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www.nytimes.com/2012/06/26/
technology/in-a-big-network-of-
computers-evidence-of-machine-

learning.html

With massive amounts 
of computational power, 

machines can now 
recognize objects and 
translate speech in real 

time. Artificial 
intelligence is finally 

getting smart.
www.technologyreview.com/

featuredstory/513696/deep-learning/
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CIFAR-10 dataset:
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BREAKTHROUGH RESULTS

ILSVRC2012

Team name Error (5 guesses) Description

SuperVision 0.15315
Using extra training data from 
ImageNet Fall 2011 release

SuperVision 0.16422 Using only supplied training data

ISI 0.26172

Weighted sum of scores from 
HDFK�FODVVLÀHU�ZLWK�6,)7�)V, 
/%3�)V��*,67�)V, and 
&6,)7�)V, respectively.

www.image-net.org/challenges/LSVRC/2012/results.html

Object Recognition
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Object Recognition

www.cs.toronto.edu/~hinton/absps/imagenet.pdf
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BREAKTHROUGH RESULTS
Traffic Sign Recognition

B. Max-pooling layer

The biggest architectural difference of our implementation
compared to the CNN of [8] is the use of a max-pooling layer
[18] instead of a sub-sampling layer. In the implementation
of [10] such layers are missing, and instead of a pooling
or averaging operation, nearby pixels are simply skipped
prior to the convolution. The output of the max-pooling layer
is given by the maximum activation over non-overlapping
rectangular regions of size (Kx, Ky). Max-pooling creates
position invariance over larger local regions and down-
samples the input image by a factor of Kx and Ky along
each direction.

C. Classification layer

Kernel sizes of convolutional filters and max-pooling rect-
angles as well as skipping factors can be chosen such that
the output maps of the last convolutional layer are down-
sampled to 1 pixel per map. Alternatively, a fully connected
layer combines the outputs of the last convolutional layer into
a 1D feature vector. The last layer is always a fully connected
layer with one output unit per class in the recognition task.
We use soft max as the last layer’s activation function, thus
each neuron’s output represents the class probability.

III. EXPERIMENTS

We use a system with a Core i7-920 (2.66GHz), 12 GB
DDR3, and four graphics cards: 2 x GTX 480 and 2 x
GTX 580. Correctness of the implementation is checked by
comparing the analytical gradient with the finite difference
approximation of the gradient. Our plain feed-forward CNN
architecture is trained using on-line gradient descent. Images
from the training set might be translated, scaled and rotated,
whereas only the original images are used for validation.
Training ends once the validation error is zero (usually after
10 to 50 epochs). Initial weights are drawn from a uniform
random distribution in the range [−0.05, 0.05]. Each neuron’s
activation function is a scaled hyperbolic tangent [8].

A. Data preprocessing

The original color images contain one traffic sign each,
with a border of 10% around the sign. They vary in size
from 15 × 15 to 250 × 250 pixels and are not necessarily
square. The actual traffic sign is not always centered within
the image; its bounding box is part of the annotations. The
training set consists of 26640 images; the test set of 12569
images. We crop all images and process only the bounding
box. Our CNN implementation requires all training images to
be of equal size. After visual inspection of the training image
size distribution we resize all images to 48×48 pixels. As a
consequence, the scaling factors along both axes are different
for traffic signs with rectangular bounding boxes. Resizing
forces them to have square bounding boxes.

High contrast variation among the images calls for contrast
normalization. We test three different types of normalization:
1) Pixels of all three color channels are linearly scaled
to plus-minus one standard deviation around the average
pixel intensity; 2) Pixels of all three color channels are

linearly scaled to plus-minus two standard deviations around
the average pixel intensity; 3) Contrast-limited Adaptive
Histogram Equalization (CLAHE) [19]. We also create a
gray-scale representation of the original color images. In total
we perform experiments on 8 different datasets: the original,
as well as sets resulting from three different normalizations,
in color and gray-scale (Fig. 2).

