
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

Counting sorting scenarios

and intermediate genomes

for the rank distance
J. P. P. Zanetti J. Meidanis

Technical Report - IC-18-07 - Relatório Técnico

April - 2018 - Abril

The contents of this report are the sole responsibility of the authors.

O conteúdo deste relatório é de única responsabilidade dos autores.

Counting sorting scenarios and intermediate genomes

for the rank distance

João Paulo Pereira Zanetti∗ João Meidanis†

Abstract

An important problem in genome comparison is the genome sorting problem, that is to find
a sequence of basic operations that transforms one genome into another and corresponds to the
distance between them. These sequences are called optimal sorting scenarios. However, there
is usually a large number of such scenarios, and a naive algorithm is very likely to be biased
towards a specific type of scenario, impairing its usefulness in real-world applications. One way
to go beyond the traditional sorting algorithms is to explore all possible solutions, looking at all
the optimal sorting scenarios instead of just an arbitrary one. Another approach in the same
direction is to analyze all the intermediate genomes, that is, all genomes that are part of an
optimal sorting scenario. In this paper, we show how to count the number of optimal sorting
scenarios and the number of intermediate genomes between any two given genomes, under the
rank distance.

1 Introduction

At a higher level of abstraction, genomes can be represented as a list of blocks (that can be genes,
markers, or other synthenic regions), and their evolution can be modeled by large-scale mutation
events we call genome rearrangements. Different genome rearrangement models define different
events and costs for them, and their most basic application is to determine the lowest cost to
transform one genome into another. This is the genome distance problem.

Another fundamental problem that elaborates on this is to find sequences of rearrangement
operations with minimum cost. We call this the genome sorting problem. However, a single arbitrary
sequence of events among many optimal ones is hardly representative of the evolutionary process,
especially considering that sorting algorithms might be biased towards certain kinds of sorting
sequences. On the other hand, listing all possible optimal scenarios is not practical, because their
number is simply too large.

A first step towards exploring the solution space of the genome sorting problem as a whole
is to count the number of optimal sorting scenarios between two given genomes. This can reveal
patterns in the optimal solutions and suggest strategies for real data applications.

To the best of our knowledge, the studies of the solution space of genome sorting for multi-
chromosomal genomes have been limited to the DCJ distance [19]. Braga and Stoye showed how
to count optimal DCJ scenarios between two genomes, with and without recombination [3]. Ouan-
graoua and Bergeron also count optimal scenarios without recombination, and establish bijections
between these scenarios and well-known combinatorial objects [14]. Feijão took these results one

∗Institute of Computing, UNICAMP, 13083-852 Campinas, SP. joao.zanetti@ic.unicamp.br. FAPESP grant
2017/02748-2.
†Institute of Computing, UNICAMP, 13083-852 Campinas, SP. meidanis@ic.unicamp.br

1

2 Zanetti and Meidanis

step further, and showed how to count the intermediate genomes between two genomes and how
to use those to reconstruct ancestral genomes [5]. Here, we seek to retrace their steps, but with
respect to the rank distance model [11] instead of DCJ.

The rank distance, formalized by Meidanis, Biller, and Zanetti [11] is based on a representation
of genomes using matrices. The rank distance is twice the algebraic distance [6], and very close to
the DCJ distance [19, 6]. This allows for both graphical and algebraic manipulation of genomes.
The rank distance is equivalent to the DCJ for genomes with the same free ends. One advantage
of the rank distance is that it ensures that there is no recombination while sorting. On the other
hand, since the basic operations have different weights, the scenarios have variable lengths, and
this raises a challenge when counting all possible scenarios. Fortunately, we were able to overcome
this difficulty by adding an extra parameter in the recurrence.

The rest of this paper is organized as follows. Section 2 presents the rank distance concepts
we use. In Section 3 we present the multi-genome breakpoint graph used in this analysis and
how it relates to the rank distance. In Section 4 we show how to count the number of optimal
scenarios between two genomes under the rank distance. In Section 5 we count the number of
intermediate genomes. In Section 6 we relate our experiments with real genomic data. Finally,
Section 7 summarizes our conclusions.

2 Genomes as matrices and the rank distance

In this section we present our representation of genomes as matrices, the rank distance, and its
basic operations that will be useful later in the paper. For a more complete source on the rank
distance, we refer the reader to the tech report by Meidanis, Biller, and Zanetti [11]

One way to see genomes is as a collection of chromosomes, each of them a linear of circular
sequence of genes. Each gene is represented as a linear segment, with two extremities through which
genes are connected, by adjacencies. At this level of abstraction, a genome can be fully represented
by its set of extremities and the adjacencies between them. See the example in Figure 1a.

We can encode this representation of genomes in matrices [20, 11]. For a genome G involving n
genes (and therefore 2n gene extremities), we can choose an ordering for the extremities, assigning
them to the columns (and rows) of a 2n × 2n matrix, and then define the corresponding genome
matrix as follows:

Gij =

1 if i 6= j and i and j are adjacent in G, or

if i = j and i is a free end in G

0 if i 6= j and i and j are not adjacent in G, or

if i = j and i is not a free end in G

An example of a genome matrix can be seen in Figure 1b. These matrices have some interesting
properties: they are symmetric, that is, At = A; orthogonal, that is, At = A−1; and involutions,
that is A2 = I. Also, since they are square, binary, and orthogonal matrices, they are permutation
matrices. It is also worthy to note that these matrices are sparse, and amenable to memory-efficient
storage.

If A and B are genomes over the same genes, the distance d(A,B) between A and B is defined
as

d(A,B) = r(B −A),

where r is the rank of a matrix.

Counting solutions for the rank distance 3

at ah

a

bh bt

−b
ct ch

c

(a) Genome with only one chromosome, linear, and adjacencies {ah, bh} and {bt, cc}. The extremities at and
ch are free ends.

at ah bt bh ct ch

at 1 0 0 0 0 0
ah 0 0 0 1 0 0
bt 0 0 0 0 1 0
bh 0 1 0 0 0 0
ct 0 0 1 0 0 0
ch 0 0 0 0 0 1

(b) Matrix representation of the genome in Figure 1a.

Figure 1: Example of a genome and its matrix representation.

Although the rank distance is defined in terms of matrices, it is also possible to characterize
it as the weight of an optimal series of operations transforming A into B. We say a matrix X is
applicable to a genome A when A+X is also a genome. A matrix that is applicable to at least one
genome is called an operation.

An operation is basic if it is a cut of an adjacency, a join of two free ends, or a double swap
of two adjacencies into two new ones using the same four extremities. Any other rearrangement
operation can be decomposed as a sum of these three kinds of operations [11]. This way, we are
able to slim down the cast of operations to just three, without loss of generality.

The matrices corresponding to the basic operations are characterized in detail in [11, Chap.
2]. For this work, the most important information about them is that cuts and joins are rank 1
matrices, while double swaps have rank 2.

