A Survey of Verifiable Delegation of Computations

Rosario Gennaro

The City College of New York rosario@cs.ccny.cuny.edu

CANS 2013, Paraty, Brasil November 22, 2013

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
•				
	ino			

Motivation

ain

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

Dutline Motivation	Verifiable Computation	Memory Delegation	Conclusion	
•				

Motivation

aik Outline

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

	Motivation	Verifiable Computation	Memory Delegation	Conclusion
•				
	•			

Motivation

aik Outline

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion 00
Computing	g on Demand			

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion
Computing	g on Demand			

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion
Computing	g on Demand			

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline 0	Motivation 0●0	Verifiable Computation	Memory Delegation	Conclusion
Small Dev	vices			

- Small devices outsourcing complex computing problems to larger servers
 - Photo manipulations
 - Cryptographic operations
- Same issues:
 - Confidentiality of data
 - Correctness of result

Outline 0	Motivation 0●0	Verifiable Computation	Memory Delegation	Conclusion
Small De	evices			

- Small devices outsourcing complex computing problems to larger servers
 - Photo manipulations
 - Cryptographic operations
- Same issues:
 - Confidentiality of data
 - Correctness of result

Outline 0	Motivation 00●	Verifiable Computation	Memory Delegation	Conclusion

Large Scale Computations

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 - Currently use redundancy

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			
	C + C			

Large Scale Computations

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 Currently use redundancy

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			
1 0				

Large Scale Computations

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 - Currently use redundancy

Outline 0	Motivation 000	Verifiable Computation ●00000000	Memory Delegation	Conclusion
Verifiable (Computation			

- \blacksquare The client sends a function F and an input x to the server
- The server returns y = F(x) and a proof Π that y is correct. Verifying Π should take less time than computing F.

Outline 0	Motivation 000	Verifiable Computation •00000000	Memory Delegation	Conclusion
Verifiable	Computation			

- \blacksquare The client sends a function F and an input x to the server
- The server returns y = F(x) and a proof Π that y is correct. Verifying Π should take less time than computing F.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion

Interactive Proofs (GMR,B)

- An all powerful Prover interacts with a poly-time Verifier
 - Prover convinces Verifier of a statement she cannot decide on her own
 - Probabilist guarantee
 - All of PSPACE can be proven this way [LFKN,S]
- We want something different
 - A scaled back version of this protocols for efficient computations
 - A powerful but still efficient prover: its complexity should be as close as possible to the original computation
 - A super-efficient Verifier: ideally linear time

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
1				

- Interactive Proofs (GMIR,B)
 - An all powerful Prover interacts with a poly-time Verifier
 - Prover convinces Verifier of a statement she cannot decide on her own
 - Probabilist guarantee
 - All of PSPACE can be proven this way [LFKN,S]
 - We want something different
 - A scaled back version of this protocols for efficient computations
 - A powerful but still efficient prover: its complexity should be as close as possible to the original computation
 - A super-efficient Verifier: ideally linear time

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Muggles P	roofs (GKR)			

Poly-time Prover interacts with a quasi-linear Verifier

Refines the proof that IP=PSPACE to efficient computations

 \blacksquare For a log-space uniform NC circuit of depth d

- Prover runs in poly(n)
- Verifier runs in O(n + poly(d))
- Interactive $(O(d \cdot \log n) \text{ rounds})$
- Unconditional Soundness

Outline 0	Motivation 000	Verifiable Computation 00●000000	Memory Delegation	Conclusion
Muggles P	roofs (GKR)			

- Poly-time Prover interacts with a quasi-linear Verifier
 - Refines the proof that IP=PSPACE to efficient computations
- \blacksquare For a log-space uniform NC circuit of depth d
 - Prover runs in poly(n)
 - Verifier runs in O(n + poly(d))
 - Interactive ($O(d \cdot \log n)$ rounds)
 - Unconditional Soundness

Outline 0	Motivation 000	Verifiable Computation	Memory Del	egation Conclusion	
Optimizati	ons and Im	plementations ((CMT,T)		

\blacksquare Prover can be implemented in $O(S\log S)$

- $\hfill\blacksquare$ Where S is the size of the circuit computing the function
- $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.

