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Abstract

Modern systems need to able to self-adapt to changing user needs and system environments.
Examples of systems that demand self-adaptive capabilities include mobile devices applications
that should deal with environmental changes and service-oriented systems that should replace
unreliable services on-the-fly. In this context, dynamic software product line (DSPL) is an engi-
neering approach for developing self-adaptive systems based on commonalities and variabilities
for a family of similar systems. However, researchers have reported that many DSPL solutions
fail to meet all the system’s adaptability requirements, and in many cases, they are developed
in ad hoc manner. This paper surveys various DSPL solutions, evaluates and compares their
different design strategies. A two-dimension taxonomy is specified to address basic technical
issues for a given DSPL proposal. The DSPL dimension classifies the different design choices for
implementing variability schemes, and for creating different kinds of feature models. The Self-
adaptation dimension classifies the different design choices for the adaptation requirements and
for the MAPE-K control loop implementation. Practical issues and difficulties are summarized,
major trends in actual DSPL proposals are identified.

1 Introduction

Modern software systems need to adapt to heterogeneous environments and devices. Systems able
to adapt their behavior or structure at runtime are called Self-Adaptive Software Systems (SASS)
[25], and they can be self-adapted to adjust to the environment (hardware and other systems) or
to correct failures that may occur at runtime, with no human interference. Autonomic control
loops provide a generic mechanism of self-adaptation [18], and it is often modeled as the MAPE-K
loop [104], which defines how systems adapt their behavior to keep their goals controlled, based on
any regulatory control, disturbance rejection or optimization requirements [78]. The MAPE-K loop
is divided into four activities: Monitor, Analyze, Plan, and Execute, including a Knowledge base
that supports the required information throughout the loop [104]. In the context of SASS, several
reference models are well established and widely used, such as FORMS [103], and they were used
as the foundation to propose new solutions, such as Rainbow framework [48], and FUSION frame-
work [38], and also served as a basis for other reference models and reference architectures, such
as DYNAMICO and ACRA. DYNAMICO (Dynamic Adaptation, Monitoring, and Control model
Objectives) [102] provides guidelines for design and implementation of SASS. ACRA (Autonomic
Computing Reference Architecture) [78] is organized in three hierarchical layers (orchestration man-
agers, resource managers, and managed resources).

Dynamic Software Product Line (DSPL) is an engineering approach to develop SASS based on
the Software Product Line (SPL) paradigm [96], which deals with the modeling of commonalities
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and variabilities among a family of similar systems [90, 10]. Commonality corresponds to similar
parts among family products, while variability is defined as the ability of a product to be extended,
modified, customized or configured for a specific context [98]. In general, feature models [64] are used
to represent variability and commonality by means of features that can be classified as mandatory,
optional or alternative [62]. Mandatory features are present in all products derived from SPL.
Optional features may or may not appear in derived products, while alternative features may be
selected according to mutual exclusion constraints. Variability is represented by variation points,
which are differentiation points between products [68], and the variability decision, that is, the
decision-making for the variation points, is known as binding time. In the SPL approach, the
binding time occurs at design time to generate a product. For DSPLs, the binding time can
occur (i) at design time to generate a product or (ii) at runtime to adapt the product allowing
dynamic variability. Hence, DSPL allows Software Product Line to be reconfigurable at runtime
[54]. Dynamic variability, also called late variability or runtime variability, can be represented
using dynamic compositions. A dynamic composition is a set of features with runtime binding
[92]. Whereas, the static variability can be represented using static compositions, which is a set of
features with design-time binding [101].

However, engineers of DSPL systems could apply SASS reference and architectural models in
order to reuse good practices in a systematic way. In these systems, the code devoted to autonomic
and adaptation activities can be both numerous and complex. A number of DSPL solutions have
been proposed in the literature. According to Bencomo et al. [15], many DSPL solutions are not
dynamic as they should be because they partially (or do not) implement autonomic and adaptation
activities in a complete way. Bencomo et al. [15] also conclude that the research on DSPL variability
is still heavily based on the specification of decisions during design time, and that DSPLs are
not as dynamic as researchers want to believe. Moreover, different strategies for implementing
static and dynamic variabilities are proposed and implemented in ad hoc manner. Ideally, DSPL
systems should be easy to understand, maintain and reuse. With such systems growing in size and
complexity, employing adaptation and variability techniques while satisfying the requirements of
software quality, such as maintainability, reusability and testability, are deep concerns to engineers
of DSPL systems.

The purpose of this report is to investigate the applicability of the existing DSPL solutions for
developing self-adaptive systems with effective quality attributes. The major contributions of this
article are: (i) the definition of a taxonomy which is used to discuss technical design issues of a DSPL
solution and to distinguish one solution from another, especially support for dynamic variability and
adaptivity requirements are examined in detail, (ii) the presentation of a comprehensive survey of
existing DSPL proposals, and (iii) the comparison and evaluation of the investigated proposals as
well as the identification of the limitations in applying them in practice to develop self-adaptive
systems. An extended version of this work is under development and will shortly be submitted to
a well-known journal.

The remainder of this article is organized as follows. Section 2 gives a brief description of
DSPL and self-adaptation terminology. This section also introduces some reference models for
self-adaptive software systems. Section 3 describes our proposed taxonomy for classifying different
design approaches to DSPL solutions. Section 4 discusses in more detail the investigated DSPL
solutions. Finally, Section 5 presents some concluding remarks.
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2 Self-Adaptation and DSPL Terminology

In this section, we present an overview of some important concepts of our work. First, Section 2.1
presents concepts of Self-Adaptive Software Systems (SASS, including reference model and reference
architecture for SASS. Some backgrounds of Software Product Line (SPL) and Dynamic Software
Product Line (DSPL) are presented in Section 2.2.

2.1 Self-Adaptation Terminology

Several techniques allow software to adapt to the execution environment, enabling changes in the
software structure to fault recovery, improving performance, and increasing availability and safety
in response to attacks [74]. Systems capable to adapt their behavior or runtime structure are called
Self-Adaptive Systems (SASS) [25, 94, 83]. The system analysis is performed continuously and in
parallel with the operation and maintenance of the system, to perform continued adaptation and
evolution.

2.1.1 Self-Adaptation

According to Müller et al. [78], the self-adaptation can be presented in two types: static, where
adaptation mechanisms are explicitly defined by system designers to choose from during execution;
or dynamic, where the adaptation plans and monitoring requirements should be produced and
selected by the system at runtime. According to Salehie and Tahvildari [94], the adaptation can
be divided into two categories: internal and external. In internal adaptation, application logic and
adaptation logic are intertwined, being based on programming language resources such as conditional
expressions, parametrization, and exceptions. In external adaptation, the adaptation mechanism is
in a separate external engine of the application logic.