3 Breakpoint graph

Genomes, as we describe here, are matchings over the set of gene extremities. We can graphically
represent two genomes A and B to compute their distance as matchings, using one color (or line
style) for A and another for B. See Figure 2.

The graph we use, called breakpoint graph [18] is based on the original breakpoint graph in-
troduced by Hannenhalli and Pevzner in 1995 [7]. The difference is that we do not use caps at
chromosome ends. Our free ends are simply extremities that are not adjacent to any other. We
believe this makes representation simpler and clearer, without adding any extra difficulties to the
results. It is important to note that the breakpoint graph is also the line graph of the adjacency
graph [18], another graph used in the analysis of genome distances [1].

Given two genomes A and B of equal gene content, we build the two-genome breakpoint graph
BG(A,B) as follows. Its vertices are the extremities of the genomes, and there are two sets of
edges: A-edges, that connect two extremities that are adjacent in A, and B-edges, that connect
every pair of extremities adjacent in B.

While sorting from A to B, we call A the source genome, and B the target genome. In the
graph BG(A,B), we color the edges from the source genome A gray, and the edges from the target
genome B black.

4 Zanetti and Meidanis

Figure 2: Example breakpoint graph BG(A,B). Genome A has adjacencies ahbh, ctdt, etft, ehgt,
atih, ghhh, and chdh, drawn as gray dashed edges, and free ends bt, fh, ht, and it. Genome B has
adjacencies aheh, bhct, dtet, ftgt, fhih, atht, chhh, and btdh, drawn as black solid edges, and free
ends gh and it.

Note that when the genome is already sorted, that is, when both genomes are equal, the edges
of both colors coincide, leaving only two types of components, cycles with two edges — shared
adjacencies —, and isolated vertices — shared free ends.

In general, there are three types of components in the breakpoint graph BG(A,B). Cycles
always have an even number of edges. On the other hand, the number of edges in a path can
be even or odd. Paths with an even number of edges are called balanced, because they have the
same number of edges of each color. Odd paths are called unbalanced ; they begin and end with
edges from the same genome. Unbalanced edges can be further classified into two types, AA-paths,
or gray paths, and BB-paths, or black paths, according to which genome accounts for more edges.
Therefore, considering BG(A,B), sorting A into B can be seen as the process of applying basic
operations to the A-edges until they are all coincident with the B-edges.

A cut either transforms a cycle into a path, or splits one path in two. A join does the reverse:
either transforms a path into a cycle, or joins two paths into one. A double swap can extract a
cycle from any type of component or reverse a part of a component. When acting on two separate
components, a double swap can also insert a circular component into another one (linear or circular)
or swap end segments of two paths.

We call big components cycles with four or more edges and paths with at least one edge. These
are components that need to be worked on in order for the genomes to be sorted. Cycles with two
edges and paths of length zero (isolated vertices) will be called small components. The next result
shows how to compute the rank distance using the breakpoint graph.

Theorem 1. Given two genomes A and B over the same set of extremities, the rank distance
between them is given by

d(A,B) = 2n− 2c− p,

where n is the number of genes, and c and p are respectively the number of cycles and paths in
BG(A,B)

Proof. Feijão and Meidanis in 2013 showed that the algebraic distance dalg(A,B) between two
genomes A and B is given by dalg(A,B) = n− nC − nP

2 , where n is the number of genes, and nC

and nP are respectively the number of cycles and paths in the adjacency graph of A and B [6,
Theorem 3.11]. Since the breakpoint graph is the line graph of the adjacency graph, we have
c = nC and p = nP . Later, Zanetti, Biller and Meidanis showed that d(A,B) = 2dalg(A,B) [20],
and, therefore, d(A,B) = 2n− 2c− p.

Counting solutions for the rank distance 5

4 Counting the number of scenarios

An optimal solution for sorting genome A into B is a sequence of genomes separated by basic
operations, going from A to B with minimum cost. Some authors call such sequence a geodesic
between A and B, or a geodesic patch when the basic operations have different weights [8]. Braga
and Stoye present a similiar definition for sorting scenarios in their work, as a sequence of the
operations involved in sorting A into B. Meidanis, Biller, and Zanetti [11], define sorting scenar-
ios as sequences of genomes. However, for our purposes here, it is more convenient to define a
corresponding operation scenario from A to B as a list of matrices L = [X1, . . . , X`] such that
A + X1 + X2 + . . . + X` = B, and each matrix Xi is one of the basic operations and applicable
to A + X1 + X2 + . . . + Xi−1. The total weight of a scenario, denoted by w(L), is the sum of the
weights of all its operations. Such scenario is optimal if and only if w(L) = d(A,B). In the context
of the rank distance, scenarios are geodesic patches, because basic operations can have weight 1 or
2.

In this section, we show how to count the number of optimal rank sorting scenarios between
two genomes, with the aid of the breakpoint graph. First, we show that no optimal operation
acts on different components of the breakpoint graph. Therefore, we can solve each component
separately. Then we recall from the work of Braga and Stoye [3] a formula to count DCJ sorting
scenarios which also applies to rank sorting scenarios for cycles, and a recurrence to count rank
sorting scenarios for paths. Lastly, we show how to get a count for the whole graph altogether.

4.1 Recombination

As a first step to count the number of sorting scenarios, we want to prove a useful property,
namely, that no optimal rearrangement recombines the components of the breakpoint graph. In
other words, we show here that there is no optimal operation that acts on extremities of more than
one component at the same time.

Lemma 1. No optimal operation in sorting from A to B involves extremities in different compo-
nents of BG(A,B).

Proof. To prove this, we list every possible operation recombinating two components C1 and C2 of
BG(A,B) and show that they do not change the graph in a way that reduces the distance.

A double swap can be between two cycles, generating one cycle, between a cycle and a path,
generating a path, or between two paths, resulting in two paths. All of these moves reduce the
number of components or keep their number unchanged and therefore are not optimal.

The other option of operation on two separate components is to join two paths, resulting in a
single path, reducing the number of components, also non optimal.

A cut is not considered here, because it only acts on two connected extremities. Therefore, it
never affects more than one component.

In the paper counting DCJ scenarios, the only operation that recombines different components
of the graph is a swap between two unbalanced paths resulting in two balanced ones [3]. With
regard to the breakpoint graph, the difference between the DCJ and the rank distances is that,
under the rank distance, every path counts towards reducing the distance, not just balanced ones.
Because of this difference, recombinating two unbalanced paths into two balanced ones is not an
optimal move in a rank sorting scenario.

With this result, we conclude that it is possible to count the optimal scenarios for each com-
ponent in the breakpoint graph independently. Now we determine how to obtain sorting scenarios
for the whole graph from the separate solutions for each component.

6 Zanetti and Meidanis

Figure 3: One example of optimal rearrangement for a cycle. A double swap splits the cycle into
two smaller ones. In this case, one 8-cycle is decomposed into one 6-cycle (that will require two
extra swaps to complete the sorting), and a 2-cycle, that is already sorted.

