A FEWTHINGS ABOUT

DEEP LEARNING

Giovani Chiachia giovani.chiachia@gmail.com Instituto de Computação Unicamp

November 2013

WIRED

"The Man Behind the Google Brain: Andrew Ng and the Quest for the New Al'"
www.wired.com/wiredenterprise/
20|3/05/neuro-artificial-intelligence/all/

WIRED

"The Man Behind the Google Brain: Andrew Vg and the Quest for the New Al'"

© fo Attu lock Times

How Many Computers

to Identify a Cat?
16,000
www.nytimes.com/20|2/06/26/
technology/in-a-big-network-of-
computers-evidence-of-machine-
learning.html

WIRED

"The Man Behind the Google Brain: Andrew Ng and the Quest for the New Al"
www.wired.com/wiredenterprise/
2013/05/neuro-artificial-intelligence/all/

The Anu lock Times

How Many Computers
to Identify a Cat?
16,000
www.nytimes.com/20I2/06/26/
technology/in-a-big-network-of-computers-evidence-of-machinelearning.html

MIT Technology Review

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.
www.technologyreview.com/ featuredstory/5 I 3696/deep-learning/

BREAKTHROUGH RESULTS

BREAKTHROUGH RESULTS

Images from
CIFAR-I 0 dataset:
WWW.Cs.toronto.e du/~kriz/cifar.html

BREAKTHROUGH RESULTS

Object Recognition

Why is
it so
hard?

Images from
CIFAR-I 0 dataset:
www.cs.toronto.e du/~kriz/cifar.html

Object Recognition
IM․․GENET ILSVRC20I2

Team name	Error (5 guesses)	Description
SuperVision	0.15315	Using extra training data from ImageNet Fall 2011 release
SuperVision	0.16422	Using only supplied training data
		Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
ISI	0.26172	

Object Recognition
IM‥GENET ILSVRC20I2

Team name	Error (5 guesses)	Description
SuperVision	0.15315	Using extra training data from ImageNet Fall 2011 release
SuperVision	0.16422	Using only supplied training data
		Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
ISI	0.26172	

BREAKTHROUGH RESULTS

Object Recognition

BREAKTHROUGH RESULTS

Traffic Sign Recognition

www.idsia.ch/~juergen/ijcnn20 I I.pdf

BREAKTHROUGH RESULTS

Traffic Sign Recognition

www.idsia.ch/~juergen/ijcnn20 I I.pdf

Rank	Team	Method	Correct recognition rate
1	IDSIA	Committee of CNNs	99.46%
2	INI	Human Performance	98.84%
3	sermanet	Multi-Scale CNNs	98.31%
4	CAOR	Random Forests	96.14%

BREAKTHROUGH RESULTS

Merck Competition
Deep NN and GPUs come out to play
blog.kaggle.com/20|2/I0/3I/merck-competition-results-deep-nn-and-gpus-come-out-to-play/

BREAKTHROUGH RESULTS

Merck Competition
Deep NN and GPUs come out to play

blog.kaggle.com/20I2/I0/3I/merck-competition-results-deep-nn-and-gpus-come-out-to-play/

Microsoft Research Speech Recognition Leaps Forward

research.microsoft.com/en-us/news/features/speechrecognition-0829 | I.aspx

BREAKTHROUGH RESULTS

Merck Competition
Deep NN and GPUs come out to play

blog.kaggle.com/20I2/I0/3I/merck-competition-results-deep-nn-and-gpus-come-out-to-play/

Microsoft Research Speech Recognition Leaps Forward

research.microsoft.com/en-us/news/features/speechrecognition-0829 | I.aspx
and more...

LARGE ADOPTION

YAHOO!

facebook

Microsoft
just to mention a few big names
"artificial intelligence is finally getting smart"
WWw.technologyreview.com/featuredstory/5 | 3696/deep-learning/
"artificial intelligence is finally getting smart"'
Www.technologyreview.com/featuredstory/5 | 3696/deep-learning/

DON'T TAKE IT THE WRONG WAY

"artificial intelligence is finally getting smart"'
www.technologyreview.com/featuredstory/5 I 3696/deep-learning/

DON'T TAKE IT THE WRONG WAY

"Biology is hiding secrets well. We just don't have the right tools to grasp the complexity of what's going on."

