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1. INTRODUCTION 

The element distinctness problem is to decide for a given (x,, . . . . x,) E W 
whether all the xi)s are distinct-i.e., is -yi # I, for all i # j? This is a very 
basic decision problem easily reducible to many other decision and com- 
putation problems, for example, sorting. Thus a lower bound for element 
distinctness provides lower bounds for other problems. 

Ben-Or (1983) proved a lower bound of Q(n log n) for the element 
distinctness problem on two models of computation both generalizing the 
comparison tree model. These are the bounded-order algebraic decision tree 
model and the algebraic computation tree model. Exact specifications of 
these models are given below but the main idea is to have for each n a 
rooted tree with leaves labelled ACCEPT and REJECT, and internal nodes 
labelled by arithmetic computations or comparisons so that an input 
C-r 11 ..., x,) is accepted iff the path starting from the root and branching 
according to the results of the specified comparisons reaches an ACCEPT 
leaf. The natural measure of complexity is the height of the tree, which 
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corresponds to the worst case number of computations/comparisons for 
inputs of size n. 

Ben-Or’s proof, which uses a theorem of Milnor (1964) and Thorn 
( 1965) in algebraic geometry, depends crucially on the topology-specili- 
tally the number of connected components- of the subset of ‘W consisting 
of the vectors with distinct coordinates. One weakness of his result is the 
unrealistically large domain for which decision/computation trees are 
required to work correctly. The more standard RAM model, for example, 
would be expected to handle only integers. One of the motivations for 
proving lower bounds on decision/computation trees is the hope of 
carrying these lower bounds over to RAM?-at least in cases where the set 
of primitive operations has been restricted so that the RAM is constrained 
to maintain some mathematical structure. This approach was followed 
successfully by Paul and Simon (1982) for the problem of sorting. The best 
known lower bound for element distinctness on a RAM (Dietzfelbinger and 
Maass, 1986) was obtained by quite different methods, but unduly restricts 
the RAM. One might hope to get improvements by carrying over Ben-Or’s 
results to a restricted RAM. A main barrier do doing this is the discrepancy 
in domains: a RAM need only work for integers whereas Ben-Or only 
bounds the complexity of deciding element distinctness for all real inputs. 

Our main result is that for one of the tree models the complexity of 
element distinctness is the same for integers as for reals-more precisely: 

THEOREM 1. The height of bounded-order algebraic decision trees which 
correctly decide element distinctness for all integer inputs (x,, . . . . x,) is 
Q(n log n). 

As we learned after submitting this paper, Theorem 1 has been obtained 
independently by A. Yao (1989), who also proved an Q(n log n) lower 
bound for the height of algebraic decision trees deciding integer element 
distinctness. 

Let us define the real [respectively rational, integer] element distinctness 
problem as follows: Given (xi, . . . . x,) E ‘W [respectively Q”, ZH] are all the 
X~S distinct? 

Our proof is in two parts: In Section 2 we show that the integer element 
distinctness problem is not easier than the rational one on the algebraic 
decision tree model. To do this we construct algebraic decision trees which 
decide the rational problem from ones which decide the integer problem 
without significantly increasing height or order. In Section 3 we use a modili- 
cation of Ben-Or’s proof for the real case to prove that any bounded-order 
algebraic decision trees deciding the rational element distinctness problem 
have height Q(n log n). Combining these two results yields Theorem 1. (The 
exact constant hidden by the “52” is specified in Section 3.) In Section 4 we 
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generalize our methods to a larger class of problems, still staying with 
the algebraic decision tree model. In Section 5 we turn to the algebraic 
computation tree model, for which we carry over the second step--a lower 
bound for rational element distinctness-but not the first step-going from 
integers to rationals. 

We now define precisely the two tree computation models. In these 
models a problem is solved by a family of trees T,, T2, . . . . where each T,, 
handles input vectors of n coordinates. A single tree T, (of either type) is 
a rooted tree with leaves labelled ACCEPT or REJECT. The height of such 
a tree is the length of a longest path from the root to a leaf. Each internal 
node v of an algebraic decision tree T,, is labelled by a polynomial pL, in 
variables xi, . . . . x,. Each node has one incoming edge (on the path from 
the root) and three outgoing edges labelled + , -, 0. Branching occurs at 
the node v according to whether the specified polynomial pC evaluated at 
the input x is positive, negative, or zero. The order of an algebraic decision 
tree is the maximum degree of its polynomials, and a family of trees is of 
bounded order if the orders of its trees T,, are bounded independent of n. 

