

Adaptive Multiscale Function Approximation II: Regular Tensorial Bases

Gilcélia Regiâne de Souza ${ }^{1}$
Jorge Stolfi ${ }^{2}$

Abstract

We apply the general top-down algorithm for adaptive multiscale approximation HApp, described in the Part I of this article, to a specific type of function approximation bases which we call regular multiscale bases. The algorithm guarantees a specified maximum approximation error at every sampling point. While the resulting adaptive basis is not necessarily minimal, it can be much smaller than the full basis, for target functions with localized detail at various spatial resolution scales.

The bases elements are tensorial splines with compact support. These bases are similar to standard wavelet bases, except that they provide explicit analytic formulas for the approximating function; that can be used, for example, for differentiation and interpolation between the sampling points.

In this part of the article, we assume a regular grid of sampling points and a box-like domain with toroidal topology. These choices allow considerable savings of computing time. We also use at each level a modified least squares analysis operator with Bayesian outlier rejection.

1 Introduction

In Part I of this article [16], we described a general algorithm for adaptive multiscale approximation (HApp) using a general basis reduction routine (Reduce). Both algorithms were very general, independent of the domain and mesh geometry, of the nature and arrangement of the basis elements, of the sampling points, and of the initial approximation operator Analyze used at each level. We also described a particular version of Analyze, namely iterative least squares with Bayesian rejection of outliers and rejection of "bad" cells.

In this second part of the article, we apply the the approximation method of Part I to regular bases, a specific type of basis that we found to be particularly useful and effective for a broad variety of target functions.

Namely, every element of a regular basis is the discrete sampling of a multi-dimensional tensorial element, which is the product of several univariate basis elements with bounded support, each depending on a single coordinate of the domain. A full single-scale regular basis consists of multiple translated copies of the same element, arranged in a regular grid. A full multiscale regular basis is a hierarchy of single-scale regular bases, where the elements at each level are similar to those in the next higher level, but are reduced in the spatial

[^0]directions (before sampling) and are arranged in a denser grid. An adaptive multiscale regular basis consists of a subset of each level of a full multiscale regular basis, up to some maximum level.

We assume a box-like domain with periodic boundary conditions, spanned by a regular array of sampling points aligned with the basis element grid. These choices allow considerable time savings in the computation of the basis and moment matrices. One could also use the regular bases described in this article with irregular sampling points; however, there will be no savings in computing time in that case.

Recall that the HApp algorithm guarantees a specified maximum approximation error at every sampling point, if it is allowed to use a sufficiently deep hierarchical basis. While the resulting adaptive basis is not necessarily minimal, it can be much smaller than the full basis, for target functions with localized detail at various spatial resolution scales.

1.1 Related work

A regular multiscale basis is similar to a standard wavelet basis [13], except that it provides explicit analytic formulas for the approximating function; that can be used, for example, for differentiation and interpolation between the sampling points.

A regular basis is also similar to a radial basis [1], but its elements are not radially symmetric. Their shape allows them to achieve a more uniform coverage of the domain when placed in a regular grid.

As observed in Part I, the HApp algorithm can be compared to the algorithms by Iske $[10,11,9,8]$. However, due to its top-down approach, HApp is more efficient for identifying the reduced basis. Our regular single-scale bases include the multiscale B-spline [3, 14] bases as a special case which we use in our tests (see section 3). Our multiscale regular bases are also similar to the bases used by Castro et al [2].

2 Detailed description

2.1 Tensor bases

The reader is referred to section 2 of Part I for the notation and conventions. Here we assume that each element σ_{j} of a discrete basis S (in particular, of any level $S^{(\ell)}$ of the full hierarchical basis) is obtained by sampling a reconstruction element, a function ϕ_{j} from the domain \mathbb{D} to \mathbb{R}, at the sampling points p_{k}. Let $\widehat{\phi}_{1}, \widehat{\phi}_{2}, \ldots$ be the reconstruction elements of the reduced basis $\widehat{S}_{1}, \widehat{S}_{2}, \ldots$ chosen by HApp, and $\widehat{\alpha}_{1}, \widehat{\alpha}_{2} \ldots$ be the corresponding coefficients. The reconstruction of the sampled values f_{i} will then be the function $\widehat{\xi}$ from \mathbb{D} to \mathbb{R} defined by

$$
\begin{equation*}
\xi(x)=\sum \widehat{\alpha}_{j} \widehat{\phi}_{j}(x) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{D}$. Note that the discrete approximation ξ returned by $H A p p$ is the sampling of function $\widehat{\xi}$.

2.2 Mother pulses

Each reconstruction element ϕ_{j}, is derived in turn from a single mother pulse Φ, a function from \mathbb{R} to \mathbb{R}. Typically, Φ is an even function (symmetric around 0), positive when the argument is zero, and zero when the argument is sufficiently far from 0 . See figure 1. Specifically we assume that the mother pulse Φ is zero outside some mother support interval

Figure 1: A typical mother pulse.
$\sup (\Phi)=[-H / 2,+H / 2]$. The parameter H will be called the support width of Φ.

2.3 Tensorial pulses

Each reconstruction element that we use is a d-dimensional tensorial pulse ϕ_{j} which is a function from \mathbb{R}^{d} to \mathbb{R}, derived from the chosen mother pulse Φ by the formula

$$
\begin{equation*}
\phi_{j}(x)=\prod_{i=1}^{d} \Phi\left(\frac{x_{i}-c_{j i}}{\rho_{i}}\right), \tag{2}
\end{equation*}
$$

for a generic point $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{D}$. Here $c_{j}=\left(c_{j 1}, c_{j 2}, \ldots, c_{j d}\right)$ is a point of \mathbb{D}, the center of the pulse, and each ρ_{i} is a positive real stretching factor for the pulse along coordinate axis i. See figure 2. For problems where the coordinate axes have different characters (e. g., time vs. space) it may be appropriate to use a different mother pulse Φ_{i} for each axis. This generalization would not require any other changes to the method, and would not imply any significant extra cost.

2.4 Basis element placement

We assume that the domain of approximation \mathbb{D} is a box in the cartesian space \mathbb{R}^{d}, for some dimension d, aligned with the coordinate axes.