2.1.2 Reflection Architectural Pattern

One important characteristic usually implemented in self-adaptive systems is the reflective compu-
tation, or computation about themselves [72]. Reflective computation allows the software system
to have reflective capabilities, supporting introspection to observe and to reason about the system
state to the decision-making about architectural reconfigurations [13]. Reflection is understood as
the ability of a program to analyze and to modify its internal structure at runtime, if necessary
[72]. Reflection allows operations such as start, stop and change the architecture that was outlined
at design time, reasoning about the possible variation points and its variants. This characteristic
stands out since it allows software systems to be modified at runtime. The reflection architec-
tural pattern provides a mechanism to adapt the structure and the behavior of software systems
at runtime. This architectural pattern separates the system into two parts: (i) meta level provides
information about selected system properties and makes the system self-aware, and (ii) base level
includes the application logic [20]. Also, a self-adaptive system has to support the dynamic loading
of components to enable adaptation at runtime. Dynamic loading allows the software component
to be started, stopped or updated independently without affecting other components or without
restarting the entire system.

2.1.3 The Managed and Managing Subsystems

Following the external adaptation approach, Weyns et al. [104] use the general terms managed
subsystem and managing subsystem for designating the constituent parts of a self-adaptive software
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system. The managed subsystem is the application logic that provides the system domain func-
tionality, also called system layer [48], core function [94], base level [20], and base-level subsystem
[103]. The managing subsystem manages the managed subsystem and is organized according to
the autonomic control loop (or feedback loop), and is also called architecture layer [48], adaptation
engine [94], meta level [20], and reflective subsystem [103].

2.1.4 MAPE-K Control Loop Reference Model

Kephart and Chess [66] proposed the idea of an autonomic element as a building block for self-
managing systems in the form of a Monitoring-Analyze-Planning-Execute loop and a shared knowl-
edge (MAPE-K) [66, 58]. The MAPE-K is a reference model for creating autonomic control loop
which encompasses four activities or modules: (i) Monitoring: in the first activity, monitors gather
and process environmental context information that is relevant to the adaptation process by using
sensors, and the information collected is sent to the second activity; (ii) Analyze: in this activity,
analyzers use the collected data in the previous activity and correlate context information to infer
data from the runtime environment and the system behavior; (iii)Planning: in the third activity,
planners use the analyzed data to define adaptation plans; and (iv) Execute: in the last activity,
executors implement and execute plans to adapt the running system and get the desired behavior
through the use of effectors or actuators. The monitoring activity continuously feeds the adaptive
loop, resetting it. The knowledge base supports the required information flow throughout the loop.
It is common to find in the literature a variation of MAPE-K called MAPE, where the knowledge
base (K ) still exists, but it is abstracted for simplification purposes, as in [104, 36].

According to Weyns et al. [104], the managing subsystem may consist of one or more auto-
nomic control loops, and MAPE functions may be mapped to different components, or may be
integrated into one or more components. Thus, they present a centralized pattern and five different
decentralized patterns, considering the interactions between the different stages of autonomic loops
performed by the MAPE components [104]: coordinated control, information sharing, master/slave,
regional planning, and hierarchical control.

2.1.5 FORMS Reference Model

FORMS: Weyns et al. [103] proposed FORMS (a FOrmal Reference Model for Self-adaptation)
to allow the description and reasoning with precision about the architectural characteristics of
self-adaptive systems. Existing frameworks and principles of self-adaptation served as the basis
for establishing this reference model, including computational reflection [72], MAPE-K [66], and
architecture-based adaptation [67, 84]. The FORMS reference model is extensible and consists of
a set of modeling primitives and a set of relations between them that outlines the composition
rules, as shown Figure 1. These modeling primitives correspond to the key variation points within
self-adaptive software systems.

FORMS divides a self-adaptive system into one or more base-level and reflective subsystems.
A base-level subsystem consists of domain models and base-level computations, including domain
logic. A reflective subsystem manages another subsystem, which can be either a base-level or other
reflective subsystem. According to FORMS, a reflective subsystem can manage another reflective
subsystem, in which case there are several reflective levels.

2.2 Software Product Line Concepts

The Software Product Line (SPL) approach is becoming more important for dealing with identifi-
cation of variability and commonalities among software systems [65]. An SPL is a set of software
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Figure 1: View of FORM’s primitives and their relationships [103]

systems that shares a common managed set of features that meets the specific needs of a particular
market segment or mission, and it is developed from a common set of core assets [26]. Commonality
denotes features that are part of each product in the same form, while variability is defined as the
ability of a software system or an artifact to be extended, modified, customized or configured for a
specific context [65]. The moment when the variability resolution is performed is called the binding
time [68]. Variability is represented by a variation point, which is a differentiation point between
products [68] The variability modeling is commonly performed by means of feature model [65],
representing variabilities and commonalities in the form of features. Features can be classified as
mandatory, optional or alternative [62]. Mandatory features are present in all applications derived
from SPL. On the other hand, the optional features may or may not appear in derivative applica-
tions. Finally, alternative features can be selected according to the mutual exclusion constraints.
Each application derived from an SPL is also a configuration.

2.2.1 Product Line Architecture

Another important model of an SPL is the Product Line Architecture (PLA), which explicitly
represents the commonalities and variabilities of architectural elements and their configurations
[101]. A PLA model contains the architectural elements and is usually represented as a UML-
based component diagram. An architectural element can be a component or another element of the
architecture, as an interface or a connector, due to the programming language or component-based
implementation model. In the software engineering process, the feature model is generated during
the analysis phase, whereas the PLA model is generated during the design phase [101].

2.2.2 Mapping Feature Model to PLA Model

The relation between both models, which is the mapping between features and architectural ele-
ments, is usually carried out by a software architect who has a great understanding of the product
line domain. However, there are some methods to assist this activity, as the FArM (Feature-
Architecture Mapping) method [97]. FArM allows performing a sequence of transformations in the
feature model to map features to a PLA model. The FArM method enables the construction of a
transformed feature model containing exclusively functional features, whose business logic can be
implemented into architectural elements [97].
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Many iterations progressively transform the initial feature model. FArM has four transforma-
tion activities: (i) Removing non-architecture-related features and resolution of quality features; (ii)
Transformation based on the architectural requirements; (iii) Transformation based on the inter-
acts relations between features; and (iv) Transformation based on the hierarchy relations between
features. The FArM transformation of features into a PLA model is not automated. However, it is
a series of well-defined transformations on the feature model, which achieve a strong mapping be-
tween features and architectural elements [97]. Consequently, the FArM method ensures the feature
model and PLA model are consistent with each other. It is widely accepted that FArM improves
maintainability and flexibility of PLAs [97].

