d cannot be �1.So none of a, b, c, and d can be �1. Now let us consider the relationsamong the indices i1, i2, j1, and j2.Since the element c has index (i2; j1) and c 6= �1, so we must havei2 � j1. If i2 = j1 then c is the distance between the vertex vi1 to itself inP , thus c = 0. But this is impossible since c > d and d 6= �1. Thus wemust have i2 < j1. Therefore, we can write explicitlyi1 < i2 < j1 < j2Therefore, the vertices vi1 , vi2 , vj1 and vj2 must appear on the convex poly-gon P in exactly this order (the indices j1 and j2 actually take values(mod n) + 1). See Figure 7.6. However, now the conditions a < b and c > dimplies that c + b > d + a. Since the polygon P is convex, c + b > d + asays that the sum of the lengths of opposite sides of a convex quadrilateral is

132 REDUCTIONS
i i

j

j

1
2

1

2

a

b
c

dFigure 7.6: The convex polygon Pgreater than the sum of the lengths of the diagonals of the same quadrilateral.However, this contradicts a fundamental theorem in elementary geometry.(Remark: this is the only place we use the convexity of the polygon P .)Therefore, if we suppose that a < b and c > d, then we are always ableto derive a contradiction. This proves that a < b and c > d cannot besimultaneously possible. That is, the matrix MP is monotone.Corollary 7.6.2 Every submatrix of the matrix MP is monotone.proof. This is because that each 2 � 2 submatrix of a submatrix of MPis also a submatrix of MP .Lemma 7.6.1 and Corollary 7.6.2 are crucial for the algorithms we aregoing to give.7.6.2 Squaring a monotone matrixThe matrixMP is a rectangle matrix that contains more columns than rows.Since we are only interested in �nding the maximal element in each row ofthe matrix, at most n columns are really useful to us. In the following, wewill discuss how to square a rectangle matrix without deleting the maximalelement in each row. We will actually consider a little bit more generalcase, that is, how do we square a rectangle submatrix of MP that has morecolumns than rows such that the maximal element in each row is kept in theresulting square matrix.

ALL-FARTHEST VERTEX 133Let M = 0BBB@ a1;1 a1;2 � � � a1;ha2;1 a2;2 � � � a2;h� � � � � �ar;1 ar;2 � � � ar;h 1CCCAbe an r� h submatrix of the matrix MP . By Corollary 7.6.2, the matrix Mis monotone.Now let us look at the �rst row, compare the elements a1;1 and a1;2. Ifa1;1 < a1;2, then no maximal element in any row can be in the �rst column.In fact, a1;1 is not the maximal element in the �rst row. Suppose that themaximal element of the ith row of M is in the �rst column, i > 1, then wehave ai;1 > ai;2. This together with a1;1 < a1;2 contradicts the fact that Mis a monotone matrix. Therefore, the �rst column of M can be deleted inthis case. After deleting the �rst column of M , we compare the elementsa1;2 and a1;3. Similarly, if a1;2 < a1;3 then we can delete the second columnof M and compare the elements a1;3 and a1;4 and so on. We keep doing thisuntil we �nd an index i1 such that a1;i1 > a1;i1+1. Now we save the columni1 and move to the second row of M .3We look at the second row and compare the elements a2;i1+1 and a2;i1+2.If a2;i1+1 � a2;i1+2 then we save the (i1+1)st column of M and move to thethird row. On the other hand, if a2;i1+1 < a2;i1+2, then none of the 2nd, 3rd,� � �, rth rows of M can have their maximal element in the (i1+ 1)st columnof M because M is monotone. Moreover, since we know that a1;i1 > a1;i1+1,the �rst row ofM does not have its maximal element in the (i1+1)st columneither. Therefore, the (i1+1)st column ofM contains no maximal elementsfor any row, thus can be deleted. Now since we know no relation betweenthe elements a1;i1 and a1;i1+2, so after deleting the (i1 + 1)st column, wemove back to the �rst row and compare a1;i1 and a1;i1+2.Now we discuss the general case. Inductively, suppose that we havemoved to the kth row of M with 2 � k � r� 1, and we have saved the i1th,i2th, � � �, and ik�1th columns of M such thata1;i1 > a1;i2a2;i2 > a2;i33It seems that we have ignored the equality case, i.e., the case when a1;i1 = a1;i1+1.However, the equality case can never happen. It is because that by our de�nition of thedistance D(v; u), vertex v has a unique distance to a vertex u. So case a1;i1 = a1;i1+1happens if and only if both a1;i1 and a1;i1+1 are �1. But by our selection of i1, a1;i1 cannever be �1.

134 REDUCTIONS� � �ak�2;ik�2 > ak�2;ik�1ak�1;ik�1 > ak�1;ik�1+1and none of the deleted columns contain maximal elements of any row ofM . Then we compare the elements ak;ik�1+1 and ak;ik�1+2 in the kth rowof M . If ak;ik�1+1 > ak;ik�1+2 then we save the (ik�1 + 1)st column andmove to the (k + 1)st row of M . On the hand, if ak;ik�1+1 < ak;ik�1+2,then for any j > k the jth row in the matrix M cannot have its maximalelement in the (ik�1 + 1)st column since M is monotone. Moreover, byour inductive hypothesis, ak�1;ik�1 > ak�1;ik�1+1, so the (k � 1)st row doesnot have its maximal element in the (ik�1 + 1)st column. If for some jsuch that j < k � 1 such that the jth row has its maximal element inthe (ik�1 + 1)st column, then aj;ik�1 < aj;ik�1+1. But this together withak�1;ik�1 > ak�1;ik�1+1, contradicts the fact that the matrixM is monotone.Summarizing these discussions, we conclude that the (ik�1+ 1)st column ofthe matrixM contains no maximal element for any row, thus can be deleted.4Now since we have no idea about the relation between the elements ak�1;ik�1and ak�1;ik�1+2, we move back to the (k � 1)st row of M and compare thetwo elements.The case for the last row (the rth row) should be treated specially. Sup-pose that we have moved to the rth row of M , and we have saved the i1th,i2th, � � �, and ir�1th columns of M such thata1;i1 > a1;i2a2;i2 > a2;i3� � �ar�2;ir�2 > ar�2;ir�1ar�1;ir�1 > ar�1;ir�1+1and none of the deleted columns contain maximal elements of any row ofM .We compare the elements ar;ir�1+1 and ar;ir�1+2 in the rth row ofM . Againthere are two cases.If ar;ir�1+1 < ar;ir�1+2, then exactly as we have discussed for the case2 � k � r � 1, the (ir�1 + 1)st column of the matrix M contains no rowmaximal elements, thus can be deleted. Moreover, since we have no idea4Again, since we can easily prove that ak;ik�1+1 can never be �1, we ignore the casewhen ak;ik�1+1 = ak;ik�1+2.

ALL-FARTHEST VERTEX 135about the relation between the elements ar�1;ir�1 and ar�1;ir�1+2, we moveback to the (r � 1)st row and compare the two elements.On the other hand, if ar;ir�1+1 > ar;ir�1+2, then ar;ir�1+2 cannot be therow maximal element for the rth row. Moreover, no other elements in the(ir�1+2)nd column can be row maximal elements, since otherwise we would�nd an index j < r such thataj;ir�1+1 < aj;ir�1+2 and ar;ir�1+1 > ar;ir�1+2contradicting the fact that the matrixM is monotone. Therefore, the (ir�1+2)nd column can be deleted. Now we compare the elements ar;ir�1+1 andar;ir�1+3, and so on.Keeping doing the above process, we will get a square matrix at somemoment. This can be shown as follows. Suppose that the number of columnsis greater than the number of rows. If we are at the kth row with 2 � k �r � 1, then either we will delete a column then move one row up or we willmove one row down without deleting any columns. If we are at the �rstrow, then either we delete a column and remain in the �rst row or we moveto the second row without deleting any columns. If we are at the last row,then either we delete a column and move back to the (r � 1)st row or wedelete a column and remain in the rth row. Therefore, only when we aremoving down we do not delete columns. However, we cannot move downforever since eventually we will reach the last row, in which we have to deletecolumns. By our inductive proof above, all maximal elements of the rows ofM are contained in the resulting square matrix.We implement the above idea into the following algorithm SQUARE.Suppose that the submatrix M of the matrix MP contains the elements inthe k1th, k2th, � � �, krth rows and the j1th, j2th, � � �, jhth columns such thatk1 < k2 < � � � < kr and j1 < j2 < � � �< jhand r < h. The indices k1, k2, � � �, kr are stored in a doubly-linked list Lrow ,and the indices j1, j2, � � �, jh are stored in another doubly-linked list Lcol.The algorithm SQUARE takes the two doubly-linked lists Lrow and Lcol asits input, and outputs a doubly-linked list Lc that contains the indices of thecolumns of M that are saved in the process. The list Lc contains r indices.Since the lists are doubly-linked, for each element in a list, we can alwaysaccess in constant time the previous element in the list through a pointer\last", and the next element in the list through a pointer \next".

136 REDUCTIONSAlgorithm SQUARE(L_row, L_col)Given: a rectangle submatrix M of M_P, representedby a list of row indices L_row and a list ofcolumn indices L_colOutput: a square matrix M' obtained from M by deletingsome columns of M such that all row maximalelements in M are kept in M'BEGIN1. Let L_c = L_col, let j and k be the first elementsin the list L_c and L_row, respectively;2. WHILE the matrix is not square DO2.1 CASE 1: k is the first element in the list L_rowIF a_{k, j} < a_{k, next(j)} THENlet j = next(j) and delete the first element inthe list L_cELSE (* so a_{k, j} > a_{k, next(j)} *)let j = next(j), and let k be the second elementin the list L_row,2.2 CASE 2: k is neither the first nor the last in L_rowIF a_{k, j} < a_{k, next(j)} THENlet j = last(j) and delete the old j from thelist L_c, and let k = last(k)ELSE (* so a_{k, j} > a_{k, next(j)} *)let k = next(k) and j = next(j);2.3 CASE 3: k is the last element in the list L-rowIF a_{k, j} < a_{k, next(j)} THENlet j = last(j) and delete the old j from thelist L_c, and let k = last(k);ELSE (* so a_{k, j} > a_{k, next(j)} *)let j = next(j), and delete the old j from thelist L_cEND of WHILE;3. Output the list L_c;END.We analyze the algorithm. The algorithm is obviously dominated bythe WHILE loop (Step 2). First note that the value of an element ak;j inthe matrix M can be computed in constant time if we are given the convexpolygon P and the indices k and j. Therefore, each execution of the WHILE

ALL-FARTHEST VERTEX 137loop takes constant time. Now let us discuss how many times the WHILEloop in the algorithm can be executed. Note that whenever we move one rowup, we delete one column. To make the matrix square, we delete exactly h�rcolumns from the matrix M . So we can move up at most h � r rows. Thisalso implies that we can move down at most r+(h�r) = h rows. Thus, thereare at most 2h � r executions of the WHILE loop that move on row up ordown. If an execution of the WHILE loop does not move a row up or down,then we must be at the �rst row or the last row, but then we must delete acolumn. Thus, there are at most h � r executions of the WHILE loop thatdoes not move on row up or down. Summarizing this together, we concludethat the WHILE loop is executed at most 2h � r + h � r = O(h) times.Consequently, the time complexity of the algorithm SQUARE is boundedby O(h).7.6.3 The main algorithmBefore we give the main algorithm for our problem, we consider the followingproblem: let M be a monotone matrix, and suppose that the maximal ele-ment of the ith row of M is in the j1th column, while the maximal elementof the (i + 2)nd row of M is in the j2th column, then what column of Mcan the maximal element of the (i + 1)st row be in? Since the matrix Mis monotone, we must have j1 � j2. Moreover, since M is monotone, themaximal element of the (i+1)st row must be in a column that is between thej1th column and j2th column (including the j1th column and j2th columnthemselves). Therefore, instead of scanning the whole (i + 1)st row to �ndthe maximal element, we only have to scan the elements in the (i+1)st rowthat are between the j1th column and j2th column.Now we are ready for the main algorithm for the problem ALL-FARTHEST-VERTEX. Suppose we are given a convex polygon P of n ver-tices v1, v2, � � �, and vn. De�ne the matrix MP as above. The value of eachelement ai;j of the matrixMP can be computed in constant time if we knowthe indices i and j. We use the following algorithm to �nd the farthest vertexfor each vertex of the convex polygon P . The subroutine ROW-MAXIMALtakes an r � r monotone submatrix M of MP as input and returns back alist L of r indices such that for 1 � i � r, if the ith element in L is ki, thenthe element ai;ki is the maximal element in the ith row of the submatrix M .Algorithm ALL-FARTHEST-VERTEX(P)

138 REDUCTIONSGiven: a convex polygon POutput: for each vertex of P, find the farthest vertexBEGIN1. Construct a doubly-linked list L_row containingthe indices 1, 2, ..., n, and a doubly-linkedlist L_col containing the indices 1, 2, ...,2n-1;2. Call the subroutine SQUARE(L_row, L_col) toobtain a list L_c of column indices of M_Psuch that these columns constitute a squaresubmatrix of M_P that contains the maximalelement for each row of M_P;3. Call the subroutine ROW-MAXIMAL(L_row, L_c);4. Suppose that the subroutine ROW-MAXIMAL(L_row, L_c)returns a list L, then for 1 <= i <= n,if the ith element of L is k_i, then the vertexv_{k_i'} is the farthest vertex from the vertexv_i in the convex polygon P, wherek_i' = (k_i - 1)mod(n) + 1;END.The subroutine ROW-MAXIMAL is given as follows. Here we supposethat M is a r � r submatrix of the matrix MP , and the row indices andcolumn indices of M are given by two lists Lr and Lc, respectively.Algorithm ROW-MAXIMAL(L_r, L_c)Given: two doubly-linked lists L_r and L_c containingthe indices of rows and the columns of an r byr submatrix M of the matrix M_P, respectivelyOutput: a list L of column indices such that the ithelement of L is the column index of the maximalelement in the ith row of the matrix MBEGIN1. IF L_c contains one element, return L_c directly;2. Delete every other element from the list L_r. Letthe resulting list be L_r';{ This is equivalent to deleting all rows with evenindex from the matrix M. Let the resulting matrixbe M_1. M_1 consists of the rows of M that have

ALL-FARTHEST VERTEX 139odd index. The matrix M_1 is an r/2 by r matrix. }3. Call the subroutine SQUARE(L_r', L_c);{ The algorithm SQUARE returns a list L_c' of sizer/2, which corresponds to a list of column indicessuch that these columns constitute an r/2 by r/2square matrix that contains all maximal elementsin the odd rows of the matrix M. }4. Recursively call the subroutine ROW-MAXIMAL(L_r', L_c');{ This recursive call will return a list L that containsthe column indices with which the maximal elements inthe odd rows are located. }5. With the help of the list L, determine the column indicesfor the maximal elements in the even rows of M. For this,suppose in the (2 i - 1)st row of M, the maximal elementis in the j_1th column, and in the (2 i + 1)st row of M,the maximal element is in the j_2th column, then scan theelements in the (2i)th row only from column j_1 to columnj_2, the maximal element among these elements must be themaximal element of the (2i)th row;END.Let us �rst look at the time complexity of the algorithm ROW-MAXIMAL. Step 1 and Step 2 can obviously done in time O(r), if the inputmatrix M is an r � r matrix. By the analysis of the algorithm SQUARE,Step 3 can done in time O(r). Now look at Step 5. Suppose that the list Lcontains (r=2) indices j1, j2, � � �, and jr=2, which are the column indices ofmaximal elements of odd rows of M , then since the submatrix M is mono-tone j1 � j2 � � � � � jr=2As we discussed before, to �nd the maximal element in the (2i)th row, weonly have to scan the elements in the (2i)th row from the column ji to thecolumn ji+1. Therefore, to �nd maximal elements for all even rows, we willscan at most(j2 � j1 + 1) + (j3 � j2 + 1) + � � �+ (jr=2� jr=2�1 + 1) + (r � jr=2 + 1)= r=2 + r� j1= O(r)elements. Therefore, the time for executing Step 5 is also bounded by O(r).Let the time complexity of the algorithm ROW-MAXIMAL be T (r) whenthe input is an r�r matrix, then Step 4 in the algorithm takes time T (r=2),

140 REDUCTIONSand all other steps take time O(r), so we haveT (r) � T (r=2)+ cnwhere c is a constant. It is easy to see that T (n) = O(n). That is, thealgorithm ROW-MAXIMAL takes linear time.Now we analyze the algorithm ALL-FARTHEST-VERTEX. Step 1 andStep 4 obviously take time O(n). Since the algorithm SQUARE takes timeO(n), and by the analysis above, Step 3, the algorithm ROW-MAXIMALalso takes time O(n), we conclude that the time complexity of the algorithmALL-FARTHEST-VERTEX runs in time O(n).Theorem 7.6.3 The problem ALL-FARTHEST-VERTEX for convex poly-gons can be solved in linear time.7.7 Exercises1. Give examples to show that a problem P 0 may have very high com-plexity (e.g. NP-complete) even a linear time solvable problem P islinear time reducible to P 0.2. A star-shaped polygon P = fp1; � � � ; png is a simple polygon containingat least one point q such that the segment qpi lies entirely within Pfor all 1 � i � n. The problem STAR-POLYGON is to �nd a star-shaped polygon whose vertex set is the given set of points in the plane.Show that the problem CONVEX HULL is linear time reducible to theproblem STAR-POLYGON.3. Given a star-shaped polygon P , �nd two vertices of P that are thefarthest apart.4. Give a detailed proof that the problem CONVEX HULL is linear timereducible to the problem VORONOI-DIAGRAM.5. Consider the following problem in Robotics: Let S be a set of obstacleson the plane. These obstacles are discs of the same radii. You have amobile \Robot" R which has shape of disc with a radius of 1. We wantan algorithm such that for any obstacle set S, and for any two points pand q, the algorithm will �nd a path for the robot R from position p toposition q, avoiding the obstacles. If no such path exists, the algorithm

EXERCISES 141reports accordingly. Design and analyze an algorithm for this problem.(Hint: construct the Voronoi diagram for the centers of the obstacles).6. Given a set of n points in the plane, prove that the Delaunay triangu-lation contains at most 2n� 5 vertices and at most 3n� 6 edges.7. A monotone polygon is a simple polygon whose boundary can be de-composed into two monotone chains (a chain is monoton if every ver-tical line intersects it at at most 1 point). The problem MONOTON-POLYGON is to �nd a monoton polygon whose vertex set is the givenset of points in the plane. Show that the problem CONVEX HULL islinear time reducible to the problem MONOTON-POLYGON.8. Show that the problem CONVEX HULL is linear time reducible to thefollowing problem.INTERSECTION-OF-HALF-PLANEgiven a system of N linear inequalities of the formaix+ biy + ci � 0 i = 1; 2; : : : ; N:�nd the region of the solutions of it.9. Show that the problem CONVEX HULL is linear time reducible to theproblem of constructing the convex hull of points in 3-dimension spaceeven if the points are given sorted with respect to the x-coordinates.(Recall that the convex hull computation requires the reporting ofvertices, edges, and faces that lie on the convex hull and their adjacencyrelations with respect to one another.)10. Suppose that a problem P is reducible to a problem P 0 in O(n logn)time and that the problem P 0 is solvable in time O(n logn). Is theproblem P necessarily solvable in time O(n logn)? Justfy your answer.11. Given two sets A and B, with m and n planar points, respectively.Find two points, one from each set, that are closest. (Hint: Youshould consider the following three di�erent cases: (1) m is muchlarger than n; (2) n is much larger than m; (3) m and n are of thesame order.)12. The problem All Nearest Neighbors is stated as follows: given a set Sof n points in the plane, �nd a nearest neighbor of each. Show that

142 REDUCTIONSthis problem can be reduced in linear time to the problme Voronoi-Diagram.13. It has been recently shown that triangulating a simple polygon canbe done in linear time. Use this result to show that triangulating aconnected PSLG in which each face is a simple polygon can be donein linear time.14. Consider the following problem of SECOND CLOSEST PAIR: Givena set S of n points in the plane, �nd a pair of points p1 and p2 in Ssuch that the distance between p1 and p2 is the second shortest amongall pairs of points of S. (Of course, if there are two distinct closestpairs, then either of them can be regarded as the second closest pair).Show that the problem SECOND CLOSEST PAIR can be reduced tothe problem VORONOI DIAGRAM in linear time. Thus, it can besolved in O(n logn) time.15. Design an e�cient algorithm that computes the area of an n-vertexsimple, but not necessarily convex polygon.16. Design an e�cient algorithm that �nds the second farthest pair fromamong n points in the plane.17. Design a linear time algorithm for the following problem: givenVor(S), where S is a set of n points in the plane, �nd a �-chain (i.e.,a path in Vor(S) with both ends extended to in�nity) such that eachside of the �-chain contains half of the points in S.18. The Euclidean Traveling Saleman problem (ETS) is to �nd a shortestclosed path through n given points in the plane. Show that an approx-imate ETS tour whose length is less than twice the length of a shortesttour can be constructed in time O(n logn). (Hint: reduce the problemto the problem of Euclidean Minimum Spanning Tree problem.)