We assume that the centers c_{j} are arranged in a regular orthogonal grid in the box \mathbb{D}, with Q_{i} elements along each axis i, whose centers are separated by a basis grid step ζ_{i}. That is, the center c_{j} is $\left(\left(u_{j 1}+\frac{1}{2}\right) \zeta_{1},\left(u_{j 2}+\frac{1}{2}\right) \zeta_{2}, \ldots,\left(u_{j d}+\frac{1}{2}\right) \zeta_{d}\right)$, where each $u_{j i}$ is an integer in $\left\{0 . . Q_{i}-1\right\}$. The integer tuple $u_{j}=\left(u_{j 1}, u_{j 2}, \ldots, u_{j d}\right)$ is the position of the element ϕ_{j} in the basis. Typically, the stretching factors ρ_{i} are proportional to the steps ζ_{i}. The domain box \mathbb{D} has length $L_{i}=\zeta_{i} Q_{i}$ along axis i that is, $\mathbb{D}=\left[0, L_{1}\right] \times\left[0, L_{2}\right] \times \cdots \times\left[0, L_{d}\right]$.

Figure 2: A tensorial pulse ϕ_{j} derived from the mother pulse Φ of figure 1, with center $c_{j}=(15,15)$ and stretching factors $\rho_{j}=(2,6)$.

2.5 The basis mesh

As detailed in the Part I of this article, a single-scale basis ϕ has an associated mesh \mathbf{K}. Each cell \mathbf{K}_{j} of this mesh is a region in \mathbb{D} where element ϕ_{j} nominally dominates. In the case of a regular basis, \mathbf{K}_{j} is, by definition, a box with length ζ_{i} along each axis i, centered at the point c_{j} of \mathbb{D}. The position of the cell \mathbf{K}_{j} is that of its associated reconstruction element ϕ_{j}. See figure 3

Figure 3: Cells (rectangles) and element centers (dots) for the first three levels $\phi^{(0)}, \phi^{(1)}, \phi^{(2)}$ of the 2-dimensional hierarchical regular basis.

2.6 Element supports

Note that each reconstruction element ϕ_{j} will be zero outside the d-dimensional box with center c_{j} and width $\rho_{i} H$ along each axis i. We define the support box $\sup \left(\phi_{j}\right)$ of element ϕ_{j} to be the set of all mesh cells in which the element is not entirely zero. If u_{j} is the position of ϕ_{j}, and $\rho_{i} H \leq L_{i}$, then the support box comprises cells with indices ranging from $u_{j i}-r$ to $u_{j i}+r$, modulo Q_{i}, along each axis i; where $r=\left\lceil\left(\rho_{i} H / \zeta_{i}-1\right) / 2\right\rceil$. In other words, the support box is a block of $(2 r+1)^{d}$ cells centred on cell \mathbf{K}_{j}. See Figure 4. If $\rho_{i} H>L_{i}$, on the other hand, the support box is the whole mesh \mathbf{K} (see section 2.8).

Figure 4: At left, illustration of a single-level regular basis with $d=2, L=(40,40)$, $Q=(8,8), \zeta=(5,5)$, showing the element centers c_{j} (red dots), the sampling points p_{k} (small blue dots) with oversampling factors $t=(4,4)$, and the support box of the element ϕ_{j} with position $(3,3), H=3, \rho=(1,1)$, and center $(17.5,17.5)$.

2.7 Toroidal domain

A recurrent complication in the analysis of approximation methods on a bounded domain \mathbb{D} is that the errors near the border of \mathbb{D} are usually different from those in its interior. To avoid this complicating effect, and for efficiency reasons (see section 3.1), we will assume that each face of the domain box \mathbb{D} is identified with the opposite face. In other words, we take \mathbb{D} to be the quotient of \mathbb{R}^{d} by the equivalence relation that relates two points $x^{\prime}, x^{\prime \prime}$ iff $x_{i}^{\prime}-x_{i}^{\prime \prime}$ is an integer multiple of L_{i} for every i.

With this assumption, the domain \mathbb{D} becomes a d-dimensional manifold without border, a d-dimensional flat torus, that retains the (flat) Euclidean local geometry and differential structure of \mathbb{R}^{d} at every point. Note that all points of \mathbb{D} are equivalent under toroidal translations.

This assumption is equivalent to implicitly extending any function defined on \mathbb{D} to a function defined over \mathbb{R}^{d} that is periodic along every axis i with period L_{i}. One drawback of this assumption is that it creates spurious discontinuities in the target function F when the latter is not periodic. This problem can be avoided by mapping the domain of interest of F to a sufficiently small region \mathbb{D}^{\prime} inside the box \mathbb{D}, and redefining F in the surrounding region $\mathbb{D} \backslash \mathbb{D}^{\prime}$ so that it is smooth and periodic in the whole box \mathbb{D}, including at points in the border. See for example the target functions used in the tests (section 3.1).

2.8 Element fold-over

The toroidal domain assumption implies that any parts of a tensorial pulse ϕ_{j} that would otherwise fall outside the box \mathbb{D} are "folded over" into the box across the opposite face(s). If the width $\rho_{i} H$ of the element's support along some axis i is greater than the corresponding box width L_{i}, the folded-over pulse will overlap itself, and the folded-over parts must be added together. See figure 5 .

More precisely, the generic basis element is not the tensorial pulse ϕ_{j} defined by formula (2), but is the sum of infintely many copies of that pulse, whose centers form an

Figure 5: A sample reconstruction element on the domain $[0,20] \times[0,20]$
infinite regular grid with stride L_{i} along each axis i. That is, the generic element is

$$
\begin{equation*}
\phi_{j}(x)=\sum_{v \in \mathbb{Z}^{d}} \prod_{i=1}^{d} \Phi\left(\frac{x_{i}-c_{j i}-v_{i} L_{i}}{\rho_{i}}\right) \tag{3}
\end{equation*}
$$

for every point x of \mathbb{D}. The sum (3) can be factored as follows

$$
\begin{equation*}
\phi_{j}(x)=\prod_{i=1}^{d}\left[\sum_{k \in \mathbb{Z}} \Phi\left(\frac{x_{i}-c_{j i}-k L_{i}}{\rho_{i}}\right)\right] . \tag{4}
\end{equation*}
$$

