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Abstract

We started the work of reshaping these notes in 2016, when Meidanis was on sabbatical at
the University of Ottawa, in David Sankoff’s lab. We use the term “reshaping” because the main
results shown here, on minimax genomes under the rank distance, were first presented in Biller’s
text for her PhD qualifying exam, written in 2014 [1].

The contents are divided in six chapters, as follows. In Chapter 1 we introduce the first defi-
nitions, including genome matrices, distance, and orbits. We also derive an important formula for
the distance based on orbits. In Chapter 2 we define operations on genomes, with focus on those
with small rank. The chapter closes with the definition of basic operations, namely, cuts, joins, and
double swaps. In Chapter 3 we study sorting scenarios going from a genome to another by basic
operations. We show that from every genome we can reach any other with such scenarios. This
also provides an alternative way of computing the distance. Intermediate genomes are the topic
of Chapter 4. They can be characterized both as optimal scenario members, and as genomes for
which the triangle inequality becomes an equality. They are also the medians of two genomes. A
related notion is that of a minimax genome, explored in Chapter 5. We establish a lower bound
for the minimax score, and show exactly the cases where it is possible to achieve such a score. In
any case, it is always possible to find a genome within 1 unit of the lower bound. Finally, Chapter
6 deals with an interesting parity property of the rank distance.
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Foreword

We started the work of reshaping these notes in 2016, when Meidanis was on sabbatical at the
University of Ottawa, in David Sankoff’s lab. We use the term “reshaping” because the main
results shown here, on minimax genomes under the rank distance, were first presented in Biller’s
text for her PhD qualifying exam, written in 2014 [1].

In this earlier text, genomes were represented as permutations of gene extremities. The text
was, therefore, based on permutation group theory, especially on the notion of norm, which is
essential for developing the genome rearrangement modeling. However, permutation norms are not
familiar to most people, and we felt this impaired a wide dissemination of the ideas.

After an informal conversation with our colleague Luiz San Martin from the Math Department
of the University of Campinas, we decided to look at genomes as matrices, and develop the theory
from this point of view. Zanetti successfully used this approach to implement an approximate
solution to the median problem [8]. It turns out that the algebraic distance is half the rank
distance of the corresponding matrices. On top of that, matrices have two algebraic operations,
addition and multiplication, whereas permutations have just multiplication. As we developed the
theory, we discovered that many of the key concepts had an alternative, additive definition in the
matrix realm, which may open new avenues for thought and may lead to new insights and results.
For instance, in Section 4.2 we show that if B is an intermediate genome between A and C, it is
possible to write B = SA + (I − S)C for some matrix S. This is strikingly similar to a property
of vector spaces, which states that a point in the line segment between two vectors u and v can be
written as λu+ (1− λ)v for some scalar λ. It makes one wonder which other geometric ideas can
be brought to the genomic realm. Being able to carry geometric intuition to comparative genomics
may help solve important problems.

These notes are therefore our attempt at rewriting the minimax results in terms of the newly
discovered matrix-based genome rearrangement theory. It builds everything from scratch, not
depending on previous experience in genome rearrangements. Only a basic knowledge of linear
algebra is required, say, at the level that most exact sciences students receive in their first university
years. A slightly deeper understanding on eigenvalues and eigenvectors is needed for the section
on parity, but this section is largely self-contained and does not significantly affect the rest of the
presentation.

The contents are divided in six chapters, as follows. In Chapter 1 we introduce the first defi-
nitions, including genome matrices, distance, and orbits. We also derive an important formula for
the distance based on orbits. In Chapter 2 we define operations on genomes, with focus on those
with small rank. The chapter closes with the definition of basic operations, namely, cuts, joins, and
double swaps. In Chapter 3 we study sorting scenarios going from a genome to another by basic
operations. We show that from every genome we can reach any other with such scenarios. This
also provides an alternative way of computing the distance. Intermediate genomes are the topic
of Chapter 4. They can be characterized both as optimal scenario members, and as genomes for
which the triangle inequality becomes an equality. They are also the medians of two genomes. A
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related notion is that of a minimax genome, explored in Chapter 5. We establish a lower bound
for the minimax score, and show exactly the cases where it is possible to achieve such a score. In
any case, it is always possible to find a genome within 1 unit of the lower bound. Finally, Chapter
6 deals with an interesting parity property of the rank distance.

Our goal is that these notes serve as a guide for new students and researchers that want to
know more about the subject. We also plan on evolving the material incrementally, say, at the rate
of one new version per year, adding new results, exercises, better explanations, etc.

Context

To place this work within context, let’s briefly review the steps that took us here. Genome rear-
rangements have been related to permutations at least since 1993, when Kececioglu and Sankoff
studied the inversion distance [4]. A breakthrough occurred in 1995, when Hannenhalli and Pevzner
solved the signed reversal distance problem polynomially, with a difficult and insightful algo-
rithm [3].

The link between permutations and genome rearrangements had been established, but it was
not completely satisfactory, for the following reason. Basic rearrangement operations, such as
reversals, yielded permutations with supports of varying sizes in these early modelings. That is, a
reversal could change 2, 3, 4, or even all the elements. This is at odds with the intuition that basic
operations should change just a few elements. In addition, the processes of adding or removing
genes, or considering a run of consecutive genes as a single “super gene”, all require renumbering
of other genes and become cumbersome.

An ailment to this discomfort comes when you view genomes not as a function associating a
position to a gene, but rather as a function associating each gene to the next gene in the same
chromosome. In principle, both views are equivalent, but, when you use the “next gene” method,
a reversal is always a permutation with small support. Adding and removing genes is also simpler,
as it involves local changes only. The same holds true for packing runs of consecutive genes into
one “super gene”, or the inverse operation.

This is the approach taken by Meidanis and Dias in their 2000 paper, but it only applied to
circular genomes. Nevertheless, the genomes could have any number of chromosomes [5].

Yancopoulos et al. took this idea one step further and generalized Meidanis and Dias’ idea
to include linear chromosomes, creating the celebrated double cut and join (DCJ) distance. This
distance gained much popularity because it is easy to compute, is capable of modeling many of
the basic genome rearrangement operations, and applies to multichromosomal genomes with an
arbitrary mixture of linear and circular chromosomes [7].

DCJ was so popular that people hardly bothered to think of alternatives. However, there is
more than one way of incorporating linear chromosomes into the Meidanis and Dias scheme. Feijao
and Meidanis presented one such way in 2012, leading to what we call the algebraic distance [2].
Meidanis and Yancopoulos compare the DCJ and algebraic distances, showing that their difference
can be traced to the way paths are closed to form cycles in the breakpoint graph [6].

These notes are based on the rank distance, which is equal to twice the algebraic distance of
Feijao and Meidanis.
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Chapter 1

Introduction

In this chapter we introduce gene extremities, the representation of genomes as matrices, the rank
distance, and orbits. We also study various subspaces related to the distance of two genomes, and
derive an important formula for the distance based on orbits.

1.1 Genomes as Matrices

We can represent genomes as matrices. For a genome G involving n genes and therefore 2n gene
extremities, we can choose an ordering for the extremities (any ordering is fine), and then define
the corresponding genome matrix as follows:

Gij =















1 if i 6= j and extremities i and j are adjacent in G, or
if i = j and extremity i is a telomere in G

0 if i 6= j and extremities i and j are not adjacent in G, or
if i = j and extremity i is not a telomere in G

Let us see some examples. For genomes with just one gene, we have just two extremities. There
are only two genomes: one with an adjacency linking these two extremities:

A =

[

0 1
1 0

]

and the other with just telomeres:

B =

[

1 0
0 1

]

Here are some examples of genomes over two genes:

C =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









, D =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









Genome matrices are square matrices and have the following properties:

• They are binary matrices, i.e., have 0’s and 1’s only.

• They are symmetric matrices, that is, they satisfy At = A.

7



8 Meidanis, Biller, and Zanetti

• They are orthogonal matrices, that is, they satisfy At = A−1.

• They are involutions, that is, they satisfy A2 = I.

It is easy to verify that any two of the last three properties implies the third one.

For binary matrices, being an orthogonal matrix is equivalent to having just one 1 in each row
and in each column. Such binary matrices are called permutation matrices. We can then say
that genome matrices are permutation matrices that are involutions.

1.2 Extremities as Column Vectors

To be compatible with our view of genomes as matrices, extremities will be seen as column unit
vectors. For instance, considering genome C of Section 1.1, we see that x and y form an adjacency,
where

x =









1
0
0
0









and y =









0
1
0
0









.

Notice that Cx = y and Cy = x, where Cx indicates the product of two matrices, C with size
2n× 2n and x with size 2n× 1, giving a result of size 2n× 1 again, namely, y.

Extremities that are telomeres in a genome A, on the other hand, are characterized as column
unit vectors z such that Az = z. For instance, considering the same matrix C as before, the vectors

z =









0
0
1
0









and w =









0
0
0
1









are telomeres.

1.3 Distance

A distance can be defined for genomes over the same set of genes as follows. If A and B are genome
matrices over the same genes, we write:

d(A,B) = r(B −A),

where r is the rank of a matrix.

There are several equivalent ways of defining matrix rank. In this text, we will use the following
definition: r(X) is the dimension of the subspace imX, the image of X, which is the subspace of
all vectors that can be written as Xu for some vector u.

This distance satisfies the properties required of a metric. To show this, notice first that
d(A,A) = r(0) = 0, and the 0 matrix is the only one with rank 0, so if d(A,B) = 0 we have
B − A = 0 and hence A = B. Also, d(A,B) = d(B,A) since the rank does not change when the
entire matrix is multiplied by a nonzero scalar (−1 in this case). The triangle inequality comes
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from the fact that r(X + Y ) ≤ r(X) + r(Y ), because

d(A,C) = r(C −A)

= r((B −A) + (C −B))

≤ r(B −A) + r(C −B)

= d(A,B) + d(B,C).

Consider matrices A and B from Section 1.1. Their distance is:

d(A,B) = r(B −A) = r

([

1 −1
−1 1

])

= 1.

