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With massive amounts
of computational power,
machines can Now
recognize objects and
translate speech In real
time. Artificial
intelligence 1s finally
oetting smart.

www.technologyreview.com/
featuredstory/5 | 3696/deep-learning/
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Why Is
t so
hard?
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CIFAR-10 dataset:
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Object Recognition
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Object Recognition
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Traffic Sign Recognition
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www.idsia.ch/~juergen/ijcnn20 | |.pdf

Rank [Team Method Correct recognition rate
1{IDSIA Committee of CNNs  199.46 %
2 |INI Human Performance [98.84 % P
3 [sermanet [Multi-Scale CNNs 98.31 %
4|CAOR Random Forests 96.14 %

benchmark.ini.rub.de
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Merck Competition
Deep NN and GPUs come out to play

blog kaggle.com/2012/10/3 | /merck-competition-results-deep-nn-and-gpus-come-out-to-play/
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DON'T TAKE IT THEWRONG WAY

"‘Biology I1s hiding secrets well. We just don't
have the right tools to grasp the
complexity of what's going on."

Bruno Olshausen

“We clearly don't have the right algorithms yet. It's going to
take decades. This I1s not going to be an easy one, but | think

HAEFES AopE
Andrew Ng

www.wired.com/wiredenterprise/20 | 3/05/neuro-artificial-intelligence/all/



ILSVRC2012 WINNER

Object Recognition
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Team name |Error (5 guesses) |Description
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ILSVRC2012 WINNER

“Our model is a large, deep convolution

al neural network

trained on raw RGB pixel values. The neural network, which has
60 million parameters and 650,000 neurons, consists of five

convolutional layers, some of which are followed by max-pooling

layers, and three globally-connected layers with a final [000-way

softmax. It was trained on two NVIDIA GP

Us for about a week.

To make training faster, we used non-saturating neurons and a
very efficient GPU implementation of convolutional nets. To

reduce overfitting in the globally-connectec

layers we employed

hidden-unrit "dropout’, a recently-develo
method that proved to be very

bed regularization
effective.”’

www.image-net.org/challenges/LSVRC/20 | 2/results.ntml
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60 million parameters
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efficient GPU implementation
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convolutional neural networks
max-pooling layers

60 million parameters
non-saturating neurons
efficient GPU implementation
" "

dropout
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IN 2006

Hinton et al. showed that
a particular form of autoencoder can be trained and
stacked In a greedily manner, so that a bound on the
probability of representing well the training data Is
Increased at each layer.
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a.k.a. unsupervised feature learning

idea

learn one
nonlinear
layer of representation
2L @ Wine
on top of the previous one

learn one layer = learn neuron weights to extract one layer



UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

before that (2006)

deep supervised
feedforward neural networks
tended to yield worse results then
shallow ones




UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis



UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input



UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input

helps fine-tuning to reach a better local minimum



UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input
helps fine-tuning to reach a better local minimum

better generalization
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In many problems, high-level abstractions
are Impossible to model with human
ingenurty
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UNSUPERVISED PRE-TRAINING

21k 2L VRS

N Many prob
are Imposs

pervised feature learning

motivation

ems, high-level abstractions

ible to model with human
ingenurty

necessity to capture the explanatory factors
SrUCiuEE) O e eiE
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supervised representation learning
In early layers tend to
discard information important

for higher concepts
Bengio et al, 2007/
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WHY UNSUPERVISED!?

supervised representation learning
In early layers tend to
discard information important

for higher concepts
Bengio et al, 2007/

it 1Is more biologically plausible:

brain needs to learn 10'* synapses in 10? seconds

i
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N Mmany cases, depth 2 Is enough to represent
any function with a given target accuracy
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THE IMPORTANCE OF DEPTH

N Mmany cases, depth 2 Is enough to represent

any function with a given target accuracy

, linear
<L combination

SVMs

training
samples

O¢
<
N

8N

€ mink,)

k-NNs

but the required number of nodes In the graph
may grow very large

ok
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functions representable compactly
with k layers may require exponential

size with k-1 layers

(S Hastad et al 86, Hastad et al 91, Bengio et al 2007/
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slide adapted from www.iro.umontreal.ca/~bengioy/talks/waterloo_may6.pdf | credit to Yoshua Bengio