Bruno Olshausen

DON’T TAKE IT THE WRONG WAY

"Biology is hiding secrets well. We just don't have the right tools to grasp the complexity of what's going on." Bruno Olshausen
"We clearly don't have the right algorithms yet. It's going to take decades. This is not going to be an easy one, but I think there's hope."
Andrew Ng

ILSVRC20I2 WINNER

Object Recognition

IM여GENET

Team name	Error (5 guesses)	Description
SuperVision	0.15315	Using extra training data from ImageNet Fall 2011 release
SuperVision	0.16422	Using only supplied training data
		Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
ISI	0.26172	

ILSVRC20I2 WINNER

"Our model is a large, deep convolutional neural network trained on raw RGB pixel values. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three globally-connected layers with a final 1000-way softmax. It was trained on two NVIDIA GPUs for about a week.
To make training faster, we used non-saturating neurons and a very efficient GPU implementation of convolutional nets. To reduce overfitting in the globally-connected layers we employed hidden-unit "dropout", a recently-developed regularization method that proved to be very effective."

WHAT'S NEW?

convolutional neural networks max-pooling layers 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

WHAT'S NEW?

convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

NEURAL NETWORK RENAISSANCE

IN 2006

Hinton et al. showed that

a particular form of autoencoder can be trained and stacked in a greedily manner, so that a bound on the probability of representing well the training data is increased at each layer.

IN 2006

Hinton et al. showed that

a particular form of autoencoder can be trained and stacked in a greedily manner, so that a bound on the probability of representing well the training data is increased at each layer.
others paper followed soon after

IN 2006

autoencoder

a partic is a neural network stacked probab whose aim is to learn a compressed representation of the input data \quad ng data is (unsupervised)
others paper followed soon after

KEY PRINCIPLES

unsupervised training of one layer at a time

KEY PRINCIPLES

unsupervised training of one layer at a time

KEY PRINCIPLES

unsupervised training of one layer at a time

KEY PRINCIPLES

unsupervised training of one layer at a time

KEY PRINCIPLES

unsupervised training of one layer at a time
supervised training of all layers

KEY PRINCIPLES

unsupervised training of one layer at a time
supervised training of all layers

KEY PRINCIPLES

unsupervised training of one layer at a time pre-training

supervised training of all layers

KEY PRINCIPLES

unsupervised training of one layer at a time pre-training
supervised training of all layers fine-tuning

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

idea

learn one
layer of representation at a time on top of the previous one

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

idea

learn one
nonlinear
layer of representation
at a time
on top of the previous one

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

idea

learn one
nonlinear
layer of representation at a time on top of the previous one

learn one layer $=$ learn neuron weights to extract one layer

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

before that (2006)

deep supervised
feedforward neural networks tended to yield worse results then shallow ones

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input
helps fine-tuning to reach a better local minimum

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input
helps fine-tuning to reach a better local minimum

better generalization

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

motivation

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

motivation

in many problems, high-level abstractions are impossible to model with human ingenuity

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

motivation

in many problems, high-level abstractions are impossible to model with human ingenuity
necessity to capture the explanatory factors (structure) of the data

WHY UNSUPERVISED?

WHY UNSUPERVISED?

supervised representation learning in early layers tend to
discard information important for higher concepts

Bengio et al, 2007

WHY UNSUPERVISED?

supervised representation learning in early layers tend to discard information important for higher concepts

Bengio et al, 2007
it is more biologically plausible:
brain needs to learn 10^{14} synapses in 10^{9} seconds

THE IMPORTANCE OF DEPTH

in many cases, depth 2 is enough to represent any function with a given target accuracy

THE IMPORTANCE OF DEPTH

in many cases, depth 2 is enough to represent any function with a given target accuracy

THE IMPORTANCE OF DEPTH

in many cases, depth 2 is enough to represent any function with a given target accuracy

THE IMPORTANCE OF DEPTH

in many cases, depth 2 is enough to represent any function with a given target accuracy

but the required number of nodes in the graph may grow very large

THE IMPORTANCE OF DEPTH

functions representable compactly with k layers may require exponential size with k - 1 layers