Now consider matrices C and D from the same section. Their distance is:

d(C,D) = r(D − C) = r

















1 −1 0 0
−1 1 0 0
0 0 −1 1
0 0 1 −1

















= 2.

If we also consider:

E =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









we have:

d(C,E) = r(E − C) = r

















1 −1 0 0
−1 0 1 0
0 1 −1 0
0 0 0 0

















= 2.

Notice that sometimes you get zero rows in a matrix. These obviously do not add anything to
the rank. But the number of nonzero rows is not the rank. In general, this number is greater than
or equal to the rank.

1.4 Orbits

An important concept related to the distance between genome matrices A and B is that of the
so-called AB-orbits (the name comes from the theory of permutation groups). Given two genomes
A and B over the same genes, we define the following relation between gene extremities:

x ∼AB y when y − x ∈ im(B −A).

In this case, we say that x and y are AB-equivalent. When there is no risk of confusion, we
will write simply x ∼ y, omitting the subscript AB when it is clear from the context.

Observe that this is an equivalence relation. Notice that x ∼AB x because x − x = 0 which
belongs to im(B −A). Also, x ∼AB y implies y ∼AB x, because when y − x belongs to im(B −A)
its opposite vector x− y also belongs to this linear subspace of R2n.

Finally, notice that x ∼AB y and y ∼AB z imply y − x ∈ im(B − A) and z − y ∈ im(B − A),
which in turn imply that

z − x = (y − x) + (z − y) ∈ im(B −A)
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again because im(B −A) is a linear subspace.
The classes of this equivalence relation are called AB-orbits. Here are some preliminary,

relevant result on AB-orbits.

Lemma 1. For any two genomes A and B over the same genes, and for any gene extremities x
and y we have:

1. x ∼AB BAx

2. x ∼AB ABx

3. x ∼AB y implies x ∼AB ABy

Proof. For the first statement, notice that:

(B −A)(Ax) = BAx−AAx = BAx− x,

showing that BAx− x ∈ im(B −A) and therefore that x ∼AB BAx.
For the second statement, notice that:

(B −A)(−Bx) = −BBx+ABx = ABx− x,

showing that ABx− x ∈ im(B −A) and therefore that x ∼AB ABx.
For the third statement, just use the transitive property of AB-equivalence with x ∼AB y and

y ∼AB ABy.

To proceed, we need a definition on matrices applied to orbits and other vector sets, and an
auxiliary result.

Definition 1 (Matrix applied to set). If A is a matrix and V is a vector set, the notation AV
denotes the following vector set:

AV = {Av | v ∈ V}.

Lemma 2 (Orbit image). For any two genome matrices over the same genes A and B, and any
extremities x and y, we have that x ∼AB y if and only if Ax ∼AB Ay.

Proof. If x ∼AB y, then by definition y − x = (B − A)u for some vector u. Then Ay − Ax =
A(y − x) = A(B −A)u = ABu− u.

On the other hand, (B−A)(−Bu) = −BBu+ABu = ABu−u as well, showing that ABu−u ∈
im(B −A). It follows that Ay −Ax ∈ im(B −A), supporting the conclusion that Ay ∼AB Ax.

For the other direction, just notice that A is involutive.

Lemma 3. If S is an AB-orbit, then AS is an AB-orbit as well.

Proof. To be an AB-orbit, AS must satisfy:

1. for any two extremities x, y ∈ AS, we have x ∼AB y, and

2. if x ∈ AS and x ∼AB y then y ∈ AS.

Let us begin by proving the first statement. If x, y ∈ AS, then Ax,Ay ∈ S and are, consequently,
equivalent. We can then apply Lemma 2 to conclude that x ∼AB y.

The second statement also follows from Lemma 2. If x ∼AB y, then Ax ∼AB Ay. Since x ∈ AS,
we have Ax ∈ S, and therefore Ay ∈ S too, because S is an orbit, that is, an AB-equivalence class.
We conclude that y ∈ AS.
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Lemma 4. If S is an AB-orbit, then ABS = S.

Proof. From the fact that x ∼AB ABx (Lemma 1) we see that AB maps every extremity x of S into
S itself. In other words, ABS ⊆ S. However, AB is a bijection, which means that |ABS| = |S|.
We conclude that ABS = S.

Notice that ABS = S in turn implies that BS = AABS = AS. This observation will be useful
in our analysis of rank 2 operations (see Section 2.2).

1.5 Symmetric Matrices

To continue our study, let us review some useful properties of symmetric matrices that we will use
in the future. Recall the definition of the subspace V⊥ orthogonal to a given subspace V :

Definition 2. The subspace V⊥ is defined as:

V⊥ = {u | vtu = 0 for every v ∈ V }.

It is known that dimV + dimV⊥ = 2n, for square matrices of size 2n× 2n.

Lemma 5. If A is a symmetric matrix, then (imA)⊥ = kerA.

Proof. Notice that if u ∈ imA and v ∈ kerA, then u = Aw for some vector w and

vtu = vtAw = vtAtw = (Av)tw = 0tw = 0.

Hence, kerA ⊆ (imA)⊥. Since these two subspaces have the same dimension, equality follows.

Naturally, this last lemma applies to B −A when A and B are genome matrices.

1.6 The Kernel

In this section we will examine the relationship of orbits to the kernel of B − A. Let’s start by
looking at the coefficients of equivalent extremities on vectors in this kernel.

Lemma 6 (Same coefficients). For any two genomes A and B over the same genes, if v ∈ ker(B−A)
and x ∼AB y, then xtv = ytv.

Proof. Since im(B − A) and ker(B − A) are orthogonal, the hypotheses imply (y − x)tv = 0.
Therefore xtv = ytv.

This lemma shows that, when we write a vector v ∈ ker(B−A) as a linear combination of gene
extremities, as in:

v =
∑

x∈E

cxx,

where E is the set of all gene extremities, then the coefficients cx and cy are equal when x and y
are equivalent. This is because the coefficient cx is nothing else than xtv, and cy is ytv. With this
result we can construct a basis for the subspace ker(B −A).
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Definition 3. For an AB-orbit S, define:

∑

S =
∑

x∈S

x.

Lemma 7 (Kernel basis). For two genomes A and B over the same n genes, we have that the set

VAB =
{

∑

S | S is an AB-orbit
}

is a basis for ker(B −A).

Proof. Given an AB-orbit S, consider the vector
∑

S. From Lemma 4 we learn that AB acts as a
permutation in S, and therefore AB

∑

S =
∑

S.
However, since A is a genome matrix, ABv = v is equivalent to Bv = Av, that is, v ∈ ker(B−A).

We conclude that
∑

S belongs to ker(B −A) for every orbit S.
On the other hand, if v ∈ ker(B −A), Lemma 6 implies that when we write

v =
∑

x∈E

cxx

as a linear combination of extremities, there is a common coefficient cS for all elements of orbit S,
allowing us to write instead:

v =
∑

S

cS
∑

S,

that is, v is a linear combination of the p vectors
∑

S, where p is the number of AB-orbits. This
shows that the

∑

S over all AB-orbits S generate ker(B − A). Since the AB-orbits are disjoint,
these vectors are linearly independent. Therefore, they form a basis of ker(B −A).

1.7 Distance Formula

Now comes a result relating the AB-orbits to the distance d(A,B).

Lemma 8 (Distance and orbits). For two genomes A and B over the same n genes, we have:

d(A,B) = 2n− p,

where p is the number of AB-orbits.

Proof. We know that:

d(A,B) = r(B −A) = dim im(B −A) = 2n− dimker(B −A), (1.1)

since 2n is the number of extremities for n genes and the kernel and image of a matrix are comple-
mentary with respect to the domain space, which has dimension 2n in our case.

From Lemma 7 we learn that p = dimker(B − A). Plugging this on Equation 1.1 we get our
result.

Let us now establish a few more results about orbits that will be necessary in our forthcoming
study on ker(B −A), and in the classification of the low-ranked operations studies in Chapter 2.

Lemma 9. An extremity x belongs to a singleton AB-orbit if and only if x is either a common
telomere of A and B or one end of a common adjacency of A and B.
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Proof. Suppose that S = {x} is a singleton orbit. From Lemma 4, we get ABx = x. Notice that
Bx = AABx = Ax in this case. If Ax = x, then Bx = x as well and x is a common telomere of A
and B. If Ax = y 6= x, then Bx = Ax = y as well, and x is part of the common adjacency xy.

Conversely, if x is a common telomere or x is part of a common adjacency, then Ax = Bx,
implying x ∈ ker(B − A). Let y be any extremity with x ∼AB y. Applying Lemma 6 with x in
place of v we reach:

xtx = xty =⇒ 1 = xty.

We conclude that in fact y = x, leading to the conclusion that {x} is a singleton AB-orbit.

1.8 The Image

We have seen earlier, with Lemma 6, a characterization of vectors in ker(B − A) in terms of their
coefficients with respect to the extremities. Now we can use Lemma 5 to obtain a characterization
for vectors in im(B −A).

Lemma 10. Given two genomes A and B over the same genes, we have that v ∈ im(B−A) if and
only if for any AB-orbit S the following equation holds:

∑

x∈S

xtv = 0. (1.2)

Proof. Suppose that v ∈ im(B − A). Given an AB-orbit S, from Lemma 7 we know that
∑

S
belongs to ker(B −A). Since (imA)⊥ = kerA (Lemma 5), it follows that

∑

x∈S

xtv =

(

∑

x∈S

x

)t

v =
(

∑

S
)t

v = 0.

Conversely, let’s assume that Equation 1.2 holds for a certain vector v and all AB-orbits S. We
conclude that v is orthogonal to all the vectors in ker(B −A), that is:

v ∈ (ker(B −A))⊥.

However, (ker(B −A))⊥ = im(B −A) by Lemma 5, and hence v ∈ im(B −A).

1.9 Multiplicative characterization of orbits

We saw in Section 1.4 that the definition of AB-orbits relies on the difference matrix B − A. It
turns out that these orbits could also be defined via successive multiplications by the matrix AB,
as we will see in the present section.