Chapter 8Lower Bound TechniquesWe have discussed quite a few algorithms for geometric problems, includingconstructing convex hulls of �nite sets of points in the plane, solving prox-imity problems, �nding the intersection of geometric objects, and searchingin PSLGs. Most of these problems can be solved by brute force methodsin time O(n2) or more. Our techniques (geometric sweeping, divide andconquer, prune and search, and reduction) gives faster algorithms for solv-ing these problems. Most of our algorithms run in linear time or in timeO(n logn). For those linear time algorithms, we know that we have ob-tained asymptotically optimal solutions because even just reading the inputfor the problems takes linear time. For those O(n logn) time algorithms,however, a very natural question is whether we can further improve them,or, equivalently, are these algorithms the best possible.This question brings us to an important, deep, and in general di�cultbranch in theoretical computer science, the study of lower bounds of prob-lems. Here instead of designing a single e�cient algorithm for a given prob-lem, we want to prove that any algorithm solving the problem takes at leastcertain amount of time.Let us look at the problem of constructing convex hulls. We have dis-cussed the relationship between constructing convex hulls and sorting (seeSection 6.1), we may have realized that an algorithm faster than O(n logn)for convex hull is impossible, since as we have seen in Algorithm Analysisthat sorting n numbers requires at least
(n logn) comparisons (see, forexample, [2]), and sinceSORTING /n CONVEX HULLso the problem CONVEX HULL is at least as hard as SORTING. However,143

144 LOWER BOUNDSwe are not completely satis�ed with this result because the computationalmodel used is too restricted: it cannot even do multiplication! On theother hand, just computing the standard Euclidean distance metric requiresquadratic polynomials.In this chapter, we will introduce a general technique for deriving lowerbounds for geometric problems. We �rst look closely at the computationalmodel that can do only comparison, the linear decision tree, then extend theresult on linear decision tree to a more powerful computational model, thealgebraic decision tree. Lower bounds then are obtained on this model formost of the geometric problems we have discussed in the previous chapters.Combining these lower bounds and the algorithms we have derived, we con-clude that most of those algorithms developed in the previous chapters arein fact optimal.8.1 PreliminariesLet us �rst have a brief review of geometry. Let S be a subset of the n-dimensional Euclidean space En. S is connected if for any pair of pointsp and q of S, there is a curve C adjoining them such that C is entirelycontained in S. By the de�nition, a convex set in En is connected. Nowsuppose that W is a subset of En that is not necessarily connected, then aconnected component ofW is a maximal connected subset ofW . We will use#W to denote the number of connected components of the set W .A function f(x1; � � � ; xn) is a polynomial if f is a sum of terms of the formcxi11 xi22 � � �xinn , where c is a constant, and all ij's are non-negative integers.The degree of the term cxi11 xi22 � � �xinn is de�ned to be the number i1+i2+� � �+in. The degree of a polynomial is the maximum of the degrees of its terms.The function f is a linear polynomial if in each term of the above form, wehave ij � 1, for all 1 � j � n. An equation f(x1; � � � ; xn) = 0 with f beinga linear polynomial de�nes a hyperplane in the n-dimensional Euclideanspace En. An open inequality f(x1; � � � ; xn) > 0 (or f(x1; � � � ; xn) < 0)de�nes an open halfspace in En, with the hyperplane f(x1; � � � ; xn) = 0being its boundary. Similarly, a closed inequality f(x1; � � � ; xn) � 0 (orf(x1; � � � ; xn) � 0) de�nes a closed halfspace in En, with the hyperplanef(x1; � � � ; xn) = 0 being its boundary. It is easy to see that hyperplanes,open halfspaces, and closed halfspaces are all convex sets in En.Let S be the set of points (x1; � � � ; xn) satisfying a sequence of relations:fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

PRELIMINARIES 145gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3where all functions fi, gj , and hk , where i = 1; � � � ; m1, j = 1; � � � ; m2, andk = 1; � � � ; m3 are linear polynomials. Then S is the intersection of thehyperplanes fi = 0, 1 � i � m1, the open halfspaces gj > 0, 1 � j � m2,and the closed halfspaces hk � 0, 1 � k � m3. Since all hyperplanes, openhalfspaces, closed halfspaces are convex, by Theorem 3.1.1, the set S is alsoconvex.A problem is a decision problem if it has only two possible solutions,either the answer YES or the answer NO. Abstractly, a decision problemconsists simply of a set of instances that contains a subset called the set ofYES-instances. As we have studied in Algorithm Analysis, decision prob-lems play a very important role in the analysis of NP-completeness. Inpractice, many general problems can be reduced to decision problems suchthat a general problem and the corresponding decision problem have thesame complexity.There are certain problems where it is realistic to consider the numberof branching instructions executed as the primary measure of complexity.In the case of sorting, for example, the outputs are identical to the inputsexcept for order. It thus becomes reasonable to consider a model in whichall steps are two-way branches based on a \decision" that we should makewhen computation reaches that point.The usual representation for a program of branches is a binary tree calleda decision tree. Each non-leaf vertex represents a decision. The test repre-sented by the root is made �rst, and \control" then passes to one of its sons,depending on the outcome of the decision. In general, control continues topass from a vertex to one of its sons, the choice in each case depending onthe outcome of the decision at the vertex, until a leaf is reached. The desiredoutput is available at the leaf reached. If the decision at each non-leaf vertexof a decision tree is a comparison of a polynomial of the input variables withthe number 0, then the decision tree is called an algebraic decision tree.It should be pointed out that although the algebraic decision tree modelseems much weaker than a real computer, in fact this intuitive feeling is notvery correct. First of all, given a computer program, we can always representit by a decision tree by \unwinding" loops in the program. Secondly, theoperations a real computer can perform are essentially additions and branch-ings. All other operations are in fact done by microprograms that consists ofthose elementary operations. For example, the value of sin(x) for a number

146 LOWER BOUNDSx is actually obtained by an approximation of the Taylor's extension of thefunction sin(x). Finally, we simply ignore the computation instructions andconcentrate on only branching instructions because we are working on lowerbound of algorithms. If we can prove that for some problem, at least Nbranchings should be made, then of course, the number of total instructions,including computation instructions and branching instructions, is at leastN . Let us now give a less informal de�nition. We will concentrate on decisiontree models for decision problems.De�nition An algebraic decision tree on a set of n variables (x1; � � � ; xn) isa binary tree such that each vertex of it is labeled with a statement satisfyingthe following conditions.1. Every non-leaf statement L is of the formif f(x1; � � � ; xn) 1 0 then goto Li else goto Ljwhere f(x1; � � � ; xn) is a polynomial of x1, � � �, xn, and 1 is any com-parison relation from the set f=; >;<;�;�g. The statements Li andLj are the children of the statement L;2. Every leaf statement is either a YES or a NO answer to the decisionproblem.If all polynomials at non-leaf vertices of an algebraic decision tree arelinear polynomials, then we call it a linear decision tree.Let P be a decision problem with inputs of n real numbers. Then Pcorresponds to a subset W of the n-dimensional space En such that a point(x1; � � � ; xn) 2 En is in W if and only if the answer of the problem P to theinput (x1; � � � ; xn) is YES. Let T be an algebraic decision tree that \solves"the problem P in the following way: for any point p = (x1; � � � ; xn) 2 En,the answer of P to the input p is YES if and only if when we feed the root ofthe algebraic decision tree T with the input p, then eventually we are led toa YES leaf v in the tree T by following the decisions made on the non-leafvertices on the path from the root to the leaf v in the tree T . In this case,we also say that the algebraic decision tree T accepts the subset W in En.

8.2. ALGEBRAIC DECISION TREES 1478.2 Algebraic decision treesThe depth of a tree is the length of the longest path from the root to a leafin the tree. It is easy to see that the depth of an algebraic decision treecorresponds to the worst case time complexity of the tree. Therefore, toderive a lower bound on the worst case time complexity of a problem P , itsu�ces to derive a lower bound on the depth of the algebraic decision treesthat solve the problem P . In this section, we show a lower bound on thedepth of an algebraic decision tree, assuming that we know the number ofconnected components of the corresponding subset in En the tree accepts.We �rst observe the following simple lemma.Lemma 8.2.1 The depth of a binary tree with m leaves is at least dlogme.Now suppose that P is a decision problem, and let W be the subset ofEn that corresponds to the YES-instances of the problem P in En. Thatis, a point p = (x1; � � � ; xn) 2 En is in the set W if and only if the solutionof the problem P to the input p is YES. Let T be an algebraic decision treethat solves P , or equivalently that accepts the subset W .Suppose in some way that the number #W of the connected componentsof the set W is known. What can we say about the depth of the algebraicdecision trees that accept W? We answer this question �rst for the lineardecision tree model, then we extend the result to the algebraic decision treemodel.Theorem 8.2.2 Let W be a subset of En, and let T be a linear decisiontree of n variables that accepts the set W . Then the depth of T is at leastdlog(#W)e.proof. Every path from the root to a leaf l in T corresponds to a sequenceof conditions: fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:1)hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3which are the testings occurring on the path. Each of these functions is alinear polynomial since we assume that the tree T is a linear decision tree.If we feed the root with a point p = (x1; � � � ; xn) in En, then the point peventually goes to the leaf l if and only if the coordinates (x1; � � � ; xn) of p

148 LOWER BOUNDSsatis�es all the conditions in (8.1). Therefore, the leaf l corresponds to a setSl of points in En that satisfy all the conditions in (8.1). Thus the set Slis the intersection of the hyperplanes, the open halfspaces, and the closedhalfspaces represented by these conditions. By the discussion we gave inthe last section, we conclude that the set Sl is convex. Consequently, Sl isconnected.Now let l be a YES leaf, then the corresponding set Sl is a subset of theset W . Since Sl is connected, by the de�nition of a connected componentthat a connected component of W is a maximal connected subset of W , Slmust be entirely contained in a single connected component ofW . Therefore,each YES leaf of the linear decision tree T only accepts points in a singleconnected component of W . Since W has #W connected components, andeach point of W should be accepted by some YES leaf of T , we concludethat the tree T contains at least #W YES leaves. Consequently, the numberof leaves of T is at least #W . Now by Lemma 8.2.1, the depth of the lineardecision tree T is at least dlog(#W)e.The linear decision tree model seems too restricted (people would neverbe happy if you tell them that their computers cannot do multiplication).It is desired to extend the result above for the linear decision tree model tothe algebraic decision tree model. Let us see what is the obstacle to such anextension. Suppose that an algebraic decision tree T accepts a subset W ofEn. Each YES leaf l of T accepts a subset Sl of the set W . The subset Sl isagain the intersection of the subsets presented by the conditions appearingon the path from the root to the leaf l in the tree T . However, since thepolynomials at the non-leaves of T are not necessarily linear polynomials,the set Sl may be not connected.1 Therefore, each leaf now can accept pointsfrom many di�erent connected components of W . Suppose that each leafcan accept points from at most c connected components, then the only thingwe can conclude is that there are at least #W=c YES-leaves. Therefore, byLemma 8.2.1 again, we conclude that the depth of T is at least dlog(#W=c)e.However, if the number c is of the same order as #W , then we will obtain atrivial constant lower bound on the depth of the algebraic decision tree T .However, if the number c above is bounded by some constant, thendlog(#W=c)e will have the same order as dlog(#W)e, thus again we ob-1For example, in the space E2, even a single condition with a non-linear polynomialx2 � y2 � 1de�nes a non-connected area.

DECISION TREES 149tain a nontrivial lower bound on the depth of the algebraic decision treeT . Therefore, we would like to know under what conditions the number c,i.e., the maximum number of connected components whose points can beaccepted by a single leaf of an algebraic decision tree, can be bounded. Hereis a condition:Theorem 8.2.3 (Milnor-Thom) Let S be the set of points in the n-dimensional Euclidean space En de�ned by the conditionsfi(x1; � � � ; xn) = 0 i = 1; � � � ; h (8:2)where all fi, 1 � i � h, are polynomials of degree at most d. Then thenumber #S of connected components of the set S is bounded by d(2d� 1)n�1,a number that is independent of the number of the conditions in (8.2).The above theorem is a deep result in algebraic geometry. However, theidea of the theorem is fairly intuitive: a polynomial of small degree de�nesa subset of \simple shape" in a Euclidean space, and the intersection of\simple-shape" subsets in a Euclidean space cannot have a very complicatedshape, that is, it cannot have many pieces of connected components.Unfortunately, Milnor-Thom Theorem cannot be used directly to ouralgebraic decision trees: it only covers the case of equalities, while our al-gebraic decision trees also have inequalities. Thus it is necessary to extendMilnor-Thom Theorem to cover inequalities.Lemma 8.2.4 Let S be the set of points in the n-dimensional Euclideanspace En de�ned by the following conditionsfi(x1; � � � ; xn) = 0 i = 1; � � � ; m1gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:3)hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3where all fi, gj, and hk, 1 � i � m1, 1 � j � m2, and 1 � k � m3, arepolynomials of degree at most d. Then the number of connected componentsof the set S is bounded by d(2d� 1)n+m2+m3�1.proof. Suppose that S has r distinct connected components Ci, 1 � i � r,arbitrarily pick a point pi = (x(i)1 ; � � � ; x(i)n) from the connected componentCi, 1 � i � r. Now consider the rm2 real numbersgj(x(i)1 ; � � � ; x(i)n) 1 � j � m2; 1 � i � r

150 LOWER BOUNDSNote that all these rm2 real numbers are positive since all these pointspi = (x(i)1 ; � � � ; x(i)n), 1 � i � r, are in S. Let � be the smallest real numberin these rm2 real numbers. Note that � > 0.Consider the set S 0 in En de�ned by the following conditionsfi(x1; � � � ; xn) = 0 i = 1; � � � ; m1gj(x1; � � � ; xn)� � � 0 j = 1; � � � ; m2 (8:4)hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3We claim that the number of connected components of the set S 0 is at leastas large as the number of connected components of the set S. In fact, theset S 0 is a subset of the set S since a point satisfying the conditions in(8.4) obviously satis�es the conditions in (8.3). Therefore, no two connectedcomponents of the set S can be \merged" into a single connected componentsof the set S 0. Moreover, no connected components of S completely disappearin S 0, since for each connected component Ci of S, at least the chosen point pisatis�es all conditions in (8.4), by the de�nition of the number �. Therefore,instead of bounding the number of connected components of the set S, whichis de�ned by the equalities, the open inequalities, and the closed inequalitiesof (8.3), we can work on a bound of the number of connected components ofthe set S 0, which is de�ned by the equalities and the closed inequalities of(8.4).The technique of converting a closed inequality into an equality is well-known in linear programming. For the set S 0 de�ned by the conditionsin (8.4), we introduce m2 + m3 new variables yj and zk, 1 � j � m2,1 � k � m3, and construct the following m1 + m2 + m3 conditions withn+m2+m3 variables xi, yj and zk , 1 � i � n, 1 � j � m2, and 1 � k � m3:fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1gj(x1; � � � ; xn)� � � y2j = 0 j = 1; � � � ; m2 (8:5)hk(x1; � � � ; xn)� z2k = 0 k = 1; � � � ; m3Let S 00 be the subset of En+m2+m3 that is de�ned by the conditions in(8.5). It is easy to see that the number #S 00 of connected componentsof S 00 is the same as the number #S 0 of connected components of S 0,which is at least as large as the number #S of connected componentsof the set S. By Milnor-Thom Theorem, the number #S 00 is boundedby d(2d� 1)n+m2+m3�1. Therefore, the number #S is also bounded byd(2d� 1)n+m2+m3�1. This completes the proof.