Fig. 2. Five gray-scale (left) and color (right) traffic signs normalized
differently. Original images (first row), ±1σ normalization (second row),
±2σ normalization (third row) and CLAHE (fourth row).

B. CNNs

Initial experiments with different normalizations and vary-
ing network depths (4 to 7 hidden layers) showed that deep
nets work better than shallow ones, consistent with our
previous work on image classification [20], [17]. We report
results for a single CNN with seven hidden layers (Table
I). The input layer has either three maps of 48x48 pixels
for each color channel, or a single map of 48x48 pixels for
gray-scale images. The output layer has 43 neurons, one for
each class.

TABLE I

THE ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORK.

Layer Type # maps & neurons kernel
0 input 1 or 3 maps of 48x48 neurons
1 convolutional 100 maps of 46x46 neurons 3x3
2 max pooling 100 maps of 23x23 neurons 2x2
3 convolutional 150 maps of 20x20 neurons 4x4
4 max pooling 150 maps of 10x10 neurons 2x2
5 convolutional 250 maps of 8x8 neurons 3x3
6 max pooling 250 maps of 4x4 neurons 2x2
7 fully connected 200 neurons
8 fully connected 43 neurons

We summarize the result of various CNNs trained on
gray-scale and color images in Tables II and III. The latter
perform better, which might seem obvious, but the former
also achieve highly competitive performance.

Additional translations, scalings and rotations of the train-
ing set considerably improve generalization. At the beginning
of each epoch, each image in the training set is deformed
using random but bounded values for translation, rotation and
scaling (see Table III). Values for translation, rotation and
scaling are drawn from a uniform distribution in a specified
range, i.e. ±T% of the image size for translation, 1±S/100
for scaling and ±R◦ for rotation. The final image is obtained

www.idsia.ch/~juergen/ijcnn2011.pdf
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Rank Team Method Correct recognition rate

1 IDSIA Committee of CNNs 99.46 %
2 INI Human Performance 98.84 %
3 sermanet Multi-Scale CNNs 98.31 %
4 CAOR Random Forests 96.14 %

benchmark.ini.rub.de

www.idsia.ch/~juergen/ijcnn2011.pdf
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Microsoft Research
Speech Recognition Leaps Forward

research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx

Merck Competition
Deep NN and GPUs come out to play

blog.kaggle.com/2012/10/31/merck-competition-results-deep-nn-and-gpus-come-out-to-play/

and more...
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LARGE ADOPTION

just to mention a few big names
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DON’T TAKE IT THE WRONG WAY
"Biology is hiding secrets well. We just don’t 

have the right tools to grasp the 
complexity of what’s going on."

Bruno Olshausen

www.wired.com/wiredenterprise/2013/05/neuro-artificial-intelligence/all/

“artificial intelligence is 
finally getting smart”

www.technologyreview.com/featuredstory/513696/deep-learning/
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DON’T TAKE IT THE WRONG WAY

“We clearly don’t have the right algorithms yet. It’s going to 
take decades. This is not going to be an easy one, but I think 

there’s hope.”
Andrew Ng

"Biology is hiding secrets well. We just don’t 
have the right tools to grasp the 
complexity of what’s going on."

Bruno Olshausen

www.wired.com/wiredenterprise/2013/05/neuro-artificial-intelligence/all/

“artificial intelligence is 
finally getting smart”

www.technologyreview.com/featuredstory/513696/deep-learning/
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Team name Error (5 guesses) Description

SuperVision 0.15315
Using extra training data from 
ImageNet Fall 2011 release

SuperVision 0.16422 Using only supplied training data

ISI 0.26172

Weighted sum of scores from 
HDFK�FODVVLÀHU�ZLWK�6,)7�)V, 
/%3�)V��*,67�)V, and 
&6,)7�)V, respectively.

www.image-net.org/challenges/LSVRC/2012/results.html

Object Recognition

ILSVRC2012 WINNER
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“Our model is a large, deep convolutional neural network 
trained on raw RGB  pixel values. The neural network, which has 