Therefore, each basis element is still a tensorial element,

$$
\begin{equation*}
\phi_{j}(x)=\prod \Phi_{i}^{*}\left(x_{i}-c_{i j}\right), \tag{5}
\end{equation*}
$$

where Φ_{i}^{*} is the stretched and replicated mother function

$$
\begin{equation*}
\Phi_{i}^{*}(z)=\sum_{k \in \mathbb{Z}} \Phi\left(\frac{z-k L_{i}}{\rho_{i}}\right)=\sum_{k \in \mathbb{Z}} \Phi\left(\frac{z}{\rho_{i}}-k \frac{\zeta_{i}}{\rho_{i}} Q_{i}\right) . \tag{6}
\end{equation*}
$$

These infinite summations always converge if the mother function has bounded support width H, since only a finite number of terms will be nonzero. Specifically, in the sum (6) we need only consider terms for which $-H / 2 \leq\left(z-k L_{i}\right) / \rho_{i} \leq+H / 2$, that is,

$$
-\left\lfloor\left(\rho_{i} H / 2+z\right) / L_{i}\right\rfloor \leq k \leq\left\lfloor\left(\rho_{i} H / 2-z\right) / L_{i}\right\rfloor .
$$

In particular, if $\rho_{i} H \leq L_{i}$, the sum (6) has only one non-zero term, whose index k is z / L_{i} rounded to the nearest integer.

2.9 Efficient sampling

As for the sampling points p_{k}, we assume that they too form a regular rectangular grid, whose spacing along each axis i a sub-multiple $\delta_{i}=\zeta_{i} / t_{i}$ of the basis step ζ_{i}. The integer t_{i} is the oversampling factor for axis i. Each sampling point p_{k} is of the form

$$
\left(\left(v_{k 1}+\frac{1}{2}\right) \frac{\zeta_{1}}{t_{1}},\left(v_{k 2}+\frac{1}{2}\right) \frac{\zeta_{2}}{t_{2}}, \cdots,\left(v_{k d}+\frac{1}{2}\right) \frac{\zeta_{d}}{t_{d}}\right)
$$

were each $v_{k i}$ is an integer between 0 and $t_{i} Q_{i}-1$. See Figure 6. In particular, if $t_{i}=1$ for all i, the sampling points coincide with the element centers, the approximation problem becomes an interpolation one.

Figure 6: A regular grid of sample points with $Q=(8,8)$ and $t=(2,2)$.

One important consequence of all these definitions is that the discretized basis elements of a given level ℓ are all similar. Specifically, for any two reconstruction elements ϕ_{r} and ϕ_{s}, and any sample point p_{k}, the basis matrix element $S_{k r}=\phi_{r}\left(p_{k}\right)$ is equal to $S_{i s}=\phi_{s}\left(p_{i}\right)$, where i is such that $p_{i}=p_{k}+c_{s}-c_{r}$.

This observation can be used to greatly reduce the time and memory needed to compute the pre-basis matrix $\widetilde{S}=\widetilde{S}^{(\ell)}$ for each level. Namely, it suffices to compute just the first column σ_{1} of the full basis matrix S, since all columns of S (and of the pre-basis \widetilde{S}) will be permutations of that one. Therefore, the cost to build the pre-basis matrix \widetilde{S} for \widetilde{n} basis elements and m total sample points is roughly proportional to $m \beta\left(\tau_{\phi}+\widetilde{n} \kappa\right)$, where: β is the fraction of sampling points that are in the domain box of ϕ_{1}, which is at most $(2 r+1)^{d} / n$; τ_{ϕ} is the cost of evaluating one sample value $\phi_{1}\left(p_{k}\right)$; and κ is the cost of storing one sample into the matrix \widetilde{S}.

These choices also allow us to compute the least squares system matrix $M=\widetilde{S}^{\top} \widetilde{S}$ very efficiently. Namely, it suffices to compute the first row of M, since the other rows are just permutations of it. Each element $M_{1 k}$ of the first row is $\widetilde{\sigma}_{1}^{\top} \widetilde{\sigma}_{k}$, and only needs to be computed if the support boxes of ϕ_{1} and ϕ_{k} intersect. The cost of computing M is therefore roughly proportional to $\tilde{n} m \theta \mu$ to compute the first row, and $\widetilde{n}^{2} \beta \kappa$ to copy it to the other $\widetilde{n}-1$ rows. Here θ is the fraction of elements ϕ_{j} of the basis whose support box intersects that of ϕ_{1},
which is at most $(4 r-1)^{d} / n$; and μ is the cost of one floating-point multiplication and one sum.

If the sampling points are irregular, these optimizations are not possible; the value of $\widetilde{S}_{i j}=\widetilde{\phi}_{j}\left(p_{k}\right)$ must be computed for every element $\widetilde{\phi}_{j}$ and every point p_{k} in support of $\widetilde{\phi}_{j}$, with cost $\widetilde{n} m \beta \tau_{\phi}$; and the matrix M must be computed by the formula $\widetilde{S}^{\top} \widetilde{S}$, with cost proportional to $\widetilde{n}^{2} m \beta \mu$.

2.10 Hierarchical tensor pulse bases

Following Part I, we define a multiscale regular basis as a hierarchy of levels $S^{(0)}, S^{(1)}, \ldots$ where each level $S^{(\ell)}$ is a single-scale regular basis. By definition, the basis $S^{(\ell)}$ has $Q_{i}^{(\ell)}=2^{\ell}$ elements along every axis i, with step $\zeta_{i}^{(\ell)}=L_{i} / 2^{\ell}$. The corresponding mesh $\mathbf{K}^{(\ell)}$ has $Q_{i}^{(\ell)}=2^{\ell}$ cells along each axis i, that span the domain \mathbb{D}. That is, level 0 has only one cell, $\mathbf{K}_{1}^{(0)}=\mathbb{D}$; and each cell of level ℓ is the union of 2^{d} cells of level $\ell+1$, in quadtree or octree fashion [6]. Note that all cells at all levels are similar in shape, and the element centers of all levels are all distinct. See Figure 3.

As explained in Part I, the pre-basis $S^{(\ell)}$ (step 14 of algorithm $H A p p$) will be a subset of the full regular basis $S^{(\ell)}$, and the final basis $\widehat{S}^{(\ell)}$ (step 16) will be a subset of $\widetilde{S}^{(\ell)}$.

