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Abstract

A graceful labelling of a tree T is an injective function f : V (T ) → {0, . . . , |E(T )|} such
that {|f(u) − f(v)| : uv ∈ E(T )} = {1, . . . , |E(T )|}. An α-labelling of a tree T is a graceful
labelling f with the additional property that there exists an integer k ∈ {0, . . . , |E(T )|} such
that, for each edge uv ∈ E(T ), either f(u) ≤ k < f(v) or f(v) ≤ k < f(u). In this work, we
prove that the following families of trees with maximum degree three have α-labellings: lobsters
with maximum degree three, without Y -legs and with at most one forbidden ending; trees T
with a perfect matching M such that the contraction T/M has a balanced bipartition and
an α-labelling; and trees with a perfect matching such that their contree is a caterpillar with
a balanced bipartition. These results reinforce the conjecture that every tree with maximum
degree three and a perfect matching has an α-labelling.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). We denote an edge e ∈ E(G)
by uv where u, v ∈ V (G) are its endpoints. As usual, the degree of a vertex v ∈ V (G) is denoted
by dG(v). We say that v ∈ V (G) is a degree 3 vertex if dG(v) = 3.

A labelling of G is an injective function f : V (G) → Z≥0. Under labelling f , the label of a vertex
v ∈ V (G) is f(v), and the (induced) label of an edge uv ∈ E(G) is the absolute difference of the

labels of its endpoints, |f(u) − f(v)|. Given a labelling f of G, denote by Lf
V the set of vertex

labels under f and denote by Lf
E the set of induced edge labels under f . Labelling f is graceful

if Lf
V ⊆ {0, . . . , |E(G)|} and Lf

E = {1, . . . , |E(G)|}. A labelling f of G is an α-labelling if f is
graceful and there exists an integer k ∈ {0, . . . , |E(G)|} such that, for each edge uv ∈ E(G), either
f(u) ≤ k < f(v) or f(v) ≤ k < f(u).

Graceful labellings and α-labellings were introduced by Rosa in 1967 [8]. In his seminal article,
Rosa posed the Graceful Tree Conjecture which states that all trees are graceful (that is, have
graceful labellings). The author proved that the Graceful Tree Conjecture is a strenghtened version
of the well-known Ringel-Kotzig Conjecture: the complete graph K2m+1 has a cyclic decomposition
into subgraphs isomorphic to a given tree T with m edges. Rosa also proved that, for any positive
integer p, if a graph G with m edges has an α-labelling, then there exists a cyclic decomposition of
the complete graph K2pm+1 into subgraphs isomorphic to G. These results stress the importance
of graceful and α-labellings in the study of cyclic decompositions of complete graphs.
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2015/03372-1 and NSERC grant 41705-2014 057082.
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§Department of Combinatorics & Optimization, University of Waterloo, Canada brichter@uwaterloo.ca.
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A result that follows directly from the definition of α-labelling is that if G has an α-labelling,
then G is bipartite. Therefore, the only graphs which are expected to have such a labelling are
bipartite graphs, like trees. However, it is important to remark that there exist graceful trees that
do not have α-labellings. The smallest example is the tree obtained by subdividing every edge of
the star K1,3. It is still not known which trees with maximum degree 3 have α-labellings. Some
results in this direction are known [1, 4, 2, 3]. In particular, Brankovic et al. [2] showed that all
trees with at most 28 vertices, maximum degree three and a perfect matching have an α-labelling
and, based on this result, they posed Conjecture 1.

Conjecture 1 (Brankovic et al. [2]). All trees with maximum degree three and a perfect matching
have an α-labelling.

Brinkman et al. [4] prove that if we take a tree with 4k vertices, all with odd degree, and
subdivide each of its edges exactly once, then the resulting tree has no α-labelling. Letting F be
the set of such trees T , they further prove that, if T is any tree such that 15 ≤ |V (T )| ≤ 36 and T
has maximum degree three, then either T has an α-labelling or T ∈ F . They posed the following
question.

Question 2 (Brinkmann et al. [4]). Do all trees with at least 15 vertices, maximum degree three,
and without α-labellings belong to family F?

A spine in a tree T is a longest path in T . A tree T is k-distant if there is a spine P such
that every vertex of T is distance at most k from a vertex in P . (It is a simple exercise to show
that every spine will work.) The paths are precisely 0-distant trees and 1-distant trees are exactly
the caterpillars. The 2-distant trees are lobsters and a principal part of this work is the study of
α-labellings in lobsters with maximum degree 3. It is known that all paths and caterpillars have
α-labellings but the same is not true for lobsters [8]. In particular, Huang et al. [6] showed that all
lobsters of diameter four that are not caterpillars do not have an α-labelling.

In order to state our results on α-labellings of lobsters, some additional definitions are needed.
Let G be a lobster with ∆(G) = 3. The legs of G are the non-trivial connected components obtained
by removing the edges of its spine. Note that, since ∆(G) = 3, the legs of G are isomorphic to
a path with two vertices, a path with three vertices, or the bipartite graph K1,3, and are called
1-leg, 2-leg and Y -leg, respectively. If the spine P is the path (v1, v2, . . . , vt), then each leg contains
exactly one of v2, v3, . . . , vt−1 as a vertex of degree 1 in the leg. An ending of L consist of a subpath
P ′ of P containing either v1 or vt, together with all the legs having a vertex in P ′. There are six
forbidden endings: two have P ′ = (v1, v2, v3) with a 2-leg containing v3 and v2 is either not in any
leg or it is in a 1-leg; and one has P ′ = (v1, v2, v3, v4), with v4 in a 2-leg and both v2 and v3 in
1-legs. The other three are the reflections of these containing vt. See Figure 1 for diagrams of these
last three.

vtvtvt vt−1vt−1vt−1 vt−2vt−2vt−2 vt−3

Figure 1: Three forbidden endings.

In this work, we prove the following result on α-labellings of lobsters with maximum degree
three:
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Theorem 3. Let G be a lobster with ∆(G) = 3 and without Y -legs. If G has at most one forbidden
ending, then G has an α-labelling.