Protocol remains highly interactive

Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

Outline 0	Motivation 000	Verifiable Computation	Mem	nory Delegation	Conclusion
Optimizati	ons and Im	plementations ((CMT,T)		

- \blacksquare Prover can be implemented in $O(S\log S)$
 - $\hfill\blacksquare$ Where S is the size of the circuit computing the function
 - $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.
- Protocol remains highly interactive
 - Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

Outline 0	Motivation 000	Verifiable Computation	Mem	nory Delegation	Conclusion
Optimizati	ons and Im	plementations ((CMT,T)		

- \blacksquare Prover can be implemented in $O(S\log S)$
 - $\hfill\blacksquare$ Where S is the size of the circuit computing the function
 - $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.
- Protocol remains highly interactive
 - Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)

• Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity ${\cal O}(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
۸				

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)

Can we use different arithmetizations?

- Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
- Linear Prover complexity?

Antimetization

- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Arithmotiz	ation			

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)
- Can we use different arithmetizations?
 - Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
 - Linear Prover complexity?
- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Arithmati	tation			

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)
- Can we use different arithmetizations?
 - Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
 - Linear Prover complexity?
- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Quadratic	Span Program	ns (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, ..., v_{n+m}\}$, $W = \{v_1, ..., v_{n+m}\}$ and a target polynomial t.
 - We say that a QSP (V,W,t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - π t divides the product of a linear combination of subsets of V and W
 - $= t \left(\Sigma_{i=1}^{n} a_i v_i \right) \cdot \left(\Sigma_{i=1}^{n} b_i v_i \right)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Quadratic	Span Prog	rams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, ..., v_{n+m}\}$, $W = \{w_1, ..., w_{n+m}\}$ and a target polynomial t
 - We say that a QSP (V, W, t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Quadratic	Span Prograu	ms (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - We say that a QSP (V, W, t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Quadratic	Span Program	ns (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)

 Build two copies of the "checking" span program and test them against each other

- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - \blacksquare We say that a QSP (V,W,t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W

$$\bullet t|(\sum_{i=1}^n a_i v_i) \cdot (\sum_{i=1}^n b_i w_i)$$

• where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Quadratic	Span Program	ns (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - \blacksquare We say that a QSP (V,W,t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
The QSF	^D protocol			

In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$

• for a secret random value s.

 \blacksquare On input x the server finds the coefficients $a_i,\,b_i$ and polynomial h such that

 $\bullet t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

- Efficiency:
 - The verifier is linear to prepare the input; constant time to verify the result
 - Prover is quasi-linear the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
The QSF	^D protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that
 - $t \cdot h = (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
- \blacksquare Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s
 - Verifier checks the equation using bilinear maps
- Efficiency:
 - The verifier is linear to prepare the input; constant time to verify the result
 - Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
The QSI	P protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value *s*.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.
| Outline
0 | Motivation
000 | Verifiable Computation | Memory Delegation | Conclusion |
|--------------|-------------------|------------------------|-------------------|------------|
| The OS | P protocol | | | |

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h

• Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
The OS	P protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion

Implementation Results

Pinocchio (PGHR)

An end-to-end toolchain that compiles a subset of C into QSPs

- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Implement	ation Results			

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

Outline 0	Motivation 000	Verifiable Computation 00000000●	Memory Delegation	Conclusion
Implement	ation Results			

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed

Verification time is 10ms

- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM.
 - Then the TiayRam code is compiled into a circuit

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Implemen	ntation Resu	ilts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- a A QSP is built for this circuit.
 - » Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found.
 - Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs) A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Implemen	ntation Resu	ilts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier.
 - Proof size 322 bytes
- Verification time dependent on x (from 103ms to 5s for long inputs) A bit more efficient (or the Prover)
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	00000000●		00
Impleme	ntation Resu	ilts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation	Verifiable Computation	Memory Delegation	Conclusion
Implemen	tation Resu	ilts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation	Verifiable Computation	Memory Delegation	Conclusion
Implemen	tation Resu	ilts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
- Verification time dependent on x (from 103ms to 5s for long inputs)
 A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Impleme	entation Resu	ılts		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation ●000000	Conclusion
Outsourc	ing Your Da	ata		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation ●000000	Conclusion
Outsourci	ng Your Da	ta		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation ●000000	Conclusion
Outsourci	ng Your Da	ta		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 0●00000	Conclusion
Homomorp	hic Message	Authenticators ((GW)	

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - \blacksquare Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		0●00000	00
Homomorp	hic Message	Authenticators (GW)	

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - $\hfill Verification time may be as long as computing <math display="inline">F$ focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		0●00000	00
Homomorp	hic Message	Authenticators (GW)	

