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Abstract

Model-based testing has been widely studied and successfully applied to generate
and verify completeness of test suites. Roughly, completeness guarantees that a non-
equivalent implementation under test will always be identified regarding complete de-
terministic Finite State Machines. Several approaches showed sufficient, and sometimes
also necessary, conditions on specification models and test suites in order to guarantee
completeness. In these studies, usually, test cases are required to be non-blocking —
that is, they are required to run to completion — on both the specification and the
implementation models. However, often it is desirable to have blocking test cases, and
in some situations the presence of blocking test cases cannot be circumvented. In the
present work we allow test cases to block, both in the specification as well as in the
implementation models, and we study a natural variant of completeness, here called
perfectness. Perfectness guarantees that non-compliance between a specification and
an implementation will be detected, even in the presence of blocking test cases when
an input action of the test case is not defined. We characterize perfectness in terms of
isomorphisms, and establish a relationship between the classical notion of completeness
and perfectness. We also give an upper bound on the number of states in implementa-
tions, beyond which no test suite can be complete, both in a conventional sense and in
the presence of blocking test cases.

1 Introduction

Completeness of test suites has been largely studied for models based on Finite State Ma-
chines (FSMs) [4, 8, 6, 12, 2, 13, 11]. A test suite is said to be complete for a FSM spec-
ification when it provides complete fault coverage [4, 8] according to an appropriate fault
model. Several works have proposed strategies for generating complete test suites [5], or for
checking if a given test suite is complete for a given specification [2]. Some of them presented
necessary conditions [9, 14] for test suite completeness, whereas other approaches gave suf-
ficient, but not necessary, conditions for test suite completeness [6, 10, 12, 13]. Still other
approaches described necessary and sufficient conditions for test suite completeness [2, 5].
All these works, however, imposed restrictions on the specification and implementation
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2 Bonifacio and Moura

models, or in some way restricted the fault domains [6, 10, 12, 13, 2]. Some of them consid-
ered specifications with n states and restricted implementations to have at most n states.
Further, in some approaches specification and implementations are required to be reduced
or completely specified machines.

Always, test cases have been required to be non-blocking on both the specifications and
the implementations models, meaning that all test cases are assumed to run to the end in
these models. In particular, test cases are assumed to run to completion on implementations
even when implementations are treated as true black-boxes, which is not reasonable in
practical applications since such implementations could be represented by partial machines.
Hence test suites can not be assumed to run to completion in any black-box implementation.

In a recent work, Bonifacio and Moura [3] have proposed an alternative approach to
deal with more general scenarios where test cases can block both in the specification or in
implementation models. In that work test cases are not required to run to completion, even
when implementations are partial FSMs, and furthermore, implementations are treated as
true black boxes. A new notion of equivalence, called alikeness, was also introduced giving
rise to the notion of perfectness in lieu of the classical notion of completeness.

A related issue that concerns test suite completeness is the maximum size, in terms of
the maximum number of states, in implementations that can be put under test. Usually,
earlier works constrained implementations to have at most the same number of states as the
given specification. Some of them considered implementations with more states than the
specification, but with an upper bound on the number of states, now imposed by the tester.
We are not aware of any work that gives a precise relationship between the maximum
number of states in implementations and the size of test suites in order to get positive
verdicts when such implementations are put under test.

In this work we start by giving a new characterization of the notion of test suite per-
fectness in terms of isomorphisms. We establish a close relationship between the classical
notion of completeness and the new notion of perfectness. We then give a precise upper
bound on the number of states in implementations under test, beyond which no test suite
can be guaranteed to be complete, both in the classical sense and in the more general sce-
nario when blocking test cases can be present. The bound is based only on a measure of
test suite size and the number of states in the given specification, and it does not depend
on the implementation model.

We organize the paper as follows. Basic results, definitions and notations appear in
Section 2. Section 3 characterizes perfectness in terms of isomorphisms. We investigate the
relationship between completeness and perfectness in Section 4. In Section 5 we establish
an upper bound on the number of states in candidate implementations beyond which a
guarantee of completeness is lost. Section 6 states some conclusions.

2 Definitions and notation

In this section we introduce some basic concepts. We also present some preliminary results
that will be important in the following sections.

Let I be an alphabet. The length of any finite sequence α of symbols over I is indicated
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by |α|. The empty sequence will be indicated by ε, with |ε| = 0. The set of all sequences
of length k over I (k ≥ 0) is denoted by Ik, while I? names the set of all finite sequences
over I. When we write x1x2 · · ·xn ∈ I? (n ≥ 0) we mean xi ∈ I (1 ≤ i ≤ n), unless noted
otherwise. Given any two sets of sequences A,B ⊆ I?, their symmetric difference will be
indicated by A	B, that is A	B = (A∩B)∪ (A∩B), where A indicates the complement
of A with respect to I?. The usual set difference is indicated by A \B.

Remark 1. A	B = ∅ iff 1 A = B.

2.1 Finite state machines and test suites

Next, we write the definition of a Finite State Machine [2, 7].

Definition 1. A deterministic FSM is a system M = (S, s0, I,O, D, δ, λ) where

• S is a finite set of states

• s0 ∈ S is the initial state

• I is a finite set of input actions or input events

• O is a finite set of output actions or output events

• D ⊆ S × I is a specification domain

• δ : D → S is the transition function

• λ : D → O is the output function.

In what follows M and N will always denote the FSMs (S, s0, I,O, D, δ, λ) and
(Q, q0, I,O′, D′, µ, τ), respectively. Let σ = x1x2 · · ·xn ∈ I?, ω = a1a2 · · · an ∈ O? (n ≥ 0).
If there are states ri ∈ S (0 ≤ i ≤ n) such that δ(ri−1, xi) = ri and λ(ri−1, xi) = ai

(1 ≤ i ≤ n), we may write r0
σ/ω→ rn. When the input sequence σ, or the output sequence ω,

is not important we may write r0
σ/→ rn, or r0

/ω→ rn, respectively, and when both sequences
are not important we may write r0 → rn. We can also drop the target state, and write

r0
σ/ω→ or r0 → .

It will be useful to extend the functions δ and λ to pairs (s, σ) ∈ S × I?. Let D̂ ={
(s, σ)

∣∣∣ s σ/→, σ ∈ I?, s ∈ S
}

. Define the extensions δ̂ : D̂ → S and λ̂ : D̂ → O? by letting

δ̂(s, σ) = r and λ̂(s, σ) = ω whenever s
σ/ω→ r. When there is no reason for confusion we

may write D, δ and λ instead of D̂, δ̂ and λ̂, respectively.

The function U : S → I? will be useful, where U(s) = {σ | (s, σ) ∈ D̂}. Informally, U(s)
denotes all defined input action sequences that can be completely run starting at state s.

Now we are in a position to define test cases and test suites.

1Here, ‘iff’ is short for ‘if and only if’.
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Definition 2. A test suite for M is any finite nonempty subset of I?. Any element of a
test suite is a test case.

Before we can define test completeness, we need the classical notions of distinguishability
and equivalence.

Definition 3. Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I?. We say that
s and q are C-distinguishable iff λ(s, σ) 6= τ(q, σ) for some σ ∈ U(s) ∩ U(q) ∩ C, denoted
s 6≈C q. Else, s and q are C-equivalent, denoted s ≈C q. We say that M and N are
C-distinguishable iff s0 6≈C q0, and they are C-equivalent iff s0 ≈C q0.

When C is clear from the context we might drop the subscript. When there is no mention
to C we understand that we are taking C = I?. In this case, the condition U(s0)∩U(q0)∩C
reduces to U(s0)∩U(q0). For the ease of notation, we also write M ≈C N when M and N
are C-equivalent, and write M 6≈C N when they are C-distinguishable.

The conventional notion of m-completeness is as follows.

Definition 4. Let T be a test suite for M and m ≥ 1. Then T is m-complete for M iff for
any FSM N , with U(s0) ⊆ U(q0) and with at most m states, the following hold: Whenever
M 6≈ N then M 6≈T N , where there exists σ ∈ T such that σ /∈ U(s0).

Note that if σ runs to completion from s0, that is, s0
σ/→, then σ must also run to

completion from q0, that is we must have q0
σ/→. The definition says that any discrepancy

between the behaviors of the specification M and any implementation N will be detected
if we run the tests in T through M and N , provided that we consider implementations
with at most m states. Note that the technical condition U(s0) ⊆ U(q0) will always be
satisfied if we were to test implementations that were complete FSM models. A FSM M
is said to be complete when D = S × I, that is, for any state s and any input symbol x,

we always have s
x/→ . We note that characterizations of m-completeness have appeared in

earlier works [3, 2].

2.2 The notion of alikeness

A sequence of input symbols that does not run to completion in a FSM is called by a
blocking test case.

Definition 5. A blocking test case for M is a sequence σ 6∈ U(s0). When σ is not blocking
we say that σ runs to completion in M .

Given two FSM models M and N , if σ ∈ U(s0)	 U(q0) then we must have that either
σ blocks in M and runs to completion in N , or vice-versa. Given a test suite T and two
FSM models M and N , we want to say when M and N are equivalent in some more general
sense, that is, even considering that we may have blocking test cases, for M or N , in T .
We want that all σ ∈ T that is a blocking test case for M must also be a blocking test case
for N , and vice-versa. Further, any test case that is non-blocking for both M and N must
output identical behaviors when run through both models. Under these two conditions, M
and N will be said to be T -alike.
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Definition 6. Let M and N be FSMs and let s ∈ S, q ∈ Q. Let C ⊆ I?. We say that s
and q are C-alike, denoted s ∼C q, iff

(
U(s)	 U(q)

)
∩ C = ∅ and λ(s, σ) = τ(q, σ) for all

σ ∈ U(s) ∩ U(q) ∩ C. Otherwise, s and q are C-unlike, denoted s 6∼C q. We say that M
and N are C-alike iff s0 ∼C q0, otherwise they are C-unlike.