Note that, in step 10 of $H A p p$, the set $\mathbf{B}^{(\ell)}$ of relevant cells is simply the union of all support boxes of all the reconstruction elements $\widehat{\phi}_{j}^{(\ell)}$ associated with the basis elements $\widehat{\sigma}_{j}^{(\ell)}$.

2.11 Starting level

As discussed in section 4.1 of Part I, many hierarchical approximation schemes described in the literature assume that each level space $\mathcal{S}^{(\ell)}$ is linearly independent, (or even orthogonal) to all previous levels. Moreover, in those schemes, the first level is usually defined to be some fairly detailed mesh, with hundreds or thousands of cells. Therefore, in order to capture global trends of the target function, those schemes must add to the basis, in that initial level, some extra elements with global support, such as polyharmonic splines and/or low-degree polynomials $[7,8,9,12]$.

As explained in Part I, our hierarchical basis use nested (rather than independent) approximation spaces at each level:

$$
\begin{equation*}
\mathcal{S}^{\left(\ell_{\min }\right)} \subseteq \mathcal{S}^{\left(\ell_{\min }+1\right)} \subseteq \ldots \subseteq \mathcal{S}^{\left(\ell_{\max }\right)} \tag{7}
\end{equation*}
$$

The regular spline bases that we use in this part of the article also satisfy this property. With this assumption, those extra ad-hoc elements in the first level are not needed, since the full basis $S^{(\ell)}$ at every level can generate the full space $\mathcal{S}^{(k)}$ for any previous level $k \leq \ell$. In particular, the basis $\mathcal{S}^{\left(\ell_{\min }\right)}$ can capture any global trends of the target function for any $\ell_{\text {min }} \geq 0$.

Indeed, we can start the algorithm $H A p p$ at any level $\ell_{\min }$ above the finest level $\ell_{\max }$, even with $\ell_{\min }=\ell_{\max }$ (in which case the hierarchical basis reduces to a regular single-scale basis). Still, as show in section 4, starting at the appropriate level $\ell_{\text {min }}$ between 0 and $\ell_{\max }-1$ usually results in a much smaller adaptive basis $\widehat{S}^{(*)}$, and considerable time savings compared to single-scale approximation $\left(\ell_{\min }=\ell_{\max }\right)$.

3 Test parameters

In this section we describe the common settings of some parameters for all the tests of the HApp algorithm that we present in section 4. These tests are meant to illustrate the effectiveness of the method, namely its ability to find a small representation of the target function; and the effect of certain choices in the HApp and Analyze procedure.

3.1 Sampling points and values

We use a two-dimensional square domain $\mathbb{D}(d=2)$ with $L_{1}=L_{2}=8$ and a dense regular grid of sampling points as described in section 3.1 with $2^{9} \times 2^{9}=262,144$ points evenly spaced in the box \mathbb{D}.

The sample values f_{i} were obtained from a target function F which was one of the four functions $F_{\mathrm{O}}, F_{\mathrm{C}}, F_{\mathrm{G}}$, and F_{M} described in Appendix A. See figure 7.

Figure 7: The target functions F_{O} and $F_{\mathrm{C}}($ top $), F_{\mathrm{G}}$ and F_{M} (bottom), used in our tests.

3.2 Mother functions

In these tests, the reconstruction elements of all bases are tensor pulses derived from four mother functions Φ_{g}^{S} with $2 \leq g \leq 5$, which are the basis elements of uniform B-spline bases of degree $g[4,14,15]$. See figure 8. Each function Φ_{g}^{S} is a polynomial spline of degree g, symmetric around 0 and continuous to order $g-1$, consisting of $g+1$ polynomials restricted to $g+1$ intervals of length 1 centered at 0 . See Appendix B 5 for the detailed formulas.

Figure 8: The B-spline mother pulses Φ_{2}^{S} and $\Phi_{3}^{S}($ top $), \Phi_{4}^{S}$ and Φ_{5}^{S} (bottom). The support of Φ_{g}^{S} has width $H=g+1$ and therefore is the interval $[-(g+1) / 2,+(g+1) / 2]$. The support of each pulse and the discontinuities in its derivative of order g are shown by the tics. The dotted vertical lines show the positions of the grid cell boundaries.

3.3 Multiscale basis

Each reconstruction element $\phi_{j}^{(\ell)}$ of the multiscale basis is the product of stretched and shifted copies of the unidimensional mother pulses Φ_{g}^{S}, according to formulas (5) and (6). We use $\rho_{i}=\zeta_{i}=1$ for all i; so that the discontinuities in the derivative of order g of two elements $\phi_{j}^{(\ell)}$ and $\phi_{k}^{(\ell)}$, defined as above, coincide wherever the two elements overlap. Specifically, if g is odd, the discontinuities occur at cell boundaries, that is, at hyperplanes of \mathbb{R}^{d} defined by the equations $x_{i}=k \zeta_{i}$ for $k \in \mathbb{Z}$. In this case, within each cell, each element ϕ_{j} is a single polynomial of the argument coordinates. If g is even, the discontinuities occur at hyperplanes that are displaced by $\zeta_{i} / 2$ relative to the cell boundaries.

It turns out that the elements $\phi_{j}^{(\ell)}$ of a single level ℓ can reproduce any polynomial spline
of degree g or less, defined on the mesh \mathbf{K}, that is continuous to order $g-1$ and whose discontinuities of order g are contained in the hyperplanes described above. Note that the hyperplanes of discontinuity of level ℓ are a subset of those of level $\ell+1$. For these reasons, every element $\phi_{j}^{(\ell+1)}$ can be expressed as a combination of elements of level ℓ, satisfying assumption (7).

3.4 Other parameters

In most tests, except those of section 4.2, the starting level $\ell_{\text {min }}$ was set to 3 , so that the full basis $\phi^{\left(\ell_{\min }\right)}$ has $2^{3} \times 2^{3}=64$ elements. The maximum level $\ell_{\max }$ was set to 9 , so that $\phi^{\left(\ell_{\max }\right)}$ has $2^{9} \times 2^{9}=262,144$ elements. Note that at level $\ell_{\max }$ there was only one sampling point per cell, i. e. $t^{(9)}=(1,1)$. However, in all tests the HApp procedure terminated before reaching that level. In what follows, for each test $\ell_{\max }$ is assumed to be the last level ℓ for which $\widehat{S}^{(\ell)}$ was not empty.