2.2.3 Dynamic Software Product Line

The Dynamic Software Product Line (DSPL) extends the concept of conventional SPL, allowing
the generation of software variant at runtime. In particular, SPL emphasizes the variability anal-
ysis, decision-making and product configuration at the design phase. Whereas, DSPL emphasizes
variability analysis at design time, postponing the decision of the variability and the application
reconfiguration to be made at runtime. In other words, a DSPL is an SPL that requires the SASS
area knowledge to manage the variability at runtime (adaptation). DSPL binds variation points
at runtime, initially when the software is released to adapt to the current environment, as well as
while operating to adapt to environmental changes [54]. DSPL dynamicity allows the SPL to be
reconfigurable at runtime [54].

Using SPLs, the binding time can occur at design time to generate a product using static binding.
In the case of DSPLs, the binding time should occur at runtime to allow product adaptation in order
to support dynamic variability. Dynamic variability (also called late or runtime variability) can be
represented using dynamic compositions, which is a set of features with dynamic binding [92],
whereas, static variability can be represented using static compositions, which is a set of features
with static binding [101].

2.2.4 Design and Runtime Binding

According to Alves et al. [5], the binding time in SPL is traditionally at pre-compile, compile, and
link time, dealing with static variability. Whereas in systems that deal with dynamic variability
can be at load time when the system is first deployed and loaded into memory, and more commonly
at runtime after the system has begun executing. Consequently, since a DSPL can deal with static
and dynamic variability, then it can perform all binding times. In order to simplify, we define as
design time binding all binding times that occur during the design phase, which are: pre-compile,
compile, and link time. So, we will consider only three binding times, which are: design time, load
time and runtime. Design time binding is required by static composition, whereas load time binding
and runtime time binding is required by dynamic composition.

2.2.5 Feature modeling

Feature model was proposed as part of the FODA (Feature-Oriented Domain Analysis) method [62]
and is widely used nowadays. Since then, several extensions and variations of the FODA notation
have been proposed [12, 21, 31, 32, 33, 40, 42, 52, 56, 57, 70, 63, 88, 89, 99, 101], as shown Figure
2. These feature modeling approaches is commonly called FODA-like notations.

The Orthogonal Variability Model (OVM) [68] is an FODA-like notation that relates the defined
variability to other software development models, such as use case models and architectural models.
Thus, OVM approach has an orthogonality integrated, providing a traceability between features
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FODA
1990 [62]

FORM
1998 [63]

FeatuRSEB
1998 [52]

Hein et al.
2000 [57]

GP
2000 [31]

Van Gurp et al.
2001[101]

Capilla & Dueñas
2002[21]

Riebisch et al.
2002 [89]

GP-Extended
2002 [32]

Cardinality-Based
2004 [33]

PLUSS
2005 [40]

Benavides et al.
2005 [12]

OVM
2005 [88]

CVL
2008 [56]

Ferber et al.
2002 [42]

Lee & Muthig
2006 [70]

Thum et al.
2011 [99]

Figure 2: Feature model approaches (extended from [64, 17]).

and other elements that realize/implements the features. An OVM model provides a cross-sectional
view of the variability among other software design artifacts, requiring no additional artifacts for
traceability.

The Common Variability Language (CVL) [56] is a domain-independent language for specifying
and resolving variability. CVL is based on a BVR approach (Base-Variation-Resolution), encom-
passing three models: base model describes the architecture is a language-independent, variability
model defines variability on the base model, and resolution model defines how to resolve the vari-
ability model to create a new model in the base model. The CVL variability model is a feature
model that can be considered an FODA-like feature model because it represents a tree of features
and inherits other FODA concepts.

Most of these FODA-like notations approaches (Figure 2) focus on representing the variability
in space, emphasizing improvements of notation, new types of features, cardinalities and feature
attributes, and extended relationships to define more accurately the constraints and relationships
between features [17]. Variability in space is the existence of an artifact in different shapes at
the same time [68]. However, As presented in 2.2.4, SPLs support only design time binding, while
DSPLs also support load and runtime binding. Nevertheless, there are few attempts to also represent
the variability in time as [42, 70]. Variability in time is a property of variability models and
products, that defines when features should or can be bound to their values to realize variability
[17]. Variability in time refers to the binding time.

Ferber et al. [42] proposed a feature modeling approach, considering two different views on
the feature model to represent the dynamic information. The first view is an FODA-like feature
model notation, named Feature Tree View, which represents all variabilities without distinguishing
between static or dynamic. The second is named Feature Interaction and Dependency View and
represents feature interactions and dependencies to allow dynamic features. This second view uses
a specific notation and is represented separated from the first view.

Lee and Muthig [70] create a new kind of model called feature binding graph to complement the
feature model (FODA-like). In a feature binding graph, each node represents a feature binding unit
(FBU), which is a set of features related to each other by the relationships in the feature model. The
relationship between FBUs can be either static or dynamic, being differentiated by preconditions
annotated in a dynamic binding relation to indicate when FBUs can be bounded at runtime. This
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proposed model, feature binding graph, is used as a complementary model to feature model.

3 A Taxonomy for DSPL Solutions

There is a number of design issues for building DSPL proposals that will be used for constructing
self-adaptive systems. However, the chosen strategy for designing each design issue varies from
proposal to proposal. This section presents a taxonomy which identifies the several common design
issues for building DSPLs, and classifies the different design solutions. The taxonomy was developed
based on the set of analyzed DSPL solutions (Section 4), and on some reviewed previous studies in
the area of self-adaptation and DSPL.

More specifically, in the area of self-adaptation, the work by Andersson et al. [6] have presented
an adaptation taxonomy for self-adaptive software systems. Bashari et al. [9] present a detailed
adaptation taxonomy for DSPL, establishing an individual classification for each MAPE-K activity,
that is, monitor, analyse, plan, and execute. In the area of DSPL, Galster et al. [47] have provided
a variability characterization for software systems. The work by Bencomo et al. [15] and the work
by Raniel et al. [34] have presented systematic literature reviews to analyse DSPL solutions based
on the MAPE-K autonomic control loop. Eleuterio et al. [37] have presented a systematic mapping
study to identify DSPL solutions based on the MAPE-K autonomic control loop.