A tree T is balanced if its bipartition {A,B} has the property that |A| and |B| differ by at most
one. The contree of T is the tree obtained from T by contracting the edges of M . In this work, we
also prove the following results on α-labellings of some families of trees with a perfect matching:

Theorem 4. Let T be a tree with a perfect matching and let T ′ be its contree. If T ′ is balanced
and has an α-labelling, then T also has an α-labelling.

Corollary 5. Let T be a tree with a perfect matching such that its contree T ′ is a balanced cater-
pillar. Then, T has an α-labelling.

It is important to remark that the contree of a lobster with a perfect matching is a caterpillar.
Thus, by Corollary 5, we obtain the following result.

Corollary 6. If G is a lobster with a perfect matching such that its contree is balanced, then G
has an α-labelling.

Theorem 3 and Corollary 6 reinforce Conjecture 1 and points towards an affirmative answer
to Question 2. In the next section, we present additional definitions as well as classic results and
techniques that are used in our proofs. The proof of Theorem 3 is presented in Section 3 and the
proof of Theorem 4 and Corollary 5 are presented in Section 4.

2 Preliminaries

In 1973, Kotzig [7] showed the existence of an α-labelling in a bipartite graph G is equivalent to
the existence of a special geometric representation of G he called a ‘π-representation’. We will use
this representation to prove Theorem 3; we will introduce it in the context of trees.

Let T be a tree with bipartition {V1, V2}. A π-representation of T consists of a drawing of T
such that:

(i) the vertices of V1 are on the line y = 1, while those of V2 are on the line y = −1, and
consecutive vertices on each of these lines are distance 1 apart;

(ii) the edges of T are straight line segments; and

(iii) if two edges cross, the crossing is not on the line y = 0.

Two π-representations of the path P8 are illustrated in Figure 2.

y = 0 y = 0

y = 1 y = 1

y = −1 y = −1

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

v6

v6

v7

v7

v8

v8

00 11 22 33

44 55 66 77

Figure 2: Two π-representations θ and θ′ of P8. In each of these, P8 is shown with an α-labelling.

The reader should note that the particular three parallel lines used are not relevant, as long
as the middle one (i.e., y = 0) is half way between the other two. Also, the distance (1 above)
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between consecutive vertices on the other two lines (y = 1 and y = −1) is irrelevant, as long as it
is constant.

It is important to us that if θ is a π-representation of T , and, for any two real numbers r, s,
if, for each v ∈ V1, we change the x-coordinate of θ(v) by r and, for each v ∈ V2, we change the
x-coordinate of v by s, then we get another π-representation of T .

Kotzig turns a π-representation of a tree T into an α-labelling as follows: label the leftmost
vertex on line y = 1 with 0 and continue labelling the vertices consecutively along y = 1 until
reaching the rightmost vertex on this line, which receives label |V1| − 1; then label the rightmost
vertex on line y = −1 with |V1| and continue labelling the vertices consecutively along y = −1
until reaching the leftmost vertex on this line, which receives label |E(T )|. Figure 2 shows two
α-labellings of P8. Kotzig proved that this is an α-labelling of T and that, conversely, the inverse
function converts an α-labelling of T into a π-representation. That is, Kotzig proved that a tree
has an α-labelling if and only if it has a π-representation.

Let θ be a π-representation of a tree T with bipartition {V1, V2}. For each vertex v of T , with
v ∈ Vi, we let d

←
θ (v) be the number of vertices of Vi that are to the left of v on the line y = (−1)i−1

in θ, while d→θ (v) is the number to the right. Evidently, d←θ (v) + d→θ (v) = |Vi| − 1. When the
particular π-representation is clear from context, we will drop the subscript θ. As an example, in
the π-representation θ of Figure 2, vertex v1 has d→θ (v1) = 0 and d←θ (v1) = 3, and vertex v6 has
d→θ (v6) = 2 and d←θ (v6) = 1.

Among other things, Kotzig showed how to link π-representations of two trees to get a π-
representation of a larger tree. This is our next lemma and is illustrated in Figure 3.

Lemma 7 (Kotzig [7]). Let θ′ and θ′′ be π-representations of trees T ′ and T ′′, respectively, such
that there exist u ∈ V (T ′) and v ∈ V (T ′′) for which d←θ′ (u) = d→θ′′(v). Then, tree T obtained from
T ′ ∪ T ′′ by adding a new edge uv has a π-representation.

u

v

y = 0

y = 1

y = −1

Figure 3: Linking two π-representations θ′ and θ′′ by an edge uv, u ∈ V (T ′) and v ∈ V (T ′′). Note
that d←θ′ (u) = d→θ′′(v) = 2. Furthermore, the drawing resulting from the addition of edge uv is a
π-representation since no other edge cross y = 0 at the same point as uv.

Note that, in order to link two π-representations (one for each of T ′, T ′′), we add a straight
line segment connecting two vertices u ∈ V (T ′) and v ∈ V (T ′′) such that d←θ′ (u) = d→θ′′(v) and that
belong to distinct lines y = 1 and y = −1. If these two conditions are not mutually satisfied, but
either d←θ′′(v) or d

→
θ′′(v) is equal to d←θ′ (u), we can apply one or two reflections to the π-representation

θ′′ so as to obtain a new π-representation θ′′′ of T ′′ such that u and v lie on distinct lines and
d←θ′ (u) = d→θ′′′(v). Figure 4 illustrates this operation.

3 Lobsters with maximum degree three

In this section, we present our main results. Let G be a lobster with ∆(G) = 3, without Y -legs,
and with at most one forbidden ending. As previously observed, it suffices to show that G has a
π-representation to conclude that G has an α-labelling. In order to construct a π-representation
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u v

(a) It is not possible to link u and v since they belong to the same line L2

and d←
θ′
(u) 6= d→

θ′′
(v).

v

v v

(b) We show the horizontal and vertical reflections that can be performed on θ′′ so
as to obtain a new π-representation θ′′′ of T ′′ with d→

θ′′′
(v) = 0 and such that v lies

on line y = 1.