Let s1 and s2 be scenarios for the components C1 and C2 respectively, with respective lengths
`1 and `2. The number of scenarios resulting in the combination of s1 and s2 is the number of
sequences that have both as subsequences, and this is the shuffle product of s1 and s2, whose size
is given by the binomial coefficient

(
`1+`2
`1,`2

)
= (`1+`2)!

`1!`2!
. In general, the number of sequences obtained

by shuffling k subsequences is given by the multinomial coefficient
(
`1+`2+...+`k
`1,`2,...,`k

)
= (`1+`2+...+`k)!

`1!`2!...`k!
,

where `i is the length of the ith subsequence.

4.2 Cycles

Given a cycle in BG(A,B), the only optimal operation that can be applied to it is a double swap
that splits the cycle into two smaller ones, as illustrated in Figure 3. This is a rank-two operation
that increases the number of cycles by one, therefore decreasing the distance by two.

In this case, the sorting moves are equivalent to the ones for the DCJ distance. We can use
the same formula for DCJ to compute the number Sc(2`+ 2) of scenarios to solve a cycle of length
2` + 2 [3, Theorem 3]:

Sc(2` + 2) = (` + 1)(`−1)

Each of these Sc(2` + 2) scenarios has length `, and total weight 2`. When A and B are co-
tailed genomes (that is, A and B have the same free ends), we have that in BG(A,B) the only big
components are cycles, and we can compute the total number Sct of optimal sorting scenarios from
A to B [3, Theorem 4] as follows:

Sct =
(`1 + `2 + . . . + `c)!

`1!`2! . . . `c!

c∏
i=1

(`i + 1)`i−1,

where c is the number of big cycles in BG(A,B).

4.3 Paths

We have shown a simple formula to compute the number of scenarios for the cyclic components in
BG(A,B). For paths the computation is less straightforward. The obstacle that arises when sorting
paths is that, because cuts and joins have rank 1, while double swaps have rank 2, scenarios have
variable length, and information on the length of the sub-solutions is necessary for the shuffling.
Thus, we need a recurrence with two variables: the length of the path, and the length of the
scenario.

For a path, there are three possible optimal operations. First, a cut of any A-edge, provided
there is at least one A-edge in the path. Such a cut results in two smaller paths that are solved

Counting solutions for the rank distance 7

Figure 4: Examples of the three options of optimal moves from a path with black ends. The first
one, from the top, is a cut, splitting the 5-path into two paths with 3 and 1 edges, respectively.
The second is a double swap extracting a cycle from the path. The last option, only possible in
this kind of path, is to join the ends, forming a cycle.

separately. A second option is to execute a double swap on any two A-edges, resulting in a cycle
and a path, provided there are at least two A-edges. Here again, both new components have
independent scenarios that are then shuffled. A last possible operation is to join the ends of a path,
if both ends are incident to B-edges. This leads to a single cycle, that we already know how to
process. These possibilities are illustrated in Figure 4.

Given a path with length k, the sizes of the optimal scenarios fall in a limited range. The
longest operation scenarios for a k-path are the ones with only cuts and joins, making up a total
of k operations. Since the double swaps have twice the weight of a cut or join, scenarios with more
swaps are shorter. Their minimum length is defined in the following lemma.

Lemma 2. Let A and B be two genomes over the same genes such that the sole big component of
BG(A,B) is a k-path P . The minimum length of a scenario that sorts A into B is

⌊
k
2

⌋
+ 1.

Proof. We will show this by induction on k. Since P is a big path, we know that k ≥ 1. A path of
length 1 is always sorted with one operation, either a cut or a join. A path of length 2 is always
sorted with two operations, a cut and a join.

Let us now treat the case k ≥ 3. Assuming that any path with length k′ < k has a minimum
length of bk′/2c + 1 for its scenarios, we are going to compute the minimum possible length ` for
the scenarios of a k-path.

There are three different types of operations that can be applied to P : double swaps, cuts, and
joins. A double swap produces a cycle of length 2x < k and a path of length k − 2x, where x ≥ 1.
The length of any scenario for the cycle is x− 1, and by the induction hypothesis, the length of a

8 Zanetti and Meidanis

solution for the path is at least
⌊
k−2x

2

⌋
+ 1. Therefore, we have

` ≥ 1 + x− 1 +

⌊
k − 2x

2

⌋
+ 1

= 1 + x +

⌊
k

2

⌋
− x

=

⌊
k

2

⌋
+ 1.

If the operation applied is a cut, the result is two paths, with lengths x < k and k − x − 1,
where x ≥ 0. Here we will make use of a property of the floor function: ba + bc ≤ bac+ bbc+ 1 [12,
Theorem 4.1], so that we have

` ≥ 1 +

⌊
x

2

⌋
+ 1 +

⌊
k − x− 1

2

⌋
+ 1

≥
⌊
k − 1

2

⌋
+ 2

≥
⌊
k

2

⌋
+ 1.

The last option is a join. In this case, the resulting component is a cycle with k + 1 edges, and
it requires a scenario with k+1

2 − 1 operations. Noting that k is odd in this case, we have

` = 1 +
k + 1

2
− 1

=

⌊
k

2

⌋
+ 1.

For all three types of operations, ` has the lower bound we are looking for of
⌊
k
2

⌋
+ 1, proving

the lemma.

With this set of optimal operations, and the range for the length of a scenario, we arrive at
three recurrences, one for each type of path. Since the cuts and swaps are only applied to A-edges,
the indices are different according to the type of the path, and the paths obtained after splitting
also have different types.

First, for balanced paths. Let’s assume, without loss of generality, that the first edge (zero-
indexed), is from A. That means that the A-edges are the ones with even indexes. When one of
them is cut, one of the sub-paths is balanced, while the other begins and ends with B-edges. When
a double swap is applied, the remaining path is always the same type of the original, is this case,
balanced. This way, we write the following recurrence SAB(k, `) for the number of scenarios of
length ` that solve a balanced path with k edges. The base case is when the path is just an isolated
vertex (k = 0), that does not need any operation (` = 0).

Counting solutions for the rank distance 9

SAB (0, 0) =1

SAB (k, `) =

k
2
−1∑

i=0

2i∑
j=i+1

SAB (2i, j)SBB (k − 2i− 1, `− j − 1)

(
`− 1

j

)
+

k
2
−1∑

x=0

k
2
−x−1∑
z=1

z(z−2)SAB (k − 2z, `− z)

(
`− 1

z − 1

)

The AA-paths are processed similarly. Their A-edges are even indexed, but both sub-paths
after a cut are balanced. We then get the recurrence SAA(k, `) for the number of scenarios of
length ` that solve a gray path with k edges. The base case, not necessary here but left for clarity,
is a single gray edge (k = 1), that allows a cut (` = 1).