We have compiled and refined the different design issues proposed by these previous studies,
combining similar aspects and removing design decisions not applicable to the DSPL context. We
have also included new design issues related to DSPLs. Our proposed taxonomy classifies the design
issues of a DSPL scheme into two dimensions: the first dimension is relation to self-adaptation design
issues, while the second dimension is related to variability design issues. The self-adaptation dimen-
sion is classified into six aspects of interest: (i) adaptation architectural pattern, (ii) adaptation
cause, (iii) adaptation realization technique, (iv) adaptation binding time, (v) adaptation automa-
tion, and (vi) use of MAPE-K pattern. The variability dimension is classified into nine aspects of
interest: (i) variability type, (ii) variability conceptual model, (iii) feature modeling strategy, (iv)
variability architectural model, (v) variability architectural style, (vi) variability managed element,
(vii) variability orthogonality, (viii) variability traceability, and (ix) variability platform. In the
following we discuss each aspect in turn.

3.1 The Self-Adaptation Dimension

Adaptation Cause. It refers to the source that trigger/initiates the adaptation process. Such
sources can be represented as (i) context change, (ii) system change, and (iii) user change. Context
changes occur in the environment and are external to a system. The ability to react to context
changes requires the capture of context information. Context information can be divided into the
system context and user context [55, 44]. The system context information includes data related to
the environment where the system is running, such as network, memory resources, battery level,
and battery consumption, and other computing resources. The user context information includes
data such as position (based on GPS information in a smartphone, for example), and environmental
information in which the user is entered, as light and noise. System changes occur internally to
the system, for instance, failure of a component, the performance of a service, and exceptions. The
ability to react to system changes requires specific sensors within the system implemented according
to change to be detected. User changes are triggered by some user action while using the system
and they refer to changes in user requirements or user needs at runtime. User interface usually is
the way to obtain information related to user changes.
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Self-Adaptation
Dimension

Adaptation Cause

Adaptation
Realization Technique

Adaptation
Automation

Adaptation
Binding Time

Adaptive
Architectural Pattern

No pattern
Microkernel pattern
Reflection pattern

Context changes
System changes
User changes
Replacement
Reorganization of architecture
Code generation
Manual
Semi-automatic
Automatic
Design
Load
Runtime

Use of the
MAPE-K Pattern

Monitor Realization

Analyze Realization

Plan Realization

Execute Realization

Knowledge
Model Support

MAPE-K
Pattern Use

No supported

Supported Static models
Dynamic models

Not supported
Partly supported
Fully supported

Not implemented

Implemented

Statically defined +
Design time binding

Statically defined +
Runtime binding

Dynamically defined
+ Runtime binding

Figure 3: Self-adaptation dimension.

Adaptation Realization Technique. It is related to the implementation approach to realize the
adaptation. There are at least three different design solutions for implementing the adaptation: (i)
replacement, (ii) reorganization of the architecture, and (iii) code generation. In the first approach,
adaptation is achieved by replacing one architectural element with another with a similar interface,
without affecting the rest of the system architecture. In the second approach, a reconfiguration of
architecture is performed when adaptation occurs, reorganizing the structure of architecture. In the
third approach, the adaptation is performed by generating, compiling and deploying a new portion
of source code in order to change or fix the behavior of the system.

Adaptation Binding Time. It defines when the adaptation binding occurs (Section 2.2.4).
There are three different design solutions for the binding occurrance: (i) at design time, (ii) at
load time, and (iii) at runtime. In the first approach, design time refers to adaptation performed
during development phases, including pre-compile, compile, and link time. In the second approach,
load time is defined as when the system is first deployed and loaded into memory. In the third
approach, runtime refers to the adaptation performed while the system is running. In general, SPLs
implement binding at design time, while DSPLs can support the three bindings types, although
DSPLs should support at least the binding at runtime.

Adaptation Automation. Automation refers to the degree of outside intervention during adap-
tation. There are at least three design solutions for automation: (i) manual adaptation, (ii) semi-
automatic adaptation, and (iii) automatic adaptation. In the first case, the adaptation is performed
by a human effort. In the second case, the adaptation is performed manually but supported by
tools in a semi-automatic way. In the third case, the adaptation process is fully automated with no
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human intervention.

Use of the MAPE-K Pattern. Managing subsystems should implement the MAPE-K control
loop in order to be considered dynamic solutions, according to Bencomo et al. [15]. This requirement
should consider at least three design aspects: (i) whether or not the four activities of the MAPE-K
are present in the implementation of the managing system as individual functionalities (realization of
individual MAPE-K Activities), (ii) to what extent the knowledge base supports the representation
of models (model support by the Knowledge Base, and (iii) whether or not the proposal adheres to
the use of the MAPE-K Pattern, as shown in Figure 3.

The first aspect identifies whether or not the implementation of the monitor, analyze, plan,
and execute functionalities are supported. For instance, some proposals implement a simplified
version of the MAPE-K pattern including only the planner and the executor components, while
others implement all four activities. Each functionality can be classified as: (i) not implemented, or
(ii) implemented. Moreover, when the activity is implemented, one should consider how the set of
adaptation options is defined and when the option binding is performed. These options could be:
(i) statically defined + design time binding: statically defined at design time and it could not be
changed during runtime execution, that is, the static binding is performed, (ii) statically defined +
runtime binding: statically defined at design time but the option binding is performed at runtime,
and (iii) dynamically defined + runtime binding: the set of options is dynamically defined, in the
sense that new options could be included/removed during runtime, and the option binding is also
performed at runtime.

The second design aspect refers to what extent the knowledge base supports model representa-
tions and model extensibility at runtime. The knowledge base can support (i) no models, (ii) static
models or (iii) dynamic models. On one hand, static models cannot be extended at runtime, that is,
a set of adaptation options are defined at design time and they cannot be changed at runtime. One
of these options is chosen at runtime by the analyzer and/or the planner components. On the other
hand, dynamic models incorporate a set of adaptation options that can be changed at runtime by
including new options or removing existing ones. The option to be executed is also chosen during
runtime time by the analyzer and planner components.

The third aspect refers to whether or not a control loop pattern is supported. The control loop
pattern can be (i) not supported when the solution does not implement the feedback loop; (ii) partly
supported when the control loop is structured in an ad hoc manner; or (iii) fully supported when the
solution explicitly applies the control loop pattern.