Figure 4: Illustration of the horizontal and vertical reflections that can be performed on a π-
representation so as to change the line position of a specific vertex v and the value d→(v).

for G, we partition V (G) into subsets B1, . . . , Bk, find a suitable π-representation for each induced
subgraph G[Bi] and, finally, show that these π-representations can be linked in order to obtain a
π-representation of the original lobster G.

Let G be a lobster with maximum degree three and without Y -legs. Let P = (s1, . . . , st) be the
spine of G. Let B = {B1, . . . , Bk} be a partition of V (G) into blocks Bi such that:

(i) for 1 ≤ i ≤ k, Bi ∩ V (P ) is the non-empty set {sj, . . . , sj′} of consecutive vertices of P , with
1 ≤ j ≤ j′ ≤ t, and we set ℓi = sj and ri = sj′ ;

(ii) if 1 ≤ i < j ≤ k, ri = sp and ℓj = sq, then p < q;

(iii) E(G) = {
⋃

E(G[Bi])}∪ {riℓi+1 : 1 ≤ i ≤ k− 1}, that is, E(G)\{
⋃

E(G[Bi])} comprises edges
that link consecutive blocks;

Set B is called a block-partition and it is illustrated in Figure 5. Lemma 7 immediately implies the
following fact; this is the core of our proof of Theorem 3.

Lemma 8. Let G be a lobster with maximum degree three and without Y -legs. If G has a
block-partition B = {B1, . . . , Bk} such that, for 1 ≤ i ≤ k − 1, subgraphs G[Bi] and G[Bi+1]
have π-representations θi and θi+1, respectively, such that d←θi (ri) = d→θi+1

(ℓi+1), then G has a
π-representation.

Figure 6 illustrates the application of Lemma 8 for the lobster G of Figure 5.
Let G be a lobster with maximum degree three, without Y -legs and with at most one forbidden

ending. Let P = (s1, . . . , st) be the spine of G and B = {B1, . . . , Bk} a block-partition of V (G).
We say that block Bi is a:

(i) C-block, if no vertex in Bi ∩ V (P ) is in a 2-leg of G;

(ii) L-block, if

(a) ℓi is in a 2-leg of G;

(b) ri is in a 1-leg or 2-leg;

(c) and no vertex in (Bi ∩ V (P ))\{ℓi, ri} is in a 2-leg of G;

(iii) E-block, if
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

s13

s23

s14

s2
4

s1
6

s1
7

s2
7

s1
9

s1
10

s2
10

(a) Lobster G. We partition V (G) into blocks B1 = {s1, s2}, B2 = {s3, s4, s
1
3, s

2
3, s

1
4, s

2
4}, B3 =

{s5, s6, s
1
6}, B4 = {s7, s8, s9, s

1
7, s

2
7, s

1
9}, B5 = {s10, s11, s12, s13, s

1
10, s

2
10}. Thin edges link consecutive

blocks Bi and Bi+1.

G[B1] G[B2] G[B3] G[B4] G[B5]

u1
min

u1
max u2

min
u2
max u3

min
u3
max u4

min
u4
max u5

min
u5
max

(b) Induced subgraphs G[B1], G[B2], G[B3], G[B4] and G[B5].

Figure 5: Block-partition B of a lobster G with maximum degree three and without Y -legs.

θ1 θ2 θ3 θ4 θ5

ℓ1

r1

ℓ2

r2

ℓ3

r3

ℓ4 r4

ℓ5

r5

(a) π-representations of subgraphs G[B1], G[B2], G[B3], G[B4], G[B5] of Fig-
ure 5(b), with d←θi (ri) = d→θi+1

(li+1) = 0.

r1

ℓ2

r2

ℓ3

r3

ℓ4 r4

ℓ5

r5

(b) A π-representation of G obtained by adding edges rili+1 to the π-representations of
subgraphs G[Bi] and G[Bi+1], for 1 ≤ i ≤ 4.

Figure 6: Construction of a π-representation for the lobster G of Figure 5.

(a) ℓi is in a 2-leg;

(b) and no vertex in (Bi ∩ V (P ))\{ℓi} is in a 2-leg of G.

As an example, in Figure 6, blocks B1 and B3 are C-blocks, blocks B2 and B4 are L-blocks, and
block B5 is an E-block.

Note that, by the definition, the subgraphs induced by C-blocks are caterpillars. Kotzig [7]
proved that every caterpillar T with at least two vertices and spine (v1, . . . , vn) has a π-representation
θ such that d→θ (v1) = d→θ (v2) = d←θ (vn−1) = d←θ (vn) = 0. Moreover, note that a trivial graph has
a π-representation θ such that its unique vertex v has d→θ (v) = d←θ (v) = 0. Therefore, if Bi is a
C-block, then G[Bi] has a π-representation θi such that d→θi (ℓi) = d←θi (ri) = 0.

Note that the subgraphs induced by L-blocks and E-blocks are also caterpillars. Lemma 9 shows
some families of L-blocks and E-blocks have suitable π-representations that are used in the proof
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of Theorem 3. In order to present these families, we introduce additional notation.

Let P be the spine of a lobster G and (s1, . . . , st) an order of its vertices so that sisi+1 ∈ E(P ),
1 ≤ i < t. For 1 ≤ i ≤ j ≤ t, let 〈P i,j〉 be the subgraph of G consisting of the subpath
(si, si+1, . . . , sj) of P , together with all legs having a vertex in (si, si+1, . . . , sj). Note that an
ending is a 〈P i,j〉 with either i = 1 or j = t.