SAA(1, 1) =1

SAA(k, `) =

b k2c∑
i=0

2i∑
j=i+1

SAB (2i, j)SAB (k − 2i− 1, `− j − 1)

(
`− 1

j

)
+

b k2c∑
x=0

b k2c−x∑
z=1

z(z−2)SAA(k − 2z, `− z)

(
`− 1

z − 1

)

On the other hand, BB-paths have odd numbered A-edges, and a cut always results in two
BB-paths. Furthermore, as we saw before, this type of path has the extra option of joining the
ends and making it a (k + 1)-cycle, adding another term to the sum. So, the third recurrence
SBB(k, `) counts the number of scenarios of length ` that solve a BB-path with k edges. The base
case is a single B-edge (k = 1), that only has one optimal sorting, joining its ends (` = 1).

SBB (1, 1) =1

SBB (k, `) =

b k2c−1∑
i=0

2i+1∑
j=i+1

SBB (2i + 1, j)SBB (k − 2i, `− j − 1)

(
`− 1

j

)
+

b k2c∑
x=1

b k2c−x∑
z=1

z(z−2)SBB (k − 2z, `− z)

(
`− 1

z − 1

)
+

(
k + 1

2

)(k+1
2
−2)

Notice how the recurrences have similar structures. We now show how it is possible to use a
single recurrence for paths in general. First, we prove that SAA(k, `) = SBB (k, `), for every k and
`.

10 Zanetti and Meidanis

Lemma 3. Given two genomes A and B, if L = [X1, X2, . . . , X`] is an optimal operation scenario
from A to B, then L′ = [−X`,−X`−1, . . . ,−X1] is an optimal operation scenario from B to A.

Proof. Let Xi be an arbitrary operation in L. It is a basic operation, either a cut, a join, or a
double swap. In L′, we have the same operations as in L, but negated, and in reverse order.

All we have to prove is that B−X`−X`−1− . . .−Xi is a genome, for every i such that 1 ≤ i ≤ `.
But B −X` −X`−1 − . . .−Xi = A + X1 + X2 + . . . + Xi−1, which is a genome by hypothesis.

From this, we conclude that the operation −Xi is also a basic operation with the same rank
as Xi, and it can be applied to B − X` − X`−1 − . . . − Xi+1. Applying the same reasoning for
every operation in L (and L′), we conclude that L′ is an operation scenario, with w(L′) = w(L) =
d(A,B) = d(B,A).

Lemma 4. The number of optimal operation scenarios with ` operations for a gray path is the
same as the number of solutions for a black path of same number of edges.

Proof. Let A and B be two genomes such that, to sort A into B, when we build the graph BG(A,B)
we get a gray path with 2k+ 1 vertices, that starts and ends with edges from the source genome A.

Now let us reverse the direction of the sorting. To sort B into A, we get a graph BG(B,A)
that is also a path with 2k + 1 vertices, that starts and ends with edges from the target genome,
A, so now it is a black path. From Lemma 3, we know that for every optimal operation scenario
L = [X1, X2, . . . , X`] from A to B, there is an optimal scenario L′ = [X`, X`−1, . . . , X1] from B to
A. Therefore, for every scenario sorting the gray 2k + 1-path in BG(A,B) with ` operations, there
is a corresponding scenario sorting the black 2k + 1-path in BG(B,A), also with ` operations.

Because of Lemma 4, we know that SAA(k, `) = SBB (k, `), for every k and `. That is, we can
compute the recurrence for unbalanced (odd) paths, independent of the genome most represented
in them. As we now have a recurrence for odd paths only, and another exclusively for even ones,
we can further simplify them into a single recurrence relation for the number Sp(k, `) of optimal
sorting scenarios of length ` for a path with k edges.

Sp(0, 0) =1

Sp(k, `) =

dk/2e−1∑
i=0

2i∑
j=i+1

Sp(2i, j)Sp(k − 2i− 1, `− j − 1)

(
`− 1

j

)
+

dk/2e−1∑
x=0

dk/2e−x−1∑
z=1

z(z−2)Sp(k − 2z, `− z)

(
`− 1

z − 1

)

With Sc(k) and Sp(k, `), we can count the total number of scenarios between any two genomes.
If the graph BG(A,B) has p big cycles with lengths 2`1 + 2, . . . , 2`p + 2, and q big paths with
lengths k1, . . . , kq, the total number of optimal sorting scenarios from A to B is given by:

k1∑
`′1=bk1/2c+1

· · ·
kq∑

`′q=bkq/2c+1

(`1 + . . . + `p + `′1 + . . . + `′q)!

`1! . . . `p!`′1! . . . `
′
q!

p∏
i=1

Sc(2`i + 2)

q∏
j=1

Sp(kj , `
′
j).

Counting solutions for the rank distance 11

5 Intermediate genomes

We say a genome B is an intermediate genome between genomes A and C when

d(A,C) = d(A,B) + d(B,C).

We have already shown that there is never recombination of different components in the rank
distance. Therefore, we can get all possible indermediates by looking separately at each component
of BG(A,C). If the graph BG(A,C) has p big cycles with lengths k1, k2, . . . , kp, and q big paths
with lengths k′1, k

′
2, . . . , k

′
q, the total number I(A,C) of intermediate genomes between A and C is

I(A,C) =

p∏
i=1

Ic(ki)

q∏
j=1

Ip(k
′
j),

where Ic(k) is the number of intermediates for a k-cycle, and Ip(k) is the number of intermediates
for a k-path.

For cycles of length 2k, with k ≥ 1, rank optimal operations are the same as DCJ optimal
operations, so we can use the analogous result for the DCJ distance [5]:

Ic(2k) =
1

k + 1

(
2k

k

)
.

For paths, again we have more options than when sorting by DCJ. In order to prove the needed
results for paths in BG(A,C), we will label their nodes. Given an alternating path P with m
vertices in BG(A,C), we will label its vertices vP1 , v

P
2 , . . . , v

P
m, or just v1, v2, . . . , vm when the path

P is made clear by the context. We say an edge {vi, vi+x} has span x with respect to P . If v1 or
vm are incident on a black (gray) edge, they are called a black (gray) end of the path.

Lemma 5. Let A and C be two genomes over the same genes such that the big components
of BG(A,C) consists solely of one path v1, . . . , vm. If B is an intermediate genome such that
BG(B,C) has a cycle containing the edge {vi, vi+2k}, this cycle has at least one other edge of even
span.

Proof. To form an alternating cycle of length 2l in BG(B,C), there are l C-edges and l B-edges.
Since B is an intermediate between A and C, the cycle cannot contain extremities that are part of
other components in BG(A,C). The C-edges are fixed, disjoint, and each of them incides on one
even-indexed extremity and one odd-indexed extremity. Therefore, in the cycle, there are l even
vertices and l odd vertices.