We may also write M ∼C N when M and N are C-alike, or M 6∼C N when they are
C-unlike. Again, when C is not important, or when it is clear from the context, we might
drop the subscript. When there is no other mention to C we understand that we are taking
C = I?.

Remark 2. We note of the following simple observations.

1. Using Remark 1, we note that s ∼ q is equivalent to U(s) = U(q) and λ(s, σ) = τ(q, σ)
for all σ ∈ U(s).

2. If C1 ⊆ C2, then s ∼C2 q implies s ∼C1 q.

3. If s ∼ q, then s ∼C q, for all C ⊆ I?.

The alikeness relation, ∼C , is an equivalence relation when M and N are the same
machine, that is, when ∼C is defined over a single state set. We note that this is not the
case, in general, with the distinguishability relation ≈C .

Lemma 1. Let M be a FSM and let C ⊆ I?. Then ∼C is an equivalence relation on S.

Proof. Let s, r, p ∈ S be states of M . We clearly have U(s)	U(s) = ∅ and λ(s, α) = λ(s, α)
for all α ∈ U(s)∩C. So, ∼C is reflexive. Also, set intersection, the symmetric set difference
	 and, of course, equality are commutative. Hence, ∼C is symmetric.

For transitivity, assume s ∼C r and r ∼C p. Let α ∈ U(s) ∩ C. Thus α ∈ U(r) because
s ∼C r, and then α ∈ U(p) because r ∼C p. So, U(s) ⊆ U(p). Since we already have
symmetry, we get p ∼C r and r ∼C s, and a similar argument gives U(p) ⊆ U(s), showing
that (U(s)	 U(p)) ∩ C = ∅. Now, let α ∈ U(s) ∩ U(p) ∩ C. Since s ∼C r, we get α ∈ U(r)
and so λ(s, α) = λ(r, α). But also r ∼C p, and so λ(r, α) = λ(p, α), thus establishing
λ(s, α) = λ(p, α). We may then conclude that s ∼C p, and ∼C is transitive.

Remark 3. In Lemma 1, the transitivity of the alikness relation ∼C is still valid when it
is defined as a relation among states of distinct machines.

When reducing FSMs in the presence of blocking test cases, we will need the following
technical result.

Lemma 2. Let M be a FSM and let s, r ∈ S with s ∼ r.
(1) If s

x/a→ p with x ∈ I and a ∈ O, then r
x/a→ q with p ∼ q, for some q ∈ S.

(2) If s
α/ω→ p with α ∈ I? and ω ∈ O?, then r

α/ω→ q, with p ∼ q for some q ∈ S.

Proof. We first treat item 1. We have x ∈ U(s), and so x ∈ U(r) because s ∼ r, which

leads to r
x/b→ q for some q ∈ S, b ∈ O. Now, x ∈ U(s) ∩ U(r) and, since s ∼ r, we
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get a = λ(s, x) = λ(r, x) = b. It remains to show that p ∼ q. Let α ∈ U(p). Then
xα ∈ U(s), and again xα ∈ U(r). Since M is deterministic, this gives α ∈ U(q), and so
U(p) ⊆ U(q). Using Remark 2(1) we have r ∼ s, and a similar argument gives U(q) ⊆ U(p).
We conclude that U(p) = U(q), and so U(p)	 U(q) = ∅. Now, let β ∈ U(p) ∩ U(q). Then,
xβ ∈ U(s) ∩ U(r), and since s ∼ r this gives aλ(p, α) = λ(s, xβ) = λ(r, xβ) = aλ(q, α). We
conclude that λ(p, α) = λ(q, α), as desired.

Item (2) follows by a simple induction on |α| ≥ 0, and using the result of item 1.

The notion of perfectness has been introduced by Bonifacio and Moura [3, 1], in order
to cope with test cases that may not run to completion either in the specification or in the
implementation models.

Definition 7 ([3]). Let M be a FSM and T be a test suite for M . Then T is perfect for
M iff for any FSM N , if M 6∼ N then M 6∼T N .

That is, when T is a perfect test suite for a specification M , then for any implementation
under test N , if M and N are unlike, then they are also T -unlike.

The following result will be useful when we consider certain bi-similarities.

Lemma 3. Let M and N be FSMs. Let n ≥ 0, ri ∈ S (1 ≤ i ≤ n+ 1), xi ∈ I, and ai ∈ O
be such that ri

xi/ai→ ri+1 (1 ≤ i ≤ n). Assume that r0 ∼ p0, for some p0 ∈ Q. Then we have

pi ∈ Q (1 ≤ i ≤ n+ 1) such that pi
xi/ai→ pi+1 and si ∼ pi (1 ≤ i ≤ n).

Proof. If n = 0 there is nothing to prove. Inductively, assume the result holds for some

0 ≤ k < n. Then we have sk ∼ pk. Since sk
xk/ak→ sk+1, xk ∈ U(sk) and λ(sk, xk) =

ak, Definition 6 immediately gives pk
xk/ak→ pk+1, for some pk+1 ∈ Q. For the sake of

contradiction, assume that sk+1 6∼ pk+1. By Definition 6 we have two cases.

Case 1: U(sk+1)	 U(pk+1) 6= ∅.
Let β ∈ U(sk+1) and β 6∈ U(pk+1). This gives αβ ∈ U(s1) and αβ 6∈ U(p1). Hence
U(s1) 	 U(p1) 6= ∅, contradicting s1 ∼ p1. The situation when β 6∈ U(sk+1) and β ∈
U(pk+1) is entirely analogous.

Case 2: β ∈ U(sk+1) ∩ U(pk+1) and λ(sk+1, β) 6= τ(pk+1, β), for some β ∈ I?.
This gives αβ ∈ U(s1) ∩ U(p1). Moreover,

λ(s1, αβ) = λ(s1, α)λ(δ(s1, α), β)) = λ(s1, α)λ(sk+1, β), and

τ(p1, αβ) = τ(p1, α)τ(µ(p1, α), β)) = τ(p1, α)τ(pk+1, β).

Because |λ(s1, α)| = |τ(p1, α)| and λ(sk+1, β) 6= τ(pk+1, β), we get λ(s1, αβ) 6= τ(p1, αβ).
Since αβ ∈ U(s1) ∩ U(p1), this contradicts s1 ∼ p1.

The proof is complete.

The next result guarantees the existence of bi-simulations in the presence of blocking
test cases.
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Lemma 4. Let T be a m-perfect test suite for a FSM M . Let N be a FSM with at most m
states such that M ∼T N . Then M and N are bi-similar.

Proof. Define a relation R1 ⊆ S × Q by letting (s, q) ∈ R1 if and only if δ(s0, α) = s and
µ(q0, α) = q for some α ∈ I?, s ∈ S and q ∈ Q. Since δ(s0, ε) = s0 and µ(q0, ε) = q0 we get
(s0, q0) ∈ R1.

Now assume (s, q) ∈ R1 and let s
x/a→ r for some r ∈ S, x ∈ I and a ∈ O. Since

(s, q) ∈ R1, the definition of R1 gives some α ∈ I? such that δ(s0, α) = s and µ(q0, α) = q.
Composing, we get δ(s0, αx) = δ(s, x) = r and so αx ∈ U(s0). Since T is m-perfect for
M and M ∼T N , Definition 7 gives M ∼ N , that is s0 ∼ q0. Further, Definition 6 and
Remark 2 imply U(s0) = U(q0), and so αx ∈ U(q0). Then µ(q, x) = p, for some p ∈ Q.
Since s0 ∼ q0, δ(s0, α) = s and µ(q0, α) = q, Lemma 3 gives s ∼ q. But x ∈ U(s) ∩ U(q),

and so we must have a = λ(s, x) = τ(q, x). Thus, we have found p ∈ Q with q
x/a→ p.

Since δ(s0, αx) = r and µ(q0, αx) = p, we also have (r, p) ∈ R1. This shows that R1 is a
simulation relation.

A similar argument will show that R2 ⊆ Q × S, where R2 = R−1
1 , is also a simulation

relation. Thus M and N are bi-similar, as desired.

2.3 Simulations and perfectness

In [3, 1] bi-simulation was used to characterize perfectness. Basically it is shown that a
bi-simulation between two machines leads to the same observable behaviors produced by
the machines when test cases are applied to them even in the presence of blocking test
cases. In Section 3 we will characterize perfectness in terms of isomorphisms. The result
presented in this subsection will be useful later to show the relationship between the notions
of Perfectness and Isomorphism.

Definition 8. Let M and N be FSMs. We say that a relation R ⊆ S ×Q is a simulation

( of M by N) iff (s0, q0) ∈ R, and whenever we have (s, q) ∈ R and s
x/a→ r in M , then there

is a state p ∈ Q such that q
x/a→ p in N and with (r, p) ∈ R. We say that M and N are

bi-similar iff there are simulation relations R1 ⊆ S ×Q and R2 ⊆ Q× S.

The following simple facts will be used later.

Fact 1. The simulation relation is transitive, that is, let Mi = (Si, si, I,O, Di, δi, λi) be
FSMs, i = 1, 2, 3, and where M2 simulates M1 and M3 simulates M2. Then, M3 simulates
M1.

