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Abstract

We apply the general top-down algorithm for adaptive multiscale approximation HApp,
described in the Part I of this article, to a specific type of function approximation bases
which we call regular multiscale bases. The algorithm guarantees a specified maximum
approximation error at every sampling point. While the resulting adaptive basis is not
necessarily minimal, it can be much smaller than the full basis, for target functions with
localized detail at various spatial resolution scales.

The bases elements are tensorial splines with compact support. These bases are similar
to standard wavelet bases, except that they provide explicit analytic formulas for the ap-
proximating function; that can be used, for example, for differentiation and interpolation
between the sampling points.

In this part of the article, we assume a regular grid of sampling points and a box-like
domain with toroidal topology. These choices allow considerable savings of computing time.
We also use at each level a modified least squares analysis operator with Bayesian outlier
rejection.

1 Introduction
In Part I of this article [16], we described a general algorithm for adaptive multiscale approx-
imation (HApp) using a general basis reduction routine (Reduce). Both algorithms were very
general, independent of the domain and mesh geometry, of the nature and arrangement of
the basis elements, of the sampling points, and of the initial approximation operator Analyze
used at each level. We also described a particular version of Analyze, namely iterative least
squares with Bayesian rejection of outliers and rejection of “bad” cells.

In this second part of the article, we apply the the approximation method of Part I to
regular bases, a specific type of basis that we found to be particularly useful and effective
for a broad variety of target functions.

Namely, every element of a regular basis is the discrete sampling of a multi-dimensional
tensorial element, which is the product of several univariate basis elements with bounded
support, each depending on a single coordinate of the domain. A full single-scale regular
basis consists of multiple translated copies of the same element, arranged in a regular grid.
A full multiscale regular basis is a hierarchy of single-scale regular bases, where the elements
at each level are similar to those in the next higher level, but are reduced in the spatial
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directions (before sampling) and are arranged in a denser grid. An adaptive multiscale
regular basis consists of a subset of each level of a full multiscale regular basis, up to some
maximum level.

We assume a box-like domain with periodic boundary conditions, spanned by a regular
array of sampling points aligned with the basis element grid. These choices allow considerable
time savings in the computation of the basis and moment matrices. One could also use the
regular bases described in this article with irregular sampling points; however, there will be
no savings in computing time in that case.

Recall that the HApp algorithm guarantees a specified maximum approximation error
at every sampling point, if it is allowed to use a sufficiently deep hierarchical basis. While
the resulting adaptive basis is not necessarily minimal, it can be much smaller than the full
basis, for target functions with localized detail at various spatial resolution scales.

1.1 Related work
A regular multiscale basis is similar to a standard wavelet basis [13], except that it provides
explicit analytic formulas for the approximating function; that can be used, for example, for
differentiation and interpolation between the sampling points.

A regular basis is also similar to a radial basis [1], but its elements are not radially
symmetric. Their shape allows them to achieve a more uniform coverage of the domain
when placed in a regular grid.

As observed in Part I, the HApp algorithm can be compared to the algorithms by Iske
[10, 11, 9, 8]. However, due to its top-down approach, HApp is more efficient for identifying
the reduced basis. Our regular single-scale bases include the multiscale B-spline [3, 14] bases
as a special case which we use in our tests (see section 3). Our multiscale regular bases are
also similar to the bases used by Castro et al [2].

2 Detailed description

2.1 Tensor bases
The reader is referred to section 2 of Part I for the notation and conventions. Here we
assume that each element σj of a discrete basis S (in particular, of any level S(`) of the full
hierarchical basis) is obtained by sampling a reconstruction element, a function φj from the
domain D to R, at the sampling points pk. Let φ̂1, φ̂2, . . . be the reconstruction elements of
the reduced basis Ŝ1, Ŝ2, . . . chosen by HApp, and α̂1, α̂2 . . . be the corresponding coefficients.
The reconstruction of the sampled values fi will then be the function ξ̂ from D to R defined
by

ξ(x) =
∑

α̂jφ̂j(x) (1)

for all x ∈ D. Note that the discrete approximation ξ returned by HApp is the sampling of
function ξ̂.
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2.2 Mother pulses
Each reconstruction element φj, is derived in turn from a single mother pulse Φ, a function
from R to R. Typically, Φ is an even function (symmetric around 0), positive when the
argument is zero, and zero when the argument is sufficiently far from 0. See figure 1.
Specifically we assume that the mother pulse Φ is zero outside some mother support interval
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Figure 1: A typical mother pulse.

sup(Φ) = [−H/2,+H/2]. The parameter H will be called the support width of Φ.