The error tolerance $\epsilon_{\max }$ for Reduce was set to 2.5×10^{-3}, in all tests except those of section 4.3. In all tests we used the Analyze procedure described section 6.2 of Part I; except in section 4.4, where the Bayesian outlier rejection was disabled.

3.5 Efficiency metrics

As in Part I, the effectiveness and efficiency of HApp on each test run are quantified by a size metric τ and a cost metric λ. The size metric is simply the ratio between the size $\widehat{n}^{(*)}$ of the adaptive multiscale basis $\widehat{S}^{(*)}$ chosen by HApp and the size $n_{\max }=n^{\left(\ell_{\max }\right)}$ of the full regular basis $S^{(\ell)}$ at the maximum level ℓ present in $\widehat{\phi}^{(*)}$. The cost metric λ is the ratio between the total estimated running time $\widetilde{t}^{(*)}$ of the plain LS method applied to all reduced bases $\widetilde{S}^{(\ell)}$, and the estimated time $t^{\left(\ell_{\max }\right)}$ of the plain LS method with the full basis $S^{\left(\ell_{\max }\right)}$ for the last level. The time to solve one LS problem for a basis of n elements was assumed to be proportional to $n^{2}(n+q)$ where q was the average number of sampling points in the support of on basis element.

4 Test Results

4.1 Comparison of mother pulses

The first set of tests compares the effectiveness and efficiency (in terms of the size and cost metrics above) obtained with the four mother pulses defined in section 3.2.

The results of all the tests in this set are summarized in tables 1 to 4 . In the first part of each table, $\widehat{n}^{(\ell)}$ is the size of the reduced basis $\widehat{S}^{(\ell)}$ of level ℓ, for $\ell=0,1, \ldots, \ell_{\max }$. In the second part, $\widehat{n}^{(*)}$ is the total size of the adaptive basis $\widehat{S}^{(*)}$ found by HApp; $n_{\max }$ is the size of the full basis $S^{(\ell)}$ for the last level ℓ present in $\widehat{S}^{(*)} ; \tau$ is the size metric of the final basis $\widehat{S}^{(*)}$; and λ is the cost metric of the HApp algorithm.

Table 1: Results of $H A p p$ for $F=F_{\mathrm{O}}$ and different mother pulses.

F	Φ	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{O}	Φ_{2}^{S}	-	-	-	20	72	184	274	18	8	-
F_{O}	Φ_{3}^{S}	-	-	-	20	60	202	222	62	-	-
F_{O}	Φ_{4}^{S}	-	-	-	20	60	208	36	-	-	-
F_{O}	Φ_{5}^{S}	-	-	-	20	62	208	-	-	-	-

F	Φ	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{O}	Φ_{2}^{S}	576	65536	0.0088	1.1×10^{-6}
F_{O}	Φ_{3}^{S}	566	16384	0.0345	1.1×10^{-4}
F_{O}	Φ_{4}^{S}	324	4096	0.0791	6.8×10^{-3}
F_{O}	Φ_{5}^{S}	290	1024	0.2832	9.7×10^{-2}

Table 2: Results of $H A p p$ for $F=F_{\mathrm{C}}$ and different mother pulses.

F	Φ	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{C}	Φ_{2}^{S}	-	-	-	32	232	700	977	468	48	-
F_{C}	Φ_{3}^{S}	-	-	-	32	244	812	1328	416	24	-
F_{C}	Φ_{4}^{S}	-	-	-	32	252	852	1226	416	56	-
F_{C}	Φ_{5}^{S}	-	-	-	32	252	884	1348	400	16	-

F	Φ	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{C}	Φ_{2}^{S}	2457	65536	0.0375	2.2×10^{-5}
F_{C}	Φ_{3}^{S}	2856	65536	0.0436	5.7×10^{-5}
F_{C}	Φ_{4}^{S}	2834	65536	0.0432	5.5×10^{-5}
F_{C}	Φ_{5}^{S}	2932	65536	0.0447	8.1×10^{-5}

Table 3: Results of $H A p p$ for $F=F_{\mathrm{G}}$ and different mother pulses.

F	Φ	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{G}	Φ_{2}^{S}	-	-	-	52	196	118	70	22	14	20
F_{G}	Φ_{3}^{S}	-	-	-	52	174	96	44	20	18	14
F_{G}	Φ_{4}^{S}	-	-	-	52	180	88	42	14	32	18
F_{G}	Φ_{5}^{S}	-	-	-	52	188	94	44	10	28	12

F	Φ	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{G}	Φ_{2}^{S}	492	262144	0.0019	3.6×10^{-8}
F_{G}	Φ_{3}^{S}	418	262144	0.0016	5.6×10^{-8}
F_{G}	Φ_{4}^{S}	426	262144	0.0016	8.4×10^{-8}
F_{G}	Φ_{5}^{S}	428	262144	0.0016	1.2×10^{-7}

Table 4: Results of $H A p p$ for $F=F_{\mathrm{M}}$ and different mother pulses.

F	Φ	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{M}	Φ_{2}^{S}	-	-	-	39	239	731	1404	1079	244	11
F_{M}	Φ_{3}^{S}	-	-	-	39	245	806	1505	979	173	5
F_{M}	Φ_{4}^{S}	-	-	-	39	251	853	1467	973	148	23
F_{M}	Φ_{5}^{S}	-	-	-	39	252	877	1545	1056	165	18

F	Φ	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{M}	Φ_{2}^{S}	3747	262144	0.0143	7.1×10^{-7}
F_{M}	Φ_{3}^{S}	3752	262144	0.0143	1.1×10^{-6}
F_{M}	Φ_{4}^{S}	3754	262144	0.0143	1.2×10^{-6}
F_{M}	Φ_{5}^{S}	3952	262144	0.0151	1.6×10^{-6}

4.1.1 Test function F_{C} with mother function Φ_{2}^{S}

Figure 9: The cell sets $\mathbf{C}^{(\ell)}$ (orange), $\mathbf{B}^{(\ell)}$ (yellow), $\mathbf{R}^{(\ell)}$ (green), and $\mathbf{U}^{(\ell)}$ (blue) for each level ℓ in $\left\{\ell_{\min } . . \ell_{\max }\right\}$.