To complete the cycle, the l B-edges have to cover all 2l vertices. The edge {vi, vi+2k} incides
on two vertices of the same parity. The remaining l− 1 B-edges have to cover l− 2 vertices of one
parity, and l of the other. Therefore, by the pidgeonhole principle, at least one B-edge incides on
two vertices of the opposite parity from i. This edge has even span.

Lemma 6. If A and C are two genomes over the same genes and the sole big component of
BG(A,C) is a path, then no intermediate genome B between A and C has an adjacency with even
span.

Proof. Let L = [X1, X2, . . . , X`] be a scenario where the genome Bj = A+X1 +X2 + . . .+Xj has
the adjacency {vi, vi+2k}. Assume without loss of generality that Bj is the first genome generated
by L that has an even span adjacency. The operation Xj is either a join of vi and vi+2k or a double
swap creating {vi, vi+2k} and another adjacency.

12 Zanetti and Meidanis

Figure 5: Two possible configurations for a double swap that creates the adjacency vivi+2k. On
the left it is shown the breakpoint graph before the swap, and on the right is the breakpoint graph
after the swap. The two gray (dashed) edges are replaced by vivi+2k and another adjacency. In
both cases, it is possible to notice that the number of cycles and paths is not affected by the swap,
it merely reverses a part of a component.

If Xj is a double swap, there are two possibilities for it, illustrated in Figure 5. For both of
these options, the swap merely reverses a part of the component, and the number of paths and
cycles in BG(Bj−1, C), where Bj−1 = Bj − Xj , is the same as in BG(Bj , C). Thus, Xj is not a
sorting operation, a contradiction.

If Xj is a join, it joins the ends of a CC-path P in BG(Bj−1, C), closing a cycle with the edge
{vi, vi+2k}. According to Lemma 5, this cycle has another gray edge of even span. This edge was
already present in P in BG(Bj−1, C), which contradicts the hypothesis that Bj is the first genome
generated by L that has an even distance adjacency.

Therefore, intermediate genomes cannot have even-span edges.

With the help of Lemma 6, we characterize the intermediate genomes of a path in BG(A,C).

Theorem 2. If A and C are two genomes over the same genes and BG(A,C) consists solely of one
k-path v1, v2, . . . , vk+1 and small components, a matching B is an intermediary genome between A
and C if and only if:

• B has the same edges of A and C outside {v1, . . . , vk+1};

• all edges in B involving vertices v1, . . . , vk+1 have odd span;

• the edges in B do not cross one another, that is, there are no two edges {vi, vj} and {vi′ , vj′}
such that i < i′ < j < j′;

• for every edge {vi, vj} in B, with i < j, all vertices vi+1, . . . , vj−1 are in an adjacency.

Proof. Let’s begin by showing that an intermediate genome satisfies the conditions. The first con-
dition ensures that all small components of BG(A,C) are present in both BG(A,B) and BG(B,C).
From Lemma 6, we know that only edges with odd span are possible in an intermediate.

At any point during sorting, if an operation X would add an edge that crosses another, this
would be an operation that recombines two separate components, and hence cannot be optimal.
So, there are no crossing edges.

As for the fourth and last condition, if an edge {vi, vj} has span greater than 1, it means that
{vi, vj} was created by a double swap or a join, and all vertices vi+1, . . . , vj−1 are part of a cycle.
As we saw in Section 4.2, all vertices in a cycle have to be part of an adjacency in all intermediates.

Counting solutions for the rank distance 13

Now, it is necessary to show that any matching B that fulfills all four conditions is an interme-
diate between A and C. We will do so using induction on the number of edges of B.

The base case is when B has no edges other than the common edges of A and C. The matching
B is an intermediate between A and C, because with a path it is always possible to start at A,
reach B by cutting all A-edges incident to any of v1, . . . , vm, and then join at all C-edges incident
to v1, . . . , vm, optimally arriving at C.

In the general case, B has one or more edges incident to v1, . . . , vm. Cut an edge of B with
maximum span, obtaining a genome B′, with d(B,B′) = 1. Genome B′ satisfies all four conditions
and, therefore, by the induction hypothesis, is an intermediate genome between A and C. Note
that d(B,A) is either d(B′, A) + 1 or d(B′, A) − 1, and the same applies to d(B,C). However, B
cannot be closer than B′ to both A and C, since this would contradict the triangle inequality. We
just have to show that B is not farther than B′ from both A and C.

Let {vi, vj} be the edge of B cut to generate B′. We know that this edge has odd span, and
therefore, the edges {vi, vi+1} and {vj+1, vj} are either both A-edges or both C-edges. Suppose they
are A-edges. In this case, the cut from B to B′ cut a cycle in BG(B,A), making d(B,A) < d(B′, A),
or d(B,A) = d(B′, A)− 1. On the other hand, {vi, vj} is part of a path in BG(B,C), and the cut
splits this path, making d(B,C) = d(B′, C) + 1.

In the case where {vi, vi+1} and {vj+1, vj} are C-edges, the same reasoning applies, and we
have d(B,A) = d(B′, A) + 1, and d(B,C) = d(B′, C) − 1. In both cases, d(B,A) + d(B,C) =
d(B′, A) + d(B′, C) = d(A,C), and that makes B an intermediate.

The characterization of path intermediates given by Theorem 2 allows us to enumerate all
possible intermediates using a recursion. Given a path with length k formed by the vertices
v1, v2, . . . , vk+1, consider all possible adjacencies incident to v1. They are {v1, v2}, {v1, v4}, and
so on (pairs involving v1 and an even-indexed vertex).

There are four different cases. The first case is when v1 has no adjacency. In this case, the
number of intermediates is the number of intermediates for the path that goes from v2 to vk+1.
Therefore, there are Ip(k − 1) intermediates.

Then, we consider the adjacency with the smallest span {v1, v2}. There is no vertex “under”
the adjacency that needs to be considered, that is, no vertex between v1 and v2, so the number of
intermediates is Ip(k − 2).

Another case is when considering the adjacency with the largest possible span, {v1, v2dk/2e}. The
vertices v2, . . . , v2dk/2e−1 are “under” the adjacency, and, according to Theorem 2, the number of
intermediates for them is equivalent to the number of intermediates of a cycle that covers 2dk/2e−2
vertices, Ic(2dk/2e−2). There is at most one vertex after v2dk/2e, so no adjacency can exist “outside”
{v1, v2dk/2e} and contribute to the number of intermediates. Thus, the total number of intermediates
for this case is Ic(2dk/2e − 2).

Finally, for each possible adjacency {v1, v2i}, with 1 < i < dk/2e, the number of intermediates
containing this adjacency is the number of intermediates for v2, . . . , v2i−1 times the number of
intermediates for v2i+1, . . . , vk+1. According to Theorem 2, the first factor is equivalent to the
number of intermediates of a cycle that covers v2, . . . , v2i−1. The second factor equals the number
of intermediates of the remaining path v2i+1, . . . , vk+1. Therefore, for every adjacency {v1, v2i},
1 < i < dk/2e, there are Ic(2i− 2)Ip(k − 2i) intermediates.