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - \blacksquare Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		0●00000	00
Homomorp	hic Message	Authenticators (GW)	

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - \blacksquare Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

Outline 0		Motivation 000		Verifiable Computation	Memory Delegation	Conclusion
_	c	(D	1.010			

- Proofs of Retrievability (JK)
 - Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short challenge c
 - \blacksquare Server responds with a short answer a
 - avoid reading the entire file to produce the answer
 - A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a linearly homomorphic MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - \blacksquare The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
 - The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 00●0000	Conclusion
Proofs of I	Retrievability	(JK)		

- Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short challenge c
 - \blacksquare Server responds with a short answer a
 - avoid reading the entire file to produce the answer
 - A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a linearly homomorphic MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
 - The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 00

Proofs of Retrievability (JK)

- Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short challenge c
 - Server responds with a short *answer* a
 - avoid reading the entire file to produce the answer
- A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a linearly homomorphic MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - \blacksquare The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
- The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusio
0	000		000€000	00
$\mathbf{x} \in \mathbf{C} \setminus \mathbf{I}$				

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Can be handled by Merkle trees
 - $O(\log n)$ complexity (time/bandwidth)
 - Can we do better?
- Encode the file as the polynomial $F(X) = \prod_i (X w_i)$
 - Note that F(w) = 0 if and only if $w \in F$
- Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline 0	Motivation 000	n Verifiable Computation Memory Deleg		Conclusion
$x \rightarrow c$				

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Can be handled by Merkle trees
 - $O(\log n)$ complexity (time/bandwidth)
 - Can we do better?

Encode the file as the polynomial F(X) = Π_i(X − w_i) Note that F(w) = 0 if and only if w ∈ F

 Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
N / C 1 1				

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Can be handled by Merkle trees
 - $O(\log n)$ complexity (time/bandwidth)
 - Can we do better?

\blacksquare Encode the file as the polynomial $F(X) = \Pi_i (X-w_i)$

• Note that F(w) = 0 if and only if $w \in F$

 Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 000●000	Conclusion
V · · · · · · ·				

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Can be handled by Merkle trees
 - $O(\log n)$ complexity (time/bandwidth)
 - Can we do better?

• Encode the file as the polynomial $F(X) = \prod_i (X - w_i)$

- Note that F(w) = 0 if and only if $w \in F$
- Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 0000●00	Conclusion
Verifiable (Computation	of Polynomials (RG	(\mathbf{M})	

- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - \blacksquare Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns • $y = \sum_i a_i x^i$ and $t = \sum_i t_i x^i$
- The client checks that t = cy + R(x)
 - \blacksquare Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use closed-form efficient PRFs
 - \blacksquare Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Verifiable (Computation	of Polynomials (BGV)	

- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - \blacksquare Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns • $y = \Sigma_i a_i x^i$ and $t = \Sigma_i t_i x^i$
- The client checks that t = cy + R(x)
 - Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use closed-form efficient PRFs
 - \blacksquare Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Varifiable	Computation	of Polynomials (RC	(1/)	

Verifiable Computation of Polynomials (BGV)

- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - \blacksquare Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns • $y=\Sigma_i a_i x^i$ and $t=\Sigma_i t_i x^i$
- The client checks that t = cy + R(x)
 - \blacksquare Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - \blacksquare Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Varifiable (Computation	of Polynomials (RC	\/)	

- Client stores a high degree polynomial $F(X) = \sum_{i=1}^{n} X_{i}$
 - Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - \blacksquare Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
 - Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
 - When the client queries the value x, the server returns • $y = \sum_i a_i x^i$ and $t = \sum_i t_i x^i$
 - The client checks that t = cy + R(x)
 - Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - \blacksquare Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 00000€0	Conclusion 00
Keywor	d Search Opt	imizations (GPSS)		
	Server has to rea can we use o	nd the entire file to answ ur techniques together wit	<i>i</i> er queries th some "indexing"?	
	A simple "bucke ■ Partition wor ■ Use polynom ■ If m ≈ n we	t-hashing" index ds into m buckets via has ial scheme on each bucket get expected constant size	hing t e buckets	

- client keeps track of "state" using a "timestamp authentication scheme" (as in previous talk)
 - \blacksquare If using Merkle trees cost is $O(\log \ell)$ where ℓ is the number of updates
- Can encrypt document with additive homomorphic encryption
 - Server only computes linear operations
 - Using pseudo-random pseudonyms for the keywords $w_i = PRF_k(W_i)$ we get keyword privacy (e.g. previous talk)
 - No need to prepare a keyword-specific index as in SSE