Let Bi ∈ B. Let T = G[Bi] and (v1, . . . , vn) be its spine. We say that T belongs to family
({i1, . . . , ik}, b) if its degree 3 vertices are vi1 , . . . , vik such that 3 < i1 < i2 < · · · < ik < n− b, for
b ∈ {1, 2}. Note that ℓi = v3 and ri = vn−b. Figure 7 schematizes fourteen families of the form
({i1, . . . , ik}, b), that are presented in Lemma 9.

v1

v2

v3

vn

vn−1

vn−2

(a) (∅, 2)
with
|V (T )| ≥ 6.

v1

v2

v3

vn

vn−1

(b) (∅, 1)
with
|V (T )| 6∈ {5, 8}.

v1

v2

v3
v4

vn

vn−1

vn−2

(c) ({4}, 2) with
|V (T )| ≥ 8.

v1

v2

v3
v4

vn

vn−1

(d) ({4}, 1) with
|V (T )| ≥ 8 and |V (T )| 6= 11.

v1

v2

v3
v4 v5

vn

vn−1

vn−2

(e)
({4, 5}, 2) with |V (T )| ≥ 10.

v1

v2

v3
v4 v5

vn

vn−1

(f) ({4, 5}, 1) with |V (T )| ≥
9 and |V (T )| 6= 12.

v1

v2

v3
v4 v5 v6 v7 v8 v9

vn

vn−1

vn−2

(g) ({4, 5, 9}, 2) with |V (T )| ≥ 15.

v1

v2

v3
v4 v5 v6 v7 v8 v9

vn

vn−1

(h) ({4, 5, 9}, 1) with |V (T )| ≥ 14.

v1

v2

v3
v4 v5 v6 v7

vn

vn−1

vn−2

(i) ({7}, 2) with |V (T )| ≥
11.

v1

v2

v3
v4 v5 v6 v7

vn

vn−1

(j) ({7}, 1) with |V (T )| ≥
11.

v1

v2

v3
v4 v5 v6 v7 v8

vn

vn−1

vn−2

(k) ({7, 8}, 2) with |V (T )| ≥ 13.

v1

v2

v3
v4 v5 v6 v7 v8

vn

vn−1

(l) ({7, 8}, 1) with |V (T )| ≥ 12.

v1

v2

v3
v4 v5 v6 v7 v8 v9

vn

vn−1

vn−2

(m) ({4, 9}, 2) with |V (T )| ≥ 14.

v1

v2

v3
v4 v5 v6 v7 v8 v9

vn

vn−1

(n) ({4, 9}, 1) with |V (T )| ≥ 13.

Figure 7: Schemas for fourteen families of caterpillars T = ({i1, . . . , ik}, b) that are used in our
block-decomposition of a lobster G with ∆(G) = 3, without Y -legs and with at most one forbidden
ending. Each member of one of these families is isomorphic to an L-block or an E-block.

Lemma 9. Let T be a caterpillar with spine (v1, . . . , vn) such that T belongs to one of these families:

(i) (∅, 2) with |V (T )| ≥ 6;

(ii) ({4}, 2) with |V (T )| ≥ 8;

(iii) ({4, 5}, 2) with |V (T )| ≥ 10;
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(iv) ({7}, 2) with |V (T )| ≥ 11;

(v) ({7, 8}, 2) with |V (T )| ≥ 13;

(vi) ({4, 5, 9}, 2) with |V (T )| ≥ 15;

(vii) ({4, 9}, 2) with |V (T )| ≥ 14;

(viii) (∅, 1) with |V (T )| 6= 5 and |V (T )| 6= 8;

(ix) ({4, 5}, 1) with |V (T )| ≥ 9 and |V (T )| 6= 12;

(x) ({4}, 1) with |V (T )| ≥ 8 and |V (T )| 6= 11;

(xi) ({7}, 1) with |V (T )| ≥ 11;

(xii) ({7, 8}, 1) with |V (T )| ≥ 12;

(xiii) ({4, 5, 9}, 1) with |V (T )| ≥ 14;

(xiv) ({4, 9}, 1) with |V (T )| ≥ 13.

Then, T has a π-representation θ such that d→θ (v3) = d←θ (vn−b) = 0.

The next lemma provides particular π-representations of a few more caterpillars. The cater-
pillars and the required π-representations are illustrated in Figure 8, which also constitutes the
proof.

Lemma 10. Let T be one of the caterpillars presented in Figure 8, and (v1, . . . , vn) be its spine.
Then, T is isomorphic to an E-block and has a π-representation θ such that vertex v3 has d→θ (v3) =
0.

v1

v2

v3
v4 v5 v6 v7 v8

(a) Caterpillar E1.

v1

v2

v3
v4 v5 v6 v7 v8 v9

(b) Caterpillar E2.

v1

v2

v3
v4 v5 v6 v7 v8 v9

(c) Caterpillar E3.

v1

v2

v3
v4 v5 v6

(d) Caterpillar E4.

v1

v2

v3
v4 v5 v6 v7 v8 v9 v10

(e) Caterpillar E5.

v1

v2

v3
v4 v5 v6 v7 v8 v9 v10

(f) Caterpillar E6.

Figure 8: Six caterpillars and π-representations of each one of them such that d→(v3) = 0.

Now, we are ready to present Lemma 11, which is fundamental for proving Theorem 3.

Lemma 11. Let G be a lobster with ∆(G) = 3 and without Y -legs. If G has at most one forbidden
ending, then there exists a block-partition B = {B1, . . . , Bk} of V (G) such that: (i) for 1 ≤ i ≤ k−1,
subgraph G[Bi] has a π-representation θi such that d→θi (ℓi) = d←θi (ri) = 0; and (ii) G[Bk] has a π-
representation θk such that d→θk(ℓk) = 0.
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Proof. Let G be a lobster as stated in the hypothesis. Let P = (s1, . . . , st) be the spine of G. We
choose the orientation of P so that st is not in a forbidden ending.

Proceeding in order from s1, we partition V (G) into blocks B1, . . . , Bk that are C-blocks, L-
blocks or E-blocks. This block-partition of V (G) is constructed inductively. If there is no 2-leg in
G, then G is a caterpillar and is the only block; it is a C-block and we are done. Thus, we may
assume G has 2-legs. Let j be the least index such that sj is in a 2-leg; we set the the first block
B1 to be 〈P 1,j−1〉. This is a C-block.

Now, suppose there exists i ≥ 1 such that the ith block Bi has been determined with ri = sj−1
and such that Bi has a π-representation with d←(ri) = 0. In the first case, suppose that there is
no q > j − 1 such that sq is in a 2-leg. Then, 〈P j,t〉 is the last block Bi+1; it is a C-block and we
are done.