60 million parameters and 650,000 neurons, consists of five 
convolutional layers, some of which are followed by max-pooling 
layers, and three globally-connected layers with a final 1000-way 
softmax. It was trained on two NVIDIA GPUs for about a week. 
To make training faster, we used non-saturating neurons and a 
very efficient GPU implementation of convolutional nets. To 

reduce overfitting in the globally-connected layers we employed 
hidden-unit "dropout", a recently-developed regularization 

method that proved to be very effective.”

www.image-net.org/challenges/LSVRC/2012/results.html

ILSVRC2012 WINNER
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convolutional neural networks
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WHAT’S NEW?

convolutional neural networks
max-pooling layers

60 million parameters
non-saturating neurons

efficient GPU implementation
"dropout"

Lecun et al., 1989
Fukushima, 1980
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NEURAL NETWORK
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Hinton et al. showed that
a particular form of autoencoder can be trained and 
stacked in a greedily manner, so that a bound on the 

probability of representing well the training data is 
increased at each layer.

IN 2006

others paper followed soon after

autoencoder

is a neural network

whose aim is to learn a

compressed representation

of the input data
(unsupervised)
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KEY PRINCIPLES

unsupervised training of one layer at a time

supervised training of all layers
fine-tuning

pre-training
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UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

idea

learn one

layer of representation
at a time

on top of the previous one

nonlinear

learn one layer = learn neuron weights to extract one layer
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UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

before that (2006)

deep supervised
feedforward neural networks 

tended to yield worse results then 
shallow ones



19

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis



19

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

learn high-level abstractions of the input



19

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

helps fine-tuning to reach a better local minimum

learn high-level abstractions of the input



19

UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

hypothesis

helps fine-tuning to reach a better local minimum

learn high-level abstractions of the input

better generalization
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UNSUPERVISED PRE-TRAINING

a.k.a. unsupervised feature learning

motivation

in many problems, high-level abstractions 
are impossible to model with human 

ingenuity

necessity to capture the explanatory factors 
(structure) of the data
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discard information important
for higher concepts
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WHY UNSUPERVISED?

it is more biologically plausible:

brain needs to learn 1014 synapses in 109 seconds

supervised representation learning
in early layers tend to

discard information important
for higher concepts

Bengio et al, 2007
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THE IMPORTANCE OF DEPTH
in many cases, depth 2 is enough to represent

any function with a given target accuracy

but the required number of nodes in the graph
may grow very large

test sample

training
samples

min(k,.)k-NNs

test sample

support
vectors

linear
combinationSVMs
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functions representable compactly 
with k layers may require exponential 

size with k-1 layers

THE IMPORTANCE OF DEPTH

…

…

…

…

…

n

Hastad et al 86, Hastad et al 91, Bengio et al 2007

…
1 2 3 2n

…

slide adapted from www.iro.umontreal.ca/~bengioy/talks/waterloo_may6.pdf | credit to Yoshua Bengio
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INTUITION ON DEPTH

main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“deep” computer  programs
slide credit to Yoshua Bengio
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INTUITION ON DEPTH

“shallow” computer  programs

main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and  

slide credit to Yoshua Bengio
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THE IMPORTANCE OF DEPTH
brain has a deep architecture

DiCarlo et al, 2012
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Cox and DiCarlo, 2007
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THE IMPORTANCE OF DEPTH
composing concepts | disentangling information

Cox and DiCarlo, 2007
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“When the number of levels can be data 
selected, this is a deep architecture.”

Yoshua Bengio, SSTiC 2013

“When there is more than one hidden 
layer being learned, this is deep learning.”

Geoffrey Hinton, Coursera class

AFTER ALL

WHAT’S DEEP LEARNING?