2.3 Tensorial pulses
Each reconstruction element that we use is a d-dimensional tensorial pulse φj which is a
function from Rd to R, derived from the chosen mother pulse Φ by the formula

φj(x) =
d∏
i=1

Φ
(
xi − cji
ρi

)
, (2)

for a generic point x = (x1, x2, . . . , xd) ∈ D. Here cj = (cj1, cj2, . . . , cjd) is a point of D,
the center of the pulse, and each ρi is a positive real stretching factor for the pulse along
coordinate axis i. See figure 2. For problems where the coordinate axes have different
characters (e. g., time vs. space) it may be appropriate to use a different mother pulse Φi

for each axis. This generalization would not require any other changes to the method, and
would not imply any significant extra cost.

2.4 Basis element placement
We assume that the domain of approximation D is a box in the cartesian space Rd, for some
dimension d, aligned with the coordinate axes.

We assume that the centers cj are arranged in a regular orthogonal grid in the box D,
with Qi elements along each axis i, whose centers are separated by a basis grid step ζi. That
is, the center cj is

(
(uj1 + 1

2)ζ1, (uj2 + 1
2)ζ2, . . . , (ujd + 1

2)ζd
)
, where each uji is an integer in

{0.. Qi − 1}. The integer tuple uj = (uj1, uj2, . . . , ujd) is the position of the element φj in
the basis. Typically, the stretching factors ρi are proportional to the steps ζi. The domain
box D has length Li = ζiQi along axis i that is, D = [0, L1]× [0, L2]× · · · × [0, Ld].
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Figure 2: A tensorial pulse φj derived from the mother pulse Φ of figure 1, with center
cj = (15, 15) and stretching factors ρj = (2, 6).

2.5 The basis mesh
As detailed in the Part I of this article, a single-scale basis φ has an associated mesh K.
Each cell Kj of this mesh is a region in D where element φj nominally dominates. In the case
of a regular basis, Kj is, by definition, a box with length ζi along each axis i, centered at
the point cj of D. The position of the cell Kj is that of its associated reconstruction element
φj. See figure 3

Figure 3: Cells (rectangles) and element centers (dots) for the first three levels φ(0), φ(1), φ(2)

of the 2-dimensional hierarchical regular basis.

2.6 Element supports
Note that each reconstruction element φj will be zero outside the d-dimensional box with
center cj and width ρiH along each axis i. We define the support box sup(φj) of element φj
to be the set of all mesh cells in which the element is not entirely zero. If uj is the position
of φj, and ρiH ≤ Li, then the support box comprises cells with indices ranging from uji − r
to uji + r, modulo Qi, along each axis i; where r = d(ρiH/ζi − 1)/2e. In other words, the
support box is a block of

(
2r + 1

)d
cells centred on cell Kj. See Figure 4. If ρiH > Li, on

the other hand, the support box is the whole mesh K (see section 2.8).
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Figure 4: At left, illustration of a single-level regular basis with d = 2, L = (40, 40),
Q = (8, 8), ζ = (5, 5), showing the element centers cj (red dots), the sampling points pk
(small blue dots) with oversampling factors t = (4, 4), and the support box of the element
φj with position (3, 3), H = 3, ρ = (1, 1), and center (17.5, 17.5).

2.7 Toroidal domain
A recurrent complication in the analysis of approximation methods on a bounded domain
D is that the errors near the border of D are usually different from those in its interior. To
avoid this complicating effect, and for efficiency reasons (see section 3.1), we will assume
that each face of the domain box D is identified with the opposite face. In other words, we
take D to be the quotient of Rd by the equivalence relation that relates two points x′, x′′ iff
x′i − x′′i is an integer multiple of Li for every i.

With this assumption, the domain D becomes a d-dimensional manifold without border,
a d-dimensional flat torus, that retains the (flat) Euclidean local geometry and differential
structure of Rd at every point. Note that all points of D are equivalent under toroidal
translations.