INTUITION ON DEPTH

P

D 1 subsubsub?
SUDSUDSU / /SubsubsubB
subsub1 subsub? subsub3
sub sub?2 sub3

N

main = “deep” computer programs
slide credit to Yoshua Bengio 24



INTUITION ON DEPTH

subroutine1 includes sybroutine? includes

subsub1 code and subsub? code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“shallow” computer programs
slide credit to Yoshua Bengio )5



THE IMPORTANCE OF DEPTH

brain has a deep architecture

{}ﬁ ~10M Latency
(IT representation)
AIT

A B
STP, ~100 ms
~16 M
| [ .
7a STP, CIT ~90 ms
~17 M
T
uP | [mst| [FsT PIT ~80 ms
~36 M
é ~15 M (V4 representation)
}m’ PO | | T V4 ~70ms
~68 M

~29 M (V2 representation)

~60 ms
~150 M
Retina LGN ~37 M (V1 representation)
~50ms
~190 M
LGN ﬁ ~1M (LGN representation) ~40 ms

Retina ﬁ ~1 M (RCG representation)

DiCarlo et al, 2012 26
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Manifold

Image space

Cerdaine BlEafer A0

e



THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

Individual 2
(‘Joe’)

Ineffective
separating
- hyperplane
Actual pixel space Individual 1
(‘Sam’)

4

Cox and DiCarlo, 2007 e



THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

Individual 2
(‘Joe’)

1

Ineffective
seperating
hyperplane

Individual 1
('Sam’)

‘Bad’ neural space

Cerdaine BlEafer A0

e



THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

Individual 2
(*Joe’)

. Separating
‘Good’ neural space m

hyperplane
Individual 1

(‘Sam’)

Cerdaine DiGadler 487

50
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AFTER ALL

WHAT'S DEEP LEARNING?

“When there Is more than o
layer being learned, this Is dee

ne hidden

oL@

Geoffrey Hinton, Coursera class

HOW DEEP!?

i

ng.

“When the number of levels can be data
selected, this Is a deep architecture.”

Yoshua Bengio, ssTic 2013

£
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AUTOENCODER NEURAL NETS

s an unsupervised learning algorithm
that applies backpropagation, setting the
target values to be equal to the Inputs.

fo(z) =~ (x)

£



AUTOENCODER NEURAL NETS

Layer L, Layer L;

deeplearning.stanford.edu/wiki/images/f/f9/Autoencoder636.png

Sa)



AUTOENCODER NEURAL NETS

tries to learn an approximation to the identity function
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AUTOENCODER NEURAL NETS

tries to learn an approximation to the identity function

the network is usually forced to learn a compressed
representation of the input

tries to discover structure Iin the data

5



AUTOENCODER NEURAL NETS

following the notation of previous lectures, we can
back propagate the reconstruction error by setting

5](-3) = —(z; — agg)). % g’ (23))

5(2) — ((9(2))T5(3)). % g'(2(2)

56
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constraints on the network such as sparsity

L7/



AUTOENCODER NEURAL NETS

interesting structures can be discovered by placing
constraints on the network such as sparsity

L7/



AUTOENCODER NEURAL NETS

interesting structures can be discovered by placing
constraints on the network such as sparsity

let

be the average activation of the hidden unit |
(averaged over the training set)

L7/



AUTOENCODER NEURAL NETS

we would like to (approximately) enforce

p=0p
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AUTOENCODER NEURAL NETS

we would like to (approximately) enforce

a POSSI
add In t

p=0p

ble choice of of penal

S2
Zplog i
g

ne optimization objec

ly 1O
Ve 1S

log ZKL pllf5)