DECISION TREES 151Now similar as the proof for the case of linear decision trees, we can provea lower bound on the depth of general algebraic decision trees.De�nition An algebraic decision tree is of order d if all polynomials oc-curring in the non-leaves of the tree have degree at most d.Theorem 8.2.5 (Ben-or's Theorem) Let W be a subset of En and let dbe a �xed integer. Then any order d algebraic decision tree T that acceptsW has depth at least
(log#W � n).proof. Suppose that T is an order d algebraic decision tree that acceptsthe set W . Let l be a YES leaf of the tree T that is associated with thefollowing conditions:fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:6)hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3where all fi, gj , and hk , 1 � i � m1, 1 � j � m2, and 1 � k � m3, arepolynomials of degree at most d.Let Sl be the set accepted by the leaf l, that is, Sl is the set in En de�nedby the conditions in (8.6). Since m1 + m2 + m3 is the length of the pathfrom the root of T to the leaf, m1 +m2 +m3 is bounded by the depth h ofthe algebraic decision tree T .By Lemma 8.2.4, the number of connected components of the set Sl isbounded by d(2d� 1)n+m2+m3�1, which is bounded by d(2d� 1)n+h�1. Nowsince the set W has #W connected components, and each point of W mustbe accepted by some leaf of T , we conclude that the algebraic decision treeT has at least #W=(d(2d� 1)n+h�1 leaves. By Lemma 8.2.1, the depth h ofthe tree T is at least log(#Wd(2d� 1)n+h�1)From this, we geth � log(#W)� log d� (n+ h� 1) log(2d� 1)That ish � 11 + log(2d� 1)(log(#W)� n log(2d� 1) + log((2d� 1)=d))

152 LOWER BOUNDSWhen the number d is a �xed constant, we get h =
(log(#W)�n).Therefore, to derive the lower bound of a problem, we may consider thecorresponding set W in the space En for all n, then compute the number ofconnected components of the set W . We will use this technique to derivenon-trivial lower bounds for several problems.8.3 Proving lower bounds directlyWith the lower bound on the depth of algebraic decision trees obtained in thelast section, now we are ready to derive a few lower bounds for problems, in-cluding the EXTREME-POINTS, ELEMENT-UNIQUENESS, UNIFORM-GAP, and SET-DISJOINTNESS.The basic idea is as follows: given a decision problem P , we try toformulate the YES-instances of P with n parameters into a subset W ofthe n-dimensional Euclidean space En. Then we derive a lower bound Bon the number of connected components of the subset W . Now by Ben-or'stheorem, the logarithm of B gives us a lower bound on the depth of algebraicdecision trees that solve the problem P , that is in consequence a lower boundon the computational time of the algebraic decision trees solving the problemP .8.3.1 Element uniquenessWe start with a simplest example, the problem of ELEMENT-UNIQUENESS. The problem is formally de�ned as follows.ELEMENT-UNIQUENESSInput: A set S of n real numbers.Question: Are there two numbers in S equal?We derive a lower bound for the problem ELEMENT-UNIQUENESS byusing Ben-or's theorem (Theorem 8.2.5) directly.Theorem 8.3.1 Any bounded order algebraic decision tree that solves theproblem ELEMENT-UNIQUENESS runs in time at least
(n logn).proof. Adopting the standard technique, we �rst consider the number of

PROVING DIRECTLY 153connected components of the following set in the n-dimensional Euclideanspace. W = f(x1; � � � ; xn) j all xi's are distinctgA point (x1; � � � ; xn) in n-dimensional Euclidean space is a YES-instance ofthe problem ELEMENT-UNIQUENESS if and only if the point belongs tothe set W .Fix a point (x1; � � � ; xn) in n-dimensional Euclidean space such that allxi's are distinct. Consider the n! points in the n-dimensional Euclidean spaceobtained by permuting (x1; � � � ; xn).P� = (x�(1); � � � ; x�(n)) � is a permutation of (1; � � � ; n)Clearly, all these n! points are in the setW . We claim that no two of thesen! points share the same connected component of W . In fact, suppose that� and �0 are two di�erent permutations of (1; � � � ; n) and that the pointsP� and P�0 are in the same connected component of W , then there is acontinuous curve C in W connecting P� and P�0 . That is, we can �nd ncontinuous functions fi(x), 1 � i � n, such thatfi(0) = x�(i) and fi(1) = x�0(i) for 1 � i � nSince � and �0 are di�erent permutations of (1; � � � ; n), we can �nd anindex k such that x�(k) is the smallest number such that x�(k) 6= x�0(k).Suppose that x�(k) = x�0(h) for some index h 6= k, then we also have x�(h) 6=x�0(h). So x�(k) < x�(h) and x�0(k) > x�0(h)by the de�nition of the index k.Since fk(x) and fh(x) are continuous functions andfk(0) = x�(k) fk(1) = x�0(k) fh(0) = x�(h) fh(1) = x�0(h)Thus fk(0) < fh(0) and fk(1) > fh(1)there must be a real number r in the interval (0; 1) such that fk(r) = fh(r).However, by our assumption, the point (f1(r); f2(r); � � � ; fn(r)) on the curveC is in the set W , so all numbers fi(r) are distinct. In particular, thenumbers fk(r) and fh(r) are distinct. This contradiction proves that eachpoint P� is in a di�erent connected component of the set W .

154 LOWER BOUNDSThus the set W has at least n! connected components. So #W � n!.Now since n! = 1 � 2 � � � � � n > n2 � (n2 + 1) � � � �n � (n2)n2So we havelog(#W) � log(n!) � log (n2)n2 = n2 log(n2) =
(n logn)By Ben-or's theorem (Theorem 8.2.5), any bounded order algebraic decisiontree that solves the problem ELEMENT-UNIQUENESS runs in time at least
(log(#W)� n) =
(n logn)8.3.2 Uniform gapGiven a set S of real numbers, we say that numbers x and y are consecutiveif y is the smallest number in S � fxg that is not less than x.The UNIFORM �-GAP problem is stated as follows, where � is a �xedreal number.UNIFORM �-GAPInput: A set S of n real numbers.Question: Are the distances between consecutive numbers in S uni-formly equal to �?Theorem 8.3.2 Any bounded order algebraic decision tree that solves theproblem UNIFORM �-GAP runs in time at least
(n logn).proof. The proof is quite similar to the proof of Theorem 8.3.1.Consider the following set in the n-dimensional Euclidean spaceW = f(x1; � � � ; xn) j (x1; � � � ; xn) is a YES-instance of UNIFORM �-GAPgThus a point (x1; � � � ; xn) in n-dimensional Euclidean space is in the setW ifand only if there is a permutation � of (1; � � � ; n) such that x�(i)+� = x�(i+1),for 1 � i � n � 1.

PROVING DIRECTLY 155Fix a point (x1; � � � ; xn) in n-dimensional Euclidean space such that xi+� = xi+1, for all 1 � i � n � 1. Consider the n! points in the n-dimensionalEuclidean space obtained by permuting (x1; � � � ; xn)P� = (x�(1); � � � ; x�(n)) � is a permutation of (1; � � � ; n)Clearly, all these n! points are in the set W . We claim that no two of thesen! points share the same connected component of W . In fact, suppose that� and �0 are two di�erent permutations of (1; � � � ; n) and that the pointsP� and P�0 are in the same connected component of W , then there is acontinuous curve C in W connecting P� and P�0 . That is, we can �nd ncontinuous functions fi(x), 1 � i � n, such thatfi(0) = x�(i) and fi(1) = x�0(i) for 1 � i � nExactly the same as in the proof of Theorem 8.3.1, we can �nd two indicesk and h such that fk(0) < fh(0) and fk(1) > fh(1)So there exists a real number r in the interval (0; 1) such that fk(r) =fh(r). But then the point (f1(r); f2(r); � � � ; fn(r)) on the curve C cannotbe in the set W since the distance between the numbers fk(r) and fh(r)is less than �. This contradiction proves that the set W has at least n!connected components. By Ben-or's theorem (Theorem 8.2.5), any boundedorder algebraic decision tree that solves the problem UNIFORM �-GAP runsin time at least
(log(#W)� n) =
(n logn)8.3.3 Set disjointnessThe third problem we study is the following problem.SET-DISJOINTNESSGiven two sets X = fx1; � � � ; xng and Y = fy1; � � � ; yng of real numbers,do they have an empty intersection?For each instance (X; Y) of the problem SET-DISJOINTNESS, whereX = fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng, we associate it with a point

156 LOWER BOUNDSin the 2n-dimensional Euclidean space E2n:(x1; y1; x2; y2; � � � ; xn; yn)This mapping gives us a one-to-one correspondence between the points inE2n and the instance of size n of the problem SET-DISJOINTNESS if wesuppose that the sets X and Y are \ordered sets". (We call (X; Y) aninstance of size n if both the sets X and Y contain n real numbers.) LetW be the subset of E2n that corresponds to the YES-instances of size n ofthe problem SET-DISJOINTNESS. We �rst prove that W has at least n!connected components.Fix two setsX = (x1; x2; � � � ; xn) and Y = (y1; y2; � � � ; yn) of real numberssuch that x1 > y1 > x2 > y2 > � � � > xn > ynThen (X; Y) is a YES-instance of the problem SET-DISJOINTNESS whichcorresponds to a point p = (x1; y1; x2; y2; � � � ; xn; yn)in the 2n-dimensional Euclidean space E2n. Thus the point p is in the setW . Consider the n! points in E2n that are obtained by permuting the ncomponents in p with even indices. That is, consider the n! pointsp� = (x1; y�(1); x2; y�(2); � � � ; xn; y�(n))where � is a permutation of (1; 2; � � � ; n).Clearly, all these n! points p� are in the set W . We claim that no two ofthese n! points share the same connected component of W . In fact, supposethat � and �0 are two di�erent permutations of (1; � � � ; n) and that the pointsp� and p�0 are in the same connected component of W , then there is acontinuous curve C in W connecting p� and p�0 . That is, we can �nd 2ncontinuous functions hi(t), fi(t), 1 � i � n, such thathi(0) = hi(1) = xi for 1 � i � nfi(0) = y�(i) and fi(1) = y�0(i) for 1 � i � nSince � and �0 are di�erent permutations of (1; � � � ; n), we can �nd an index ksuch that y�(k) is the smallest number in (y1; � � � ; yn) such that y�(k) 6= y�0(k).Since y�(k) is the smallest in (y1; � � � ; yn), we have y�(k) < y�0(k). By thede�nition of our point p, there must be an xl such thaty�(k) < xl < y�0(k)

PROVING DIRECTLY 157Now consider the function F (t) = hl(t)� fk(t), we haveF (0) = hl(0)� fk(0) = xl � y�(k) > 0and F (1) = hl(1)� fk(1) = xl � y�0(k) < 0The function F (t) is continuous because hl(t) and fk(t) are. Therefore, thereis a real number � such that 0 < � < 1 andF (�) = hl(�)� fk(�) = 0That is, hl(�) = fk(�). However, by our assumption, the pointp0 = (h1(�); f1(�); h2(�); f2(�); � � � ; hn(�); fn(�))on the curve C is in the setW , so every component hi(�) is distinct from anycomponent fj(�) in the point p0. In particular, the numbers hl(�) and fk(�)are distinct. This contradiction proves that each point P� is in a di�erentconnected component of the set W .Thus the set W has at least n! connected components. So #W � n!.By Ben-or's theorem (Theorem 8.2.5), any bounded order algebraic decisiontree that solves the problem SET-DISJOINTNESS runs in time at least
(log(#W)� n) =
(n logn)The above discussion gives the following theorem.Theorem 8.3.3 Any bounded order algebraic decision tree that solves theproblem SET-DISJOINTNESS runs in time at least
(n logn).8.3.4 Extreme pointsThe above three problems are combinatorial problems. In this subsection,we derive a lower bound for a geometric problem that is called EXTREME-POINTS problem, which is closed related to the problem CONVEX-HULL.The proof is again similar to those given above, though slightly more com-plicated.De�nition Let S be a set of points in the plane E2. A point p 2 S is anextreme point of S if p is on the boundary of the convex hull CH(S), and p

158 LOWER BOUNDSis not an interior point of any boundary edge of CH(S).The CONVEX-HULL problem is to �nd all extreme points of a givenset S in the counterclockwise order with respect to some interior point ofCH(S). The following decision problem has an obvious relationship with theCONVEX-HULL problem.EXTREME-POINTSInput: A list S of n points in the plane E2.Output: Are all points in S extreme points of S?The EXTREME-POINTS problem seems \simpler" than the CONVEX-HULL problem since it is not required to check the counterclockwise order ofthe extreme points on the boundary of the convex hull CH(S). We will see,however, that it takes the same amount of time to solve the EXTREME-POINTS problem as to solve the CONVEX-HULL problem.A point p in the plane E2 can be uniquely represented by a tuple of tworeal numbers p = (x; y), where x and y are the x- and y- coordinates of p,respectively. Similarly, an ordered list of 2n points (p1; � � � ; p2n) in the planeE2 can be uniquely represented by a tuple of 4n real numbers (p1; � � � ; p2n) =(x1; � � � ; x4n), where pi = (x2i�1; x2i), for 1 � i � n. Therefore, each 2n-point instance (p1; � � � ; p2n) for the EXTREME-POINTS problem uniquelycorresponds to a point in the 4n-dimensional space E4n. Conversely, anypoint (x1; � � � ; x4n) in the space E4n can be regarded uniquely as a 2n-pointinstance for the EXTREME-POINTS problem, if we let pi = (x2i�1; x2i), for1 � i � 2n. Therefore, the set of 2n-point YES-instances of the EXTREME-POINTS problem is a subset of the 4n-dimensional space E4n. Note that aset of 2n points S = fp1; � � � ; p2ng in the plane E2 can correspond to up to(2n)! di�erent ordered lists, thus (2n)! di�erent points in the space E4n, ifwe consider all permutations of these 2n points. Thus any set of 2n pointsin the plane makes (2n)! di�erent instances for the EXTREME-POINTSproblem.Lemma 8.3.4 Let W be the subset of the space E4n that corresponds to theset of 2n-point YES-instances for the EXTREME-POINTS problem. ThenW has at least n! connected components.proof. We construct n! points in the set W and prove that no two ofthese points are contained in the same connected component of the set W .

PROVING DIRECTLY 159Let I = (p1; q1; p2; q2; � � � ; pn; qn) be a counterclockwise sequence of 2ndistinct extreme points of a convex polygon. Then I 2 E4n is a point in theset W . Consider the following n! di�erent sequences of 2n-point instancesof the problem EXTREME-POINTS:Ii = (p1; q(i)1 ; p2; q(i)2 ; � � � ; pn; q(i)n) i = 1; � � � ; n! (8:7)where each sequence (q(i)1 ; q(i)2 ; � � � ; q(i)n) is a permutation of the sequence(q1; q2; � � � ; qn). Each instance Ii corresponds to a point in the space E4n.Since each instance Ii shares the same set of points fp1; q1; � � � ; pn; qng in theplane E2 with the instance I and the I is a YES-instance of the problemEXTREME-POINTS, the instance Ii should also be a YES-instance of theproblem EXTREME-POINTS (i.e., every point in Ii is an extreme point).That is, the instance Ii, for 1 � i � n!, corresponds to a point in the set W .Now we prove that any pair of instances (8.7) are in two di�erent con-nected components of the setW . Suppose otherwise, there are two instancesIi and Ij in (8.7) that are two points in E4n and in the same connected com-ponent of the set W . Then there is a continuous curve C in E4n that adjoinsthe two points Ii and Ij . More precisely, there are 2n continuous functionson the interval [0, 1]S1(t); T1(t); S2(t); T2(t); � � � ; Sn(t); Tn(t)such that Sh(0) = Sh(1) = ph, and Th(0) = q(i)h and Th(1) = q(j)h , forh = 1; 2; � � � ; n, and for all t 2 [0; 1], the point(S1(t); T1(t); S2(t); T2(t); � � � ; Sn(t); Tn(t))is in the set W .Since Ii and Ij are two di�erent instances in (8.7), there must be an indexk such that q(i)k and q(j)k are di�erent points in the set fq1; q2; � � � ; qng. With-out loss of generality, suppose the q(i)k = q1 then q(j)k 6= q1. Then the signedtriangle area4(p1q(i)k p2) is positive while the signed triangle area4(p1q(j)k p2)is negative, because the only point q in fq1; q2; � � � ; qng that makes p1qp2 aleft turn is the point q1. Since S1(t), Tk(t), and S2(t) are continuous func-tions of t, the signed triangle area 4(S1(t)Tk(t)S2(t)) is also a continuousfunction of the variable t. Moreover, since we have 4(S1(0)Tk(0)S2(0)) =4(p1q(i)k p2) > 0 and 4(S1(1)Tk(1)S2(1)) = 4(p1q(j)k p2) < 0, there must be

160 LOWER BOUNDSa number t0 2 (0; 1) such that 4(S1(t0)Tk(t0)S2(t0)) = 0. That is, on thecurve C in E4n, there is a pointI0 = (S1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0))such that S1(t0), Tk(t0), and S2(t0) are three co-linear points in the planeE2. Therefore, at least one point in the set fS1(t0); Tk(t0); S2(t0)g is not anextreme point of the set of 2n pointsfS1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0)gThus the instanceI0 = (S1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0))should be a NO-instance of the problem EXTREME-POINTS, so I0 62 W .This contradicts the assumption that the entire curve C is contained in theset W . The contradiction proves that no two points in (8.7) can be in thesame connected component of the set W . Since there are n! di�erent pointsin (8.7), we conclude that the set W has at least n! connected components.We say that an algebraic decision has a bounded order if the order ofthe tree is bounded by a constant that is independent of the input size ofthe tree. Now combining the lemma above with Theorem 8.2.5, we easilyobtained a lower bound for the problem EXTREME-POINTS.Theorem 8.3.5 Any bounded order algebraic decision tree that solves theproblem EXTREME-POINTS runs in time at least
(n logn) on an inputof n points in the plane.proof. Remember that we are working on worst case time complexity.Therefore, we only have to show that for some integer n, the theorem is true.Let T be an order d algebraic decision tree that solves the problemEXTREME-POINTS with inputs of n = 2m points in the plane. Thusthe number of input variables of the tree T is 2n = 4m. Let W be theset of points in the space E4m that are the YES-instances of the problemEXTREME-POINTS. Then the algebraic decision tree T accepts the setW .By Lemma 8.3.4, W has at least m! connected components. Now by Theo-rem 8.2.5, the depth of the tree T is at least
(log(#W) � 4m). Since wehave m! = 1 � 2 � � �m > m2 � (m2 + 1)(m2 + 2) � � �m > (m2)m2

LOWER BOUNDS BY REDUCTION 161Therefore, log(#W) � log(m!) � log((m2)m2) = m2 log(m2)Now the depth of the algebraic decision tree T is
(log(#W) � 4m) =
(m logm) =
(n logn).8.4 Deriving lower bounds by reductionsThe techniques used in the last section for deriving lower bounds on problemsseem impressive. Such elegant techniques were developed and such deepmathematics results were used in deriving the lower bounds. It is not clearhow these techniques can be generalized to deriving lower bounds for generalgeometric problems. Fortunately, we do not have to do this very often. Forsome geometric problems, the lower bounds can be derived by \reducing"the problems to some other problems for which the lower bounds are known.Let us �rst review the concept of problem reductions. We say that aproblem P can be reduced to a problem P 0 in time O(t(n)), express it asP /t(n) P 0, if there is an algorithm T solving the problem P in the followingway.1. For any input x of size n to the problem P , convert x in time O(t(n))into an input x0 to the problem P 0;2. Call a subroutine to solve the problem P 0 on input x0;3. Convert in time O(t(n)) the solution to the problem P 0 on input x0into a solution to the problem P on input x.We have seen in Chapter 6 that the technique of reduction is very usefulin designing e�cient algorithms for geometric problems. In this section, wewill study how to use this technique to derive lower bounds for geometricproblems. The following theorem plays an important role in our discussion.Theorem 8.4.1 Suppose that a problem P is reduced to a problem P 0 inlinear time P /n P 0If it is known that solving the problem P takes at least
(T (n)) time, thensolving the problem P 0 also takes at least
(T (n)) time. In other words, a

162 LOWER BOUNDSlower bound of the time complexity of the problem P is also a lower boundof the time complexity of the problem P 0.proof. Suppose otherwise, the problem P 0 can be solved in time T1(n),with T1(n) = o(T (n)). Then by Lemma ??, the problem P can also besolved in time O(T1(n)). But this would imply that the problem P can besolved in time o(T (n)), contradicting our assumption that T (n) is a lowerbound on the time complexity of the problem P .We �rst use Theorem 8.4.1 to derive a lower bounds for the problemCONVEX-HULL.Theorem 8.4.2 Any bounded order algebraic decision tree that constructsthe convex hull for a set of points in the plane runs in time at least
(n logn)on an input of n points in the plane.proof. By Theorem 8.3.5, any bounded order algebraic decision tree thatsolves the problem EXTREME-POINTS runs in time at least
(n logn).According to Theorem 8.4.1, it will su�ce to prove the theorem by showingthat EXTREME-POINTS/n CONVEX-HULLWe give this reduction by the following algorithm.Algorithm REDUCTION I{ Reduce the problem EXTREME-POINTS to the problemCONVEX-HULL. }BEGIN1. Given an input S of the problem EXTREME-POINTS,where S is a set of n points in the plane, passthe set S directly to the problem CONVEX-HULL;2. The solution of CONVEX-HULL to the set S is theconvex hull CH(S) of the set S. Pass CH(S)back to the problem EXTREME-POINTS;3. If the convex hull CH(S) has n hull vertices,and no hull vertex is at the middle of thestraight line segment passing through its twoneighbors, then the answer of the problemEXTREME-POINTS to the input S is YES;Otherwise, the answer should be NO.