In the remaining case, there is a least q > j − 1 such that sq is in a 2-leg. If q > j, then the
next block Bi+1 is the subgraph 〈P j,q−1〉, that is, a C-block. Thus, we may assume q = j. If there
is an l > j such that subgraph 〈P j,l〉 is an L-block, then, choosing the minimal such l yields one of
the graphs in Lemma 9 as Bi+1 (this claim is proved below). If no such l exists, subgraph 〈P j,t〉
is the last block Bk, it is an E-block isomorphic to one of the graphs presented in Lemma 9 and
Lemma 10 (this claim is proved below).

If Bi+1 is a C-block or an L-block presented in Lemma 9, then G[Bi+1] has a π-representation
such that d→(ℓi+1) = 0 and d←(ri+1) = 0. Moreover, if Bi+1 is the last block of the block-partition,
either Bi+1 is a C-block or an E-block isomorphic to one of the graphs presented in Lemma 9 and
Lemma 10. In both cases, G[Bi+1] has a π-representation in which d→(ℓi+1) = 0.

Now, we prove the claims above, that is, if the ith block Bi has ri = sj−1 and the next spine
vertex sj is in a 2-leg, then block Bi+1, as previously defined, is isomorphic to one of the graphs
presented in Lemma 9 and Lemma 10.

If no vertex in 〈P j+1,t〉 has degree 3 in G, then Bi+1 is the subgraph 〈P j,t〉, that is, an E-block
(∅, 2), and has |V (〈P j,t〉)| ≥ 6. Thus, the result follows. Now, assume that there exists a degree
3 vertex in {sj+1, . . . , st}. Let ℓ = min{r : r ∈ {j + 1, . . . , t} and dG(sr) = 3}. Note that 〈P j,ℓ〉 is
an L-block. If sℓ is in a 2-leg, then 〈P j,ℓ〉 has at least six vertices and is isomorphic to L-block
(∅, 2). Therefore, the result follows. For the remaining cases we assume that sℓ is in a 1-leg. Let
T = 〈P j,ℓ〉. Note that T is an L-block (∅, 1). Thus, if |V (T )| 6= 5 and |V (T )| 6= 8, the result follows.
Now, we consider the cases |V (T )| = 5 and |V (T )| = 8.

Case 1. |V (T )| = 5.

First, suppose no vertex in 〈P ℓ+1,t〉 has degree 3 in G. Let T ′ = 〈P j,t〉. Since T ′ cannot
be isomorphic to a forbidden ending, |V (T ′)| ≥ 7. If |V (T ′)| = 7, T ′ is the graph illustrated in
Figure 8(d); otherwise, it is isomorphic to an E-block ({4}, 2), and the result follows. Now, assume
that there exists a degree 3 vertex in {sℓ+1, . . . , st}. Let ℓ1 = min{r : r ∈ {ℓ+1, . . . , t} and dG(sr) =
3}. Note that 〈P j,ℓ1〉 is an L-block. If sℓ1 is in a 2-leg, then 〈P j,ℓ1〉 has at least 8 vertices and is
isomorphic to L-block ({4}, 2). Therefore, the result follows. For the remaining cases, assume that
sℓ1 is in a 1-leg.

Let T1 = 〈P j,ℓ1〉. Note that T1 has at least 7 vertices and is an L-block ({4}, 1). Thus, if
|V (T1)| 6= 7 and |V (T1)| 6= 11, the result follows. Now, we consider the cases |V (T1)| = 7 and
|V (T1)| = 11.

Case 1.1. |V (T1)| = 7.

First, suppose no vertex in 〈P ℓ1+1,t〉 has degree 3 in G. Let T ′1 = 〈P j,t〉. Since T ′1 cannot be
isomorphic to a forbidden ending, |V (T ′1)| ≥ 9. If |V (T1)| = 9, then T ′1 is isomorphic to an E-block
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({4, 5}, 1); otherwise, T ′1 is isomorphic to an E-block ({4, 5}, 2), and the result follows. Now, assume
that there exists a degree 3 vertex in {sℓ1+1, . . . , st}.

Let ℓ2 = min{r : r ∈ {sℓ1+1, . . . , t} and dG(sr) = 3}. Note that 〈P j,ℓ2〉 is an L-block. If sℓ2 is in
a 2-leg, then 〈P j,ℓ2〉 has at least 10 vertices and is isomorphic to L-block ({4, 5}, 2). Therefore, the
result follows. For the remaining cases we assume that sℓ2 is in a 1-leg. Let T2 = 〈P j,ℓ2〉. Note that
T2 has at least 9 vertices and is an L-block ({4, 5}, 1). Thus, if |V (T2)| 6= 12, the result follows.

Now, consider |V (T2)| = 12. First, suppose no vertex in 〈P ℓ2+1,t〉 has degree 3 in G. Let
T ′2 = 〈P j,t〉. Note that |V (T ′2)| ≥ 13. If |V (T ′2)| = 13, T ′2 is the graph illustrated in Figure 8(e);
otherwise, T ′2 is isomorphic to an E-block ({4, 5, 9}, 1) and the result follows. Now, assume that there
exists a degree 3 vertex in {sℓ2+1, . . . , st}. Let ℓ3 = min{r : r ∈ {ℓ2 + 1, . . . , t} and dG(sr) = 3}.
Note that 〈P j,ℓ3〉 is an L-block. If sℓ3 is in a 2-leg, then 〈P j,ℓ3〉 has at least 15 vertices and is
isomorphic to L-block ({4, 5, 9}, 2). If sℓ3 is in a 1-leg, then 〈P j,ℓ3〉 has at least 14 vertices and is
isomorphic to L-block ({4, 5, 9}, 1). In both cases, the result follows.

Case 1.2. |V (T1)| = 11.

First, suppose no vertex in 〈P ℓ1+1,t〉 has degree 3 in G. Let T ′1 = 〈P j,t〉. Note that |V (T ′1)| ≥ 12.
If |V (T ′1)| = 12, T ′1 is the graph illustrated in Figure 8(f); otherwise, T ′1 is isomorphic to an E-block
({4, 9}, 1) with |V (T ′1)| ≥ 13 and the result follows.