An algebraic computation tree T, has two kinds of internal nodes: (1) 
computation nodes v of out-degree 1 labelled by instructions of the form 
f,,+acb where 0 E(+, -, x , /> and where each of a, b may be a real 
constant, an xi or anfU, for u an ancestor of v; (2) comparison nodes v of 
out-degree 3 labelled by a single xi or f,,, for u an ancestor of v, and with 
the outgoing edges labelled +, -, 0. Branching occurs at comparison 
nodes according to whether the specified xi or f, is positive, negative, or 
zero for the given input x. Note that we assume no zero division. 

.4t this point it is worth noting that for either of these models there 
are trees of height O(n log n) to decide even the real element distinctness 
problem: either by sorting and then testing consecutive pairs, or, in the 
case of algebraic computation trees, by computing n,,, (xi-xi) using 
O(n log n) multiplications, and comparing the result with 0. Note that this 
polynomial has (unbounded) degree (;). 

Yet another tree model of computation was considered in (Moran et al., 
1984): decision trees in which branching at each node may depend on the 
result of any test of only a bounded number of inputs. Using Ramsey’s 
Theorem an Q(n log n) lower bound was proved for the height of such trees 
correctly deciding element distinctness even for a finite (very large) set of 
integers. 

Finally, we comment on the possibility of obtaining lower bounds for 
element distinctness on a RAM. Define a restricted RAM to operate on 
natural numbers; to have an infinite set of registers, indexed by natural 
numbers and addressable indirectly as well as directly; and to utilize 
branching based on comparisons, and the arithmetic operations of 
addition, subtraction (truncating at zero), and multiplication--each at 
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unit cost. Forbidden are Boolean operations (on binary representations of 
numbers), shift operators, (integer) division, etc. 

(The unrestricted use of indirect addressing on a RAM makes the 
element distinctness problem trivial: For each input xi store the index i in 
the register indexed by xi; but first test whether the current contents of this 
register provide a j with x, = xi. Thus for the purpose of lower bounds 
attention should be restricted to RAM programs for which the addresses of 
the registers used are bounded by some function of the number of inputs 
regardless of the actual input values.) 

The proof of our present lower bound of Q(n log n) for the height of 
bounded-order algebraic decision trees deciding integer element distinct- 
ness can be shown to imply an Q(n log n) lower bound for element distinct- 
ness on a restricted RAM without multiplication. This result was obtained 
earlier by Dietzfelberger and Maass (1986) using entirely different methods. 
Yao’s (1989) proof of an S2(n log n) lower bound for the height of algebraic 
computation trees deciding integer element distinctness can be used to 
obtain an Q(n log n) lower bound for element distinctness on a restricted 
RAM (Lubiw, manuscript). 

2. RATIONAL ELEMENT DISTINCTNESS REDUCES TO 
INTEGER ELEMENT DISTINCTNESS 

THEOREM 2. If there is an algebraic decision tree T of order d and height 
h deciding the element distinctness problem for integer inputs (x1, . . . . x,) then 
there is an algebraic decision tree T’ deciding the element distinctness 
problem for rational inputs (x1, . . . . x,), and having order d and height dh. 

This implies that on the bounded-order algebraic decision tree model the 
integer and rational element distinctness problems have the same com- 
plexity within a constant factor. 

Proof. Our starting point is the trivial observation that for any rational 
vector x = (x1, . . . . x,) there is a positive integer Mz such that A4tx is an 
integer vector. Furthermore x has distinct coordinates iff Mzx does. The 
only property of the element distinctness problem that the present proof 
depends on is this property of invariance under integer scaling, and thus 
the proof applies to any decision problem with this property. See Section 4. 
We would like T’ on a rational input x to imitate the computation of Ton 
the integer input MO,x, but we would like to avoid explicitly computing 
MO, since this seems impossible on an algebraic decision tree. 