LOWER BOUNDS BY REDUCTION 163END.Since both Step 1 and Step 3 take at most time O(n), the above algo-rithm is a linear time reduction of the problem EXTREME-POINTS to theproblem CONVEX-HULL.Thus constructing convex hulls of sets of points in the plane takes timeat least
(n logn). This result implies that many algorithms we discussedbefore for construction of convex hulls, including Graham Scan, MergeHull,Kirkpatrick-Seidel algorithm, are optimal.As we have discussed in the last chapter, the problem CONVEX-HULLcan be reduced to the problem SORTING in time O(n). By Theorem 8.4.1and Theorem 8.4.2, we also obtainTheorem 8.4.3 Any bounded order algebraic decision tree sorting n realnumbers runs in time at least
(n logn).This theorem is stronger than the one we got in Algorithm Analysis. InAlgorithm Analysis, it is proved that a linear decision tree model that sortsruns in time
(n logn). On the other hand, Theorem 8.4.3 claims that eventhe computation model is allowed to do multiplication, it still needs at least
(n logn) time to sort.We have seen that many proximity problems can be solved in timeO(n logn). Now we prove that our algorithms for these problems are infact optimal.We start with the two whose lower bound is easily obtained from theproblem SORTING: EUCLIDEAN-MINIMUM-SPANNING-TREE (EMST)and TRIANGULATION. For this, we �rst prove a simple lemma.Lemma 8.4.4 Let S be a set of n real numbers x1, x2, � � �, xn. If S is givenin such a way that for each 1 � k � n, the number xk is companied by anindex Ik such that xIk is the smallest number in S that is larger than xk.Then the set S can be sorted in linear time.proof. To sort the set S, we �rst scan the set S to �nd the minimumnumber xk1 in S. Since xk1 is companied by an index k2 = Ik1 such that xk2is the smallest number in S that is larger than xk1 , xk2 must be the secondsmallest number in S. Moreover, since we know the index k2, we can getxk2 and put it immediately after xk1 in constant time. In general, suppose

164 LOWER BOUNDSwe have obtained xki that is the ith smallest number in S. Then since xki iscompanied by an index ki+1 = Iki such that xki+1 is the smallest number inS that is larger than xki , xki+1 is the (i+1)st smallest number in S, and wecan get xki+1 and put it immediately after xki in constant time. It is clearthat after n�1 such iterations, we reach the largest number in S and obtaina sorted list of the numbers in S. Since each iteration takes only constanttime, we conclude that the set S is sorted in linear time.We �rst consider the problem EMST.Lemma 8.4.5 SORTING can be reduced to EMST in linear time.proof. Given a set S of n real numbers x1, x2, � � �, xn, which is aninstance of SORTING, we construct an instance S 0 of EMST which is theset of n points (x1; 0); (x2; 0); � � � ; (xn; 0)in the plane. Moreover, for each 1 � i � n, we attach an index i to the point(xi; 0). It is easy to see that the solution to EMST on the input S 0 is a chainA0 of n� 1 segments in the plane, such that a segment (xi; 0)(xj; 0) is in A0if and only if the number xj is the smallest number in S that is larger thanxi. Now pass the chain A0 back to SORTING. For each segment (xi; 0)(xj; 0)in A0, we construct a pair (xi; j) (remember that the index j is attached tothe point (xj ; 0)). Using these pairs, we can construct the sorted list of S inlinear time, by Lemma 8.4.4. This provesSORTING /n EMSTThis Lemma, together with Theorem 8.4.3 and Theorem 8.4.1 gives usthe following theorem.Theorem 8.4.6 Any bounded order algebraic decision tree that constructsthe Euclidean minimum spanning tree for a set of n points in the plane runsin time at least
(n logn).Therefore, the algorithm presented in Section 6.4 that constructs theEuclidean minimum spanning tree for sets of points in the plane is optimal.Now we consider the problem TRIANGULATION.

LOWER BOUNDS BY REDUCTION 165Lemma 8.4.7 SORTING can be reduced to TRIANGULATION in lineartime.proof. The proof is very similar to the proof of Lemma 8.4.5. Given aset S of n real numbers x1, x2, � � �, xn, we construct a set S 0 of n+ 1 pointsin the planeq = (x1; 2); p1 = (x1; 0); p2 = (x2; 0); � � � ; pn = (xn; 0)It is easy to see that the set S 0 has a unique triangulation that consists ofthe n segments qpi for 1 � i � n, and the n � 1 segments pipj where thenumber xj is the smallest number in S that is larger than xi.Now using the similar argument as the one we used in the proof ofLemma 8.4.5, we conclude that we can construct the sorted list of S fromthe triangulation of S 0 in linear time.Theorem 8.4.8 Any bounded order algebraic decision tree that constructsthe triangulation for a set of n points in the plane runs in time at least
(n logn).Thus the problem TRIANGULATION also has an optimal algorithm,which was presented in Section 6.3.A simple generalization of the problem TRIANGULATION is the prob-lem CONSTRAINED-TRIANGULATION, as introduced in Section 3.4. Alower bound for the CONSTRAINED-TRIANGULATION can be easily ob-tained from the lower bound of TRIANGULATION.Theorem 8.4.9 Any bounded order algebraic decision tree solving the prob-lem CONSTRAINED TRIANGULATION runs in time at least
(n logn).proof. It is easy to prove thatTRIANGULATION /n CONSTRAINED TRIANGULATIONIn fact, every instance of the problem TRIANGULATION, which is aset S of n points in the plane, is an instance G = (S; �) of the problemCONSTRAINED TRIANGULATION, in which the set of segments is empty.Since the problem TRIANGULATION has a lower bound
(n logn),by Theorem 8.4.1, the problem CONSTRAINED TRIANGULATION has alower bound
(n logn).

166 LOWER BOUNDSTo derive lower bounds for the problems CLOSEST-PAIR and ALL-NEAREST-NEIGHBORS, we use the lower bound for the problemELEMENT-UNIQUENESS, derived in the last section.Theorem 8.4.10 Any bounded order algebraic decision tree �nding the clos-est pair for a set of n points in the plane runs in time at least
(n logn).proof. We prove thatELEMENT-UNIQUENESS /n CLOSEST-PAIRGiven a set S of n real numbers x1, � � �, xn, we construct an instance forCLOSEST-PAIR: (x1; 0); (x2; 0); � � � ; (xn; 0)which is a set S 0 of n points in the plane. Clearly, all elements of S aredistinct if and only if the closest pair in S 0 does not consist of two identi-cal points. So the problem ELEMENT-UNIQUENESS is reducible to theproblem CLOSEST-PAIR in linear time. Now the theorem follows fromTheorem 8.3.1 and Theorem 8.4.1.Since it is straightforward thatCLOSEST-PAIR /n ALL-NEAREST-NEIGHBORSby Theorem 8.4.10 and Theorem 8.4.1, we also obtain the following theorem.Theorem 8.4.11 Any bounded order algebraic decision tree �nding thenearest neighbor for each point of a set of n points in the plane runs intime at least
(n logn).Thus the algorithms we derived in Section 6.2 for the problemsCLOSEST-PAIR and ALL-NEAREST-NEIGHBORS are also optimal.To discuss the lower bound on the time complexity of the problemMAXIMUM-EMPTY-CIRCLE, we use the
(n logn) lower bound for theproblem UNIFORM-GAP, derived in the last section.Theorem 8.4.12 Any bounded order algebraic decision tree that constructsa maximum empty circle for a set of n planar points runs in time at least
(n logn).

LOWER BOUNDS BY REDUCTION 167proof. We show thatUNIFORM-GAP /n MAXIMUM-EMPTY-CIRCLEGiven a set S of n real numbers x1, � � �, xn and another real number �,which is an instance of the problem UNIFORM-GAP, we construct a set S 0of n planar points (x1; 0); (x2; 0); � � � ; (xn; 0)which is an instance of the problem MAXIMUM-EMPTY-CIRCLE.Note that the diameter d of the maximum empty circle of S 0, which ispart of the solution of MAXIMUM-EMPTY-CIRCLE on the input S 0, isthe maximum distance of two consecutive numbers in the set S. Therefore,if d 6= �, the S is not a YES-instance of UNIFORM-GAP. However, d = �does not imply that S is a YES-instance of UNIFORM-GAP since someconsecutive numbers could have distance less than �. To make sure thatevery pair of consecutive numbers has distance exactly �, we scan the setS to �nd the maximum number xmax and the minimum number xmin in S.Now note that S is a YES-instance of UNIFORM-GAP if and only ifd = � and xmax� xmin = (n� 1)�Therefore, given the diameter d of the maximum empty circle of S 0, a cor-rect solution to UNIFORM-GAP on the input S can be obtained in lin-ear time. This proves that UNIFORM-GAP is reducible to MAXIMUM-EMPTY-CIRCLE in linear time.By Theorem 8.3.2 and Theorem 8.4.1, a lower bound on the time com-plexity of the problem MAXIMUM-EMPTY-CIRCLE is
(n logn).Therefore, our algorithm in Section 6.5 for �nding the maximum emptycircle given a set of points in the plane is also optimal.We have presented an O(n logn) time algorithm for the FARTHEST-PAIR problem in Section 3.3. We now prove that this algorithm is op-timal by showing a lower bound on the time complexity of the problem.For this, we make use of the O(n logn) lower bound for the problem SET-DISJOINTNESS.Theorem 8.4.13 Any bounded order algebraic decision tree that solves theproblem FARTHEST-PAIR runs in time at least
(n logn).

168 LOWER BOUNDSproof. We proveSET-DISJOINTNESS/n FARTHEST-PAIRGiven an instance I = (X; Y) of the problem SET-DISJOINTNESS, wetransform I into an instance of FARTHEST-PAIR as follows. Without lossof generality, suppose that all numbers in X and Y are positive. (Otherwise,we scan the sets X and Y to �nd the smallest number z in X [Y , thenadd the number z + 1 to each number in X and in Y .) Now �nd the largestnumber zmax in X [Y . Convert each number xi in the set X into a point onthe unit circle in the plane which has a polar angle xizmax�, and convert eachnumber yj in the set Y into a point on the unit circle in the plane whichhas a polar angle yjzmax� + �. Intuitively, we transform all numbers in theset X into points in the �rst and second quadrants of the unit circle in theplane, while transform all numbers in the set Y into points in the third andfourth quadrants of the unit circle. Such a transformation gives us a set Sof 2n planar points. It is easy to see that the diameter of S is 2 if and onlyif the intersection of X and Y is not empty. This proves that the problemSET-DISJOINTNESS can be reduced to the problem FARTHEST-PAIR inlinear time.By Theorem 8.3.3, the problem SET-DISJOINTNESS has a lower bound
(n logn). Now by Theorem 8.4.1, the problem FARTHEST-PAIR also hasa lower bound
(n logn) on its time complexity.8.5 A remark on our modelHere is an interesting story that surprised many researchers in AlgorithmAnalysis.Consider the following problem.MAXIMUM-GAPInput: A set S of n real numbers.Output: The maximum distance between two consecutive numbers in S.It is easily seen from the proof of Theorem 8.4.12 thatUNIFORM-GAP /n MAXIMUM-GAP

A REMARK 169Therefore, any bounded order algebraic decision tree that solves the problemMAXIMUM-GAP runs in time at least
(n logn).However, it is surprising that if the \
oor function" b c is allowed in ourcomputational model, then the problem MAXIMUM-GAP can be solved inlinear time! We describe the algorithm as follows.Given a set S of n real numbers x1, x2, � � �, xn, we begin by �nding themaximum number xmax and the minimum number xmin in S. This can bedone in linear time by scanning the set S. Next, we divide the interval [xmin,xmax] into (n� 1) \buckets"[xmin; xmin + �); [xmin + �; xmin + 2�); [xmin+ 2�; xmin + 3�); � � � ;[xmin + (n� 3)�; xmin + (n� 2)�); [xmin + (n� 2)�; xmax]where � = (xmax � xmin)=(n � 1). Call the bucket [xmin + (n � 2)�; xmax]the (n � 1)st bucket Bn�1, and call the bucket [xmin + (k � 1)�; xmin + k�)the kth bucket Bk , for 1 � k � n � 2. Now for each xi of the n � 2numbers in S �fxmin; xmaxg, determine which bucket the number xi shouldbelong to. The number xi belongs to the kth bucket Bk if and only ifb(xi� xmin)=�c = k� 1. Therefore, each number in S � fxmin; xmaxg can bedistributed to the proper bucket in constant time, and consequently, the n�2numbers in S � fxmin; xmaxg can be distributed to proper buckets in lineartime if the buckets are implemented by linked lists. Now for each bucketBk , compute the minimum number x(k)min and the maximum number x(k)max inBk . If a bucket Bk contains one number, return the unique number as bothx(k)min, x(k)max, and if a bucket is empty, return nothing. Since for each bucketBk , the numbers x(k)min and x(k)max can be computed in the time proportionalto the size of the bucket Bk , all these x(k)min and x(k)max, 1 � k � n � 1 can becomputed in time linear to n. Now construct a list LL : x(1)min; x(1)max; x(2)min; x(2)max; � � � ; x(n�1)min ; x(n�1)max(Note that some numbers above may not appear in the list L if the corre-sponding bucket is empty.) The list L can be easily constructed in lineartime from the n � 1 buckets.Since there are n�1 buckets and only n�2 numbers in S�fxmin; xmaxg,at least one bucket is empty. Therefore, the maximum distance between apair of consecutive numbers in S is at least the length of a bucket. Thisimplies that no two consecutive numbers contained in the same bucket canmake the maximum distance. Thus the maximum distance must be made

170 LOWER BOUNDSby a pair of the numbers (xi; xj) that are either xi = x(k)max and xj = x(h)min forsome k and h (where all buckets Bk+1, � � �, Bh�1 are empty), or xi = xminand xj = x(k)min (where all buckets B1, � � �, Bk�1 are empty), or xi = x(k)maxand xj = xmax (where all buckets B(k+1), � � �, B(n�1) are empty). Moreover,all these pairs can be found in linear time by scanning the list L. Therefore,the maximum distance between pairs of consecutive numbers in S can becomputed in linear time.In the following, we give an even simpler linear time algorithm to solvethe problem UNIFORM �-GAP2. In this algorithm, we even do not require
oor function. The only non-algebraic operation we need is a test if a givenreal number is an integer. Note that with the
oor function, the test \Is ran integer" can be easily done in constant time.Algorithm MAGICGiven: A set S = { x_1, x_2, ..., x_n } of real numbers.Question: Is the distance between any two consecutivenumbers of S uniformly equal to epsilon?{In the following algorithm, A is an array of size n, whichis initialized to empty.}BEGIN1. Find the minimum number x_min and the maximum numberx_max in S;2. Let epsilon = (x_max - x_min)/(n-1);3. For i = 1 to n do BEGIN3.1 Let k = (x_i - x_min)/epsilon + 1;3.2 IF k is not an integer OR A[k] is not empty THENSTOP with an answer NO3.3 ELSEput x_i in the array element A[k];END;4. STOP with an answer YES;END.The above algorithm obviously runs in linear time. To see the correct-ness, suppose that the algorithm stops at Step 4. Then if a number x is in2The author was informed of this algorithm by Roger B. Dubbs III.

EXERCISES 171A[k], then the value of x must be xmin+�(k�1). Moreover, no array elementof A holds more than one number. Consequently, every array element of Aholds exactly one number from the set S, and these numbers are xmin+ i � �,for i = 0; 1; � � � ; n� 1. Therefore, the set S should be a YES-instance of theproblem UNIFORM �- GAP.On the other hand, if the algorithm stops at Step 3.2, then either S isnot uniformly distributed (otherwise all values (x � xmin)=� + 1 should beintegral) or the set S contains two identical numbers. In the latter case, theset S again cannot be a YES-instance of the problem UNIFORM �-GAP.The examples bring up an interesting point: there are certain very com-mon operations not included in the algebraic decision tree model that allowus to do things that are not possible in the algebraic decision tree model.The
oor function and the integral testing are examples of this kind of op-erations. Note that these examples imply that the
oor operation and theintegral testing cannot be performed in constant time in the algebraic deci-sion tree model.8.6 Exercises1. Let P be an arbitrary non-trivial problem (i.e., it has YES-instancesas well as NO-instances). Show that the problem MAX-ELEMENT(given a set of numbers, �nd the maximum) is linear time reducible toP .2. Use Ben-or's technique directly to prove that the following problemhas a lower bound
(n logn) on the time complexity.SET-DISJOINTNESSGiven two setsX = fx1; � � � ; xng and Y = fy1; � � � ; yng of real numbers,are they disjoint, i.e., X \ Y = �?3. Prove that the problems STAR-POLYGON, INTERSECTION-OF-HALF-PLANE, and MONOTON-POLYGON take
(n logn) time inthe algebraic decision tree model.4. Prove that the problem VORONOI-DIAGRAM takes
(n logn) timein the algebraic decision tree model.5. Design an optimal algorithm that constructs convex hulls for sets ofpoints in 3-dimensional Euclidean space.