Proof. Let R1 ⊆ S1 × S2 and R2 ⊆ S2 × S3 be simulation relations. Define R ⊆ S1 × S3

by (s, p) ∈ R iff (s, q) ∈ R1 and (q, p) ∈ R2, for some q ∈ S2. Firstly, since (s1, s2) ∈ R1

and (s2, s3) ∈ R2 we get (s1, s3) ∈ R, as needed. Moreover, let (s, p) ∈ R and s
x/a→ s1. We

must have (s, q) ∈ R1 and (q, p) ∈ R2 for some q ∈ S2. Since R1 is a simulation, we get

q
x/a→ q1, with (s1, q1) ∈ R1. Since R2 is a simulation, we get p

x/a→ p1 with (q1, p1) ∈ R2.
Then, (s1, p1) ∈ R, as desired.



8 Bonifacio and Moura

Fact 2. Let M and N be FSMs, and let R ⊆ S × Q be a simulation of M by N . If

(s, q) ∈ R and s
α/ω→ r in M for some α ∈ I?, ω ∈ O?, then

α/ω→ t in N for a unique t ∈ Q,
and (r, t) ∈ R.

Proof. An easy induction on |α| ≥ 0. Since N is deterministic, t ∈ Q is unique.

Fact 3. Let M and N be FSMs, let R ⊆ S×Q be a simulation of M by N , and let L ⊆ Q×S
be a simulation of N by M . Let (s, q) ∈ R, (q, s) ∈ L, and α ∈ I?. If δ(s, α) = r, then
µ(q, α) = t with (r, t) ∈ R and (t, r) ∈ L, for a unique t ∈ Q.

Proof. From δ(s, α) = r and (s, q) ∈ R Fact 2 gives a unique t ∈ Q with µ(q, α) = t and
(r, t) ∈ R. From (q, s) ∈ L and µ(q, α) = t, Fact 2 again gives some p ∈ S with (t, p) ∈ L
and δ(s, α) = p. Since M is deterministic and we already have δ(s, α) = r we conclude that
p = r. Hence, (t, r) ∈ L as desired.

The next lemma shows a useful relationship between bi-simulations and alikeness.

Lemma 5. Let M and N be FSMs, let R ⊆ S × Q be a simulation of M by N , and let
L ⊆ Q× S be a simulation of N by M . If (s, q) ∈ R and (q, s) ∈ L then s ∼ q.

Proof. If we have α ∈ U(s) then Fact 2 immediately implies that α ∈ U(q), so that U(s) ⊆
U(q). Likewise, we have U(q) ⊆ U(s), so that U(s)	 U(q) = ∅. Let α ∈ U(s) ∩ U(q) with

s
α/ω→ in M , with α ∈ I? and ω ∈ O?. Then, Fact 2 again gives q

α/ω→ in N . Since N is
deterministic we get λ(α) = τ(α). So, from Definition 6 we conclude that s ∼ q.

The next result reverses the direction in Lemma 5.

Lemma 6. Let M and N be FSMs, and assume that M ∼ N . Then M and N are bi-
similar.

Proof. Define a relation R ⊆ S ×Q by letting (s, q) ∈ R if and only if there is α ∈ I? such

that s0
α/→ and q0

α/→. With α = ε we immediately get (s0, q0) ∈ R. Now let (s, q) ∈ R,

and let x ∈ I, a ∈ O be such that s
x/a→ r in M . The definition of R gives s0

α/→ s and

q0
α/→ q, for some α ∈ I?. By Lemma 3 we have s ∼ q. Since x ∈ U(s) and λ(s, x) = a,

the determinism of N and Definition 6 give q
x/a→ t, for some t ∈ Q. But then s0

αx/→ r and

q0
αx/→ t give (r, t) ∈ R. This shows that R is a simulation of M by N .
Likewise, relation R−1 gives a simulation of N by M and we conclude that M and N

are bi-similar.

Now we have a characterization of alikness in terms of bi-similarity.

Theorem 1. Let M and N be FSMs. Then M and N are alike iff they are bi-similar.

Proof. If M ∼ N , use Lemma 6 to conclude that M and N are bi-similar. Conversely, if M
and N are bi-similar we get simulation relations R ⊆ S×Q and L ⊆ Q×R with (s0, q0) ∈ R
and (q0, s0) ∈ L. Then, Lemma 5 says that M and N are bi-similar.
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When we have a specific test suite at hand, we note the following result which also
establishes a necessary and sufficient condition for it to be perfect.

Theorem 2 ([3]). Let T be a test suite for M . Then T is perfect for M iff any T -alike
FSM is bi-similar to M .

In Definition 7, there is no limit in the size of the implementations. In the next definition,
the key property of M 6∼ N implying M 6∼T N is required to hold only for implementations
with up to a predefined number of states.

Definition 9. Let M be a FSM, let T be a test suite for M , and let m ≥ 1. Then T is
m-perfect for M iff for any FSM N with at most m states, if M 6∼ N then M 6∼T N .

We can obtain a result very similar to Theorem 2, as stated in the next claim.

Theorem 3. Let M be a FSM and T be a test suite for M . Then T is m-perfect for M iff
any T -alike FSM with at most m states is bi-similar to M .

Proof. Assume that T is m-perfect for M , and let N be a FSM with at most m states and
such that M ∼T N . Then, Definition 9 implies that M ∼ N . From Lemma 6 we conclude
that M and N are bi-similar. Now assume that any T -alike FSM with at most m states is
bi-similar to M , and let N be a FSM with at most m states such that M 6∼ N . Then, M
and N are bi-similar and so, using Theorem 2 we get M 6∼T N . Hence, T is m-perfect for
M , by Definition 9.

In the next section we show that the bi-similarity test, in Theorem 2, can be exchanged
for an isomorphism test.

3 Perfectness and Isomorphism

In this section we characterize perfectness in terms of isomorphisms between FSMs.

3.1 Bi-simulation and isomorphism

Two FSMs are said to be isomorphic when they are identical, except for a state relabeling.

Definition 10. Let M and N be FSMs with O = O′. An isomorphism (of M into N) is a
bijection f : S → Q such that

1. f(s0) = q0; and

2. s
x/a→ r in M if and only if f(s)

x/a→ f(r) in N , for all x ∈ I, a ∈ O.

Machines M and N are isomorphic iff there is an isomorphism of M into N .

Remark 4. Let M and N be FSMs. The following are immediate consequences:
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1. f is an isomorphism of M into N if and only if f−1 is an isomorphism of N into M .

2. Any isomorphism of M into N is also a simulation of M by N .

The first half of the characterization is now easily obtained.

Lemma 7. Let M and N be isomorphic FSMs. Then, M and N are bi-similar.

Proof. Using Remark 4, we have a simulation of M by N , and vice-versa.

Now let M and N be bi-similar. It is clear that if all states in M are unlike, but N has
two distinct states that are alike, then it is possible for M and N not to be isomorphic,
since these two distinct equivalent states in N would have to correspond to a single state
in M . Machines illustrated in Figures 1 and 2 are a case in point. The problem, of

q0 q1 q2

0/1

1/1
0/0

0/0

Figure 1: FSM N1.

s0 s1

0/1

1/1

0/0

Figure 2: Specification FSM M .

course, is that states q1 and q2 in N1 have exactly the same blocking input sequences and,
moreover, the behaviors of q1 and q2 in N1 are exactly the same under any input sequence
that is non-blocking for both of them. We need to transform N1 to an equivalent machine
in which this behavior is avoided.

In the classical sense, a FSM M is reduced if every pair of distinct states in S are dis-
tinguishable. When treating partial FSM, however, we need also to take into consideration
blocking input sequences. In order to differentiate from the classical notion of reduction
in FSMs, we name reduction in the presence of blocking sequences as p-reduction. Both
definitions are very similar.

Definition 11. A FSM M is reduced iff every pair of distinct states of S are distinguish-
able, and for all state s ∈ S there is a σ ∈ I? with δ(s0, σ) = s.
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Definition 12. A FSM M is p-reduced iff any no two distinct states in M are alike and,
moreover, for all s ∈ S there is α ∈ I? with δ(s0, α) = s.

Hence, for any two distinct states s and r in M there is an input sequence that blocking
for one of them and is not blocking for the other, or there is an input sequence that is
non-blocking for both s and r but yields different behaviors when starting at these two
states. Returning to Figures 1 and 2, we see that the presence of q1 and q2 in N1 shows
that it is not a p-reduced FSM.

Remark 5. If M is a reduced FSM with at least two reachable states, then there always
exists a transition out of any reachable state s, that is (s, x) ∈ D for some x ∈ I. Otherwise,
s could not be distinguished from any other reachable state in M .

We proceed to show, by a series of simple facts, that if M and N are bi-similar and
p-reduced, then they are isomorphic. We start by noting that the bi-similarity condition
gives two simulation relations R ⊆ S×Q and L ⊆ Q×S. Define a state relation f ⊆ S×Q
as follows:

(s, q) ∈ f iff s0
α/→ s and q0

α/→ q, for some α ∈ I?.