Consider the tree T” formed from T by replacing the label p,(x) at each 
node u of T by the label lim, _ ~ p,(Mx). T” is no longer an algebraic 
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decision tree, but it can compute in the same way T could: branching now 
depends on the sign ( + , - or 0) of lim, _ ru p,(Mx) rather than on the 
sign of p,(x). Note that for a given x, p,(Mx) is a polynomial in A4 and 
thus lim, ~ ~ p,(Mx) exists in the extended reals and has a well-defined 
sign. We claim that T” correctly decides the rational element distinctness 
problem: For each x E Q” there is some k E N such that for every polyno- 
mial pL. occurring in T, the sign of pL,(kA40,x) is the same as the sign of 
lim ,,,, t z ~,(M.x). Thus the computation of T” on input x is the same as the 
computation of T on input kM:x. But kM:x is integer-valued so T-and 
hence T”-correctly decides element distinctness for X. 

It remains to eliminate the use of the limit operator in T” to obtain an 
algebraic decision tree T’. Let P(X) be a polynomial appearing in T. 
Rewrite p(A4.x) as pd(x)Md+ pJP l(~)MdP’ + ... + pO(x). Each of the pi’s 
is a polynomial of degree at most d. Then the sign of lim, _ m I, is 
the sign of pd(x), or if this is zero, the sign of pdP ,(x), or.... Create T’ 
from T” by (repeatedly) replacing any node with a label of the form 
lim M-r ni p(A4.x) by a chain of d + 1 nodes labelled by pdr pdm , , . . . . p. as 
shown in Fig. 1. 

in T” 

in 

P,(X) 

+ 

0 A A B C 

T’ 

FIGURE I 
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Finally, note that the node which tests p,,(x) can be eliminated since 
there is no point in testing the sign of a constant. 

The resulting algebraic decision tree T’ correctly decides the rational 
element distinctness problem. T’ has order d and height dh. 1 

The idea used in this proof-modifying an algebraic decision tree by 
applying limits and then expanding to tests of polynomials once more-is 
due to Kirkpatrick and Seidel (1986) in a different context. 

3. A LOWER BOUND FOR RATIONAL ELEMENT DISTINCTNESS 

THEOREM 3. Any algebraic decision tree of order d which decides 
element distinctness for all rational inputs x1, . . . . x, has height at least 
k,n log n - k,n, where k, = l/(1 + log,(2d- 1)) and k2 = 1 + (log, e- l)/ 
(1 +log,(2d- 1)). 

Thus any family of bounded-order decision trees deciding rational 
element distinctness has height Q(n log n). 

ProoJ: We first review Ben-Or’s lower bound proof for the real case. 
The solution space S for the real element distinctness problem is defined 
to be {X E YV: xi # .xj for i # j}. This solution space has n! connected 
components each with non-null interior: specifically, for each permutation 
rc of { 1, 2, . . . . n} the set S,= {XE !tIn: .x,~~~<x,~~, < ... <x,(,)}. Then 
u, s, = s. 

Let T,, be an algebraic decision tree of order d solving the real element 
distinctness problem for input vectors of n coordinates. Let h be the height 
of T,. The solution space S can be partitioned another way according to 
the tree T,, by grouping together vectors accepted at the same leaf of T,,: 
Let A be the set of accepting leaves of T,, and for any leaf u of T,, let 
S,= (xE%‘? x ends up at leaf u of T,,}. Then S=UUEA S,. 

One connected component of one S, can intersect only one S,. Thus if 
each S, consisted of one connected component then since each S, must be 
intersected by some S,, the number of accepting leaves would have to be 
at least n!, implying that h, the height of T,,, is Q(n log n). For d= 1 it is 
true that each S, consists of one connected component- in fact S, is 
convex-but this fails for larger d and Ben-Or applies a powerful algebraic 
geometry theorem of Milnor and Thorn to show that each S,-being the 
set of solutions to a set of at most h polynomial equalities and inequalities 
each of degree d-has at most d(2d- l)n+ h ~ ’ connected components. This 
bound is still sufficient to give h k f2(n log n). 