Let us start by defining the following set:

TAB(x) = {(AB)mx | m ∈ Z}.

At this point, it is good to clarify what we mean by (AB)m when m is a negative number. Just
observe that AB is invertible, and that its inverse is BA. Then, all you have to do is to think of
(AB)m as being (BA)−m when m is a negative integer, and all will be fine. It does not hurt to
mention also that (AB)0 = I.

First notice that this set is actually finite.
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Lemma 11 (Finite powers). For any two genome matrices A and B over the same genes, and any
extremity x, we can write:

TAB(x) = {x,ABx, (AB)2x, . . . , (AB)k−1x},

where k = |TAB(x)|. Moreover, (AB)kx = x.

Proof. The elements of TAB(x) are all extremities. But, since there is only a finite number of
extremities, we must have two distinct integers m1 and m2 such that (AB)m1x = (AB)m2x, which
implies (AB)m1−m2x = x and also (AB)m2−m1x = x. So, there is some positive integer m such
that (AB)mx = x.

Let k be the smallest such positive integer. Then (AB)kx = x and the extremities x, ABx,
(AB)2x, . . . , (AB)k−1x are all distinct, by definition of k, and hence k ≤ |TAB(x)|.

On the other hand, any y ∈ TAB(x) can be written as (AB)mx, for some integer m. Performing
an integer division we obtain m = qk + r, with q an integer and 0 ≤ r < k. We see then that
y = (AB)mx = (AB)r+qkx = (AB)r(AB)qkx = (AB)rx, since (AB)qkx = x. This shows that
actually TAB(x) = {x,ABx, (AB)2x, . . . , (AB)k−1x}, and we conclude that |TAB(x)| = k.

Another auxiliary lemma is needed here, showing that the sum of all elements of TAB(x) belongs
to the kernel of B −A.

Lemma 12. For any two genome matrices A and B over the same genes, and any extremity x,
we have:

k−1
∑

m=0

(AB)mx ∈ ker(B −A),

where k = |TAB(x)|.

Proof. Notice that

A

k−1
∑

m=0

(AB)mx = Ax+

k−1
∑

m=1

B(AB)m−1x = Ax+

k−2
∑

m=0

B(AB)mx.

On the other hand,

B
k−1
∑

m=0

(AB)mx =
k−1
∑

m=0

B(AB)mx =
k−2
∑

m=0

B(AB)mx+B(AB)k−1x.

Notice further that Ax = B(AB)k−1x, because (AB)kx = x. It follows that Av = Bv for
v =

∑k−1
m=0(AB)mx, and therefore v ∈ ker(B −A).

We are now ready for our main characterization.

Theorem 1 (Multiplicative characterization of orbits). For any two genome matrices A and B
over the same genes, two extremities x and y are AB-equivalent if and only if there is m ∈ Z such
that y = (AB)mx.

Proof. If y = (AB)mx, repeated application of Lemma 1 implies that x ∼AB y.
For the other direction, assume that x and y are AB-equivalent. Taking v =

∑k−1
m=0(AB)mx,

with k = |TAB(x)|, we have:

xtv = xt
k−1
∑

m=0

(AB)mx = 1,
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because x is equal to exactly one of the extremities in the sum. By Lemma 6, we must have ytv = 1
as well, given that v ∈ ker(B −A) by Lemma 12. Then,

1 = ytv = yt
k−1
∑

m=0

(AB)mx.

It follows that y must be equal to some extremity in this sum, that is, there actually is an
m ∈ Z such that y = (AB)mx. We can even pick m so that 0 ≤ m ≤ k − 1.



Chapter 2

Operations

In this chapter we define operations on genomes, with focus on those with small rank. The chapter
closes with the definition of basic operations, namely, cuts, joins, and double swaps.

As we saw, the distance between two genomes is the rank of B − A. It makes sense to try to
understand more about matrices of the form B − A, where A and B are genomes. For one thing,
we can think of such a matrix as some kind of transformation that can be applied to genome A to
yield a genome again. The following definitions captures this concept.

Definition 4. A matrix P is applicable to a genome matrix A or can be applied to A when A+P
is also a genome matrix.

Definition 5. A matrix that is applicable to at least one genome is called an operation. The
weight of an operation P is just its rank, r(P ).

Some operations can be applied to several genomes. We will see examples in the sequel. The
following result is simple, but it will be useful when we examine the effect of operations on the
distance, later on in Chapter 4.

Lemma 13. If P is an operation applicable to a genome A, we have:

PA = −BP,

where B = A+ P .

Proof. We have:

PA = (B −A)A = BA−A2 = BA− I.

On the other hand,

−BP = −B(B −A) = −B2 +BA = −I +BA.

Since both expressions agree, we have our result.

We will be particularly interested in the simplest operations, that is, those with small rank. It
turns out that, by using operations of rank 1 and 2 only, we can reach any genome from any other
genome. This will be thoroughly demonstrated in Chapter 3 about scenarios, but here we will build
the foundations for this work. It should be remarked that rank 1 operations are not enough to
reach all other genomes. We do need the rank 2 operations in this result.

16
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2.1 Operations of Weight 1

In this section we will study rank 1 operations. This is equivalent to looking at pairs of genomes
A and B such that d(A,B) = 1, because in this case the difference P = B − A will be a rank 1
operation. To uncover the format of such operations, we can reason as follows. If d(A,B) = 1,
then Lemma 8 implies that there are 2n − 1 AB-orbits. This is only possible if all AB-orbits are
singletons, except for one 2-element orbit S = {x, y}. Lemma 3 guarantees that AS = S, because
AS must be an orbit as well and there are no other orbits with two elements. In particular, Ax ∈ S.

Now if Ax = x, we must have Ay = y to fulfill the condition AS = S. In this case, Bx must be
equal to y since BS = S as well and ABx = y. This characterizes an operation called a join in A,
which will be studied more closely in the sequel.

The other possible case is when Ax = y. This implies Ay = x, Bx = x, and By = y. This
operation is called a cut in A and will likewise be studied in more detail in the following sections.
Cuts and joins are therefore the only rank 1 operations that exist.

2.1.1 Joins

Inspired by the above considerations, we define the first type of rank 1 operation.

Definition 6. A join is a matrix of the form J(x, y) = (x− y)(yt−xt) where x and y are distinct
extremities.

Notice that J(x, y)t = J(x, y) and J(y, x) = J(x, y) for all joins. Also, the image of a join has
rank 1 because it is equal to the line generated by non-null vector x− y.

Lemma 14. If P is a join, then P 2 = −2P .

Proof. Let P = J(x, y) = (x− y)(yt − xt). Then:

P 2 = (x− y)(yt − xt)(x− y)(yt − xt).

We can develop the center part as:

(yt − xt)(x− y) = ytx− yty − xtx+ xty = 0− 1− 1 + 0 = −2.

Since this center part is a 1× 1 matrix, we can bring it to the left as a scalar, yielding:

P 2 = −2(x− y)(yt − xt) = −2P.

The following result specifies the conditions a genome has to satisfy so that a join is applicable
to it.

Lemma 15. A join P = J(x, y) is applicable to a genome matrix A if and only if Ax = x and
Ay = y. In this case the resulting genome B = A+ P satisfies Bx = y and By = x.

Proof. Since B = A+ P , we have:

Bx = (A+ P )x = Ax+ Px = Ax+ (x− y)(yt − xt)x = Ax+ (x− y)(0− 1) = Ax− x+ y.

If Ax 6= x then Bx is not an extremity, but rather a linear combination with non-null coefficients
of at least two distinct extremities (x and y). Therefore, if Ax 6= x, P is not applicable to A.
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By the same token, looking at the image of y under B, we get:

By = (A+ P )y = Ay + Py = Ay + (x− y)(yt − xt)y = Ay + (x− y)(1− 0) = Ay + x− y,

which shows that Ay has to be y if we want B to be a genome.
On the other hand, if Ax = x and Ay = y, we have Bx = y and By = x. In all extremities z

other that x and y we have Bz = Az, so this is an extremity. We conclude that, if Ax = x and
Ay = y, B takes extremities to extremities, that is, it is a 0-1 matrix.

The resulting matrix B is also symmetric, as the sum of two symmetric matrices A and P . To
be a genome, all we need to verify is that its square is I. Let’s compute:

B2 = (A+ P )(A+ P ) = A2 +AP + PA+ P 2 = I +AP + PA− 2P,

in view of the fact that A is a genome and of Lemma 14.
Now

AP = A(x− y)(yt − xt) = (Ax−Ay)(yt − xt) = (x− y)(yt − xt) = P.

and
PA = P tAt = (AP )t = P t = P.

It follows that
B2 = I + P + P − 2P = I.

2.1.2 Cuts

We analyze here the other type of rank 1 operation.

Definition 7. A cut is a matrix of the form −J(x, y) = (x−y)(xt−yt) where x and y are distinct
extremities.

Notice that opposite of a cut is a join and vice-versa. Cuts have also other interesting properties,
as we can see in the next lemmas.

Lemma 16. If P is a cut, then P 2 = 2P .

Proof. The opposite of a cut is a join, so Q = −P is a join. Then, using Lemma 14,

P 2 = (−Q)2 = Q2 = −2Q = 2P.

The following result specifies the conditions a genome has to satisfy so that a cut is applicable
to it.

Lemma 17. A cut P = −J(x, y) is applicable to a genome matrix A if and only if Ax = y. In
this case, the resulting genome B = A+ P satisfies Bx = x and By = y.

Proof. Since B = A+ P , we have:

Bx = (A+ P )x = Ax+ Px = Ax+ (x− y)(xt − yt)x = Ax+ (x− y)(1− 0) = Ax+ x− y.