4.1.2 Test function F_{M} with mother function Φ_{2}^{S}

Figure 10: The cell sets $\mathbf{C}^{(\ell)}$ (orange), $\mathbf{B}^{(\ell)}$ (yellow), $\mathbf{R}^{(\ell)}$ (green), and $\mathbf{U}^{(\ell)}$ (blue) for each level ℓ in $\left\{\ell_{\min } . . \ell_{\max }\right\}$.

Note that the final number $\widehat{n}^{(*)}$ of elements in the reduced basis is much smaller than the size $n_{\max }=n^{\left(\ell_{\max }\right)}=2^{\ell_{\max }} \times 2^{\ell_{\text {max }}}$ of the complete uniform base for the last level used by HApp. Namely, the ratio $\tau=\widehat{n}^{(*)} / n_{\max }$ varies between $1.6 \%\left(f_{\mathrm{F}}\right.$ with $\left.\Phi_{2}^{S}\right)$ to $11.6 \%\left(f_{\mathrm{C}}\right.$ with $\left.\Phi_{5}^{S}\right)$. Note also that, the ratio $\widehat{n}^{(*)} / n_{\max }$ is often be much smaller than the area fraction of the domain where the target function is nonzero.

4.2 Advantage of multiscale approximation

To assess the advantages of multiscale vs. single-scale approximation, we should compare results of $H A p p$ with $\ell_{\min }<\ell_{\max }$ to the results of applying the basis reduction algorithm Reduce (see section 5.2 of Part I) to the LS approximation obtained with the single-level basis $S^{\left(\ell_{\max }\right)}$; which is equivalent to applying $H A p p$ with $\ell_{\min }=\ell_{\max }$.

This test could not be performed for $\ell_{\max }=8$ since it would require solving a $2^{16} \times 2^{16}$ system. The largest basis $\phi^{(\ell)}$ we could test was $\phi^{(5)}$ with $32 \times 32=1024$ elements. We performed this test for the function $f_{\mathrm{O}}, f_{\mathrm{C}}, f_{\mathrm{G}}$ and f_{M}, with mother function $\Phi=\Phi_{2}^{\mathrm{S}}$, and tolerance $\epsilon_{\max }=2.5 \times 10^{-3}$. The results are shown in Table 5 .

Table 5: Result for various F.

$F=F_{\mathrm{O}}$		$F=F_{\mathrm{C}}$		$F=F_{\mathrm{G}}$		$F=F_{\mathrm{M}}$	
$\ell_{\text {min }}$	$\widehat{n}^{(*)}$						
3	324	3	2458	3	474	3	3547
4	302	4	2202	4	418	4	3384
5	172	5	2090	5	676	5	3173
6	638	6	2008	6	2346	6	3070
7	2596	7	5016	7	9346	7	5878
8	10446	8	19888	8	37518	8	22104

4.3 Effect of the error tolerance

In another series of tests, we compared the effectiveness of the method as a function of the error tolerance $\epsilon_{\max }$. We used the target functions F_{O} and F_{M} with Φ_{2}^{S} mother pulse, and $\ell_{\min }=3$. The results are shown in Tables 6 and 7 and in Figures 11 and 12.

Figure 11: Plot of $\widehat{n}^{(*)}$ (vertical axis) as function of $\epsilon_{\max }$ (horizontal axis) in log-log scale.

Table 6: Results of $H A p p$ for $F=F_{\mathrm{O}}$ as a function of ϵ.

F	Φ	$\epsilon_{\max }$	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{O}	Φ_{2}^{S}	6.4×10^{-2}	-	-	-	12	36	42	-	-	-	-
F_{O}	Φ_{2}^{S}	3.2×10^{-2}	-	-	-	16	42	72	2	-	-	-
F_{O}	Φ_{2}^{S}	1.6×10^{-2}	-	-	-	16	46	108	36	-	-	-
F_{O}	Φ_{2}^{S}	8.0×10^{-3}	-	-	-	16	54	142	106	-	-	-
F_{O}	Φ_{2}^{S}	4.0×10^{-3}	-	-	-	16	58	166	186	-	-	-
F_{O}	Φ_{2}^{S}	2.0×10^{-3}	-	-	-	24	76	194	284	46	8	-

F	Φ	$\epsilon_{\max }$	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{O}	Φ_{2}^{S}	6.4×10^{-2}	90	1024	0.0879	1.0×10^{-2}
F_{O}	Φ_{2}^{S}	3.2×10^{-2}	132	4096	0.0322	9.2×10^{-4}
F_{O}	Φ_{2}^{S}	1.6×10^{-2}	206	4096	0.0503	1.3×10^{-3}
F_{O}	Φ_{2}^{S}	8.0×10^{-3}	318	4096	0.0776	1.9×10^{-3}
F_{O}	Φ_{2}^{S}	4.0×10^{-3}	426	4096	0.1040	2.7×10^{-3}
F_{O}	Φ_{2}^{S}	2.0×10^{-3}	632	65536	0.0096	1.2×10^{-6}

Table 7: Results of $H A p p$ for $F=F_{\mathrm{M}}$ as a function of $\epsilon_{\max }$.

F	Φ	$\epsilon_{\max }$	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{M}	Φ_{2}^{S}	6.4×10^{-2}	-	-	-	37	116	101	37	-	-	-
F_{M}	Φ_{2}^{S}	3.2×10^{-2}	-	-	-	37	158	221	95	1	-	-
F_{M}	Φ_{2}^{S}	1.6×10^{-2}	-	-	-	39	195	399	262	32	2	-
F_{M}	Φ_{2}^{S}	8.0×10^{-3}	-	-	-	39	219	567	586	204	-	-
F_{M}	Φ_{2}^{S}	4.0×10^{-3}	-	-	-	39	232	679	1026	586	51	-
F_{M}	Φ_{2}^{S}	2.0×10^{-3}	-	-	-	39	240	756	1584	1398	413	16

F	Φ	$\epsilon_{\max }$	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{M}	Φ_{2}^{S}	6.4×10^{-2}	291	4096	0.0710	3.6×10^{-3}
F_{M}	Φ_{2}^{S}	3.2×10^{-2}	512	16384	0.0312	1.3×10^{-4}
F_{M}	Φ_{2}^{S}	1.6×10^{-2}	929	65536	0.0142	4.8×10^{-6}
F_{M}	Φ_{2}^{S}	8.0×10^{-3}	1615	16384	0.0986	6.3×10^{-4}
F_{M}	Φ_{2}^{S}	4.0×10^{-3}	2613	65536	0.0399	2.4×10^{-5}
F_{M}	Φ_{2}^{S}	2.0×10^{-3}	4446	262144	0.0170	1.0×10^{-6}

Figure 12: Plot of $\widehat{n}^{(*)}$ (vertical axis) as function of $\epsilon_{\max }$ (horizontal axis) in \log-log scale.