This assumption is equivalent to implicitly extending any function defined on D to a
function defined over Rd that is periodic along every axis i with period Li. One drawback
of this assumption is that it creates spurious discontinuities in the target function F when
the latter is not periodic. This problem can be avoided by mapping the domain of interest
of F to a sufficiently small region D′ inside the box D, and redefining F in the surrounding
region D \ D′ so that it is smooth and periodic in the whole box D, including at points in
the border. See for example the target functions used in the tests (section 3.1).

2.8 Element fold-over
The toroidal domain assumption implies that any parts of a tensorial pulse φj that would
otherwise fall outside the box D are “folded over” into the box across the opposite face(s). If
the width ρiH of the element’s support along some axis i is greater than the corresponding
box width Li, the folded-over pulse will overlap itself, and the folded-over parts must be
added together. See figure 5.

More precisely, the generic basis element is not the tensorial pulse φj defined by for-
mula (2), but is the sum of infintely many copies of that pulse, whose centers form an
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Figure 5: A sample reconstruction element on the domain [0, 20]× [0, 20]

infinite regular grid with stride Li along each axis i. That is, the generic element is

φj(x) =
∑
v∈Zd

d∏
i=1

Φ
(
xi − cji − viLi

ρi

)
, (3)

for every point x of D. The sum (3) can be factored as follows

φj(x) =
d∏
i=1

∑
k∈Z

Φ
(
xi − cji − kLi

ρi

). (4)

Therefore, each basis element is still a tensorial element,

φj(x) =
∏

Φ∗i
(
xi − cij

)
, (5)

where Φ∗i is the stretched and replicated mother function

Φ∗i (z) =
∑
k∈Z

Φ
(
z − kLi
ρi

)
=

∑
k∈Z

Φ
(
z

ρi
− k ζi

ρi
Qi

)
. (6)

These infinite summations always converge if the mother function has bounded support
width H, since only a finite number of terms will be nonzero. Specifically, in the sum (6) we
need only consider terms for which −H/2 ≤ (z − kLi)/ρi ≤ +H/2, that is,

−b(ρiH/2 + z)/Lic ≤ k ≤ b(ρiH/2− z)/Lic .

In particular, if ρiH ≤ Li, the sum (6) has only one non-zero term, whose index k is z/Li
rounded to the nearest integer.
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2.9 Efficient sampling
As for the sampling points pk, we assume that they too form a regular rectangular grid,
whose spacing along each axis i a sub-multiple δi = ζi/ti of the basis step ζi. The integer ti
is the oversampling factor for axis i. Each sampling point pk is of the form((

vk1 + 1
2

)
ζ1

t1
,
(
vk2 + 1

2

)
ζ2

t2
, · · · ,

(
vkd + 1

2

)
ζd
td

)

were each vki is an integer between 0 and tiQi − 1. See Figure 6. In particular, if ti = 1
for all i, the sampling points coincide with the element centers, the approximation problem
becomes an interpolation one.
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Figure 6: A regular grid of sample points with Q = (8, 8) and t = (2, 2).

One important consequence of all these definitions is that the discretized basis elements
of a given level ` are all similar. Specifically, for any two reconstruction elements φr and φs,
and any sample point pk, the basis matrix element Skr = φr(pk) is equal to Sis = φs(pi),
where i is such that pi = pk + cs − cr.

This observation can be used to greatly reduce the time and memory needed to compute
the pre-basis matrix S̃ = S̃(`) for each level. Namely, it suffices to compute just the first
column σ1 of the full basis matrix S, since all columns of S (and of the pre-basis S̃) will be
permutations of that one. Therefore, the cost to build the pre-basis matrix S̃ for ñ basis
elements and m total sample points is roughly proportional to mβ(τφ + ñκ), where: β is the
fraction of sampling points that are in the domain box of φ1, which is at most (2r + 1)d/n;
τφ is the cost of evaluating one sample value φ1(pk); and κ is the cost of storing one sample
into the matrix S̃.

These choices also allow us to compute the least squares system matrix M = S̃>S̃ very
efficiently. Namely, it suffices to compute the first row of M , since the other rows are just
permutations of it. Each element M1k of the first row is σ̃>1 σ̃k, and only needs to be computed
if the support boxes of φ1 and φk intersect. The cost of computing M is therefore roughly
proportional to ñmθµ to compute the first row, and ñ2βκ to copy it to the other ñ− 1 rows.
Here θ is the fraction of elements φj of the basis whose support box intersects that of φ1,
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which is at most (4r − 1)d/n; and µ is the cost of one floating-point multiplication and one
sum.

