

A Matrix-Based Theory for Genome Rearrangements

João Meidanis ${ }^{1} \quad$ Priscilla do Nascimento Biller João Paulo Pereira Zanetti

Abstract

We started the work of reshaping these notes in 2016, when Meidanis was on sabbatical at the University of Ottawa, in David Sankoff's lab. We use the term "reshaping" because the main results shown here, on minimax genomes under the rank distance, were first presented in Biller's text for her PhD qualifying exam, written in 2014 [1].

The contents are divided in six chapters, as follows. In Chapter 1 we introduce the first definitions, including genome matrices, distance, and orbits. We also derive an important formula for the distance based on orbits. In Chapter 2 we define operations on genomes, with focus on those with small rank. The chapter closes with the definition of basic operations, namely, cuts, joins, and double swaps. In Chapter 3 we study sorting scenarios going from a genome to another by basic operations. We show that from every genome we can reach any other with such scenarios. This also provides an alternative way of computing the distance. Intermediate genomes are the topic of Chapter 4. They can be characterized both as optimal scenario members, and as genomes for which the triangle inequality becomes an equality. They are also the medians of two genomes. A related notion is that of a minimax genome, explored in Chapter 5. We establish a lower bound for the minimax score, and show exactly the cases where it is possible to achieve such a score. In any case, it is always possible to find a genome within 1 unit of the lower bound. Finally, Chapter 6 deals with an interesting parity property of the rank distance.

Contents

Foreword 4
Context 5
Acknowledgments 5
1 Introduction 7
1.1 Genomes as Matrices 7
1.2 Extremities as Column Vectors 8
1.3 Distance 8
1.4 Orbits 9
1.5 Symmetric Matrices 11
1.6 The Kernel 11
1.7 Distance Formula 12
1.8 The Image 13
1.9 Multiplicative characterization of orbits 13
2 Operations 16
2.1 Operations of Weight 1 17
2.1.1 Joins 17
2.1.2 Cuts 18
2.1.3 Examples 19
2.2 Operations of Weight 2 20
2.2.1 Double Swaps 20
2.2.2 Single Swaps 22
2.2.3 Examples 22
2.3 Basic Operations 22
3 Sorting By Basic Operations 23
3.1 Sorting Scenarios and Weight 23
3.2 The Effect of Operations on Orbits 24
3.3 Finding Sorting Operations 25
3.3.1 Genomes Not Co-Tailed 25
3.3.2 Co-Tailed Genomes 25
3.4 Existence of Sorting Scenarios 27
4 Intermediate Genomes 29
4.1 Triangle Equality 29
4.2 Linear Combination 30
4.3 Common Elements 30
4.4 Intermediate Genomes as Optimal Scenario Members 31
5 Minimax Genomes 32
5.1 Definitions 32
5.2 Examples 33
5.3 A Conjecture 35
5.4 Minimax Lower Bound: Not Always Attainable 36
5.5 Finding Minimax Genomes 37
5.5.1 Co-Tailed Genomes 37
5.5.2 Genomes Not Co-Tailed 39
5.6 Main Result 40
6 Parity 41
6.1 Parity Property 41
6.2 The Determinant 41
6.3 Determinant and Distance 43
Bibliography 44

Foreword

We started the work of reshaping these notes in 2016, when Meidanis was on sabbatical at the University of Ottawa, in David Sankoff's lab. We use the term "reshaping" because the main results shown here, on minimax genomes under the rank distance, were first presented in Biller's text for her PhD qualifying exam, written in 2014 [1].

In this earlier text, genomes were represented as permutations of gene extremities. The text was, therefore, based on permutation group theory, especially on the notion of norm, which is essential for developing the genome rearrangement modeling. However, permutation norms are not familiar to most people, and we felt this impaired a wide dissemination of the ideas.

After an informal conversation with our colleague Luiz San Martin from the Math Department of the University of Campinas, we decided to look at genomes as matrices, and develop the theory from this point of view. Zanetti successfully used this approach to implement an approximate solution to the median problem [8]. It turns out that the algebraic distance is half the rank distance of the corresponding matrices. On top of that, matrices have two algebraic operations, addition and multiplication, whereas permutations have just multiplication. As we developed the theory, we discovered that many of the key concepts had an alternative, additive definition in the matrix realm, which may open new avenues for thought and may lead to new insights and results. For instance, in Section 4.2 we show that if B is an intermediate genome between A and C, it is possible to write $B=S A+(I-S) C$ for some matrix S. This is strikingly similar to a property of vector spaces, which states that a point in the line segment between two vectors u and v can be written as $\lambda u+(1-\lambda) v$ for some scalar λ. It makes one wonder which other geometric ideas can be brought to the genomic realm. Being able to carry geometric intuition to comparative genomics may help solve important problems.

These notes are therefore our attempt at rewriting the minimax results in terms of the newly discovered matrix-based genome rearrangement theory. It builds everything from scratch, not depending on previous experience in genome rearrangements. Only a basic knowledge of linear algebra is required, say, at the level that most exact sciences students receive in their first university years. A slightly deeper understanding on eigenvalues and eigenvectors is needed for the section on parity, but this section is largely self-contained and does not significantly affect the rest of the presentation.

The contents are divided in six chapters, as follows. In Chapter 1 we introduce the first definitions, including genome matrices, distance, and orbits. We also derive an important formula for the distance based on orbits. In Chapter 2 we define operations on genomes, with focus on those with small rank. The chapter closes with the definition of basic operations, namely, cuts, joins, and double swaps. In Chapter 3 we study sorting scenarios going from a genome to another by basic operations. We show that from every genome we can reach any other with such scenarios. This also provides an alternative way of computing the distance. Intermediate genomes are the topic of Chapter 4. They can be characterized both as optimal scenario members, and as genomes for which the triangle inequality becomes an equality. They are also the medians of two genomes. A
related notion is that of a minimax genome, explored in Chapter 5. We establish a lower bound for the minimax score, and show exactly the cases where it is possible to achieve such a score. In any case, it is always possible to find a genome within 1 unit of the lower bound. Finally, Chapter 6 deals with an interesting parity property of the rank distance.

Our goal is that these notes serve as a guide for new students and researchers that want to know more about the subject. We also plan on evolving the material incrementally, say, at the rate of one new version per year, adding new results, exercises, better explanations, etc.

Context

To place this work within context, let's briefly review the steps that took us here. Genome rearrangements have been related to permutations at least since 1993, when Kececioglu and Sankoff studied the inversion distance [4]. A breakthrough occurred in 1995, when Hannenhalli and Pevzner solved the signed reversal distance problem polynomially, with a difficult and insightful algorithm [3].

The link between permutations and genome rearrangements had been established, but it was not completely satisfactory, for the following reason. Basic rearrangement operations, such as reversals, yielded permutations with supports of varying sizes in these early modelings. That is, a reversal could change $2,3,4$, or even all the elements. This is at odds with the intuition that basic operations should change just a few elements. In addition, the processes of adding or removing genes, or considering a run of consecutive genes as a single "super gene", all require renumbering of other genes and become cumbersome.

An ailment to this discomfort comes when you view genomes not as a function associating a position to a gene, but rather as a function associating each gene to the next gene in the same chromosome. In principle, both views are equivalent, but, when you use the "next gene" method, a reversal is always a permutation with small support. Adding and removing genes is also simpler, as it involves local changes only. The same holds true for packing runs of consecutive genes into one "super gene", or the inverse operation.

This is the approach taken by Meidanis and Dias in their 2000 paper, but it only applied to circular genomes. Nevertheless, the genomes could have any number of chromosomes [5].

Yancopoulos et al. took this idea one step further and generalized Meidanis and Dias' idea to include linear chromosomes, creating the celebrated double cut and join (DCJ) distance. This distance gained much popularity because it is easy to compute, is capable of modeling many of the basic genome rearrangement operations, and applies to multichromosomal genomes with an arbitrary mixture of linear and circular chromosomes [7].

DCJ was so popular that people hardly bothered to think of alternatives. However, there is more than one way of incorporating linear chromosomes into the Meidanis and Dias scheme. Feijao and Meidanis presented one such way in 2012, leading to what we call the algebraic distance [2]. Meidanis and Yancopoulos compare the DCJ and algebraic distances, showing that their difference can be traced to the way paths are closed to form cycles in the breakpoint graph [6].

These notes are based on the rank distance, which is equal to twice the algebraic distance of Feijao and Meidanis.

Acknowledgments

The authors would like to acknowledge the financial support from Brazilian research funding agency FAPESP (grants 2012/14104-0 PNB, 2012/13865-7 JPPZ, and 2016/01511-7 JM), and from Cana-
dian research funding agency NSERC (Discovery Grant to David Sankoff).
Campinas, August 2017
Joao Meidanis
Priscila Biller
Joao Paulo Pereira Zanetti

Chapter 1

Introduction

In this chapter we introduce gene extremities, the representation of genomes as matrices, the rank distance, and orbits. We also study various subspaces related to the distance of two genomes, and derive an important formula for the distance based on orbits.

1.1 Genomes as Matrices

We can represent genomes as matrices. For a genome G involving n genes and therefore $2 n$ gene extremities, we can choose an ordering for the extremities (any ordering is fine), and then define the corresponding genome matrix as follows:

$$
G_{i j}= \begin{cases}1 & \text { if } i \neq j \text { and extremities } i \text { and } j \text { are adjacent in } G, \text { or } \\ & \text { if } i=j \text { and extremity } i \text { is a telomere in } G \\ 0 & \text { if } i \neq j \text { and extremities } i \text { and } j \text { are not adjacent in } G, \text { or } \\ & \text { if } i=j \text { and extremity } i \text { is not a telomere in } G\end{cases}
$$

Let us see some examples. For genomes with just one gene, we have just two extremities. There are only two genomes: one with an adjacency linking these two extremities:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and the other with just telomeres:

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Here are some examples of genomes over two genes:

$$
C=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Genome matrices are square matrices and have the following properties:

- They are binary matrices, i.e., have 0 's and 1 's only.
- They are symmetric matrices, that is, they satisfy $A^{t}=A$.
- They are orthogonal matrices, that is, they satisfy $A^{t}=A^{-1}$.
- They are involutions, that is, they satisfy $A^{2}=I$.

It is easy to verify that any two of the last three properties implies the third one.
For binary matrices, being an orthogonal matrix is equivalent to having just one 1 in each row and in each column. Such binary matrices are called permutation matrices. We can then say that genome matrices are permutation matrices that are involutions.

1.2 Extremities as Column Vectors

To be compatible with our view of genomes as matrices, extremities will be seen as column unit vectors. For instance, considering genome C of Section 1.1, we see that x and y form an adjacency, where

$$
x=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Notice that $C x=y$ and $C y=x$, where $C x$ indicates the product of two matrices, C with size $2 n \times 2 n$ and x with size $2 n \times 1$, giving a result of size $2 n \times 1$ again, namely, y.

Extremities that are telomeres in a genome A, on the other hand, are characterized as column unit vectors z such that $A z=z$. For instance, considering the same matrix C as before, the vectors

$$
z=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

are telomeres.

1.3 Distance

A distance can be defined for genomes over the same set of genes as follows. If A and B are genome matrices over the same genes, we write:

$$
d(A, B)=r(B-A),
$$

where r is the rank of a matrix.
There are several equivalent ways of defining matrix rank. In this text, we will use the following definition: $r(X)$ is the dimension of the subspace im X, the image of X, which is the subspace of all vectors that can be written as $X u$ for some vector u.

This distance satisfies the properties required of a metric. To show this, notice first that $d(A, A)=r(0)=0$, and the 0 matrix is the only one with rank 0 , so if $d(A, B)=0$ we have $B-A=0$ and hence $A=B$. Also, $d(A, B)=d(B, A)$ since the rank does not change when the entire matrix is multiplied by a nonzero scalar (-1 in this case). The triangle inequality comes
from the fact that $r(X+Y) \leq r(X)+r(Y)$, because

$$
\begin{aligned}
d(A, C) & =r(C-A) \\
& =r((B-A)+(C-B)) \\
& \leq r(B-A)+r(C-B) \\
& =d(A, B)+d(B, C) .
\end{aligned}
$$

Consider matrices A and B from Section 1.1. Their distance is:

$$
d(A, B)=r(B-A)=r\left(\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\right)=1
$$

Now consider matrices C and D from the same section. Their distance is:

$$
d(C, D)=r(D-C)=r\left(\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\right)=2 .
$$

If we also consider:

$$
E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

we have:

$$
d(C, E)=r(E-C)=r\left(\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right)=2 .
$$

Notice that sometimes you get zero rows in a matrix. These obviously do not add anything to the rank. But the number of nonzero rows is not the rank. In general, this number is greater than or equal to the rank.

1.4 Orbits

An important concept related to the distance between genome matrices A and B is that of the so-called $A B$-orbits (the name comes from the theory of permutation groups). Given two genomes A and B over the same genes, we define the following relation between gene extremities:

$$
x \sim_{A B} y \text { when } y-x \in \operatorname{im}(B-A) .
$$

In this case, we say that x and y are $A B$-equivalent. When there is no risk of confusion, we will write simply $x \sim y$, omitting the subscript $A B$ when it is clear from the context.

Observe that this is an equivalence relation. Notice that $x \sim_{A B} x$ because $x-x=0$ which belongs to $\operatorname{im}(B-A)$. Also, $x \sim_{A B} y$ implies $y \sim_{A B} x$, because when $y-x$ belongs to $\operatorname{im}(B-A)$ its opposite vector $x-y$ also belongs to this linear subspace of $\mathbb{R}^{2 n}$.

Finally, notice that $x \sim_{A B} y$ and $y \sim_{A B} z$ imply $y-x \in \operatorname{im}(B-A)$ and $z-y \in \operatorname{im}(B-A)$, which in turn imply that

$$
z-x=(y-x)+(z-y) \in \operatorname{im}(B-A)
$$

again because $\operatorname{im}(B-A)$ is a linear subspace.
The classes of this equivalence relation are called $A B$-orbits. Here are some preliminary, relevant result on $A B$-orbits.

Lemma 1. For any two genomes A and B over the same genes, and for any gene extremities x and y we have:

1. $x \sim_{A B} B A x$
2. $x \sim_{A B} A B x$
3. $x \sim_{A B} y$ implies $x \sim_{A B} A B y$

Proof. For the first statement, notice that:

$$
(B-A)(A x)=B A x-A A x=B A x-x
$$

showing that $B A x-x \in \operatorname{im}(B-A)$ and therefore that $x \sim_{A B} B A x$.
For the second statement, notice that:

$$
(B-A)(-B x)=-B B x+A B x=A B x-x
$$

showing that $A B x-x \in \operatorname{im}(B-A)$ and therefore that $x \sim_{A B} A B x$.
For the third statement, just use the transitive property of $A B$-equivalence with $x \sim_{A B} y$ and $y \sim_{A B} A B y$.

To proceed, we need a definition on matrices applied to orbits and other vector sets, and an auxiliary result.

Definition 1 (Matrix applied to set). If A is a matrix and \mathcal{V} is a vector set, the notation $A \mathcal{V}$ denotes the following vector set:

$$
A \mathcal{V}=\{A v \mid v \in \mathcal{V}\}
$$

Lemma 2 (Orbit image). For any two genome matrices over the same genes A and B, and any extremities x and y, we have that $x \sim_{A B} y$ if and only if $A x \sim_{A B} A y$.

Proof. If $x \sim_{A B} y$, then by definition $y-x=(B-A) u$ for some vector u. Then $A y-A x=$ $A(y-x)=A(B-A) u=A B u-u$.

On the other hand, $(B-A)(-B u)=-B B u+A B u=A B u-u$ as well, showing that $A B u-u \in$ $\operatorname{im}(B-A)$. It follows that $A y-A x \in \operatorname{im}(B-A)$, supporting the conclusion that $A y \sim_{A B} A x$.

For the other direction, just notice that A is involutive.
Lemma 3. If \mathcal{S} is an $A B$-orbit, then $A \mathcal{S}$ is an $A B$-orbit as well.
Proof. To be an $A B$-orbit, $A \mathcal{S}$ must satisfy:

1. for any two extremities $x, y \in A \mathcal{S}$, we have $x \sim_{A B} y$, and
2. if $x \in A \mathcal{S}$ and $x \sim_{A B} y$ then $y \in A \mathcal{S}$.

Let us begin by proving the first statement. If $x, y \in A \mathcal{S}$, then $A x, A y \in \mathcal{S}$ and are, consequently, equivalent. We can then apply Lemma 2 to conclude that $x \sim_{A B} y$.

The second statement also follows from Lemma 2. If $x \sim_{A B} y$, then $A x \sim_{A B} A y$. Since $x \in A \mathcal{S}$, we have $A x \in \mathcal{S}$, and therefore $A y \in \mathcal{S}$ too, because \mathcal{S} is an orbit, that is, an $A B$-equivalence class. We conclude that $y \in A \mathcal{S}$.

Lemma 4. If \mathcal{S} is an $A B$-orbit, then $A B \mathcal{S}=\mathcal{S}$.
Proof. From the fact that $x \sim_{A B} A B x$ (Lemma 1) we see that $A B$ maps every extremity x of \mathcal{S} into \mathcal{S} itself. In other words, $A B \mathcal{S} \subseteq \mathcal{S}$. However, $A B$ is a bijection, which means that $|A B \mathcal{S}|=|\mathcal{S}|$. We conclude that $A B \mathcal{S}=\mathcal{S}$.

Notice that $A B \mathcal{S}=\mathcal{S}$ in turn implies that $B \mathcal{S}=A A B \mathcal{S}=A \mathcal{S}$. This observation will be useful in our analysis of rank 2 operations (see Section 2.2).

1.5 Symmetric Matrices

To continue our study, let us review some useful properties of symmetric matrices that we will use in the future. Recall the definition of the subspace \mathcal{V}^{\perp} orthogonal to a given subspace \mathcal{V} :

Definition 2. The subspace \mathcal{V}^{\perp} is defined as:

$$
\mathcal{V}^{\perp}=\left\{u \mid v^{t} u=0 \text { for every } v \in \mathcal{V}\right\}
$$

It is known that $\operatorname{dim} \mathcal{V}+\operatorname{dim} \mathcal{V}^{\perp}=2 n$, for square matrices of size $2 n \times 2 n$.
Lemma 5. If A is a symmetric matrix, then $(\operatorname{im} A)^{\perp}=\operatorname{ker} A$.
Proof. Notice that if $u \in \operatorname{im} A$ and $v \in \operatorname{ker} A$, then $u=A w$ for some vector w and

$$
v^{t} u=v^{t} A w=v^{t} A^{t} w=(A v)^{t} w=0^{t} w=0
$$

Hence, ker $A \subseteq(\operatorname{im} A)^{\perp}$. Since these two subspaces have the same dimension, equality follows.

Naturally, this last lemma applies to $B-A$ when A and B are genome matrices.

1.6 The Kernel

In this section we will examine the relationship of orbits to the kernel of $B-A$. Let's start by looking at the coefficients of equivalent extremities on vectors in this kernel.

Lemma 6 (Same coefficients). For any two genomes A and B over the same genes, if $v \in \operatorname{ker}(B-A)$ and $x \sim_{A B} y$, then $x^{t} v=y^{t} v$.

Proof. Since $\operatorname{im}(B-A)$ and $\operatorname{ker}(B-A)$ are orthogonal, the hypotheses imply $(y-x)^{t} v=0$. Therefore $x^{t} v=y^{t} v$.

This lemma shows that, when we write a vector $v \in \operatorname{ker}(B-A)$ as a linear combination of gene extremities, as in:

$$
v=\sum_{x \in \mathcal{E}} c_{x} x
$$

where \mathcal{E} is the set of all gene extremities, then the coefficients c_{x} and c_{y} are equal when x and y are equivalent. This is because the coefficient c_{x} is nothing else than $x^{t} v$, and c_{y} is $y^{t} v$. With this result we can construct a basis for the subspace $\operatorname{ker}(B-A)$.

Definition 3. For an $A B$-orbit \mathcal{S}, define:

$$
\sum \mathcal{S}=\sum_{x \in \mathcal{S}} x
$$

Lemma 7 (Kernel basis). For two genomes A and B over the same n genes, we have that the set

$$
\mathcal{V}_{A B}=\left\{\sum \mathcal{S} \mid \mathcal{S} \text { is an } A B \text {-orbit }\right\}
$$

is a basis for $\operatorname{ker}(B-A)$.
Proof. Given an $A B$-orbit \mathcal{S}, consider the vector $\sum \mathcal{S}$. From Lemma 4 we learn that $A B$ acts as a permutation in \mathcal{S}, and therefore $A B \sum \mathcal{S}=\sum \mathcal{S}$.

However, since A is a genome matrix, $A B v=v$ is equivalent to $B v=A v$, that is, $v \in \operatorname{ker}(B-A)$. We conclude that $\sum \mathcal{S}$ belongs to $\operatorname{ker}(B-A)$ for every orbit \mathcal{S}.

On the other hand, if $v \in \operatorname{ker}(B-A)$, Lemma 6 implies that when we write

$$
v=\sum_{x \in \mathcal{E}} c_{x} x
$$

as a linear combination of extremities, there is a common coefficient $c_{\mathcal{S}}$ for all elements of orbit \mathcal{S}, allowing us to write instead:

$$
v=\sum_{\mathcal{S}} c_{\mathcal{S}} \sum \mathcal{S}
$$

that is, v is a linear combination of the p vectors $\sum \mathcal{S}$, where p is the number of $A B$-orbits. This shows that the $\sum \mathcal{S}$ over all $A B$-orbits \mathcal{S} generate $\operatorname{ker}(B-A)$. Since the $A B$-orbits are disjoint, these vectors are linearly independent. Therefore, they form a basis of $\operatorname{ker}(B-A)$.

1.7 Distance Formula

Now comes a result relating the $A B$-orbits to the distance $d(A, B)$.
Lemma 8 (Distance and orbits). For two genomes A and B over the same n genes, we have:

$$
d(A, B)=2 n-p
$$

where p is the number of $A B$-orbits.
Proof. We know that:

$$
\begin{equation*}
d(A, B)=r(B-A)=\operatorname{dimim}(B-A)=2 n-\operatorname{dim} \operatorname{ker}(B-A) \tag{1.1}
\end{equation*}
$$

since $2 n$ is the number of extremities for n genes and the kernel and image of a matrix are complementary with respect to the domain space, which has dimension $2 n$ in our case.

From Lemma 7 we learn that $p=\operatorname{dim} \operatorname{ker}(B-A)$. Plugging this on Equation 1.1 we get our result.

Let us now establish a few more results about orbits that will be necessary in our forthcoming study on $\operatorname{ker}(B-A)$, and in the classification of the low-ranked operations studies in Chapter 2.

Lemma 9. An extremity x belongs to a singleton $A B$-orbit if and only if x is either a common telomere of A and B or one end of a common adjacency of A and B.

Proof. Suppose that $\mathcal{S}=\{x\}$ is a singleton orbit. From Lemma 4, we get $A B x=x$. Notice that $B x=A A B x=A x$ in this case. If $A x=x$, then $B x=x$ as well and x is a common telomere of A and B. If $A x=y \neq x$, then $B x=A x=y$ as well, and x is part of the common adjacency $x y$.

Conversely, if x is a common telomere or x is part of a common adjacency, then $A x=B x$, implying $x \in \operatorname{ker}(B-A)$. Let y be any extremity with $x \sim_{A B} y$. Applying Lemma 6 with x in place of v we reach:

$$
x^{t} x=x^{t} y \Longrightarrow 1=x^{t} y .
$$

We conclude that in fact $y=x$, leading to the conclusion that $\{x\}$ is a singleton $A B$-orbit.

1.8 The Image

We have seen earlier, with Lemma 6, a characterization of vectors in $\operatorname{ker}(B-A)$ in terms of their coefficients with respect to the extremities. Now we can use Lemma 5 to obtain a characterization for vectors in $\operatorname{im}(B-A)$.

Lemma 10. Given two genomes A and B over the same genes, we have that $v \in \operatorname{im}(B-A)$ if and only if for any $A B$-orbit \mathcal{S} the following equation holds:

$$
\begin{equation*}
\sum_{x \in \mathcal{S}} x^{t} v=0 \tag{1.2}
\end{equation*}
$$

Proof. Suppose that $v \in \operatorname{im}(B-A)$. Given an $A B$-orbit \mathcal{S}, from Lemma 7 we know that $\sum \mathcal{S}$ belongs to $\operatorname{ker}(B-A)$. Since $(\operatorname{im} A)^{\perp}=\operatorname{ker} A$ (Lemma 5), it follows that

$$
\sum_{x \in \mathcal{S}} x^{t} v=\left(\sum_{x \in \mathcal{S}} x\right)^{t} v=\left(\sum \mathcal{S}\right)^{t} v=0
$$

Conversely, let's assume that Equation 1.2 holds for a certain vector v and all $A B$-orbits \mathcal{S}. We conclude that v is orthogonal to all the vectors in $\operatorname{ker}(B-A)$, that is:

$$
v \in(\operatorname{ker}(B-A))^{\perp} .
$$

However, $(\operatorname{ker}(B-A))^{\perp}=\operatorname{im}(B-A)$ by Lemma 5, and hence $v \in \operatorname{im}(B-A)$.

1.9 Multiplicative characterization of orbits

We saw in Section 1.4 that the definition of $A B$-orbits relies on the difference matrix $B-A$. It turns out that these orbits could also be defined via successive multiplications by the matrix $A B$, as we will see in the present section.

Let us start by defining the following set:

$$
\mathcal{T}_{A B}(x)=\left\{(A B)^{m} x \mid m \in \mathbb{Z}\right\} .
$$

At this point, it is good to clarify what we mean by $(A B)^{m}$ when m is a negative number. Just observe that $A B$ is invertible, and that its inverse is $B A$. Then, all you have to do is to think of $(A B)^{m}$ as being $(B A)^{-m}$ when m is a negative integer, and all will be fine. It does not hurt to mention also that $(A B)^{0}=I$.

First notice that this set is actually finite.

Lemma 11 (Finite powers). For any two genome matrices A and B over the same genes, and any extremity x, we can write:

$$
\mathcal{T}_{A B}(x)=\left\{x, A B x,(A B)^{2} x, \ldots,(A B)^{k-1} x\right\},
$$

where $k=\left|\mathcal{T}_{A B}(x)\right|$. Moreover, $(A B)^{k} x=x$.
Proof. The elements of $\mathcal{T}_{A B}(x)$ are all extremities. But, since there is only a finite number of extremities, we must have two distinct integers m_{1} and m_{2} such that $(A B)^{m_{1}} x=(A B)^{m_{2}} x$, which implies $(A B)^{m_{1}-m_{2}} x=x$ and also $(A B)^{m_{2}-m_{1}} x=x$. So, there is some positive integer m such that $(A B)^{m} x=x$.

Let k be the smallest such positive integer. Then $(A B)^{k} x=x$ and the extremities $x, A B x$, $(A B)^{2} x, \ldots,(A B)^{k-1} x$ are all distinct, by definition of k, and hence $k \leq\left|\mathcal{T}_{A B}(x)\right|$.

On the other hand, any $y \in \mathcal{T}_{A B}(x)$ can be written as $(A B)^{m} x$, for some integer m. Performing an integer division we obtain $m=q k+r$, with q an integer and $0 \leq r<k$. We see then that $y=(A B)^{m} x=(A B)^{r+q k} x=(A B)^{r}(A B)^{q k} x=(A B)^{r} x$, since $(A B)^{q k} x=x$. This shows that actually $\mathcal{T}_{A B}(x)=\left\{x, A B x,(A B)^{2} x, \ldots,(A B)^{k-1} x\right\}$, and we conclude that $\left|\mathcal{T}_{A B}(x)\right|=k$.

Another auxiliary lemma is needed here, showing that the sum of all elements of $\mathcal{T}_{A B}(x)$ belongs to the kernel of $B-A$.

Lemma 12. For any two genome matrices A and B over the same genes, and any extremity x, we have:

$$
\sum_{m=0}^{k-1}(A B)^{m} x \in \operatorname{ker}(B-A)
$$

where $k=\left|\mathcal{T}_{A B}(x)\right|$.
Proof. Notice that

$$
A \sum_{m=0}^{k-1}(A B)^{m} x=A x+\sum_{m=1}^{k-1} B(A B)^{m-1} x=A x+\sum_{m=0}^{k-2} B(A B)^{m} x .
$$

On the other hand,

$$
B \sum_{m=0}^{k-1}(A B)^{m} x=\sum_{m=0}^{k-1} B(A B)^{m} x=\sum_{m=0}^{k-2} B(A B)^{m} x+B(A B)^{k-1} x .
$$

Notice further that $A x=B(A B)^{k-1} x$, because $(A B)^{k} x=x$. It follows that $A v=B v$ for $v=\sum_{m=0}^{k-1}(A B)^{m} x$, and therefore $v \in \operatorname{ker}(B-A)$.

We are now ready for our main characterization.
Theorem 1 (Multiplicative characterization of orbits). For any two genome matrices A and B over the same genes, two extremities x and y are $A B$-equivalent if and only if there is $m \in \mathbb{Z}$ such that $y=(A B)^{m} x$.

Proof. If $y=(A B)^{m} x$, repeated application of Lemma 1 implies that $x \sim_{A B} y$.
For the other direction, assume that x and y are $A B$-equivalent. Taking $v=\sum_{m=0}^{k-1}(A B)^{m} x$, with $k=\left|\mathcal{T}_{A B}(x)\right|$, we have:

$$
x^{t} v=x^{t} \sum_{m=0}^{k-1}(A B)^{m} x=1,
$$

because x is equal to exactly one of the extremities in the sum. By Lemma 6, we must have $y^{t} v=1$ as well, given that $v \in \operatorname{ker}(B-A)$ by Lemma 12. Then,

$$
1=y^{t} v=y^{t} \sum_{m=0}^{k-1}(A B)^{m} x \text {. }
$$

It follows that y must be equal to some extremity in this sum, that is, there actually is an $m \in \mathbb{Z}$ such that $y=(A B)^{m} x$. We can even pick m so that $0 \leq m \leq k-1$.

Chapter 2

Operations

In this chapter we define operations on genomes, with focus on those with small rank. The chapter closes with the definition of basic operations, namely, cuts, joins, and double swaps.

As we saw, the distance between two genomes is the rank of $B-A$. It makes sense to try to understand more about matrices of the form $B-A$, where A and B are genomes. For one thing, we can think of such a matrix as some kind of transformation that can be applied to genome A to yield a genome again. The following definitions captures this concept.

Definition 4. A matrix P is applicable to a genome matrix A or can be applied to A when $A+P$ is also a genome matrix.

Definition 5. A matrix that is applicable to at least one genome is called an operation. The weight of an operation P is just its rank, $r(P)$.

Some operations can be applied to several genomes. We will see examples in the sequel. The following result is simple, but it will be useful when we examine the effect of operations on the distance, later on in Chapter 4.

Lemma 13. If P is an operation applicable to a genome A, we have:

$$
P A=-B P,
$$

where $B=A+P$.
Proof. We have:

$$
P A=(B-A) A=B A-A^{2}=B A-I .
$$

On the other hand,

$$
-B P=-B(B-A)=-B^{2}+B A=-I+B A .
$$

Since both expressions agree, we have our result.
We will be particularly interested in the simplest operations, that is, those with small rank. It turns out that, by using operations of rank 1 and 2 only, we can reach any genome from any other genome. This will be thoroughly demonstrated in Chapter 3 about scenarios, but here we will build the foundations for this work. It should be remarked that rank 1 operations are not enough to reach all other genomes. We do need the rank 2 operations in this result.

2.1 Operations of Weight 1

In this section we will study rank 1 operations. This is equivalent to looking at pairs of genomes A and B such that $d(A, B)=1$, because in this case the difference $P=B-A$ will be a rank 1 operation. To uncover the format of such operations, we can reason as follows. If $d(A, B)=1$, then Lemma 8 implies that there are $2 n-1 A B$-orbits. This is only possible if all $A B$-orbits are singletons, except for one 2 -element orbit $\mathcal{S}=\{x, y\}$. Lemma 3 guarantees that $A \mathcal{S}=\mathcal{S}$, because $A \mathcal{S}$ must be an orbit as well and there are no other orbits with two elements. In particular, $A x \in \mathcal{S}$.

Now if $A x=x$, we must have $A y=y$ to fulfill the condition $A \mathcal{S}=\mathcal{S}$. In this case, $B x$ must be equal to y since $B \mathcal{S}=\mathcal{S}$ as well and $A B x=y$. This characterizes an operation called a join in A, which will be studied more closely in the sequel.

The other possible case is when $A x=y$. This implies $A y=x, B x=x$, and $B y=y$. This operation is called a cut in A and will likewise be studied in more detail in the following sections. Cuts and joins are therefore the only rank 1 operations that exist.

2.1.1 Joins

Inspired by the above considerations, we define the first type of rank 1 operation.
Definition 6. A join is a matrix of the form $J(x, y)=(x-y)\left(y^{t}-x^{t}\right)$ where x and y are distinct extremities.

Notice that $J(x, y)^{t}=J(x, y)$ and $J(y, x)=J(x, y)$ for all joins. Also, the image of a join has rank 1 because it is equal to the line generated by non-null vector $x-y$.

Lemma 14. If P is a join, then $P^{2}=-2 P$.
Proof. Let $P=J(x, y)=(x-y)\left(y^{t}-x^{t}\right)$. Then:

$$
P^{2}=(x-y)\left(y^{t}-x^{t}\right)(x-y)\left(y^{t}-x^{t}\right) .
$$

We can develop the center part as:

$$
\left(y^{t}-x^{t}\right)(x-y)=y^{t} x-y^{t} y-x^{t} x+x^{t} y=0-1-1+0=-2 .
$$

Since this center part is a 1×1 matrix, we can bring it to the left as a scalar, yielding:

$$
P^{2}=-2(x-y)\left(y^{t}-x^{t}\right)=-2 P
$$

The following result specifies the conditions a genome has to satisfy so that a join is applicable to it.

Lemma 15. A join $P=J(x, y)$ is applicable to a genome matrix A if and only if $A x=x$ and $A y=y$. In this case the resulting genome $B=A+P$ satisfies $B x=y$ and $B y=x$.

Proof. Since $B=A+P$, we have:

$$
B x=(A+P) x=A x+P x=A x+(x-y)\left(y^{t}-x^{t}\right) x=A x+(x-y)(0-1)=A x-x+y .
$$

If $A x \neq x$ then $B x$ is not an extremity, but rather a linear combination with non-null coefficients of at least two distinct extremities (x and y). Therefore, if $A x \neq x, P$ is not applicable to A.

By the same token, looking at the image of y under B, we get:

$$
B y=(A+P) y=A y+P y=A y+(x-y)\left(y^{t}-x^{t}\right) y=A y+(x-y)(1-0)=A y+x-y
$$

which shows that $A y$ has to be y if we want B to be a genome.
On the other hand, if $A x=x$ and $A y=y$, we have $B x=y$ and $B y=x$. In all extremities z other that x and y we have $B z=A z$, so this is an extremity. We conclude that, if $A x=x$ and $A y=y, B$ takes extremities to extremities, that is, it is a $0-1$ matrix.

The resulting matrix B is also symmetric, as the sum of two symmetric matrices A and P. To be a genome, all we need to verify is that its square is I. Let's compute:

$$
B^{2}=(A+P)(A+P)=A^{2}+A P+P A+P^{2}=I+A P+P A-2 P
$$

in view of the fact that A is a genome and of Lemma 14.
Now

$$
A P=A(x-y)\left(y^{t}-x^{t}\right)=(A x-A y)\left(y^{t}-x^{t}\right)=(x-y)\left(y^{t}-x^{t}\right)=P
$$

and

$$
P A=P^{t} A^{t}=(A P)^{t}=P^{t}=P
$$

It follows that

$$
B^{2}=I+P+P-2 P=I
$$

2.1.2 Cuts

We analyze here the other type of rank 1 operation.
Definition 7. A cut is a matrix of the form $-J(x, y)=(x-y)\left(x^{t}-y^{t}\right)$ where x and y are distinct extremities.

Notice that opposite of a cut is a join and vice-versa. Cuts have also other interesting properties, as we can see in the next lemmas.

Lemma 16. If P is a cut, then $P^{2}=2 P$.
Proof. The opposite of a cut is a join, so $Q=-P$ is a join. Then, using Lemma 14,

$$
P^{2}=(-Q)^{2}=Q^{2}=-2 Q=2 P
$$

The following result specifies the conditions a genome has to satisfy so that a cut is applicable to it.

Lemma 17. A cut $P=-J(x, y)$ is applicable to a genome matrix A if and only if $A x=y$. In this case, the resulting genome $B=A+P$ satisfies $B x=x$ and $B y=y$.

Proof. Since $B=A+P$, we have:

$$
B x=(A+P) x=A x+P x=A x+(x-y)\left(x^{t}-y^{t}\right) x=A x+(x-y)(1-0)=A x+x-y
$$

If $A x \neq y$ then $B x$ is not an extremity, but rather a linear combination with non-null coefficients of at least two distinct extremities $(x$ and $y)$. Therefore, if $A x \neq y, P$ is not applicable to A.

On the other hand, if $A x=y$, we have $B x=x$. Likewise,

$$
B y=(A+P) y=A y+P y=A y+(x-y)\left(x^{t}-y^{t}\right) y=A y+(x-y)(0-1)=x-x+y=y,
$$

because $A x=y$ implies $A y=x$. In all extremities z other that x and y we have $B z=A z$, so this is an extremity. We conclude that, if $A x=y, B$ takes extremities to extremities, that is, it is a $0-1$ matrix.

The resulting matrix B is also symmetric, as the sum of two symmetric matrices A and P. To be a genome, all we need to verify is that its square is I. Let's compute:

$$
B^{2}=(A+P)(A+P)=A^{2}+A P+P A+P^{2}=I+A P+P A+2 P
$$

in view of the fact that A is a genome and of Lemma 16 .
Now

$$
A P=A(x-y)\left(x^{t}-y^{t}\right)=(A x-A y)\left(x^{t}-y^{t}\right)=(y-x)\left(x^{t}-y^{t}\right)=-P .
$$

and

$$
P A=P^{t} A^{t}=(A P)^{t}=(-P)^{t}=-P .
$$

It follows that

$$
B^{2}=I-P-P+2 P=I .
$$

The final conclusion is that genomes at distance 1 from A are just the ones where two telomeres in A are joined to form a new adjacency, or an adjacency in A is destroyed to create two telomeres.

2.1.3 Examples

Recall the matrices from Section 1.1:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \text { and } C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

and the extremity vectors from Section 1.2:

$$
x=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], y=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], z=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \text { and } w=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

The difference $C-A$ is equal to the sum of a cut and a join, as follows. Consider the cut

$$
-J(x, y)=-J\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the join

$$
J(z, w)=J\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

It is straightforward to verify that $C-A=-J(x, y)+J(z, w)$. Notice that we can either apply the cut first, and then the join, or the join first, and then the cut, since both operations are applicable to A.

The difference between A and B is also the sum of a cut and a join:

$$
B-A=-J(x, y)+J(y, z) .
$$

However, in this case, the cut must be applied first, because the join is not applicable to A.

2.2 Operations of Weight 2

Of course, we can reach genomes at distance 2 from A by first getting a genome B at distance 1 from A and then looking for genomes at distance 1 from B. But we are interested in genomes at distance 2 from A that cannot be reached by this method.

Let's then think of a generic genome B at distance 2 from A. As we've done earlier, let's analyze the number of $A B$-orbits. For $d(A, B)=2$ we must have $2 n-2$ orbits. The only possibilities are:

- all singleton orbits, except for two 2-element orbits;
- all singleton orbits, except for one 3 -element orbit.

In the next sections we will contemplate each case.

2.2.1 Double Swaps

If we just have two non-singleton orbits \mathcal{S} and \mathcal{T}, with $|\mathcal{S}|=|\mathcal{T}|=2$, two things may happen: either $A \mathcal{S}=\mathcal{S}$ and $A \mathcal{T}=\mathcal{T}$ or $A \mathcal{S}=\mathcal{T}$ and $A \mathcal{T}=\mathcal{S}$. The first case does not add much because it leads to a rank 2 operation that is just a combination of two consecutive rank 1 operations acting on different extremities. Let's therefore concentrate our attention on the second case. If $\mathcal{S}=\{x, y\}$ and $\mathcal{T}=\{z, w\}$, without loss of generality we have $A x=w$, which forces $A y=z, B x=z$, and $B y=w$, since $B \mathcal{S}=\mathcal{T}$ and B cannot agree with A in x otherwise x would end up in an $A B$-orbit by itself. We conclude that A and B differ only on the following extremities:

$$
\begin{array}{lll}
A x=w & , & B x=z, \\
A y=z & , & B y=w, \\
A z=y & , & B z=x, \\
A w=x & , & B w=y .
\end{array}
$$

In this case extremities x and y exchange partners going from A to B. This is a kind of distance2 operation that cannot be achieved by two distance-1 operations. We would need 4 distance- 1 operations: removing two adjacencies from A, and then adding two different adjacencies to the result to reach B.

We capture this operation type in our next definition.
Definition 8. A double swap is a matrix of the form $W(x, y, z, w)=(x-y)\left(z^{t}-w^{t}\right)+(z-$ $w)\left(x^{t}-y^{t}\right)$ where x, y, z, and w are distinct extremities.

Notice that $W(x, y, z, w)^{t}=W(x, y, z, w)$ and $W(x, y, z, w)=W(y, x, w, z)=-W(y, x, z, w)$ for all double swaps. This means that the opposite of a double swap is another double swap. Special properties of double swaps are listed below.

Lemma 18. The square of a double swap is a sum of cuts:

$$
W(x, y, z, w)^{2}=-2 J(x, y)-2 J(z, w) .
$$

Proof. Let $u=x-y$ and $v=z-w$. Then:

$$
W(x, y, z, w)^{2}=\left(u v^{t}+v u^{t}\right)\left(u v^{t}+v u^{t}\right)=u v^{t} v u^{t}+v u^{t} u v^{t},
$$

since the other terms vanish because u and v are orthogonal vectors, and hence $u^{t} v=v^{t} u=0$. Also,

$$
u^{t} u=v^{t} v=2,
$$

and these scalars can be moved to the beginning of the products, yielding:

$$
W(x, y, z, w)^{2}=\left(u v^{t}+v u^{t}\right)\left(u v^{t}+v u^{t}\right)=2 u u^{t}+2 v v^{t},
$$

which is just the sought formula, because $u u^{t}=-J(x, y)$ and $v v^{t}=-J(z, w)$.
The following result specifies the conditions a genome has to satisfy so that a double swap is applicable to it.
Lemma 19. A double swap $P=W(x, y, z, w)$ is applicable to a genome matrix A if and only if $A x=w$ and $A y=z$. In this case, the resulting genome $B=A+P$ satisfies $B x=z$ and $B y=w$.
Proof. Since $B=A+P$, we have:

$$
B x=(A+P) x=A x+P x=A x+z-w .
$$

If $A x \neq w$ then $B x$ is not an extremity, but rather a linear combination with non-null coefficients of at least two distinct extremities (z and w). Therefore, if $A x \neq w, P$ is not applicable to A.

Likewise,

$$
B y=(A+P) y=A y+P y=A y+w-z,
$$

so $A y$ must be z for this to produce an extremity.
On the other hand, if $A x=w$ and $A y=z$, we have $B x=z, B y=w, B z=x$, and $B w=y$. In all other extremities u we have $B u=A u$, so B takes extremities to extremities, that is, it is a $0-1$ matrix.

The resulting matrix B is also symmetric, as the sum of the two symmetric matrices A and P. To be a genome, all we need to verify is that its square is I. Let's compute:

$$
\begin{aligned}
B^{2} & =(A+P)(A+P) \\
& =A^{2}+A P+P A+P^{2} \\
& =I+A P+P A-2 J(x, y)-2 J(z, w),
\end{aligned}
$$

in view of the fact that A is a genome and of Lemma 18.
Now

$$
\begin{aligned}
A P & =A(x-y)\left(z^{t}-w^{t}\right)+A(z-w)\left(x^{t}-y^{t}\right) \\
& =(w-z)\left(z^{t}-w^{t}\right)+(y-x)\left(x^{t}-y^{t}\right) \\
& =J(z, w)+J(x, y),
\end{aligned}
$$

and

$$
P A=P^{t} A^{t}=(A P)^{t}=J(z, w)+J(x, y),
$$

since $A P$ is symmetric.
It follows that

$$
B^{2}=I+J(z, w)+J(x, y)+J(z, w)+J(x, y)-2 J(x, y)-2 J(z, w)=I
$$

2.2.2 Single Swaps

Let's now investigate the possibility of a single non-singleton, three-element $A B$-orbit \mathcal{S}. In this case, $A \mathcal{S}=\mathcal{S}$. Since adjacencies use two extremities, we must have at least one A-telomere in \mathcal{S}. We may have one or three A-telomeres in \mathcal{S}, but since B also has a telomere in \mathcal{S}, we cannot have three A-telomeres there, otherwise one of them would be a common telomere with B, contradicting the fact that \mathcal{S} is an $A B$-orbit. Therefore, each of A, B has exactly one telomere in \mathcal{S}.

Say $\mathcal{S}=\{x, y, z\}$, where y is the B-telomere and z is the A-telomere. Then A and B differ only on the following extremities:

$$
\begin{array}{ll}
A x=y & , \quad B x=z \\
A y=x & , \quad B y=y \\
A z=z & , \quad B z=x
\end{array}
$$

This is interesting but it is covered by doing two distance-1 operations: first remove adjacency $x y$ and then add adjacency $x z$. We call this a single swap.

We conclude that the only distance- 2 operations are the double swap and the ones obtained by applying distance-1 transformations twice.

2.2.3 Examples

Consider again the matrices used in Section 2.1.3. The difference $B-A$ mentioned in that section is in fact a single swap.

For an example of double swap, consider the following matrices:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Their difference is a double swap:

$$
B-A=\left[\begin{array}{cccc}
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

In terms of the vectors defined in Section 2.1.3, we can write:

$$
B-A=W(x, w, z, y)
$$

2.3 Basic Operations

Let's close the chapter with an important definition.
Definition 9. A basic operation is an operation of one of the following kinds: cut, join, or double swap.

We exclude the single swap because it can be replaced by a cut followed by a join.

Chapter 3

Sorting By Basic Operations

In this chapter, we will investigate the process of modifying a given genome by successive applications of basic operations. Can we reach any other genome by doing so? The answer is affirmative, and this provides an alternative way of computing the distance.

3.1 Sorting Scenarios and Weight

What is a sorting scenario? It is a list of matrices $\mathcal{L}=\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ such that each matrix in the series differs from its neighbors by a basic operation (cut, join, or double swap). These operations have weights, which are equal to their ranks: cuts and joins have weight 1 , whereas double swaps have weight 2. Each scenario also has a weight, also called its total weight, which is the sum of the weights of all consecutive operations in it. The weight of scenario \mathcal{L} will be denoted by $w(\mathcal{L})$.

We say that a sorting scenario goes from A to C when $B_{0}=A$ and $B_{k}=C$. Among all sorting scenarios from A to C, some will have minimum total weight. These will be called optimal sorting scenarios. The weight of an optimal sorting scenario from A to C will be denoted by $w(A, C)$. In principle, it is not even clear that there is a sorting scenario for any pair on genome matrices A and C. However, when there is one such scenario going from A to C, we can be sure that its weight is not smaller than the distance.

Theorem 2. If there is a sorting scenario from A to C, its total weight is at least $d(A, C)$.
Proof. Let $\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ be a sorting scenario from A to C. We can write:

$$
B_{i}=B_{i-1}+P_{i},
$$

for $i=1,2, \ldots, k$, where P_{i} is the operation transforming B_{i-1} into B_{i}. Therefore, each P_{i} is either a cut, a join, or a double swap. And the weight of P_{i} is its rank, $r\left(P_{i}\right)$. It follows that:

$$
C-A=P_{1}+P_{2}+\ldots+P_{k}
$$

and hence

$$
d(A, C)=r(C-A)=r\left(P_{1}+P_{2}+\ldots+P_{k}\right) \leq r\left(P_{1}\right)+r\left(P_{2}\right)+\ldots+r\left(P_{k}\right) .
$$

But $\sum_{i=1}^{k} r\left(P_{i}\right)$ is the weight of the scenario, so the desired conclusion follows.
In fact, sorting scenarios not only exist for every pair of genome matrices A and C over the same genes but also the weight of optimal scenarios is always equal to the distance. To be able to prove that, we need a few preparatory results.

3.2 The Effect of Operations on Orbits

To proceed we need to understand how orbits change when we apply an operation. In fact, we don't need to understand everything about this process. It suffices, for our purposes, to know that some orbits are left untouched, that is, some $A C$-orbits will still be $B C$-orbits when we transition from A to B by means of an operation P. Specifically, when an orbit \mathcal{S} is nullified by an operation P, that is, $P \mathcal{S}=\{0\}$, then \mathcal{S} is untouched by the application of P. Here the notation $P \mathcal{S}$ means matrix P applied to set \mathcal{S} as in Definition 1. Let's incrementally build results that will culminate in this conclusion.

Lemma 20 (Nullified orbit). If A and C are genome matrices over the same genes, P is an operation applicable to A, and \mathcal{S} is an $A C$-orbit such that $P \mathcal{S}=\{0\}$, then $P A \mathcal{S}=\{0\}$ and $P C \mathcal{S}=\{0\}$ as well.

Proof. First notice that, in view of Lemma 13, calling $B=A+P$, we have:

$$
P A \mathcal{S}=-B P \mathcal{S}=-B\{0\}=\{0\},
$$

so $P A \mathcal{S}=\{0\}$. Now, since \mathcal{S} is an $A C$-orbit, we have $\mathcal{S}=C A \mathcal{S}$ and then:

$$
P C \mathcal{S}=P C C A \mathcal{S}=P A \mathcal{S} .
$$

because C is a genome and therefore $C^{2}=I$. But we have seen that $P A \mathcal{S}=\{0\}$, so it follows that $P C \mathcal{S}=\{0\}$ as well.

With the next result we can examine what happens with powers of genome products applied to an orbit nullified by an operation.

Lemma 21. If A and C are genome matrices over the same genes, P is an operation applicable to A, \mathcal{S} is an $A C$-orbit such that $P \mathcal{S}=\{0\}$, then, for every extremity $u \in \mathcal{S}$, we have:

$$
(B C)^{m} u=(A C)^{m} u,
$$

for any integer $m \geq 0$, where $B=A+P$.
Proof. By induction on m. If $m=0$, then the result boils down to $u=u$, which is clearly true.
If $m \geq 1$, notice that:

$$
(B C)^{m} u=B C(B C)^{m-1} u .
$$

By the induction hypothesis, we can replace $(B C)^{m-1} u$ by $(A C)^{m-1} u$, so that:

$$
(B C)^{m} u=B C(A C)^{m-1} u=A C(A C)^{m-1} u+P C(A C)^{m-1} u .
$$

However, notice that $(A C)^{m-1} u$ belongs to \mathcal{S}, since it is in the same $A C$-orbit as u. Therefore, by using Lemma 20, we conclude that $P C(A C)^{m-1} u$ is zero. Then:

$$
(B C)^{m} u=A C(A C)^{m-1} u=(A C)^{m} u
$$

which is the sought conclusion.
The following result shows orbits that are left intact by P.
Lemma 22. If A and C are genomes over the same genes, P is an operation applicable to A, and \mathcal{S} is an $A C$-orbit such that $P \mathcal{S}=\{0\}$, then \mathcal{S} is also a $B C$-orbit, where $B=A+P$.

Proof. Let x be an extremity in \mathcal{S}, and let \mathcal{T} be the $B C$-orbit of x. For any extremity y in \mathcal{S}, by Theorem 1, we have $y=(A C)^{m} x$ for some integer m. By Lemma 21, this implies $(B C)^{m} x=y$ as well, showing that $y \in \mathcal{T}$. It follows that $\mathcal{S} \subseteq \mathcal{T}$.

Conversely, if $y \in \mathcal{T}$, then $y=(B C)^{m} x$. By the same lemma, $y=(A C)^{m} x$, showing that $y \in \mathcal{S}$. It follows that $\mathcal{T} \subseteq \mathcal{S}$.

We conclude that in fact $\mathcal{T}=\mathcal{S}$, and therefore \mathcal{S} is a $B C$-orbit as well.

3.3 Finding Sorting Operations

We are now ready to state a result about situations where cuts, joins, or double swaps get closer to a final genome. The analysis will be divided into two cases, depending on whether or not A and C have the same telomeres. A new definition is in order.

Definition 10. Two genomes A and C over the same genes are said to be co-tailed when A and C have exactly the same telomeres.

3.3.1 Genomes Not Co-Tailed

Let's start with the cases where A and C are not co-tailed. Then there is a telomere in one of the genomes that is not a telomere of the other. Let's assume that C has a telomere x that is not a telomere of A. In this case, we have seen that the cut $P=-J(x, y)$ where $y=A x$ is applicable to A, that is, $A+P$ is a valid genome matrix.

Lemma 23. If genome C has a telomere x that is not a telomere of A, then the cut $-J(x, A x)$ is applicable to A, and leads to a genome B such that:

$$
d(B, C) \leq d(A, C)-1
$$

Proof. We need to compare $A C$-orbits with $B C$-orbits. First notice that the $A C$-orbit of x contains $y=A x$:

$$
A C x=A x=y,
$$

since $x \sim_{A C} A C x$ (Lemma 1) and x is a telomere of C. Any other $A C$-orbit is also a $B C$-orbit, according to Lemma 22 , since $P=B-A=-J(x, y)$ maps to zero any extremity other than x and y.

On the other hand, $\{x\}$ is a $B C$-orbit, because x is a telomere of both B and C. Since x 's $A C$-orbit contains at least one other element, we conclude that there are strictly more $B C$-orbits than there are $A C$-orbits, and therefore

$$
d(B, C) \leq d(A, C)-1,
$$

in view of Lemma 8.

3.3.2 Co-Tailed Genomes

When A and C are co-tailed, no cut or join applied to A will get closer to C, but certain double swaps involving A-adjacencies can move towards C. We know that a double swap $W(x, y, z, w)$ is applicable to A if and only if both $x w$ and $y z$ are adjacencies of A, that is, $A x=w$ and $A y=z$.

To find such double swaps, we need to study $A C$-orbits in more detail. In the sequel we have a neat result showing that A-adjacencies link extremities in different $A C$-orbits.

First, however, we need an auxiliary lemma on common telomeres. This result is so straightforward that we debated whether to make a lemma out of it at all. However, we decided to state it as a lemma because we need to apply it repeatedly in the proof of the result on adjacencies crossing orbits (Lemma 25).

Lemma 24. If A and C are co-tailed genomes and $A x$ or $C x$ is a common telomere of A and C, then x is a common telomere of A and C as well.

Proof. Just observe that if $A x$ is a telomere of A, then $A x=A A x=x$, showing that x is this same common telomere. By symmetry, the same conclusion is reached with $C x$ in place of $A x$.

Lemma 25 (Adjacencies cross orbits). If A and C are co-tailed genomes, and $y=A x$ is distinct from x, then x and y are in different $A C$-orbits.

Proof. Assume for a moment that x and y are in the same $A C$-orbit. Then:

$$
y=(A C)^{m} x
$$

If m is even, we can write $m=2 k$ and then:

$$
A x=y=(A C)^{2 k} x=(A C)^{k}(A C)^{k} x
$$

or, recalling that $C A=(A C)^{-1}$:

$$
(C A)^{k} A x=(A C)^{k} x .
$$

But $(C A)^{k} A x=(C A)^{k-1} C x$, so:

$$
(C A)^{k-1} C x=A(C A)^{k-1} C x
$$

showing that $(C A)^{k-1} C x$ is a telomere of A. Since A and C have the same telomeres, this means that in fact $(C A)^{k-1} C x$ is a common telomere. Repeated application of Lemma 24 leads to x being a common telomere, contradicting the hypothesis.

If m is odd, then $m=2 k+1$ so that

$$
A x=y=(A C)^{2 k+1} x=(A C)^{k+1}(A C)^{k} x
$$

Then, multiplying by $(C A)^{k+1}$ to the left,

$$
(C A)^{k+1} A x=(A C)^{k} x,
$$

or,

$$
C(A C)^{k} x=(A C)^{k} x
$$

showing that $(A C)^{k} x$ is a telomere of C. Hence, this is also a telomere of A and repeated application of Lemma 24 leads to x being a common telomere, again contradicting the hypothesis.

We conclude that in fact x and y are in different $A C$-orbits.
We are now ready for the main result of the section.
Lemma 26. If A and C are co-tailed, distinct genomes, then there is a double swap P applicable to A such that

$$
d(B, C) \leq d(A, C)-2,
$$

where $B=A+P$.

Proof. Since $A \neq C$, there is an extremity x such that $A x \neq C x$. Then, x is not a telomere of either A or C, otherwise it would be a common telomere implying $A x=x=C x$. Therefore $y=A x$ and $z=C x$ are different from x and from each other, and are not telomeres of either A or C. Let $w=A z$ and consider the double swap $P=W(w, x, y, z)$. It is applicable to A since $A w=z$ and $A x=y$.

Notice that x and w are in the same $A C$-orbit, as are y and z, since $w=A C x$ and $y=A C z$. However, these two $A C$-orbits are distinct, according to Lemma 25. All other $A C$-orbits are also $B C$-orbits, where $B=A+P$, because of Lemma 22. Moreover, $\{x\}$ and $\{z\}$ are also $B C$-orbits, since $B C x=x$ and $B C z=z$. In addition, $B y=w$, implying that y and w are in different $B C$-orbits, in view of Lemma 25. This all means that from the elements of the two $A C$-orbits containing x, y, z, and w there are at least four $B C$-orbits, namely, $\{x\},\{z\}$, one with y and one with w, all distinct. It follows that

$$
d(B, C) \leq d(A, C)-2
$$

3.4 Existence of Sorting Scenarios

We are now ready for an important result.
Theorem 3. For any pair of genome matrices A and C over the same genes there is a sorting scenario \mathcal{L} going from A to C satisfying:

$$
w(\mathcal{L}) \leq d(A, C)
$$

Proof. We will prove this by induction on $d(A, C)$. For $d(A, C)=0$ we have $A=C$ and then $[A]$ is a sorting scenario of weight zero, which is equal to the distance.

Let's now tackle the case $d(A, C) \geq 1$. Since $A \neq C$, one of three cases may occur: either C has a telomere which A doesn't, or A has a telomere not shared by C, or A and C are co-tailed, but distinct. Let's handle each case in its turn.

If there is a telomere x of C that is not a telomere of A, then, by Lemma 23, the cut $P=$ $-J(x, A x)$ yields a genome $B=A+P$ such that $d(B, C) \leq d(A, C)-1$. We can then apply the induction hypothesis to B and C, and assume that there is a scenario \mathcal{L} from B to C such that:

$$
w(\mathcal{L}) \leq d(B, C)
$$

Now consider the scenario $[P]+\mathcal{L}$ obtained by inserting operation P before all other operations in \mathcal{L}. (This notation is inspired by a similar notation in the programming language Python.) This new scenario goes from A to C and satisfies:

$$
w([P]+\mathcal{L})=1+w(\mathcal{L}) \leq 1+d(B, C) \leq d(A, C)
$$

so we have a suitable scenario from A to C.
The second case is when there is a telomere of A that is not a telomere of C. By the same Lemma 23, we know there is a cut P applicable to C such that $B=C+P$ satisfies:

$$
d(B, A) \leq d(A, C)-1
$$

The induction hypothesis applied to A and B yields a scenario \mathcal{L} from A to B such that:

$$
w(\mathcal{L}) \leq d(A, B)
$$

Now consider the scenario $\mathcal{L}+[-P]$ obtained by inserting the join $-P$ after all other operations in \mathcal{L}. We can do that because $B+(-P)=C$, so $-P$ is applicable to B. This is a scenario from A to C that satisfies:

$$
w(\mathcal{L}+[-P])=w(\mathcal{L})+1 \leq d(A, B)+1 \leq d(A, C),
$$

and is therefore what we need in this case.
Finally, if A and C are distinct but co-tailed, Lemma 26 asserts that there is a double swap P applicable to A such that

$$
d(B, C) \leq d(A, C)-2
$$

where $B=A+P$. We can again apply the induction hypothesis to B and C yielding a scenario \mathcal{L} with $w(\mathcal{L}) \leq d(B, C)$. Consider scenario $[P]+\mathcal{L}$ that goes from A to C and satisfies:

$$
w([P]+\mathcal{L})=2+w(\mathcal{L}) \leq 2+d(B, C) \leq d(A, C)
$$

This is in fact a scenario that proves the lemma for A and C in this case. Therefore, in all cases we have a suitable scenario, and the proof is complete.

Corollary 1. For any two genomes A and C over the same genes, there is at least one scenario that goes from A to C and furthermore:

$$
w(A, C)=d(A, C)
$$

Proof. The existence of such a scenario is a consequence of Theorem 3. In addition, the scenario \mathcal{L} given by this theorem satisfies:

$$
w(\mathcal{L}) \leq d(A, C)
$$

However, Theorem 2 states that the weight of any such scenario is at least $d(A, C)$:

$$
d(A, C) \leq w(\mathcal{L})
$$

We conclude that \mathcal{L} is then an optimal scenario and that

$$
w(A, C)=w(\mathcal{L})=d(A, C)
$$

Chapter 4

Intermediate Genomes

In this chapter we study intermediate genomes. We prove here that they can be characterized both as optimal scenario members, and as genomes for which the triangle inequality becomes an equality. They are also the medians of two genomes.

4.1 Triangle Equality

We say that a genome B is intermediate between genomes A and C, all over the same genes, when equality occurs in the triangle inequality as follows:

$$
d(A, C)=d(A, B)+d(B, C) .
$$

Intermediate genomes minimize $d(A, B)+d(B, C)$, and are therefore referred to as median genomes as well.

If we recall the way the triangle inequality was established, there are important conclusions to be drawn when it is an equality, as the next lemma makes clear.

Lemma 27. If $d(A, C)=d(A, B)+d(B, C)$ for three genome matrices over the same genes A, B, and C, then $\operatorname{im}(B-A) \subseteq \operatorname{im}(C-A)$ and $\operatorname{im}(C-B) \subseteq \operatorname{im}(C-A)$.

Proof. Recall that, in general,

$$
\begin{aligned}
d(A, C) & =\operatorname{dimim}(C-A) \\
& \leq \operatorname{dim}(\operatorname{im}(B-A)+\operatorname{im}(C-B)) \\
& \leq \operatorname{dimim}(B-A)+\operatorname{dimim}(C-B) \\
& =d(A, B)+d(B, C) .
\end{aligned}
$$

In order to have an equality above, all intermediate terms in these equations must be equal. In particular, this implies:

$$
\operatorname{im}(B-A)+\operatorname{im}(C-B)=\operatorname{im}(C-A),
$$

which implies both containments in the lemma's statement.
But when the image of a matrix is contained in the image of another matrix, the matrices themselves are related by a product:

Lemma 28. If X, Y are $k \times k$ matrices such that $\operatorname{im} X \subseteq \operatorname{im} Y$, then there is a $k \times k$ matrix R such that $X=Y R$.

Proof. Let $e_{1}, e_{2}, \ldots, e_{k}$ be a basis of R^{k}. Since $\operatorname{im} X \subseteq \operatorname{im} Y$, for every vector e_{i} there is a vector f_{i} such that $X e_{i}=Y f_{i}$, for $1 \leq i \leq k$. Let R be the matrix that takes each e_{i} to f_{i}. Then:

$$
Y R e_{i}=Y f_{i}=X e_{i}
$$

which shows that $Y R=X$ in a basis. This is enough to guarantee that $X=Y R$ everywhere, that is, they are the same matrix.

4.2 Linear Combination

The results in the previous section lead to the following result.
Lemma 29 (Linear Combination). If B is an intermediate genome between A and C, then there is a matrix S such that:

$$
B=S A+(I-S) C .
$$

Proof. By previous observations we know that $\operatorname{im}(C-B) \subseteq \operatorname{im}(C-A)$. From the previous lemma we conclude that there is a matrix R such that $C-B=(C-A) R$. Now:

$$
B=B^{t}=(C+(A-C) R)^{t}=C^{t}+R^{t}(A-C)^{t}=R^{t} A+\left(I-R^{t}\right) C,
$$

which is our result if we make $S=R^{t}$.

4.3 Common Elements

The linear combination result in Lemma 29 has important consequences in terms of common elements in A and C : common images, common telomeres, and common adjacencies. All of these have to be shared among all intermediate genomes.

Corollary 2 (Common image). If B is an intermediate genome between A and C and $A x=C x$ for a given vector x, then $B x=A x=C x$.

Proof. From the fact that $B=S A+(I-S) C$ and $A x=C x$ we get:

$$
B x=S A x+(I-S) C x=S C x+C x-S C x=C x=A x .
$$

Corollary 3 (Common telomere). If x is a common telomere of genomes A and C over the same genes, then every intermediate genome B between A and C will have x as a telomere.

Proof. It suffices to recall that a telomere is an extremity x such that $A x=x$ and apply Corollary 2 .

Corollary 4 (Common adjacency). If $x y$ is a common adjacency of genomes A and C over the same genes, then every intermediate genome B between A and C will have xy as an adjacency.

Proof. It suffices to recall that an adjacency $x y$ entails $A x=y$ and apply Corollary 2.

4.4 Intermediate Genomes as Optimal Scenario Members

Intermediate genomes are exactly those that participate in optimal scenarios. The following result proves this claim.

Theorem 4. Given genomes A and C over the same genes, a genome B over the same genes is an intermediate genome between A and C if and only if it belongs to some optimal scenario going from A to C.

Proof. Let's first prove that, if B is part of an optimal scenario going from A to C, then $d(A, C)=$ $d(A, B)+d(B, C)$. Let $\mathcal{L}=\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ be an optimal scenario with $B_{0}=A$ and $B_{k}=C$, and suppose $B=B_{i}$ for some i between 0 and k. Then $\mathcal{L}_{1}=\left[B_{0}, \ldots, B_{i}\right]$ is a scenario going from A to B. It is an optimal scenario, but we don't need this fact. Just by being a scenario it satisfies:

$$
d(A, B) \leq w\left(\mathcal{L}_{1}\right)
$$

as stated by Theorem 2. Likewise, there is a scenario $\mathcal{L}_{2}=\left[B_{i}, \ldots, B_{k}\right]$ from B to C, and hence

$$
d(B, C) \leq w\left(\mathcal{L}_{2}\right)
$$

by the same theorem. Adding these last two equations, we get:

$$
d(A, B)+d(B, C) \leq w\left(\mathcal{L}_{1}\right)+w\left(\mathcal{L}_{2}\right)=w(\mathcal{L})=d(A, C),
$$

because \mathcal{L} is optimal (Theorem 1). Using the triangle inequality, we conclude that B is in fact an intermediate genome.

Conversely, if B is an intermediate genome, then

$$
d(A, C)=d(A, B)+d(B, C) .
$$

Since $d(A, B)=w(A, B)$ (Theorem 1), there is an optimal scenario \mathcal{L}_{1} from A to B such that:

$$
d(A, B)=w\left(\mathcal{L}_{1}\right)
$$

Similarly, there is an optimal scenario \mathcal{L}_{2} from B to C such that:

$$
d(B, C)=w\left(\mathcal{L}_{2}\right)
$$

Combining these two scenarios, we get a third scenario \mathcal{L}, obtained from $\mathcal{L}_{1}+\mathcal{L}_{2}$ by removing one of the copies of the repeated B, such that:

$$
w(\mathcal{L})=w\left(\mathcal{L}_{1}\right)+w\left(\mathcal{L}_{2}\right)=d(A, B)+d(B, C)=d(A, C) .
$$

This last equation shows that \mathcal{L} is actually an optimal scenario going from A to C. Since B is in \mathcal{L}, we have our result.

Chapter 5

Minimax Genomes

The notion of minimax genome is explored in this chapter. We establish a lower bound for the minimax score, and show exactly the cases where it is possible to achieve such a score. We also show that, in any case, it is always possible to find a genome within 1 unit of the lower bound.

5.1 Definitions

Given three genomes A, B, and C, a minimax genome for the three is a genome M that minimizes:

$$
\operatorname{sc}(M ; A, B, C)=\max (d(A, M), d(B, M), d(C, M))
$$

where sc $(M ; A, B, C)$ is called the score of M relative to A, B, and C.
We can also look for minimax genomes of two input genomes A and B, minimizing:

$$
\operatorname{sc}(M ; A, B)=\max (d(A, M), d(B, M)) .
$$

The triangle inequality gives almost immediately a lower bound on the minimax score:
Lemma 30. For any three genomes A, B, and M we have:

$$
\operatorname{sc}(M ; A, B) \geq \frac{d(A, B)}{2}
$$

Proof. Notice that:

$$
d(A, B) \leq d(A, M)+d(B, M) \leq 2 \max (d(A, M), d(B, M))=2 \operatorname{sc}(M ; A, B)
$$

From this, the statement easily follows.
In fact, since the score is always an integer, we can strengthen this result and claim that:

$$
\operatorname{sc}(M ; A, B) \geq\left\lceil\frac{d(A, B)}{2}\right\rceil .
$$

Our goal in this chapter is to find minimax genomes for A and B.

5.2 Examples

Consider the following pairs of matrices, for any given dimension. In this section, we will look at matrices that are not necessarily genome matrices, because they may not have an even dimension. Notice however that the definitions of distance, intermediate matrices, and minimax matrices work for them. Here are the matrices:

$$
\begin{gathered}
A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], B_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
A_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], B_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
A_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], B_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
A_{5}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right], B_{5}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

and so on. They have an interesting pattern around the diagonal. The distance between A_{k} and B_{k} is $k-1$.

Let us first write general formulas for A_{k} and B_{k}. Assume that the k extremities involved are called $e_{1}, e_{2}, \ldots, e_{k}$. We have:

$$
\begin{aligned}
A_{k} e_{1} & =e_{1} \\
A_{k} e_{2} & =e_{3} \\
A_{k} e_{3} & =e_{2} \\
\ldots & \\
A_{k} e_{2 j} & =e_{2 j+1} \\
A_{k} e_{2 j+1} & =e_{2 j} \\
\ldots & \\
A_{k} e_{k} & =\left\{\begin{array}{cc}
e_{k} & \text { if } k \text { is even } \\
e_{k-1} & \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
B_{k} e_{1} & =e_{2} \\
B_{k} e_{2} & =e_{1} \\
\ldots & \\
B_{k} e_{2 j} & =e_{2 j-1} \\
B_{k} e_{2 j+1} & =e_{2 j+2} \\
\ldots & \\
B_{k} e_{k} & =\left\{\begin{array}{cc}
e_{k-1} & \text { if } k \text { is even } \\
e_{k} & \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

As a result, $B-A$ can be written as:

$$
\begin{aligned}
\left(B_{k}-A_{k}\right) e_{1} & =e_{2}-e_{1} \\
\left(B_{k}-A_{k}\right) e_{2} & =e_{1}-e_{3} \\
\cdots & \\
\left(B_{k}-A_{k}\right) e_{2 j} & =e_{2 j-1}-e_{2 j+1} \\
\left(B_{k}-A_{k}\right) e_{2 j+1} & =e_{2 j+2}-e_{2 j} \\
\ldots & \\
\left(B_{k}-A_{k}\right) e_{k} & = \begin{cases}e_{k-1}-e_{k} & \text { if } k \text { is even } \\
e_{k}-e_{k-1} & \text { if } k \text { is odd }\end{cases}
\end{aligned}
$$

Notice that there is a single $A B$-orbit in this example, because of the following fact. From the definition of orbits, we see that all odd-numbered extremities $e_{2 j+1}$ belong to the same $A B$-orbit, because of the images of the even-numbered extremities $e_{2 j}$ under $B-A$. Also, all even-numbered extremities $e_{2 j}$ are $A B$-equivalent because of the images of odd-numbered extremities $e_{2 j+1}$ under $B-A$. On top of that, e_{1} and e_{2} are in the same orbit, as witnessed by the image of e_{1} under $B-A$. It follows that all extremities are in the same, large $A B$-orbit, and hence the distance is $d(A, B)=k-1$.

Now let's compute the distance between I_{k}, the identity matrix on k dimensions, with A_{k} and B_{k}. For A_{k} and I_{k} we have:

$$
\begin{aligned}
\left(I_{k}-A_{k}\right) e_{1} & =e_{1}-e_{1}=0 \\
\left(I_{k}-A_{k}\right) e_{2} & =e_{2}-e_{3} \\
\cdots & \\
\left(I_{k}-A_{k}\right) e_{2 j} & =e_{2 j}-e_{2 j+1} \\
\left(I_{k}-A_{k}\right) e_{2 j+1} & =e_{2 j+1}-e_{2 j} \\
\cdots & \\
\left(I_{k}-A_{k}\right) e_{k} & =\left\{\begin{array}{cc}
e_{k}-e_{k}=0 & \text { if } k \text { is even } \\
e_{k}-e_{k-1} & \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

We notice that e_{1} is on a singleton orbit by itself, and then $\left\{e_{2 j}, e_{2 j+1}\right\}$ are additional orbits for $2 \leq 2 j \leq k-1$. Finally, if k is even, e_{k} will form another singleton orbit, or, if k is odd, e_{k} was already counted in an orbit with e_{k-1}. We have therefore 1 orbit for e_{1}, at least $\lfloor(k-1) / 2\rfloor$ additional orbits, and perhaps one last orbit for e_{k} if k is even, which can be included in the additional orbits if we round $(k-1) / 2$ up to the nearest integer instead of rounding it down. The final orbit count is then $1+\lceil(k-1) / 2\rceil$. The distance is then $d\left(A_{k}, I_{k}\right)=k-1-\lceil(k-1) / 2\rceil$ or $\lfloor(k-1) / 2\rfloor$.

For B_{k} and I_{k} we have:

$$
\begin{aligned}
\left(I_{k}-B_{k}\right) e_{1} & =e_{1}-e_{2} \\
\left(I_{k}-B_{k}\right) e_{2} & =e_{2}-e_{1} \\
\cdots & \\
\left(I_{k}-B_{k}\right) e_{2 j} & =e_{2 j}-e_{2 j-1} \\
\left(I_{k}-B_{k}\right) e_{2 j+1} & =e_{2 j+1}-e_{2 j+2} \\
\cdots & \\
\left(I_{k}-B_{k}\right) e_{k} & =\left\{\begin{array}{cc}
e_{k}-e_{k-1} & \text { if } k \text { is even } \\
e_{k}-e_{k}=0 & \text { if } k \text { is odd }
\end{array}\right.
\end{aligned}
$$

k	$d\left(A_{k}, B_{k}\right)$	$d\left(A_{k}, I_{k}\right)$	$d\left(B_{k}, I_{k}\right)$
2	1	0	1
3	2	1	1
4	3	1	2
5	4	2	2

Table 5.1: Distances between minimax genome I_{k} and matrices A_{k}, B_{k} for $k=2$ to 5 .

We notice that $\left\{e_{2 j-1}, e_{2 j}\right\}$ are orbits for $2 \leq 2 j \leq k$. Also, if k is odd, e_{k} will form a singleton orbit, or, if k is even, e_{k} was already counted in an orbit with e_{k-1}. We have therefore at least $\lfloor k / 2\rfloor$ orbits, and perhaps one last orbit for e_{k} if k is odd, which can be counted with the other orbits if we round $k / 2$ up to the nearest integer instead of rounding it down. The final orbit count is then $\lceil k / 2\rceil$. The distance is then $d\left(B_{k}, I_{k}\right)=k-\lceil k / 2\rceil$ or $\lfloor k / 2\rfloor$.

Table 5.1 summarizes the results up to $k=5$.
We realize that for these matrices there is a minimax genome which is also an intermediate genome between A_{k} and B_{k}, for every k, namely, the genome I_{k}.

5.3 A Conjecture

As we said earlier, in the beginning of Section 1.1, any ordering of the extremities can be used to create a genome matrix. This means that, by changing the ordering of extremities, we get other matrices representing essentially the same genome. This raises an interesting question: maybe all genomes will, by choosing a suitable ordering, produce matrices just like the ones in Section 5.2. If this is true our problem is solved, since for this case we already have minimax matrices satisfying the lower bound.

Let's recall that changing the extremity ordering is equivalent to taking a genome matrix A and computing $P A P^{-1}$, where P is a permutation matrix, that is, P is a square matrix of zeros and ones that satisfies:

$$
P P^{t}=I
$$

where I is the identity matrix and P^{t} indicates the transpose of P, that is, the matrix obtained from P by exchanging rows and columns. Notice that if $P P^{t}=I$, then $P^{t} P$ is also I, because of a general property of matrices stating that their "left inverse" must be equal to their "right inverse". Notice also that, since $P^{-1}=P^{t}$ for a permutation matrix, we can write $P A P^{t}$ instead of $P A P^{-1}$ and get the same result. This is also true for odd-dimensional matrices, which cannot represent genomes.

Lemma 31. If A is a genome and P is a permutation matrix, then $P A P^{t}$ is also a genome.
Proof. We need to verify that:

- $P A P^{t}$ is a 0-1 matrix
- $P A P^{t}$ is symmetric
- $P A P^{t}$ squared is equal to I

To ensure that $P A P^{t}$ is a 0-1 matrix, recall that both A and P (and hence P^{t} as well) are 0-1 matrices with exactly one 1 in each row, and exactly one 1 in each column. Looking at the product $P A$, we see that each entry in this product is the scalar product of a row from P with a column from A. If the position of the 1 in these row and column match, the result will be 1 ; otherwise, it will be zero. Therefore, each entry in $P A$ is 0 or 1 . Moreover, since each row of A has just one 1, a row in the product will have exactly one 1 . The same reasoning works for columns.

We conclude that $P A$ is a $0-1$ matrix with exactly one 1 in each row and in each column. A repetition of this argument shows us that the same will be true for $P A P^{t}$.

For the second part, notice that $\left(P A P^{t}\right)^{t}=\left(P^{t}\right)^{t} A^{t} P^{t}=P A P^{t}$, since A is symmetric. Hence, $P A P^{t}$ is symmetric.

Fir the last part, notice that $\left(P A P^{t}\right)^{2}=P A P^{t} P A P^{t}=P A A P^{t}=P P^{t}=I$, since $A^{2}=I$ and $P P^{t}=I$. Hence, $P A P^{t}$ is a bona fide genome matrix.

However, our conjecture is not true. Just notice that if a matrix A has a 1 in the diagonal, this means that for some extremity x we have:

$$
A x=x,
$$

that is, x is a telomere. Then $P A P^{t}$ will have a 1 in the diagonal too, in the column corresponding to $P x$, because:

$$
P A P^{t} P x=P A I x=P A x=P x,
$$

since $P^{t} P=I$. Then extremity $P x$ is a telomere of $P A P^{t}$, and $P A P^{t}$ will have a 1 in the diagonal too. But since there are genome matrices without 1's in the diagonal (see for instance some of the B_{k} 's), we conclude that the examples of Section 5.2 do not represent all genomes by extremity reordering.

5.4 Minimax Lower Bound: Not Always Attainable

We are interested in working on the following conjecture in this section:
Conjecture 1. For any two genomes A and B over the same genes, there is at least one genome M over the same genes that satisfies:

$$
d(A, M)=\lceil d(A, B) / 2\rceil
$$

and

$$
d(B, M)=\lfloor d(A, B) / 2\rfloor .
$$

This genome would of course be a minimax genome, since it would attain the lower bound established in Section 5.1. However, this is false, as can be seen from the following example representing genomes that differ by a double swap:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

To compute their distance, let's subtract B from A :

$$
A-B=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

This matrix has rank 2. Both A and B are circular genomes, since they do not have telomeres. Now for a circular genome such as A, the only genomes at distance 1 from it are the ones obtained by cutting an adjacency, since no extra adjacencies can be added to A. Genome A has only two adjacencies, so there are just two genomes at distance 1 from it, namely:

$$
A_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], A_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

However, it can be readily verified that none of these two genomes is at distance 1 from B. In fact, they are both at distance 3 from B. We conclude that the minimax conjecture is not true.

5.5 Finding Minimax Genomes

In this section we will find minimax genomes for every pair of input genomes A and C. The discussion will be divided in two cases, according to the genomes A and C being or not co-tailed.

5.5.1 Co-Tailed Genomes

When A and C are co-tailed, we not always get a minimax genome satisfying the lower bound, but we can get within 1 unit of it. Let's begin by studying properties of intermediate genomes between two co-tailed ones.

Lemma 32. If A and C are co-tailed genomes and B is an intermediate genome between A and C, then B is co-tailed with A and C.

Proof. It suffices to show that B is co-tailed with A. Suppose for a moment that B is not co-tailed with A. Then either A has a telomere that B doesn't, or B has a telomere that A doesn't. The first case is ruled out by Corollary 3 , because a telomere of A would also be a telomere of C, since they are co-tailed, and would have to be shared by all intermediate genomes.

So let's assume that B has a telomere x not shared by A. Since B is intermediate between A and C, according to Lemma 27 , we can write:

$$
\operatorname{im}(B-A) \subseteq \operatorname{im}(C-A)
$$

This observation leads to

$$
(B-A) x=x-y \in \operatorname{im}(B-A) \subseteq \operatorname{im}(C-A),
$$

where $y=A x$ is an extremity distinct from x.
Let $z=C x$. We know that $y \sim_{A C} z$, since $y=A C z$. According to Lemma 6, vectors in $\operatorname{im}(C-A)$ have the same coefficients with respect to $A C$-equivalent extremities. Therefore:

$$
y^{t}(x-y)=z^{t}(x-y)
$$

or

$$
-1=z^{t} x-z^{t} y
$$

Notice that $z \neq x$, otherwise x would be a telomere of C and not a telomere of A, contradicting the fact that A and C are co-tailed. This implies $z^{t} x=0$. Also, $z \neq y$, otherwise $x y$ would be
a common adjacency of A and C, and then B, being an intermediate genome between A and C, would have to have this adjacency also, which is not the case since $B x=x$. This implies $z^{t} y=0$ as well. Then the last formula becomes

$$
-1=0,
$$

which is impossible. This contradiction shows that B cannot have telomeres not shared with A and C.

Only double swaps occur in optimal sorting scenarios of co-tailed genomes. This leads to a parity restriction.

Lemma 33. If A and C are co-tailed genomes, and $\mathcal{L}=\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ is an optimal scenario going from A to C, then $d(A, C)=2 k$.

Proof. According to Lemma 32, all B_{i} 's are co-tailed with A, so none of the operations $B_{i+1}-B_{i}$ can be cuts or joins. Therefore, we have $r\left(B_{i+1}-B_{i}\right)=2$ for $0 \leq i \leq k-1$. But then

$$
d(A, C)=w(\mathcal{L})=\sum_{i=0}^{k-1} r\left(B_{i+1}-B_{i}\right)=\sum_{i=0}^{k-1} 2=2 k
$$

Corollary 5. If A and C are co-tailed genomes, then $d(A, C)$ is even.
It is easy to find minimax genomes if the parity is right. However, when the parity does not help, we are forced to take the second best, which is 1 unit off the lower bound.

Lemma 34. If A and C are co-tailed genomes and $d(A, C) / 2$ is even, then there is a genome B satisfying the minimax lower bound.

Proof. Let $\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ be an optimal scenario going from A to C. We know that $d(A, C)=2 k$ from Lemma 33. Since $k=d(A, C) / 2$ is even, we can write $k=2 m$ for some integer m. It is then straightforward to verify that B_{m} is the sought intermediate genome satisfying the minimax lower bound.

Lemma 35. If A and C are co-tailed genomes and $d(A, C) / 2$ is odd, then there is no genome B satisfying the minimax lower bound.

Proof. If such a genome B existed, then we would have:

$$
d(A, B)=d(B, C)=d(A, C) / 2 .
$$

This implies that B would be an intermediate genome between A and C. By Lemma 32, B would be co-tailed with A. But then, by Corollary $5, d(A, B)=d(A, C) / 2$ would have to be even, contradicting the hypothesis.

Lemma 36. For any two genomes A and C, there is an intermediate genome B such that

$$
\lceil d(A, C) / 2\rceil \leq d(A, B) \leq\lceil d(A, C) / 2\rceil+1 .
$$

Proof. If $A=C$ the result is clear taking $B=A=C$. If $A \neq C$, let $\left[B_{0}, B_{1}, \ldots, B_{k}\right]$ be an optimal scenario going from A to C and take i as the smallest index such that $d\left(A, B_{i}\right) \geq\lceil d(A, C) / 2\rceil$. We claim that $B=B_{i}$ is the sought genome. Notice that B is an intermediate genome between A and C because it is a member of an optimal scenario going from A to C. Moreover, the first inequality in the lemma statement is satisfied because of the choice if i.

For the second equality, notice that, by the minimality of i, we have:

$$
d\left(A, B_{i-1}\right)<\lceil d(A, C) / 2\rceil .
$$

Genome B_{i-1} exists since $A \neq C$ implies $\lceil d(A, C) / 2\rceil \geq 1$, so i cannot be zero. Given that in any scenario the steps have weight 1 or 2 , we know that $d\left(B_{i-1}, B_{i}\right) \leq 2$. It follows that

$$
d\left(A, B_{i}\right) \leq d\left(A, B_{i-1}\right)+d\left(B_{i-1}, B_{i}\right) \leq d\left(A, B_{i-1}\right)+2<\lceil d(A, C) / 2\rceil+2
$$

or

$$
d\left(A, B_{i}\right) \leq\lceil d(A, C) / 2\rceil+1,
$$

since both sides are integers.

5.5.2 Genomes Not Co-Tailed

If A and C are not co-tailed, then there are intermediate genomes at any feasible distance between A and C. To ascertain that, we need a few preliminary lemmas on operation switch and other properties.

Lemma 37. Let A be a genome, P a cut applicable to A, and Q a double swap applicable to $A+P$. Then Q is applicable to A.

Proof. Let $Q=W(x, y, z, w)$. We know that Q is applicable to $A+P$, which means that $A+P$ has adjacencies $x w$ and $y z$. Since P is a cut, which only removes adjacencies, $x w$ and $y z$ must have been present in A as well, leading to the conclusion that Q can be applied to A.

An analogous result is valid for joins, saying that joins can be brought back through double swaps, but we won't need it now.

Lemma 38. Let A and C be two genomes not co-tailed. Then, for every integer i such that $0 \leq i \leq d(A, C)$ there is an intermediate genome B between A and C with $d(A, B)=i$.

Proof. By induction on $d(A, C)$. The base case is $d(A, C)=1$, because A and C are not co-tailed and hence cannot be equal. The statement is clearly true for $d(A, C)$ because in this case we only have two possibilities for i, namely, $i=0$ or $i=1$, and we can take $B=A$ for $i=0$ and $B=C$ for $i=1$.

Now assume $d(A, C) \geq 2$ and consider an integer i such that $0 \leq i \leq d(A, C)$. Since A and C are not co-tailed, there is either a telomere in A not shared by C or a telomere in C not shared by A. Without loss of generality, we may assume that there is a telomere in C not shared by A, otherwise we can just exchange A and C and i with $d(A, C)-i$.

Given that there is a telomere in C that is not an A-telomere, Lemma 23 gives us a cut P applicable to A such that $A+P$ is an intermediate genome between A and C. If $A+P$ is not co-tailed with C, we can apply the induction hypothesis to $A+P$ and C and get intermediate genomes at an arbitrary distance j from $A+P$, provided that $0 \leq j \leq d(A+P, C)=d(A, C)-1$, which will be at distance $j+1$ from A. This covers all the distances we need except 0 , for which we can take $B=A$.

Now if $A+P$ is co-tailed with C, then they are distinct, since $d(A, A+P)=1$ and $d(A, C) \geq 2$. Lemma 26 guarantees that there is a double swap Q applicable to A yielding an intermediate genome $A+P+Q$ between $A+P$ and C. However, according to Lemma 37, a cut can go forward past a double swap, which means that Q is applicable to A. The resulting genome, $A+Q$, is intermediate between A and C because $A+Q+P$ is just another way of getting to $A+P+Q$, which we know is intermediate between A and C. We can then apply the induction hypothesis to $A+Q$ and C, which are not co-tailed since $A+Q$ is co-tailed with A, obtaining intermediate genomes at distances i from A for $2 \leq i \leq d(A, C)$. For $i=0$ we have A, and for $i=1$ we have $A+P$. This completes the induction step and the proof of our lemma.

5.6 Main Result

Theorem 5. Let A and C be arbitrary genome matrices over the same genes. Then:

1. If A and C are not co-tailed, then there is a genome matrix B such that:

$$
d(A, B)=\left\lceil\frac{d(A, C)}{2}\right\rceil
$$

and

$$
d(B, C)=\left\lfloor\frac{d(A, C)}{2}\right\rfloor .
$$

2. If A and C are co-tailed and $d(A, C)$ is a multiple of 4 , then there is a genome matrix B such that:

$$
d(A, B)=\frac{d(A, C)}{2}
$$

and

$$
d(B, C)=\frac{d(A, C)}{2} .
$$

3. If A and C are co-tailed and $d(A, C)$ is not a multiple of 4 , then there is no genome matrix B such that:

$$
d(A, B)=\frac{d(A, C)}{2}
$$

and

$$
d(B, C)=\frac{d(A, C)}{2}
$$

However, there is a genome matrix B such that:

$$
d(A, B)=\frac{d(A, C)}{2}+1
$$

and

$$
d(B, C)=\frac{d(A, C)}{2}-1 .
$$

Proof. Part 1 is a consequence of Lemma 38, since $0 \leq\lceil d(A, C) / 2\rceil \leq d(A, C)$. Part 2 is a consequence of Lemma 34. Part 3 is a consequence of Lemmas 35 and 36 .

Chapter 6

Parity

In this chapter we show an interesting property of the rank distance for genome matrices. For any three genome matrices, the sum of their pairwise distances has to be an even number.

6.1 Parity Property

To prove the intriguing parity result, we will need a few auxiliary lemmas. The proof that we will offer relies on properties of $A B$-orbits. We already know that the number of $A B$-orbits is related to the distance $d(A, B)$. These orbits are also related to the determinant of $A B$ in a manner that will be explained in the sequel.

6.2 The Determinant

Let us start with a lemma relating $A B$-orbits to eigenvalues of $A B$. Notice that in this lemma we will consider A and B as matrices with complex coefficients, although the coefficients can be thought of as being taken from any field. But we need the field of complex numbers here to be able to encompass all eigenvalues of $A B$.

Lemma 39. If $\mathcal{S}=\left\{x, A B x,(A B)^{2} x, \ldots,(A B)^{k-1} x\right\}$ is an $A B$-orbit with k elements, then the subspace generated by \mathcal{S} contains k eigenvectors of $A B$, each corresponding to an eigenvalue of the form λ_{k}^{j}, for $j=0,1, \ldots, k-1$, where $\lambda_{k}=e^{2 \pi i / k}$ and i is the imaginary unit.

Proof. Consider the vectors v_{j}, for $j=0,1, \ldots, k-1$, defined as:

$$
v_{j}=\sum_{m=0}^{k-1} \lambda_{k}^{-j m}(A B)^{m} x
$$

These vectors certainly belong to $\langle\mathcal{S}\rangle$, the subspace generated by \mathcal{S}, since they are linear com-
binations with complex coefficients of extremities in \mathcal{S}. Let's compute $A B v_{j}$:

$$
\begin{aligned}
A B v_{j} & =A B \sum_{m=0}^{k-1} \lambda_{k}^{-j m}(A B)^{m} x \\
& =\sum_{m=0}^{k-1} \lambda_{k}^{-j m}(A B)^{m+1} x \\
& =\lambda_{k}^{j} \sum_{m=0}^{k-1} \lambda_{k}^{-j(m+1)}(A B)^{m+1} x \\
& =\lambda_{k}^{j} \sum_{m=1}^{k} \lambda_{k}^{-j m}(A B)^{m} x .
\end{aligned}
$$

But since the last term of this last sum is $\lambda_{k}^{-j k}(A B)^{k} x=\left(\lambda_{k}^{k}\right)^{-j} x=x$, we have:

$$
A B v_{j}=\lambda_{k}^{j} v_{j}
$$

showing that v_{j} is actually an eigenvector of $A B$ for the eigenvalue λ_{k}^{j}.
The next lemma is just an auxiliary computation on complex roots of the unit.
Lemma 40. For any integer $k \geq 1$, the product of all k-th roots of 1 :

$$
p_{k}=\prod_{j=0}^{k-1} \lambda_{k}^{j}
$$

is equal to -1 if k is even and equal to +1 if k is odd, where $\lambda_{k}=e^{2 \pi i / k}$ and i is the imaginary unit.

Proof. The product p_{k} can be written as:

$$
\prod_{j=0}^{k-1} \lambda_{k}^{j}=\lambda_{k}^{\sum_{j=0}^{k-1} j}=\lambda_{k}^{(k-1) k / 2}
$$

Now if k is even, we have:

$$
\lambda_{k}^{k / 2}=e^{\pi i}=-1
$$

and hence

$$
\lambda_{k}^{(k-1) k / 2}=\left(\lambda_{k}^{k / 2}\right)^{k-1}=(-1)^{k-1}=-1,
$$

since $k-1$ is odd.
On the other hand, if k is odd, then $(k-1) / 2$ is an integer and therefore:

$$
\lambda_{k}^{(k-1) k / 2}=\left(\lambda_{k}^{k}\right)^{(k-1) / 2}=(+1)^{(k-1) / 2}=+1 .
$$

We are now ready for one of the main results, relating orbits to the determinant.

Lemma 41. For any two genomes A and B we have:

$$
\operatorname{det}(A B)=(-1)^{q},
$$

where q is the number of even-sized $A B$-orbits.
Proof. The determinant $\operatorname{det}(A B)$ is the product of all eigenvalues of $A B$ considered with their respective multiplicities. For each $A B$-orbit \mathcal{S}, the product of the eigenvalues related to the eigenvectors generated by \mathcal{S} is, according to Lemmas 39 and 40 , either -1 if $|\mathcal{S}|$ is even, or +1 if $|\mathcal{S}|$ is odd. It follows that the product of all eigenvalues of $A B$ with their multiplicities will be $(-1)^{q}$, where q is the number of orbits that contribute with -1 factors to this product, that is, the even-sized ones.

6.3 Determinant and Distance

We are now ready advance our developments, relating the determinant of $A B$ to the distance $d(A, B)$.

Lemma 42. For any two genomes A and B we have:

$$
\operatorname{det}(A B)=(-1)^{d(A, B)}
$$

Proof. Let p be the number of $A B$-orbits, and q be the number of even-sized $A B$-orbits. Notice first that since the total size of all $A B$-orbits is $2 n$, an even number, we must have an even number of odd-sized $A B$-orbits, otherwise the total wouldn't be even. This shows that p and q have the same parity, because their difference (the number of odd-sized $A B$-orbits) is an even number.

It follows that we can write:

$$
(-1)^{q}=(-1)^{p} .
$$

Now:

$$
\operatorname{det}(A B)=(-1)^{q}=(-1)^{p}=(-1)^{2 n-2 p+p}=(-1)^{2 n-p}=(-1)^{d(A, B)} .
$$

And now the main result of the chapter.
Theorem 6. For any three genomes A, B, and C we have:

$$
d(A, B)+d(A, C)+d(C, B) \equiv 0 \quad(\bmod 2) .
$$

Proof. Since the three matrices are involutions, we have $A B B C C A=I$, and therefore:

$$
1=\operatorname{det}(A B B C C A)=\operatorname{det}(A B) \operatorname{det}(B C) \operatorname{det}(C A)=(-1)^{d(A, B)+d(B, C)+d(C, A)}
$$

Since each distance is an integer, it follows that

$$
d(A, B)+d(B, C)+d(C, A) \equiv 0 \quad(\bmod 2) .
$$

Bibliography

[1] P. Biller. The minimax genome problem. PhD Qualifying Exam Text, In Portuguese. URL: http://www.ic.unicamp.br/~meidanis/PUB/Doutorado/2012-Biller/eqe.pdf, July 2014.
[2] P. Feijao and J. Meidanis. Extending the algebraic formalism for genome rearrangements to include linear chromosomes. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 10(4), July 2013. A preliminary version appeared in: BSB ' 12 - Proceedings of the 7th Brazilian Symposium on Bioinformatics, 2012.
[3] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1-27, January 1999. A preliminary version appeared in: STOC '95-Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, 1995.
[4] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion distance between two chromosomes. Algorithmica, 13:180-210, 1995. A preliminary version appeared in: CPM '93 - Proceedings of the Fourth Annual Symposium on Combinatorial Pattern Matching, 1993.
[5] J. Meidanis and Z. Dias. An alternative algebraic formalism for genome rearrangements. In David Sankoff and Joseph H. Nadeau, editors, Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pages 213-223. Springer Netherlands, 2000.
[6] J Meidanis and S. Yancopoulos. The emperor has no caps! a comparison of DCJ and algebraic distances. In Cedric Chauve, Nadia El-Mabrouk, and Eric Tannier, editors, Models and Algorithms for Genome Evolution, pages 207-243. Springer London, London, 2013.
[7] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21(16):3340-3346, 2005.
[8] J. P. P. Zanetti, P. Biller, and J. Meidanis. Median approximations for genomes modeled as matrices. Bulletin of Mathematical Biology, 78(4):786-814, 2016.