Observe that (s, q) ∈ f gives s0
α/→ s and q0

α/→ q. Since (s0, q0) ∈ R, Fact 2 gives q0
α/→ p

and (s, p) ∈ R, for some p ∈ Q. Since N is deterministic, we get p = q, and so (s, q) ∈ R. A
symmetric argument gives (q, s) ∈ L. Using Lemma 5 we obtain s ∼ q. Now let (s, q1) ∈ f ,
and (s, q2) ∈ f . Then, s ∼ q1 and s ∼ q2 and using Lemma 1 we get q1 ∼ q2. Thus,
Definition 12 gives q1 = q2, showing that f is a function. Similarly, if we have (s1, q) ∈ f
and (s2, q) ∈ f then we must have s1 = s2 and we conclude that f is one-to-one. Further,

for all s ∈ S, since M is p-reduced, Definition 12 gives so
α/→ s, for some α ∈ I?. Since

(s0, q0) ∈ R, Fact 2 implies q0
α/→ q for some q ∈ Q, and so (s, q) ∈ f , showing that f is a

total function. Likewise, if q ∈ Q we get some s ∈ S such that (s, q) ∈ f , showing that f
is onto. We have just argued showing that f is, in fact, a bijection. Finally, assume that

(s, q) ∈ f , so that s0
α/→ s and q0

α/→ q, for some α ∈ I?, and also s ∼ q. If s
x/a→ r in M , with

x ∈ I, a ∈ O, then Definition 6 implies that we also have q
x/a→ t in N , for some t ∈ Q. But

now we have s0
αx/→ r and q0

αx/→ t and so we get (r, t) ∈ f . We conclude that the bijection
f is, in fact, an isomorphism when M and N are p-reduced.

We can now state the main result of this section.

Theorem 4. Let M and N be p-reduced FSMs. Then, M and N are bi-similar if and only
if M and N are isomorphic.

Proof. If M and N are isomorphic then they are bi-similar by Lemma 7. The argument
just given establishes the converse.

The next corollary exposes a strong relationship between perfectness of a test suite T
for a FSM M and p-reduced FSMs that are T -alike to M .

Corollary 1. Let M be a p-reduced FSM and T be a test suite for M . If T is perfect for
M then any p-reduced T -alike FSM is isomorphic to M .
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Proof. Assume that T is perfect for M and let N be a p-reduced FSM that is T -alike M .
By Theorem 2, we know that N is bi-similar to M . Then, M and N are isomorphic, using
Theorem 4.

3.2 p-reduced Finite State Machines

p-reduced Finite State Machines
The converse of Corollary 1 actually also holds. But, since Theorem 4 stipulates that

all T -alike FSMs must simulate the specification M , we must first show that any FSM can
be p-reduced without loosing the T -alikeness property.

Recall from Lemma 1 that ∼ is an equivalence relation on S. Let [s] be the equivalence
class of s under ∼. We now use the classical idea of taking quotients in order to construct
a FSM M that is p-reduced and alike to M . Define

S = {[s] | s ∈ S, and s
α/ω→ , some α ∈ I?, ω ∈ O?},

and let s0 = [s0]. Next, if s ∼ r and (s, x) ∈ D, then Lemma 2(1) gives (r, x) ∈ D. Define

D =
{(

[s], x
) ∣∣ (s, x) ∈ D

}
. Since ([s], x) ∈ D implies (s, x) ∈ D, and Lemma 2(1) gives

δ(s, x) ∼ δ(r, x) for all r ∈ [s], we can define δ
(
[s], x

)
=
[
δ(s, x)

]
. If s ∼ r and s

x/a→ p, for

some p ∈ S, x ∈ I and a ∈ O, then Lemma 2(1) gives r
x/a→ q, for some q ∈ S, that is,

λ(s, x) = λ(r, x) whenever s ∼ r and x ∈ U(s). Thus, we can define λ
(
[s], x

)
= λ(s, x). The

construction is complete.

Definition 13. Let M be a FSM. Then M = (S, s0, I,O, D, δ, λ) is the FSM given by the
preceding construction.

The foregoing construction satisfy a number of properties that will be useful later.

Fact 4. Let s, r ∈ S, and let α ∈ I?, ω ∈ O?. If s
α/ω→ r, then [s]

α/ω→ [r].

Proof. Assume that s
x/a→ r, with x ∈ I and a ∈ O. Then δ(s, x) = r and λ(s, x) = a. From

the construction of M we get δ([s], x) = [r] and λ([s], x) = a. Hence, [s]
x/a→ [r], and the

result follows by an easy induction on |α| ≥ 0.

Fact 5. Let r, q ∈ S, and let α ∈ I?, ω ∈ O?. If [r]
α/ω→ [q], then r1

α/ω→ q1, for some
r1, q1 ∈ S with r ∼ r1 and q ∼ q1.

Proof. Assume that [r]
x/a→ [q], with x ∈ I and a ∈ O. Then δ([r], x) = [q] and λ([r], x) = a.

From δ([r], x) = [q], the construction of M gives r1, q1 ∈ S with δ(r1, x) = q1, r1 ∼ r and

q1 ∼ q. From λ([r], x) = a, we get r2 ∈ S with λ(r2, x) = a and r2 ∼ r. Hence, r1 ∼ r2.

Since r1
x/b→ q1, this gives r2

x/b→ r3, for some r3 ∈ S. But λ(r2, x) = a, and so a = b

because machines are deterministic. Collecting, we have r1
x/a→ q1, r1 ∼ r and q1 ∼ q. The

result now follows using a simple induction on |α|.
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Lemma 8. Let M be a FSM and s, r ∈ S. Let M be the FSM in Definition 13. If [s] 6= [r],
then [s] 6∼ [r].

Proof. Assume [s] ∼ [r] and show that s ∼ r. First, we show that U(s) 	 U(r) = ∅. Let

α ∈ U(s). Then s
α/ω→ p, for some p ∈ S and ω ∈ O?. Using Fact 4, we get [s]

α/ω→ [p]. Since

[s] ∼ [r], Lemma 1 gives [r]
α/ω→ [q], for some [q] ∈ D. Using Fact 5 we obtain r1

α/ω→ q1,

for some q1 ∈ S with r1 ∼ r. Hence, Lemma 1 now gives r
α/ω→ q2, for some q2 ∈ S. We

conclude that α ∈ U(r), thus establishing that U(s) ⊆ U(r). A similar argument gives
U(r) ⊆ U(s), and so U(s) = U(r), as needed. To finish, let now α ∈ U(s) ∩ U(r). Then,

s
α/ω→ p, for some p ∈ S. Repeating the preceding argument would give, again, r

α/ω→ r2, for
some r2 ∈ S. Hence, λ(s, α) = ω = λ(r, ω). From Definition 6 we conclude that s ∼ r.

We can now establish that M is p-reduced.

Corollary 2. Let M be the FSM in Definition 13. Then, M is p-reduced.

Proof. Let [s] ∈ S. By construction, s0
α/ω→ s, for some α ∈ I?, ω ∈ O?. Hence, Lemma 2(2)

gives s0
α/ω→ [s], because s0 = [s0]. Further, if [s] and [r] are distinct, Lemma 8 implies

[s] 6∼ [r].

In the next result, we use the same symbol, ∼, to denote the alikeness relations between
states of M , and also between states of M and of M . The context will always make clear
which relation we are referring to.

Lemma 9. Let M be a FSM and s, r ∈ S. Let M be the FSM in Definition 13. If s ∼ r,
then s ∼ [r].

Proof. We first show that U(s)	 U([r]) = ∅. Let α ∈ U(s). Since s ∼ r, Lemma 2(2) gives
α ∈ U(r). Hence, using Fact 4 we obtain α ∈ U([r]), and so U(s) ⊆ U([r]). Conversely,
let α ∈ U([r]). Then, Fact 5 gives α ∈ U(r1), where r1 ∼ r. Thus, r1 ∼ s, and so
using Lemma 2(2) we get α ∈ U(s). This shows U([r]) ⊆ U(s) and we may conclude that
U(s) = U([r]). Hence, U(s)	 U([r]) = ∅ using Remark 1, as desired.

Now, let α ∈ U(s)∩U([r]). Then, s
α/ω→ s1, for some s1 ∈ S, ω ∈ O?, and also [r]

α/ρ→ [r1],

for some [r1] ∈ S, ρ ∈ O?. In order to get λ(s, α) = λ([r], α) we just show that ω = ρ. From

s ∼ r, and using Lemma 2(2), we have r
α/ω→ r2, for some r2 ∈ S with r2 ∼ s1. Hence, by

Fact 4 we get [r]
α/ω→ [r2]. The determinism of M now gives ω = ρ.

We can now say that the p-reduction construction preserves alikeness.

Corollary 3. Let M be a FSM and let M be the FSM in Definition 13. Then, M ∼M .

Proof. Since s0 ∼ s0, Lemma 9 gives s0 ∼ [s0], and we know that, by construction, s0 =
[s0].

Besides preserving alikeness, the construction also yield bi-simulating machines.
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Lemma 10. Let M be a FSM and let M be the FSM in Definition 13. Then, M and M
are bi-similar.

Proof. Define the relation R ⊆ S×S by letting (s, [r]) ∈ R iff s ∼ r. Clearly, (s0, [s0]) ∈ R.

Now, let (s, [r]) ∈ R with s
x/a→ p for some p ∈ S, x ∈ I, a ∈ O. Since s ∼ r, Lemma 2(1)

gives r
x/a→ q for some q ∈ S with q ∼ p. Then Fact 4 gives [r]

x/a→ [q]. But (p, [q]) ∈ R,
and we conclude that R is a simulation relation. For the other direction, define the relation
L ⊆ S × S where ([r], s) ∈ L iff r ∼ s. Again ([s0], so) ∈ L clearly holds. Let ([s], r) ∈ L
with [s]

x/a→ [q] for some [q] ∈ S, a ∈ O, x ∈ I. By Fact 5, we get s1
x/a→ q1 for some s1, q1 ∈ S

with s ∼ s1 and q ∼ q1. Since ([r], s) ∈ L, we have s ∼ r, and so r ∼ s1. From s1
x/a→ q1 we

conclude that r
x/a→ q2, for some q2 ∈ S with q2 ∼ q1, using Lemma 2(1). Thus, q2 ∼ q, and

so ([q], q2) ∈ L, and we conclude that L is also a simulation relation.