Hastad et al 86, Hastad et al 91, Bengio et al 2007

THE IMPORTANCE OF DEPTH

functions representable compactly with k layers may require exponential size with k - 1 layers

Hastad et al 86, Hastad et al 91, Bengio et al 2007

THE IMPORTANCE OF DEPTH

functions representable compactly with k layers may require exponential size with k - 1 layers

Hastad et al 86, Hastad et al 91, Bengio et al 2007

INTUITION ON DEPTH

sub1
main
subsubsub1
subsubsub2

INTUITION ON DEPTH

"shallow" computer programs

THE IMPORTANCE OF DEPTH

brain has a deep architecture

THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

THE IMPORTANCE OF DEPTH

composing concepts | disentangling information

AFTER ALL

WHAT'S DEEP LEARNING?

AFTER ALL

WHAT'S DEEP LEARNING?

"When there is more than one hidden layer being learned, this is deep learning." Geoffrey Hinton, coursera class

AFTER ALL

WHAT'S DEEP LEARNING?

"When there is more than one hidden layer being learned, this is deep learning." Geoffrey Hinton, coursera class

HOW DEEP?

AFTER ALL

WHAT'S DEEP LEARNING?

"When there is more than one hidden layer being learned, this is deep learning.' Geoffrey Hinton, coursera class

HOW DEEP?

"When the number of levels can be data selected, this is a deep architecture."

Yoshua Bengio, sstic 2013

NEURAL NETWORKS RENAISSANCE

In 2006...

NEURAL NETWORKS RENAISSANCE

In 2006...
autoencoders

NEURAL NETWORKS RENAISSANCE

In 2006...
autoencoders
pre-training

NEURAL NETWORKS RENAISSANCE

In 2006...

autoencoders

pre-training
unsupervised feature learning

NEURAL NETWORKS RENAISSANCE

In 2006...

autoencoders

pre-training
unsupervised feature learning stacked in a greedily manner

NEURAL NETWORKS RENAISSANCE

In 2006...

autoencoders

pre-training
unsupervised feature learning stacked in a greedily manner

AUTOENCODER NEURAL NETS

AUTOENCODER NEURAL NETS

Is an unsupervised learning algorithm that applies backpropagation, setting the target values to be equal to the inputs.

$$
\hat{f}_{\theta}(x) \approx(x)
$$

AUTOENCODER NEURAL NETS

AUTOENCODER NEURAL NETS

tries to learn an approximation to the identity function

AUTOENCODER NEURAL NETS

tries to learn an approximation to the identity function
the network is usually forced to learn a compressed representation of the input

AUTOENCODER NEURAL NETS

tries to learn an approximation to the identity function
the network is usually forced to learn a compressed representation of the input
tries to discover structure in the data

AUTOENCODER NEURAL NETS

following the notation of previous lectures, we can back propagate the reconstruction error by setting

$$
\begin{aligned}
& \delta_{j}^{(3)}=-\left(x_{j}-a_{j}^{(3)}\right) \cdot * g^{\prime}\left(z^{(3)}\right) \\
& \delta^{(2)}=\left(\left(\theta^{(2)}\right)^{T} \delta^{(3)}\right) \cdot * g^{\prime}\left(z^{(2)}\right)
\end{aligned}
$$

AUTOENCODER NEURAL NETS

interesting structures can be discovered by placing constraints on the network such as sparsity

AUTOENCODER NEURAL NETS

interesting structures can be discovered by placing constraints on the network such as sparsity

Layer L_{1}

AUTOENCODER NEURAL NETS

interesting structures can be discovered by placing constraints on the network such as sparsity

$$
\hat{\rho}=\frac{1}{m} \sum_{i=1}^{m}\left[a_{j}^{(2)}\left(x^{(i)}\right)\right]
$$

be the average activation of the hidden unit j (averaged over the training set)

AUTOENCODER NEURAL NETS

we would like to (approximately) enforce

$$
\hat{\rho}=\rho
$$

AUTOENCODER NEURAL NETS

we would like to (approximately) enforce

$$
\hat{\rho}=\rho
$$

a possible choice of of penalty to add in the optimization objective is

$$
\sum_{j=1}^{s_{2}} \rho \log \frac{\rho}{\hat{\rho}_{j}}+(1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_{j}}=\sum_{j=1}^{s_{2}} \mathrm{KL}\left(\rho \| \hat{\rho}_{j}\right)
$$

