Homepage for the Discipline MO444 and MC886 |
|
|
|
|
|
|
|
Class Materials |
Support Material |
Presentations |
Practical Assignments
|
|
|
|
|
ApresentaĆ§Ć£o |
|
|
|
Professor: Anderson Rocha
Class |
Day |
Time |
Room |
A |
Mondays |
19-20:40 |
CB01 |
|
Wednesdays |
21-22:40 |
CB02 |
Extra-Class Office Hours (Prof. Anderson Rocha): Every Tuesday from 18:00 to 19:15, Office #79, IC/Unicamp.
Extra-Class Office Hours (Samuel Fadel): Every Thursday from 17:30 to 19:30, Room #322, IC/Unicamp.
Posts:
|
|
16/May/2018 |
Assignment #04 is now available. |
23/April/2018 |
Assignment #03 is now available. |
02/April/2018 |
Assignment #02 is now available. |
19/March/2018 |
As we have discussed last class, we WILL NOT have classes this week (March 19th and March 21st).
TA Samuel Fadel will be in the classroom taking questions. |
13/March/2018 |
Assignment #01 is now available. |
12/March/2018 |
Lectures slides (4,5,6) are available. |
06/March/2018 |
Lectures slides (1,2,3) are available. |
22/Jan/2018 |
Class description, rules and syllabus are already available. |
|
|
|
|
|
|
|
|
|
|
|
Aula #0 - Presentation of the discipline.
Syllabus. |
|
121 KB |
(PDF) |
|
Lecture Slides -- Introduction Class -- Introduction to Machine Learning, problems, data, tools.
Reading: IAAM, Chapter #1/2/3; PRML, Chapter #1 |
|
3.4 MB |
(PDF) |
|
Lecture Complementary Slides Introduction to Machine Learning, problems, data, tools.
Reading: IAAM, Chapter #1/2/3; PRML, Chapter #1 |
|
38 MB |
(PDF) |
|
| | |
Up |
Lecture Slides Linear Regression, Cost Function, Gradient Descent, Generalization of GD, Model Complexity, Overfitting/Overfitting, Multi-variate Regression.
Reading: Elements, Chapter #3; PRML, Chapter #3 |
|
15 MB |
(PDF) |
|
Lecture Slides Logistic Regression, hypothesis representation, decision boundary, cost function, simplified cost function, GD, multiclass classification.
Reading: Elements, Chapter #4/5; PRML, Chapter #3/4 |
|
7 MB |
(PDF) |
|
Lecture Slides Regularization, bias/variance.
Reading: Elements, Chapter #5; PRML, Chapter #3 |
|
4 MB |
(PDF) |
|
| | |
Up |
Lecture Slides Perceptrons, neural networks.
Reading: IAAM, Chapter #7; PRML, Chapter #5 |
|
11.7 MB |
(PDF) |
|
Lecture Slides Neural networks (continued).
Reading: IAAM, Chapter #7; PRML, Chapter #5 |
|
12.7 MB |
(PDF) |
|
Lecture Slides Deep Learning (Part #1).
Reading: Ian Goodfellow's Book - Chapter Intro and CNNs |
|
7.6 MB |
(PDF) |
|
Lecture Slides Deep Learning (Part #2).
Reading: Ian Goodfellow's Book - Chapter Intro and CNNs |
|
5.4 MB |
(PDF) |
|
Lecture Slides Deep Learning (Part #3).
Reading: Ian Goodfellow's Book - Chapter Intro and CNNs |
|
4.9 MB |
(PDF) |
|
Lecture Slides Deep Learning (Part #4).
Reading: Ian Goodfellow's Book - Chapter Intro and CNNs |
|
6.4 MB |
(PDF) |
|
| | |
Up |
Lecture Slides Unsupervised Learning - Clustering (Part #1).
Reading: Elements Chapter 12, PRML Chapter 9, IAAM Chapter 12 |
|
26.2 MB |
(PDF) |
|
Lecture Slides Unsupervised Learning - Clustering (Part #2).
Reading: Elements Chapter 12, PRML Chapter 9, IAAM Chapter 12 |
|
9 MB |
(PDF) |
|
| | |
Up |
Lecture Slides Dimensionality Reduction (Part #1).