The desired converse to Corollary 1 can now be established.

Corollary 4. Let M be a p-reduced FSM and let T be a test suite for M . Assume that all
p-reduced T -alike FSMs are isomorphic to M . Then T is perfect for M .

Proof. In view of Theorem 2, it suffices to show that any FSM that is T -alike to M is also
bi-similar to M . Let N be T -alike to M . Let N be as in Definition 13. By Corollary 2 N is
p-reduced, and by Corollary 3 we have N ∼ N . Now, in view of Remark 2(2) we conclude

that N ∼T N . Since we already have M ∼ N , using Lemma 1 and Remark 3, we conclude
that M ∼ N . So, N is p-reduced and T -alike M . By the hypothesis we know that M and
N are isomorphic. Hence, using Theorem 4, we know that M and N are bi-similar. But N
and N are also bi-similar, using Lemma 10. Using Fact 1, we conclude that M and N are
bi-similar, as desired.

Now we can combine the preceding results and those of the previous subsection to
characterize perfectness in terms of isomorphisms.

Theorem 5. Let M be a p-reduced FSM and let T be a test suite for M . Then T is perfect
for M iff all p-reduced T -alike FSMs are isomorphic to M .

Proof. Use Corollaries 1 and 4.

4 Completeness and Perfectness

In this section we investigate the relationship between completeness and perfectness. We
show that a test suite T that is not n-complete for a FSM M can not also be perfect for
M , for any n ≥ 1. In the other direction, we also show that there are test suites T which
are perfect for M , but not n-complete for M , for n ≥ 2.

We start by showing that perfectness only holds when n-completeness also holds. Let
M be a FSM and let T be a test suite for M . We want to prove that if T is not n-complete
for M , then T is not perfect for M , where n ≥ 1. This will show that perfectness is at least
as strong a condition as is completeness.
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First, we need a measure on the length of blocking test cases in a test suite. Let α ∈ I?
be an input string for M . Define F (M,α) as:

F (M,α) = max
{
|β| : α = βxγ,with β ∈ U(s0), βx 6∈ U(s0), x ∈ I, γ ∈ I?

}
.

That is, F (M,α) is the maximum length of a prefix of α which does not block in M . For
a test suite T ⊆ I? we overload the notation and define F (M,T ) =

∑
α∈T

F (M,α).

Fact 6. Given a FSM M and a test suite T for M , we have the upper bound F (M,T ) ≤∑
α∈T
|α|.

Proof. Immediate.

Now, fix a FSM M , a test suite T , and assume that T is not n-complete for M , for
some n ≥ 1. Then, there is a FSM N such that M 6≈ N and M ≈T N . So, we have some
σ = x1x2 . . . xn+1, where n ≥ 0 and xi ∈ I (1 ≤ i ≤ n+ 1), and such that

σ 6∈ T and σ ∈ U(s0). (1)

Let

s0
x1/a1→ s1

x2/a2→ s2 · · · sn−1
xn/an→ sn

xn+1/an+1→ sn+1. (2)

We show how to construct a sequence of FSMs Ni that satisfy, for all i ≥ 0:

1. Ni is a labelled tree rooted at q0.

2. σ ∈ Ui(q0).

3. for all α ∈ Ui(q0) ∩ T we have:

(a) α ∈ U(s0).

(b) If q0
α/ω
→
Ni

and s0
α/η
→
M

, then ω = η.

In order to ease the notation, we denote the states in each Ni as q0, q1, q2, . . . , with q0 the

initial state. Moreover, by Ui(q0) we mean the set of all input strings α such that q0
α/ω
→
Ni

,

for some output string ω.
We start by defining N0 as the FSM containing the transitions:

q0
x1/a1→ q1

x2/a2→ q2 · · · sn−1
xn/an→ qn

xn+1/b→ qn+1, (3)

where b 6= an+1. It is clear that N0 is a labelled tree rooted at q0, and that σ ∈ U0(q0), and
so properties (1) and (2) hold for N0. Now, let α ∈ U0(q0) ∩ T . Since σ 6∈ T , we conclude
that α is a prefix of x1x2 · · ·xn, and so property (3) also holds for N0.

Now assume that Ni has been constructed satisfying properties (1) – (3), for some i ≥ 0.
If there is some input string α ∈ U(s0) ∩ T such that α 6∈ Ui(q0) we show how to construct
Ni+1. Since α 6∈ Ui(q0), we can write α = y1y2 · · · ykxβ, where k ≥ 0, yj ∈ I (1 ≤ j ≤ k),
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x ∈ I, and where we also have y1y2 · · · yk ∈ Ui(q0), y1y2 · · · ykx 6∈ Ui(q0). So, in Ni we have
the transitions

r0
y1/b1→ r1

y2/b2→ r2 · · · rk−1
yk/bk→ rk (4)

with r0 = q0 and with no transition out of rk on input x. Since α ∈ U(s0), in M we get

p0
y1/b1→ p1

y2/b2→ p2 · · · pk−1
yk/bk→ pk

x/c→ pk+1, (5)

for some c ∈ I and with p0 = s0. We define Ni+1 from Ni by adding to it a transition

rk
x/c→ r, and where r is a new state not present in Ni.
Since Ni is a labelled tree rooted at q0, then so is Ni+1 because r is a new state. Then

property (1) holds for Ni+1. Also, since all transitions from Ni are present in Ni+1, then
property (2), trivially, also holds for Ni+1.

Now, let γ ∈ Ui+1(q0) ∩ T . Since γ ∈ Ui+1(q0) we have two cases:

• Case 1: the new transition rk
x/c→ r does not occur in γ. Then, clearly, γ ∈ Ui(q0),

and so (3a) and (3b) hold because Ni satisfies property (3).

• Case 2: the new transition rk
x/c→ r occurs in γ. Since r is a new state, we can write

γ = θx, where θ ∈ Ui(q0) and q0
θ/η
→
Ni+1

rk
x/c
→
Ni+1

r. Since Ni is a tree rooted at q0,

there is only one path from q0 to rk. Hence, from Eq. (4) we get θ = y1y2 · · · yk, and

η = b1b2 · · · bk. From Eq. (5) we get s0
θ/η
→
M

pk
x/c
→
M

pk+1, and property (3) holds for

Ni+1.

We conclude that properties (1) – (3) hold for Ni+1, as desired.
Because α = y1y2 · · · ykxβ, y1y2 · · · ykx 6∈ Ui(q0) and the construction of Ni+1 gives

y1y2 · · · ykx ∈ Ui+1(q0) we conclude that F (Ni, α) < F (Ni+1, α). Since we also have α ∈ T ,
we then get F (Ni, T ) < F (Ni+1, T ).

The preceding discussion makes it clear that we can construct the sequence of FSMs
N0, N1, . . . satisfying properties (1) – (3), and with F (Ni, T ) < F (Ni+1, T ), as long as we
have input strings αi ∈ U(s0) ∩ T such that αi 6∈ Ui(q0), i ≥ 0.

Fact 7. There is some ` ≥ 0 such that there is no α ∈ U(s0)∩ T and such that α 6∈ U`(q0).

Proof. Fact 6 gives an upper limit to the sequence F (N0, T ) < F (N1, T ) < · · · .

From Eq (1), we take a test case σ 6∈ T , and use the fact that the construction gives
σ ∈ U(q`) to show that T is not, in fact, perfect for M .

From Eqs. (1) and (2) we can write s0
σ/ωan+1
→
M

, where ω = a1a2 · · · an. From Eq. (3) and

property (2), we get s0
σ/ωb
→
N`

. Since an+1 6= b we conclude that M 6∼ N`. If T was perfect

for M we would have M 6∼T N`. We now show that this leads to contradictions. There are
two cases:

• Case A: there is some input string α ∈ U(s0) ∩U`(q0) ∩ T such that s0
α/ω1
→
M

, q0
α/ω2
→
N`

,

and ω1 6= ω2. This contradicts property (3b).
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• Case B: there is some input string α ∈ (U(s0) 	 U`(q0)) ∩ T . If α ∈ U`(q0) ∩ T
and α 6∈ U(s0), we contradict property (3a). If α ∈ U(s0) ∩ T and α 6∈ U`(q0), we
contradict Fact 7.

We conclude that T is not perfect for M .

Fact 8. Let M be a FSM, and let T be a test suite that is not n-complete for M , for some
n ≥ 1. Then, T is not perfect for M .

Proof. From the preceding discussion.

Next, we also show that when T is n-complete for M , n ≥ 1, it may be the case that
T is not perfect for M . Let the input and output alphabets be I = O = {0, 1}, and

let M be the specification with n states given by the transitions si
0/0→ si+1, 0 ≤ i < n.

Let T = {0n, 0n−1} be a test suite for M . We argue that T is n-complete for M . From
Definitions 3 and 4, if that were not the case, we would have a FSM N with U(s0) ⊆ U(q0),
and such that M 6≈ N and M ≈T N . Since U(s0) ⊆ U(q0) and U(s0) = {0n−1}, we get
U(s0) ∩ U(q0) ∩ T = {0n−1}. Hence M ≈T N gives λ(s0, 0

n−1) = 0n−1 = µ(q0, 0
n−1).