Adaptive Architectural Pattern. According to Buschmann et al. [20] architectural pattern
expresses a fundamental structural organization schema for software systems, providing a set of
predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organiz-
ing the relationships between them. We consider the architectural patterns for adaptive systems
presented by Buschmann et al. [20]. Hence, the use of adaptive architectural pattern can be: (i) no
pattern when the solution does not follow an adaptive architectural pattern ; (ii) microkernel when
the solutions follows the Microkernel Architectural Pattern; or (iii) reflection when the solutions
follows the Reflection Architectural Pattern.

3.2 The DSPL Variability Dimension

Variability Type. We classify the design approaches for supporting variability into three types:
(i) only static variability, (ii) only dynamic variability, and (iii) both static and dynamic variabilities.
Static variability is performed by the compiler while dynamic variability is performed by the runtime
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DSPL Variability
Dimension

Variability Type

Variability
Conceptual Model

Variability
Architectural Model

Variability
Architectural Style

Variability
Managed Element

Variability
Traceability

Variability
Platform

Static
Dynamic
Static + Dynamic
Feature model
Decision model
Change scenarios
Profiles
Rules / Conditions
Variant labels / Annotations

Custom languages
UML
ADL
Component-based
Service-oriented
Hybrid
Code
Component
Service
Aspect
Architecture
Direct link
Mapping
Transformation rules
Component model
Service model
Framework or API
Tool

Feature Modelling
Strategy

Only static features modeling
Only dynamic features modeling
Static and dynamic
features modelings

multiple models
Single model

Figure 4: DSPL variability dimension.

system. A DSPL solution should support at least dynamic variability. Some DSPL solutions support
only dynamic variability while other ones perform both static and dynamic variabilities.

Variability Conceptual Model. Variability can be represented as: (i) feature model, (ii) de-
cision models, (iii) change scenarios, (iv) profiles, (v) rules / conditions and (vi) variant labels /
annotations. The representation of variability as feature models is a classical approach used by
most of the solutions. In the second scheme, decision model represents the variability as a set of
decisions, commonly in tabular notation or textual notation. In the third scheme, change scenarios
are modeled to describe events or options that trigger changes in the managed subsystem. In the
fourth approach, profiles are created to represent descriptive summaries of artifacts in the environ-
ment (as a table, model or a set of expressions). In the fifth approach, a set of rules or conditions
is coded into the system in order to support variability. In the sixth approach, variant labels or
annotations are added to artifacts that represent the DSPL.

Feature Modeling Strategy. There are at least three design strategies for feature representation:
(i) only static features modeling, (ii) only dynamic feature modeling and (iii) static and dynamic
features modeling. The first case represents the traditional use of feature models with static binding,
and it is not applied to DSPLs. In the second case, the feature model represents only dynamic
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features with dynamic binding, encompassing FODA-like feature models, orthogonal variability
models (OVM) and common variability language (CVL) (Section 2.2.5). In the third case, the
mechanism supports both static and dynamic features at the same time. As mentioned in Section
2.2.5, most of the traditional notations of feature models emphasize only variability in space, having
no special representation to define whether a variation point should be bound at design time or
runtime. Thus, there are at least two design strategies for combining static with dynamic features
and representing variability in time: (i) use of multiple models with a feature model to represent all
(static and dynamic) features and a separate model to differentiate static and dynamic features or
to represent its bindings times, for instance [42, 70] (Section 2.2.5); and (ii) use of a single feature
model based on an extended notation to represent both static and dynamic features, for instance
[69].

Architectural Model. There are at least three design techniques for representing PLA archi-
tectures: (i) using customized languages, (ii) using UML, and (iii) using ADL. In the first case,
some DSPL solutions define customized languages or ad hoc models to represent the architectural
model. In the second case, UML diagrams or UML profiles are used to represent the architectural
model. In the third case, Architecture Description Language (ADLs) are used to define the software
architecture. An ADL is any language for use in an architecture description, and can be used by
one or more viewpoints to represent identified system concerns within an architecture description
[59]. As examples of ADL, we can mention: AADL1, Rapide [71], Wright2, and SysML3.

Architectural Style. It refers to the highly granular entities of the system and how they are
connected to each other [9]. There are at least three different architectural styles used by DSPL
solutions: (i) component-based style, (ii) service-oriented architecture style, and (iii) hybrid architec-
tural style. In the first approach, component-based architectures provide the systems’ functionalities
structured as architectural configurations composed of components and connectors. In the second
approach, service-oriented architectures are based on services to provide systems’ functionalities
to service clients. In the third approach, a hybrid architectural style, using specifications such as
Service Component-Architecture (SCA).

Variability Managed Element. The variability managed element is the part of the system that
changes when the variability is carried out. The variability can be attached to different types of
elements, such as: (i) code, (ii) components, (iii) services, (iv) aspects, and (v) software architectures.
In the first case, the variability promotes changes in the code, which is generated, compiled and
deployed at runtime. In the second case, the variability is attached to components, allowing the
connection and disconnection of components. In the third case, the variability promotes changes
at service level by allowing the disconnection and connection of services. In the fourth case, the
dynamic variability is performed by a dynamic aspect weaving. In the last case, two or more
architecture is compared to meet variability, as in [16].

Variability Traceability. It refers to the mapping between the variability and architectural mod-
els. The traceability is required when the separated variability orthogonality is chosen. There are at
least three strategies for supporting traceability: (i) direct link, (ii) mapping, or (iv) transformation

1SAE Architecture Analysis and Design Language. http://www.aadl.info/aadl/currentsite/ Accessed on April
27, 2017.

2Wright ADL. http://www.cs.cmu.edu/~able/wright/ Accessed on April 27, 2017.
3OMG Systems Modeling Language. http://www.omgsysml.org/ Accessed on April 27, 2017.

http://www.aadl.info/aadl/currentsite/
http://www.cs.cmu.edu/~able/wright/
http://www.omgsysml.org/
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rules. In the first approach, a direct link is defined between the variability elements and architec-
tural elements, for instance, using OVM or CVL to relate features to architectural elements or using
stereotypes in components of architectural model as a reference to features of feature model. This
approach does not require another artifact to specify traceability because it is defined interwoven
in the variability model or the architectural model. In the second approach, the traceability is per-
formed in a mapping table or mapping model from the elements of variability model to elements of
the architectural model. In the last approach, transformation rules define the traceability between
variability and architectural model.