Reading: PRML Chapter 12, Elements Chapter 4, A Tutorial on PCA, Jonathon Shlens (PDF) |
|
1.2 MB |
(PDF) |
|
Lecture Slides Dimensionality Reduction (Part #2).
Reading: PRML Chapter 12, Elements Chapter 4, A Tutorial on PCA by Jonathon Shlens (PDF) |
|
3.1 MB |
(PDF) |
|
Lecture Slides Dimensionality Reduction (t-SNE).
Reading: Visualizing Data using t-SNE (PDF) |
|
0.6 MB |
(PDF) |
|
| | |
Up |
Lecture Slides Support Vector Machines (Part #1).
Reading: |
|
1.9 MB |
(PDF) |
|
Lecture Slides Support Vector Machines (Part #2).
Reading: |
|
1.7 MB |
(PDF) |
|
Lecture Slides Support Vector Machines (Part #3).
Reading: |
|
2.0 MB |
(PDF) |
|
Lecture Slides Classification Trees.
Reading: Mitchell, Chapter 3 |
|
1.7 MB |
(PDF) |
|
Class Material #01
Subjects
- Introduction to ML
- Supervised Learning vs Unsupervised Learning vs Semi-Supervised Learning
- Linear Regression
- Cost Function
- Gradient Descent
- Generalization of Gradient Descent
- Model Complexity
- Overfitting vs. Generalization
- Multi-variate Regression
- Normalization
- Polynomial Regression
- Normal Equations vs. Gradient Descent
- Logistic Regression
- Decision Boundaries
- Logistic Regression and Cost Function
- Logistic Regression and Multi-class extensions
- Regularization
- Regularized Linear Regression and Logistic Regression
|
|
12.3 MB |
(PDF) |
|
| | |
Up |
Class Material #02
Subjects
- Perceptron
- Effects of Dimensionality
- Neural Networks
- Cost Function
- Backpropagation
- Gradient Checking
|
|
7.8 MB |
(PDF) |
|
Class Material #03
Subjects
- Unsupervised Learning
- Clustering
- K-Means
- Hard vs. Soft Assignment
- Gaussian Mixture Models (GMMs)
- Expectation/Maximization (EM)
- Dimensionality Reduction
- PCA and LDA
- Multi-class LDA
|
|
1.4 MB |
(PDF) |
|
Class Material #04
Subjects
- Evolutionary Computing
- Genetic Algorithms
- Genetic Programming
- Evolutionary Programming
- Evolutionary Strategies
- Operators
- Problem Examples
|
|
4.2 MB |
(PDF) |
|
| | |
Up |
Class Material #05
Subjects
- Data Representation vs. Data Classification
- Debugging an ML solution
- Performance Evaluation
- Bias vs. Variance
- ROC curves
- Bootstrapping
- Statistical Tests
- Wilcoxon Sign-Rank Test
- Friedman Test
- Post-tests
|
|
15.0 MB |
(PDF) |
|
| | |
Up |
Class Material #08
Subjects
- Support Vector Machines (I)
|
|
412 KB |
(PDF) |
|
Class Material #09
Subjects
- Support Vector Machines (II)
|
|
692 KB |
(PDF) |
|
Class Material #10
Subjects
- Support Vector Machines (III)
|
|
360 KB |
(PDF) |
|
Class Material #06
Subjects
- Decision tree learning
|
|
5.9 MB |
(PDF) |
|
Class Material #13
Subjects
- Naive Bayes
|
|
1.8 MB |
(PDF) |
|
| | |
Up |
Class Material #07
Subjects
- Sampling Theory
- Bagging
- Boosting
|
|
3.0 MB |
(PDF) |
|
| | |
Up |
Class Material #06
Subjects
- Decision tree learning
|
|
5.9 MB |
(PDF) |
|
| | |
Up |
| | |
Up |
Class Material #11
Subjects
- Random Forests (I)
|
|
1.8 MB |
(PDF) |
|
Class Material #12
Subjects
- Random Forests (II)
|
|
1.8 MB |
(PDF) |
|
| | |
Up |
| | |
Up |
|
|
|
|
|
|
|
|
Reports.
Use this model for the assignment reports. |
|
|
|
|
|
|
|
Up |
|
|
|
|