172 LOWER BOUNDS6. Show that the problem SECOND CLOSEST PAIR takes
(n logn)time in the algebraic decision tree model.7. Given two sets A and B of points in the plane, each containing Nelements, �nd the two closest points, one in A and the other in B.Show that this problem requires
(N logN) opertations (Hint: whatproblem can we reduce to this problem?).8. Give an optimal algorithm that, given a set of 2N points, half with pos-itive x-coordinates, half with negative x-coordinates, �nds the closestpair with one member of the pair in each half.9. Prove that the following problem has an
(N logN) lower bound:Given N points in the plane, construct a regular PSLG whose verticesare these N points.10. Given a PSLG G, design an algorithm regularizing G in timeO(n logn). Provide su�cient details for the implementation of youralgorithm. (This does not mean you give a PASCAL or C program.Instead, you should provide su�cient detail for the data structure youuse to suppose your operations.)11. Prove that your algorithm for the last question is optimal.12. Prove that the following problem has a lower bound
(n logn):Given a PSLG G, add edges to G so that the resulting graph is a PSLGG0 such that each region of G0 is a simple polygon.(Hint: You can suppose Chazelle's result.)13. Prove that the following problem requires
(n logn) time in algebraicdecision tree models: given n points and n lines in the plane, determinewhether any point lies on any line.14. Given a set of n points in the plane, let h denote the number of verticesthat lie on its convex hull. Show that any algorithm for computing theconvex hull must require
(n logh) time in the algebraic decision treemodel.15. Given a convex n-gon, show that determining whether a query pointlies inside or outside this n-gon takes
(logn) time in the algebraicdecision tree model.

EXERCISES 17316. Given a set S of n points in the plane, show that the problem of�nding the minimum area rectangle that contains these points requires
(n logn) time in the algebraic decision tree model.17. Can you construct another example that requires
(n logn) time inthe algebraic decision tree model but is solvable in linear time?

174 LOWER BOUNDS

Chapter 9Geometric TransformationsIn this chapter, we will discuss an important technique in computationalgeometry: The geometric transformations. We will introduce the method byshowing how this method is applied to solve geometric intersection problems,such as half plane intersection and convex polygon intersection. We will alsoapply the method to �nd the smallest area triangles. We will see that thegeometric transformation techniques enable us to convert these geometricproblems into more familiar problems we have discussed.Geometric transformations have their roots in the mathematics of theearly nineteenth century [6]. Their applications to problems of computingdates back to the concept of primal and dual problems in the study of linearprogramming (see, for example, [21]).Brown [7] gives a systematic treatment of transformations and their ap-plications to problems of computational geometry. Since his dissertation,these methods have found vast application.Typically, transformations change geometric objets into other geomet-ric objects (for example, take points into lines) while preserving relationswhich held between the original objects (for example, order or whether theyintersected). A number of geometric problems are best solved through theuse of transformations. The standard scheme is to transform the objectsunder consideration, solve a simpler problem on the transformed objects,and then use that solution to solve the original problem. No single transfor-mation applies in all cases; a number of di�erent transformations have beenused e�ectively. Here, we describe two commonly used transformations anddemonstrate their applications. 175

176 GEOMETRIC TRANSFORMATIONS9.1 Mathematical backgroundLet l be a straight line on the Euclidean plane. If l is a vertical line, then lcan be characterized by an equationx = aif the line l intersects the x-axis at the point (a; 0). On the other hand, ifl is not a vertical line, let � be the angle from the positive direction to theline l,1 then l can be characterized by the equationy = ax+ bIf a = tan � and the line l intersects the y-axis at the point (0; b). We willcall � the direction of the line l, and call the value a = tan � the slope of theline l. The slope of a straight line l is denoted by slope(l).The domain of all of our two-dimensional transformations will be theprojective plane, which is an enhanced version of the Euclidean plane inwhich each pair of lines intersects. The projective plane contains all pointsof the Euclidean plane (call them the proper points). We introduce a set ofimproper points with one point Pa associated with every slope a in the plane.Two parallel lines, then, intersect at that improper point indicated by theslope of the parallel lines (this can be thought of as a point at in�nity). Allimproper points are considered to lie on the same line: the improper lineor the line at in�nity. Thus, any two lines in the projective plane intersectat exactly one point: two nonparallel proper lines intersect at a properpoint (i.e., one of the Euclidean plane); two parallel proper lines intersectat the improper point bearing the same slope; and a proper line intersectsthe improper line at the improper point de�ning the slope of the properline. Likewise, between every two points passes exactly one line: There is aproper line passing through every pair of proper points; a proper line passesthrough a given improper point and a given proper point; and the improperline passes through any two improper points.In general, the actual algorithms used to solve problems rely solely onthe Euclidean geometry. Therefore, although all the transformations willmap the projective plane onto itself, we will wish to choose a transformationwhich maps the objects under consideration to \proper" objects. Thus, the1In this case, we always suppose that ��=2 < � � �=2. That is, we always supposethat the direction of the straight line l goes to the in�nity either in the �rst quadrant orin the fourth quadrant.

HALF PLANE INTERSECTION 177
l

l

l

l
1

2

3

4Figure 9.1: The half plane H4 is redundantparameters of the original problem will dictate which transformations areappropriate. Throughout this chapter, we will use the following notation:The images of a geometric object G, which can be a point p, a line l, or apolygon P , etc., under a transformation B will be denoted by B(G).9.2 Half plane intersectionsWe introduce the �rst geometric transformation through the following ex-ample.Given a set of n lower half planesHi : y � aix+ bi i = 1; � � � ; nLet P be the intersection of these n lower half planes. It is easy to see thatP is an unbounded convex area with an upper boundary(ei1ei2 � � �eir)which is a polygonal chain from left to right, where ei1 and eir are semi-in�nite rays, and eij for 2 � j � r � 1 are straight line segments, such thatif traveling along the chain from ei1 to eir , we always make right turn.Not every lower half plane is useful for the intersection P . For example,in Figure 9.1 the lower half plane H4 de�ned by the line l4 is not useful forthe intersection P since the intersection P is entirely contained in the lowerhalf plane H4.We say that a lower half plane Hk : y � akx + bk is redundant to theintersection P if the intersection P is entirely contained in the half plane

178 GEOMETRIC TRANSFORMATIONSHk. This simply implies \1�i�nHi = \i6=kHiNow given n lower half planes Hi, i = 1; � � � ; n, and let P be their inter-section. How do we �nd all redundant half planes to the intersection? Forthis, we �rst discuss the property of a redundant half plane.Suppose that H : y � ax + b is a lower half plane. We call the linel : y = ax + b the boundary line of the lower half plane H . We also saythat the lower half plane H is de�ned by the straight line l : y = ax+ b .Lemma 9.2.1 Given a set S of n lower half planesHi de�ned by the straightlines li, i = 1; � � � ; n. A lower half plane Hk is redundant if and only if thereare two lower half planes Hc and Hd in S such thatslope(lc) � slope(lk) � slope(ld)and the intersecting point of lc and ld is below the line lk.proof. Suppose that the lower half plane Hk is redundant, then theintersection P of the n lower half planes in S is entirely below the line lk.Let � = (ei1ei2 � � �eir)be the boundary polygonal chain of P from left to right, where ei1 and eirare semi-in�nite rays, and eij for 2 � j � r � 1 are straight line segments,such that if traveling along the chain from ei1 to eir , we always make rightturn. Suppose that the edge eih is on the line lih for h = 1; � � � ; r. We claimslope(li1) � slope(lk) � slope(lir)In fact, if slope(li1) < slope(lk) then since the starting point of the rayei1 is below the line lk, the ray ei1 must cross the line lk at some point,contradicting the assumption that Hk is redundant. Similarly we can provethat slope(lk) � slope(lir). Since the chain � makes only right turn whenwe travel from ei1 to eir , the slopes of the sequence of linesli1 ; li2; � � � ; lirare strictly decreasing. Thus there must be two consecutive lines lih andlih+1 such that slope(lih) � slope(lk) � slope(lih+1)

HALF PLANE INTERSECTION 179Moreover, the intersecting point of the lines lih and lih+1 is the point on thechain � which is incident to the edges eih and eih+1 , thus must be below theline lk.Conversely, if there are two lines lc and ld such thatslope(lc) � slope(lk) � slope(ld)and the intersection point of lc and ld is below the line lk. Then clearly,the intersection Hc \Hd of the two lower half planes Hc and Hd is entirelycontained in the lower half plane Hk. Therefore,P = \1�i�nHi � Hc \Hd � HkThat is, the lower half plane Hk is redundant to the intersection P .By this lemma, a naive method of deciding the redundancy of a givenhalf plane Hk entails comparing its boundary line against all other pairs ofboundary lines in time O(n2). Finding all redundant lower half planes thustakes time O(n3).We use the technique of geometric transformations to design a moree�cient algorithm to �nd redundant lower half planes.Let us �rst see what kinds of geometric properties are used for redundantlower half planes. To show that a lower half plane H de�ned by a linel : y = ax + b is redundant, we must show the existence of two lowerhalf planes Hc and Hd de�ned by the lines lc : y = acx + bc andld : y = adx+ bd such thatslope(lc) � slope(l) � slope(ld)and the intersecting point of lc and ld is below the line l. Therefore, if Tis a geometric transformation, then given a line l, we would like that theparameter slope(l) is mapped to a parameter of the geometric object T (l)such that the ordering of the slopes of lines is preserved. Moreover, let pbe a point and l be a line, then we want the relations \above" and \below"between p and l are also preserved for the geometric objects T (p) and T (l).Now consider the following geometric transformation T1. Given a pointp : (a; b) in the Euclidean plane, the image T1(p) under the transformationT1 is a straight line T1(p) : y = ax+ b

180 GEOMETRIC TRANSFORMATIONSNow let l : y = �x + � be a line. Since each point l is mapped toa line by the transformation T1, T1(l) is a collection of lines. However, allthese lines have a common intersecting point. In fact, let q0 = (x0; y0) be apoint on the line l, then we havey0 = �x0 + �Thus the image of q0 under T1 is the lineT1(q0) : y = x0x+ y0 = x0x+ (�x0 + �)It is easy to see that the line T1(q0) passes through the point (��; �). There-fore, instead of regarding that the T1(l) as a collection of lines, we regardT1(l) as a single point (��; �), and say that the transformation T1 maps aline into a point.Note that the above process of deriving the image T1(l) of the line lfrom the images of the points on the line l can be reversed. That is, sincewe have de�ned the image of a point p = (a; b) under T1 to be the lineT1(p) : y = ax+ b , we can derive that the image of a line l : y = �x+�under T1 is a point T1(l) = (��; �). Alternatively, if we start by de�ningthat the image of a line l : y = �x + � is the point T1(l) = (��; �),then given a point p = (a; b), we regard p as a collection of all lines passingthrough the point p = (a; b). Any line l0 in this collection can be representedby an equation l0 : y = �x+ (b� �a)where � can be any real number. Thus the image of l0 under T1 is a point(��; b� �a), which is a point on the line y = ax+ b. Thus the image of thepoint p = (a; b) under T1 is the lineT1(p) : y = ax+ bThis discussion shows that the intersection relation between a point anda line is preserved under the transformation. A more precise description isgiven in the following observation.Observation 1.Two points p1 and p2 are on the same line l if and only if the two linesT1(p1) and T1(p2) intersect at the point T1(l).Observation 2.

HALF PLANE INTERSECTION 181Two lines l1 and l2 intersect at a point p if and only if the two pointsT1(l1) and T1(l2) are on the same line T1(p).The de�nition of the transformation T1 has only been given for the \nor-mal points", which are the points in the Euclidean plane, and for the \normallines", which are of the form y = ax+ b that is not a vertical line. We needto extend the de�nition to the improper points in the projective plane andto vertical lines. Using the idea of regarding a vertical line l as the collectionof points on the line, and regarding an improper point P� as the collectionof the parallel lines of slope �, we can easily see that the image of a verticalline x = a is the improper point Pa and the image of an improper point P�is the vertical line x = ��. We leave the detail derivation of these to thereader.We now show that the ordering of the slope of lines, as well as therelations \above" and \below" of points and lines, are preserved under thetransformation T1. Letl1 : y = a1x+ b1 and l2 : y = a2x+ b2be two lines with the slopes a1 and a2, respectively. Then after the trans-formation T1, the line l1 becomes a point (�a1; b1) while the line l2 becomesa point (�a2; b2). Therefore, if we denote by x(p) the x-coordinate of thepoint p, then we haveObservation 3.The slope of line l1 is greater than the slope of line l2 if and only if thex-coordinate of the point T1(l1) is less than the x-coordinate of the pointT1(l2). That isslope(l1) > slope(l2) i� x(T1(l1)) < x(T1(l2))Now let p = (a; b) be a point and let l : y = �x + � be a line suchthat p is below the line l. Thus b < �a + �. After the transformation T1,the point p becomes a line T1(p) : y = ax + b while the line l becomes apoint T1(l) = (��; �). Since � > a(��)+ b, the point T1(l) is above the lineT1(p). This gives us the third observation.Observation 4.

182 GEOMETRIC TRANSFORMATIONSA point p is below a line l if and only if the line T1(p) is below the pointT1(l).Now we return back to the problem of deciding redundant lower halfplanes. Given a set A of n points in the plane, by the lower hull of A wedenote the partial chain on the convex hull CH(A) which is from the pointof the minimum x-coordinate in A to the point of maximum x-coordinatein A and bounds the convex hull CH(A) from below. Using the modi�edGraham scan algorithm, we know that the lower hull of the set A can beconstructed in time O(n logn) (see Section 2.2.)Now given a set S of n lower half planes Hi, where the lower half planeHi is de�ned by a straight lines li, for i = 1; � � � ; n. Let P be the intersectionof these n lower half planes. We �rst transform each line li in S by thetransformation T1 into a point T1(li). Let T1(S) be the set of images of thelines in S under T1. T1(S) is a set of n planar points.Theorem 9.2.2 A lower half plane Hk in S is redundant to P if and onlyif the point T1(lk) is not on the lower hull of CH(T1(S)).proof. If the lower half plane Hk in S is redundant, By Lemma 9.2.1,there are two lower half planes Hc and Hd in S such thatslope(lc) � slope(lk) � slope(ld)and the intersecting point p of lc and ld is below the line lk. By Observation 3,we have x(T1(lc)) � x(T1(lk)) � x(T1(ld))Moreover, the point T1(lk) is above the line T1(p), by Observation 4. Finally,by Observation 2, the two points T1(lc) and T1(ld) are on the line T1(p), thusthe point T (lk) is above the line segment T1(lc)T1(ld). That is, the pointT1(lk) cannot be on the lower hull of T1(S).Conversely, suppose that the point T1(lk) is not on the lower hull ofT1(S), then there are two points T1(lc) and T1(ld) in the set T1(S) such thatthe point T1(lk) is above the line segment T1(lc)T1(ld). So we havex(T1(lc)) � x(T1(lk)) � x(T1(ld))By Observation 3, we haveslope(lc) � slope(lk) � slope(ld)

HALF PLANE INTERSECTION 183Moreover, let l be the line on which the line segment T1(lc)T1(ld) lies, thenby Observation 2, the line l is the image of the intersecting point p of thelines lc and ld under T1. By Observation 4, the intersecting point p is belowthe line lk. Now by Lemma 9.2.1, the line lk is redundant to the intersectionP . Now it is straightforward to derive an algorithm �nding the redundantlower half planes given a set of lower half planes.Algorithm FIND-REDUNDANCY (S)f Given a set S of n lower half planes Hi, where Hi is de�ned by a lineli, for i = 1; � � � ; n, �nd all redundant half planes. gbegin1. Using the transformation T1 to transform each line li into a pointT1(li); Let the set of the images of lines in S under T1 be T1(S);2. Construct the lower hull LH(T1(S)) of T1(S);3. For k = 1; � � � ; n, a lower half plane Hk is redundant if and only if thepoint T1(lk) is not on the lower hull LH(T1(S)).endThe algorithm is correct according to Theorem 9.2.2. Step 2 in thealgorithm takes time O(n logn) by our discussion in Section 2.2. All othersteps trivially take linear time. So the time complexity of the algorithm isO(n logn).With the algorithm FIND-REDUNDANCY, it is easy to design an algo-rithm computing the intersection of half planes.HALF-PLANE-INTERSECTIONGiven n +m half planesy � aix+ bi i = 1; � � � ; ny � cjx+ dj j = 1; � � � ; min the plane, compute the intersection of them.