Let us now turn to the rational element distinctness problem. Suppose 
that the algebraic decision tree T,z only solves the rational element distinct- 
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ness problem. Still for u a leaf of T,, let S, = {x~ ‘8”: x ends up at leaf v 
of T,}. Then we only have that Q” A S= Q” n lJtls A S,. The difficulty with 
carrying through the above proof is that one connected component of one 
S, may now intersect more than one S,. In order for this to happen S,. 
must contain a vector with non-distinct coordinates, and such a vector can- 
not be in Q”. What we do is show that S,‘s which “cheat” in this way by 
accepting non-rational vectors with non-distinct coordinates are insignili- 
cant in that they do not cover completely any S,. The remaining S,‘s must 
then have n! connected components altogether, and Ben-Or’s argument 
applies. 

We claim first that S, does not cheat if it is open: Suppose indirectly that 
4’ E ‘8” has ~1; = .yj for some i # j and y E S, for some open S,. We can 
approximate ~1 arbitrarily closely by rational vectors yck’ still satisfying 
?‘i R’ - ,(k), just by staying on the hyperplane xi = x,. But then the openness - 4, 
of S, guarantees the existence of a rational yck’ in S,, which is a contra- 
diction. Note that this result that S, does not cheat if it is open depends 
only on the property that any y E ‘9Jn which is outside S is a limit point of 
rational points outside S. 

Now observe that S, is the solution set of the polynomial equalities and 
inequalities determined by the vertices and edges on the path from the root 
of T,, to u. If all these tests are inequalities then S, is open. Accordingly let 
us partition A into two parts: I= {u E A: the path from the root of T, to 
u involves only inequalities} and E = {u E A: the path from the root of T,, 
to u involves at least one equality}. Sets S,, v E I do not cheat. 

It remains to show that sets S,, u E E are insignificant in the sense that 
no S, is contained in fJvEESt,. But lJaEESD~ U {p-‘(O): p a polynomial 
inT,,)=q-‘(O)forq=nJ : (p p a polynomial in T,}, and this latter set has 
emplty interior so it cannot possibly contain an S,. (Each S, has non-null 
interior. ) 

Therefore since each S, intersects some S,, u E Z, and no connected com- 
ponent of an S,;, u E Z intersects more than one S,, we can use the upper 
bound of d(2d - 1 )“+ h-- ’ for the number of connected components of one 
S, to get 

Taking logarithms and using Stirling’s formula yields h > k, n log n - k,n, 
where k, = l/(1 +logz(2d- 1)) and k2= 1 +(log,e- l)/(l +log,(2d- 1)). 

I 

Combining Theorems 2 and 3 proves Theorem l-more precisely, that 
any algebraic decision tree of order d which decides element distinctness for 
all x E Z” has height at least c,n log n - c,n, where ci = (l/d)k, and c1 = 
(W)k,, and k, and k, are as above. By noting that the bound in 
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Theorem 3 depends not on the height of the tree but on the height of leaves 
u for which S, is open, and noting that the construction in Theorem 2, 
though it increases the height by a factor of d, does not increase the height 
of leaves u with S, open, we obtain the better bounds ci = k, and c2 = k,, 
the same as for the rational or real element distinctness problem. 

4. LOWER BOUNDS FOR OTHER INTEGER PROBLEMS ON THE 
ALGEBRAIC DECISION TREE MODEL 

Any decision problem can be identified with its solution spaces S, c ‘W 
for n E N, so that the decision is: given XE ‘W is XE S,. The rational 
[integer] oersion of such a problem is to test given x E Q” [x E Z”, respec- 
tively] whether x E S,. 

The following two theorems give general conditions on a set S, s ‘W 
sufficient to allow the proofs in Sections 2 and 3 to carry through. 

THEOREM 4. If a decision problem has the property that its solution 
spaces are invariant under multiplication by positive integers then the integer 
version and the rational version of the problem have the same complexity 
(within a constant) on the bounded-order algebraic decision tree model. 

THEOREM 5. Let Ss 93” and denote by c the number of connected 
components of S which have non-null interior. Suppose that any point 
outside S is a limit of rational points outside S. Then any algebraic decision 
tree of order d which decides membership in S for all rational vectors has 
height at least k, log c-k,n for k, = l/(1 +log2(2d- 1)) and k2 = 
(log,(2d- l)/(l + log,(2d- 1)). 

As examples of decision problems to which these theorems apply we give 
a subset of the examples listed by Ben-Or as applications of his general 
lower bound method for real-input problems. Note that a problem and its 
complement have the same complexity. 

