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Abstract

A graceful labelling of a tree T is an injective function f : V (T ) → {0, 1, . . . , |E(T )|} such
that {|f(u)− f(v)| : uv ∈ E(T )} = {1, 2, . . . , |E(T )|}. A tree T is said to be 0-rotatable if, for
any v ∈ V (T ), there exists a graceful labelling f of T such that f(v) = 0. In this work, it
is proved that the following families of caterpillars are 0-rotatable: caterpillars with a perfect
matching; caterpillars obtained by identifying a central vertex of a path Pn with a vertex of K2;
caterpillars obtained by linking one leaf of the star K1,s−1 to a leaf of a path Pn with n ≥ 3 and
s ≥ ⌈n

2
⌉; and caterpillars with diameter five or six. These results reinforce the conjecture that

all caterpillars with diameter at least five are 0-rotatable.

1 Introdução

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G). A labelling of
G is an injective function f : V (G) → Z≥0. Under labelling f , the label of a vertex v ∈ V (G) is
f(v), and the (induced) label of an edge uv ∈ E(G) is the absolute difference of the labels of its

ends, |f(u) − f(v)|. Given a labelling f of G, denote by Lf
V the set of vertex labels under f and

denote by Lf
E the set of induced edge labels under f . Labelling f is a graceful labelling if Lf

V ⊆

{0, 1, . . . , |E(G)|} and Lf
E = {1, . . . , |E(G)|}. We say that G is graceful if it has a graceful labelling.

A labelling f of G is an α-labelling if f is graceful and there exists an integer k ∈ {0, 1, . . . , |E(G)|}
such that, for each edge uv ∈ E(G), either f(u) ≤ k < f(v), or f(v) ≤ k < f(u).

In 1967, Rosa [10] introduced four types of labellings of graphs, among them graceful labellings
and α-labellings, and posed the Graceful Tree Conjecture, which states that all trees are graceful.
Rosa proved that the Graceful Tree Conjecture is a strengthened version of the well-known Ringel-
Kotzig Conjecture which states that K2m+1 has a cyclic decomposition into subgraphs isomorphic
to a given tree T with m edges. The Graceful Tree Conjecture is a very important open problem
in Graph Theory, with hundreds of papers about it [6].

As soon as one starts investigating graceful labellings of trees, it becomes clear the importance
of knowing how to construct graceful labellings with the label 0 appearing in a given vertex. There
are at least two results in the literature that stress the importance of label 0 in a graceful labelling
of a tree T : first, it is easy to grow a gracefully labelled tree T by adding k new leaves to the
0-labelled vertex and expand the graceful labelling by assigning labels |E(T )|+1, . . . , |E(T )|+k to
these new leaves. Second, Huang et al. [8] showed that it is possible to combine any tree with an
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α-labelling and any tree with a graceful labelling, by identifying the vertices labelled 0, such that
the resultant tree is graceful. A tree T is 0-rotatable if, for any v ∈ V (T ), there exists a graceful
labelling f of T such that f(v) = 0.

The importance of the 0-rotatability of trees was first noted by Rosa in his seminal paper [10],
in which the author stated, without proof, that all paths are 0-rotatable. Ten years later, the
author published a proof of this result [11]. Meanwhile, in 1969, some examples of non-0-rotatable
trees were discovered [5]. As an example, the smallest non-0-rotatable tree is shown in Figure 1.
Posteriorly, Chung and Hwang [4] investigated the 0-rotatability of a product of trees called ∆-
construction and proved that if two trees T and T ′ are 0-rotatable, then their product T∆T ′ is also
0-rotatable. Using this result, the authors showed that every caterpillar whose non-leaf vertices
have the same degree is 0-rotatable.

Figure 1: This tree does not have a graceful labelling that assigns label 0 to the black vertex.

In 2004, Bussel [2] showed that all trees with diameter at most three are 0-rotatable. Addi-
tionally, the author showed that there exist non-0-rotatable trees with diameter four. In fact, he
completely determined the non-0-rotatable trees of diameter four. In order to do this, the author
used the following result:

Theorem 1 (Bussel [2]). Let T be a tree of diameter four such that its center v has degree two.
Let v1, v2 be the vertices adjacent to v and m1,m2 be the number of leaves adjacent to v1, v2,
respectively. Assume m1 ≥ m2. The tree T has a graceful labelling f with f(v) = 0 if and only if
there exist integers x and r such that m1 = (m2 +2−x)(r− 1)−x, with: (i) x, r not both odd; (ii)
2 ≤ r ≤ |E(T )|/2; and (iii) 0 ≤ x ≤ min{r − 1,m2}.

Let D denote the class of diameter-four trees whose center has degree two and that do not
satisfy the conditions of Theorem 1. Let D′ be the class of trees built by identifying a leaf of an
arbitrary path Pn, n ≥ 1, with the center of a tree in D. Bussel [2] proved that, given a tree T
with diameter four, T is 0-rotatable if and only if T 6∈ D′. Additionally, he showed that all trees
with at most 14 vertices and that are not 0-rotatable belong to the class D′. Thus, based on these
results, the author posed the following conjecture:

Conjecture 2 (Bussel [2]). The class D′ contains all non-0-rotatable trees.

From the time it was first studied, 0-rotatability of trees has been considered a possible way to
approach the Graceful Tree Conjecture, and also a challenging problem by itself. Even for arbitrary
caterpillars the result is not known. In fact, note that, if Conjecture 2 is true, then it implies that
every caterpillar with diameter at least five is 0-rotatable.

In this work we investigate the Conjecture 2 restricted to caterpillars and prove that the following
families of caterpillars are 0-rotatable: (i) caterpillars with a perfect matching; (ii) caterpillars
obtained by identifying a central vertex of a path Pn with a vertex of K2; (iii) caterpillars obtained
by linking one leaf of the star K1,s−1 to a leaf of a path Pn, n ≥ 3 and s ≥ ⌈n2 ⌉; and (iv) caterpillars
with diameter five or six. These results reinforce the conjecture that every caterpillar with diameter
at least five is 0-rotatable. In particular, the last two families show that, for each integer d ≥ 5,
there exist 0-rotatable caterpillars with diameter d and arbitrary number of vertices.

In the next section, we present additional definitions as well as classic results and techniques
that are used in our proofs. The main results are presented in Section 3.
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2 Preliminaries

A matching M of a graph G is a set of pairwise nonadjacent edges of G. A vertex v ∈ V (G) is
saturated by M if v is incident with an edge of M . If M saturates all the vertices of G, then M is a
perfect matching. Given a tree T with perfect matching M , the contree of T is the tree T ′ obtained
from T by contracting all the edges of M .

Broersma and Hoede [1] introduced the concept of strongly graceful labellings of trees, defined
as follows. Let T be a tree with a perfect matching M . A labelling f of T is strongly graceful if
f is a graceful labelling and if f(u) + f(v) = |E(T )| for every edge uv ∈ M . The authors proved
that the Graceful Tree Conjecture is true if and only if every tree with a perfect matching has a
strongly graceful labelling. They also proved the following result.

Lemma 3 (Broersma and Hoede [1]). Let T be a tree with a perfect matching M and uv ∈ M ,
u, v ∈ V (T ). Let T ′ be the contree of T and let x ∈ V (T ′) be the vertex corresponding to edge uv.
If T ′ has a graceful labelling f ′, with f ′(x) = 0, then T has two strongly graceful labellings f1 and
f2, such that: (i) f1(u) = 0 and f1(v) = |E(T )|; (ii) f2(u) = |E(T )| and f2(v) = 0.

Given a graceful labelling f of a tree T , the complementary labelling of f is the labelling f
defined by f(v) = |E(T )| − f(v) for each v ∈ V (T ). Note that the complementary labelling is also
a graceful labelling since: (i) f(v) is an injection from V (T ) to {0, . . . , |E(T )|}; and (ii) for each
uv ∈ E(T ), |f(u)− f(v)| = |(|E(T )| − f(u))− (|E(T )| − f(v))| = |f(v)− f(u)|.

A tree T is a path Pn if its vertices can be arranged in a linear sequence such that two vertices
are adjacent if and only if they are consecutive in the sequence. The next lemmas are related to
α-labellings and graceful labellings of paths and are used in Section 3.

Lemma 4 (Rosa [11]). Let Pn be a path, n ≥ 1, and let v ∈ V (Pn). Then,

(i) there exists an α-labelling f of Pn such that f(v) = 0 if and only if v is not the central vertex
of P5.

(ii) if v is the central vertex of P5, then P5 has a graceful labelling f such that f(v) = 0.

Lemma 5 (Cattell [3]). Let Pn be a path and v ∈ Pn. For any i ∈ {0, . . . , n − 1}, there exists a
graceful labelling f of Pn with f(v) = i whenever at least one of the following conditions is true:

(i) n is even;

(ii) n ≡ 5 or 9 (mod 12);

(iii) given a bipartition {X,Y } of Pn with |X| ≥ |Y |, v ∈ X;

(iv) i 6= n−1
2 .

Let T be a tree and v ∈ V (T ). Denote by Nk(v) the set of neighbours of v with degree k.
The distance d(u, v) between two vertices u, v ∈ V (T ) is the number of edges in the unique path
connecting u and v in T . The eccentricity of a vertex u ∈ V (T ) is defined as ǫ(u) = max{d(u, v) : v ∈
V (T )}, the diameter as diam(T ) = maxv∈V (T ) ǫ(v), and the radius as radius(T ) = minv∈V (T ) ǫ(v).
A vertex v ∈ V (T ) is a central vertex of T if ǫ(v) = radius(T ). A spine of T is a path P ⊂ T such
that its ends have maximum eccentricity in T . Given a tree T with spine P , we say that T is a
caterpillar if all vertices of T are either contained in P , or are at distance exactly one from P . The
next result states that every caterpillar has an α-labelling.
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Lemma 6 (Rosa [10]). Let T be a caterpillar and v ∈ V (T ) be a vertex which either has maximum
eccentricity or is adjacent to a vertex of maximum eccentricity. Then, T has an α-labelling f such
that f(v) = 0.

Let u, v, w be distinct vertices of a tree T , such that w is adjacent to u. We call transfer the
operation of deleting edge wu from T and adding edge wv. After the transfer operation, we say
that vertex w has been transferred or moved from u to v. For any two distinct vertices u and v
of a gracefully labelled tree T , the notation u → v means that we moved some vertices incident
with vertex u to vertex v. We say that a transfer u → v applied to a graceful tree is safe if the
resulting tree is also graceful. The following lemma states when a transfer performed on a graceful
tree generates another graceful tree.

Lemma 7 (Hrnčiar and Haviar [7]). Let f be a graceful labelling of a tree T and let u, v ∈ V (T ) be
two distinct vertices. If u is adjacent to (not necessarily distinct) leaves u1, u2 ∈ V (T ), such that
u1 6= v, u2 6= v and f(u1)+ f(u2) = f(u)+ f(v), then the tree T ′ obtained from T by moving u1, u2
from u to v is also graceful.

A u → v transfer is said to be of the first type if the labels of the transferred vertices are the
labels in set {k, k+1, . . . , k+p}, where f(u)+f(v) = k+(k+p). A transfer of the first type is also

denoted by u
[k,k+p]
−−−−→ v. Note that, in a transfer of the first type, the labels of transferred vertices

constitute a set of consecutive integers. On the other hand, a u → v transfer is of the second type
if the labels of the transferred vertices are the labels in set {k, k+1, . . . , k+p}∪{l, l+1, . . . , l+p},

where f(u) + f(v) = k + l + p. A transfer of the second type is also denoted by u
[k,k+p],[l,l+p]
−−−−−−−−→ v.

In a transfer of the second type, the labels of the transferred vertices can be partitioned into two
sets of same cardinality, where each set is composed by consecutive integers. Figure 2 illustrates
these concepts.

3

2 1

4 5 6 7 8 9

10 110

(a) Graceful tree T .

3

2 1

4 5 6 78 9

10 110

(b) Graceful tree T ′.

3

2 1

4 56 7 8 9

10 110

(c) Graceful tree T ′′.

Figure 2: Tree T ′ is obtained from T by transfer 11
[5,7]
−−→ 1 of the first type; on the other hand,

tree T ′′ is obtained from T by applying transfer 11
[3,5],[7,9]
−−−−−→ 1 of the second type.

The next lemma establishes additional conditions under which it is possible to make safe trans-
fers in a graceful tree.

Lemma 8 (Mishra and Panigrahi [9]). Let T be a tree with a graceful labelling f satisfying the
following properties:

(i) there exist distinct vertices in T with labels a, . . . , a+ r1, b− r2, . . . , b such that a < b, a+ r1 <
b− r2, and r1, r2 ∈ Z≥0;

(ii) the vertex with label a is adjacent to a set of vertices S with labels s, . . . , s + p, such that:

(a) p ≥ 2;

(b) {s, . . . , s+ p} ∩ {a, . . . , a+ r1, b− r2, . . . , b} = ∅; and
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(c) for 0 ≤ i < ⌊p2⌋, either (s+ i+1) + (s+ p− i) = a+ b or (s+ i) + (s+ p− 1− i) = a+ b.

Then, the following statements are true:

(a) if |S| is odd, then it is possible to make a safe transfer a → b of the first type followed by a safe
transfer b → (a + 1) of the second type, keeping an odd number of vertices at vertex a and a
positive even number of vertices at b, moving the rest of the vertices to a+ 1.

(b) if |S| is even, then it is possible to make a sequence of safe transfers of the second type a →
b → a + 1 → b − 1 → a + 2 → b − 2 → . . . → z, where z = a + r1 or z = b − r2, keeping a
positive even number of vertices of S at each vertex of the sequence.

3 Results

In this section, we prove our main results. We start by showing an interesting result which is useful
for proving that certain families of trees with a perfect matching are 0-rotatable.

Theorem 9. Let T be a tree with a perfect matching. If the contree of T is 0-rotatable, then T is
0-rotatable.

Proof. Let T be a tree with perfect matching M and uv ∈ M . Let T ′ be the contree of T and
x ∈ V (T ′) be the vertex corresponding to edge uv. Suppose T ′ is 0-rotatable. Hence, T ′ has a
graceful labelling f ′ such that f ′(x) = 0. Thus, by Lemma 3, T has two strongly graceful labellings
f1 and f2 such that: f1(u) = 0 and f1(v) = |E(T )|; f2(u) = |E(T )| and f2(v) = 0. Therefore,
there exist strongly graceful labellings of T which assign label 0 to vertices u and v. Since uv is an
arbitrary edge of M , we conclude that T is 0-rotatable.

Corollary 10. Every caterpillar with a perfect matching is 0-rotatable.

Proof. The result follows from Theorem 9 and the fact that the contree of a caterpillar with a
perfect matching is a path, which is 0-rotatable by Lemma 4.

Theorem 14 and Theorem 16 prove that two families of caterpillars are 0-rotatable. Before
presenting these results, it is necessary to establish some auxiliary lemmas.

Lemma 11. Let X,Y,Z be nonempty sets such that:

(i) |Y | ≥ max{|X|, |Z|};

(ii) X = {0, . . . , |X| − 1};

(iii) Y = {|X|, . . . , |X|+ |Y | − 1}; and

(iv) Z = {|X| + |Y |, . . . , |X|+ |Y |+ |Z| − 1}.

Then, for every l ∈ X ∪ Z, there exists t ∈ Y for which |l − t| = |Y |.

Proof. The result follows by letting t = l+ |Y | when l ∈ X, and letting t = l− |Y | when l ∈ Y .

Lemma 12. Let T be either a path Pn, with n ≥ 1, or a star K1,n−1, with n ≥ 2. Let v ∈ V (T )
be a leaf of T , t be a positive integer and S = {t, t + 1, . . . , t+ n− 1}. Then, for each i ∈ S, there

exists a labelling f : V (T ) → S such that f(v) = i and Lf
E(T ) = {1, . . . , n− 1}.
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Lemma 13. If a tree T has an α-labelling f , then there exists a bipartition {A,B} of T such that

Lf
A = {0, . . . , |A| − 1} and Lf

B = {|A|, . . . , |A| + |B| − 1}.

Theorem 14. Every caterpillar obtained by identifying a vertex of K2 with a central vertex of Pn

is 0-rotatable.

Proof. Let Pn = v1 · · · vn be a path, with n ≥ 1. Let T be the caterpillar obtained by identifying
a vertex of K2 with the central vertex v⌈n

2
⌉ of Pn. Let v1, . . . , vn be the vertices of the spine of T

and let vn+1 be the leaf adjacent to v⌈n
2
⌉.

If diam(T ) ∈ {1, 2, 3, 4}, the result follows from Lemma 6 and Corollary 10. Now, consider
diam(T ) ∈ {5, 6, 7}. By Lemma 6, for v ∈ {v1, v2, vn−1, vn}, there exists a graceful labelling f of
T such that f(v) = 0. Moreover, Figure 3 exhibits two distinct graceful labellings f1

5 , f
2
5 of T with

diam(T ) = 5, such that f1
5 (v3) = 0 and f2

5 (v4) = 0. The complementary labelling of f1
5 assigns label

0 to v7. Figure 4 exhibits three distinct graceful labellings f1
6 , f

2
6 , f

3
6 of T with diam(T ) = 6, such

that f1
6 (v3) = 0, f2

6 (v4) = 0, and f3
6 (v5) = 0. The complementary labelling of f2

6 assigns label 0 to
v8. Finally, Figure 5 exhibits three distinct graceful labellings f1

7 , f
2
7 , f

3
7 of T with diam(T ) = 7,

such that f1
7 (v3) = 0, f2

7 (v4) = 0, f3
7 (v5) = 0. The complementary labelling of f3

7 assigns label 0 to
v6, the complementary labelling of f2

7 assigns label 0 to v9, and the result follows.

0 123 45

6

(a) Graceful labelling f1

5 .

01 23

4

5 6

(b) Graceful labelling f2

5 .

Figure 3: Two graceful labelings of a caterpillar T with diam(T ) = 5.

01 23

4

5 67

(a) Graceful labelling f1

6 .

0 12 34 56

7

(b) Graceful labelling f2

6 .

0 12 3

4

56 7

(c) Graceful labelling f3

6 .

Figure 4: Three graceful labelings of a caterpillar T with diam(T ) = 6.

0

1

23 4 56 78

(a) Graceful labelling f1

7 .

01 234 56 7

8

(b) Graceful labelling f2

7 .

01

2

34 5 67 8

(c) Graceful labelling f3

7 .

Figure 5: Three graceful labelings of a caterpillar T with diam(T ) = 7.

Now, we consider the remaining case in which diam(T ) ≥ 8. Let P ⊂ T be the subgraph
induced by vertex set {v1, v2, . . . , v⌈n

2
⌉, vn+1} and let Q ⊂ T be the subgraph induced by vertex

set V (T )\V (P ). Let nP and nQ denote the order of P and Q, respectively, and let mP and mQ

denote the sizes of P and Q, respectively. Note that both P and Q are paths. Moreover, since
diam(T ) ≥ 8, diam(P ) ≥ 5.

First, we prove that, for v ∈ V (P ), there exists a graceful labelling f of T such that f(v) = 0. By
Lemma 4, P has an α-labelling g : V (P ) → {0, 1, . . . ,mP } such that g(v) = 0. By Lemma 13, there
exists a bipartition {A,B} of P such that Lg

A = {0, 1, . . . , |A|−1} and Lg
B = {|A|, . . . , |A|+ |B|−1}.
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Using this bipartition, we modify g in order to obtain another labelling fP of P as follows:

fP (u) =

{

g(u), if u ∈ A;

g(u) + nQ, if u ∈ B.

Therefore, we obtain fP : V (P ) → A ∪ B′ such that A = {0, 1, . . . , |A| − 1} and B′ = {|A| +

nQ, |A| + 1 + nQ, . . . , |A| + |B| − 1 + nQ}. Since each label in B was increased by nQ, L
fP
E(P ) =

{1 + nQ, 2 + nQ, . . . ,mP + nQ}.
Note that the vertex labels |A|, |A|+1, . . . , |A|+nQ−1 are missing in fP , as well as the induced

edge labels 1, 2, . . . , nQ. Let C = {|A|, |A| + 1, . . . , |A| + nQ − 1} and let l = fP (v⌈n
2
⌉). Next, we

show that there exists an integer t ∈ C, such that |l − t| = |C| = nQ.

By the definition of P , we have that |A| + |B′| = nP = ⌈n2 ⌉ + 1. Moreover, since P is a path,
one of the following holds: (i) |A| = |B′| = (⌈n2 ⌉+1)/2; (ii) |A| = ⌊(⌈n2 ⌉+1)/2⌋ and |B′| = |A|+1;
or (iii) |B′| = ⌊(⌈n2 ⌉+1)/2⌋ and |A| = |B′|+1. Since |C| = nQ = ⌊n2 ⌋ and ⌊n2 ⌋ > ⌈(⌈n2 ⌉+1)/2⌉ for
n ≥ 9, we obtain that |C| > |A| and |C| > |B′|. Thus, considering X = A, Y = C, Z = B′, and l
as previously chosen, by Lemma 11, there exists t ∈ Y , such that |l − t| = |Y | = |C|, as required.

By Lemma 12, there exists a labelling fQ : V (Q) → C such that: (i) fQ(v⌈n
2
⌉+1) = t; and (ii)

L
fQ
E(Q) = {1, . . . , nQ − 1}. Define a labelling f : V (T ) → {0, 1, . . . , |E(T )|} such that:

f(u) =

{

fP (u), if u ∈ P ;

fQ(u), if u ∈ Q.

Labelling f is a graceful labelling of T since: (i) f is an injective function from V (T ) to
{0, 1, . . . ,mP +mQ + 1 = |E(T )|}; (ii) the induced edge labels of Q are 1, 2, . . . , nQ − 1; (iii) the
induced edge labels of P are nQ + 1, nQ + 2, . . . , |E(T )|; and (iv) f(v⌈n/2⌉v⌈n/2⌉+1) = nQ.

In order to conclude the proof, we have to show that there exists a graceful labelling f such
that f(v) = 0 for each vertex v ∈ V (Q). It can be done by the previous reasoning, considering
V (P ) = {v⌈n

2
⌉, . . . , vn, vn+1} and V (Q) = V (T )\V (P ).

Theorem 16 proves that every caterpillar obtained by linking one leaf of star K1,s−1 to a leaf
of path Pn, with n ≥ 3 and s ≥ ⌈n2 ⌉, is 0-rotatable. In our proof we use a specific labelling of a
caterpillar which is presented in the next lemma.

Lemma 15. Let T be the caterpillar obtained by linking one leaf of star K1,s−1, s ≥ 3, to a leaf
of path P5. If v is the central vertex of P5, then there exists a graceful labelling f of T such that
f(v) = 0.

Theorem 16. Let T be the caterpillar obtained by linking one leaf of the star K1,s−1 to a leaf of
the path Pn. If n ≥ 3 and s ≥ ⌈n2 ⌉, then T is 0-rotatable.

Proof. Let Pn = v1 · · · vn and V (K1,s−1) = {x1, . . . , xs}, with xs its central vertex. Let T be the
caterpillar obtained by linking x1 to v1. Thus, T has vertex set V (T ) = V (K1,s−1) ∪ V (Pn) and
edge set E(T ) = E(K1,s−1) ∪ E(Pn) ∪ {x1v1}.

Suppose n ≥ 3 and s ≥ ⌈n2 ⌉. In the following, we prove that there exists a graceful labelling f
of T such that f(v) = 0 for every v ∈ V (T ). We consider two cases depending on which subgraph,
K1,s−1 or Pn, vertex v belongs to.

Case 1. v ∈ V (K1,s−1).
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By Lemma 6, for every v ∈ {x2, . . . , xs}, there exists a graceful labelling f of T such that
f(v) = 0. Therefore, in order to conclude this case, it remains to show that there exists a graceful
labelling f of T such that f(x1) = 0.

LetH1 andH2 be subgraphs of T induced by the vertex set {v1, x1, x2, . . . , xs} and {v2, v3, . . . , vn} =
V (T )\V (H1), repectively. Define a graceful labelling h1 : V (H1) → {0, . . . , s} as follows: (i)
h1(xi) = i − 1, for 1 ≤ i ≤ s; and (ii) h1(v1) = s. Since h1(xs) = s − 1 and its neighbours
have labels 0, 1, . . . , s− 2, the edges incident with xs have induced labels 1, 2, . . . , s− 1. Moreover,
since h1(x1) = 0 and h1(v1) = s, the edge x1v1 has label s. Next, we modify h1 in order to obtain
another labelling h′1:

h′1(v) =

{

h1(v), if v ∈ {x1, x2, . . . , xs−1};

h1(v) + |V (H2)|, if v ∈ {xs, v1}.

Since n ≥ 3 and |V (H2)| = n−1, |V (H2)| ≥ 2. By the definition, h′1(xs) = n+ s−2. Moreover,

the neighbours of xs have labels 0, 1, . . . , s− 2 under h′1. Therefore, L
h′
1

E(K1,s−1)
= {n, n+1, . . . , n+

s − 2}. Also, since h′1(x1) = 0 and h′1(v1) = n + s − 1, we have that h′1(x1v1) = n + s − 1. Thus,
we conclude that the vertex labels s − 1, s, . . . , s + n − 3 are missing, as well as the edge labels
1, 2, . . . , n− 1.

Since H2 is a path with |V (H2)| ≥ 2, by Lemma 12, H2 has a labelling h2 : V (H2) → {s −
1, s, . . . , s + n − 3} such that h2(v2) = s and Lh2

E(H2)
= {1, 2, . . . , n − 2}. We define labelling

f : V (T ) → {0, 1, . . . , |E(T )|} as follows:

f(v) =

{

h′1(v), if v ∈ V (H1);

h2(v), if v ∈ V (H2).

Labelling f is graceful since: (i) f is an injective function from V (T ) to {0, . . . , |E(T )|}; and (ii)

Lf
E(H2)

= {1, . . . , n−2}, Lf
E(H1)

= {n, . . . , n+ s−1}, and |f(v2)− f(v1)| = |s− (n+ s−1)| = n−1.

Thus, Lf
E(T ) = {1, . . . , n+ s− 1} and the result follows.

Case 2. v ∈ V (Pn).

If n = 5 and v is the central vertex of P5, the result follows by Lemma 15. Thus, consider n 6= 5
or v different from the central vertex of P5. By Lemma 4, since v is not the central vertex of P5,
path Pn has an α-labelling g such that g(v) = 0. By Lemma 13, there exists a bipartition {A,B}
of Pn such that Lg

A = {0, 1, . . . , |A| − 1} and Lg
B = {|A|, . . . , |A| + |B| − 1}. Using this bipartition,

we modify g in order to obtain another labelling fP of Pn. For each u ∈ V (Pn), define

fP (u) =

{

g(u), if u ∈ A;

g(u) + s, if u ∈ B.

Thus, we obtain the labelling fP : V (Pn) → A ∪ B′, such that A = {0, 1, . . . , |A| − 1} and
B′ = {|A| + s, |A| + s + 1, . . . , |A| + s + |B| − 1}. Since each label in B was increased by s,

LfP
E(Pn)

= {1+s, 2+s, . . . , n−1+s = |E(T )|}. Note that the vertex labels |A|, |A|+1, . . . , |A|+s−1

are missing in fP , as well as the induced edge labels 1, 2, . . . , s. Let C = {|A|, |A|+1, . . . , |A|+s−1}
and let l = fP (v1). Next, we show that there exists an integer t ∈ C, such that |l − t| = |C| = s.

Consider X = A, Y = C, Z = B′, and l as previously chosen. Since |C| ≥ ⌈n2 ⌉, by Lemma 11,
there exists t ∈ Y , such that |l− t| = |Y | = |C|, as required. By Lemma 12, there exists a labelling
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fK : V (K1,s−1) → C, such that: (i) fK(x1) = t; and (ii) LfK
K1,s−1

= {1, 2, . . . , s − 1}. Thus, define

labelling f : V (T ) → {0, 1, . . . , |E(T )|} as follows:

f(u) =

{

fP (u), if u ∈ V (Pn);

fK(u), if u ∈ V (K1,s−1).

Labelling f is graceful since: (i) f is an injective function from V (T ) to {0, 1, . . . , |E(T )|};

and (ii) Lf
E(K1,s−1)

= {1, . . . , s − 1}, Lf
E(Pn)

= {s + 1, . . . , s + n − 1} and f(x1v1) = s. Therefore,

Lf
E(T ) = {1, . . . , |E(T )|} and the result follows.

3.1 Caterpillars with diameter five

The main result of this section is Theorem 19, which states that every caterpillar T with diameter
five is 0-rotatable. In order to prove this result, for each non-leaf vertex v ∈ V (T ), we construct
a graceful labelling f of T that assigns label 0 to v and assigns label |E(T )| to any leaf u ∈ V (T )
adjacent to v. Consequently, we use its complementary labelling f in order to obtain f(u) = 0 and
f(v) = |E(T )|. Since f is also a graceful labelling and f is constructed considering an arbitrary
non-leaf vertex v of T , we conclude that T is 0-rotatable.

The above mentioned labellings are obtained either directly from Lemma 6, or by modifying
one of the trees presented in Figure 6. These trees are modified by transfer operations and need
some properties presented in Lemma 17.

Given two finite sets of integers A and B, we say that A < B if max{a : a ∈ A} < min{b : b ∈ B}.
An ordered pair ({r, s, t},N ) with r, s, t ∈ Z≥0 and N ⊆ Z≥0 is called a special pair if it satisfies
the following conditions:

(i) r ≤ s and t = r + s;

(ii) given the index set I = {0, t − 1, t, t + 1} and N = {ni : ni ∈ Z≥0, i ∈ I, and n0 ≥ 1}, then
∑

i∈I ni = s− r + 1; and

(iii) exactly one of the following conditions holds:

(a) ni is even for i ∈ I\{0};

(b) nt−1 ≡ nt+1 ≡ t (mod 2) and nt 6≡ t (mod 2).

Lemma 17. Let ({r, s, t},N ) be a special pair. Let T be a tree and let f be a graceful labelling of
T satisfying the following properties:

(i) T has a vertex v that is adjacent to a set S of vertices with labels r, r + 1, . . . , s;

(ii) for each i ∈ {t− 1, t, t+ 1}, if T has a vertex vi such that f(v) + f(vi) = i, then vi 6∈ S.

Then, for each i ∈ {t− 1, t, t+1}, it is possible to safely transfer ni vertices of S from v to vi.

The main result of this section is Lemma 18. In order to present it, we need an additional
definition: the model-tree Td(c1, c2, . . ., cd−1) is the caterpillar with diameter d and spine P =
u0 · · · ud such that, for i ∈ {1, . . . , d− 1}, vertex ui is adjacent to exactly ci leaves. Figure 6 shows
three model-trees with special graceful labellings.

Lemma 18. Let T be a caterpillar with diameter five. Let v ∈ V (T ) be a central vertex of T and
w ∈ {v} ∪N1(v). Then, T has a graceful labelling f such that f(w) = 0.
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1

m m − 1

m − 2

b+ 1

b

b+ 2

b+ 3

0

u4 u5u2 u3u1

(a) Model-tree T5(a + 1, 0, b, 1) with a
graceful labelling. Note that u0 is one of
the leaves adjacent to u1.

3

21 m

m− 3

m− 1

m− 20

u4u2 u3u1u0

(b) Model-tree T5(1, 0, 0, a + 1) with a
graceful labelling. Note that u5 is one of
the leaves adjacent to u4.

54

3 21 mm− 1

m− 2

0

u4 u5u2 u3u1u0

(c) Model-tree T5(1, 0, 1, a+1) with a grace-
ful labelling.

Figure 6: Scheme of three model-trees with a graceful labelling.

Proof. Let T be a caterpillar with diam(T ) = 5 and spine P = u0u1u2u3u4u5. For each i ∈
{1, 2, 3, 4}, define Ui as the set of leaves from V (T )\{u0, u5} that are adjacent to ui. The central
vertices of T are u2 and u3. We prove the result for u2; the result for u3 is analogous.

Let T ′ ⊆ T be the subtree induced by vertex set V (T )\U2. Note that, if T ′ has a graceful la-
belling f ′ : V (T ′) → {0, . . . , |E(T ′)|} such that f ′(u2) = 0, then it is possible to expand T ′ by adding
|U2| leaves to vertex u2 and label these leaves with consecutive integers |E(T ′)|+1, . . . , |E(T ′)|+|U2|,
obtaining a graceful labelling f of T with f(u2) = 0. Furthermore, by applying the complementary
labelling f of f , we obtain a graceful labelling f of T with label 0 assigned to a leaf adjacent to
u2. Therefore, we can assume that U2 = ∅ and prove that T has a graceful labelling f such that
f(u2) = 0. We consider three cases depending on the parities of |U1|, |U3| and |U4|.

Case 1. (|U1| ≡ |U4| (mod 2)) or (|U1| ≡ 1 (mod 2) and |U4| ≡ 0 (mod 2)).

Initially, we modify T in order to obtain a model-tree T ′ = T5(a+1, 0, b, 1), with a = |U1|+ |U4|,
b = |U3|, and V (T ′) = V (T ), changing the edge set of T as follows: E(T ′) = (E(T )\{u4w : w ∈
U4}) ∪ {u1w : w ∈ U4}. Tree T ′ has a graceful labelling f such that f(u2) = 0, as illustrated in
Figure 6(a). Next, we show that it is possible to safely transfer |U4| leaves from u1 to u4, obtaining
a graceful labelling for T .

Let m = |E(T ′)| = |U1| + |U3| + |U4| + 5 = a + b + 5. Let r, s, t be three positive integers
such that r = b + 3, s = m − 2, and t = r + s = m + b + 1. Let I = {0, t − 1, t, t + 1} be an
index set and let N = {ni : i ∈ I} such that n0 = |U1| + 1, nt = |U4|, nt−1 = nt+1 = 0. Note
that the ordered pair ({r, s, t},N ) is a special pair since: (i) r ≤ s and t = r + s; (ii) n0 ≥ 1 and
∑

i∈I ni = a+ 1 = s− r + 1; (iii) when |U4| ≡ 0 (mod 2), ni is even, for i ∈ I\{0}; and (iv) when
|U1| ≡ |U4| ≡ 1 (mod 2), we have that nt−1 ≡ nt+1 ≡ t (mod 2) and nt 6≡ t (mod 2). Moreover,
note that: (i) the vertex u1 ∈ V (T ′) is adjacent to a set of leaves S with labels b + 3, . . . ,m − 2;
(ii) vertex u4 6∈ S and f(u1) + f(u4) = m+ b+1 = t. Therefore, by Lemma 17, considering u1 = v
and u4 = vt, we can safely transfer nt = |U4| leaves of set S from vertex u1 to vertex u4.

Case 2. |U1| ≡ |U3| ≡ 0 (mod 2) and |U4| ≡ 1 (mod 2).

If |E(T )| = 6, the result follows from the graceful labelling of T depicted in Figure 6(b). Thus,
suppose |E(T )| ≥ 7. By the same reasoning of the previous case, we construct T ′ = T5(1, 0, 0, a+1),
with a = |U1| + |U3| + |U4| and V (T ′) = V (T ), changing the edge set of T as follows: E(T ′) =
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(E(T )\({u1w : w ∈ U1}∪{u3w : w ∈ U3}))∪{u4w : w ∈ U1∪U3}. Tree T
′ has a graceful labelling f

such that f(u2) = 0, illustrated in Figure 6(b). Next, we show that it is possible to safely transfer
|Ui| leaves from u4 to ui, for i ∈ {1, 3}. Let m = |E(T ′)| = |U1| + |U3| + |U4| + 5 = a + 5. We
consider two subcases.

Subcase 1. |U1| > 0.

Since f(u1) + f(u4) = m+ 2 and u4 has two leaves with labels m− 1 and 3, by Lemma 7, we
can safely transfer this pair of leaves from vertex u4 to vertex u1. Additionally, let r, s, t be three
positive integers such that r = 4, s = m − 3, and t = r + s = m + 1. Let I = {0, t − 1, t, t + 1}
be an index set and let N = {ni : i ∈ I} such that n0 = |U4| + 1, nt−1 = |U3|, nt = 0 and
nt+1 = |U1| − 2. Note that the ordered pair ({r, s, t},N ) is a special pair since: (i) r ≤ s and
t = r + s; (ii) n0 ≥ 1,

∑

i∈I ni = a− 1 = s − r + 1; (iii) ni ≡ 0 (mod 2) for i ∈ I\{0}. Moreover,
note that: (i) vertex u4 ∈ V (T ′) is adjacent to a set of leaves S with labels 4, . . . ,m−3; (ii) vertices
u1, u3 6∈ S, f(u3) + f(u4) = t − 1, and f(u1) + f(u4) = t + 1. Therefore, by Lemma 17, we can
safely transfer nt−1 = |U3| leaves from u4 to u3 and nt+1 = |U1| − 2 leaves from u4 to u1.

Subcase 2. |U1| = 0.

In this subcase, it is sufficient to safely transfer |U3| leaves from u4 to u3. Since f(u3)+f(u4) =
(m−2)+2 = m, we move the pairs of leaves with labels in the set {3+ i,m−3− i : 0 ≤ i < |U3|/2}
from u4 to u3. Since (3+ i)+ (m− 3− i) = m, by Lemma 7, the tree obtained after these transfers
is graceful.

Case 3. |U1| ≡ 0 (mod 2) and |U3| ≡ |U4| ≡ 1 (mod 2).

Let u ∈ U3. As in previous cases, modify T so as to obtain a model-tree T ′ = T5(1, 0, 1, a + 1),
with a = |U1|+ |U3|+ |U4| − 1 and V (T ′) = V (T ), changing the edge set of T as follows: E(T ′) =
(E(T )\({u1w : w ∈ U1} ∪ {u3w : w ∈ U3\u})) ∪ {u4w : w ∈ U1 ∪ U3\u}. Tree T ′ has a graceful
labelling f such that f(u2) = 0, as illustrated in Figure 6(c).

Next, we show how to safely transfer |U1| leaves from u4 to u1. Moreover, by construction,
exactly one leaf of U3 is adjacent to vertex u3 in T ′. Hence, we also show how to safely transfer
|U3| − 1 leaves from u4 to u3. Let m = |E(T ′)| = |U1|+ |U3|+ |U4|+ 5 = a+ 6. Let r, s, t be three
positive integers such that r = 5, s = m − 2, and t = r + s = m + 3. Let I = {0, t − 1, t, t + 1}
be an index set and let N = {ni : i ∈ I} such that n0 = |U4|, nt−1 = |U1|, nt = |U3| − 1 and
nt+1 = 0. The ordered pair ({r, s, t},N ) is a special pair since: (i) r ≤ s and t = r + s; (ii)
n0 ≥ 1,

∑

i∈I ni = a = s − r + 1; and (iii) ni is even for i ∈ I\{0}. Moreover, note that: (i) the
vertex u4 ∈ V (T ′) is adjacent to a set of leaves S with labels 5, . . . ,m− 2; (ii) vertices u1, u3 6∈ S,
f(u1) + f(u4) = t − 1, and f(u3) + f(u4) = t. Therefore, by Lemma 17, we can safely transfer
nt−1 = |U1| leaves of S from u4 to u1 and nt = |U3| − 1 leaves of S from u4 to u3. This concludes
the proof.

Theorem 19. If T is a caterpillar with diameter five, then T is 0-rotatable.

Proof. The result follows from Lemma 6 and Lemma 18.

3.2 Caterpillars with diameter six

The main result of this section is Theorem 22, which states that every caterpillar with diameter
six is 0-rotatable. The technique used to prove this result is the same used to prove Theorem 19.
Accordingly, Lemma 20 and Lemma 21 present auxiliary results needed in the proof of Theorem 22.
Furthermore, Figure 7 shows four model-trees of diameter six with graceful labellings f such that
f(u3) = 0, that are used in Lemma 20.
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3

21 0m m − 1m − 2

m − 3

u1 u2 u3 u4 u5 u6

(a) Graceful tree T6(a+ 1, 0, 0, 0, 1).

4 3

2 10m m− 1 m− 2

m− 3

u1 u2 u3 u4 u5 u6

(b) Graceful tree T6(1 + a, 0, 0, 1, 1).

4 3 2

1 0 mm − 1 m − 2 m − 3

m − 4

u1 u2 u3 u4 u5 u6

(c) Graceful tree T6(1 + a, 0, 0, 1, 2).

4 3 2

1 0m m− 1m− 2 m− 3

m− 4

u1 u2 u3 u4 u5 u6

(d) Graceful tree T6(1 + a, 1, 0, 1, 1).

Figure 7: Scheme of four model-trees of diameter six with graceful labellings.

Lemma 20. Let T be a caterpillar with diameter six, let v ∈ V (T ) be the central vertex of T , and
let w ∈ {v} ∪N1(v). Then, T has a graceful labelling f such that f(w) = 0.

Proof. Let T be a caterpillar with diameter six and spine P = u0u1u2u3u4u5u6. For each i ∈
{1, 2, 3, 4, 5}, define Ui as the set of leaves from V (T )\{u0, u6} that are adjacent to ui. Note that
u3 is the unique central vertex of T . As shown in the proof of Lemma 18, we can assume |U3| = 0.

In our proof, we consider five cases depending on the parities of the |Ui|s. In order to do this, we
introduce the following definition: given tree T , we assign T a 5-tuple (p1, p2,−, p4, p5) such that,
for each i ∈ {1, 2, 4, 5}, pi is the parity of |Ui|. Since pi ∈ {0, 1}, there exist 16 distinct 5-tuples.

Case 1. Tree T is assigned one of the following 5-tuples: (0, 0,−, 0, 0), (1, 0,−, 0, 1), (1, 0,−, 0, 0),
(1, 1,−, 1, 0).

Let T ′ = T6(a + 1, 0, 0, 0, 1), with a = |U1| + |U2| + |U4| + |U5|, V (T ′) = V (T ), and E(T ′) =
(E(T )\({u2w : w ∈ U2} ∪ {u4w : w ∈ U4} ∪ {u5w : w ∈ U5})) ∪ {u1w : w ∈ U2 ∪U4 ∪U5}. Thus, T

′

has a graceful labelling f such that f(u3) = 0, as illustrated in Figure 7(a).

Let m = |E(T ′)| = a+ 6, r = 3, s = m− 3, and t = r + s = m. Also, let I = {0, t − 1, t, t+ 1}
and N = {ni : i ∈ I} with n0 = |U1| + 1, nt−1 = |U4|, nt = |U5|, and nt+1 = |U2|. Note
that ordered pair ({r, s, t},N ) is a special pair since: (i) r ≤ s and t = r + s; (ii) n0 ≥ 1 and
∑

i∈I ni = a+ 1 = s− r + 1; (iii) if T ′ is assigned (0, 0,−, 0, 0) or (1, 0,−, 0, 0), then ni is even for
i ∈ I\{0}; and (iv) if T ′ is assigned (1, 0,−, 0, 1) or (1, 1,−, 1, 0), then nt−1 ≡ nt+1 ≡ t (mod 2)
and nt 6≡ t (mod 2). Moreover: (i) vertex u1 ∈ V (T ′) is adjacent to a set S of leaves with labels
3, . . . ,m−3; and (ii) u2, u4, u5 6∈ S, f(u1)+f(u2) = t+1, f(u1)+f(u4) = t−1, and f(u1)+f(u5) = t.
Therefore, by Lemma 17, for i ∈ {2, 4, 5}, we can safely transfer |Ui| leaves from u1 to ui.

Case 2. Tree T is assigned one of the following 5-tuples: (1, 0,−, 1, 0), (0, 0,−, 1, 0).

Let v ∈ U4; we modify T so as to obtain another tree T ′ = T6(a + 1, 0, 0, 1, 1), with a =
|U1| + |U2| + |U4| + |U5| − 1, V (T ′) = V (T ), and E(T ′) = (E(T )\({u2w : w ∈ U2} ∪ {u5w : w ∈
U5} ∪ {u4w : w ∈ U4\v})) ∪ {u1w : w ∈ U2 ∪ U5 ∪ U4\v}. Thus, T ′ has a graceful labelling f such
that f(u3) = 0, as illustrated in Figure 7(b).

Let m = |E(T ′)| = a+ 7 and r, s, t be three positive integers such that r = 4, s = m− 3, and
t = r + s = m + 1. Let I = {0, t − 1, t, t + 1} be an index set and N = {ni : i ∈ I} be such that
n0 = |U1| + 1, nt−1 = |U5|, nt = |U4| − 1, and nt+1 = |U2|. Note that ordered pair ({r, s, t},N )
is a special pair. Moreover: (i) vertex u1 ∈ V (T ′) is adjacent to a set S of leaves with labels
4, . . . ,m− 3; (ii) u2, u4, u5 6∈ S, f(u1)+ f(u2) = t+1, f(u1)+ f(u4) = t, and f(u1)+ f(u5) = t− 1.
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Therefore, by Lemma 17, for i ∈ {2, 5}, we can safely transfer |Ui| leaves from u1 to ui and we can
also safely transfer |U4| − 1 leaves from u1 to u4.

Case 3. Tree T is assigned one of the following 5-tuples: (0, 0,−, 1, 1), (1, 1,−, 1, 1), (1, 0,−, 1, 1).

Let v4 ∈ U4 and v5 ∈ U5. Let T ′ = T6(a + 1, 0, 0, 1, 2), with a = |U1| + |U2| + |U4| + |U5| − 2,
V (T ′) = V (T ), and E(T ′) = (E(T )\({u2w : w ∈ U2} ∪ {u4w : w ∈ U4\v4} ∪ {u5w : w ∈ U5\v5})) ∪
{u1w : w ∈ U2 ∪ (U4\v4) ∪ (U5\v5)}. Thus, T ′ has a graceful labelling f such that f(u3) = 0, as
illustrated in Figure 7(c).

Let m = |E(T ′)| = a + 8, r = 4, s = m − 4, and t = r + s = m. Let I = {0, t − 1, t, t + 1}
and N = {ni : i ∈ I} with n0 = |U1| + 1, nt−1 = |U5| − 1, nt = |U2|, and nt+1 = |U4| − 1.
Then, using the same reasoning of the previous case, one can see that ({r, s, t},N ) is a special pair.
Moreover, vertex u1 ∈ V (T ′) is adjacent to a set S of leaves with labels 4, . . . ,m−4; u2, u4, u5 6∈ S,
f(u1) + f(u2) = t, f(u1) + f(u4) = t + 1, and f(u1) + f(u5) = t − 1. Therefore, by Lemma 17,
we can safely transfer |U2| leaves from u1 to u2 and, for i ∈ {4, 5}, we can safely transfer |Ui| − 1
leaves from u1 to ui.

Case 4. Tree T is assigned the 5-tuple (0, 1,−, 1, 0).

Let v2 ∈ U2 and v4 ∈ U4. Let T ′ = T6(a + 1, 1, 0, 1, 1), with a = |U1| + |U2| + |U4| + |U5| − 2,
V (T ′) = V (T ), and E(T ′) = (E(T )\({u5w : w ∈ U5} ∪ {u2w : w ∈ U2\v2} ∪ {u4w : w ∈ U4\v4})) ∪
{u1w : w ∈ U5 ∪ (U2\v2) ∪ (U4\v4)}. Thus, T ′ has a graceful labelling f such that f(u3) = 0, as
illustrated in Figure 7(d).

Let m = |E(T ′)| = a + 8, r = 4, s = m − 4, and t = r + s = m. Let I = {0, t − 1, t, t + 1}
and N = {ni : i ∈ I}, with n0 = |U1| + 1, nt−1 = |U4| − 1, nt = |U5|, and nt+1 = |U2| − 1. Note
that ({r, s, t},N ) is a special pair. Moreover, vertex u1 ∈ V (T ′) is adjacent to a set S of leaves
with labels 4, . . . ,m − 4; and u2, u4, u5 6∈ S, f(u1) + f(u2) = t + 1, f(u1) + f(u4) = t − 1, and
f(u1) + f(u5) = t. Therefore, by Lemma 17, we can safely transfer |U5| leaves from u1 to u5 and,
for i ∈ {2, 4}, we can safely transfer |Ui| − 1 leaves from u1 to ui.

Case 5. Tree T is assigned one of the following 5-tuples: (0, 0,−, 0, 1), (0, 1,−, 1, 1), (0, 1,−, 0, 0),
(0, 1,−, 0, 1), (1, 1,−, 0, 0), (1, 1,−, 0, 1).

For a, b, c, d non-negative integers, tree T6(a, b, 0, c, d) is isomorphic to T6(d, c, 0, b, a). Thus, the
trees in this case are isomorphic to trees treated in Case 1, Case 2, and Case 3, and the result
follows, concluding the proof.

For the next lemma, consider the eight model-trees exhibited in Figure 8, each of which with a
graceful labelling f with f(u2) = 0.

Lemma 21. Let T be a caterpillar with diameter six and spine P = u0u1u2u3u4u5u6. Also, let
w ∈ {u2, u4} ∪N1(u2) ∪N1(u4). Then, T has a graceful labelling f such that f(w) = 0.

Proof. Let T be a caterpillar with diameter six and let P = u0u1u2u3u4u5u6 be its spine. For each
i ∈ {1, 2, 3, 4, 5}, define Ui as the set of leaves from V (T )\{u0, u6} that are adjacent to ui. We
prove the result for u2 and the proof for u4 is analogous. As shown in the proof of Lemma 18, we
can assume U2 = ∅.

In our proof, we consider eight cases depending on the parities of the |Ui|s. In order to do this,
we assign T a 5-tuple (p1,−, p3, p4, p5) such that, for each i ∈ {1, 3, 4, 5}, pi is the parity of |Ui|.

Case 1. Tree T is assigned one of the following 5-tuples: (0,−, 0, 0, 0), (0,−, 0, 0, 1), (0,−, 1, 0, 1),
(1,−, 0, 1, 1).
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3

2 10m m− 1 m− 2

m− 3

u0 u1 u2 u3 u4 u5

(a) Graceful tree T6(1, 0, 0, 0, a+ 1).

43

21 0m m− 1m− 2

m− 3

u0 u1 u2 u3 u4 u5

(b) Graceful tree T6(1, 0, 0, 1, a+ 1).

54 3

21 0 mm− 1 m− 2

m− 3 m− 4

u0 u1 u2 u3 u4 u5

(c) Graceful tree T6(2, 0, 1, 1, a+ 1).

4

3 2

1

0m m− 1 m− 2

m− 3

u0 u1 u2 u3 u4 u5

(d) Graceful tree T6(1, 0, 1, 0, a+ 1).

4

3

2

10 mm− 1 m− 2

m− 3 m− 4

u0 u1 u2 u3 u4 u5

(e) Graceful tree T6(1, 0, 1, 1, a+ 1).

54

32

1

0m m− 1 m− 2

m− 3

u0 u1 u2 u3 u4 u5

(f) Graceful tree T6(2, 0, 0, 1, a+ 1).

5

4

3

2

1

0 mm− 1m− 2

m− 3

u0 u1 u2 u3 u4 u5

(g) Graceful tree T6(2, 0, 0, 1, a+ 1).

76

5

4

3

21

0m m− 1m− 2

m− 3

u0 u1 u2 u3 u4 u5

(h) Graceful tree T6(2, 0, 1, 2, a+ 1).

Figure 8: Scheme of eight model-trees with a graceful labelling.

In this case, modify T so as to obtain another tree T ′ = T6(1, 0, 0, 0, a + 1), with a = |U1| +
|U3| + |U4| + |U5|, V (T ′) = V (T ), and E(T ′) = (E(T )\{uiw : i ∈ {1, 3, 4}, w ∈ Ui}) ∪ {u5w : w ∈
U1∪U3∪U4}. Thus, as illustrated in Figure 8(a), T ′ has a graceful labelling f such that f(u2) = 0.
Next, we show how to safely transfer |Ui| leaves from u5 to ui for i ∈ {1, 3, 4}.

Let m = |E(T ′)| = a+ 6, r = 3, s = m− 3, and t = r + s = m. Let I = {0, t − 1, t, t+ 1} and
N = {ni : i ∈ I} with n0 = |U5|+1, nt−1 = |U4|, nt = |U3|, and nt+1 = |U1|. Note that ({r, s, t},N )
is a special pair since: (i) r ≤ s and t = r + s; (ii) n0 ≥ 1 and

∑

i∈I ni = a + 1 = s − r + 1;
(iii) if T ′ is assigned (0,−, 0, 0, 0) or (0,−, 0, 0, 1), then ni is even for i ∈ I\{0}; and (iv) if T ′

is assigned (0,−, 1, 0, 1) or (1,−, 0, 1, 1), then nt−1 ≡ nt+1 ≡ t (mod 2) and nt 6≡ t (mod 2).
Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with labels 3, . . . ,m−3, u1, u3, u4 6∈ S,
f(u1) + f(u5) = t+ 1, f(u3) + f(u5) = t, and f(u4) + f(u5) = t− 1. Therefore, by Lemma 17, we
can safely transfer |Ui| leaves from u5 to ui, for i ∈ {1, 3, 4}.

Case 2. Tree T is assigned one of the following 5-tuples: (0,−, 0, 1, 0), (0,−, 0, 1, 1), (1,−, 1, 1, 1).

Let v4 ∈ U4 and T ′ = T6(1, 0, 0, 1, a + 1), with a = |U1|+ |U3|+ |U4|+ |U5| − 1, V (T ′) = V (T ),
and E(T ′) = (E(T )\{uiw : i ∈ {1, 3}, w ∈ Ui} ∪ {u4w : w ∈ U4\v4}) ∪ {u5w : w ∈ U1 ∪U3 ∪U4\v4}.
Thus, T ′ has a graceful labelling f such that f(u2) = 0, as illustrated in Figure 8(b).

Let m = |E(T ′)| = a+ 7, r = 4, s = m− 3, and t = r + s = m+ 1. Let I = {0, t − 1, t, t + 1}
and N = {ni : i ∈ I} with n0 = |U5| + 1, nt−1 = |U3|, nt = |U4| − 1, and nt+1 = |U1|. Note that
({r, s, t},N ) is a special pair since: (i) r ≤ s and t = r+s; (ii) n0 ≥ 1 and

∑

i∈I ni = a+1 = s−r+1;
(iii) if T ′ is assigned (0,−, 0, 1, 0) or (0,−, 0, 1, 1), then ni is even for i ∈ I\{0}; and (iv) if T ′ is
assigned (1,−, 1, 1, 1), then nt−1 ≡ nt+1 ≡ t (mod 2) and nt 6≡ t (mod 2). Moreover, vertex u5 ∈
V (T ′) is adjacent to a set of leaves S with labels 4, . . . ,m− 3, u1, u3, u4 6∈ S, f(u1)+ f(u5) = t+1,
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f(u3)+ f(u5) = t− 1, and f(u4)+ f(u5) = t. Therefore, by Lemma 17, for i ∈ {1, 3}, we can safely
transfer |Ui| leaves from u5 to ui and we can also safely transfer |U4| − 1 leaves from u5 to u4.

Case 3. Tree T is assigned the 5-tuple (1,−, 1, 1, 0).

Let v1 ∈ U1, v3 ∈ U3, and v4 ∈ U4. Modify T so as to obtain T ′ = T6(2, 0, 1, 1, a + 1), with
a = |U1|+|U3|+|U4|+|U5|−3, V (T ′) = V (T ), and E(T ′) = (E(T )\({u1w : w ∈ U1\v1}∪{u3w : w ∈
U3\v3} ∪ {u4w : w ∈ U4\v4})) ∪ {u5w : w ∈ (U1\v1) ∪ (U3\v3) ∪ (U4\v4)}. Thus, T ′ has a graceful
labelling f such that f(u2) = 0, as illustrated in Figure 8(c).

Let m = |E(T ′)| = a+9, r = 5, s = m−4, and t = r+s = m+1. Let I = {0, t−1, t, t+1} and
N = {ni : i ∈ I} with n0 = |U5|+ 1, nt−1 = |U4| − 1, nt = |U1| − 1, and nt+1 = |U3| − 1. Note that
({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with
labels 5, . . . ,m−4, u1, u3, u4 6∈ S, f(u1)+f(u5) = t, f(u3)+f(u5) = t+1, and f(u4)+f(u5) = t−1.
Therefore, by Lemma 17, we can safely transfer |Ui| − 1 leaves from u5 to ui, i ∈ {1, 3, 4}.

Case 4. Tree T is assigned the 5-tuple (0,−, 1, 0, 0).

Let v3 ∈ U3. Consider T
′ = T6(1, 0, 1, 0, a+1), with a = |U1|+|U3|+|U4|+|U5|−1, V (T ′) = V (T ),

and E(T ′) = (E(T )\({u1w : w ∈ U1} ∪ {u3w : w ∈ U3\v3} ∪ {u4w : w ∈ U4})) ∪ {u5w : w ∈ U1 ∪
(U3\v3)∪U4}. Thus, T

′ has a graceful labelling f such that f(u2) = 0, as illustrated in Figure 8(d).
Let m = |E(T ′)| = a+ 7, r = 4, s = m− 3, and t = r + s = m+ 1. Let I = {0, t − 1, t, t + 1}

and N = {ni : i ∈ I} with n0 = |U5| + 1, nt−1 = |U4|, nt = |U3| − 1, and nt+1 = |U1|. Note that
({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with
labels 4, . . . ,m−3, u1, u3, u4 6∈ S, f(u1)+f(u5) = t+1, f(u3)+f(u5) = t, and f(u4)+f(u5) = t−1.
Therefore, by Lemma 17, for i ∈ {1, 4}, we can safely transfer |Ui| leaves from u5 to ui and we can
also safely transfer |U3| − 1 leaves from u5 to u3.

Case 5. Tree T is assigned one of the following 5-tuples: (0,−, 1, 1, 0), (0,−, 1, 1, 1).

Let v3 ∈ U3 and v4 ∈ U4. Consider T
′ = T6(1, 0, 1, 1, a+1), with a = |U1|+ |U3|+ |U4|+ |U5|−2,

V (T ′) = V (T ), and E(T ′) = (E(T )\({u1w : w ∈ U1} ∪ {u3w : w ∈ U3\v3} ∪ {u4w : w ∈ U4\v4})) ∪
{u5w : w ∈ U1 ∪ (U3\v3) ∪ (U4\v4)}. Thus, T ′ has a graceful labelling f such that f(u2) = 0, as
illustrated in Figure 8(e).

Let m = |E(T ′)| = a+ 8, r = 4, s = m− 4, and t = r + s = m. Let I = {0, t − 1, t, t+ 1} and
N = {ni : i ∈ I} with n0 = |U5| + 1, nt−1 = |U4| − 1, nt = |U1|, and nt+1 = |U3| − 1. Note that
({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with
labels 4, . . . ,m−4, u1, u3, u4 6∈ S, f(u1)+f(u5) = t, f(u3)+f(u5) = t+1, and f(u4)+f(u5) = t−1.
Therefore, by Lemma 17, for i ∈ {3, 4}, we can safely transfer |Ui| − 1 leaves from u5 to ui, and we
can also safely transfer |U1| leaves from u5 to u1.

Case 6. Tree T is assigned the 5-tuple (1,−, 0, 1, 0).

Let v1 ∈ U1 and v4 ∈ U4. Let T ′ = T6(2, 0, 0, 1, a + 1), with a = |U1| + |U3| + |U4| + |U5| − 2,
V (T ′) = V (T ), and E(T ′) = (E(T )\({u1w : w ∈ U1\v1} ∪ {u3w : w ∈ U3} ∪ {u4w : w ∈ U4\v4})) ∪
{u5w : w ∈ (U1\v1) ∪ U3 ∪ (U4\v4)}. Thus, T ′ has a graceful labelling f such that f(u2) = 0, as
illustrated in Figure 8(f).

Let m = |E(T ′)| = a+ 8, r = 5, s = m− 3, and t = r + s = m+ 2. Let I = {0, t − 1, t, t + 1}
and N = {ni : i ∈ I} with n0 = |U5|+1, nt−1 = |U4| − 1, nt = |U3|, and nt+1 = |U1| − 1. Note that
({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with
labels 5, . . . ,m−3, u1, u3, u4 6∈ S, f(u1)+f(u5) = t+1, f(u3)+f(u5) = t, and f(u4)+f(u5) = t−1.
Therefore, by Lemma 17, for i ∈ {1, 4}, we can safely transfer |Ui| − 1 leaves from u5 to ui and we
can also safely transfer |U3| leaves from u5 to u3.
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Case 7. Tree T is assigned one of the following 5-tuples: (1,−, 1, 0, 0), (1,−, 1, 0, 1).

Subcase 1. |U4| = 0.

Let v1 ∈ U1 and v3 ∈ U3. Modify T so as to obtain T ′ = T6(2, 0, 1, 0, a + 1), with a =
|U1|+ |U3|+ |U4|+ |U5| − 2, V (T ′) = V (T ), and E(T ′) = (E(T )\({u1w : w ∈ U1\v1} ∪ {u3w : w ∈
U3\v3})) ∪ {u5w : w ∈ (U1\v1)∪ (U3\v3)}. Thus, T

′ has a graceful labelling f such that f(u2) = 0,
as illustrated in Figure 8(g).

Let m = |E(T ′)| = a+ 8, r = 5, s = m− 3, and t = r + s = m+ 2. Let I = {0, t − 1, t, t + 1}
and N = {ni : i ∈ I} with n0 = |U5| + 1, nt−1 = |U1| − 1, nt = |U3| − 1, and nt+1 = 0. Note
that ({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S
with labels 5, . . . ,m − 3, u1, u3 6∈ S, f(u1) + f(u5) = t − 1 and f(u3) + f(u5) = t. Therefore, by
Lemma 17, we can safely transfer |Ui| − 1 leaves from u5 to ui, i ∈ {1, 3}.

Subcase 2. |U4| ≥ 2.

Let v1 ∈ U1, v3 ∈ U3, and v14 , v
2
4 ∈ U4. Consider T ′ = T6(2, 0, 1, 2, a + 1), with a = |U1| +

|U3| + |U4| + |U5| − 4, V (T ′) = V (T ), and E(T ′) = (E(T )\({u1w : w ∈ U1\v1} ∪ {u3w : w ∈
U3\v3} ∪ {u4w : w ∈ U4\{v

1
4 , v

2
4}})) ∪ {u5w : w ∈ (U1\v1) ∪ (U3\v3) ∪ (U4\{v

1
4 , v

2
4})}. Thus, T ′ has

a graceful labelling f such that f(u2) = 0, as illustrated in Figure 8(h).

Let m = |E(T ′)|, r = 7, s = m − 3, and t = r + s = m + 4. Let I = {0, t − 1, t, t + 1} and
N = {ni : i ∈ I} with n0 = |U5|+ 1, nt−1 = |U3| − 1, nt = |U4| − 2, and nt+1 = |U1| − 1. Note that
({r, s, t},N ) is a special pair. Moreover, vertex u5 ∈ V (T ′) is adjacent to a set of leaves S with
labels 7, . . . ,m−3, u1, u3, u4 6∈ S, f(u1)+f(u5) = t+1, f(u3)+f(u5) = t−1, and f(u4)+f(u5) = t.
Therefore, by Lemma 17, for i ∈ {1, 3}, we can safely transfer |Ui| − 1 leaves from u5 to ui and we
can also safely transfer |U4| − 2 leaves from u5 to u4.

Case 8. Tree T is assigned one of the following 5-tuples: (1,−, 0, 0, 0), (1,−, 0, 0, 1).

Let T be as in the hypothesis. We modify T in order to obtain another tree T ′, with V (T ′) =
V (T ) and E(T ′) = (E(T )\({uiw : i ∈ {1, 4, 5}, w ∈ Ui ∪ {u0, u6}})) ∪ (u3w : w ∈ U1 ∪ U4 ∪ U5 ∪
{u0, u6}). Figure 9 shows a scheme of T ′ with a graceful labelling f such that f(u2) = 0. Note
that u3 is adjacent to exactly |U1|+ |U3| + |U4|+ |U5| + 2 = m − 4 leaves. Next, we show how to
perform a sequence of transfers in T ′ so as to obtain a graceful labelling for T .

3

2 10 mm− 1

m− 2

u1 u2 u3 u4 u5

Figure 9: Scheme of tree T ′ with a graceful labelling.

Since f(u3) + f(u5) = m+ 1 and vertex u3 is adjacent to vertices with labels 3, . . . ,m− 2, by

Lemma 7, we can safely transfer all the m− 4− |U3| leaves with labels in the interval [3+ |U3|
2 ,m−

2 − |U3|
2 ] from vertex u3 to vertex u5. After this transfer, u3 is adjacent to |U3| leaves and u5 is

adjacent to exactly |U1|+ |U4|+ |U5|+ 2 leaves.

Now, consider a = f(u5) = 1, b = f(u1) = m−1, r1 = 1, r2 = 0, and the set S of leaves adjacent

to u5 with labels 3 + |U3|
2 , . . . ,m − 2 − |U3|

2 . By Lemma 8, it is possible to perform a sequence of
safe transfers u5 → u1 → u4, such that the resulting tree has |U5|+ 1 leaves at vertex u5, |U1|+ 1
leaves at vertex u1, and |U4| leaves at vertex u4. This concludes the proof.

Theorem 22. If T is a caterpillar with diameter six, then T is 0-rotatable.
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Proof. The result follows from Lemma 6, Lemma 20 and Lemma 21.
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