184 GEOMETRIC TRANSFORMATIONSThe problem can be split into two problems as follows: We consider theintersection P1 of the n lower half planes:y � aix+ bi i = 1; � � � ; nand the intersection P2 of the m upper half planes:y � cjx+ dj j = 1; � � � ; mThen the intersection of the n +m half planes is the intersection of P1 andP2. The two areas P1 and P2 are unbounded polygonal areas, and both ofthem are convex. It is a simple exercise to show that the intersection of thetwo polygonal areas P1 and P2 can be computed in time O(n1 + n2), whereni, i = 1; 2, is the number of boundary edges of the polygonal area Pi.Therefore, the problem HALF-PLANE-INTERSECTION can be re-duced to computing the intersection of lower half planes and computingthe intersection of upper half planes. Since the two problems are symmetric,we will concentrate on the problem of intersection of lower half planes.LOWER-HALF-PLANE-INTERSECTIONGiven n lower half planesHi : y � aix+ bi i = 1; � � � ; nin the plane, compute the intersection P1 of them.A half plane that is not redundant is called a useful half plane of theintersection P1. Clearly, a half plane Hk : y � akx + bk is useful to theintersection P1 if the straight line y = akx + bk contributes a boundaryedge to the polygonal area P1. LetHik : y � aikx+ bik k = 1; � � � ; rbe the set of useful half planes to the intersection P1 such that the boundaryof the polygonal area P1 is formed by a polygonal chain(ei1ei2 � � �eir)from left to right, where the edge eik on the chain is contributed by thestraight line lik : y = aikx+ bik

SMALLEST AREA TRIANGLE 185for k = 1; � � � ; r. Since P1 is a convex polygonal area and is below its bound-ary, the slope of the lines lik must be strictly decreasing. This observationgives us immediately an algorithm to compute the intersection P1.Algorithm LOWER-PLANE-INTERSECTIONf Given the set S of n lower half planes, compute their intersection. gbegin1. Eliminate all redundant lower half planes,2. Sort the boundary lines of the useful half planes by their slopes in de-creasing ordering. Let the sorted list of the lines befli1 ; li2; � � � ; lirg3. For k = 1 to r � 1, compute the intersecting point pk of the lines likand lik+1.4. The polygonal chain fli1p1p2 � � �pr�1lirgis the boundary chain of the intersection P1.endStep 1 takes time O(n logn) using the algorithm FIND-REDUNDANCY.Step 2 takes also time O(n logn) by any optimal sorting algorithm. Theremaining of the algorithm takes linear time. Therefore, the above algorithmruns in time O(n logn). By our comments before, the intersection of n halfplanes can also be computed in time O(n logn). It is easy to see that thisis also a lower bound for the problem, since the problem SORTING can beeasily reduced to this problem. Thus we haveTheorem 9.2.3 The problem HALF-PLANE-INTERSECTION can besolved by an optimal algorithm in O(n logn) time.Finally we remark that our algorithm for using a geometric transfor-mation to solve the problem HALF-PLANE-INTERSECTION consisted ofthree parts: We �rst identi�ed the geometric techniques we might use (hereis eliminating redundant half planes). Next, we identi�ed the invariants re-quired by a transformation (here are the \above"/\below" relation and theordering of slopes). Finally, we found an appropriate transformation andsolved the problem. This is a classic example of how geometric transforma-tions are used.

186 GEOMETRIC TRANSFORMATIONS9.3 The smallest area triangleWe give another example of the applications of the geometric transformationT1. Consider the following problem.THE-SMALLEST-TRIANGLEGiven a set S of n points in the plane, �nd the smallest area trianglewhose three vertices are points in S.A brute force way to solve this problem is to compute, for every threepoints in S, the area of the triangle formed by these three points, and thenpick the one with the smallest area. This algorithm takes time proportionalto �n3� = O(n3).A variation of the above algorithm is that given a pair of points pi andpj in S, compute the distance d(k; i; j) from a point pk to the line li;j passingthrough the points pi and pj , where pk is any point picked from S�fpi; pjg.Since the area of the triangle formed by pi, pj , and pk is half of the productd(k; i; j) � jpipj j, this will give us the areas of all triangles one of whose edgeis the segment pipj . If we do this for every pair of points in S, we willobtain the areas of all triangles formed by points in S, thus pick the onewith smallest area. The time complexity of this variation is O(�n2�(n � 1)),which is again O(n3).De�nition Let p be a point and l be a line. The vertical distance, denoteddv(p; l), from p to l is the distance from the point p to the intersecting pointof the line l and the vertical line passing through the point p.Note that the vertical distance from a point p to a line l is in generaldi�erent from the distance from the point to the line, which is the distancefrom the point p to the intersecting point of the line l and the line whichpasses through p and is perpendicular to the line l.Let pk, pi, and pj be three points in S. We denote by dv(k; i; j) thevertical distance from the point pk to the line li;j passing through the pointspi and pj . For simplicity, sometime we also call dv(k; i; j) the vertical distancefrom the point pk to the segment pipj .Lemma 9.3.1 Fix a pair of points pi and pj in the set S. Let li;j be theline passing through the points pi and pj . Then a point pk in S � fpi; pjg

SMALLEST AREA TRIANGLE 187
l lp

p

p

q

v i,j

j
k

i
θFigure 9.2: The vertical distance from a point to a linehas the smallest distance d(k; i; j) from the line li;j if and only if pk has thesmallest vertical distance dv(k; i; j) from the line li;j.proof. Let lv be the vertical line passing through the point pk whichintersects the line li;j at a point q. Let � be the angle between the lines li;jand lv. By the de�nition, the vertical distance dv(k; i; j) from pk to li;j is thelength of the line segment pkq. Moreover, it is easy to see that the distanced(k; i; j) from pk to li;j is equal to jpkqj � sin � . See Figure 9.2. Thus, thevertical distance from pk to li;j is proportional to the distance from pk toli;j . The lemma follows immediately.Therefore, to �nd the smallest area triangle, for each pair of points piand pj in S, we only need to consider such a point pk in S � fpi; pjg suchthat the vertical distance dv(k; i; j) is the shortest. But how this observationhelps us?We �rst apply the transformation T1 on the set S of planar points. Weknow that a point pk in S is mapped under T1 to a line T1(pk) while a lineli;j passing through two points pi and pj in S is mapped under T1 to theintersecting point T1(li;j) of the lines T1(pi) and T1(pj). A nice propertyof the transformation is that the vertical distance is preserved under the

188 GEOMETRIC TRANSFORMATIONStransformation, as shown by the following lemma.2Lemma 9.3.2 The vertical distance dv(pk; li;j) from the point pk to the lineli;j is equal to the vertical distance dv(T1(li;j); T1(pk)) from the point T1(li;j)to the line T1(pk) dv(pk; li;j) = dv(T1(li;j); T1(pk))proof. The proof is straightforward through the calculations using basicformulas in analytical geometry. Suppose that the coordinates of pi, pj , andpk are pi = (ai; bi) pj = (aj ; bj) pk = (ak; bk)Then the line li;j has the equationli;j : y = bi � bjai � aj x+ aibj � ajbiai � ajUnder the transformation T1, they are mapped to the lines T1(pi), T1(pj)and T1(pk):T1(pi) : y = aix+ bi T1(pj) : y = ajx+ bj T1(pk) : y = akx+ bkand the point T1(li;j) = (� bi � bjai � aj ; aibj � ajbiai � aj)The intersecting point of the line li;j and the vertical line passing throughthe point pk is (ak; bi � bjai � aj ak + aibj � ajbiai � aj)Thus the vertical distance from the point pk to the line li;j is the absolutevalue of the following numberbi � bjai � aj ak + aibj � ajbiai � aj � bk = (aibj + ajbk + akbi)� (aibk + ajbi + akbj)ai � ajSimilarly, the intersecting point of the line T1(pk) and the vertical linepassing through the point T1(li;j) is(� bi � bjai � aj ;�ak bi � bjai � aj + bk)2Without loss of generality, we suppose that no two points in the set S have the samex-coordinate. If this condition is not satis�ed, we slightly rotate the coordinate system.

SMALLEST AREA TRIANGLE 189Thus the vertical distance from the point T1(li;j) to the line T1(pk) is theabsolute value of the following numberaibj � ajbiai � aj �(�ak bi � bjai � aj +bk) = (aibj + ajbk + akbi)� (aibk + ajbi + akbj)ai � ajThis proves the lemma.But why this lemma helps? Let us �rst transform each point pi in theset S under T1 to a line T1(pi) for i = 1; � � � ; n. Then we will obtain a setT1(S) of n straight linesT1(S) = fT1(p1); T1(p2); � � � ; T1(pn)gThe set T1(S) of these n lines T1(pi), i = 1; � � � ; n, forms a PSLG, if we regardeach intersecting point of a pair of lines in T1(S) as a vertex. Let li;j be theline passing through the points pi and pj in S. Note that to �nd a point in Swhich has the smallest vertical distance to the line li;j , we have to check eachvertex in S�fpi; pjg. However, to �nd the line T1(pk) in T1(S) such that thepoint T1(li;j) has the smallest vertical distance to T1(pk), we only need tocheck in T1(S) the lines immediately above and immediately below the pointT1(li;j). Therefore, if we well organize the PSLG T1(S), we can �nd e�cientlythe line T1(pk) in T1(S) such that the vertical distance from the point T1(li;j)to the line T1(pk) is the smallest over all lines in T1(S) � fT1(pi); T1(pj)g.By Lemma 9.3.1 and Lemma 9.3.2, the distance from the point pk to theline li;j is the smallest over all points in S � fpi; pjg, which implies that thetriangle 4(pkpipj) has the smallest area over all triangles one of whose edgeis the segment pipj . For each pair of points pi and pj in the set S, performthe above process, we obtain the smallest area triangle.Now we discuss how to �nd the lines closest to the point T1(li;j) in T1(S).We perform a topological sweeping on the PSLG T1(S) from left to right bya vertical line L. The lines of T1(S) are stored in a 2-3 tree A in the orderingof their intersecting points with the line L on L. Since T1(S) contains exactlyn lines T1(pi), i = 1; � � � ; n, the number of leaves of the 2-3 tree A is n, thusthe depth of A is bounded by O(logn). Suppose that at some moment, theline L moves to a vertex T1(li;j) of T1(S) from left to right, then it is easy tosee that except for the two lines T1(pi) and T1(pj) that intersect at T1(li;j),all other lines in T1(S) maintain their relative position with respect to eachother in the 2-3 tree A. On the other hand, the lines T1(pi) and T1(pj)should exchange their positions in the 2-3 tree A. In other words, if the

190 GEOMETRIC TRANSFORMATIONSline T1(pi) is above the line T1(pj) on the left of the point T1(li;j), then theline T1(pi) should be below the line T1(pj) on the right of the point T1(li;j),and vice versa. Let the two lines that are immediately above and below thevertex T1(li;j) in the PSLG T1(S) be T1(pk) and T1(ph), respectively. Thenthe lines T1(pk) and T1(ph) can be also accessed in time O(logn) from the2-3 tree A. To �nd the relative position of a vertex T1(li;j) in the 2-3 tree A,we do a search in the 2-3 tree A by the values of y-coordinate while �xingthe x-coordinate of each line in A to the value of the x-coordinate of thevertex T1(li;j).The following is the implementation of the above discussion, which �ndsthe smallest area triangle given a set S of points in the plane.Algorithm SMALLEST-TRIANGLE (S)f Given a set S of n planar points, �nd the smallest area triangle whosethree vertices are points in S. gbegin1. For each point pi in S, i = 1; � � � ; n, construct the line T1(pi).2. For each pair of lines T1(pi) and T1(pj) constructed in Step 1, i; j =1; � � � ; n, compute the intersecting vertex T1(li;j).3. Sort all intersecting vertices T1(li;j), i; j = 1; � � � ; n in increasing x-coordinate ordering. Let the sorted list befv1; v2; � � � ; vmgwhere m = �n2�, and vi = (xi; yi), for i = 1; � � � ; m.4. Construct a 2-3 tree A whose leaves are the lines T1(pi), i = 1; � � � ; n,ordered by the y-coordinates of their intersecting points with the verticalline x = x1 � 1 .5. For r = 1; � � � ; m do the followingSuppose that the vertex vr is the intersecting vertex of the lines T1(pi)and T1(pj) and that the lines immediately above and below the vertex vrare T1(pk) and T1(ph), respectively. Compute the areas of the triangles4(pkpipj) and 4(phpipj). Exchange the positions of T1(pi) and T1(pj)in the 2-3 tree A.6. The triangle that is constructed in Step 5 and has the smallest area isthe the smallest area triangle.

SMALLEST AREA TRIANGLE 191endOne case we have ignored in the above algorithm is the case when thereare three lines T1(pi), T1(pj), and T1(pk) of T1(S) intersecting at a com-mon point. However, this means that the intersecting point T1(li;j) of thelines T1(pi) and T1(pj) has a zero vertical distance from the line T1(pk). ByLemma 9.3.2, the point pk has a zero vertical distance from the line li;j . Con-sequently, the three points pi, pj , and pk are co-linear and the smallest areatriangle of the set S has area zero. Therefore, whenever we �nd that threelines T1(pi), T1(pj), and T1(pk) in T1(S) are co-linear, we stop immediatelyand return the triple (pi; pj; pk) as the smallest area triangle.We analyze the algorithm. Step 1 takes time O(n). Step 2 takes timeO(n2) and produces m = �n2� = O(n2) intersecting vertices in T1(S). ThusStep 3 takes time O(n2 logn) to sort the intersecting vertices constructedin Step 2. Step 4 takes time O(n logn). For each vertex vr, Step 5 spendsO(logn) time to locate the position of the vertex vr in the 2-3 tree A, toupdate the 2-3 tree A and to compute the areas of the two triangles, sototally Step 5 takes time O(m logn) = O(n2 logn). Since for each vertexvr, we construct at most two triangles, the number of triangles constructedin Step 5 is bounded by O(m) = O(n2). Consequently, Step 6 takes timeO(n2). Therefore, the time complexity of the above algorithm is boundedby O(n2 logn).Since each line in the PSLG T1(S) corresponds to a point in S, the 2-3tree A has exactly n leaves. However, the space used to store the vertices vr,r = 1; � � � ; m = �n2� is
(n2). So the space used by the algorithm is O(n2).Now we discuss how we can reduce the amount of space used by thealgorithm. As pointed out above, the O(n2) space is used to store the mintersecting vertices of the lines T1(pi), for i = 1; � � � ; n. However, we donot really need the whole sorted list of these intersecting vertices. What weare really interested in is that at each stage which vertex is the next to thecurrent vertex vr. This next vertex must be the one that is on the right ofthe current vertex vr and the closest to the vertical line passing through thecurrent vertex vr. Note that such a vertex must be the intersecting vertexof two lines in T1(S) that are consecutive leaves in the current 2-3 tree A.Therefore, if we keep a list B of the records for the intersecting vertices ofthe consecutive leaves in the current 2-3 tree A that are on the right of thecurrent vertex vr (there are at most n � 1 such intersecting vertices), thenthe one in the list B that is the closest to the vertical line passing throughthe current vertex vr must be the next vertex to be processed in Step 5 of

192 GEOMETRIC TRANSFORMATIONSthe above algorithm.Therefore, instead of producing the whole listv1; v2; � � � ; vmof intersecting vertices of the lines T1(pi), i = 1; � � � ; n, we use a 2-3 treeB to store the intersecting vertices of consecutive lines in the 2-3 tree Athat are on the right of the current vertex vr, sorted by their x-coordinates.The number of leaves of the tree B is bounded by n � 1. Suppose that thecurrent vertex is vr. To �nd the next vertex, we simply �nd the vertex vr+1in the 2-3 tree B that has the smallest x-coordinate. Then the vertex vr isdeleted from the tree B. Note that after processing the vertex vr, adjacencyrelations among only four lines in A can be changed. That is, suppose thatthe vertex vr is the intersecting vertex of the lines T1(pi) and T1(pj), thatthe lines in T1(S) immediately above and below the vertex vr are T1(pk) andT1(ph), respectively, and that before processing the vertex vr, the line T1(pi)is above the line T1(pj). Then after processing the vertex vr, the line T1(pj)is above the line T1(pi). Therefore, before processing the vertex vr, theselines are in the orderingT1(pk); T1(pi); T1(pj); T1(ph)in the 2-3 tree A, while after processing the vertex vr, the line orderingbecomes T1(pk); T1(pj); T1(pi); T1(ph)Accordingly, the 2-3 tree B can be updated by deleting the intersectingvertices of T1(pk) and T1(pi), and of T1(pj) and T1(ph), and inserting theintersecting vertices of T1(pk) and T1(pj), and of T1(pi) and T1(ph), if they areon the right of the vertex vr. The intersecting vertices of T1(pi) and T1(pj)is the vertex vr. Since the number of leaves of the 2-3 tree B is bounded byn�1, each of the above operations can be done in time O(logn). Therefore,processing a vertex vr in Step 5 of the algorithm takes time O(logn). Andthe space now used by the algorithm, which is the sum of the 2-3 tree A andthe 2-3 tree B, is bounded by O(n).This completes our description of an O(n2 logn) time and O(n) spacealgorithm that solves the problem THE-SMALLEST-TRIANGLE.Final Remark:

POLYGON INTERSECTIONS 193If the area of the smallest area triangle is zero, then the three pointsforming this triangle are co-linear. Consequently, the above algorithm canbe used to check if there exist three points that are co-linear in a given set ofn planar points. The algorithm we presented in this section is not the bestalgorithm. The best algorithm we know for the problem THE-SMALLEST-TRIANGLE is due to Edelsbrunner, O'Rourke, and Seidel, which runs intime O(n2) and space O(n) [11]. Whereas, the only known lower boundis
(n logn). In fact, even for checking whether there exist three co-linearpoints, the only bounds that we know are O(n2) and
(n logn). Improvingthe upper or lower bounds for either of these problems remains an extremelytantalizing open problem in computational geometry.9.4 Convex polygon intersectionsNow we introduce the second geometric transformation T2. Given a pointp = (a; b) in the plane, we de�ne the image of p under T2 to be the lineT2(p) : ax+ by + 1 = 0In a similar way as we did for the transformation T1, we discuss what is theimage of a line l : �x + �y + 1 = 0 . A point q0 = (a0; b0) on the line lsatis�es �x0 + �y0 + 1 = 0Thus y0 = (��=�)x0 � 1=�, and the point q0 is mapped to the lineT2(q0) : x0x+ y0y + 1 = 0 or x0x+ ((��=�)x0 � 1=�)y + 1 = 0It is easy to check that the line T2(q0) passes through the point (�; �). Thusevery point on the line l : �x+�y+1 is mapped to a line passing throughthe point (�; �). Thus we simply regard the image of the line l to be thepoint (�; �).Again, the transformation T2 preserves the relation of intersection of apoint and a line. That is, a point p is on a line l if and only if the line T2(p)contains the point T2(l). More precisely, we haveObservation 1Two points p and q are on the line l if and only if the two lines T2(p)and T2(q) intersect at the point T2(l).