Now, assume that there exists a degree 3 vertex in {sℓ1+1, . . . , st}. Let ℓ2 = min{r : r ∈
{ℓ1 + 1, . . . , t} and dG(sr) = 3}. Note that 〈P j,ℓ2〉 is an L-block. If sℓ2 is in a 2-leg, then 〈P j,ℓ2〉
has at least 14 vertices and is isomorphic to L-block ({4, 9}, 2). If sℓ2 is in a 1-leg, then 〈P j,ℓ2〉 has
at least 13 vertices and is isomorphic to L-block ({4, 9}, 1). In both cases, the result follows.

Case 2. |V (T )| = 8.

First, suppose no vertex in 〈P ℓ+1,t〉 has degree 3 in G. Let T ′ = 〈P j,t〉. Note that |V (T ′)| ≥ 9.
If |V (T ′)| ∈ {9, 10}, T ′ is exhibited in Figure 8(a) and Figure 8(b); otherwise, it is isomorphic
to an E-block ({7}, 1) and the result follows. Now, assume that there exists a degree 3 vertex in
{sℓ+1, . . . , st}. Let ℓ1 = min{r : r ∈ {ℓ + 1, . . . , t} and dG(sr) = 3}. Note that 〈P j,ℓ1〉 is an L-
block. If sℓ1 is in a 2-leg, then 〈P j,ℓ1〉 has at least 11 vertices and is isomorphic to L-block ({7}, 2).
Therefore, the result follows. For the remaining cases, assume that sℓ is in a 1-leg. Let T1 = 〈P j,ℓ1〉.
Note that T1 has at least 10 vertices and is an L-block ({7}, 1). Thus, if |V (T1)| ≥ 11, the result
follows.

Next, consider the case |V (T1)| = 10. First, suppose no vertex in 〈P ℓ1+1,t〉 has degree 3 in G.
Let T ′1 = 〈P j,t〉. Note that |V (T ′1)| ≥ 11. If |V (T ′1)| = 11, T ′1 is the graph illustrated in Figure 8(c);
otherwise, T ′1 is isomorphic to an E-block ({7, 8}, 1), and the result follows.

Now, assume that there exists a degree 3 vertex in {sℓ1+1, . . . , st}. Let ℓ2 = min{r : r ∈
{ℓ1 + 1, . . . , t} and dG(sr) = 3}. Note that 〈P j,ℓ2〉 is an L-block. If sℓ2 is in a 2-leg, then 〈P j,ℓ2〉
has at least 13 vertices and is isomorphic to L-block ({7, 8}, 2). If sℓ2 is in a 1-leg, then 〈P j,ℓ2〉 has
at least 12 vertices and is isomorphic to L-block ({7, 8}, 1). In both cases, the result follows. This
case concludes the proof.

Now we are ready to prove Theorem 3.

Theorem 3. Let G be a lobster with ∆(G) = 3 and without Y -legs. If G has at most one forbidden
ending, then G has an α-labelling.

Proof. By Lemma 11 and Lemma 8 we conclude that every lobster G with maximum degree three,
without Y -legs and with at most one forbidden ending has a π-representation. This implies that G
has an α-labelling.
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4 Strongly-α labellings of trees with a perfect matching

In this section, we prove Theorem 4 and Corollary 5. Let T be a tree with a perfect matching
M . Remember that the contree of T is the tree obtained from T by contracting the edges of M .
A labelling f of T is strongly-graceful if f is graceful and, additionally, for each edge uv ∈ M ,
f(u) + f(v) = |E(T )|.

Let f be a strongly-graceful labelling of a tree T with a perfect matching M . There are
some properties that arise directly from the definition of strongly-graceful labellings. For instance,
for every edge uv ∈ M , the induced label of uv is |f(u) − f(v)| = |f(u) − (|E(T )| − f(u))| =
|2f(u)− |E(T )||, which is an odd number since |E(T )| is odd. Thus, the parities of the endpoints
of each edge in M are different. Moreover, since f is a graceful labelling, the labels of the edges
in E(T )\M are the even numbers in set {1, . . . , |E(T )|}. Therefore, the endpoints of each edge in
E(T )\M have the same parity. These observations are summarized in Proposition 12.

Proposition 12. Let f be a strongly-graceful labelling of a tree T with a perfect matching M .
Then, f(u) 6≡ f(v) (mod 2), if uv ∈ M and f(u) ≡ f(v) (mod 2), otherwise. Moreover, Lf

M =

{2i+ 1: 0 ≤ i ≤ ⌊|E(T )|/2⌋} and Lf

E(T )\M = {2i : 1 ≤ i ≤ ⌊|E(T )|/2⌋}.

Strongly-graceful labellings were introduced by Broersma and Hoede [5]. In their seminal article,
the authors showed an equivalence between graceful and strongly-graceful labellings and they proved
that all trees are graceful if and only if all trees with a perfect matching have a strongly-graceful
labelling. Additionally, the authors proved the following result.

Theorem 13 (Broersma and Hoede [5]). If the contree of a tree T with a perfect matching has a
graceful labelling, then T has a strongly-graceful labelling.

Note that the contree of a lobster with a perfect matching is a caterpillar. Since every cater-
pillar has an α-labelling (which is also a graceful labelling), by Theorem 13, we obtain that every
lobster with a perfect matching has a strongly-graceful labelling. While analysing strongly-graceful
labellings of lobsters with a perfect matching, we observed that some strongly-graceful labellings
are also α-labellings. This observation led us to the concept of strongly-α labellings: we say that
a labelling f of T is strongly-α if f is strongly-graceful and, additionally, f is also an α-labelling.

While every lobster with a perfect matching has a strongly-graceful labelling, there are lobsters
that do not have a strongly-α labelling. Figure 9 exhibits an example.

Figure 9: A lobster with a perfect matching that has no strongly-α-labelling.

In Theorem 14, we characterize the trees with a perfect matching that have a strongly-α la-
belling. In our proof, we use a construction defined by Broersma and Hoede, described below. This
construction allows us to obtain a strongly-graceful labelling of T from any graceful labelling of its
contree.