If the sampling points are irregular, these optimizations are not possible; the value of
S̃ij = φ̃j(pk) must be computed for every element φ̃j and every point pk in support of φ̃j,
with cost ñmβτφ; and the matrix M must be computed by the formula S̃>S̃, with cost
proportional to ñ2mβµ.

2.10 Hierarchical tensor pulse bases
Following Part I, we define a multiscale regular basis as a hierarchy of levels S(0), S(1), . . .
where each level S(`) is a single-scale regular basis. By definition, the basis S(`) has Q(`)

i = 2`
elements along every axis i, with step ζ

(`)
i = Li/2`. The corresponding mesh K(`) has

Q
(`)
i = 2` cells along each axis i, that span the domain D. That is, level 0 has only one cell,

K(0)
1 = D; and each cell of level ` is the union of 2d cells of level `+ 1, in quadtree or octree

fashion [6]. Note that all cells at all levels are similar in shape, and the element centers of
all levels are all distinct. See Figure 3.

As explained in Part I, the pre-basis S(`) (step 14 of algorithm HApp) will be a subset of
the full regular basis S(`), and the final basis Ŝ(`) (step 16) will be a subset of S̃(`).

Note that, in step 10 of HApp, the set B(`) of relevant cells is simply the union of all
support boxes of all the reconstruction elements φ̂(`)

j associated with the basis elements σ̂(`)
j .

2.11 Starting level
As discussed in section 4.1 of Part I, many hierarchical approximation schemes described in
the literature assume that each level space S(`) is linearly independent, (or even orthogonal)
to all previous levels. Moreover, in those schemes, the first level is usually defined to be
some fairly detailed mesh, with hundreds or thousands of cells. Therefore, in order to
capture global trends of the target function, those schemes must add to the basis, in that
initial level, some extra elements with global support, such as polyharmonic splines and/or
low-degree polynomials [7, 8, 9, 12].

As explained in Part I, our hierarchical basis use nested (rather than independent) ap-
proximation spaces at each level:

S(`min) ⊆ S(`min+1) ⊆ . . . ⊆ S(`max). (7)

The regular spline bases that we use in this part of the article also satisfy this property.
With this assumption, those extra ad-hoc elements in the first level are not needed, since
the full basis S(`) at every level can generate the full space S(k) for any previous level k ≤ `.
In particular, the basis S(`min) can capture any global trends of the target function for any
`min ≥ 0.

Indeed, we can start the algorithm HApp at any level `min above the finest level `max,
even with `min = `max (in which case the hierarchical basis reduces to a regular single-scale
basis). Still, as show in section 4, starting at the appropriate level `min between 0 and
`max− 1 usually results in a much smaller adaptive basis Ŝ(∗), and considerable time savings
compared to single-scale approximation (`min = `max).
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3 Test parameters
In this section we describe the common settings of some parameters for all the tests of
the HApp algorithm that we present in section 4. These tests are meant to illustrate the
effectiveness of the method, namely its ability to find a small representation of the target
function; and the effect of certain choices in the HApp and Analyze procedure.

3.1 Sampling points and values
We use a two-dimensional square domain D (d = 2) with L1 = L2 = 8 and a dense regular
grid of sampling points as described in section 3.1 with 29 × 29 = 262,144 points evenly
spaced in the box D.

The sample values fi were obtained from a target function F which was one of the four
functions FO, FC, FG, and FM described in Appendix A. See figure 7.
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Figure 7: The target functions FO and FC (top), FG and FM (bottom), used in our tests.

3.2 Mother functions
In these tests, the reconstruction elements of all bases are tensor pulses derived from four
mother functions ΦS

g with 2 ≤ g ≤ 5, which are the basis elements of uniform B-spline bases
of degree g [4, 14, 15]. See figure 8. Each function ΦS

g is a polynomial spline of degree g,
symmetric around 0 and continuous to order g−1, consisting of g+ 1 polynomials restricted
to g + 1 intervals of length 1 centered at 0. See Appendix B 5 for the detailed formulas.
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Figure 8: The B-spline mother pulses ΦS
2 and ΦS

3 (top), ΦS
4 and ΦS

5 (bottom). The support of
ΦS
g has width H = g + 1 and therefore is the interval [−(g + 1)/2,+(g + 1)/2]. The support

of each pulse and the discontinuities in its derivative of order g are shown by the tics. The
dotted vertical lines show the positions of the grid cell boundaries.