38



AUTOENCODER NEURAL NETS

KL divergence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Average activation of hidden unit

deeplearning.stanford.edu/wiki/images/4/48/KLPenaltyExample.png

Gy



AUTOENCODER NEURAL NETS

the objective function then becomes

Jsparse(e) = J(H) IR 6 Z KL(IOHﬁJ)
j=1

40



AUTOENCODER NEURAL NETS

the objective function then becomes

opnee(8) = J(0) + 83 KL(pl|3)

and

40



AUTOENCODER NEURAL NETS

visualizing the function learned from image patches
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AUTOENCODER NEURAL NETS

visualizing the function learned from image patches

A NP Ad =N
AN Al ANE TR
'aF S #NN T
LARN A I L=
=L VAN AY 1" b
AN YR
N YWiRIFLTL
Lo -1 | TS
LI RA™N T0F
ALIT ARE IIF-

deeplearning.stanford.edu/wiki/index.php/Autoe and_Spars
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STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

Input Features | Output

deeplearning.stanford.edu/wiki/images/O/Oe/Stacked_SparseAE_Features|.png

2



STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

Input Features Il Output

(Features |)
deeplearning.stanford.edu/wiki/images/b/bf/Stacked_SparseAE_Features2.png

&



STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

pr——]p- Py =S
——> P(y=1|x)

f——>P(y=2| x)

HE®E

Input Softmax
(Features Il) classifier

deeplearning.stanford.edu/wiki/images/6/6b/Stacked_Softmax_Classifier.png

44



STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

\\Y
\E“Qﬁ“\\@ > Py 500
XA @ 7
(NN
VAl @ R
(%) 'l/l;;;f;{f” 0
eﬁ"&@//,’@ 3 P(y =2 | x)

) &
O

Input Features | Features Il Softmax

classifier 45
deeplearning.stanford.edu/wiki/images/5/5c/Stacked_Combined.png
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deep architectures performed poorly
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UNSUPERVISED PRE-TRANING

BEFORE

deep architectures performed poorly

AFTER

state-of-the-art results

BUT...

46
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CONVOLUTIONAL
NEURAL NETWORKS

43



FULLY-CONNECTED NNS

Layer L,

ufldl.stanford.edu/wiki/images/9/99/Network33 | .png

G



CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells
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CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells

simple

responds maximally to specific local stimulus

complex

local invariance to the exact position of stimulus

o



CONVOLUTIONAL NNS

shared (tied) weights

receptive
field

(2) (2) (2)
1(p)

a a a

Lz=El) . %)

convolution

input layer

Il



CONVOLUTIONAL NNS

shared (tied) weights

layer m-| hidden layer m

deeplearning.net/tutorial/_images/cnn_explained.png

Dl



CONVOLUTIONAL NNS

shared (tied) weights

0
50, J(0) = Z [a%ﬁ?“)}

peP

P is the set of all positions where 6; is convolved

DY



CONVOLUTIONAL NNS

shared (tied) weights

1x1 1x0 1x1 0 0
O L 3110} |4
0,001,111
O(0(1(1]|0
O(1(1(0]|0
image Convolved
Feature

ufldl.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif

Sar
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CONVOLUTIONAL NNS

max (or average) pooling units .

gla;) = max(a; p)) Vp € N

where N defines the pooling regions
that may or may not overlapped

56
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max (or average) pooling units .

gla;) = max(a; p)) Vp € N

where N defines the

receptive

pooling regions

that may or may not overlapped

fleld

I



CONVOLUTIONAL NNS

max (or average) pooling units

Convolved Pooled
feature feature

ufldl.stanford.edu/wiki/images/0/08/Pooling_schematic.gif

S/



CONVOLUTIONAL NETS

convolution + pooling

Inpuc layer (S1) 4 feature maps

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

........

convolution layer l sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP |

http://deeplearning.net/tutorial/_images/mylenet.png 58
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CONVOLUTIONAL NNS

non-saturating nonlinearity

rectified linear units

g(z(l)) = max/(0, z(l))

60



CONVOLUTIONAL NNS

non-saturating nonlinearity
rectified linear units
g(z(l)) = max/(0, z(l))

iNnstead of

1
1+ e—2Y

e

60
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THE 60 MILLION PARAMETER
ARCHITECTURE