If Ax 6= y then Bx is not an extremity, but rather a linear combination with non-null coefficients
of at least two distinct extremities (x and y). Therefore, if Ax 6= y, P is not applicable to A.
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On the other hand, if Ax = y, we have Bx = x. Likewise,

By = (A+ P )y = Ay + Py = Ay + (x− y)(xt − yt)y = Ay + (x− y)(0− 1) = x− x+ y = y,

because Ax = y implies Ay = x. In all extremities z other that x and y we have Bz = Az, so this
is an extremity. We conclude that, if Ax = y, B takes extremities to extremities, that is, it is a 0-1
matrix.

The resulting matrix B is also symmetric, as the sum of two symmetric matrices A and P . To
be a genome, all we need to verify is that its square is I. Let’s compute:

B2 = (A+ P )(A+ P ) = A2 +AP + PA+ P 2 = I +AP + PA+ 2P,

in view of the fact that A is a genome and of Lemma 16.
Now

AP = A(x− y)(xt − yt) = (Ax−Ay)(xt − yt) = (y − x)(xt − yt) = −P.

and
PA = P tAt = (AP )t = (−P )t = −P.

It follows that
B2 = I − P − P + 2P = I.

The final conclusion is that genomes at distance 1 from A are just the ones where two telomeres
in A are joined to form a new adjacency, or an adjacency in A is destroyed to create two telomeres.

2.1.3 Examples

Recall the matrices from Section 1.1:

A =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









, B =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









, and C =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









,

and the extremity vectors from Section 1.2:

x =









1
0
0
0









, y =









0
1
0
0









, z =









0
0
1
0









, and w =









0
0
0
1









.

The difference C −A is equal to the sum of a cut and a join, as follows. Consider the cut

−J(x, y) = −J

















1
0
0
0









,









0
1
0
0

















=









1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0









and the join

J(z, w) = J

















0
0
1
0









,









0
0
0
1

















=









0 0 0 0
0 0 0 0
0 0 −1 1
0 0 1 −1









.
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It is straightforward to verify that C − A = −J(x, y) + J(z, w). Notice that we can either
apply the cut first, and then the join, or the join first, and then the cut, since both operations are
applicable to A.

The difference between A and B is also the sum of a cut and a join:

B −A = −J(x, y) + J(y, z).

However, in this case, the cut must be applied first, because the join is not applicable to A.

2.2 Operations of Weight 2

Of course, we can reach genomes at distance 2 from A by first getting a genome B at distance 1
from A and then looking for genomes at distance 1 from B. But we are interested in genomes at
distance 2 from A that cannot be reached by this method.

Let’s then think of a generic genome B at distance 2 from A. As we’ve done earlier, let’s analyze
the number of AB-orbits. For d(A,B) = 2 we must have 2n− 2 orbits. The only possibilities are:

• all singleton orbits, except for two 2-element orbits;

• all singleton orbits, except for one 3-element orbit.

In the next sections we will contemplate each case.

2.2.1 Double Swaps

If we just have two non-singleton orbits S and T , with |S| = |T | = 2, two things may happen:
either AS = S and AT = T or AS = T and AT = S. The first case does not add much because it
leads to a rank 2 operation that is just a combination of two consecutive rank 1 operations acting
on different extremities. Let’s therefore concentrate our attention on the second case. If S = {x, y}
and T = {z, w}, without loss of generality we have Ax = w, which forces Ay = z, Bx = z, and
By = w, since BS = T and B cannot agree with A in x otherwise x would end up in an AB-orbit
by itself. We conclude that A and B differ only on the following extremities:

Ax = w , Bx = z,

Ay = z , By = w,

Az = y , Bz = x,

Aw = x , Bw = y.

In this case extremities x and y exchange partners going from A to B. This is a kind of distance-
2 operation that cannot be achieved by two distance-1 operations. We would need 4 distance-1
operations: removing two adjacencies from A, and then adding two different adjacencies to the
result to reach B.

We capture this operation type in our next definition.

Definition 8. A double swap is a matrix of the form W (x, y, z, w) = (x − y)(zt − wt) + (z −
w)(xt − yt) where x, y, z, and w are distinct extremities.

Notice that W (x, y, z, w)t = W (x, y, z, w) and W (x, y, z, w) = W (y, x, w, z) = −W (y, x, z, w)
for all double swaps. This means that the opposite of a double swap is another double swap. Special
properties of double swaps are listed below.
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Lemma 18. The square of a double swap is a sum of cuts:

W (x, y, z, w)2 = −2J(x, y)− 2J(z, w).

Proof. Let u = x− y and v = z − w. Then:

W (x, y, z, w)2 = (uvt + vut)(uvt + vut) = uvtvut + vutuvt,

since the other terms vanish because u and v are orthogonal vectors, and hence utv = vtu = 0.
Also,

utu = vtv = 2,

and these scalars can be moved to the beginning of the products, yielding:

W (x, y, z, w)2 = (uvt + vut)(uvt + vut) = 2uut + 2vvt,

which is just the sought formula, because uut = −J(x, y) and vvt = −J(z, w).

The following result specifies the conditions a genome has to satisfy so that a double swap is
applicable to it.

Lemma 19. A double swap P = W (x, y, z, w) is applicable to a genome matrix A if and only if
Ax = w and Ay = z. In this case, the resulting genome B = A+ P satisfies Bx = z and By = w.

Proof. Since B = A+ P , we have:

Bx = (A+ P )x = Ax+ Px = Ax+ z − w.

If Ax 6= w then Bx is not an extremity, but rather a linear combination with non-null coefficients
of at least two distinct extremities (z and w). Therefore, if Ax 6= w, P is not applicable to A.

Likewise,
By = (A+ P )y = Ay + Py = Ay + w − z,

so Ay must be z for this to produce an extremity.
On the other hand, if Ax = w and Ay = z, we have Bx = z, By = w, Bz = x, and Bw = y. In

all other extremities u we have Bu = Au, so B takes extremities to extremities, that is, it is a 0-1
matrix.

The resulting matrix B is also symmetric, as the sum of the two symmetric matrices A and P .
To be a genome, all we need to verify is that its square is I. Let’s compute:

B2 = (A+ P )(A+ P )

= A2 +AP + PA+ P 2

= I +AP + PA− 2J(x, y)− 2J(z, w),

in view of the fact that A is a genome and of Lemma 18.
Now

AP = A(x− y)(zt − wt) +A(z − w)(xt − yt)

= (w − z)(zt − wt) + (y − x)(xt − yt)

= J(z, w) + J(x, y),

and
PA = P tAt = (AP )t = J(z, w) + J(x, y),

since AP is symmetric.
It follows that

B2 = I + J(z, w) + J(x, y) + J(z, w) + J(x, y)− 2J(x, y)− 2J(z, w) = I.



22 Meidanis, Biller, and Zanetti

2.2.2 Single Swaps

Let’s now investigate the possibility of a single non-singleton, three-element AB-orbit S. In this
case, AS = S. Since adjacencies use two extremities, we must have at least one A-telomere in S.
We may have one or three A-telomeres in S, but since B also has a telomere in S, we cannot have
three A-telomeres there, otherwise one of them would be a common telomere with B, contradicting
the fact that S is an AB-orbit. Therefore, each of A, B has exactly one telomere in S.

Say S = {x, y, z}, where y is the B-telomere and z is the A-telomere. Then A and B differ only
on the following extremities:

Ax = y , Bx = z,

Ay = x , By = y,

Az = z , Bz = x.

This is interesting but it is covered by doing two distance-1 operations: first remove adjacency
xy and then add adjacency xz. We call this a single swap.

We conclude that the only distance-2 operations are the double swap and the ones obtained by
applying distance-1 transformations twice.

2.2.3 Examples

Consider again the matrices used in Section 2.1.3. The difference B −A mentioned in that section
is in fact a single swap.

For an example of double swap, consider the following matrices:

A =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, B =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.

Their difference is a double swap:

B −A =









0 −1 1 0
−1 0 0 1
1 0 0 −1
0 1 −1 0









.

In terms of the vectors defined in Section 2.1.3, we can write:

B −A = W (x,w, z, y).

2.3 Basic Operations

Let’s close the chapter with an important definition.

Definition 9. A basic operation is an operation of one of the following kinds: cut, join, or double
swap.

We exclude the single swap because it can be replaced by a cut followed by a join.



Chapter 3

Sorting By Basic Operations

In this chapter, we will investigate the process of modifying a given genome by successive applica-
tions of basic operations. Can we reach any other genome by doing so? The answer is affirmative,
and this provides an alternative way of computing the distance.

3.1 Sorting Scenarios and Weight

What is a sorting scenario? It is a list of matrices L = [B0, B1, . . . , Bk] such that each matrix in the
series differs from its neighbors by a basic operation (cut, join, or double swap). These operations
have weights, which are equal to their ranks: cuts and joins have weight 1, whereas double swaps
have weight 2. Each scenario also has a weight, also called its total weight, which is the sum of
the weights of all consecutive operations in it. The weight of scenario L will be denoted by w(L).

We say that a sorting scenario goes from A to C when B0 = A and Bk = C. Among all sorting
scenarios from A to C, some will have minimum total weight. These will be called optimal sorting
scenarios. The weight of an optimal sorting scenario from A to C will be denoted by w(A,C). In
principle, it is not even clear that there is a sorting scenario for any pair on genome matrices A and
C. However, when there is one such scenario going from A to C, we can be sure that its weight is
not smaller than the distance.

Theorem 2. If there is a sorting scenario from A to C, its total weight is at least d(A,C).

Proof. Let [B0, B1, . . . , Bk] be a sorting scenario from A to C. We can write:

Bi = Bi−1 + Pi,

for i = 1, 2, . . . , k, where Pi is the operation transforming Bi−1 into Bi. Therefore, each Pi is either
a cut, a join, or a double swap. And the weight of Pi is its rank, r(Pi). It follows that:

C −A = P1 + P2 + . . .+ Pk,

and hence

d(A,C) = r(C −A) = r(P1 + P2 + . . .+ Pk) ≤ r(P1) + r(P2) + . . .+ r(Pk).

But
∑k

i=1 r(Pi) is the weight of the scenario, so the desired conclusion follows.

In fact, sorting scenarios not only exist for every pair of genome matrices A and C over the
same genes but also the weight of optimal scenarios is always equal to the distance. To be able to
prove that, we need a few preparatory results.

23
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3.2 The Effect of Operations on Orbits

To proceed we need to understand how orbits change when we apply an operation. In fact, we
don’t need to understand everything about this process. It suffices, for our purposes, to know that
some orbits are left untouched, that is, some AC-orbits will still be BC-orbits when we transition
from A to B by means of an operation P . Specifically, when an orbit S is nullified by an operation
P , that is, PS = {0}, then S is untouched by the application of P . Here the notation PS means
matrix P applied to set S as in Definition 1. Let’s incrementally build results that will culminate
in this conclusion.

Lemma 20 (Nullified orbit). If A and C are genome matrices over the same genes, P is an
operation applicable to A, and S is an AC-orbit such that PS = {0}, then PAS = {0} and
PCS = {0} as well.

Proof. First notice that, in view of Lemma 13, calling B = A+ P , we have:

PAS = −BPS = −B{0} = {0},

so PAS = {0}. Now, since S is an AC-orbit, we have S = CAS and then:

PCS = PCCAS = PAS.

because C is a genome and therefore C2 = I. But we have seen that PAS = {0}, so it follows that
PCS = {0} as well.

With the next result we can examine what happens with powers of genome products applied to
an orbit nullified by an operation.

Lemma 21. If A and C are genome matrices over the same genes, P is an operation applicable
to A, S is an AC-orbit such that PS = {0}, then, for every extremity u ∈ S, we have:

(BC)mu = (AC)mu,

for any integer m ≥ 0, where B = A+ P .

Proof. By induction on m. If m = 0, then the result boils down to u = u, which is clearly true.
If m ≥ 1, notice that:

(BC)mu = BC(BC)m−1u.

By the induction hypothesis, we can replace (BC)m−1u by (AC)m−1u, so that:

(BC)mu = BC(AC)m−1u = AC(AC)m−1u+ PC(AC)m−1u.

However, notice that (AC)m−1u belongs to S, since it is in the same AC-orbit as u. Therefore,
by using Lemma 20, we conclude that PC(AC)m−1u is zero. Then:

(BC)mu = AC(AC)m−1u = (AC)mu,

which is the sought conclusion.

The following result shows orbits that are left intact by P .

Lemma 22. If A and C are genomes over the same genes, P is an operation applicable to A, and
S is an AC-orbit such that PS = {0}, then S is also a BC-orbit, where B = A+ P .
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Proof. Let x be an extremity in S, and let T be the BC-orbit of x. For any extremity y in S, by
Theorem 1, we have y = (AC)mx for some integer m. By Lemma 21, this implies (BC)mx = y as
well, showing that y ∈ T . It follows that S ⊆ T .

Conversely, if y ∈ T , then y = (BC)mx. By the same lemma, y = (AC)mx, showing that y ∈ S.
It follows that T ⊆ S.

We conclude that in fact T = S, and therefore S is a BC-orbit as well.

3.3 Finding Sorting Operations

We are now ready to state a result about situations where cuts, joins, or double swaps get closer
to a final genome. The analysis will be divided into two cases, depending on whether or not A and
C have the same telomeres. A new definition is in order.

Definition 10. Two genomes A and C over the same genes are said to be co-tailed when A and
C have exactly the same telomeres.

3.3.1 Genomes Not Co-Tailed

Let’s start with the cases where A and C are not co-tailed. Then there is a telomere in one of the
genomes that is not a telomere of the other. Let’s assume that C has a telomere x that is not a
telomere of A. In this case, we have seen that the cut P = −J(x, y) where y = Ax is applicable to
A, that is, A+ P is a valid genome matrix.

Lemma 23. If genome C has a telomere x that is not a telomere of A, then the cut −J(x,Ax) is
applicable to A, and leads to a genome B such that:

d(B,C) ≤ d(A,C)− 1.

Proof. We need to compare AC-orbits with BC-orbits. First notice that the AC-orbit of x contains
y = Ax:

ACx = Ax = y,

since x ∼AC ACx (Lemma 1) and x is a telomere of C. Any other AC-orbit is also a BC-orbit,
according to Lemma 22, since P = B−A = −J(x, y) maps to zero any extremity other than x and
y.

On the other hand, {x} is a BC-orbit, because x is a telomere of both B and C. Since x’s
AC-orbit contains at least one other element, we conclude that there are strictly more BC-orbits
than there are AC-orbits, and therefore

d(B,C) ≤ d(A,C)− 1,

in view of Lemma 8.

3.3.2 Co-Tailed Genomes

When A and C are co-tailed, no cut or join applied to A will get closer to C, but certain double
swaps involving A-adjacencies can move towards C. We know that a double swap W (x, y, z, w) is
applicable to A if and only if both xw and yz are adjacencies of A, that is, Ax = w and Ay = z.

To find such double swaps, we need to study AC-orbits in more detail. In the sequel we have a
neat result showing that A-adjacencies link extremities in different AC-orbits.
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First, however, we need an auxiliary lemma on common telomeres. This result is so straightfor-
ward that we debated whether to make a lemma out of it at all. However, we decided to state it as
a lemma because we need to apply it repeatedly in the proof of the result on adjacencies crossing
orbits (Lemma 25).

Lemma 24. If A and C are co-tailed genomes and Ax or Cx is a common telomere of A and C,
then x is a common telomere of A and C as well.

Proof. Just observe that if Ax is a telomere of A, then Ax = AAx = x, showing that x is this same
common telomere. By symmetry, the same conclusion is reached with Cx in place of Ax.

Lemma 25 (Adjacencies cross orbits). If A and C are co-tailed genomes, and y = Ax is distinct
from x, then x and y are in different AC-orbits.

Proof. Assume for a moment that x and y are in the same AC-orbit. Then:

y = (AC)mx.

If m is even, we can write m = 2k and then:

Ax = y = (AC)2kx = (AC)k(AC)kx,

or, recalling that CA = (AC)−1:
(CA)kAx = (AC)kx.

But (CA)kAx = (CA)k−1Cx, so:

(CA)k−1Cx = A(CA)k−1Cx,

showing that (CA)k−1Cx is a telomere of A. Since A and C have the same telomeres, this means
that in fact (CA)k−1Cx is a common telomere. Repeated application of Lemma 24 leads to x being
a common telomere, contradicting the hypothesis.

If m is odd, then m = 2k + 1 so that

Ax = y = (AC)2k+1x = (AC)k+1(AC)kx.

Then, multiplying by (CA)k+1 to the left,

(CA)k+1Ax = (AC)kx,

or,
C(AC)kx = (AC)kx,

showing that (AC)kx is a telomere of C. Hence, this is also a telomere of A and repeated application
of Lemma 24 leads to x being a common telomere, again contradicting the hypothesis.

We conclude that in fact x and y are in different AC-orbits.

We are now ready for the main result of the section.

Lemma 26. If A and C are co-tailed, distinct genomes, then there is a double swap P applicable
to A such that

d(B,C) ≤ d(A,C)− 2,

where B = A+ P .
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Proof. Since A 6= C, there is an extremity x such that Ax 6= Cx. Then, x is not a telomere of
either A or C, otherwise it would be a common telomere implying Ax = x = Cx. Therefore y = Ax
and z = Cx are different from x and from each other, and are not telomeres of either A or C. Let
w = Az and consider the double swap P = W (w, x, y, z). It is applicable to A since Aw = z and
Ax = y.

Notice that x and w are in the same AC-orbit, as are y and z, since w = ACx and y = ACz.
However, these two AC-orbits are distinct, according to Lemma 25. All other AC-orbits are also
BC-orbits, where B = A + P , because of Lemma 22. Moreover, {x} and {z} are also BC-orbits,
since BCx = x and BCz = z. In addition, By = w, implying that y and w are in different
BC-orbits, in view of Lemma 25. This all means that from the elements of the two AC-orbits
containing x, y, z, and w there are at least four BC-orbits, namely, {x}, {z}, one with y and one
with w, all distinct. It follows that

d(B,C) ≤ d(A,C)− 2.

3.4 Existence of Sorting Scenarios

We are now ready for an important result.

Theorem 3. For any pair of genome matrices A and C over the same genes there is a sorting
scenario L going from A to C satisfying:

w(L) ≤ d(A,C).

Proof. We will prove this by induction on d(A,C). For d(A,C) = 0 we have A = C and then [A]
is a sorting scenario of weight zero, which is equal to the distance.

Let’s now tackle the case d(A,C) ≥ 1. Since A 6= C, one of three cases may occur: either C
has a telomere which A doesn’t, or A has a telomere not shared by C, or A and C are co-tailed,
but distinct. Let’s handle each case in its turn.

If there is a telomere x of C that is not a telomere of A, then, by Lemma 23, the cut P =
−J(x,Ax) yields a genome B = A + P such that d(B,C) ≤ d(A,C) − 1. We can then apply the
induction hypothesis to B and C, and assume that there is a scenario L from B to C such that:

w(L) ≤ d(B,C).

Now consider the scenario [P ]+L obtained by inserting operation P before all other operations
in L. (This notation is inspired by a similar notation in the programming language Python.) This
new scenario goes from A to C and satisfies:

w([P ]+L) = 1 + w(L) ≤ 1 + d(B,C) ≤ d(A,C),

so we have a suitable scenario from A to C.
The second case is when there is a telomere of A that is not a telomere of C. By the same

Lemma 23, we know there is a cut P applicable to C such that B = C + P satisfies:

d(B,A) ≤ d(A,C)− 1.

The induction hypothesis applied to A and B yields a scenario L from A to B such that:

w(L) ≤ d(A,B).
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Now consider the scenario L+[−P ] obtained by inserting the join −P after all other operations
in L. We can do that because B + (−P ) = C, so −P is applicable to B. This is a scenario from A
to C that satisfies:

w(L+[−P ]) = w(L) + 1 ≤ d(A,B) + 1 ≤ d(A,C),

and is therefore what we need in this case.
Finally, if A and C are distinct but co-tailed, Lemma 26 asserts that there is a double swap P

applicable to A such that
d(B,C) ≤ d(A,C)− 2,

where B = A+ P . We can again apply the induction hypothesis to B and C yielding a scenario L
with w(L) ≤ d(B,C). Consider scenario [P ]+L that goes from A to C and satisfies:

w([P ]+L) = 2 + w(L) ≤ 2 + d(B,C) ≤ d(A,C).

This is in fact a scenario that proves the lemma for A and C in this case. Therefore, in all cases
we have a suitable scenario, and the proof is complete.

Corollary 1. For any two genomes A and C over the same genes, there is at least one scenario
that goes from A to C and furthermore:

w(A,C) = d(A,C).

Proof. The existence of such a scenario is a consequence of Theorem 3. In addition, the scenario L
given by this theorem satisfies:

w(L) ≤ d(A,C).

However, Theorem 2 states that the weight of any such scenario is at least d(A,C):

d(A,C) ≤ w(L).

We conclude that L is then an optimal scenario and that

w(A,C) = w(L) = d(A,C).



Chapter 4

Intermediate Genomes

In this chapter we study intermediate genomes. We prove here that they can be characterized
both as optimal scenario members, and as genomes for which the triangle inequality becomes an
equality. They are also the medians of two genomes.

4.1 Triangle Equality

We say that a genome B is intermediate between genomes A and C, all over the same genes,
when equality occurs in the triangle inequality as follows:

d(A,C) = d(A,B) + d(B,C).

Intermediate genomes minimize d(A,B) + d(B,C), and are therefore referred to as median
genomes as well.

If we recall the way the triangle inequality was established, there are important conclusions to
be drawn when it is an equality, as the next lemma makes clear.

Lemma 27. If d(A,C) = d(A,B) + d(B,C) for three genome matrices over the same genes A, B,
and C, then im(B −A) ⊆ im(C −A) and im(C −B) ⊆ im(C −A).

Proof. Recall that, in general,

d(A,C) = dim im(C −A)

≤ dim(im(B −A) + im(C −B))

≤ dim im(B −A) + dim im(C −B)

= d(A,B) + d(B,C).

In order to have an equality above, all intermediate terms in these equations must be equal. In
particular, this implies:

im(B −A) + im(C −B) = im(C −A),

which implies both containments in the lemma’s statement.

But when the image of a matrix is contained in the image of another matrix, the matrices
themselves are related by a product:

Lemma 28. If X, Y are k × k matrices such that imX ⊆ imY , then there is a k × k matrix R
such that X = Y R.

29
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Proof. Let e1, e2, . . . , ek be a basis of Rk. Since imX ⊆ imY , for every vector ei there is a vector
fi such that Xei = Y fi, for 1 ≤ i ≤ k. Let R be the matrix that takes each ei to fi. Then:

Y Rei = Y fi = Xei,

which shows that Y R = X in a basis. This is enough to guarantee that X = Y R everywhere, that
is, they are the same matrix.

4.2 Linear Combination

The results in the previous section lead to the following result.

Lemma 29 (Linear Combination). If B is an intermediate genome between A and C, then there
is a matrix S such that:

B = SA+ (I − S)C.

Proof. By previous observations we know that im(C −B) ⊆ im(C −A). From the previous lemma
we conclude that there is a matrix R such that C −B = (C −A)R. Now:

B = Bt = (C + (A− C)R)t = Ct +Rt(A− C)t = RtA+ (I −Rt)C,

which is our result if we make S = Rt.

4.3 Common Elements

The linear combination result in Lemma 29 has important consequences in terms of common el-
ements in A and C: common images, common telomeres, and common adjacencies. All of these
have to be shared among all intermediate genomes.

Corollary 2 (Common image). If B is an intermediate genome between A and C and Ax = Cx
for a given vector x, then Bx = Ax = Cx.

Proof. From the fact that B = SA+ (I − S)C and Ax = Cx we get:

Bx = SAx+ (I − S)Cx = SCx+ Cx− SCx = Cx = Ax.

Corollary 3 (Common telomere). If x is a common telomere of genomes A and C over the same
genes, then every intermediate genome B between A and C will have x as a telomere.

Proof. It suffices to recall that a telomere is an extremity x such that Ax = x and apply Corollary 2.

Corollary 4 (Common adjacency). If xy is a common adjacency of genomes A and C over the
same genes, then every intermediate genome B between A and C will have xy as an adjacency.

Proof. It suffices to recall that an adjacency xy entails Ax = y and apply Corollary 2.
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4.4 Intermediate Genomes as Optimal Scenario Members

Intermediate genomes are exactly those that participate in optimal scenarios. The following result
proves this claim.

Theorem 4. Given genomes A and C over the same genes, a genome B over the same genes is
an intermediate genome between A and C if and only if it belongs to some optimal scenario going
from A to C.

Proof. Let’s first prove that, if B is part of an optimal scenario going from A to C, then d(A,C) =
d(A,B) + d(B,C). Let L = [B0, B1, . . . , Bk] be an optimal scenario with B0 = A and Bk = C, and
suppose B = Bi for some i between 0 and k. Then L1 = [B0, . . . , Bi] is a scenario going from A to
B. It is an optimal scenario, but we don’t need this fact. Just by being a scenario it satisfies:

d(A,B) ≤ w(L1),

as stated by Theorem 2. Likewise, there is a scenario L2 = [Bi, . . . , Bk] from B to C, and hence

d(B,C) ≤ w(L2),

by the same theorem. Adding these last two equations, we get:

d(A,B) + d(B,C) ≤ w(L1) + w(L2) = w(L) = d(A,C),

because L is optimal (Theorem 1). Using the triangle inequality, we conclude that B is in fact an
intermediate genome.

Conversely, if B is an intermediate genome, then

d(A,C) = d(A,B) + d(B,C).

Since d(A,B) = w(A,B) (Theorem 1), there is an optimal scenario L1 from A to B such that:

d(A,B) = w(L1).

Similarly, there is an optimal scenario L2 from B to C such that:

d(B,C) = w(L2).

Combining these two scenarios, we get a third scenario L, obtained from L1+L2 by removing
one of the copies of the repeated B, such that:

w(L) = w(L1) + w(L2) = d(A,B) + d(B,C) = d(A,C).

This last equation shows that L is actually an optimal scenario going from A to C. Since B is
in L, we have our result.



Chapter 5

Minimax Genomes

The notion of minimax genome is explored in this chapter. We establish a lower bound for the
minimax score, and show exactly the cases where it is possible to achieve such a score. We also
show that, in any case, it is always possible to find a genome within 1 unit of the lower bound.

5.1 Definitions

Given three genomes A, B, and C, a minimax genome for the three is a genome M that minimizes:

sc(M ;A,B,C) = max(d(A,M), d(B,M), d(C,M)),

where sc(M ;A,B,C) is called the score of M relative to A, B, and C.

We can also look for minimax genomes of two input genomes A and B, minimizing:

sc(M ;A,B) = max(d(A,M), d(B,M)).

The triangle inequality gives almost immediately a lower bound on the minimax score:

Lemma 30. For any three genomes A, B, and M we have:

sc(M ;A,B) ≥
d(A,B)

2
.

Proof. Notice that:

d(A,B) ≤ d(A,M) + d(B,M) ≤ 2max(d(A,M), d(B,M)) = 2 sc(M ;A,B).

From this, the statement easily follows.

In fact, since the score is always an integer, we can strengthen this result and claim that:

sc(M ;A,B) ≥

⌈

d(A,B)

2

⌉

.

Our goal in this chapter is to find minimax genomes for A and B.

32
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5.2 Examples

Consider the following pairs of matrices, for any given dimension. In this section, we will look at
matrices that are not necessarily genome matrices, because they may not have an even dimension.
Notice however that the definitions of distance, intermediate matrices, and minimax matrices work
for them. Here are the matrices:

A2 =

[

1 0
0 1

]

, B2 =

[

0 1
1 0

]

A3 =





1 0 0
0 0 1
0 1 0



 , B3 =





0 1 0
1 0 0
0 0 1





A4 =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









, B4 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









A5 =













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0













, B5 =













0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1













and so on. They have an interesting pattern around the diagonal. The distance between Ak and
Bk is k − 1.

Let us first write general formulas for Ak and Bk. Assume that the k extremities involved are
called e1, e2, . . . , ek. We have:

Ake1 = e1

Ake2 = e3

Ake3 = e2

. . .

Ake2j = e2j+1

Ake2j+1 = e2j

. . .

Akek =

{

ek if k is even
ek−1 if k is odd

and

Bke1 = e2

Bke2 = e1

. . .

Bke2j = e2j−1

Bke2j+1 = e2j+2

. . .

Bkek =

{

ek−1 if k is even
ek if k is odd
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As a result, B −A can be written as:

(Bk −Ak)e1 = e2 − e1

(Bk −Ak)e2 = e1 − e3

. . .

(Bk −Ak)e2j = e2j−1 − e2j+1

(Bk −Ak)e2j+1 = e2j+2 − e2j

. . .

(Bk −Ak)ek =

{

ek−1 − ek if k is even
ek − ek−1 if k is odd

Notice that there is a single AB-orbit in this example, because of the following fact. From the
definition of orbits, we see that all odd-numbered extremities e2j+1 belong to the same AB-orbit,
because of the images of the even-numbered extremities e2j under B −A. Also, all even-numbered
extremities e2j are AB-equivalent because of the images of odd-numbered extremities e2j+1 under
B − A. On top of that, e1 and e2 are in the same orbit, as witnessed by the image of e1 under
B − A. It follows that all extremities are in the same, large AB-orbit, and hence the distance is
d(A,B) = k − 1.

Now let’s compute the distance between Ik, the identity matrix on k dimensions, with Ak and
Bk. For Ak and Ik we have:

(Ik −Ak)e1 = e1 − e1 = 0

(Ik −Ak)e2 = e2 − e3

. . .

(Ik −Ak)e2j = e2j − e2j+1

(Ik −Ak)e2j+1 = e2j+1 − e2j

. . .

(Ik −Ak)ek =

{

ek − ek = 0 if k is even
ek − ek−1 if k is odd

We notice that e1 is on a singleton orbit by itself, and then {e2j , e2j+1} are additional orbits
for 2 ≤ 2j ≤ k − 1. Finally, if k is even, ek will form another singleton orbit, or, if k is odd, ek
was already counted in an orbit with ek−1. We have therefore 1 orbit for e1, at least ⌊(k − 1)/2⌋
additional orbits, and perhaps one last orbit for ek if k is even, which can be included in the
additional orbits if we round (k − 1)/2 up to the nearest integer instead of rounding it down. The
final orbit count is then 1 + ⌈(k − 1)/2⌉. The distance is then d(Ak, Ik) = k − 1 − ⌈(k − 1)/2⌉ or
⌊(k − 1)/2⌋.

For Bk and Ik we have:

(Ik −Bk)e1 = e1 − e2

(Ik −Bk)e2 = e2 − e1

. . .

(Ik −Bk)e2j = e2j − e2j−1

(Ik −Bk)e2j+1 = e2j+1 − e2j+2

. . .

(Ik −Bk)ek =

{

ek − ek−1 if k is even
ek − ek = 0 if k is odd
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k d(Ak, Bk) d(Ak, Ik) d(Bk, Ik)

2 1 0 1
3 2 1 1
4 3 1 2
5 4 2 2

Table 5.1: Distances between minimax genome Ik and matrices Ak, Bk for k = 2 to 5.

We notice that {e2j−1, e2j} are orbits for 2 ≤ 2j ≤ k. Also, if k is odd, ek will form a singleton
orbit, or, if k is even, ek was already counted in an orbit with ek−1. We have therefore at least
⌊k/2⌋ orbits, and perhaps one last orbit for ek if k is odd, which can be counted with the other
orbits if we round k/2 up to the nearest integer instead of rounding it down. The final orbit count
is then ⌈k/2⌉. The distance is then d(Bk, Ik) = k − ⌈k/2⌉ or ⌊k/2⌋.

Table 5.1 summarizes the results up to k = 5.

We realize that for these matrices there is a minimax genome which is also an intermediate
genome between Ak and Bk, for every k, namely, the genome Ik.

5.3 A Conjecture

As we said earlier, in the beginning of Section 1.1, any ordering of the extremities can be used to
create a genome matrix. This means that, by changing the ordering of extremities, we get other
matrices representing essentially the same genome. This raises an interesting question: maybe all
genomes will, by choosing a suitable ordering, produce matrices just like the ones in Section 5.2. If
this is true our problem is solved, since for this case we already have minimax matrices satisfying
the lower bound.

Let’s recall that changing the extremity ordering is equivalent to taking a genome matrix A and
computing PAP−1, where P is a permutation matrix, that is, P is a square matrix of zeros and
ones that satisfies:

PP t = I,

where I is the identity matrix and P t indicates the transpose of P , that is, the matrix obtained
from P by exchanging rows and columns. Notice that if PP t = I, then P tP is also I, because of a
general property of matrices stating that their “left inverse” must be equal to their “right inverse”.
Notice also that, since P−1 = P t for a permutation matrix, we can write PAP t instead of PAP−1

and get the same result. This is also true for odd-dimensional matrices, which cannot represent
genomes.

Lemma 31. If A is a genome and P is a permutation matrix, then PAP t is also a genome.

Proof. We need to verify that:

• PAP t is a 0-1 matrix

• PAP t is symmetric

• PAP t squared is equal to I
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To ensure that PAP t is a 0-1 matrix, recall that both A and P (and hence P t as well) are 0-1
matrices with exactly one 1 in each row, and exactly one 1 in each column. Looking at the product
PA, we see that each entry in this product is the scalar product of a row from P with a column
from A. If the position of the 1 in these row and column match, the result will be 1; otherwise, it
will be zero. Therefore, each entry in PA is 0 or 1. Moreover, since each row of A has just one 1,
a row in the product will have exactly one 1. The same reasoning works for columns.

We conclude that PA is a 0-1 matrix with exactly one 1 in each row and in each column. A
repetition of this argument shows us that the same will be true for PAP t.

For the second part, notice that (PAP t)t = (P t)tAtP t = PAP t, since A is symmetric. Hence,
PAP t is symmetric.

Fir the last part, notice that (PAP t)2 = PAP tPAP t = PAAP t = PP t = I, since A2 = I and
PP t = I. Hence, PAP t is a bona fide genome matrix.

However, our conjecture is not true. Just notice that if a matrix A has a 1 in the diagonal, this
means that for some extremity x we have:

Ax = x,

that is, x is a telomere. Then PAP t will have a 1 in the diagonal too, in the column corresponding
to Px, because:

PAP tPx = PAIx = PAx = Px,

since P tP = I. Then extremity Px is a telomere of PAP t, and PAP t will have a 1 in the diagonal
too. But since there are genome matrices without 1’s in the diagonal (see for instance some of
the Bk’s), we conclude that the examples of Section 5.2 do not represent all genomes by extremity
reordering.

5.4 Minimax Lower Bound: Not Always Attainable

We are interested in working on the following conjecture in this section:

Conjecture 1. For any two genomes A and B over the same genes, there is at least one genome
M over the same genes that satisfies:

d(A,M) = ⌈d(A,B)/2⌉

and
d(B,M) = ⌊d(A,B)/2⌋.

This genome would of course be a minimax genome, since it would attain the lower bound
established in Section 5.1. However, this is false, as can be seen from the following example
representing genomes that differ by a double swap:

A =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, B =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.

To compute their distance, let’s subtract B from A:

A−B =









0 1 −1 0
1 0 0 −1
−1 0 0 1
0 −1 1 0









.



Matrix-Based Genome Rearrangements 37

This matrix has rank 2. Both A and B are circular genomes, since they do not have telomeres.
Now for a circular genome such as A, the only genomes at distance 1 from it are the ones obtained
by cutting an adjacency, since no extra adjacencies can be added to A. Genome A has only two
adjacencies, so there are just two genomes at distance 1 from it, namely:

A1 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, A2 =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









.

However, it can be readily verified that none of these two genomes is at distance 1 from B. In
fact, they are both at distance 3 from B. We conclude that the minimax conjecture is not true.

5.5 Finding Minimax Genomes

In this section we will find minimax genomes for every pair of input genomes A and C. The
discussion will be divided in two cases, according to the genomes A and C being or not co-tailed.

5.5.1 Co-Tailed Genomes

When A and C are co-tailed, we not always get a minimax genome satisfying the lower bound, but
we can get within 1 unit of it. Let’s begin by studying properties of intermediate genomes between
two co-tailed ones.

Lemma 32. If A and C are co-tailed genomes and B is an intermediate genome between A and
C, then B is co-tailed with A and C.

Proof. It suffices to show that B is co-tailed with A. Suppose for a moment that B is not co-tailed
with A. Then either A has a telomere that B doesn’t, or B has a telomere that A doesn’t. The
first case is ruled out by Corollary 3, because a telomere of A would also be a telomere of C, since
they are co-tailed, and would have to be shared by all intermediate genomes.

So let’s assume that B has a telomere x not shared by A. Since B is intermediate between A
and C, according to Lemma 27, we can write:

im(B −A) ⊆ im(C −A).

This observation leads to

(B −A)x = x− y ∈ im(B −A) ⊆ im(C −A),

where y = Ax is an extremity distinct from x.
Let z = Cx. We know that y ∼AC z, since y = ACz. According to Lemma 6, vectors in

im(C −A) have the same coefficients with respect to AC-equivalent extremities. Therefore:

yt(x− y) = zt(x− y)

or
−1 = ztx− zty.

Notice that z 6= x, otherwise x would be a telomere of C and not a telomere of A, contradicting
the fact that A and C are co-tailed. This implies ztx = 0. Also, z 6= y, otherwise xy would be
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a common adjacency of A and C, and then B, being an intermediate genome between A and C,
would have to have this adjacency also, which is not the case since Bx = x. This implies zty = 0
as well. Then the last formula becomes

−1 = 0,

which is impossible. This contradiction shows that B cannot have telomeres not shared with A
and C.

Only double swaps occur in optimal sorting scenarios of co-tailed genomes. This leads to a
parity restriction.

Lemma 33. If A and C are co-tailed genomes, and L = [B0, B1, . . . , Bk] is an optimal scenario
going from A to C, then d(A,C) = 2k.

Proof. According to Lemma 32, all Bi’s are co-tailed with A, so none of the operations Bi+1 −Bi

can be cuts or joins. Therefore, we have r(Bi+1 −Bi) = 2 for 0 ≤ i ≤ k − 1. But then

d(A,C) = w(L) =
k−1
∑

i=0

r(Bi+1 −Bi) =
k−1
∑

i=0

2 = 2k.

Corollary 5. If A and C are co-tailed genomes, then d(A,C) is even.

It is easy to find minimax genomes if the parity is right. However, when the parity does not
help, we are forced to take the second best, which is 1 unit off the lower bound.

Lemma 34. If A and C are co-tailed genomes and d(A,C)/2 is even, then there is a genome B
satisfying the minimax lower bound.

Proof. Let [B0, B1, . . . , Bk] be an optimal scenario going from A to C. We know that d(A,C) = 2k
from Lemma 33. Since k = d(A,C)/2 is even, we can write k = 2m for some integer m. It is then
straightforward to verify that Bm is the sought intermediate genome satisfying the minimax lower
bound.

Lemma 35. If A and C are co-tailed genomes and d(A,C)/2 is odd, then there is no genome B
satisfying the minimax lower bound.

Proof. If such a genome B existed, then we would have:

d(A,B) = d(B,C) = d(A,C)/2.

This implies that B would be an intermediate genome between A and C. By Lemma 32, B
would be co-tailed with A. But then, by Corollary 5, d(A,B) = d(A,C)/2 would have to be even,
contradicting the hypothesis.

Lemma 36. For any two genomes A and C, there is an intermediate genome B such that

⌈d(A,C)/2⌉ ≤ d(A,B) ≤ ⌈d(A,C)/2⌉+ 1.
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Proof. If A = C the result is clear taking B = A = C. If A 6= C, let [B0, B1, . . . , Bk] be an optimal
scenario going from A to C and take i as the smallest index such that d(A,Bi) ≥ ⌈d(A,C)/2⌉. We
claim that B = Bi is the sought genome. Notice that B is an intermediate genome between A and
C because it is a member of an optimal scenario going from A to C. Moreover, the first inequality
in the lemma statement is satisfied because of the choice if i.

For the second equality, notice that, by the minimality of i, we have:

d(A,Bi−1) < ⌈d(A,C)/2⌉.

Genome Bi−1 exists since A 6= C implies ⌈d(A,C)/2⌉ ≥ 1, so i cannot be zero. Given that in
any scenario the steps have weight 1 or 2, we know that d(Bi−1, Bi) ≤ 2. It follows that

d(A,Bi) ≤ d(A,Bi−1) + d(Bi−1, Bi) ≤ d(A,Bi−1) + 2 < ⌈d(A,C)/2⌉+ 2

or
d(A,Bi) ≤ ⌈d(A,C)/2⌉+ 1,

since both sides are integers.

5.5.2 Genomes Not Co-Tailed

If A and C are not co-tailed, then there are intermediate genomes at any feasible distance between
A and C. To ascertain that, we need a few preliminary lemmas on operation switch and other
properties.

Lemma 37. Let A be a genome, P a cut applicable to A, and Q a double swap applicable to A+P .
Then Q is applicable to A.

Proof. Let Q = W (x, y, z, w). We know that Q is applicable to A + P , which means that A + P
has adjacencies xw and yz. Since P is a cut, which only removes adjacencies, xw and yz must have
been present in A as well, leading to the conclusion that Q can be applied to A.

An analogous result is valid for joins, saying that joins can be brought back through double
swaps, but we won’t need it now.

Lemma 38. Let A and C be two genomes not co-tailed. Then, for every integer i such that
0 ≤ i ≤ d(A,C) there is an intermediate genome B between A and C with d(A,B) = i.

Proof. By induction on d(A,C). The base case is d(A,C) = 1, because A and C are not co-tailed
and hence cannot be equal. The statement is clearly true for d(A,C) because in this case we only
have two possibilities for i, namely, i = 0 or i = 1, and we can take B = A for i = 0 and B = C for
i = 1.

Now assume d(A,C) ≥ 2 and consider an integer i such that 0 ≤ i ≤ d(A,C). Since A and C
are not co-tailed, there is either a telomere in A not shared by C or a telomere in C not shared
by A. Without loss of generality, we may assume that there is a telomere in C not shared by A,
otherwise we can just exchange A and C and i with d(A,C)− i.

Given that there is a telomere in C that is not an A-telomere, Lemma 23 gives us a cut P
applicable to A such that A + P is an intermediate genome between A and C. If A + P is not
co-tailed with C, we can apply the induction hypothesis to A + P and C and get intermediate
genomes at an arbitrary distance j from A+ P , provided that 0 ≤ j ≤ d(A+ P,C) = d(A,C)− 1,
which will be at distance j + 1 from A. This covers all the distances we need except 0, for which
we can take B = A.
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Now if A+P is co-tailed with C, then they are distinct, since d(A,A+P ) = 1 and d(A,C) ≥ 2.
Lemma 26 guarantees that there is a double swap Q applicable to A yielding an intermediate
genome A+P +Q between A+P and C. However, according to Lemma 37, a cut can go forward
past a double swap, which means that Q is applicable to A. The resulting genome, A + Q, is
intermediate between A and C because A + Q + P is just another way of getting to A + P + Q,
which we know is intermediate between A and C. We can then apply the induction hypothesis
to A + Q and C, which are not co-tailed since A + Q is co-tailed with A, obtaining intermediate
genomes at distances i from A for 2 ≤ i ≤ d(A,C). For i = 0 we have A, and for i = 1 we have
A+ P . This completes the induction step and the proof of our lemma.

5.6 Main Result

Theorem 5. Let A and C be arbitrary genome matrices over the same genes. Then:

1. If A and C are not co-tailed, then there is a genome matrix B such that:

d(A,B) =

⌈

d(A,C)

2

⌉

and

d(B,C) =

⌊

d(A,C)

2

⌋

.

2. If A and C are co-tailed and d(A,C) is a multiple of 4, then there is a genome matrix B such
that:

d(A,B) =
d(A,C)

2

and

d(B,C) =
d(A,C)

2
.

3. If A and C are co-tailed and d(A,C) is not a multiple of 4, then there is no genome matrix
B such that:

d(A,B) =
d(A,C)

2

and

d(B,C) =
d(A,C)

2
.

However, there is a genome matrix B such that:

d(A,B) =
d(A,C)

2
+ 1

and

d(B,C) =
d(A,C)

2
− 1.

Proof. Part 1 is a consequence of Lemma 38, since 0 ≤ ⌈d(A,C)/2⌉ ≤ d(A,C). Part 2 is a
consequence of Lemma 34. Part 3 is a consequence of Lemmas 35 and 36.



Chapter 6

Parity

In this chapter we show an interesting property of the rank distance for genome matrices. For any
three genome matrices, the sum of their pairwise distances has to be an even number.

6.1 Parity Property

To prove the intriguing parity result, we will need a few auxiliary lemmas. The proof that we will
offer relies on properties of AB-orbits. We already know that the number of AB-orbits is related
to the distance d(A,B). These orbits are also related to the determinant of AB in a manner that
will be explained in the sequel.

6.2 The Determinant

Let us start with a lemma relating AB-orbits to eigenvalues of AB. Notice that in this lemma
we will consider A and B as matrices with complex coefficients, although the coefficients can be
thought of as being taken from any field. But we need the field of complex numbers here to be able
to encompass all eigenvalues of AB.

Lemma 39. If S = {x,ABx, (AB)2x, . . . , (AB)k−1x} is an AB-orbit with k elements, then the
subspace generated by S contains k eigenvectors of AB, each corresponding to an eigenvalue of the
form λj

k, for j = 0, 1, . . . , k − 1, where λk = e2πi/k and i is the imaginary unit.

Proof. Consider the vectors vj , for j = 0, 1, . . . , k − 1, defined as:

vj =
k−1
∑

m=0

λ−jm
k (AB)mx.

These vectors certainly belong to 〈S〉, the subspace generated by S, since they are linear com-

41
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binations with complex coefficients of extremities in S. Let’s compute ABvj :

ABvj = AB
k−1
∑

m=0

λ−jm
k (AB)mx

=
k−1
∑

m=0

λ−jm
k (AB)m+1x

= λj
k

k−1
∑

m=0

λ
−j(m+1)
k (AB)m+1x

= λj
k

k
∑

m=1

λ−jm
k (AB)mx.

But since the last term of this last sum is λ−jk
k (AB)kx = (λk

k)
−jx = x, we have:

ABvj = λj
kvj ,

showing that vj is actually an eigenvector of AB for the eigenvalue λj
k.

The next lemma is just an auxiliary computation on complex roots of the unit.

Lemma 40. For any integer k ≥ 1, the product of all k-th roots of 1:

pk =
k−1
∏

j=0

λj
k

is equal to −1 if k is even and equal to +1 if k is odd, where λk = e2πi/k and i is the imaginary
unit.

Proof. The product pk can be written as:

k−1
∏

j=0

λj
k = λ

∑k−1

j=0
j

k = λ
(k−1)k/2
k .

Now if k is even, we have:

λ
k/2
k = eπi = −1

and hence

λ
(k−1)k/2
k = (λ

k/2
k )k−1 = (−1)k−1 = −1,

since k − 1 is odd.

On the other hand, if k is odd, then (k − 1)/2 is an integer and therefore:

λ
(k−1)k/2
k = (λk

k)
(k−1)/2 = (+1)(k−1)/2 = +1.

We are now ready for one of the main results, relating orbits to the determinant.
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Lemma 41. For any two genomes A and B we have:

det(AB) = (−1)q,

where q is the number of even-sized AB-orbits.

Proof. The determinant det(AB) is the product of all eigenvalues of AB considered with their
respective multiplicities. For each AB-orbit S, the product of the eigenvalues related to the eigen-
vectors generated by S is, according to Lemmas 39 and 40, either −1 if |S| is even, or +1 if
|S| is odd. It follows that the product of all eigenvalues of AB with their multiplicities will be
(−1)q, where q is the number of orbits that contribute with −1 factors to this product, that is, the
even-sized ones.

6.3 Determinant and Distance

We are now ready advance our developments, relating the determinant of AB to the distance
d(A,B).

Lemma 42. For any two genomes A and B we have:

det(AB) = (−1)d(A,B).

Proof. Let p be the number of AB-orbits, and q be the number of even-sized AB-orbits. Notice
first that since the total size of all AB-orbits is 2n, an even number, we must have an even number
of odd-sized AB-orbits, otherwise the total wouldn’t be even. This shows that p and q have the
same parity, because their difference (the number of odd-sized AB-orbits) is an even number.

It follows that we can write:
(−1)q = (−1)p.

Now:
det(AB) = (−1)q = (−1)p = (−1)2n−2p+p = (−1)2n−p = (−1)d(A,B).

And now the main result of the chapter.

Theorem 6. For any three genomes A, B, and C we have:

d(A,B) + d(A,C) + d(C,B) ≡ 0 (mod 2).

Proof. Since the three matrices are involutions, we have ABBCCA = I, and therefore:

1 = det(ABBCCA) = det(AB) det(BC) det(CA) = (−1)d(A,B)+d(B,C)+d(C,A).

Since each distance is an integer, it follows that

d(A,B) + d(B,C) + d(C,A) ≡ 0 (mod 2).
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