194 GEOMETRIC TRANSFORMATIONSObservation 2Two lines l1 and l2 intersect at a point p if and only if the two pointsT2(l1) and T2(l2) are on the same line T2(p).Another nice property of the transformation T2 is that the distance of anobject from the origin is preserved. In fact, by analytical geometry, we knowthat the distance of a point (a; b) from the origin ispa2 + b2 and the distanceof a line l : ax+ by+1 = 0 from the origin is 1=pa2 + b2. Thus, points orlines further from the origin are mapped to lines or points closer to the origin.That the transformation T2 is also its own inverse (i.e., G = T2(T2(G)) whereG is either a point or a line) also contributes to its usefulness. Moreover, letp = (a; b) and q = (c; d) be two points, which have distance pa2 + b2 andpc2 + d2 from the origin, respectively. The transformation T2 maps themto two linesT2(p) : ax + by + 1 = 0 and T2(q) : cx+ dy + 1 = 0which have distance 1=pa2 + b2 and 1=pc2 + d2 from the origin, respectively.Therefore,Observation 3If a point p is closer than a point q to the origin, then the line T2(p) isfurther than the line T2(q) from the origin. Similarly, if a line l1 is closerthan a line l2 to the origin, then the point T2(l1) is further than the pointT2(l2) from the origin.Finally, it is also easy to check the following observation.Observation 4If two points p and q are on the same ray starting from the origin, thenthe lines T2(p) and T2(q) are in parallel.We note that each improper point P� is mapped to the line throughthe origin having the slope � and vice versa. Similarly, the origin and theimproper line are duals. Consequently, the transformation T2 should notbe applied to lines or to segments of lines which pass through the origin.Nonetheless, the mere fact that the domain of a problem contains a linethrough the origin should not make us abandon T2. By translating the axes

POLYGON INTERSECTIONS 195in one direction or another, we may be able to insure that T2 will map everyobject in the domain of our problem to another proper object.Let P = fv1; v2; � � � ; vng be a convex polygon that contains the origin O.For a vertex vi = (ai; bi) of P , the image of vi under T2 is the lineT2(vi) : aix+ biy + 1 = 0which does not pass through the origin. Call the half plane Hi with theboundary line T2(vi) and containing the origin the half plane de�ned byT2(vi). Let li be the line on which the boundary edge vivi+1 of P lies.Then the image T2(li) of li is the intersecting point of the lines T2(vi) andT2(vi+1) and the origin is contained in the intersection of the half planes Hiand Hi+1 de�ned by T2(vi) and T2(vi+1), respectively. Since the vertex viis connected to the vertex vi+1 by the boundary edge vivi+1 of P which ison the line li, for i = 1; � � � ; n (here vn+1 = v1), the line T2(vi) intersectsthe line T2(vi+1) at the point T2(li). Thus the intersection of the half planesHi, de�ned by T2(vi), for i = 1; � � � ; n is a bounded area, which is a convexpolygon containing the origin such that the sequence of boundary vertices ofthe convex polygon is T2(l1), T2(l2), � � �, T2(ln). Therefore, we can regard theimage of the convex polygon P containing the origin under T2 to be againa convex polygon T2(P) containing the origin with the boundary verticesT2(l1), T2(l2), � � �, T2(ln).It is easy to see that given a convex polygon P that contains the origin,the image T2(P) of P under T2 can be constructed in time proportional tothe number of vertices of P .Now we apply the transformation T2 to the following problem.CONVEX-POLYGON-INTERSECTIONGiven a set of convex polygons that contain the origin, compute theintersection of them.Suppose that S is a set of convex polygons P1, � � �, Pn that contain theorigin. We �rst construct the image T2(Pi) for each convex polygon Pi inS. Let S 0 be the set of vertices of all these convex polygons T2(P1), T2(P2),� � �, T2(Pn). We will show that the intersection of the convex polygons of Scorresponds to the convex hull of the set S 0. To prove this, we need a fewlemmas.Let l be a line that does not pass through the origin. Draw a ray r startingfrom the origin and intersecting the line l at p. Let q be an arbitrary point

196 GEOMETRIC TRANSFORMATIONS
p

q

r

T ()
T ()

2
2 p

q
X

Y
X

Y

(a) (b)

l

O

T ()2 l
O

Figure 9.3: Oq does not intersects lon the ray r.Lemma 9.4.1 The segment Oq intersects the line l if and only if the seg-ment OT2(l) intersects the line T2(q).proof. Suppose that the segment Oq does not intersect the line l, asshown in Figure 9.3(a). Then the point q is closer than the point p to theorigin. Thus the line T2(q) is further than the line T2(p), by Observation 3.Moreover, the lines T2(q) and T2(p) are in parallel, by Observation 4, andthe point T2(l) is on the line T2(p). Consequently, the segment OT2(l) doesnot intersect the line T2(q), see Figure 9.3(b). The inverse can be proved ina very similar way, thus we omit it here.Let the intersection of the convex polygons in S be I . Suppose that l isa line on which an edge of some polygon in S lies. Then we know that T2(l)is a point in the set S 0. We say that the line l contributes a boundary edgeto the intersection I if part of l is on the boundary of the intersection I .Lemma 9.4.2 The line l contributes a boundary edge to the intersection Iif and only if the point T2(l) is on the convex hull of the set S 0.proof. Suppose that the line l contributes an edge to the intersectionI but T2(l) is not a hull vertex of S 0. Let r be the ray starting from the

POLYGON INTERSECTIONS 197
p

1

2
T ()

T ()12

2
2 2

2

pX

Y
X

Y

(a) (b)

l

l
l O

O

l

r
r

r1

2

T (l)
T (l)Figure 9.4: T2(l) is not a hull vertexorigin and passing through the point T2(l). Then we must be able to �ndtwo points T2(l1) and T2(l2) in the set S 0 such that if we let r1 and r2 bethe rays staring from the origin and passing through the points T2(l1) andT2(l2), respectively, then the ray r is between the two rays r1 and r2, andthat the segment OT2(l) does not intersect the line T2(p) passing through thepoints T2(l1) and T2(l2), where p is the intersecting point of the lines l1 andl2, see Figure 9.4(b). By lemma 9.4.1, the segment Op does not intersect theline l. Moreover, since the ray r is between the two rays r1 and r2, slope(l)is between slope(l1) and slope(l2). Therefore, if we let H , H1, and H2 bethe half planes de�ned by the lines l, l1, and l2, respectively, then the areaH1\H2 is entirely contained in the half plane H , see Figure 9.4(a). But theintersection I is entirely contained in H1\H2 thus is entirely contained in thehalf plane H . But this contradicts the assumption that the line l contributesan edge to I . This contradiction shows that the point T2(l) must be a hullvertex of the set S 0.The inverse that if T2(l) is a hull vertex of S 0 then the line l contributesan edge to the intersection I can be proved similarly and is left as an exerciseto the reader.Lemma 9.4.2 immediately suggests the following algorithm to solve theproblem CONVEX-POLYGON-INTERSECTION.Algorithm CONVEX-POLYGON-INTERSECTION (S)

198 GEOMETRIC TRANSFORMATIONSf Given a set S of convex polygons that contain the origin, compute theirintersection. gbegin1. For each convex polygon Pi and for each edge e of the polygon Pi, ifthe edge e lies on a line l, construct the point T2(l).2. Let S 0 be the set of points produced in Step 1, construct the convex hullCH(S 0) of S 0.3. Let S 00 be the set of lines that are preimages of the hull vertices inCH(S 0). Sort S 00 by slopes, let the sorted list bel1; l2; � � � ; lr4. For i = 1; � � � ; r compute the intersecting point pi of li and li+1 (herelr+1 = l1), then sequence p1; p2; � � � ; pris a convex polygon that is the intersection of convex polygons in S.endThe algorithm correctly �nds the intersection of the polygons in the setS, as we have discussed above. Moreover, if the sum of the number of edgesof the polygons in S is N , then the above algorithm trivially runs in timeO(N logN).

Chapter 10Geometric Problems inHigher DimensionsIn this chapter, we introduce techniques for solving geometric problems inmore than two dimensions. Section 1 introduces the preliminaries of higherdimensional geometry and representation of geometric objects in higher di-mensions in a computer. Section 2 describes a divide-and-conquer algorithmfor constructing the convex hull of a set of points in 3-dimensional Euclideanspace. Section 3 gives an optimal algorithm for constructing the intersectionof a set of half-spaces in 3-dimensional Euclidean space. Section 4 demon-strates an interesting relationship between a convex hull of a set of pointsin the n-dimensional Euclidean space and the Voronoi diagram of a set ofprojected points in the (n+ 1)-dimensional Euclidean space. Section 3 andSection 4 actually gives an optimal algorithm for constructing the Voronoidiagram for a set of points in the plane using reduction techniques.10.1 Preliminaries10.2 Convex hulls in three dimensionFrom Preperata and Shamos.10.3 Intersection of half-spacesFrom Preperata and Shamos. 199

200 HIGHER DIMENSIONAL GEOMETRY10.4 Convex hull and Voronoi diagramFrom MIT Lecture Notes by Agarwal.

Chapter 11Dynamization TechniquesThe techniques are developed for problems whose database is changing over(discrete) time. The idea is to make use of good data structures for a static(�xed) database and add to them certain dynamization mechanisms so thatinsertions or deletions of elements in the database can be accommodatede�ciently.11.1 On-line construction of convex hullsEach of the convex hull algorithms we have examined thus far requires allof the data points to be present before any processing begins. In many geo-metric applications, particularly those that run in real-time, this conditioncannot be met and some computation must be done as the points are beingreceived. In general, an algorithm that cannot look ahead at its input isreferred to as on-line, while one that operates on all the data collectively istermed o�-line. Obviously, given a problem, an on-line algorithm cannot bemore e�cient than the best o�-line algorithm.Let us formally describe the problem.ON-LINE HULLGiven a sequence of n points p1, p2, � � �, pn in the plane, �nd their convexhull in such a way that after pi is processed we have the convex hull for theset of points fp1; p2; � � � ; pig.Let CHi denote the convex hull of the i points p1, p2, � � �, pi. TheON-LINE HULL problem is obviously reduced to the following problem: for201

202 LOWER BOUNDSi = 1; � � � ; n� 1, suppose that we have the convex hull CH i, we \insert" thepoint pi+1 properly into CHi to obtain the convex hull CHi+1. Thus, analgorithm for ON-LINE HULL should look pretty much like the algorithmHEAPSORT, as we studied in Algorithm Analysis, where we always keep asorted list for the �rst i numbers, and insert the (i+1)st number to the list toform a sorted list of the �rst (i+1) numbers. In fact, we will use a techniquepretty similar to HEAPSORT to solve the ON-LINE HULL problem.An on-line algorithm must spend at least time
(n logn), when the lastpoint pn has been processed, since we have shown that
(n logn) is a lowerbound for o�-line algorithms of construction of convex hulls. Therefore, thebest we can expect is to insert pi+1 into the hull CHi in time O(logn). Inother words, if an algorithm inserts each point pi+1 into the convex hull CHiin time O(logn), for i = 1; 2; � � � ; n� 1, then the algorithm is optimal.Now let us see how we insert the point pi+1 into the convex hull CH i.There are two possible cases, either the point pi+1 is internal to the convexhull CH i, then CHi = CHi+1 and we do nothing; or the point pi+1 isexternal to the convex hull CHi, then we have to construct the two bridgesfrom the point pi+1 to the convex hull CHi and form the convex hull CH i.Therefore, the algorithm should look like the following:Algorithm INSERTVERTEXbegin1. if pi+1 is internal to CHi, then do nothing.2. else �nd the two bridges B1 and B2 from pi+1 to CHi. Let q1 and q2be the points in CHi that are on the bridges B1 and B2, respectively,replace a chain on CH i that is between q1 and q2 by two line segmentsq2pi+1 and pi+1q1.endStep 2 in the above algorithm involves SEARCHING the points q1 andq2, DELETING a chain on CHi between q1 and q2, and INSERTING thepoint pi+1. To make our algorithm optimal, all these operations should bedone in time O(logn). Thus the 2-3 trees introduced in Chapter 1 seems aproper data structure for this purpose.Let us store the convex hull CHi in a 2-3 tree T in the following way.The hull vertices of CHi are stored in the leaves of T from left to rightin the counterclockwise ordering on the hull CHi. Each non-leaf vertex v

ON-LINE CONSTRUCTION 203
p

p'

p''

p
i+1

p

p'

p''

p
i+1

p

p' p''

p
i+1

Concave Reflex SupportingFigure 11.1: Concave, re
ex, and supporting pointsof T keeps three pieces of information, L(v), M(v), and R(v), where L(v)contains the right most hull vertex vl stored in the subtree rooted at the leftson of v, together with the two neighbors of vl on the hull CH i. Similarly,M(v) and R(v) contains the right most hull vertex vm and vr stored in thesubtrees rooted at the middle son and right son of v, respectively, togetherwith their two neighbors on the hull CH i.Let p be a hull vertex of CHi and let p0 and p00 be the two neighbors of pon CHi. Draw a line segment pi+1p between the point p and pi+1. Let � bethe angle that is less than � and formed by the line segments pp0 and pp00,and let l be the straight line passing through the two points p and pi+1. Wesay that the vertex p is concave with respect to pi+1 if the points p0 and p00are in two di�erent sides of the line l and the point pi+1 is within the wedgeof the angle �. The point p is re
ex with respect to pi+1 if the points p0 andp00 are in two di�erent sides of the line l and the point pi+1 is outside thewedge of the angle �. The point pi+1 is supporting with respect to pi+1 if thetwo points p0 and p00 are in the same side of the line l. Figure 11.1 depictsthese three di�erent cases.Note that given the points p, p0, p00, and pi+1, we can decide in constanttime if the point p is concave, re
ex, or supporting with respect to the pointpi+1.It is easy to see that if pi+1 is internal to CHi, then all hull vertices ofCHi are concave with respect to pi+1, and if pi+1 is external to CHi, thenexactly two hull vertices of CHi are supporting with respect to pi+1, whichare the two points q1 and q2 in Step 2 in the algorithm INSERTVERTEX.Without loss of generality, we suppose that q1 is the \right supportingpoint" with respect to pi+1 such that the whole convex hull CHi lies on

204 LOWER BOUNDSthe left side of pi+1q1 (we say that a point q is on the left (right) side of adirected line segment p0p00 if q is on our left (right) side when we travel thestraight line passing through the points p0 and p00 in the direction from p0 top00). Similarly, we call the point q2 the \left supporting point" with respectto pi+1.Suppose that the point pi+1 is external to the convex hull CH i, we discusshow to �nd the right and left supporting points q1 and q2 with respect topi+1 in the 2-3 tree representing the convex hull CHi. Since the algorithmsare similar for �nding the right supporting point and left supporting point,we only discuss the algorithm for �nding the right supporting point q1.Recursively, suppose that we know that the point q1 is stored in a subtreeT (v) rooted at a non-leaf vertex v. The root v contains three pieces ofinformation L(v), M(v), and R(v) for its left son LSON(v), middle sonMSON(v), and right son RSON(v), respectively. We �rst use the informationstored in M(v) and R(v) to decide if q1 is stored in the right son RSON(v) ofv. If q1 is not stored in the right son RSON(v), then we use the informationstored in L(v) and M(v) to decide that q1 is stored in the left son LSON(v)or in the middle son MSON(v). Since the methods for these two decisionsare similar, we only describe how we use the information L(v) and M(v) todecide in which of the left and middle sons the right supporting point q1 isstored. Since L(v) contains the right most point vl in the subtree LSON(v)together with its two neighbors on the convex hull CH i, we can decide inconstant time that the point vl is concave, re
ex, or supporting with respectto pi+1. If vl is the right supporting point with respect to pi+1, then we aredone. Therefore, we only have to consider the cases that vl is concave, re
ex,or left supporting, with respect to pi+1. Again, the processes for these threecases are quite similar, we only discuss the case that vl is re
ex with respectto pi+1.So we suppose that vl is re
ex with respect to pi+1. Let the right mostpoint in the subtree MSON(v) be rm (the point rm and its neighbors onCHi are contained in the information M(v) of v. There are six di�erentpositions, relative to the position of vl, for vm to locate:1. The point vm is concave with respect to pi+1, and vm is on the rightof pi+1vl.2. The point vm is concave with respect to pi+1, and vm is on the left ofpi+1vl.3. The point vm is re
ex with respect to pi+1, and vm is on the right of

ON-LINE CONSTRUCTION 205
p
i+1

v l

p
i+1

v l

p
i+1

v l

p
i+1v l

p
i+1v l

p
i+1v l

vm

vm

vm

vm

vm

vm

(1) (2)

(3) (4)

(5) (6)Figure 11.2: Six positions for vm when vl is re
expi+1vl.4. The point vm is re
ex with respect to pi+1, and vm is on the left ofpi+1vl.5. The point vm is right supporting with respect to pi+1.6. The point vm is left supporting with respect to pi+1.Figure 11.2 illustrates all these six cases.From Figure 11.2, it is easy to decide in which subtree the right support-ing point q1 with respect to pi+1 is stored. We discuss this case by case.

206 LOWER BOUNDSRemember that the hull vertices of CHi are stored in the 2-3 tree from leftto right in the counterclockwise ordering, therefore, the points stored in thesubtree MSON(v), together with the point vl, correspond to the chain onthe convex hull CHi starting from the point vl, making travel in counter-clockwise order, and ending at the point vm. Call this chain a MSON-chain.CASE 1 In this case, vl is re
ex and vm is concave. If we travel the MSON-chain from vl to vm, the points on the chain change from re
ex to concavewith respect to pi+1, and all points are on the right of pi+1vl. Thus wemust pass the right supporting point q1. Therefore, in this case, the rightsupporting point q1 is stored in the middle son MSON(v).CASE 2 The analysis is similar to Case 1, the right supporting point q1 isstored in the middle son MSON(v).CASE 3 In this case, both vl and vm are re
ex, and vm is on the right sideof pi+1vl. Therefore, if we travel the MSON-chain from vl to vm, the rightsupporting point q1 must not be passed. Therefore, in this case the middleson MSON(v) does not contain the right supporting point q1. The point q1must be stored in the left subtree LSON(v).CASE 4 Similar to Case 2, the right supporting point q1 is stored in themiddle son MSON(v).CASE 5 This is the most lucky case, since the right supporting pointq1 = vm.CASE 6 Similar to Case 2, the right supporting point q1 is stored in themiddle son MSON(v).Therefore, for each of these six cases, we can decide in constant timewhich subtree we should further search. We summarize these discussions inthe following algorithm.Algorithm RIGHTPOINT(v)f Search the right supporting point q1 in the subtree rooted at the non-leaf vertex v. The points vl and vm are the right most points in the subtreesLSON(v) and MSON(v), respectively. gbegin1. if pi+1 is external to CHi1.1 if q1 is stored in RSON(v), call RIGHTPOINT(RSON(v));1.2 else1.2.1 if vl is re
ex1.2.1.1 if vm is right supporting, then done;1.2.1.2 else if vm is re
ex and on the right of pi+1vl

ON-LINE CONSTRUCTION 2071.2.1.3 Call RIGHTPOINT(LSON(v));1.2.1.4 else Call RIGHTPOINT(MSON(v));1.2.2 else if vl is concave � � �1.2.3 else if vl is supporting � � �2. else if pi+1 is internal to CHi2.1 � � �endWe give a few remarks on the above algorithm.1. To decide if the point q1 is stored in RSON(v) in Step 1.1, we usethe method similar to those in Steps 1.2.1 - 1.2.3. The only exceptionis that the information used is MSON(v) and RSON(v), instead ofLSON(v) and MSON(v).2. We actually do not need Step 2 to check if pi+1 is internal to CHi. Infact, if pi+1 is internal to CHi, the recursive calls of Step 1 eventuallylocate a single point q1 on the convex hull CHi, and this point q1 isstill concave with respect to pi+1. Since if the point pi+1 is external toCHi, then the �nal point q1 must be the right supporting point, so ifwe �nd out that the �nal point q1 is still concave with respect to pi+1,then we conclude that the point pi+1 is internal to CHi.3. The left supporting point q2 is found by a similar subroutind LEFT-POINT(v).4. With the above discussions and the similarities, the reader should haveno trouble to �ll up the omitted part in the algorithm.Therefore, to �nd the right and left supporting points q1 and q2 in theconvex hull CHi, which is represented by a 2-3 tree T rooted at v, we simplycall RIGHTPOINT(v); LEFTPOINT(v)By the discussions above, these two supporting points can be found intime O(logn).Since the subroutines also tell us if pi+1 is internal to CH i, so if we aretold that pi+1 is internal to CHi, then CHi = CH i+1 and we are done.Otherwise, the right and left supporting points q1 and q2 are returned. LetC be the chain between q1 and q2 in the tree T . Pick any point q in the

208 LOWER BOUNDSchain C. If the point q is re
ex, then all hull vertices in the chain C shouldbe deleted and all other hull vertices should be kept. On the other hand, ifthe point q is concave, then all hull vertices in the chain C should be keptand all other hull vertices should be deleted. Therefore, we �rst split thethe tree T into three trees T1, T2, and T3 such that the leaves of the treeT2 are those points that are in the chain C. In the case that q is re
ex, wesplice the two trees T1 and T3 into a new tree T 0, and in the case that q isconcave, we let T2 be the new tree T 0. It is clear to see that the new tree T 0corresponds to the partial chain in CH i that should be kept in the convexhull CHi+1. Moreover, since the data structure we are using is a 2-3 tree,these split and splice operations can be done in time O(logn). Finally, weinsert in time O(logn) the point pi+1 into the tree T 0 to form the 2-3 treerepresenting the convex hull CHi+1.Summarize the above discussions, we conclude that constructing the con-vex hull CH i+1 from the convex hull CHi can be done in time O(logn). Thisconsequently gives us the following theorem.Theorem 11.1.1 The ON-LINE HULL problem can be solved by an optimalalgorithm.

Chapter 12Randomized MethodsThis chapter may contain the following materials: expected time for con-structing convex hulls in 2-dimensional space (Preperata and Shamos, seealso Overmars Lecture Notes), expected time for constructing intersectionof half-spaces in 3-dimensional space. The papers by Clarson should be readto �nd more examples.

209

210 RANDOMIZED METHODS

Chapter 13Parallel ConstructionsParallel random access machine (PRAM)The computational model we are based on in this chapter is called parallelrandom access machine (PRAM). This kind of machine model is also knownas the Shared-Memory Single Instruction Multiple Data computer. Here,many processors share a common (random access) memory that they use inthe same way a group of people may use a bulletin board. Each processoralso has its own local memory in which the processor can save its own inter-mediate computational results. When two processors wish to communicate,they do so through the shared memory. Say processor Pi wishes to passa number to processor Pj . This is done in two steps. First, processor Piwrites the number in the shared memory at a given register which is knownto processor Pj . Then, processor Pj reads the number from that register.The number of processors of a PRAM, the size of the shared memory,and the size of the local memory for each processor are all assumed to beunbounded.Depending on the way of simultaneous access of a register in the sharedmemory, the class of PRAM can further be subdivided into four subclasses:EREW PRAM, CREW PRAM, ERCW PRAM, and CRCW PRAM. Weare not going to discuss the details in this book.13.1 Parallel construction of convex hullsOur last discussion on the construction of convex hulls is a description of aparallel algorithm constructing a convex hull given a set of n points in theplane. 211

212 LOWER BOUNDSHow do we evaluate a parallel algorithm? First of all, the computationtime, here we call parallel time of a parallel algorithm is important. More-over, a second important criterion in evaluating a parallel algorithm is thenumber of processors the algorithm requires during its computation. There-fore, a good parallel algorithm should not only run in least time, but alsouse least number of processors.To describe the parallel algorithm constructing convex hulls for planarpoints, we need to be able to solve some elementary problems e�ciently inparallel. We list below the parallel complexity for these problems, and ex-plain brie
y the basic idea of the parallel algorithms solving these problems.For more detailed discussions on e�cient parallel algorithms, the reader isreferred to [3].MAXIMUMGiven n numbers, �nd the maximum number.Theorem 13.1.1 MAXIMUM can be solved in O(logn) parallel time usingO(n) processors.proof. To �nd the maximum number in a list of n numbers, we �rstuse n=2 processors, each picks a pair of numbers and compares them. Thenalgorithm is recursively applied on the n=2 winners.LISTRANKGiven a linked list of n elements, compute the rank for each element.That is, for the ith element in the list, we compute the number n� i.Theorem 13.1.2 LISTRANK can be solved in O(logn) parallel time usingO(n) processors.proof. Since the idea of the algorithm PARALLELRANK is so basic andwill be used later, we describe it here in a little more detail.We assume that the linked list is represented by a contents array c[1 : : :n]and a successor array s[1 : : :n]. Here for all i, c[i] is initialized to 1 exceptthat for the last element, c[n] = 0, and s[i] is initialized to point to the nextelement in the linked list except that for the last element, s[n] points tothe nth element itself. In general, c[i] is the distance between the element i

PARALLEL CONSTRUCTION 213and the element pointed by s[i]. The following simple algorithm solves theLISTRANK problem.Algorithm PARALLELRANKINGbegin1. for logn iteration repeat2. In parallel, for i = 1; � � � ; n do3. c[i] = c[i] + c[s[i]]; s[i] = s[s[i]].endThe operation used in this algorithm of replacing each pointer s[i] bythe pointer's pointer s[s[i]] is called pointer jumping, and is a fundamentaltechnique in parallel algorithm design. The correctness and time complexityof the algorithm can be obtained by inductively proving the following twoclaims: for all i = 1; � � � ; n, (1) at the start of each iteration, c[i] is thedistance between the element i and the element pointed by s[i]; and (2)after log(n� i) iterations, the point s[i] is pointing to the last element in thelinked list.We can use one processor for each element. Then in each iteration, Step 2and Step 3 can be executed in constant time by the processor for the element.We conclude that in parallel time O(logn) and using O(n) processors, theLISTRANK problem can be solved.ARRAY-COMPRESSIONLet A be an array containing m = n+n0 elements, n of them are red andn0 of them are blue. Delete all blue elements and compress all red elementsinto an array A0 of size n.Theorem 13.1.3 ARRAY-COMPRESSION can be solved in parallel timeO(logm) using O(m) processors.proof. Initially, make each element of the array A a linked list of asingle element. Then for each pair of linked lists which correspond to twoconsecutive elements in the array A, combine them into a single linked list.In this process, if both linked lists are red elements, then simply connect thetail of the �rst to the head of the second and make a linked list of two redelements; if exactly one linked list is a red element, then ignore the linked list

214 LOWER BOUNDSof a blue element; �nally, if both are linked list of blue elements, then let thenew linked list be a linked list of a single blue element. Recursively combinethese new linked lists. It is easy to see that after at most logm iterations,all red elements are stored in a linked list, and all blue elements are thrownaway. Now use the PARALLELRANKING algorithm to compute the rankfor each red element in the �nal linked list. With the rank for each redelement in the �nal linked list, a processor can copy the red element directlyto the array A0 in constant time.Theorem 13.1.4 SORTING can be solved in time O(logn) using O(n) pro-cessors.proof. See [9].Now we are ready for describing the parallel algorithm for constructingconvex hulls for planar points. The algorithm looks as follows.Algorithm PARALLELHULLf Given a set S of n planar points stored in an array A, �nd the convexhull CH(S) of S. gbegin1. Find the pair of points pmin and pmax with the maximum and minimumx-coordinates;2. Partition the set S into two sets S1 and S2 such that S1 is the set ofpoints in S that are above the segment pminpmax, and S2 is the set ofpoints in S that are below the segment pminpmax;3. Sort S1 by x-coordinate, and sort S2 by x-coordinate;4. construct the upper hull UH for the set S1, and construct the lower hullLH for the set S2;5. Merge UH and LH to get the convex hull CH(S).endStep 1 in the algorithm PARALLELHULL can be done in O(logn) par-allel time using O(n) processors by Theorem 13.1.1. Step 2 can be done inO(logn) parallel time using O(n) processors in the following way: we use two

PARALLEL CONSTRUCTION 215new arrays A1 and A2. A single processor is used for each i, i = 1; � � � ; n,to decide if the ith point pi is above or below pminpmax. If pi is abovepminpmax, put pi in the ith position in the array A1, otherwise, put pi in theith position in the array A2. By Theorem 13.1.3, the arrays A1 and A2 canbe compressed in O(logn) parallel time using O(n) processors. Step 3 canbe done in O(logn) parallel time using O(n) processors by Theorem 13.1.4.Step 5 can obviously be done in O(logn) parallel time using O(n) processors.Therefore, if Step 4 of the algorithm can be done in O(logn) parallel timeusing O(n) processors, then the algorithm PARALLELHULL takes O(logn)parallel time and O(n) processors.Since constructions of the upper hull UH and the lower hull LH aresimilar, we only discuss the algorithm for constructing the upper hull.Algorithm UPPER-HULLf Given the set S1 of n planar points sorted by x-coordinates in an arrayA1, construct the upper hull UH of S1 and put it in an array B1. gbegin1. Partition the array A1 into pn subarrays each containing pn consec-utive elements in A1;2. Recursively construct the upper hull for the points in each subarray (inparallel) (call them upper subhulls);3. Merge these pn upper subhulls into the upper hull UH of S1.endFirst let us assume that Step 3 in the algorithm UPPER-HULL can bedone in parallel time O(logn) using O(n) processors. Then since the O(n)processors are \reusable" in Step 2, we conclude that the algorithm UPPER-HULL uses O(n) processors. Moreover, since Step 1 can obviously be done inO(logn) parallel time using O(n) processors, if we suppose that the parallelrunning time of the algorithm is T (n), then we have the recurrence relationT (n) � c logn+ T (pn)It is not hard to see that T (n) = O(logn).Therefore, the problem is �nally reduced to merging those pn uppersubhulls into the upper hull of S1 in O(logn) parallel time using O(n) pro-cessors. This is the most non-trivial part of our algorithm.

216 LOWER BOUNDSConsider two upper subhulls H and H 0. Since we divide S1 by x-coordinate, this ensures that the x-coordinates of any two upper subhullsdo not overlap. By recursive assumption, the upper subhulls H and H 0 arestored in arrays in sorted order by x-coordinate. A single processor cancompute in O(logn) time the unique line which is tangent to both uppersubhulls, together with the two points of tangency. This can be done by abinary search that is similar to the searching procedure we discussed in thelast section for on-line convex hull construction. For each pair of upper sub-hulls, construct the corresponding tangent. Since there are totally �pn2 � < nsuch pairs of upper subhulls, we can use n processors to construct all thesetangents in parallel time O(logn).Now we have n0 vertices, n0 � n, which are the vertices on the pn uppersubhulls. Moreover, we have m edges, m � 2n, which are the edges on thepn upper subhulls and the tangents we constructed above for pairs of uppersubhulls. Note that all edges on the �nal upper hull UH are within these 2medges. For each edge with two endpoints v1 and v2, we make two directededges, one is (v1; v2) and the other is (v2; v1). Now for these 2m directededges, we sort them by the �rst component. What we will obtain is an arrayin which all edges incident on a vertex are consecutive. By Theorem 13.1.4,this can be done in parallel time O(logn) using O(n) processors. Then foreach consecutive subarray corresponding to the set of edges incident on thesame vertex v, we �nd the two edges lv and rv of the smallest and largestslope with respect to the vertex v (the angle of a slope is measured from�3�=2 to �=2). This can also be done in parallel time O(logn) using O(n)processors, by Theorem 13.1.1.The edges lv and rv form a \roof" at the vertex v. By the construction ofall these 2m edges, it is easy to see that for any vertex v that is neither pminnor pmax, the two edges lv and rv must exist and must be in two di�erentsides of the vertical line through v. Therefore, we will call lv and rv the leftroof and the right roof, respectively. The vertex pmin has only right roof, andthe vertex pmax has only left roof.If the angle formed by lv and rv is greater than � (measured counter-clockwise from the left roof lv to the right roof rv), then clearly the vertex vcannot be on the �nal upper hull UH, so we mark the vertex v by 0, meaning\not on UH". The two corresponding roof edges lv and rv are also ignored.Moreover, we ignore all edges that are not a roof edge for any vertex.For each v of those vertices that have not been marked 0, we try to travelfrom it \from left to right" through roof edges that have not been ignored.Note that if a vertex v is on the upper hull UH , then the two roof edges of

PARALLEL CONSTRUCTION 217v must be on the upper hull UH , and the other endpoint of the right roofedge of v must be the next vertex on the upper hull UH , whose roof edgesare again edges on UH . Therefore, if we start with a vertex v on the upperhull UH , the trip will be a partial chain on the upper hull UH between thevertex v and the vertex pmax, and eventually lead us to the vertex pmax.On the other hand, if v is not on the upper hull UH , the trip from v willlead us either to a dead vertex (i.e., a vertex that has no right roof edgeor a vertex that has been marked 0) that is not the vertex pmax, or to avertex w such that the edge leading us to w is not the left roof edge of w.Therefore, starting at a vertex v, we can decide if v is on the upper hullUH by this kind of traveling. This kind of traveling is very similar to thetraveling we discussed for PARALLELRANKING. In fact, for each vertexv that is not marked 0, a processor can �rst check if v is a \direct dead"vertex (i.e., a vertex w that is not pmax and either has no right roof edge,or the right roof edge (w; u) is not the left roof edge of the other endpointu). If v is a direct dead vertex, make the successor s[v] of v point to v itself,and let c[v] = 0 (like the last element in the linked list in our algorithmPARALLELRANKING). For all other vertex v, set c[v] = 1 and let s[v]point to the other endpoint of the left roof edge of v. Now exactly like inthe algorithm PARALLELRANKING, after at most O(logn) iterations ofpointer jumping, the travels from all vertices are �nished. If the successorof a vertex v now is the vertex pmax, then the vertex v is on the upper hullUH , otherwise, the successor of v is a direct dead vertex and the vertex vis not on the upper hull UH . Mark all vertices on the upper hull UH by1, and mark all vertices not on the upper hull UH by 0. Now (perhapsafter another sorting by x-coordinate) delete the vertices marked 0 usingARRAY-COMPRESSION, and we eventually obtain the upper hull UH ofS1, which is stored in an array. Notice the the upper hull UH now is alsoready for the further recursive calls.Since PARALLELRANKING and ARRAY-COMPRESSION both canbe done in O(logn) parallel time using O(n) processors, we conclude thatthe merge part (Step 3) in algorithm UPPER-HULL can be done in O(logn)parallel time using O(n) processors.This completes our description of the O(logn) parallel time, O(n) pro-cessor parallel algorithm for constructing convex hulls for planar points.

218 LOWER BOUNDS

Bibliography[1] A. Aggarwal and J. Wein, Computational Geometry, MIT Tech-nical Report, MIT/LCS/RSS 3, (1988).[2] A. V. Aho, J. E. Hopcropt, and J. D. Ullman, The Designand Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,(1974).[3] S. G. Akl, The Design and Analysis of Parallel Algorithms, PrenticeHall, Engiewood, N.J., (1989).[4] J. L. Bentley and M. I. Shamos, A problem in multivariate statis-tics: Algorithms, data structure, and applications, Proc. 15th AllertonConf. Commun., Contr., and Comput., (1977), pp.193-201.[5] M. Blum, W. Floyd, V. R. Pratt, R. L. Rivest, and R. E.Tarjan, Time bounds for selection, J. Computer and System Sciences7, (1972), pp.448-461.[6] C. B. Boyer, A History of Mathematics, New York: Wiley, (1968).[7] K. Q. Brown, Geometric transforms for fast geometric algorithms,Tech. Report CMU-CS-80-101, Carnegie-Mellon, (1979).[8] B. Chazelle, Triangulating a simple polygon in linear time, Discreteand Computational Geometry, (1991), pp. 485-524.[9] R. Cole, Parallel merge sort, SIAM J. Computing 17, (1988), pp.770-785.[10] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, (1987). 219

220 BIBLIOGRAPHY[11] H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing ar-rangements of lines and hyperplanes with applications, SIAM J. Com-puting 15, (1986), pp.341-363.[12] D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAMJ. Computing 12, (1983), pp.28-35.[13] D. G. Kirkpatrick and R. Seidel, The ultimate planar convexhull algorithm? SIAM J. Computing 15, (1986), pp.287-299.[14] D. E. Knuth, The Art of Computer Programming. Volume III: Sort-ing and Searching, Addison-Wesley, Reading, Mass., (1973).[15] J. B. Kruskal, On the shortest spanning subtree of a graph and thetraveling salesman problem, Proc. AMS 7, (1956), pp.48-50.[16] D. T. Lee and F. P. Preparata, Computational Geometry - ASurvey, IEEE Transitions on Computers C-33, No. 12, (1984), pp.1072-1101.[17] P. McMullen and G. C. Shephard, Convex Polytopes and the Up-per Bound Conjecture, Cambridge University Press, Cambridge, Eng-land, (1971).[18] K. Mehlhorn, Multidimensional Searching and Computational Ge-ometry, Springer-Verlag, Berlin, (1984).[19] W. M. Newman and R. F. Sproull, Principles of Interactive Com-puter Graphics, McGraw-Hill, New York, (1979).[20] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford, NewYork, (1987).[21] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-tion: Algorithms and Complexity, Englewood Cli�s, NJ: Prentice Hall,(1982).[22] T. Pavlidis, Algorithms for Graphics and Image Processing, Springer-Verlag, Berlin, (1982).[23] F. P. Preparata and M. I. Shamos, Computational Geometry: AnIntroduction, Springer-Verlag, New York, (1985).

BIBLIOGRAPHY 221[24] R. C. Prim, Shortest connection networks and some generalizations,Bell Sys. Tech, J. 36, (1957), pp.1389-1401.[25] J. Schwartz, M. Sharir, and J. Hopcroft, Planning, Geometry,and Complexity of Robot Motion, Ablex Publishing Co., Norwood, NewJersey, (1987).[26] J. Schwartz and C. Yap, Algorithmic and Geometric Aspects ofRobotics, Vol. 1, Erlbaum, Hillsdale, New Jersey, (1987).[27] M. I. Shamos, Geometry and statistics: Problems at the interface,in Algorithms and Complexity, J. F. Traub, Ed., Academic, New York,(1976), pp.251-280.[28] G. T. Toussaint, Pattern recognition and geometrical complexity,Proc. 5th Int. Conf. Pattern Recog., (1980), pp.1324-1347.

