Pornography detection using BossaNova video descriptor

Abstract

In certain environments or for certain publics, pornographic content may be considered inappropriate, generating the need to be detected and filtered. Most works regarding pornography detection are based on the detection of human skin. However, a shortcoming of these kind of approaches is related to the high false positive rate in contexts like beach shots or sports. Considering the development of low-level local features and the emergence of mid-level representations, we introduce a new video descriptor, which employs local binary descriptors in conjunction with BossaNova, a recent mid-level representation. Our proposed method outperforms the state-of-the-art on the Pornography dataset.

Publication
In: European Signal Processing Conference (EUSIPCO’14)
Date