4.4 Effect of Bayesian outlier elimination

In this section we compare the performance of $H A p p$ with and without the Bayesian outlier rejection (see section 6.2 of Part I), for selected target functions. See Table 2. The third column indicates the analysis operator \mathcal{C} used: "-" for plain lest squares, "B" for iterated least squares with Bayesian rejection [17]. As we can see, the Bayesian elimination usually provides smaller bases.

Table 8: Results of $H A p p$ for all F with mother functions Φ_{4}^{S} and $\epsilon=2.5 \times 10^{-3}$.

F	\mathcal{C}	$\widehat{n}^{(0)}$	$\widehat{n}^{(1)}$	$\widehat{n}^{(2)}$	$\widehat{n}^{(3)}$	$\widehat{n}^{(4)}$	$\widehat{n}^{(5)}$	$\widehat{n}^{(6)}$	$\widehat{n}^{(7)}$	$\widehat{n}^{(8)}$	$\widehat{n}^{(9)}$
F_{C}	-	-	-	-	32	252	864	1496	400	24	-
F_{C}	B	-	-	-	32	252	852	1226	416	56	-
F_{M}	-	-	-	-	39	254	861	1570	1100	102	5
F_{M}	B	-	-	-	39	251	853	1467	973	148	23

F	\mathcal{C}	$\widehat{n}^{(*)}$	$n_{\max }$	τ	λ
F_{C}	-	3068	65536	0.0468	8.8×10^{-5}
F_{C}	B	2834	65536	0.0432	5.5×10^{-5}
F_{M}	-	3931	262144	0.0150	1.5×10^{-6}
F_{M}	B	3754	262144	0.0143	1.2×10^{-6}

5 Conclusions

We combined several techniques - tensorial approximation elements based on B-spline basis elements, toroidal domain topology, and our hierarchical adaptive multiscale approximation, algorithm HApp - to obtain a method approximation of multiscale sample data target functions with pre-determined $\|\cdot\|_{\infty}$ error at the sampling points.

We implemented this algorithm for 2D data and verified empirically that it produces small approximation bases with considerable savings running time. Specifically, in the most demanding tests in section 4.1 (target function F_{M}), our method yielded approximation bases that were $1 / 100$ of the full basis for the last level needed. This advantage was verified more directly in section 4.2 .

The tests in section 4.4 showed that Bayesian outlier rejection has a modest but definite advantage over plain least squares.

Acknowledgments

This research was partially support by CNPq grant 310706/2015-7.

Appendix A: Definition of the test functions

In each case, the function is defined on the natural domain $\mathbb{U}=[-1 / 2,1 / 2] \times[-1 / 2,1 / 2]$ which is then mapped to the domain $\mathbb{D}=[0, L]^{2}$ by the formulas $X=x / L-1 / 2$ and $Y=y / L-1 / 2$, where (X, Y) are the natural arguments of the objective function and (x, y) a point of \mathbb{D}.

Test function F_{O}

Function F_{O} is a variant of Gabor's element [5], that is, a two-dimensional sinusoidal wave modulated by a Gaussian bell

$$
\begin{equation*}
F_{\mathrm{O}}(X, Y)=\exp \left(-\frac{1}{2 R^{2}}\left(X^{2}+Y^{2}\right)\right) \cos \left(\left(\alpha_{x} X+\alpha_{y} Y\right) \pi\right) \tag{8}
\end{equation*}
$$

where $R=0.087, \alpha_{x}=10$, and $\alpha_{y}=5$.

Test function F_{C}

Function F_{C} consists of a central peak $f_{0}(X, Y)$ surrounded by a circular wall $f_{1}(X, Y)$:

$$
\begin{equation*}
F_{\mathrm{C}}(X, Y)=H_{0} f_{0}(X, Y)+H_{1} f_{1}(X, Y) \tag{9}
\end{equation*}
$$

where

$$
f_{0}=\left\{\begin{array}{cl}
0 & \text { if } X^{2}+Y^{2} \geq S_{0}^{2} \tag{10}\\
(1-v)^{2} & \text { otherwise }
\end{array}\right.
$$

and

$$
f_{1}=\left\{\begin{array}{cl}
0 & \text { if } X^{2}+Y^{2} \leq S_{1} \text { or } X^{2}+Y^{2} \geq S_{2} \tag{11}\\
4 u(1-u) & \text { otherwise }
\end{array}\right.
$$

in which

$$
v=\frac{X^{2}+Y^{2}}{S_{0}^{2}} \quad \text { and } \quad u=\frac{X^{2}+Y^{2}-S_{1}^{2}}{S_{2}^{2}-S_{1}^{2}}
$$

with $S_{0}=0.1196, S_{1}=0.2208, S_{2}=0.4232, H_{0}=1.0$, and $H_{1}=0.5$.

Test function F_{G}

Function F_{G} is a spiral bump defined by the formula

$$
\begin{equation*}
F_{\mathrm{G}}=g(X, Y) \sin (t) \tag{12}
\end{equation*}
$$

where

$$
g(X, Y)=\left\{\begin{array}{cc}
\frac{v}{(1-u)^{2} \sqrt{1+v^{2}}} & \text { if } u<1 \tag{13}\\
0 & \text { otherwise }
\end{array}\right.
$$

with

$$
\begin{array}{r}
u=\frac{X^{2}+Y^{2}}{R_{1}^{2}} \\
v=\frac{S^{2}}{R_{0}} \tag{15}\\
t=\varangle(y, x)+k \frac{R_{0}}{r}
\end{array} \quad S=\sqrt{R_{0}^{2}+X^{2}+Y^{2}} .
$$

and $R_{0}=0.05, R_{1}=0.45$ e $k=15$.