The base cases are paths with lengths 0, 1, or 2. A 0-path (a single vertex) means both genomes
are equal, so there is only one intermediate. A path with one edge has two intermediates, with and
without that adjacency. A path with two edges can have either of the adjacencies, or none of them,
adding up to three intermediates.

14 Zanetti and Meidanis

From this construction, we arrive at the following recurrence Ip(k) for the number of interme-
diates of a path with length k:

Ip(0) = 1

Ip(1) = 2

Ip(2) = 3

Ip(k) = Ip(k − 1) + Ip(k − 2) + Ic(2dk/2e − 2) +

dk/2e−1∑
i=2

Ic(2i− 2)Ip(k − 2i)

With the help of the OEIS, we were able to relate Ip to the sequence A001405 [13] in a way
that suggests the closed formula for Ip(k) with k ≥ 0:

Ip(k) =

(
k + 1

b(k + 1)/2c

)
.

We will now show that this formula satisfies the recurrence for Ip.

Lemma 7. For m ≥ 1,

m−1∑
i=1

2(m− 2i− 1)

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
= −2

(
2m− 2

m

)
.

Proof. First we want to write the terms of the sum as a difference that will allow us to cancel inner
terms.

(
2i + 2

i + 1

)(
2m− 2i− 2

m− i− 1

)
−
(

2i

i

)(
2m− 2i

m− i

)
=

=
2i + 2

i + 1

(
2i + 1

i

)
m− i

2m− 2i− 1

(
2m− 2i− 1

m− i

)
−
(

2i

i

)(
2m− 2i

m− i

)
= 2

2i + 1

i + 1

(
2i

i

)
m− i

2m− 2i− 1

m− i

2m− 2i

(
2m− 2i

m− i

)
−
(

2i

i

)(
2m− 2i

m− i

)
=

(2i + 1)(m− i)− (i + 1)(2m− 2i− 1)

(i + 1)(2m− 2i− 1)

(
2i

i

)(
2m− 2i

m− i

)
=

2mi− 2i2 + m− i− 2mi + 2i2 + i− 2m + 2i + 1

(i + 1)(2m− 2i− 1)

(
2i

i

)(
2m− 2i

m− i

)
= − m− 2i− 1

(i + 1)(2m− 2i− 1)

(
2i

i

)(
2m− 2i

m− i

)
= − m− 2i− 1

i(2m− 2i− 1)

(
2i

i− 1

)(
2m− 2i

m− i

)
= − m− 2i− 1

i(2m− 2i− 1)

(
2i

i− 1

)
2

(
2m− 2i− 1

m− i− 1

)
= − 2(m− 2i− 1)

i(2m− 2i− 1)

(
2i

i− 1

)
2m− 2i− 1

m− i

(
2m− 2i− 2

m− i− 1

)
= −2(2m− 2i− 1)

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)

Counting solutions for the rank distance 15

We will now substitute the expression inside the sum.

m−1∑
i=1

2(m− 2i− 1)

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
=

= −
m−1∑
i=1

[(
2i + 2

i + 1

)(
2m− 2i− 2

m− i− 1

)
−
(

2i

i

)(
2m− 2i

m− i

)]
= −

(
2m

m

)(
0

0

)
+

(
2

1

)(
2m− 2

m− 1

)
= 2

(
2m− 2

m− 1

)
− 2

(
2m− 1

m− 1

)
= 2

(
2m− 2

m− 1

)
− 2(2m− 1)

m

(
2m− 2

m− 1

)
= 2

(
2m− 2

m− 1

)[
1− 2m− 1

m

]
= 2

(
2m− 2

m− 1

)
m− 2m + 1

m

= −2
m− 1

m

(
2m− 2

m− 1

)
= −2

(
2m− 2

m

)

Lemma 8. For m ≥ 2,

m−1∑
i=1

1

i

(
2i

i− 1

)(
2m− 2i

m− i

)
= 2

(
2m− 1

m− 2

)
.

Proof. Let

f(m) =
m−1∑
i=1

1

i

(
2i

i− 1

)(
2m− 2i

m− i

)
,

for m ≥ 2. We will use induction on m to show that f(m) = 2
(
2m−1
m−2

)
.

For m = 2, we have

f(2) =
1∑

i=1

1

i

(
2i

i− 1

)(
4− 2i

2− i

)
=

(
2

0

)(
2

1

)
= 2 = 2

(
3

0

)
.

Assume that f(m′) = 2
(
2m′−1
m′−2

)
for 2 ≤ m′ < m.

16 Zanetti and Meidanis

f(m) =

m−1∑
i=1

1

i

(
2i

i− 1

)(
2m− 2i

m− i

)

=
m−1∑
i=1

1

i

(
2i

i− 1

)
2(2m− 2i− 1)

m− i

(
2m− 2i− 2

m− i− 1

)

=
m−1∑
i=1

2(2m− 2i− 1)

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)

We can now separate this summation in two terms, as follows:

f(m) =
m−1∑
i=1

2m

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)

+
m−1∑
i=1

2(m− 2i− 1)

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)

Lemma 7 gives us the sum of the second term. Then:

f(m) =

m−1∑
i=1

2m

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
− 2

(
2m− 2

m

)

Let

g(m) =
m−1∑
i=1

2

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
.

f(m) = mg(m)− 2

(
2m− 2

m

)
(1)

But f(m) can also be separated in another way:

f(m) =

m−1∑
i=1

2

i

(
2− 1

m− i

)(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)

= 4

m−1∑
i=1

1

i

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
−

m−1∑
i=1

2

i(m− i)

(
2i

i− 1

)(
2m− 2i− 2

m− i− 1

)
=

4

m− 1

(
2m− 2

m− 2

)
+ 4f(m− 1)− g(m) (2)

Equating the formulas for f(m) given by Equations (1) and (2) and using the induction hy-
pothesis, we can now get to a value for g(m):

Counting solutions for the rank distance 17

mg(m)− 2

(
2m− 2

m

)
=

4

m− 1

(
2m− 2

m− 2

)
+ 4f(m− 1)− g(m)

(m + 1)g(m) =
4

m− 1

(
2m− 2

m− 2

)
+

8

m− 1

(
2m− 3

m− 3

)
+ 2

(
2m− 2

m

)
(m + 1)g(m) =

4

m− 1

(
2m− 2

m− 2

)
+

8(m− 2)

2m− 2

(
2m− 2

m− 2

)
+ 2

(
2m− 2

m− 2

)
(m + 1)g(m) =

(
4

m− 1
+

4(m− 2)

m− 1
+ 2

)(
2m− 2

m− 2

)
(m + 1)g(m) =

4 + 4m− 8 + 2m− 2

m− 1

(
2m− 2

m− 2

)
(m + 1)g(m) =

6m− 6

m− 1

(
2m− 2

m− 2

)
g(m) =

6

m + 1

(
2m− 2

m− 2

)
Now we can finally get a value for f(m):

f(m) = mg(m)− 2

(
2m− 2

m

)
f(m) =

6m

m + 1

(
2m− 2

m− 2

)
− 2

(
2m− 2

m

)
f(m) =

6m− 2m− 2

m + 1

(
2m− 2

m− 2

)
f(m) =

4m− 2

m + 1

(
2m− 2

m− 2

)
f(m) =

2(2m− 1)

m + 1

(2m− 2)!