HOW DEEP?
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NEURAL NETWORKS RENAISSANCE

In 2006...

autoencoders

pre-training
unsupervised feature learning
stacked in a greedily manner

...
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AUTOENCODER NEURAL NETS

Is an unsupervised learning algorithm
that applies backpropagation, setting the 
target values to be equal to the inputs.

f̂✓(x) ⇡ (x)



34deeplearning.stanford.edu/wiki/images/f/f9/Autoencoder636.png

AUTOENCODER NEURAL NETS
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tries to learn an approximation to the identity function

the network is usually forced to learn a compressed 
representation of the input
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following the notation of previous lectures, we can
back propagate the reconstruction error by setting

�
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. ⇤ g0(z(2))

AUTOENCODER NEURAL NETS



37

interesting structures can be discovered by placing 
constraints on the network such as sparsity

AUTOENCODER NEURAL NETS



37

interesting structures can be discovered by placing 
constraints on the network such as sparsity

AUTOENCODER NEURAL NETS



37

interesting structures can be discovered by placing 
constraints on the network such as sparsity

AUTOENCODER NEURAL NETS

⇢̂ =
1

m

mX

i=1

⇥
a

(2)
j (x(i))

⇤

be the average activation of the hidden unit j
(averaged over the training set)
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a possible choice of of penalty to
add in the optimization objective is
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⇢ = 0.2

deeplearning.stanford.edu/wiki/images/4/48/KLPenaltyExample.png
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the objective function then becomes

Jsparse(✓) = J(✓) + �
s2X

j=1

KL(⇢||⇢̂j)
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visualizing the function learned from image patches
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visualizing the function learned from image patches

deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
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STACKED AUTOENCODERS
a NN consisting of multiple layers of autoencoders

deeplearning.stanford.edu/wiki/images/0/0e/Stacked_SparseAE_Features1.png
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STACKED AUTOENCODERS
a NN consisting of multiple layers of autoencoders

deeplearning.stanford.edu/wiki/images/b/bf/Stacked_SparseAE_Features2.png



44

STACKED AUTOENCODERS
a NN consisting of multiple layers of autoencoders

deeplearning.stanford.edu/wiki/images/6/6b/Stacked_Softmax_Classifier.png
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STACKED AUTOENCODERS
a NN consisting of multiple layers of autoencoders

deeplearning.stanford.edu/wiki/images/5/5c/Stacked_Combined.png
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FULLY-CONNECTED NNS

ufldl.stanford.edu/wiki/images/9/99/Network331.png
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CONVOLUTIONAL NNS
shared (tied) weights

deeplearning.net/tutorial/_images/cnn_explained.png
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CONVOLUTIONAL NNS
shared (tied) weights

ufldl.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif
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CONVOLUTIONAL NNS
max (or average) pooling units

ufldl.stanford.edu/wiki/images/0/08/Pooling_schematic.gif
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CONVOLUTIONAL NETS

http://deeplearning.net/tutorial/_images/mylenet.png

convolution + pooling
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CONVOLUTIONAL NNS

non-saturating nonlinearity

rectified linear units
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

www.cs.toronto.edu/~hinton/absps/imagenet.pdf

THE 60 MILLION PARAMETER
ARCHITECTURE
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but multiply their outputs by 0.5
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CONVOLUTIONAL NNS
dropout regularization implications

every time an input is presented,
the neural network samples a different architecture

all the sampled architectures share weights

reduces complex co-adaptations of neurons
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“if you initialize the layers correctly, you may 
not need pre-training at all, provided you have 

enough labeled data”

“however, you can always increase the size 
of your neural net so that even a huge 

amount of data is still not enough”

NO-PRETRAINING AT ALL?

Geoffrey Hinton, Coursera class
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

www.cs.toronto.edu/~hinton/absps/imagenet.pdf
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make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.
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The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,
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the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
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In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
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The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,
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computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
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Pinto and Cox, 2013

top 5 models
LFW view 1 performance

Fig. 2. The high-throughput screening process used to find good representations. Here, data is shown for the screening of HT-L3 models. A distribution
of the performance of 6,917 randomly generated models is shown on the left, with the top five high-performing models replotted on the right. Following
screening, the models were evaluated exclusively with sets that do not overlap with the screening set.
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values if above a given threshold. This operation draws
biological inspiration from the competitive interactions ob-
served in natural neuronal systems (e.g. contrast gain control
mechanisms in cortical area V1, and elsewhere [39], [40])