Broersma-Hoede’s construction. Let T be a tree with a perfect matching M . By Propo-
sition 12, in a strongly-graceful labelling f of T , we have f(u) 6≡ f(v) (mod 2), if uv ∈ M , and
f(u) ≡ f(v) (mod 2), otherwise. Note that, once the parity of the label of one vertex of T is
known, the parities of the other vertices are uniquely determined. This occurs because T has only
one perfect matching and there is only one path connecting any two vertices of T . Thus, the first
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step of the construction is to choose the parity of the label of an arbitrary vertex x of T and, then,
obtain the parity of the labels of the remaining vertices. This step is illustrated in Figure 10(a).
Next, consider a graceful labelling f ′ of the contree T ′ of T . Modify f ′ so that, for each vertex
xuv ∈ V (T ′), xuv is assigned the label 2f ′(xuv), as illustrated in Figure 10(b) and Figure 10(c). Let
uv ∈ M . Considering that v has even parity and u has odd parity, assign label 2f ′(xuv) to v and
label |E(T )|−2f ′(xuv) to u. Broersma and Hoede proved that this assignment is a strongly-graceful
labelling of T .

E

E
E

EEEE

O

O

O

OOOO

(a) A tree T with a perfect matching. Each vertex of
T is labelled with letters O or E, where letter O means
odd parity and letter E means even parity. For each
edge uv ∈ E(T ), these parities respect the properties
stated in Proposition 12.

0
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(b) Contree T ′ of tree T

with a graceful labelling f ′.

0

24

68
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(c) A new labelling of T ′

obtained by assigning label
2f ′(v) to each vertex v.

01

2

3 4

5 6 78

910
11
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(d) Strong-graceful labelling f of T . The endpoints of
each edge uv ∈ M have labels with distinct parities.
The even label f(v) is taken from the previous labelling
of T ′ and the odd label is |E(T )| − f(v).

Figure 10: Construction of a strong-graceful labelling f for a tree T with a perfect matching. Note
that, in this case, f is also an α-labelling.

The classical complementary labelling f of a graceful labelling f of a graph G is defined by
f(v) = |E(G)|−f(v), for each vertex v ∈ V (G). It is immediate that f is graceful. One illustration
is given in Figure 11.
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34
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Figure 11: A graceful labelling f of a caterpillar and its complementary labelling.

Now we are ready to prove Theorem 14. Theorem 4 and Corollary 5 follow as consequences of
Theorem 14.

Theorem 14. Let T be a tree with a perfect matching. Then, T has a strongly-α labelling if and
only if its contree has a balanced bipartition and an α-labelling.

Proof. Let T be a tree with a perfect matching M and let T ′ be the contree of T . Let nT = |V (T )|
and nT ′ = |V (T ′)| = nT /2. The result is trivial for nT = 2. Thus, consider nT ∈ {4p, 4p + 2},
p ∈ N

∗.
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Since T has a perfect matching, its bipartition {X,Y } satisfies |X| = |Y |. Because f is an α-
labelling, f(X) is either {0, . . . , nT

2 −1} or {nT

2 , . . . , nT −1} and f(Y ) is the other. We use labelling
f so as to obtain an α-labelling g for T ′. Let vxy ∈ V (T ′) be obtained from T by the contraction of
edge xy ∈ M . Proposition 12 implies that f(x) 6≡ f(y) (mod 2). Let f ′(vxy) be the one of f(x) and

f(y) that is even. Now, Proposition 12 shows that f ′ : V (T ′) → {0, 2, . . . , nT −2} = Lf

E(T )\M ∪{0}.

Let vxyvzw ∈ E(T ′) with x, z ∈ X and y,w ∈ Y . By the definition of T ′, exactly one of xw
and zy belongs to E(T )\M . Suppose xw ∈ E(T )\M . Note that this implies that f(x) ≡ f(w)
(mod 2). Also, if f(x) ≡ 0 (mod 2), then |f ′(vxy)− f ′(vzw)| = |f(x)− f(w)|; otherwise, f(x) ≡ 1
(mod 2) and |f ′(vxy)−f ′(vzw)| = |f(y)−f(z)| = |(nT −1−f(x))−(nT −1−f(w))| = |f(x)−f(w)|.

We conclude that Lf ′

E(T ′) = Lf

E(T )\M . For v ∈ V (T ′), define g(v) = f ′(v)/2. By the definition of g,

Lg

V (T ′) = {0, . . . , nT

2 − 1} = {0, . . . , nT ′ − 1} and Lg

E(T ′) = {1, . . . , nT

2 − 1} = {1, . . . , nT ′ − 1}. Thus,
g is graceful.

Now, we prove that g is an α-labelling. In order to do this, we show that there exists k ∈ Lg

V (T ′)

such that, either g(vxy) ≤ k < g(vzw) or g(vzw) ≤ k < g(vxy), for every edge vxyvzw ∈ E(T ′). By
the definition of f , f(x) ≤ nT /2 − 1 < f(w). First, suppose that f(x) and f(w) are both even.
Thus, we have

f(x) ≤ nT /2− 1 < f(w),

f ′(vxy) ≤ nT/2 − 1 < f ′(vzw),

g(vxy) ≤ nT/4 − 1/2 < g(vzw). (1)

Now, assume f(x) and f(w) are both odd. Thus, we have

f(x) ≤ nT /2− 1 < f(w),

nT − 1− f(x) ≥ nT /2 > nT − 1− f(w),

f(y) ≥ nT /2 > f(z),

f ′(vxy) ≥ nT/2 > f ′(vzw),

g(vxy) ≥ nT/4 > g(vzw). (2)

Hence, if nT = 4p, then let k = p − 1; otherwise, nT = 4p + 2 and we let k = p. In both
cases, g(vxy) ≤ k < g(vzw) or g(vzw) ≤ k < g(vxy). In order to conclude the proof, just observe
that when nT ′ = 2p, T ′ has a bipartition with parts of equal size since k = p− 1. Moreover, when
nT ′ = 2p+ 1, T ′ has a bipartition in which the cardinalities of the parts differ by one since k = p.
Therefore, T ′ has a balanced bipartition and the result follows.