(m− 2)!m!

f(m) = 2
(2m− 1)!

(m− 2)!(m + 1)!

f(m) = 2

(
2m− 1

m− 2

)

Theorem 3. For k ≥ 0,

Ip(k) =

(
k + 1

b(k + 1)/2c

)
.

Proof. We want to show it by induction on k. For k = 0, 1, 2 we have that

Ip(0) = 1 =

(
1

0

)
Ip(1) = 2 =

(
2

1

)
Ip(2) = 3 =

(
3

1

)
.

18 Zanetti and Meidanis

Now, assume that for k′ < k, the equation holds.

For the even case, k = 2m, and m ≥ 2:

Ip(2m) = Ip(2m− 1) + Ip(2m− 2) + Ic(2m− 2) +
m−1∑
i=2

Ic(2i− 2)Ip(2m− 2i)

= Ip(2m− 1) + Ip(2m− 2) + Ic(2m− 2) +
m−2∑
i=1

Ic(2i)Ip(2m− 2i− 2)

Applying the induction hypothesis, and substituting the values of Ic, we get

Ip(2m) =

(
2m

m

)
+

(
2m− 1

m− 1

)
+

1

m

(
2m− 2

m− 1

)
+

m−2∑
i=1

1

i + 1

(
2i

i

)(
2m− 2i− 1

m− i− 1

)

=

(
2m

m

)
+

(
2m− 1

m− 1

)
+

m−1∑
i=1

1

i + 1

(
2i

i

)(
2m− 2i− 1

m− i− 1

)

=

(
2m

m

)
+

(
2m− 1

m− 1

)
+

1

2

m−1∑
i=1

1

i + 1

(
2i

i

)(
2m− 2i

m− i

)
.

Applying Lemma 8, we get

Ip(2m) =

(
2m

m

)
+

(
2m− 1

m− 1

)
+

(
2m− 1

m− 2

)

Finally, applying Pascal’s rule

Ip(2m) =

(
2m

m

)
+

(
2m

m− 1

)
Ip(2m) =

(
2m + 1

m

)

The odd case, k = 2m + 1, with m ≥ 1:

Counting solutions for the rank distance 19

Ip(2m + 1) = Ip(2m) + Ip(2m− 1) + Ic(2m) +

m∑
i=2

Ic(2i− 2)Ip(2m− 2i + 1)

= Ip(2m) + Ip(2m− 1) + Ic(2m) +

m−1∑
i=1

Ic(2i)Ip(2m− 2i− 1)

=

(
2m + 1

m

)
+

(
2m

m

)
+

1

m + 1

(
2m

m

)
+

m−1∑
i=1

1

i + 1

(
2i

i

)(
2m− 2i

m− i

)
=

(
2m + 1

m

)
+

(
2m

m

)
+

1

m + 1

(
2m

m

)
+ 2

(
2m− 1

m− 2

)
=

(
2m + 1

m

)
+

(
2m

m

)
+

2m

m(m− 1)

(
2m− 1

m− 2

)
+ 2

(
2m− 1

m− 2

)
=

(
2m + 1

m

)
+

(
2m

m

)
+

(
2m− 1

m− 2

)[
2m

m(m− 1)
+ 2

]
=

(
2m + 1

m

)
+

(
2m

m

)
+

(
2m− 1

m− 2

)
2m

m− 1

=

(
2m + 1

m

)
+

(
2m

m

)
+

(
2m

m− 1

)
=

(
2m + 1

m

)
+

(
2m + 1

m

)
= 2

(
2m + 1

m

)
=

2m + 2

m + 1

(
2m + 1

m

)
=

(
2m + 2

m + 1

)

The number Ip(k) is equivalent to the number of b(k + 1)/2c-element subsets of a set with
(k + 1) elements. According to Sperner’s Theorem [17, 10], this is the maximal number of subsets
of a set with k + 1 elements where no set contains another. Such family of sets is called a Sperner
family. Building on this idea, we suggest a bijection between the intermediates of a k-path, and
the Sperner family of all b(k + 1)/2c-element subsets of a k + 1-set.

20 Zanetti and Meidanis

Algorithm 1: Algorithm to transform a set with b(k + 1)/2c elements into an intermediate
of a k-length path.

Data: Set S.
Result: The set E of adjacencies of the corresponding intermediate.
T ← empty stack
E ← {}
for i from 0 to (n− 1) do

if i ∈ S then
T .push(i)

else
if T is not empty then

x← T .pop()
E ← E ∪ {{x, i}}

return E

Algorithm 2: Algorithm to encode an intermediate of a k-length path into a set with
b(k + 1)/2c elements.

Data: The sets E of adjacencies and T of telomeres of an intermediate.
Result: The corresponding set.
S ← {}
for {x, y} ∈ E do

S ← S ∪ {min(x, y)}
T ′ ← b|T |/2c largest telomeres of T
return S ∪ T ′

6 Experiments

We implemented the formulas given here and tested our methods counting the number of scenarios
and intermediates between pairs of a number of genomes found in the literature.

6.1 Data sets

We used four data sets from different sources. The first and simplest data set is from the work of
Palmer and Hebron on plants of the Brassica genus [15]. It consists of two pairs of circular mito-
chondrial DNA, comparing Brassica campestris against B. oleracea and B. napus. Both instances
have 5 synteny blocks. Other comparison in this work have insertions or deletions and were not
considered.

Another data set is the human and mouse X chromosome, from Pevzner and Tesler [16]. This
pair of linear, single-chromosome, inputs has 11 synteny blocks.

The third data set is composed of 12 chloroplast genomes from the Campanulaceae family, plus
tobacco, with 105 synteny blocks, taken from the work of Cosner, Raubeson and Jansen [4], and
also used by Bourque and Pevzner [2]. These were processed pairwise, making it a total of 78
instances of the sorting problem.

The fourth and largest data set contains genomes used by Kim et al. to test their reconstruction
algorithm DESCHRAMBLER [9]. It consists of 20 instances comparing the human genome against
the genome from other animals, namely, 18 eutherean mammals, plus opossum and chicken as
outgroups. These pairs have between 101 and 621 synteny blocks.

Counting solutions for the rank distance 21

Table 1: Distances, number of scenarios, and number of intermediates between the human genome
and the genomes of four primates.