We define the normalization function:

N

` = Normalize(P`) (8)

such that:

N

` =

(
⇢

` · C` if ⇢` ·
���
���C` ⌦ 1b`⇥b`⇥k`

���
���
2
< ⌧

`

C`
����

����C`⌦1
b`⇥b`⇥k`

����

����
2

otherwise

(9)
with

C

` = P

` � �

` · P
` ⌦ 1

b

`⇥b

`⇥k

`

b

` · b` · k` (10)

Where �

` 2 {0, 1}, ⌦ is a 3-dimensional correlation over
the “valid” domain (i.e. sliding over the first two dimensions

1The L10-norm produces outputs similar to a max operation (i.e. softmax).

only), and 1

b

`⇥b

`⇥k

` is a b

` ⇥ b

` ⇥ k

` array full of ones.
b

` can be seen as the normalization “neighborhood” and �

`

controls if this neighborhood is centered (i.e. subtracting the
mean of the vector of neighboring values) before divisive
normalization. ⇢` is a “magnitude gain” parameter and ⌧

` is
a threshold parameter below which no divisive normalization
occurs.

Parameters:
• The size b

` of the neighborhood region was randomly
chosen from {3, 5, 7, 9}.

• The �

` parameter was chosen from {0, 1}.
• The vector of neighboring values could also be stretched

by gain values ⇢

` 2 {10�1
, 100, 101}. Note that when

⇢

` = 100 = 1, no gain is applied.
• The threshold value ⌧

` was randomly chosen from
{10�1

, 100, 101}.

E. Final model output dimensionality
The output dimensionality of each candidate model was

determined by the number of filters in the final layer, and
the x-y “footprint” of the layer (which, in turn, depends on
the subsampling at each previous layer). In the model space
explored here, the possible output dimensionality ranged
from 256 to 73,984.

F. Screening (model selection)
A total of 5,915 HT-L2 and 6,917 HT-L3 models were

screened on the LFW View 1 “aligned” set [26]. We selected
the best five models from each “pool” for further analysis on
the LFW View 2 set (Restricted Protocol). Note that LFW
View 1 and View 2 do not contain the same individuals and
are thus mutually exclusive sets. View 1 was designed as
a model selection set while View 2 is used as an indepen-
dent validation set for the purpose of comparing different
methods.

Examples of the screening procedure for HT-L2 and HT-
L3 models on the LFW View 1 task screening task are shown
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QUICK LAB
using an alternative notation
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the filtering operation of an input n with a bank of k filters is

fi = n⌦ �i 8i 2 {1, 2, . . . , k},

where ⌦ is a 3D convolution sliding over the first two dimensions, and

�i 2 Rfh⇥fw⇥fd
is one such filter of our filter bank

and the rectified linear activation is

ai = max(0, fi)

CONVOLUTION+ACTIVATION
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the pooling operation with strength p and spatial downsampling of ↵ is

pi = downsample↵(
p

q
(ai)p � 1ph⇥pw),

where � is a 2D convolution sliding over both dimensions and ph⇥ pw is the

pooling neighborhood

POOLING
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DIVISIVE NORMALIZATION
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DIVISIVE NORMALIZATION

"In biology, initial interests in DN focused on its ability to model 
dynamic gain control in retina [24]

and the “masking” behavior in perception [11, 33], and to fit 
neural recordings from the mammalian visual cortex [12, 19]."

Lyu, 2010
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DIVISIVE NORMALIZATION

finally, the divisive normalization of an input x 2 Rxh⇥xw⇥xd

is

n =

xp
x

2 ⌦ 1

nh⇥nw⇥nd

,

where 1

nh⇥nw⇥xd

is a matrix of ones representing the normalization

neighborhood
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let’s get our hands dirty!



person-speci!c linear SVM
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FACE IDENTIFICATION
person-specific (PS) filters
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questions?
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