Little is known on how visual content affects the popularity on social networks, despite images being now ubiquitous on the Web, and currently accounting for a considerable fraction of all content shared. Existing art on image sharing focuses mainly on non-visual attributes. In this work we take a complementary approach, and investigate resharing from a mainly visual perspective. Two sets of visual features are proposed, encoding both aesthetical properties (brightness, contrast, sharpness, etc.), and semantical content (concepts represented by the images). We collected data from a large image-sharing service (Pinterest) and evaluated the predictive power of different features on popularity (number of reshares). We found that visual properties have low predictive power compared that of social cues. However, after factoring-out social influence, visual features show considerable predictive power, especially for images with higher exposure, with over 3:1 accuracy odds when classifying highly exposed images between very popular and unpopular.