Variability Platform. We classify the technology used to implement the DSPL into four cate-
gories: (i) component model, (ii) service model, (iii) framework or API, and (iv) supporting tools.
Component model defines the standard and conventions imposed on system components in order to
describe their functions and how they interact, for instance, OSGi [4], OpenCom [27], and Fractal
[19]. Service model defines the standards and protocols used to implement and bind services, for
instance REST [43], SOAP/WSDL [53] and Jini4. Framework refers to the infrastructure used as
a foundation to build the system and generally corresponds to an implementation of a component
model or service protocol using a specific programming language, for instance Eclipse Equinox5 and
Java Reflection API6. Supporting tools support the construction of the DSPL, for instance ITACA7

and Genie [14].

4 Selection of DSPL solutions

We have searched in the literature for relevant solutions in the intersection of Software Product Lines
(SPLs), and Self-Adaptive Software Systems (SASSs). In particular, we have searched for two types
of systems: (i) SPLs that support dynamic variability, and (ii) self-adaptive systems that apply SPL
techniques to manage variability at runtime. Table 1 lists the selected DSPL solutions that support
some form of dynamic variability. This list was defined based on two sources of information: (i) the
systematic mapping study developed by the authors to identify proposals that include dependability
attributes in DSPLs [37] and (ii) two surveys [15, 9] that identify DSPLs and analyze the use of the
MAPE autonomic control loop.

Our systematic mapping study [37] reviewed papers about Dependable DSPLs selecting nine
primary studies. Also, we made a comparison of the primary studies regarding the MAPE-K loop
activities and the DSPL dimension. The survey developed by Bendomo et al. [15] questioned the
dynamism level of DSPL solutions compared to MAPE-K loop. They selected nine DSPL solutions
and analyzed whether each DSPL meet phases of autonomic control loop at runtime (dynamic) or
design-time (static). The survey presented by Bashari et al. [9] proposed a conceptual framework
for comparing adaptation realization in DSPL based on MAPE-K loop. They also compared seven
DSPL approaches using the proposed framework.

Table 2 shows the value of each design aspect in our self-adaptive dimension and Table 3 shows
the value of each design aspect in our DSPL variability dimension for each of the approaches that
have been reviewed.

In the following, we use Tables 2 and 3 to compare each of the selected approaches:

4Jini Service Oriented Architecture. http://river.apache.org/release-doc/current/spec-index.html. Ac-
cessed on April 05, 2017.

5Eclipse Equinox. http://www.eclipse.org/equinox/. Accessed on April 05, 2017.
6Java Reflection API. https://docs.oracle.com/javase/tutorial/reflect/. Accessed on April 05, 2017.
7ITACA. http://itaca.gisum.uma.es/. Accessed on March 09, 2017.

http://river.apache.org/release-doc/current/spec-index.html
http://www.eclipse.org/equinox/
https://docs.oracle.com/javase/tutorial/reflect/
http://itaca.gisum.uma.es/
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Table 1: Selected DSPL solutions.

Approach Year References
Abbas et al. (ASPL) 2010 [2, 1]
Abotsi et al. 2013 [3]
Baresi et al. 2012 [8]
Bencomo et al. (Genie) 2008 [14, 13]
Casquina et al. (Cosmapek) 2016 [22]
Cetina et al. (MoRE) 2008 [23, 24]
Cubo et al. (Dynamic DAMASCo) 2013 [28, 29]
Fuentes and Gamez 2008 [45, 46]
Gomaa and Hashimoto 2011 [51]
Hallsteinsen et al. (MADAM) 2006 [55, 44, 50]
Lee et al. 2012 [69, 60]
Morin et al. (DiVA) 2008 [77, 76, 75]
Nascimento et al. (ArCMAPE) 2014 [80, 79]
Parra et al. (CAPucine) 2009 [86, 85]
Rosenmüller et al. 2008 [92, 90, 91]

Abbas et al. (ASPL): Autonomic Software Product Lines (ASPL) [2, 1] is an SPL that uses the
concepts of autonomic application. The approach of Abbas et al. is based on reflection architectural
pattern and MAPE-K pattern, performing all MAPE-K activities. ASPL uses information about
context and system to trigger adaptations, realizing the replacement of components at load and
runtime. Abbas et al. uses the OVM to feature modeling, representing only dynamic variability,
and its features are mapped components of dRS model (Domain Responsibility Structure). The
dRS model uses a custom language based on UML component diagrams with provide/requires
interfaces. The dRS models decisions regarding architectural components, how they are structured,
and the responsibilities assigned to the components. ASPL is proposed using a component-based
architecture, and its implementation is based on OSGi and related technologies.

Abotsi et al.: They proposed a theoretical approach [3] that leverage the internal variability
concept of SPL paradigm to support self-healing mechanisms. Their approach is based on MAPE-
K, but they do not detail the implementation of all activities. The knowledge base captures and
modeling the elements that are critical to fault detection and recovery decisions. They proposed
a hybrid architecture style using components and services. The variability is represented using
OVM only with dynamic variability and is performed by replacement of services. When a service
invocation fails, a new service is selected.

Baresi et al.: This approach [8] proposes the convergence of SOA and DSPL by combining BPEL
process [82] with CVL and using a dynamic version of BPEL. Their approach is based on DyBPEL,
a tool that extends ActiveBPEL [39] so that the service composition (process) can adapt to changes
during its operation. DyBPEL exploits aspect-oriented programming to change the features bound
to variation points dynamically. In this approach, the adaptation planning is performed by a human
through a user interface. DyBPEL uses as input a variability designer based on Eclipse CVL plugin.
Their CVL variability model represents only dynamic features.

Bencomo et al. (Genie): Bencomo et al. propose the Genie [13, 14], a tool that uses architecture
models to support the generation and execution of self-adaptive systems for grid mobile computing
and embedded systems. Genie has a component-based reflective architecture. In this approach,
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context changes as the physical location can trigger an adaptation. This approach uses the OVM
for feature modeling, dealing only with dynamic features. The OVM has a direct link to transition
diagrams, which guides the reconfiguration and adaptation process. Genie uses the OpenCOM DSL
to allow the construction of the architectural model that is used by the OpenCOM [27] middleware.
The OpenCOM DSL used by Bencomo et al. can be seen as an Architecture Description Language
(ADL) with generative capabilities [14].

Casquina et al. (Cosmapek): Casquina et al. propose the Cosmapek [22], an adaptive deploy-
ment infrastructure that uses techniques of SASS as a means to achieve dynamic deployment of
DSPL. Cosmapek relies on a reflective architecture and implements the main MAPE-K activities.
However, they perform the MAPE-K activities based on static models using runtime binding. They
represent the variability in a feature model, representing static and dynamic features in a single
model with its own notation, that is translated to XML for runtime use. The static features are
used at design time, to generate a dynamic product. The dynamic features are used at load and
runtime in order to provide variability reconfiguration at runtime. The traceability is performed by
a direct link from the features of feature model to the components of the architectural model. They
use UML component diagram to build the architectural model. They also proposed the DyCosmos,
a language-independent dynamic component-based implementation model which extends the COS-
MOS* component model [49], such that the resulting components and connectors are reconfigurable
at runtime allowing the reflection. The Cosmapek was implemented using DyCosmos component
model and Java reflection API.