3.3 Multiscale basis
Each reconstruction element φ(`)

j of the multiscale basis is the product of stretched and shifted
copies of the unidimensional mother pulses ΦS

g , according to formulas (5) and (6). We use
ρi = ζi = 1 for all i; so that the discontinuities in the derivative of order g of two elements
φ

(`)
j and φ

(`)
k , defined as above, coincide wherever the two elements overlap. Specifically, if

g is odd, the discontinuities occur at cell boundaries, that is, at hyperplanes of Rd defined
by the equations xi = kζi for k ∈ Z. In this case, within each cell, each element φj is a
single polynomial of the argument coordinates. If g is even, the discontinuities occur at
hyperplanes that are displaced by ζi/2 relative to the cell boundaries.

It turns out that the elements φ(`)
j of a single level ` can reproduce any polynomial spline
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of degree g or less, defined on the mesh K, that is continuous to order g − 1 and whose
discontinuities of order g are contained in the hyperplanes described above. Note that the
hyperplanes of discontinuity of level ` are a subset of those of level `+ 1. For these reasons,
every element φ(`+1)

j can be expressed as a combination of elements of level `, satisfying
assumption (7).

3.4 Other parameters
In most tests, except those of section 4.2, the starting level `min was set to 3, so that the
full basis φ(`min) has 23 × 23 = 64 elements. The maximum level `max was set to 9, so that
φ(`max) has 29 × 29 = 262,144 elements. Note that at level `max there was only one sampling
point per cell, i. e. t(9) = (1, 1). However, in all tests the HApp procedure terminated before
reaching that level. In what follows, for each test `max is assumed to be the last level ` for
which Ŝ(`) was not empty.

The error tolerance εmax for Reduce was set to 2.5 × 10−3, in all tests except those of
section 4.3. In all tests we used the Analyze procedure described section 6.2 of Part I; except
in section 4.4, where the Bayesian outlier rejection was disabled.

3.5 Efficiency metrics
As in Part I, the effectiveness and efficiency of HApp on each test run are quantified by a
size metric τ and a cost metric λ. The size metric is simply the ratio between the size n̂(∗)

of the adaptive multiscale basis Ŝ(∗) chosen by HApp and the size nmax = n(`max) of the full
regular basis S(`) at the maximum level ` present in φ̂(∗). The cost metric λ is the ratio
between the total estimated running time t̃(∗) of the plain LS method applied to all reduced
bases S̃(`), and the estimated time t(`max) of the plain LS method with the full basis S(`max)

for the last level. The time to solve one LS problem for a basis of n elements was assumed
to be proportional to n2(n + q) where q was the average number of sampling points in the
support of on basis element.

4 Test Results

4.1 Comparison of mother pulses
The first set of tests compares the effectiveness and efficiency (in terms of the size and cost
metrics above) obtained with the four mother pulses defined in section 3.2.

The results of all the tests in this set are summarized in tables 1 to 4. In the first part
of each table, n̂(`) is the size of the reduced basis Ŝ(`) of level `, for ` = 0, 1, . . . , `max. In the
second part, n̂(∗) is the total size of the adaptive basis Ŝ(∗) found by HApp; nmax is the size
of the full basis S(`) for the last level ` present in Ŝ(∗); τ is the size metric of the final basis
Ŝ(∗); and λ is the cost metric of the HApp algorithm.
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Table 1: Results of HApp for F = FO and different mother pulses.
F Φ n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FO ΦS
2 - - - 20 72 184 274 18 8 -

FO ΦS
3 - - - 20 60 202 222 62 - -

FO ΦS
4 - - - 20 60 208 36 - - -

FO ΦS
5 - - - 20 62 208 - - - -

F Φ n̂(∗) nmax τ λ

FO ΦS
2 576 65536 0.0088 1.1× 10−6

FO ΦS
3 566 16384 0.0345 1.1× 10−4

FO ΦS
4 324 4096 0.0791 6.8× 10−3

FO ΦS
5 290 1024 0.2832 9.7× 10−2

Table 2: Results of HApp for F = FC and different mother pulses.
F Φ n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FC ΦS
2 - - - 32 232 700 977 468 48 -