Since we also have U(s0) ∩ U(q0) ∩ I? = {0n−1}, Definition 3 and M 6≈ N would require
λ(s0, α) 6= µ(q0, α) for some α ∈ {0n−1}, and we reached a contradiction.

We now argue that T = {0n, 0n−1} is not perfect for M . Let N be the FSM with the

transitions qi
0/0→ qi+1 for 0 ≤ i < n, and also qn−1

1/1→ qn−1. It is clear that 0n−11 ∈
(U(s0)	U(q0))∩ I?. Hence, from Definition 6, we see that M 6∼ N . Since T = {0n, 0n−1},
we get (U(s0)	U(q0))∩T = ∅. Also, U(s0)∩U(q0)∩T = {0n−1}, and so λ(s0, α) = µ(q0, α)
for all α ∈ U(s0)∩U(q0)∩ T . From Definition 6 we get M ∼T N . Hence, Definition 7 says
that T is not perfect for M .

Corollary 5. Let M be a FSM. Then the following holds:

1. If T is a test suite which is perfect for M , then T is also n-complete for M , for all
n ≥ 1.

2. For all n ≥ 1 there are test suites which are n-complete but not perfect for M .

Proof. From Fact 8 and the preceding discussion.

5 Test Suite Completeness and the Size of Implementations

In this section we show that if one allows for too large implementations, then test com-
pleteness, in the classical sense, is lost. More specifically, if T is a test suite for a FSM
M , then T is not m-complete for M for every m ≥ g(T ) + |S|, where g(T ) is a constant
depending only on T , and |S| is the number of states in M . This means that T may not
be able to detect all faults in implementations with m or more states. Moreover, we show
that for all pairs (n, k), with n ≥ 2 and k ≥ 1, there is a reduced FSM M with |S| = n
states and a test suite T with g(T ) = k such that T is not (n+ k)-complete for M , but T
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is (n+ k − 1)-complete for M . This infinite family of FSMs and test suites shows that the
bound g(T ) + |S| is sharp.

First, we establish some notation. Let M be a FSM, T a test suite for M and σ ∈ T . We
say that σ is extensible in M and T if and only if for some α1, α2 ∈ I? we have α1σα2 ∈ T
where s0

α1/→ s0 and α2 6= ε. Otherwise, σ is non-extensible in T .

Remark 6. If T ∩U(s0) = ∅ then any FSM is trivially T -equivalent to M . Also, if T = {ε}
then, again, any FSM is trivially T -equivalent to M . Since M is reduced, one can easily
construct a one-state FSM that is not equivalent to M . Hence, in both cases, T would not
be 1-complete for M . We, therefore, can assume that there is a non-null σ ∈ T ∩ U(s0).
Clearly, we then get a non-extensible test case in T ∩ U(s0).

Throughout this section we fix a reduced FSM M with |S| ≥ 2 states and a test suite
T for M . Also, we fix σ = x0x1 · · ·xk, k ≥ 0, as a smallest non-extensible test case in
T ∩ U(s0), and define g(T ) = |σ| − 1 = k.

5.1 A tight upper bound for m-completeness

A tight upper bound for m-completeness The following construction, and the discussion in
the sequel, will give us the desired upper bound on the size of implementations when testing
for completeness.

Since σ ∈ U(s0), we get transitions in M :

πi : si
xi/ai→ si+1 0 ≤ i ≤ k. (6)

Let ω = a0a1 . . . ak, so that s0
σ/ω→ sk+1.

We now construct a FSM N using the same input and output alphabets, respectively
I and O, of M . A simple example illustrating the construction is presented right after
Theorem 6. Let Q = S ∪ R, where R = {r1, . . . , rk} are new sates, that is, S ∩ R = ∅ and
ri 6= rj (1 ≤ i < j ≤ k). The initial state of N is the same as in M , that is, q0 = s0. For
the ease of notation, we also define r0 = q0. Note that |Q| = |S|+ k = |S|+ g(T ).

We start the specification of N :

(a) Make all transitions of M also transitions of N , except that π0 : s0
x0/a0→ s1 in M is

redirected to π′0 : q0
x0/a0→ r1 in N .

(b) Replicate transitions from si: add the transitions ri
xi/ai→ ri+1 to N , for 1 ≤ i < k.

(c) Add return transitions from ri: if si
z/b→ s is in M with z 6= xi, add ri

z/b→ s to N ,
1 ≤ i ≤ k.

(d) Transition from rk: add rk
xk/ak→ rk+1 to N , where rk+1 6= sk+1.

We will indicate how to precisely choose rk+1 in the sequel. To ease the notation, define
ŝ = rk+1.

Next, we want to guarantee that U(s0) ⊆ U(q0), but since sk+1 6= ŝ we could conceivably
have some α ∈ U(sk+1) with α 6∈ U(ŝ). So, we extend the specification of N in such a way
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that all runs from sk+1 in M are also runs from ŝ in N . More specifically, we extend N as
follows:

(e) While we have sk+1
α/→ p

x/a→ t in M and ŝ
α/→ q in N , with α ∈ I?, x ∈ I, a ∈ O, and

there is no transition q
x/→ in N , add q

x/a→ t to N .
Since both M and N are finite, the construction clearly halts. Moreover, N is deterministic
since M is deterministic.

Remark 7. Item (e) of the construction clearly guarantees that if sk+1
α/→ in M , then we

also have ŝ
α/→ in N . Also, note that if a transition s

x/a→ p is in M , then this transition is

also in N , with the only exception that s0
x0/a0→ s1 is also in N but redirected to r1 when

k ≥ 1, or redirected to ŝ when k = 0.

In order to prove non-completeness, we need to relate runs in M to runs in N . The next
lemma develops the main idea.

Lemma 11. Let p0
α/β→ in M for some α ∈ I?, β ∈ O?. Then, p0

α/γ→ in N , for some

γ ∈ O?. Further, if β 6= γ then we must have α = α1σα2 with p0
α1/→ s0 in M and α2 6= ε.

Proof. Let α = y1 · · · ym, β = b1 · · · bm with m ≥ 0, yi ∈ I and bi ∈ O (1 ≤ i ≤ m). In M
we then have

p0
y1/b1→ p1

y2/b2→ → · · · ym/bm→ pm. (7)

If the transition π0 : s0
x0/a0→ s1 does not occur in (7), then Remark 7 says that all those

transitions are also in N , and we immediately have p0
α/β→ in N , and the result holds.

Otherwise assume that pj
yj/bj→ pj+1 is the first occurrence of π0 in (7), 1 ≤ j < m, so

that pj = s0, pj+1 = s1, yj = x0 and bj = a0. By the minimality of j and Remark 7 we
readily get

p0
α1/β1→ pj in both M and N , with α1 = y1 · · · yj−1, β1 = b1 · · · bj−1. (8)

We have to examine that tail yj · · · ym of α and observe whether σ is a prefix of it or not.
Recall that σ = x0x1 · · ·xk and that yj = x0.

Case A: σ is not a prefix. Then k ≥ 1 and there is some 0 ≤ ` ≤ k−1 such that yj+i = xi
(0 ≤ i ≤ `) and either (i) the tail is short, that is, m = j + `, or (ii) the tail is long
enough, that is, m > j + ` and yj+`+1 6= x`+1.

Let α2 = x0 · · ·x` = yj · · · yj+` and let β2 = a0 · · · a` = bj · · · bj+`, so that
we may write yj · · · ym = α2yj+`+1 · · · ym and bj · · · bm = β2bj+`+1 · · · bm. Thus
α = α1α2yj+`+1 · · · ym and β = β1β2bj+`+1 · · · bm.

Since pj = s0, in view of (6) we get pj
α2/β2→ pj+`+1 in M , with pj+`+1 = s`+1. Because

of items (a) and (b) in the construction, we also have s0
α2/β2→ r`+1 in N . Combining
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with (8) we now have

p0
α1/β1→ pj

α2/β2→ s`+1 in M and p0
α1/β1→ pj

α2/β2→ r`+1 in N, (9)

So, if (i) holds and m = j + ` we get α = y0 · · · ym = α1α2 and β = b0 · · · bm = β1β2,
giving the desired result.

If (ii) holds with m ≥ j+`+1 and yj+`+1 6= x`+1, then we may write yj · · · ym = α2zα3

with z = yj+`+1 and α3 = yj+`+2 · · · ym. Likewise, bj · · · bm = β2cβ3 with c = bj+`+1

and β3 = bj+`+2 · · · bm. Note that `+ 1 ≤ k and pj+`+1 = s`+1. So (6) gives s`+1
z/c→ t

in M , with t = pj+`+2. Also, since yj+`+1 6= x`+1 we get z 6= x`+1 and item (c) of the

construction gives r`+1
z/c→ t in N . Together with (9) we conclude that

p0
α1α2/β1β2→ s`+1

z/c→ t in M and p0
α1α2/β1β2→ r`+1

z/c→ t in N . (10)

Since t = pj+`+2, from (6) we get t
α3/β3→ in M . But, there are one less occurrences

of π0 in the transitions from t onwards in (6) so that, inductively, we conclude that

t
α3/γ→ in N . Combining with (10), we get p0

α/ρ→ in N with ρ = β1β2cγ. If β = ρ
we are done. If not, recalling that β = β1β2cβ3, we get β3 6= γ, and the induction

now gives α3 = α4σα5, for some α4, α5 ∈ I? such that t
α4/→ s0 in M and α5 6= ε.