Cetina et al. (MoRE): Cetina et al. propose MoRE [23, 24], a reconfiguration engine for devel-
oping pervasive systems using SPL concepts and techniques. MoRE manages DSPLs with service-
oriented architectures, where services and devices communicate using channels. Cetina et al. use the
FAMA tool [11] to feature modeling and analysis. This approach also proposed a realization model
and an architectural model called PervML. The PervML model describes pervasive systems focusing
on specifying services in concrete physical environments. The PervML is technology-independent
domain specific language for representing services and devices and how they are connected through
channels. The realization model is an extension of Atlas Model Weaving (AMW) [41] to relate the
features (feature model) with the PervML elements. AMW is a model for establishing relationships
between models. MoRE uses the OSGi [4] to implement the reconfiguration.

Cubo et al. (Dynamic DAMASCo): Cubo et al. propose the Dynamic DAMASCo [28, 29],
an extension of DAMASCo framework [30] that promotes the safe reuse of services in service-based
systems. Dynamic DAMASCo has a hybrid architectural style, combining services and components.
Also, Dynamic DAMASCo performs service discovery at runtime. Cubo et al. use BPEL process
[82] or WF workflows8 to complement the feature model to deal with static and dynamic variability
using a multiple model feature modeling technique. This approach represents a family of services
from a business process specification, using an intermediate interface model that can be generated
from BPEL process or WF workflows. They also proposed the CA-STS model with Context-Aware
Symbolic Transition Systems (CA-STSs). CA-STSs are extracted from the BPEL services or WF
workflows, which implement the client and services, through a model transformation process. They
defined CA-STS as an extension of Labelled Transition Systems (LTS) [7]. Dynamic DAMASCo
was implemented in Python as a set of tools integrating DAMASCo in the toolbox ITACA.

8Windows Workflow Foundation. https://msdn.microsoft.com/en-us/library/jj684582.aspx Accessed on
January 27, 2017.
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Fuentes and Gamez: Fuentes and Gamez [45, 46] propose a family of aspect-oriented middle-
ware platforms, able to enable, disable or replace the version of some services modeled as aspects
depending on the available resources of small devices. They propose middleware feature model, a
microkernel feature model, and a base services feature model, to represent the variability of the mid-
dleware platform family. Their approach also includes a mapping between the middleware feature
model and an aspect-oriented architecture. Fuentes and Gamez uses an extension of an ADL called
xADL [35] with aspect and variability to represent the architecture. This approach is based on
the microkernel architectural pattern and uses the CAM/DAOP to implement its solution. CAM/-
DAOP9 [87] is a component and aspect based model and platform that applies the components and
aspects as first class entities to dynamically weave at runtime;

Gomaa and Hashimoto: They [51] propose a dynamic software adaptation approach and an
environment for service-oriented product lines, extending the SASSY Framework [73]. This approach
is compatible with the three-layer reference architecture model for self-management [67] and is based
in a hybrid architectural style, managing components, and services. They represent the variability
through feature model, using the PLUSS notation and representing only dynamic features. PLUSS
method [40] is used to map features to components and fulfill a mapping table, that record this
traceability. The SASSY monitoring service captures context information to adapt the system, by
replacing a component or service by another. The SASSY framework was developed using Eclipse
Swordfish10 that is an open-source, extensible ESB (Enterprise Service Bus) based on OSGi[4], and
Apache CXF that is an open-source web services framework which supports JAX-WS, including
SOAP and WSDL.

Hallsteinsen et al. (MADAM): Hallsteinsen et al. propose MADAM [55, 44, 50], an approach
to building self-adaptive systems as component-based systems families with explicit modeling of
variability. MADAM aims to build self-adaptive systems for mobile and distributed environments,
extending the configurable product bases [100] to enable runtime adaptation. Configurable product
bases are a type of SPL, in which product derivation does not involve product specific development
and is often highly automated [100]. This approach provides a UML profile for modeling require-
ments models where the variability is made explicit. They also use the provided UML profile to
include stereotypes for modeling variations of a component’s functional properties of the architec-
tural model. Nonetheless, they argue the provided UML profile can be used for modeling variations
of a component’s functional properties that are related to the feature-oriented techniques of FODA.
MADAM relies on a reflective architecture that capture context and system information to trigger
an adaptation. Although not an MAPE-K based approach, MADAM meets all MAPE-K activities,
performing a control loop. To validate this approach, they implemented a pilot mobile application
using Java J2ME/CDC.

Lee et al.: Lee et al. [69, 60] propose a feature-oriented product line engineering approach that is
based on the feature analysis technique to support the services identification. They present a service-
oriented architecture and represents the architecture by an extended notation of feature model that
represents dynamic compositions and services [69]. Their proposed notation is an extension of
FODA notation and represents in a single model the static and dynamic variability. This notation
distinguishes the type of composition using dashed line to represent the dynamic composition and
keeping static composition as a straight line. Furthermore, this approach represents dynamic service

9CAM/DAOP. http://caosd.lcc.uma.es/CAM-DAOP.htm. Accessed on April 06, 2017.
10Eclipse Swordfish. https://projects.eclipse.org/projects/soa.swordfish. Accessed on April 29, 2017.
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composition into the feature model. This approach considers a feature in feature model as a service,
representing three types of services: (i) workflow services define service transactions (behaviors),
(ii) molecular services represent functionalities to be developed in-house as reusable assets, and (iii)
dynamic services constitute third-party services the system uses at runtime.

They also propose a QoS framework to support the management of the dynamic services. Work-
flows orchestrate product lines, while a continuous monitoring, renegotiation, and acceptability loop
maintains QoS and service composition integrity at runtime. They developed the QoS framework
using the Apache River, which has implementation-specific connection interfaces that make it flexi-
ble enough to be applied to other SOAs such as Web services. Apache River11 is the implementation
of Jini12 and defines a programming model which both exploits and extends Java technology to en-
able the construction adaptive network systems. The approach proposed by Lee et al. [69] has
a significant advantage because the notation joins in a single model: (i) the static and dynamic
variability, and (ii) the variability and architecture, performing the integrated orthogonality and
not requiring traceability between the variability model and the architectural model. However, this
approach is focused on service-oriented architectures, not considering component-based or hybrid
architectures.