224

48
55
.
____________ 2L
Stride
-of 4
3 48

S - dl
S S 3l \ [
S 192 128 2048 2048 \dense
27 128 RS
13 13 _ 13
S ] q\
__________ 3’/ 3 i ey g L\ -
- ep e o : dense’| |dense &
27 ENE 3 e
3 i 1000
192 192 128 Max
- 204
Max 128 Max pooling 2948 2048
pooling pooling

www.cs.toronto.edu/~hinton/absps/imagenet.pdf
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CONVOLUTIONAL NNS

dropout regularization recipe

64



CONVOLUTIONAL NNS

dropout regularization recipe

S 10 Z=lre) aE EllBIli @ EEi
hidden neuron with probability 0.5
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CONVOLUTIONAL NNS

dropout regularization recipe
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hidden neuron with

neurons “dropped out’ contribute

‘put of each

brobability 0.5

nerther in the forward pass nor In back-propagation
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CONVOLUTIONAL NNS

dropout regularization recipe

S 10 Z=lre) aE EllBIli @ EEi
hidden neuron with probability 0.5

neurons “dropped out’ contribute

nerther in the forward pass no

at test time, use all t

but multiply their ous

"IN back-propagation

Al Al YInQInE

puts by 0.5

64



CONVOLUTIONAL NNS

dropout regularization implications
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every time an Input Is presented,
the neural network samples a different architecture
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CONVOLUTIONAL NNS

dropout regularization implications

every time an Input Is presented,
the neural network samples a different architecture

all the sampled architectures share weights

reduces complex co-adaptations of neurons

65
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NO-PRETRAINING AT ALL?

"It you initialize the layers correctly, you may
not need pre-training at all, provided you have

enough labeled data”
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NO-PRETRAINING AT ALL?

"It you initialize the layers correctly, you may
not need pre-training at all, provided you have

enough labeled data”

“however, you can always increase the size
of your neural net so that even a huge
amount of data is still not enough”

Geoffrey Hinton, Coursera class

6/



ON THE ARCHITECTURE

Y

3 dense

A> 192 192 128 2048 204
128
N 13 \ 13
6 30 AN
224 e ——’:‘3‘:’:}_ 3//, 3~~ 36 3

o L 3 I3 13 dense | [dense

........ ‘:;;_1_::,55 DL 2 1000
N\ 192 192 128 Max
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Bergstra et al, 201 3

ON THE ARCHITECTURE
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ON THE ARCHITECTURE
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QUICK LAB

using an alternative notation
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CONVOLUTION+ACTIVATION

the filtering operation of an input n with a bank of £ filters is
f,=n® ®;, Vic {1,2,...,]{5},

where ® is a 3D convolution sliding over the first two dimensions, and
$, € RIhxJwxid ig one such filter of our filter bank

and the rectified linear activation is

a; = max(0, f;)

2k



POOLING

the pooling operation with strength p and spatial downsampling of « is

p; = downsample_ ( </(az-)p SR )

where ® is a 2D convolution sliding over both dimensions and ph X pw is the
pooling neighborhood

e



DIVISIVE NORMALIZATION
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DIVISIVE NORMALIZATION

"In biology, initial interests in DN focused on its ability to model
dynamic gain control in retina [24]
and the “masking” behavior in perception [11, 33/, and to fit
neural recordings from the mammalian visual cortex [12, 19]."

Lyu, 2010
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DIVISIVE NORMALIZATION

finally, the divisive normalization of an input x € R*>xzwxzd jq

X

o ;
\/X2 & ]-nthand

1n

where 1,5 «nwxzd 1S @ matrix of ones representing the normalization
neighborhood

e



let's get our hands dirty!
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approach
from my

P

D). thesis

person-specific linear SVM

filter learning

sublayers in L3
O,

Pool '
person-specific

1 L3 linear SVM

Activate

|

t

Filter

X O
X o,

@...(Dk

200

Yk



accuracy(%)

O
N

O
(@)

(00)
(00)

(00)
(@)

o0
SN

FACE IDENTIFICATION

person-specific (PS) filters

filter type |

— random ]

. . —  K-means-like ]

100 256 512 1024 2048

number of filters in the third layer

/8



questions?
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