FC ΦS
3 - - - 32 244 812 1328 416 24 -

FC ΦS
4 - - - 32 252 852 1226 416 56 -

FC ΦS
5 - - - 32 252 884 1348 400 16 -

F Φ n̂(∗) nmax τ λ

FC ΦS
2 2457 65536 0.0375 2.2× 10−5

FC ΦS
3 2856 65536 0.0436 5.7× 10−5

FC ΦS
4 2834 65536 0.0432 5.5× 10−5

FC ΦS
5 2932 65536 0.0447 8.1× 10−5
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Table 3: Results of HApp for F = FG and different mother pulses.
F Φ n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FG ΦS
2 - - - 52 196 118 70 22 14 20

FG ΦS
3 - - - 52 174 96 44 20 18 14

FG ΦS
4 - - - 52 180 88 42 14 32 18

FG ΦS
5 - - - 52 188 94 44 10 28 12

F Φ n̂(∗) nmax τ λ

FG ΦS
2 492 262144 0.0019 3.6× 10−8

FG ΦS
3 418 262144 0.0016 5.6× 10−8

FG ΦS
4 426 262144 0.0016 8.4× 10−8

FG ΦS
5 428 262144 0.0016 1.2× 10−7

Table 4: Results of HApp for F = FM and different mother pulses.
F Φ n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FM ΦS
2 - - - 39 239 731 1404 1079 244 11

FM ΦS
3 - - - 39 245 806 1505 979 173 5

FM ΦS
4 - - - 39 251 853 1467 973 148 23

FM ΦS
5 - - - 39 252 877 1545 1056 165 18

F Φ n̂(∗) nmax τ λ

FM ΦS
2 3747 262144 0.0143 7.1× 10−7

FM ΦS
3 3752 262144 0.0143 1.1× 10−6

FM ΦS
4 3754 262144 0.0143 1.2× 10−6

FM ΦS
5 3952 262144 0.0151 1.6× 10−6

13



4.1.1 Test function FC with mother function ΦS
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Figure 9: The cell sets C(`) (orange), B(`) (yellow), R(`) (green), and U(`) (blue) for
each level ` in {`min.. `max}.
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4.1.2 Test function FM with mother function ΦS
2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

 

Figure 10: The cell sets C(`) (orange), B(`) (yellow), R(`) (green), and U(`) (blue) for
each level ` in {`min.. `max}.

Note that the final number n̂(∗) of elements in the reduced basis is much smaller than
the size nmax = n(`max) = 2`max × 2`max of the complete uniform base for the last level used by
HApp. Namely, the ratio τ = n̂(∗)/nmax varies between 1.6% (fF with ΦS

2) to 11.6% (fC with
ΦS

5). Note also that, the ratio n̂(∗)/nmax is often be much smaller than the area fraction of
the domain where the target function is nonzero.
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4.2 Advantage of multiscale approximation
To assess the advantages of multiscale vs. single-scale approximation, we should compare
results of HApp with `min < `max to the results of applying the basis reduction algorithm
Reduce (see section 5.2 of Part I) to the LS approximation obtained with the single-level
basis S(`max); which is equivalent to applying HApp with `min = `max.

This test could not be performed for `max = 8 since it would require solving a 216 × 216

system. The largest basis φ(`) we could test was φ(5) with 32 × 32 = 1024 elements. We
performed this test for the function fO, fC, fG and fM, with mother function Φ = ΦS

2, and
tolerance εmax = 2.5× 10−3. The results are shown in Table 5.