Morin et al. (DiVA): Morin et al. propose DiVA [77, 76, 75], an approach that uses model-
driven engineering (MDE) and aspect-oriented modeling (AOM) techniques to support runtime
variability. DiVA relies on a reflective architecture built in three levels. The bottom level contains
the application logic and uses feature models at runtime for managing the variability of the system.
The top level plans the adaptation. Also, the middle level creates the link between the top and
the bottom level, by analyzing data from sensors and converting the data into context information
useful for reasoning and by reflecting changes in the running system. The variability is represented
employing feature models, mapped to an aspect of architecture. To represent the architectural
model, they use an own metamodel that can be seen as a dynamic ADL to describe the running
system. Nonetheless, they argue the architectural model can be build using any metamodeling
language, as UML or any architectural description language (ADL). Although not an MAPE-K
based approach, DiVA meets all MAPE-K activities. DiVA can be implemented using OSGi [4],
Fractal [19] or OpenCom [27].

Nascimento et al. (ArCMAPE): Nascimento et al. propose ArCMAPE [80, 79], an SPL-
based solution, which explores the different software fault tolerance techniques based on design
diversity. In ArCMAPE approach, changes in context as the quality of network and changes in
the system as faults or service unavailability triggers the adaptation. Nascimento et al. create an
initial feature model using the notation proposed by Ferber et al. [42] complementing with CVL
(Common Variability Language) variability model to deal with variability at runtime. This approach
also encompasses two other models, CVL base model, and CVL resolution model, to decide the
variability at runtime. The CVL base model is represented by UML component diagram. They use
CVL resolution model and the FArM method [97] to direct link the CVL variability model (feature
model) to CVL base model (UML component diagram). ArCMAPE relies on a reflective architecture
based on MAPE-K. The components were implemented according to COSMOS* [49], a component
implementation model, and using SOAP protocol for connecting services. They implement the
reflection using the Eclipse Equinox13, an implementation of OSGi [4].

11Apache River. http://river.apache.org/. Accessed on April 06, 2017.
12Jini Service Oriented Architecture. http://river.apache.org/release-doc/current/spec-index.html. Ac-

cessed on April 05, 2017.
13Eclipse Equinox. http://www.eclipse.org/equinox/. Accessed on April 05, 2017.
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Parra et al. (CAPucine): Parra et al. propose CAPucine [86, 85], a context-aware DSPL
to define a service-oriented context-aware product derivation that allows adaptation at runtime
according to its context of use. The changes in the context trigger adaptation on the running system
based on a set of rules. This approach uses aspect model weaving [61] for generating the architectural
assets from feature model configuration at runtime. A metamodel is used at runtime to represent the
architectural assets. In aspect model weaving, features are mapped to aspect models representing
different aspects of a given feature in the architectural assets. The corresponding aspect models of
selected features are woven into the architectural assets to create the architecture of the system.
This approach exploits SCA (Service Component Architecture) models, and the dynamic binding
and unbinding of referenced services provided by the FraSCAti runtime environment. FraSCAti [95]
is a Fractal-based Service Component Architecture (SCA) [81] platform with dynamic properties. In
order to obtain information from the environment, the authors use COSMOS [93], a context-aware
framework connected to the environment through appropriate sensors.

Rosenmüller et al.: Rosenmüller et al. [92, 90, 91] propose and approach to use static and
dynamic compositions to statically generate a tailor-made DSPL from a highly customizable SPL.
They demonstrate how to bind features of an SPL dynamically or statically using the same code
base. This approach can choose a distinct binding time per feature after development. They achieve
this by statically composing the features that are used in combination with a dynamic binding unit,
which is bound at runtime as a whole. Dynamic binding units are similar to components but are
generated at compile time from a user-defined set of features. This approach generates binding units
statically (at design time) to achieve fine-grained customizability while maximizing performance.
Also, this approach dynamically applies the binding units at runtime. At runtime, the adaptation
is performed by code transformation, code generation, and applying binding units. This approach
relies on a reflective architecture and meets all MAPE-K activities, though it does not follow the
MAPE-K. Rosenmüller et al. support the dynamic composition process by representing features as
classes, called feature classes. Feature classes are generated in the FeatureC++ code transformation
process. FeatureC++14 is a C++ language extension to support Feature-Oriented Programming
(FOP).

5 Conclusions and Future Work

This paper has focused on providing a comprehensive taxonomy for comparing DSPL approaches.
We studied these approaches from two dimension namely self-adaptive dimension and DSPL vari-
ability dimensions. Using this taxonomy, fifteen prominent DSPL solutions were compared.

Regarding the Self-Adaptation Dimension, we observed most of selected DSPL solutions are
autonomous, that is, in their adaptation process, there is no outside intervention. Likewise, the
cause or trigger of adaptation is the context or the system, and there is only one user-triggered
adaptation. Concerning binding time, a DSPL requires runtime binding, although a DSPL solution
also can perform the design and/or load time binding. Besides, DSPL solutions can perform the
replacement or reorganization of architecture as realization technique of adaptation. As well as
the analysis by Bencomo et al. [15], concerning MAPE-K activities, we also conclude: (i) some
solutions are not dynamic as they should be, because these solutions partially (or do not) implement
autonomic activities; and (ii) among the analyzed solutions, only nine solutions perform all the
activities of the MAPE-K loop, of which only three studies explicitly implement the MAPE-K loop.

14FeatureC++. http://fosd.de/fcc. Accessed on April 05, 2017.
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In the context of DSPL variability dimension, DSPL solutions can deal only with dynamic vari-
ability, or with static and dynamic variability together. Most of the solutions use feature model
to represent the variability, however, to represent the architectural model there are a diversity of
options that include UML, ADL, and many approaches-specific models. Regarding the managed
element, the most commonly used are components; however, services and aspects are also used.
However, the diversity of architectural models used also reflects the diversity of traceability tech-
niques between the variability and the architectural elements. Among the analyzed solutions, only
six solutions perform traceability by a direct link from variability model to architectural model
elements, commonly using OVM, and three others solutions use mapping table or mapping model.
About feature modeling strategy we notice a direct relationship between the type of variability and
the feature model used. When the DSPL solution represents only the dynamic variability, any of the
options for modeling feature can be chosen. Conversely, when the DSPL solution represents static
and dynamic variability together, then it requires the use of feature model with multiple models or
a single model by an extended notation of feature model.
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