Now, suppose T ′ is balanced and that g : V (T ′) → {0, . . . , nT ′−1} is an α-labelling. Let {A,B}
be the bipartition of T ′, labelled so that |A| ≥ |B|. Changing to the complementary labelling if
necessary, we may assume Lg

A = {0, . . . , |A| − 1} and Lg
B = {|A|, . . . , nT ′ − 1}. Since T ′ has α-

labelling g, by Theorem 13, T has a strongly-graceful labelling f obtained by the Broersma-Hoede’s
construction.

Next, we show that f is also an α-labelling; that is, we prove that there exists an integer
k ∈ {0, . . . , nT −1} such that, for each edge uv ∈ E(T ), either f(u) ≤ k < f(v) or f(v) ≤ k < f(u).
We claim that k = 2|A| − 1 when |A| = |B| and that k = 2|A| − 2 when |A| = |B| + 1. Thus,
let k1 = 2|A| − 1, k2 = 2|A| − 2 and consider an edge uv ∈ E(T ). There are two cases to analyse
depending on which set, M or E(T )\M , edge uv belongs to.

Case 1. uv ∈ M .
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By the construction of f , vertices u and v receive different labels 2q and (nT − 1) − 2q, for
q ∈ Lg

A ∪ Lg
B. Without loss of generality, assume that f(u) = min{2q, (nT − 1) − 2q} and f(v) =

max{2q, (nT − 1)− 2q}.

First, suppose that q ∈ Lg
A. In this case, 2q < (nT −1)−2q. Thus, f(u) = 2q and f(v) = (nT −

1)−2q. Moreover, f(u) = 2q ≤ 2|A|−2 and f(v) ≥ (nT −1)− (2|A|−2) = (2nT ′−1)− (2|A|−2) =
(2(|A| + |B|)− 1)− 2|A|+ 2 = 2|B|+ 1. Therefore, since f(u) ≤ 2|A| − 2 and f(v) ≥ 2|B|+ 1, we
have:

if |A| = |B|, then f(u) ≤ 2|A| − 2 < 2|A| − 1 = k1 < 2|A|+ 1 ≤ f(v); (3)

if |A| = |B|+ 1, then f(u) ≤ 2|A| − 2 = k2 < 2|A| − 1 ≤ f(v). (4)

Now, suppose that q ∈ Lg
B. In this case, 2q > (nT − 1) − 2q. Thus, f(v) = 2q and f(u) =

(nT − 1) − 2q. Moreover, f(v) = 2q ≥ 2|A| and f(u) ≤ (nT − 1) − 2|A| = (2nT ′ − 1) − 2|A| =
(2(|A| + |B|)− 1)− 2|A| = 2|B| − 1. Therefore, since f(u) ≤ 2|B| − 1 and f(v) ≥ 2|A|, we have:

if |A| = |B|, then f(u) ≤ 2|A| − 1 = k1 < 2|A| ≤ f(v); (5)

if |A| = |B|+ 1, then f(u) ≤ 2|A| − 3 < 2|A| − 2 = k2 < 2|A| ≤ f(v). (6)

Case 2. uv ∈ E(T )\M .

By the construction of f , f(u) ≡ f(v) (mod 2). Without loss of generality, assume that f(u) <
f(v). First, suppose that f(u) and f(v) are both even. In this case, f(u) = 2q and f(v) = 2r,
for q, r ∈ Lg

A ∪ Lg
B. Since uv 6∈ M , edge uv has a corresponding edge u′v′ in the contree T ′

whose endpoints are in different parts of {A,B}. Since f(u) < f(v), we have that q < r with
q ∈ Lg

A and r ∈ Lg
B . Also, since Lg

A = {0, . . . , |A| − 1} and Lg
B = {|A|, . . . , nT ′ − 1}, we have that

f(u) = 2q ≤ 2|A| − 2 and f(v) = 2r ≥ 2|A|. These inequalities imply that f(u) ≤ 2|A| − 2 = k2 <
k1 < 2|A| ≤ f(v), and the result follows.

Now, suppose that f(u) and f(v) are both odd. By the construction of f , we have that
f(u) = (nT − 1) − 2q and f(v) = (nT − 1) − 2r, for q, r ∈ Lg

A ∪ Lg
B . Since f(u) < f(v), r ∈ Lg

A

and q ∈ Lg
B. This implies that 2q ≥ 2|A| and 2r ≤ 2|A| − 2. Since nT = 2nT ′ = 2(|A| + |B|),

we obtain that f(u) = (nT − 1) − 2q = 2|A| + 2|B| − 1 − 2q ≤ 2|A| + 2|B| − 1 − 2|A| = 2|B| − 1
and f(v) = (nT − 1) − 2r = 2|A| + 2|B| − 1 − 2r ≥ 2|A| + 2|B| − 1 − 2|A| + 2 = 2|B| + 1. Since
f(u) ≤ 2|B| − 1 and f(v) ≥ 2|B|+ 1, we have that

if |A| = |B|, then f(u) ≤ 2|A| − 1 = k1 < 2|A|+ 1 ≤ f(v); (7)

if |A| = |B|+ 1, then f(u) ≤ 2|A| − 3 < k2 < 2|A| − 1 ≤ f(v); (8)

and the result follows.

Theorem 4. Let T be a tree with a perfect matching and let T ′ be its contree. If T ′ has a balanced
bipartition and an α-labelling, then T has an α-labelling.

Corollary 5. Let T be a tree with a perfect matching such that its contree T ′ is a caterpillar with
a balanced bipartition. Then T has an α-labelling.

Proof. The result follows by Theorem 14 and by the fact that every caterpillar has an α-labelling.
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5 Concluding Remarks

In this work, we have considered lobsters that have at most one forbidden ending and lobsters
whose contrees are balanced. These are positive steps towards settling Conjecture 1 for lobsters.
One possible next step to pursue is to consider lobsters for which neither Theorem 3 nor Corollary 6
apply, as in the example shown in Figure 12.
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Figure 12: An α-labelling of a lobster G with maximum degree 3 and a perfect matching. Note
that G has two forbidden endings and its contree is not balanced.
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