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 00000€0	Conclusion
Keyword S	earch Optimi	zations (GPSS)		

- Server has to read the entire file to answer queries
 - can we use our techniques together with some "indexing"?
- A simple "bucket-hashing" index
 - \blacksquare Partition words into m buckets via hashing
 - Use polynomial scheme on each bucket
 - \blacksquare If $m\approx n$ we get expected constant size buckets
- Allows efficient updates
 - when adding or removing a word from a bucket, re-authenticate the entire polynomial associated with it.
 - client keeps track of "state" using a "timestamp authentication scheme" (as in previous talk)
 - \blacksquare If using Merkle trees cost is $O(\log \ell)$ where ℓ is the number of updates
- Can encrypt document with additive homomorphic encryption
 - Server only computes linear operations
 - Using pseudo-random pseudonyms for the keywords $w_i = PRF_k(W_i)$ we get keyword privacy (e.g. previous talk)
 - No need to prepare a keyword-specific index as in SSE

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion
Keyword S	earch Optimiz	zations (GPSS)		

- Server has to read the entire file to answer queries
 - can we use our techniques together with some "indexing"?
- A simple "bucket-hashing" index
 - \blacksquare Partition words into m buckets via hashing
 - Use polynomial scheme on each bucket
 - \blacksquare If $m\approx n$ we get expected constant size buckets
- Allows efficient updates
 - when adding or removing a word from a bucket, re-authenticate the entire polynomial associated with it.
 - client keeps track of "state" using a "timestamp authentication scheme" (as in previous talk)
 - \blacksquare If using Merkle trees cost is $O(\log \ell)$ where ℓ is the number of updates
- Can encrypt document with additive homomorphic encryption
 - Server only computes linear operations
 - Using pseudo-random pseudonyms for the keywords $w_i = PRF_k(W_i)$ we get keyword privacy (e.g. previous talk)
 - No need to prepare a keyword-specific index as in SSE

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 00000€0	Conclusion 00
Keyword	l Search Opt	imizations (GPSS)		
∎ S	erver has to rea	d the entire file to answ	er queries	

- can we use our techniques together with some "indexing"?
- A simple "bucket-hashing" index
 - \blacksquare Partition words into m buckets via hashing
 - Use polynomial scheme on each bucket
 - \blacksquare If $m\approx n$ we get expected constant size buckets
- Allows efficient updates
 - when adding or removing a word from a bucket, re-authenticate the entire polynomial associated with it.
 - client keeps track of "state" using a "timestamp authentication scheme" (as in previous talk)
 - \blacksquare If using Merkle trees cost is $O(\log \ell)$ where ℓ is the number of updates
- Can encrypt document with additive homomorphic encryption
 - Server only computes linear operations
 - Using pseudo-random pseudonyms for the keywords $w_i = PRF_k(W_i)$ we get keyword privacy (e.g. previous talk)
 - No need to prepare a keyword-specific index as in SSE

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 000000●	Conclusion
Dynamic S	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 000000●	Conclusion
Dynamic S	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation 000000●	Conclusion
Dynamic S	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)
Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●○
Future Dir	ections 1			

- Protect information from the other clients
- Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
- Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
 - Rational Agents (AM): pay the server for his work. Make sure rewarded is maximized when the server is correct.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●○
Future Dir	ections 1			

- Protect information from the other clients
- Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality

Leverage successes in SMC.

General VC: Explore more realistic models of computation e.g. RAM

Explore more pragmatic approaches

- Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Rational Agents (AM): pay the server for his work. Make sure reward is maximized when the server is correct.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●○
Future Dir	ections 1			

- Protect information from the other clients
- Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality

Leverage successes in SMC.

- General VC: Explore more realistic models of computation
 - ∎ e.g. RAM

Explore more pragmatic approaches

- Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Rational Agents (AM): pay the server for his work. Make sure reward is maximized when the server is correct.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●○
Future Dir	ections 1			

- Protect information from the other clients
- Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality

Leverage successes in SMC.

- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
 - Rational Agents (AM): pay the server for his work. Make sure reward is maximized when the server is correct.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●○
Future Dir	ections 1			

- Protect information from the other clients
- Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality

• Leverage successes in SMC.

- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
 - *Rational Agents* (AM): pay the server for his work. Make sure reward is maximized when the server is correct.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○●
Future Directions 2				

- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○●
Future Dir	ections 2			

- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○●
Future Dir	ections 2			

- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations