

On 0-rotatable caterpillars with diameter at least 7^{*}

Atílio G. Luiz ${ }^{\dagger}$ C. N. Campos ${ }^{\ddagger} \quad$ R. Bruce Richter ${ }^{\S}$

August 4, 2017

Abstract

A graceful labelling of a tree T is an injective function $f: V(T) \rightarrow\{0, \ldots,|E(T)|\}$ such that $\{|f(u)-f(v)|: u v \in E(T)\}=\{1, \ldots,|E(T)|\}$. A tree T is said to be 0 -rotatable if, for each $v \in V(T)$, there exists a graceful labelling f of T such that $f(v)=0$. In this work, it is proved that if T is a caterpillar with $\operatorname{diam}(T) \geq 7$ and, for every non-leaf vertex $v \in V(T)$, the number of leaves adjacent to v is at least $2+2((\operatorname{diam}(T)-1) \bmod 2)$, then T is 0 -rotatable. This result reinforces the conjecture that every caterpillar with diameter at least five is 0 -rotatable.

1 Introdução

Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. If $u, v \in V(G)$ are the ends of $e \in E(G)$, we also denote e by $u v$ or $v u$. A labelling of G is an injective function $f: V(G) \rightarrow \mathbb{Z}_{\geq 0}$. Under labelling f, the label of a vertex $v \in V(G)$ is $f(v)$, and the (induced) label of an edge $u v \in E(G)$ is the absolute difference of the labels of its ends, $|f(u)-f(v)|$. Given a labelling f of G, denote by L_{V}^{f} the set of vertex labels under f and denote by L_{E}^{f} the set of induced edge labels under f. Labelling f is graceful if $L_{V}^{f} \subseteq\{0, \ldots,|E(G)|\}$ and $L_{E}^{f}=\{1, \ldots,|E(G)|\}$. A labelling f of G is an α-labelling if f is graceful and there exists an integer $k \in\{0, \ldots,|E(G)|\}$ such that, for each edge $u v \in E(G), f(u) \leq k<f(v)$.

Graceful labellings and α-labellings were introduced by Rosa [8] in 1967. In his seminal paper, Rosa posed the famous Graceful Tree Conjecture, which states that all trees are graceful, that means all trees have a graceful labelling. The author proved that the Graceful Tree Conjecture is a strengthened version of the well-known Ringel-Kotzig Conjecture, which states that $K_{2 m+1}$ has a cyclic decomposition into subgraphs isomorphic to a given tree T with m edges. The Graceful Tree Conjecture is a very important open problem in Graph Theory, with hundreds of papers about it [3].

It is well-known the importance of label 0 on graceful labellings: for example, it is easy to grow a gracefully labelled tree T by adding k new leaves with labels $|E(T)|+1, \ldots,|E(T)|+k$ to the 0 -labelled vertex; also, it is possible to combine any tree with an α-labelling and any tree with a graceful labelling, by identifying the vertices labelled 0 , such that the resultant tree is graceful [5]. Considering the importance of label 0 , we say that a tree T is 0 -rotatable if, for each $v \in V(T)$, there exists a graceful labelling f of T such that $f(v)=0$.

[^0]The 0-rotatability of trees was first investigated by Rosa [8] and it is still an open problem even for caterpillars. In 1977, the author proved that all paths are 0-rotatable [9]. Posteriorly, Chung and Hwang [2] showed that every caterpillar whose non-leaf vertices have the same degree is 0 -rotatable. In 2004, Bussel [1] showed that all trees with diameter at most three are 0-rotatable and, additionally, showed that there exist non-0-rotatable trees with diameter four. In fact, Bussel showed that all non-0-rotatable trees with at most 14 vertices either are caterpillars with diameter four, or are trees formed by identifying the central vertex of a non-0-rotatable tree of diameter four with the end of a path $P_{n}, n \geq 1$. Based on these results, the author conjectured that all non-0-rotatable trees belong to these two families of trees. Note that if Bussel's conjecture is true, then it implies that every caterpillar with diameter at least five is 0 -rotatable.

In a previous work [6], we investigated Bussel's Conjecture restricted to caterpillars and proved that all caterpillars with diameter five or six are 0 -rotatable. In this work, this investigation is taken further and it is proved that if T is a caterpillar with $\operatorname{diam}(T) \geq 7$ and, for every non-leaf vertex $v \in V(T)$, the number of leaves adjacent to v is at least $2+2((\operatorname{diam}(T)-1) \bmod 2)$, then T is 0 -rotatable. This result reinforces the conjecture that every caterpillar with diameter at least five is 0 -rotatable. In particular, this family shows that, for each integer $d \geq 7$, there exist 0 -rotatable caterpillars with diameter d and arbitrary number of vertices.

In the next section, we present some additional definitions as well as classic results and techniques that are used in our proofs. The main results are presented in Section 3.

2 Preliminaries

Let T be a tree with graceful labelling f. By the definition, f is injective and, since T is a tree, f is also onto. Therefore, f^{-1} is well-defined and it is used to refer elements of $V(G)$.

The complementary labelling of f is the labelling \bar{f} defined by $\bar{f}(v)=|E(T)|-f(v)$ for each $v \in V(T)$. Note that the complementary labelling is also a graceful labelling since: (i) $\bar{f}(v)$ is an injection from $V(T)$ to $\{0, \ldots,|E(T)|\}$; and (ii) for each $u v \in E(T),|\bar{f}(u)-\bar{f}(v)|=\mid(|E(T)|-$ $f(u))-(|E(T)|-f(v))|=|f(v)-f(u)|$.

Let $v \in V(T)$. Denote by $N_{T}^{k}(v)$ the set of neighbours of v with degree k. The distance $d(u, v)$ between two vertices $u, v \in V(T)$ is the number of edges in the unique path connecting u and v in T. The diameter of T is defined as $\operatorname{diam}(T)=\max \{d(u, v): u, v \in V(T)\}$. The center of T is the set of all vertices $u \in V(T)$ where the greatest distance $d(u, v)$ to other vertices $v \in V(T)$ is minimal. We say that $u \in V(T)$ is a central vertex of T if u belongs to the center of T. The base of T, B_{T}, is the tree obtained from T by removing all of its leaves. A path, P_{n}, is a tree whose vertices can be arranged in a linear sequence such that two vertices in P_{n} are adjacent if and only if they are consecutive in the sequence. We say that a tree T is a caterpillar if its base is isomorphic to a path. The next results consider graceful and α-labellings of paths and caterpillars.

Lemma 1 (Rosa [9]). Let P_{n} be a path, $n \geq 1$, and let $v \in V\left(P_{n}\right)$. Then,
(i) there exists an α-labelling f of P_{n} such that $f(v)=0$ if and only if v is not the central vertex of P_{5}.
(ii) if v is the central vertex of P_{5}, then P_{5} has a graceful labelling f such that $f(v)=0$.

Lemma 2. Let T be a caterpillar such that $N_{T}^{1}(v) \geq 1$ for each $v \in V\left(B_{T}\right)$. Let $S \subseteq N_{T}^{1}(v)$ and $T_{v}=T \backslash S$. If, for every $v \in V\left(B_{T}\right)$, T_{v} has a graceful labelling f with $f(v)=0$, then T is 0 -rotatable.

The main technique used in our proofs is the method of transfers, defined as follows. Let u, v, w be distinct vertices of a tree T, such that w is adjacent to u and is not adjacent to v. We call transfer the operation of deleting edge $w u$ from T and adding edge $w v$. After the transfer operation, we say that vertex w has been transferred or moved from u to v. For any two distinct vertices u and v of a gracefully labelled tree T, the notation $u \rightarrow v$ means that we moved some vertices incident with vertex u to vertex v. If T is graceful, we say that a transfer $u \rightarrow v$ is safe if the resulting tree is also graceful. The following lemma establishes conditions to perform safe transfers.

Lemma 3 (Hrnčiar and Haviar [4]). Let f be a graceful labelling of a tree T and let $u, v \in V(T)$ be two distinct vertices. If u is adjacent to (not necessarily distinct) vertices $u_{1}, u_{2} \in V(T)$, such that $u_{1} \neq v, u_{2} \neq v$ and $f\left(u_{1}\right)+f\left(u_{2}\right)=f(u)+f(v)$, then tree T^{\prime}, obtained from T by moving u_{1}, u_{2} from u to v, is also graceful.

A $u \rightarrow v$ transfer is said to be of the first type if the labels of the transferred vertices constitute a set of consecutive integers $k \ldots, k+p$ such that $f(u)+f(v)=k+(k+p)$. On the other hand, $u \rightarrow v$ is of the second type if the labels of the transferred vertices form two consecutive sequences $k, \ldots, k+p$ and $l, \ldots, l+p$ such that $f(u)+f(v)=k+l+p$. Figure 1 illustrates these concepts.

Figure 1: Given tree T with graceful labelling f, tree T^{\prime} is obtained from T by applying a transfer $f^{-1}(2) \rightarrow f^{-1}(13)$ of the first type; and tree $T^{\prime \prime}$ is obtained from T by applying a transfer $f^{-1}(2) \rightarrow$ $f^{-1}(13)$ of the second type.

The next lemma establishes additional conditions under which it is possible to make safe transfers in a graceful tree.

Lemma 4 (Mishra and Panigrahi [7]). Let T be a tree with a graceful labelling f satisfying the following two properties:
(i) there exist distinct vertices in T with labels $a-r_{1}, \ldots, a, b, \ldots, b+r_{2}$ such that $a<b$ and $r_{1}, r_{2} \in \mathbb{Z}_{\geq 0} ;$
(ii) the vertex with label a is adjacent to a set of vertices \mathcal{S} with labels $s, \ldots, s+p$, such that:
(a) $p \geq 2$;
(b) $\{s, \ldots, s+p\} \cap\left\{a-r_{1}, \ldots, a, b, \ldots, b+r_{2}\right\}=\emptyset$; and
(c) for $0 \leq i \leq\left\lfloor\frac{p-1}{2}\right\rfloor$, either $(s+i+1)+(s+p-i)=a+b$ or $(s+i)+(s+p-1-i)=a+b$.

If $|\mathcal{S}|$ is even, then it is possible to make a sequence of safe transfers of the second type $f^{-1}(a) \rightarrow$ $f^{-1}(b) \rightarrow f^{-1}(a-1) \rightarrow f^{-1}(b+1) \rightarrow f^{-1}(a-2) \rightarrow f^{-1}(b+2) \rightarrow \ldots \rightarrow f^{-1}(z)$, where $z=a-r_{1}$ or $z=b+r_{2}$, keeping a positive even number of vertices of \mathcal{S} at each vertex of the sequence.

3 Main result

In this section, we prove our main result.
Theorem 5. If T is a caterpillar with $\operatorname{diam}(T) \geq 7$ and $N_{T}^{1}(v) \geq 2+2((\operatorname{diam}(T)-1) \bmod 2)$ for every $v \in V\left(B_{T}\right)$, then T is 0 -rotatable.
Proof. Let T be a caterpillar as described in the hypothesis. Let $v \in V\left(B_{T}\right)$ and $\{A, B\}$ be a bipartition of B_{T} such that $|A| \geq|B|$. Let $w_{1}, w_{2} \in N_{T}^{1}(v)$ and $T_{1} \subset T$ be the tree induced by vertex set $V(T) \backslash L_{v}$, where

$$
L_{v}= \begin{cases}N_{T}^{1}(v), & \text { if }|A|=|B| \text { or }(|A| \neq|B| \text { and } v \in A) ; \\ N_{T}^{1}(v) \backslash\left\{w_{1}, w_{2}\right\}, & \text { otherwise. }\end{cases}
$$

By Lemma 2, it suffices to show that T_{1} has a graceful labelling f such that $f(v)=0$. First, note that $B_{T}=B_{T_{1}}$. Let $q=\left|V\left(B_{T}\right)\right|$. Since $q \geq 6$, by Lemma 1, P has an α-labelling $g: V(P) \rightarrow$ $\{0, \ldots, q-1\}$ such that $g(v)=0$. Given the bipartition $\{A, B\}$, adjust notation so that $v \in A$. By the definition of α-labelling and since $g(v)=0$, all the labels of the vertices in A are smaller than the labels of the vertices in B. In fact, since P is a tree, $L_{A}^{g}=\left\{0, \ldots, q_{A}-1\right\}$ and $L_{B}^{g}=$ $\left\{q_{A}, \ldots, q_{A}+q_{B}-1\right\}$, where $q_{A}=|A|, q_{B}=|B|$, and $q=q_{A}+q_{B}$.

Let l be the number of leaves of T_{1}. Using bipartition $\{A, B\}$, we modify g in order to obtain another labelling h of P as follows:

$$
h(u)= \begin{cases}g(u), & \text { if } u \in A ; \\ g(u)+l, & \text { if } u \in B\end{cases}
$$

Therefore, $h: V(P) \rightarrow L_{A}^{h} \cup L_{B}^{h}$, with $L_{A}^{h}=\left\{0, \ldots, q_{A}-1\right\}$ and $L_{B}^{h}=\left\{q_{A}+l, \ldots, q-1+l\right\}$. Note that the vertex labels $q_{A}, \ldots, q_{A}+l-1$ are missing in $L_{A}^{h} \cup L_{B}^{h}$. Moreover, since each vertex in B had its label increased by $l, L_{E(P)}^{h}=\{1+l, \ldots, q-1+l\}$. Therefore, the induced edge labels $1, \ldots, l$ are missing in $L_{E(P)}^{h}$:

Let T_{2} be the tree obtained by adding l leaves with labels $q_{A}, \ldots, q_{A}+l-1$ to the vertex $h^{-1}\left(q_{A}+l\right)$. Let f be this new labelling. Note that f is a graceful labelling of T_{2} since: (i) the labels of the vertices of T_{2} are $0, \ldots, q-1+l$; (ii) the labels of the l new edges are $1, \ldots, l$; and (iii) the remaining edge labels are $l+1, \ldots, q-1+l$.