Hence, α = α1α2zα3 = ησα5 where η = α1α2zα4, α5 6= ε and, using(10) again, we

get p0
α1α2z/→ t

α4/→ s0 in M , that is p0
η/→ s0 in M , as desired. This concludes Case A.

Case B: σ is a prefix. Then we have j + k ≤ m and yj · · · ym = x0 · · ·xkα2 = σα2

and bj · · · bm = a0 · · · akβ2 = ωα2, with yj+i = xi, bj+i = ai (0 ≤ i ≤ k), and
α2 = yj+k+1 · · · ym, β2 = bj+k+1 · · · bm.

Since s0 = pj , using (6) we obtain pj
σ/ω→ pj+k+1 in M , with pj+k+1 = sk+1. From

items (b) and (d) of the construction, we get pj
σ/ω→ ŝ in N . Combined with (8) we

get

p0
α1/β1→ pj

σ/ω→ sk+1 in M and p0
α1/β1→ pj

σ/ω→ ŝ in N. (11)

If j + k = m we get α2 = β2 = ε and so y0 · · · ym = α1σ, b0 · · · bm = β1ω, thus
establishing the desired result.

If m > j+ k we get α2 = zα3 with z = yj+k+1, α3 = yj+k+2 · · · ym, and β2 = cβ3 with

c = bj+k+1, β3 = bj+k+2 · · · bm. Since pj+k+1 = sk+1, from (6) we get sk+1
z/c→ t in M ,

with t = pj+k+2. But now item (e) of the construction gives ŝ
z/d→ q in N , for some

d ∈ O, q ∈ S. Combining with (11) we can now write

p0
α1/β1→ pj

σ/ω→ sk+1
z/c→ t in M and p0

α1/β1→ pj
σ/ω→ ŝ

z/d→ q in N. (12)
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Recall that α = α1σzα3 with p0
α1/→ pj in M , pj = s0, and zα3 6= ε. Hence, to establish

the result it is enough to show that q
α3/η→ in N , for some η ∈ O? since, together with

(12), this would give p0
α/γ→ in N where γ = β1ωdη. To see that q

α3/η→ in N , note

that t = pj+k+2, and so, using (6), we get sk+1
z/c→ t

α3/→ in M . Since we already have

ŝ
z/d→ q in N , the claim follows from an easy induction on |α3| ≥ 0 using item (e) of

the construction. This concludes Case B.

The the lemma is thus established.

Now, let α ∈ U(s0) in M , that is s0
α/→ in M . Since q0 = s0, Lemma 11 gives q0

α/→ in
N , so that α ∈ U(q0). We conclude that U(s0) ⊆ U(q0).

Our next step is to show that M ≈T N . Assume that we have α ∈ T such that s0
α/β→ in

M and q0
α/γ→ in N with β 6= γ. Since s0 = q0 we may use Lemma 11 and obtain α1, α2 ∈ I?

such that α = α1σα2 with s0
α1/→ s0 in M and α2 6= ε. This shows that σ is extensible in M

and T , contrary to our choice of σ. So, such an α ∈ T does not exist and we conclude that
M ≈T N .

Next, we want to argue that M 6≈ N . At this point we make precise our choice of
ŝ = rk+1 in item (d) of the construction of N . The choice of ŝ will depend on the structure
of M . To facilitate the notation we will write x̄ to be 0 when x = 1, and x̄ to be 1 when
x = 0. Now, recall that n ≥ 2 and that M is reduced, so that sk+1 must be distinguishable

from any other state in M . So, we know that sk+1
y/a→ in M for some y ∈ I, a ∈ O. If

there is a state t in M such that t
y/ā→ , then we choose ŝ = t. Clearly, from (6) we have

s0
σ/ω→ sk+1

y/a→ in M . From items (a), (b) and (d) of the construction, and from our choice

of ŝ, we get q0
σ/ω→ ŝ

y/ā→ in N . Since ωa 6= ωā we conclude that M 6≈ N . Now assume that

there are no state t such that t
y/ā→ in M , so that if any state of M has a transition on input

y, then the output must be a. If sk+1 has a transition on input ȳ, say sk+1
ȳ/b→, then either

there is a state t in M with t
ȳ/b̄→, in which case we can choose ŝ = t and proceed as before,

or any other state in M that has a transition on input ȳ must have b as output. But in
this case, all states of M will have output a on input a, and will have output b on input ȳ,
and no two states of M will be distinguishable, contrary to the fact that M is reduced. We

then, conclude that sk+1
y/a→ is the only transition out of sk+1, and that all other states of M

that have transition on input y must also output a. Further, we cannot have sk+1
y/a→ sk+1

in M for, otherwise, if sk+1
α/β→ then we would get α = ym and β = am, for some m ≥ 0.

But for any other state t, if t
ym/γ→ then we we would get γ = am, so that sk+1 would not

be distinguishable from any other state of M , a contradiction again. Hence, we must have

sk+1
y/a→ t1 for some t1 6= sk+1.

We now complete the specification of N by choosing rk+1 = ŝ = t1.

Since t and sk+1 are distinguishable in M the distinguishing sequence must terminate
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with ȳ, and we must have some m ≥ 1 and states ti in M (1 ≤ i ≤ m) and some b ∈ O such
that

sk+1
y/a→ t1

y/a→ · · · y/a→ tm
ȳ/b→ in M (13)

t1
y/a→ t2

y/a→ · · · y/a→ tm
y/a→ tm+1

ȳ/b̄→ in M . (14)

Assume that m is minimal, and let α = ym, β = am. Suppose that we also have t1
α/β→ q

ȳ/b̄→
in N . Recalling that ŝ = t1, we can use (6) and items (a), (b) and (d) of the construction
of N and write

s0
σ/ω→ sk+1

α/β→ tm
ȳ/b→ in M

q0
σ/ω→ ŝ

α/β→ q
ȳ/b̄→ in N .

Since ωβb 6= ωβb̄, we get M 6≈ N again. Otherwise, from (14), Lemma 11 gives some α1,

α2 ∈ I? such that t1
α1/→ s0, αȳ = α1σα2 and α2 6= ε. Since N is deterministic, we get

t1
α1/β1→ tj

σ/ω→ t`
α2/β2→ in N ,

where 1 ≤ j, ` ≤ m + 1, ` = j + |σ|, α1 = yj−1, β1 = aj−1, α2 = ym+1−`ȳ, β2 = am+1−`b̄.
Hence, tj = s0 = q0, and items (a), (b) and (d) of the construction of N imply that

t` = rk+1 = ŝ = t1. So, from (14), we may write t1
ym−`/am−`

→ tm+1
ȳ/b̄→ in M . But ` ≥ 1 and

so m− ` < m and we get a contradiction to the minimality of m. We, therefore, conclude
that, in fact, M 6≈ N .

Combining, we have U(s0) ⊆ U(q0), M ≈T N and M 6≈ N . Since N has g(T ) + |S|
state, we conclude that T is not m-complete for M , for any m ≥ g(T ) + |S|.

We summarize this discussion in the next theorem.

Theorem 6. Let M be a FSM and let T be a test suite for M . Let σ be a shortest test
case in T that is non-extensible in T ∩ U(s0). Then T is not m-complete for M , for any
m ≥ |σ|+ |S| − 1.

5.2 An upper bound example

We present a simple example to illustrate the construction in Subsection 5.1. Let M be as
depicted in Figure 3. Note that M is a partial FSM since (s1, 1) /∈ D. Also let T = {05, 102}
be a test suite for M . So the shortest test case that is non-extensible in T is σ = 102. Notice
that T could have included any other test cases, provided that σ remains as a shortest non-
extensible test case in T ∩ U(s0). Also, |σ|+ |S| − 1 = 3 + 3− 1 = 5 is the bound claimed
in Subsection 5.1, and we know that T is not m-complete for M , for any m ≥ 5.

Applying items (a) to (e), as proposed in Subsection 5, we obtain the FSM N depicted

in Figure 4. Item (a) gives us the transitions si
0/0→ si+1, i = 0, 1, plus both transitions

s2
0/1→ s2, s2

1/1→ s2, and redirects the transition s0
1/1→ s2 of M to as the transition s0

1/1→ r1
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s0 s1 s2
0/0 0/0

1/10/1

1/1

Figure 3: Specification FSM M .

s0 s1 s2

r1 r2

0/0

0/0

1/1

1/10/1

1/1

0/1

0/1 1/1

Figure 4: FSM N .

in N . This part of the construction of machine N shows that N and M yield the same
behavior when we use test case 05.

From item (b) we obtain the transition r1
0/1→ r2, and we also obtain r2

0/1→ s1 from item
(d). At this point of the construction we note that N and M yield the same output when
the test case 102 is run on both machines.

Next, we get the return transition r2
1/1→ s2 from item (c). For item (d) we can choose

ŝ = s1, and so we also add the transition r2
1/1→ s1 to N . We complete the specification of

machine N with transitions s1
1/1→ s2, as required by item (e).

Since λ(s0, 00000) = 0011 = τ(s0, 00000) and λ(s0, 100) = 111 = τ(q0, 100) we get
M ≈T N . But M 6≈ N because λ(s0, 1000) = 1111 6= 1110 = τ(q0, 1000). We conclude that
T is not m-complete for M for any m ≥ 5, where 5 is the bound specified in Subsection 5.1.

5.3 A lower bound for m-completeness

A lower bound for m-completeness

Next we want to argue that the |S| + g(T ) bound is sharp in a strong sense. We show
that for all pairs (n, k), with n ≥ 2 and k ≥ 1, there is a reduced FSM M with |S| = n
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states and a test suite T with g(T ) = k such that T is not (n+ k)-complete for M , but T
is (n + k − 1)-complete for M . This infinite family of FSMs and test cases will show that
the bound cannot be improved over an infinite family of FSMs and test cases, whose sizes
can be as large as desired.

Before giving the general argument, we illustrate the main ideas using a simple example
with n = 3. Consider the specification depicted in Figure 5, and take the same test suite

s0 s1 s2
0/0 0/0

0/1

1/1

Figure 5: Specification FSM M .

T = {05, 102}.
We construct a machine N with at most four states such that M ≈T N , but M 6≈ N .

In order to maintain the equivalence M ≈T N , preventing the test case 05 to distinguish
N and M , an alternative for N would be as shown in Figure 6. We could then complete

s0 s1 s2
0/0 0/0

0/1

Figure 6: Implementation FSM N .

N with a transition s0
1/1→ s1, obtaining a machine that is isomorphic to M , which clearly

would imply MS ≈ N .

As an alternative to Figure 6, we can extend it with one more state s3, and terminate

by adding the s0
1/1→ s3 transition, thus obtaining a 4-state machine as depicted in Figure 7.

But then we would also have MS ≈T N4 and MS ≈ N4 as it is easily seen.

The last alternative would be to start as in Figure 6, but now use the fourth state s3 as

an intermediate state in a longer path s0
1/1→ s3

0/1→ s2, as depicted at Figure 8. However, in
this situation we still have M ≈T N and M ≈ N , as it is easy to check.

A moments reflexion will show that there is no other alternative to construct a machine
N with at most 4 states and such that M ≈T N but M 6≈ N . We are lead to conclude that
T is indeed m-complete for M , for all m ≤ 4.

We now proceed with a more formal and general reasoning. Let n ≥ 2 and consider the
FSM M with state set S = {s0, s1, . . . , sn−1}, and whose transitions are:
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s0 s1 s1 s3
0/0 0/0 0/1

0/1

1/1

Figure 7: Implementation FSM N .

s0 s1

s3

s2
0/0 0/0

0/1

1/1 0/1

Figure 8: Implementation FSM N .

(i) si
0/0→ si+1, for i = 0, 1, . . . , n− 2

(ii) sn−1
0/1→ sn−1

(iii) s0
1/1→ sn−1.

Let k ≥ 1 and let

T = {0n+k, 10k}.

It is easily seen that M is reduced and deterministic, and that 10k is the shortest non-
extensible test case in T , so that g(T ) = |10k| − 1 = k.

For the sake of contradiction, assume that T is not (n + k − 1)-complete for M . Then
we must have an implementation N with at most n+ k− 1 states, U(s0) ⊆ U(q0), and such
that M 6≈ N and M ≈T N . Clearly, T ⊆ U(s0) and so we must have T ⊆ U(q0). Note that

0n+k ∈ T and s0
0n−1/0n−1

→ sn−1 in M , and so in N we get

q0
0/0→ q1

0/0→ q2
0/0→ · · · 0/0→ qn−1.

We claim that qi 6= qj for 0 ≤ i < j ≤ n − 1. If not, we would have a loop in the state
sequence above and, in this case, N would clearly output 0n+k when the test case 0n+k ∈ T
is run on N , but with this same input sequence, M would yield 0n−11k+1, contradicting
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M ≈T N . Continuing from qn−1 the run on N with the test case 0n+k = 0n−10k+1 would
then yield

q0
0/0→ q1

0/0→ q2
0/0→ · · · 0/0→ qn−1

0/1→ qn
0/1→ qn+1

0/1→ · · · 0/1→ qn+k.

Since N has at most n+k−1 states, we conclude that qu = qv for some 0 ≤ u < v < n+k.
Let v is the smallest such index. Since we already know that q0, q1, . . . , qn−1 are distinct,
we conclude that v > n− 1. Suppose first that u < n− 1. Note that n+ 1 ≤ v+ 1 ≤ n+ k.
So, on input sequence 0v0 FSM M would output 0n−11`1 where ` = v − (n − 1) ≥ 1, and
FSM N on the same input would output 0n−11`0, showing that the input sequence 0v0
distinguishes M and N . Since 0v0 is a prefix of 0n+k ∈ T , this would contradict M ≈T N .
We conclude that u ≥ n− 1, and we have a loop in the state sequence qn−1, qn, . . . , qn+k.
By the minimality of v, it follows that q0, . . . , qn−1, qn, . . . qv−1 are distinct states of N ,

and that qv−1
0/1→ qu with n− 1 ≤ u ≤ v − 1 and n ≤ v ≤ n+ k − 1. That is, in N we now

have

q0
0/0→ q1

0/0→ q2
0/0→ · · · 0/0→ qn−1

0/1→ qn
0/1→ qn+1

0/1→ · · · 0/1→ qu
0/1→ · · · 0/1→ qv−1

0/1→ qu. (15)

We also know that M 6≈ N , so that we must have some input α ∈ U(s0)∩U(q0)∩ I? =
U(s0) such that α distinguishes M and N . From the construction of M , there are two cases:
(i) α = 0m for some m ≥ 1, or (ii) α = 10m, for some m ≥ 0. Assume first that α = 0m

with m ≥ 1. When m ≤ n− 1 both M and N would output 0m, and when m = (n− 1) + `,
with ` > 0, both M and N would output 0n−11`. So, in this case α does not distinguish
between M and N .

Next, take α = 10m, with m ≥ 0. We clearly need m > k because 10k ∈ T and we
also have M ≈T N . Assume that m is minimal. Since 10m distinguishes M and N , m is
minimal and the output of M over this sequence is 11m−11, in N we must have

q0
1/1→ t0

0/1→ t1
0/1→ t2

0/1→ · · · 0/1→ tm−1
0/0→ tm, (16)

with corresponding output 11m−10. The states t0, . . . , tm−1 must all be distinct for, other-
wise, the output of N on 10m would be 11m, which is not the case. Consider a state ti with
0 ≤ i ≤ m − 2 and assume that we have ti = qj , for some 0 ≤ j ≤ n − 2. Then, because
i ≤ m − 2 and j ≤ n − 2, from the run (15) we see that the output of N on 10m would
be 11i0β, where |β| = m− i− 1 ≥ 1. But this contradicts the known output of N on 10m

as 11i11`0, with ` + 1 = m − i − 1 = |β| ≥ 1. If ti = qj for some n − 1 ≤ j ≤ v − 1, then
from run (15) again we see that the output of N on 10m would now be 11m−11 which also
contradicts the established 11m−10. We conclude, therefore, that t0, . . . tm−2 are new states
of N . Hence, from (15) and (16), we see that N has at least v + m − 1 states. Recalling
that v ≥ n and m > k we conclude that N has at least n+ k states, contradicting the limit
of n+ k− 1 states for N . We have, thus, established that T is (n+ k− 1)-complete for M .
Since we g(T ) = k, we now know that T is m-complete for M , for any m ≤ g(T ) + |S|, as
desired.

We can now summarize the discussion in the following theorem.
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Theorem 7. There is an infinite family of specifications FSMs Mi and test suites Ti, with
σi being a shortest non-extensible test case in Ti (i = 1, 2, . . .), and such that: (1) Ti is not
m-complete for Mi, for all m ≥ |σi| + |Si| − 1 (i = 1, 2, . . .); and (2) Ti is m-complete for
Mi, for all m < |σi|+ |Si| − 1 (i = 1, 2, . . .).

We note that the same questions, now related to m-perfectness, do not lead to interesting
answers. When M is complete, that is, when U(s0) = I?, take a 1-state implementation
with no transitions. For any nonempty test suite T we can trivially find an input sequence
α ∈ U(s0) ∩ T such that α 6∈ U(q0). This shows that T is not 1-perfect for M . When M
is not complete, we have some input sequence α 6∈ U(s0). Consider the 1-state complete

implementation N wit transitions q0
0/0→ q0 and q0

1/1→ q0. Again, for any test suite T with
α ∈ T we know that α ∈

[
U(s0)	 U(q0)

]
∩ T . Hence, again, T is not 1-perfect for M .

6 Conclusions

In this work we have studied test suite perfectness, a notion similar to the classical notion
of test suite completeness, but that also allows for the presence of so called blocking test
cases, that is, test cases that may not run to completion either in the specification or in
the implementation models. An accompanying notion of p-reduction was also introduced,
similar to the classical notion of reduction in FSMs.

We established that the notion of perfectness is equivalent to the notion of bi-similarity.
This result then lead to a necessary and sufficient condition for testing for perfectness, even
in the presence of partial models, either for the specifications or for the implementations.

We showed that any FSM can be p-reduced while maintaining the perfectness property,
when it was already present in the original FSM. Using this result, we then proved that when
the specification and implementation models are both p-reduced, then perfectness can be
characterized in terms of an isomorphism between the specification and the implementation.

We then established a relationship between perfectness and the classical notion of com-
pleteness. We showed that perfectness is a strictly stronger relation, for specifications
models of any sizes.

Further, we also proved that when testing for completeness one has to impose a limit on
the number of states of the implementation models that are put under test. We established a
sharp upper bound on the number of states of implementations, if the completeness property
is required from the testing method that is being used.

For future studies, we mention developing and testing algorithms for testing perfectness,
inspired by the theoretical results discussed here.
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