Set Disjointness Problem: Given two sets A = {xi, . . . . x,) and B= 

{Y 1, . . . . y,} is their intersection disjoint? In this case S,, = {(x,, . . . . x,, 
y,, . . . . y,): xi # yj Vi, j}. Since Sz, satisfies the conditions for Theorems 4 
and 5, and all (n!)’ connected components of Szn are open and thus have 
non-null interior, we get a lower bound of Q(n log n) for the integer set 
disjointness problem on the bounded-order algebraic decision tree model. 

Extreme Points Problem: Given a vector in !R2” specifying n points in the 
plane does the convex hull of the n points have n distinct vertices? As 
shown in (Steele and Yao, 1982) the solution space has (n - l)! connected 
components. These are all open since small perturbations of the vertices of 
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a convex polygon do not change its convexity, nor its number of vertices. 
The conditions of Theorems 4 and 5 are met, so we get a lower bound of 
Q(n log n) for the integer extreme points problem on the bounded-order 
algebraic decision tree model. 

Sign of an Ordering Permutation: Given (x,, . . . . x,) E %” is there a per- 
mutation of odd parity that orders the x’s? The complementary problem 
has solution spaces S, = {(x,, . . . . x,): .x,(,) < x,,~, < . . . < x,(,, for some 
even permutation o}. S, satisfies the conditions of Theorems 4 and 5, and 
has n!/2 connected components, all open. So we get a lower bound of 
s2(n log n) for the integer version of the problem on the bounded-order 
algebraic decision tree model. 

Other real-input decision problems which Ben-Or gave lower bounds for 
are the knapsack problem, which violates the scaling invariance property 
needed for Theorem 4, and the set equality problem (Is A = {x,, . . . . x,j 
equal to B = { y,, . . . . y,}?) for which it is not clear how to profitably apply 
Theorem 5. 

5. ALGEBRAIC COMPUTATION TREES 

In this section we carry over Theorem 5-lower bounds for rational 
version of problems-to the algebraic computation tree model. 

THEOREM 6. Let SC W’ and let c be the number of connected com- 
ponents of S which have non-null interior. Suppose that any point outside of 
S is a limit of rational points outside S. Then any algebraic computation tree 
which decides membership in S for all rational n-vectors has height at least 
k, log c - k,n, where k, = l/( 1 + log, 3) and k, = log, 3/( 1 + log, 3). 

In particular this implies a lower bound of C2(n log n) for the rational 
element distinctness problem on the algebraic computation tree model. 

We note than Ben-Or states a version of this theorem but one which 
does not provide an 52(n log n) lower bound for rational element distinct- 
ness. 

ProoJ: Essentially the same proof works. Define the S,‘s, and I and E 
as before. The only change is that each S, is now the solution space of a 
set of equalities and inequalities involving the algebraic functions of the 
inputs which correspond to the comparison nodes of the tree. 

It is still the case that if no equalities are involved-i.e., u E Z-then S, is 
open and cannot cheat. 

If equalities are involved-i.e., v E E-then S, E U {f-‘(O): f  an algebraic 
function of x,, . . . . x, corresponding to a comparison node of the 
tree} = g- ‘(0) for some algebraic function g. This set has empty interior, 
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so it cannot contain any of the c connected components of S which have 
non-null interior. Thus the S,‘s for u E I must have c connected components 
altogether. 

To complete the proof we need a bound on the number of connected 
components of one S,. Ben-Or gives a bound of 2 .3”+ A - ‘. (This bound 
follows from the Milnor-Thorn result though not directly). Then 

Taking logarithms yields h z k, log c - k,n for k, and k, as given. 1 

Theorem 6 provides lower bounds for the rational versions of the 
problems in Section 4 on the algebraic computation tree model. 

One can compute as well as decide on an algebraic computation tree. 
Again following examples from (Ben-Or, 1983) the present result implies 
lower bounds of Q(n log n) on the algebraic computation tree model for 
the problem of computing the discriminant JJ,, j (xi - .xj) of rationals 
Xl, . . . . x,, and for the problem of computing the resultant n,,, (xi -x,) of 
rationals x1, . . . . x,, y,, . . . . y,. In the first case a faster algorithm would 
provide a fast rational element distinctness test; and in the second case a 
faster algorithm would provide a fast test for the rational set disjointness 
problem. 
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