Test function F_{M}

Function F_{M} is the sum of $N=15$ bell-shaped humps with varying widths and amplitudes arranged in spiral around point $(-0.05,0)$.

$$
\begin{equation*}
F_{\mathrm{M}}(X, Y)=\sum_{i=1}^{N} \frac{1}{2-i / N} \psi\left(X, Y, \frac{i-1}{M}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{gathered}
\psi(X, Y, s)=\Psi\left(\frac{\|(X, Y)-(\bar{X}, \bar{y})\|}{w}\right), \\
\Psi(z)=\left\{\begin{array}{ccc}
0 & \text { if } \quad z \geq 1 \\
\left(1-z^{2}\right)^{2} & \text { if } \quad z<1
\end{array}\right.
\end{gathered}
$$

and $M=6.5, w=0.40 r, \bar{X}=r \cos (2 \pi s)-0.05, \bar{Y}=r \sin (2 \pi s)$, and $r=0.086 \times 2^{s}$.

Appendix B: Formulas for the mother pulses

The mother functions Φ that we used to construct the basis elements are defined by formulas (17) - (20) below.

$$
\begin{align*}
& \Phi_{2}^{\mathrm{S}}(r)=\left\{\begin{array}{lll}
1-\frac{4}{3} r^{2} & \text { if } & |r| \leq \frac{1}{2} \\
\frac{2}{3}\left(\frac{3}{2}-|r|\right)^{2} & \text { if } & \frac{1}{2}<|r|<\frac{3}{2}
\end{array}\right. \tag{17}\\
& \Phi_{3}^{\mathrm{S}}(r)=\left\{\begin{array}{lll}
1-\frac{r^{2}}{4}(6-3|r|) & \text { if } & |r| \leq 1 \\
\frac{(2-|r|)^{3}}{4} & \text { if } & 1<|r| \leq 2
\end{array}\right. \tag{18}\\
& \Phi_{4}^{S}(r)=\left\{\begin{array}{lll}
1-\frac{120}{115} r^{2}+\frac{48}{115} r^{4} & \text { if } & |r| \leq \frac{1}{2} \\
\frac{22}{23}+\frac{8}{23}|r|-\frac{240}{115} r^{2}+\frac{160}{115}|r|^{3}-\frac{32}{115} r^{4} & \text { if } & \frac{1}{2}<|r| \leq \frac{3}{2} \\
\frac{16}{230}\left(\frac{5}{2}-|r|\right)^{4} & \text { if } & \frac{3}{2}<|r| \leq \frac{5}{2}
\end{array}\right. \tag{19}\\
& \Phi_{5}^{S}(r)=\left\{\begin{array}{lll}
1-\frac{10}{11} r^{2}+\frac{5}{11} r^{4}-\frac{5}{33|r|^{5}} & \text { if } & |r| \leq 1 \\
\frac{17}{22}+\frac{25}{22}|r|-\frac{35}{11} r^{2}+\frac{25}{11}|r|^{3}-\frac{15}{22} r^{4}+\frac{5}{66}|r|^{5} & \text { if } & 1<|r| \leq 2 \\
\frac{1}{66}(3-|r|)^{5} & \text { if } & 2<|r| \leq 3
\end{array}\right. \tag{20}
\end{align*}
$$

References

[1] M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1-38, 2000.
[2] Douglas Azevedo Castro. AMultilevel approximation schemes and applications. PhD thesis, Institute of Mathematics, Statistics and Scientific Computing, UNICAMP, October 2011. Advisor: Sônia Maria Gomes.
[3] C. de Boor. Splines as linear combinations of b-splines. Approximation Theory II, pages 1-47, 1976.
[4] C. de Boor. A practical guide to splines. Springer-Verlag, 1978.
[5] H. G. Feichtinger and T. Strohmer. Gabor analysis and algorithms. Springer, 1998.
[6] R. Finkel and J.L. Bentley. Quad trees: A data structure for retrieval on composite keys. Acta Informatica, 4:1-9, 1974.
[7] M. S. Floarter and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. Journal of Computational and Applied Mathematics, 73:65-78, 1996.
[8] M. S. Floarter and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. In Tom Lyche and Larry L. Schumaker, editors, Proceedings of the 2000 Conference on Mathematical Methods for Curves and Surfaces, pages 211-220, 2000.
[9] A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. In Tom Lyche and Larry L. Schumaker, editors, Proceedings of the 2000 Conference on Mathematical Methods for Curves and Surfaces, pages 211-220, 2000.
[10] A. Iske. Multiresolution Methods in Scattered Data Modelling. Springer, 2000.
[11] A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive domain decomposition. Numerical Algorithms, 39:187-198, 2005.
[12] S. Müller. Adaptive Multiscale Schemes for Conservation Laws, volume 27 of Lectures Notes in Computational Science and Engineering. Springer, 2003.
[13] M. J. D Powell. Advances in Numerical Analysis: Wavelets, Subdivision Algorithms, and Radial Basis Functions. Oxford Science Publications.
[14] G. Wolberg S. Lee and S. Y. Shin. Scattered data interpolation with multilevel b-splines. IEEE Transactions on visualization and computer graphics, 3:228-244, 1997.
[15] I. J. Schoenberg. Cardinal interpolation and spline functions. Approximation Theory II, 2:167-206, 1969.
[16] G. R. Souza and J. Stolfi. Adaptive multiscale function approximation i: General discrete bases. Advances in Computational Mathematics - Manuscript Number ACOM-D-16-00289.
[17] G. R. Souza and J. Stolfi. Robust least squares by iterative bayesian data adjustment. Institute of Mathematics, Statistics and Scientific Computing (IMECC), State University of Campinas (UNICAMP), Brazil, Technical Report IC-15-06-2015.

[^0]: ${ }^{1}$ UFSJ, Ouro Branco, Brazil gilcelia@ufsj.edu.br
 ${ }^{2}$ UNICAMP, Campinas, SP, Brazil stolfi@ic.unicamp.br