Genome Distance Scenarios Intermediates

Chimpanzee 27 6.54× 1011 2.46× 104

Orangutan 53 6.03× 1038 1.29× 1010

Rhesus 150 1.21× 10138 1.45× 1028

Marmoset 204 3.99× 10250 3.13× 1043

6.2 Code

The code to run our experiments was implemented in Python, and executed in a virtual machine
using a single 2.3GHz processor core and 2GB of memory. Building the breakpoint graph of our
tests instances, with up to 1242 extremities, is not a computational intensive task, and neither is
computing the number of intermediates, a product of binomial coefficients.

The most demanding task is to compute the number of scenarios, especially when the breakpoint
graph has a large number of paths. This is a consequence of the fact that each path multiplies the
number of products to be computed. As a consequence, special attention must be dedicated to the
generation of the lengths of the scenarios for each path. Considering more lengths than necessary
can be very costly, and storing all values to multiply them later demands too much memory.

6.3 Results

The two Brassica instances have the same rank distance of 6 (in theses cases, three double swaps),
and the same results: 9 scenarios and 10 intermediate genomes.

For the pair of X chromosomes, with a rank distance of 14, we get 237440 scenarios and 560
intermediates.

With the Campanulaceae pairs, we get varying results. Some pairs, like Trachelium and Cam-
panula are only one swap apart, and therefore have only one optimal scenario and two intermediates
(the input genomes). The pair of genomes that are farthest apart is Merciera and Platycodon, with
a distance of 48. They have 1.4 × 1032 optimal scenarios between them, and a total of 4.9 × 1012

intermediate genomes.

With the eutherean data set, we reached a limit for our code to count the number of optimal
scenarios. Out of the 20 instances, we only reached a result for 4 of them, in Table 1. On the other
hand, computing the number of intermediates proved easy even for the farthest pairs of genomes.
In Table 2 we list the number of intermediates for all the remaining instances.

6.4 Discussion

Comparing the larger instances of the Campanulaceae data set with the ones from the human,
cat and mouse genomes, we note that linear and multichromosomal genomes tend to have more
scenarios than circular unichromosomal ones. That is due to the fact that multiple paths in the
breakpoint graph quickly add more factors to the scenario formula. The number of intermediates,
on the other hand, seems to be less variable between instances with the same distance.

22 Zanetti and Meidanis

Table 2: Distances, and number of intermediates between the human genome and the genomes of
16 animals.

Genome Distance Intermediates

Cattle 383 7.39× 1083

Marmoset 204 3.13× 1043

Dog 304 6.37× 1070

Goat 393 5.30× 1085

Guinea pig 640 5.85× 10166

White rhinoceros 328 1.36× 1084

Tenrec 407 1.71× 10105

Horse 225 1.31× 1051

Chicken 736 6.38× 10193

Elephant 336 8.56× 1086

Mouse 509 2.44× 10131

Opossum 778 4.01× 10204

Pika 385 2.89× 1098

Chimpanzee 27 2.46× 104

Orangutan 53 1.29× 1010

Rhesus 150 1.45× 1028

Rat 788 2.30× 10189

Shrew 487 1.02× 10128

Pig 318 1.61× 1073

Manatee 519 3.12× 10142

7 Conclusion

We opened the doors for the exploration of the solution space of the rank distance problem. We
demonstrated that there is no recombination between components of the breakpoint graph in any
optimal rank sorting scenario. We then showed a formula to compute the exact number of optimal
sorting scenarios for co-tailed genomes, and a recurrence for the general case.

We also presented a formula for the number of intermediate genomes between any two genomes.
Furthermore, we suggested a bijection that works as a very simple way to uniformly sample inter-
mediates. Being able to sample intermediate genomes is the next step in this study of the solution
space and can be very useful in future applications.

References

[1] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements. Algorithms
in Bioinformatics, pages 163–173, 2006.

[2] G. Bourque and P. A. Pevzner. Genome-scale evolution: reconstructing gene orders in the
ancestral species. Genome research, 12(1):26–36, 2002.

[3] M. D. Braga and J. Stoye. The solution space of sorting by DCJ. Journal of Computational
Biology, 17(9):1145–1165, 2010.

Counting solutions for the rank distance 23

[4] M. E. Cosner, L. A. Raubeson, and R. K. Jansen. Chloroplast DNA rearrangements in Cam-
panulaceae: phylogenetic utility of highly rearranged genomes. BMC evolutionary biology,
4(1):1–17, 2004.

[5] P. Feijão. Reconstruction of ancestral gene orders using intermediate genomes. BMC Bioin-
formatics, 16(14):S3, Oct 2015.

[6] P. Feijão and J. Meidanis. Extending the algebraic formalism for genome rearrangements to
include linear chromosomes. IEEE/ACM transactions on computational biology and bioinfor-
matics, 10(4):819–831, 2013.

[7] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm for
genomic distance problem). In Foundations of Computer Science, 1995. Proceedings., 36th
Annual Symposium on, pages 581–592. IEEE, 1995.

[8] A. Jamshidpey, A. Jamshidpey, and D. Sankoff. Sets of medians in the non-geodesic pseudo-
metric space of unsigned genomes with breakpoints. BMC Genomics, 15(6):S3, 2014.

[9] J. Kim, M. Farré, L. Auvil, B. Capitanu, D. M. Larkin, J. Ma, and H. A. Lewin. Reconstruction
and evolutionary history of eutherian chromosomes. Proceedings of the National Academy of
Sciences, 114(27):E5379–E5388, 2017.

[10] D. Lubell. A short proof of Sperner’s lemma. Journal of Combinatorial Theory, 1(2):299, 1966.

[11] J. Meidanis, P. Biller, and J. P. P. Zanetti. A Matrix-Based Theory for Genome Rearrange-
ments. Technical Report IC-17-11, Institute of Computing, University of Campinas, August
2017. In English, 45 pages.

[12] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to the theory of numbers.
John Wiley & Sons, 2008.

[13] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/

A001405.

[14] A. Ouangraoua and A. Bergeron. Combinatorial structure of genome rearrangements scenarios.
Journal of Computational Biology, 17(9):1129–1144, 2010.

[15] J. D. Palmer and L. A. Herbon. Plant mitochondrial DNA evolved rapidly in structure, but
slowly in sequence. Journal of Molecular evolution, 28(1):87–97, 1988.

[16] P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: lessons from
human and mouse genomes. Genome research, 13(1):37–45, 2003.

[17] E. Sperner. Ein satz über untermengen einer endlichen menge. Mathematische Zeitschrift,
27(1):544–548, Dec 1928.

[18] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal median and halving problems under
different genomic distances. BMC bioinformatics, 10(1):120, 2009.

[19] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

[20] J. P. P. Zanetti, P. Biller, and J. Meidanis. Median approximations for genomes modeled as
matrices. Bulletin of Mathematical Biology, 78(4):786–814, Apr 2016.