AUTOENCODER NEURAL NETS

AUTOENCODER NEURAL NETS

the objective function then becomes

$$
J_{\text {sparse }}(\theta)=J(\theta)+\beta \sum_{j=1}^{s_{2}} \mathrm{KL}\left(\rho \| \hat{\rho}_{j}\right)
$$

AUTOENCODER NEURAL NETS

the objective function then becomes

$$
J_{\text {sparse }}(\theta)=J(\theta)+\beta \sum_{j=1}^{s_{2}} \mathrm{KL}\left(\rho \| \hat{\rho}_{j}\right)
$$

and

$$
\delta_{i}^{(2)}=\left(\left(\theta_{i}^{(2)}\right)^{T} \delta_{i}^{(3)}\right) \cdot * g^{\prime}\left(z_{i}^{(2)}\right)+\beta\left(-\frac{\rho}{\hat{\rho}_{i}}+\frac{1-\rho}{1-\hat{\rho}_{i}}\right)
$$

AUTOENCODER NEURAL NETS

visualizing the function learned from image patches

AUTOENCODER NEURAL NETS

visualizing the function learned from image patches

deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

STACKED AUTOENCODERS

a NN consisting of multiple layers of autoencoders

UNSUPERVISED PRE-TRANING

BEFORE

 deep architectures performed poorly
UNSUPERVISED PRE-TRANING

BEFORE deep architectures performed poorly

AFTER
state-of-the-art results

BUT...

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

ILSVRC2012 WINNER

convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

NO PRE-TRAINING AT ALL!

ILSVRC2012 WINNER

convolutional neural net layers Fukushima, 1980 max-pooling meters 60 million paramerons non-saturating neurons efficient GPU imp "dropout"

NO PRE-TRAINING AT ALL!

CONVOLUTIONAL NEURAL NETWORKS

FULLY-CONNECTED NNS

CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells

CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells

simple

complex

CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells

simple

responds maximally to specific local stimulus
complex

CONVOLUTIONAL NNS

inspired by Hubel and Wiesel cells

simple

responds maximally to specific local stimulus
complex
local invariance to the exact position of stimulus

CONVOLUTIONAL NNS

shared (tied) weights

CONVOLUTIONAL NNS

shared (tied) weights
layer m-I

hidden layer m

CONVOLUTIONAL NNS

shared (tied) weights

$$
\frac{\partial}{\partial \theta_{i j}} J(\theta)=\sum_{p \in \mathcal{P}}\left[a_{j(p)}^{(l)} \delta_{i}^{(l+1)}\right]
$$

\mathcal{P} is the set of all positions where θ_{i} is convolved

shared (tied) weights

1_{x}	$1_{x 0}$	1_{x}	0	0	
$0_{x 0}$	1_{x}	1_{x}	1	0	
0_{x}	$O_{x 0}$	1_{x}	1	1	
0	0	1	1	0	
0	1	1	0	0	
Image					

4		

Convolved
Feature

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

CONVOLUTIONAL NNS

max (or average) pooling units

$$
g\left(a_{j}\right)=\max \left(a_{j,(p)}\right) \quad \forall p \in \mathcal{N}
$$

where \mathcal{N} defines the pooling regions that may or may not overlapped

CONVOLUTIONAL NNS

max (or average) pooling units

$$
g\left(a_{j}\right)=\max \left(a_{j,(p)}\right) \quad \forall p \in \mathcal{N}
$$

receptive
where \mathcal{N} defines the pooling regions field that may or may not overlapped
max (or average) pooling units

Convolved feature

Pooled
feature

CONVOLUTIONAL NETS

convolution + pooling

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

CONVOLUTIONAL NNS

non-saturating nonlinearity
rectified linear units

$$
g\left(z^{(l)}\right)=\max \left(0, z^{(l)}\right)
$$

CONVOLUTIONAL NNS

non-saturating nonlinearity
rectified linear units

$$
g\left(z^{(l)}\right)=\max \left(0, z^{(l)}\right)
$$

instead of

$$
g\left(z^{(l)}\right)=\frac{1}{1+e^{-z^{(l)}}}
$$

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

THE 60 MILLION PARAMETER ARCHITECTURE

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

ILSVRC2012 WINNER
convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

CONVOLUTIONAL NNS

dropout regularization recipe

CONVOLUTIONAL NNS

dropout regularization recipe

set to zero the output of each hidden neuron with probability 0.5

CONVOLUTIONAL NNS

dropout regularization recipe

set to zero the output of each hidden neuron with probability 0.5
neurons "dropped out" contribute neither in the forward pass nor in back-propagation