Table 5: Result for various F .
F = FO F = FC F = FG F = FM

`min n̂(∗)

3 324
4 302
5 172
6 638
7 2596
8 10446

`min n̂(∗)

3 2458
4 2202
5 2090
6 2008
7 5016
8 19888

`min n̂(∗)

3 474
4 418
5 676
6 2346
7 9346
8 37518

`min n̂(∗)

3 3547
4 3384
5 3173
6 3070
7 5878
8 22104

4.3 Effect of the error tolerance
In another series of tests, we compared the effectiveness of the method as a function of the
error tolerance εmax. We used the target functions FO and FM with ΦS

2 mother pulse, and
`min = 3. The results are shown in Tables 6 and 7 and in Figures 11 and 12.
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Figure 11: Plot of n̂(∗) (vertical axis) as function of εmax (horizontal axis) in log-log scale.
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Table 6: Results of HApp for F = FO as a function of ε.
F Φ εmax n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FO ΦS
2 6.4× 10−2 - - - 12 36 42 - - - -

FO ΦS
2 3.2× 10−2 - - - 16 42 72 2 - - -

FO ΦS
2 1.6× 10−2 - - - 16 46 108 36 - - -

FO ΦS
2 8.0× 10−3 - - - 16 54 142 106 - - -

FO ΦS
2 4.0× 10−3 - - - 16 58 166 186 - - -

FO ΦS
2 2.0× 10−3 - - - 24 76 194 284 46 8 -

F Φ εmax n̂(∗) nmax τ λ

FO ΦS
2 6.4× 10−2 90 1024 0.0879 1.0× 10−2

FO ΦS
2 3.2× 10−2 132 4096 0.0322 9.2× 10−4

FO ΦS
2 1.6× 10−2 206 4096 0.0503 1.3× 10−3

FO ΦS
2 8.0× 10−3 318 4096 0.0776 1.9× 10−3

FO ΦS
2 4.0× 10−3 426 4096 0.1040 2.7× 10−3

FO ΦS
2 2.0× 10−3 632 65536 0.0096 1.2× 10−6
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Table 7: Results of HApp for F = FM as a function of εmax.
F Φ εmax n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FM ΦS
2 6.4× 10−2 - - - 37 116 101 37 - - -

FM ΦS
2 3.2× 10−2 - - - 37 158 221 95 1 - -

FM ΦS
2 1.6× 10−2 - - - 39 195 399 262 32 2 -

FM ΦS
2 8.0× 10−3 - - - 39 219 567 586 204 - -

FM ΦS
2 4.0× 10−3 - - - 39 232 679 1026 586 51 -

FM ΦS
2 2.0× 10−3 - - - 39 240 756 1584 1398 413 16

F Φ εmax n̂(∗) nmax τ λ

FM ΦS
2 6.4× 10−2 291 4096 0.0710 3.6× 10−3

FM ΦS
2 3.2× 10−2 512 16384 0.0312 1.3× 10−4

FM ΦS
2 1.6× 10−2 929 65536 0.0142 4.8× 10−6

FM ΦS
2 8.0× 10−3 1615 16384 0.0986 6.3× 10−4

FM ΦS
2 4.0× 10−3 2613 65536 0.0399 2.4× 10−5

FM ΦS
2 2.0× 10−3 4446 262144 0.0170 1.0× 10−6
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Figure 12: Plot of n̂(∗) (vertical axis) as function of εmax (horizontal axis) in log-log scale.
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4.4 Effect of Bayesian outlier elimination
In this section we compare the performance of HApp with and without the Bayesian outlier
rejection (see section 6.2 of Part I), for selected target functions. See Table 2. The third
column indicates the analysis operator C used: “—” for plain lest squares, “B” for iterated
least squares with Bayesian rejection [17]. As we can see, the Bayesian elimination usually
provides smaller bases.

Table 8: Results of HApp for all F with mother functions ΦS
4 and ε = 2.5× 10−3.

F C n̂(0) n̂(1) n̂(2) n̂(3) n̂(4) n̂(5) n̂(6) n̂(7) n̂(8) n̂(9)

FC — — — — 32 252 864 1496 400 24 -

FC B — — — 32 252 852 1226 416 56 -

FM — — — — 39 254 861 1570 1100 102 5

FM B — — — 39 251 853 1467 973 148 23

F C n̂(∗) nmax τ λ

FC — 3068 65536 0.0468 8.8× 10−5

FC B 2834 65536 0.0432 5.5× 10−5

FM — 3931 262144 0.0150 1.5× 10−6

FM B 3754 262144 0.0143 1.2× 10−6

5 Conclusions
We combined several techniques — tensorial approximation elements based on B-spline basis
elements, toroidal domain topology, and our hierarchical adaptive multiscale approximation,
algorithm HApp — to obtain a method approximation of multiscale sample data target
functions with pre-determined ‖ · ‖∞ error at the sampling points.