Let $u_{1}=f^{-1}\left(q_{A}+l\right)$ and $u_{2}=f^{-1}\left(q_{A}-1\right)$. By construction, vertex u_{1} is adjacent to a set of leaves with labels $q_{A}, \ldots, q_{A}+l-1$. Since $\left(q_{A}+i\right)+\left(q_{A}+l-1-i\right)=f\left(u_{1}\right)+f\left(u_{2}\right)$, by Lemma 3, it is possible to make a safe transfer $u_{1} \rightarrow u_{2}$ of the first type. Let $\left|N_{T_{1}}^{1}\left(u_{1}\right)\right|=2 j, j \in \mathbb{Z}_{>0}$. Thus, we move $\frac{l}{2}-j$ pairs of leaves with labels $q_{A}+j+i$ and $q_{A}+l-1-j-i$ from u_{1} to u_{2}, for $0 \leq i \leq\left\lfloor\frac{l-2 j-1}{2}\right\rfloor$. Note that the transferred vertices have consecutive integers $q_{A}+j, \ldots, q_{A}+l-1-j$ as labels. Let T_{3} be the tree obtained after this transfer.

Now, considering T_{3} and f, we apply Lemma 4 to make a sequence of safe transfers in T_{3} so as to obtain a gracefully labelled caterpillar isomorphic to T_{1}. In order to do this, take $a=q_{A}-1$, $b=q_{A}+l+1, s=q_{A}+j, p=l-2 j-1, r_{2}=q_{B}-2$,

$$
r_{1}= \begin{cases}q_{A}-2, & \text { if } q \text { is even or }\left(q \text { is odd and } q_{A}>q_{B}\right) \\ q_{A}-1, & \text { if } q \text { is odd and } q_{A}<q_{B}\end{cases}
$$

and

$$
z= \begin{cases}b+r_{2}, & \text { if } q \text { is even or }\left(q \text { is odd and } q_{A}<q_{B}\right) ; \\ a-r_{1}, & \text { if } q \text { is odd and } q_{A}>q_{B} .\end{cases}
$$

By Lemma 4, it is possible to make the sequence of safe transfers $f^{-1}\left(q_{A}-1\right) \rightarrow f^{-1}\left(q_{A}+l+1\right) \rightarrow$ $f^{-1}\left(q_{A}-2\right) \rightarrow f^{-1}\left(q_{A}+l+2\right) \rightarrow \ldots \rightarrow f^{-1}(z)$ of the second type such that each vertex u of the sequence receives exactly $N_{T_{1}}^{1}(u)$ leaves. Remembering that $N_{T_{1}}^{1}\left(u_{1}\right)=N_{T_{3}}^{1}\left(u_{1}\right)$, we conclude that, after this sequence of transfers, each vertex $u \in V\left(B_{T}\right)$ is adjacent to exactly $N_{T_{1}}^{1}(u)$ leaves. Therefore, the resultant graceful tree is isomorphic to T_{1} and its graceful labelling f assigns label 0 to vertex v, as required.

References

[1] F. V. Bussel. 0-Centred and 0-ubiquitously graceful trees. Discrete Mathematics, 277:193-218, 2004.
[2] F. R. K. Chung and F. K. Hwang. Rotatable graceful graphs. Ars Combinatoria, 11:239-250, 1981.
[3] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, DS6:1-408, 2016.
[4] P. Hrnčiar and A. Haviar. All trees of diameter five are graceful. Discrete Mathematics, 233:133-150, 2001.
[5] C. Huang, A. Kotzig, and A. Rosa. Further results on tree labellings. Utilitas Mathematica, 21:31-48, 1982.
[6] A. G. Luiz, C. N. Campos, and R. B. Richter. Some families of 0-rotatable graceful caterpillars. manuscript, 2017.
[7] D. Mishra and P. Panigrahi. Some graceful lobsters with both odd and even degree vertices on the central path. Utilitas Mathematica, 74:155-177, 2007.
[8] A. Rosa. On certain valuations of the vertices of a graph. In Theory of Graphs (International Symposium, Rome, Italy, 1966), page 349-355. New York: Gordon and Breach, 1967.
[9] A. Rosa. Labeling snakes. Ars Combinatoria, 3:67-73, 1977.

[^0]: *This work was funded by São Paulo Research Foundation (FAPESP) grants 2014/16987-1, 2014/16861-8, 2015/03372-1 and NSERC grant 41705-2014 057082.
 ${ }^{\dagger}$ Institute of Computing, UNICAMP, Campinas, SP, Brazil gomes.atilio@gmail.com
 ${ }^{\ddagger}$ Institute of Computing, UNICAMP, Campinas, SP, Brazil campos@ic.unicamp.br
 ${ }^{\S}$ Department of Combinatorics \& Optimization, University of Waterloo, Canada brichter@uwaterloo.ca.