CONVOLUTIONAL NNS

dropout regularization recipe

set to zero the output of each hidden neuron with probability 0.5

neurons "dropped out" contribute neither in the forward pass nor in back-propagation

at test time, use all the neurons
but multiply their outputs by 0.5

CONVOLUTIONAL NNS

dropout regularization implications

CONVOLUTIONAL NNS

dropout regularization implications
every time an input is presented, the neural network samples a different architecture

CONVOLUTIONAL NNS

dropout regularization implications
every time an input is presented, the neural network samples a different architecture
all the sampled architectures share weights

CONVOLUTIONAL NNS

dropout regularization implications
every time an input is presented, the neural network samples a different architecture
all the sampled architectures share weights
reduces complex co-adaptations of neurons

ILSVRC2012 WINNER

convolutional neural networks Lecun et al., 1989 max-pooling layers Fukushima, 1980 60 million parameters non-saturating neurons efficient GPU implementation "dropout"

NO PRE-TRAINING AT ALL!

NO-PRETRAINING AT ALL?

NO-PRETRAINING AT ALL?

"if you initialize the layers correctly, you may not need pre-training at all, provided you have enough labeled data"

NO-PRETRAINING AT ALL?

"if you initialize the layers correctly, you may not need pre-training at all, provided you have enough labeled data"
"however, you can always increase the size of your neural net so that even a huge amount of data is still not enough"

Geoffrey Hinton, Coursera class

ONTHE ARCHITECTURE

ONTHE ARCHITECTURE

typically hand-tuned

ONTHE ARCHITECTURE

typically hand-tuned

critical in the method's performance

ONTHE ARCHITECTURE

typically hand-tuned

critical in the method's performance

complicated search space

ONTHE ARCHITECTURE
 (a)

(c)

Candidate Model Scores

ON THE ARCHITECTURE

QUICK LAB

using an alternative notation

CONVOLUTION+ACTIVATION

the filtering operation of an input \mathbf{n} with a bank of k filters is

$$
\mathbf{f}_{i}=\mathbf{n} \otimes \Phi_{i} \quad \forall i \in\{1,2, \ldots, k\}
$$

where \otimes is a 3 D convolution sliding over the first two dimensions, and $\Phi_{i} \in \mathbb{R}^{f h \times f w \times f d}$ is one such filter of our filter bank
and the rectified linear activation is

$$
\mathbf{a}_{i}=\max \left(0, \mathbf{f}_{i}\right)
$$

POOLING

the pooling operation with strength p and spatial downsampling of α is

$$
\mathbf{p}_{i}=\operatorname{downsample}_{\alpha}\left(\sqrt[p]{\left(\mathbf{a}_{i}\right)^{p} \odot \mathbf{1}_{p h \times p w}}\right),
$$

where \odot is a 2D convolution sliding over both dimensions and $p h \times p w$ is the pooling neighborhood

DIVISIVE NORMALIZATION

DIVISIVE NORMALIZATION

"In biology, initial interests in DN focused on its ability to model dynamic gain control in retina [24] and the "masking" behavior in perception [11, 33], and to fit neural recordings from the mammalian visual cortex [12, 19]."

DIVISIVE NORMALIZATION

finally, the divisive normalization of an input $\mathbf{x} \in \mathbb{R}^{x h \times x w \times x d}$ is

$$
\mathbf{n}=\frac{\mathbf{x}}{\sqrt{\mathbf{x}^{2} \otimes \mathbf{1}_{n h \times n w \times n d}}}
$$

where $\mathbf{1}_{n h \times n w \times x d}$ is a matrix of ones representing the normalization neighborhood
let's get our hands dirty!

FACE IDENTIFICATION

questions?