We implemented this algorithm for 2D data and verified empirically that it produces
small approximation bases with considerable savings running time. Specifically, in the most
demanding tests in section 4.1 (target function FM), our method yielded approximation bases
that were 1/100 of the full basis for the last level needed. This advantage was verified more
directly in section 4.2.

The tests in section 4.4 showed that Bayesian outlier rejection has a modest but definite
advantage over plain least squares.
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Appendix A: Definition of the test functions
In each case, the function is defined on the natural domain U = [−1/2, 1/2] × [−1/2, 1/2]
which is then mapped to the domain D = [0, L]2 by the formulas X = x/L − 1/2 and
Y = y/L− 1/2, where (X, Y ) are the natural arguments of the objective function and (x, y)
a point of D.

Test function FO

Function FO is a variant of Gabor’s element [5], that is, a two-dimensional sinusoidal wave
modulated by a Gaussian bell

FO(X, Y ) = exp
− 1

2R2 (X2 + Y 2)
 cos

(
(αxX + αyY )π

)
, (8)

where R = 0.087, αx = 10, and αy = 5.

Test function FC

Function FC consists of a central peak f0(X, Y ) surrounded by a circular wall f1(X, Y ):

FC(X, Y ) = H0f0(X, Y ) +H1f1(X, Y ), (9)

where
f0 =

{
0 if X2 + Y 2 ≥ S2

0
(1− v)2 otherwise (10)

and

f1 =


0 if X2 + Y 2 ≤ S1 or X2 + Y 2 ≥ S2

4u(1− u) otherwise
(11)

in which
v = X2 + Y 2

S2
0

and u = X2 + Y 2 − S2
1

S2
2 − S2

1
.

with S0 = 0.1196, S1 = 0.2208, S2 = 0.4232, H0 = 1.0, and H1 = 0.5.

Test function FG

Function FG is a spiral bump defined by the formula

FG = g(X, Y ) sin(t) (12)

where

g(X, Y ) =


v

(1− u)2
√

1 + v2
if u < 1

0 otherwise,
(13)
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with
u = X2 + Y 2

R2
1

v = S2

R0
(14)

t = ^(y, x) + k
R0

r
S =

√
R2

0 +X2 + Y 2. (15)

and R0 = 0.05, R1 = 0.45 e k = 15.

Test function FM

Function FM is the sum of N = 15 bell-shaped humps with varying widths and amplitudes
arranged in spiral around point (-0.05, 0).

FM(X, Y ) =
N∑
i=1

1
2− i/N ψ

X, Y, i− 1
M

 (16)

where

ψ(X, Y, s) = Ψ
‖(X, Y )− (X̄, ȳ)‖

w

,
Ψ(z) =

{
0 if z ≥ 1

(1− z2)2 if z < 1

and M = 6.5, w = 0.40r, X̄ = r cos(2πs)− 0.05, Ȳ = r sin(2πs), and r = 0.086× 2s.
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Appendix B: Formulas for the mother pulses
The mother functions Φ that we used to construct the basis elements are defined by formulas
(17) — (20) below.

ΦS
2(r) =



1− 4
3r

2 if |r| ≤ 1
2

2
3(3

2 − |r|)
2 if 1

2 < |r| <
3
2

(17)

ΦS
3(r) =



1− r2

4 (6− 3|r|) if |r| ≤ 1

(2− |r|)3

4 if 1 < |r| ≤ 2
(18)

ΦS
4(r) =



1− 120
115r

2 + 48
115r

4 if |r| ≤ 1
2

22
23 + 8

23 |r| −
240
115r

2 + 160
115 |r|

3 − 32
115r

4 if 1
2 < |r| ≤

3
2

16
230

(5
2 − |r|

)4
if 3

2 < |r| ≤
5
2

(19)

ΦS
5(r) =



1− 10
11r

2 + 5
11r

4 − 5
33|r|5 if |r| ≤ 1

17
22 + 25

22 |r| −
35
11r

2 + 25
11 |r|

3 − 15
22r

4 + 5
66 |r|

5 if 1 < |r| ≤ 2

1
66(3− |r|)5 if 2 < |r| ≤ 3

(20)
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