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Introduction

Current detailed simulators are slow (~200 KIPS)

Simulation performance wall
More complex targets (multicore, memory hierarchy, ...)
Hard to parallelize

Problem: Time to simulate 1000 cores @ 2GHz for 1s at
200 KIPS: 4 months
200 MIPS:

Alternatives?
FPGAs: , good progress, but still hard to use
Simplified /abstract models: but inaccurate



ZSim Techniques

Three techniques to make 1000-core simulation practical:

Detailed DBT-accelerated core models to speed up sequential
simulation

Bound-weave to scale parallel simulation

Lightweight user-level virtualization to bridge user-level /full-
system gap

ZSim achieves high performance and accuracy:
Simulates 1024-core systems at 10s-1000s of MIPS
100-1000x faster than current simulators

Validated against real Westmere system, avg error ~10%



This Presentation is Also a Demo!

Z3Sim is simulating these slides
OOO cores @ 2 GHz

3-level cache hierarchy

ZSim performance relevant when busy
Running 2-core laptop CPU
~12x slower than 16-core server Idle (< 0.1 cores active) .

0.1 < cores active < 0.9

Busy (> 0.9 cores active) .

Total cycles and

instructions simulated Current simulation speed and basic stats
(in billions) (updated every 500ms)
Cycles: 1.4 B Sim Speed: 172.4 MCPS Avg Act Cores: 1.00
Instrs: 1.3 B Sim Speed: 169.2 MIPS Avg Core IPC: 0.98



Main Design Decisions

1 General execution-driven simulator:

Emulation? (e.g., gem5, MARSSx86) Cycle-driven?
[Instrumentation? (e.g., Graphite, Sniper) Event-driven?
Dynamic Binary Translation (Pin) DBT-accelerated,
v Functional model “for free” instruction-driven core
X Base ISA = Host ISA (x86) +

Event-driven uncore



Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

01 Lightweight user-level virtualization



Accelerating Core Models

Shift most of the work to DBT instrumentation phase

Basic block Instrumented basic block + Basic block descriptor
mov  (%rbp), $rcx Load (addr = (%rbp)) Ins%pop decoding

add %Srax, %$rbx mov (3rbp), srcx .

mov  %$rdx, (3rbp) add %$rax, $rdx Uop dependencies,

ja  40530a Store(addr = (%rbp)) functional units, latency

mov Srdx, (Srbp)
BasicBlock (BBLDescriptor)
Ja 10840530a

Front-end delays

Instruction-driven models: Simulate all stages at once for each
instruction/ Hop

Accurate even with OOQ if instruction window prioritizes older instructions
, but more complex than cycle-driven

See paper for details



Detailed OOO Model

OQOO core modeled and validated against Westmere

Main Features

Wrong-path fetches
Branch Prediction

Front-end delays (predecoder, decoder)
Detailed instruction to pop decoding

Rename /capture stalls
IW with limited size and width

Functional unit delays and contention
Detailed LSU (forwarding, fences,...)

Reorder buffer with limited size and width



Detailed OOO Model

OQOO core modeled and validated against Westmere

Fundamentally Hard to Model

Wrong-path execution

In Westmere, wrong-path instructions don’t
affect recovery latency or pollute caches

Skipping OK

Not Modeled (Yet)

¢ Rarely used

instructions
[ } BTB
b 1SD

TLBs




Single-Thread Accuracy
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1 9.7% average IPC error, max 24%, 18/29 within 10%



Single-Thread Performance

01 Host: E5-2670 @ 2.6 GHz (single-thread simulation)
0 29 SPEC CPU2006 apps for 50 Billion instructions
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~10-100x faster
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Parallelization Techniques

Parallel Discrete Event Simulation (PDES): Host Host

VI Thread O Thread 1
Divide components across host threads red red

Execute events from each component 15
15

maintaining illusion of full order

v’ Accurate 5

Skew < 10 cycles LQ |5
X Not scalable

10

Lax synchronization: Allow skews above inter-component
latencies, tolerate ordering violations

v’ Scalable
X |naccurate

13



Characterizing Interference

14
Path-altering interference Path-preserving interference
If we simulate two accesses out of order, their If we simulate two accesses out of order, their
paths through the memory hierarchy change timing changes but their paths do not

GETSA  GETS A GETS A GETS A
HIT HIT MISS MISS

GETS A
MISS

GETS B GETS A GETS A
HIT MISS

In small intervals (1-10K cycles), path-altering

interference is extremely rare (<1 in 10K accesses)




Bound-Weave Parallelization

o Divide simulation in small intervals (e.g., 1000 cycles)

o1 Two parallel phases per interval: Bound and weave

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave equivalent to PDES

for path-preserving interference



Bound-Weave Example 6

1 2-core host simulating Mem Ctrl 0 i Mem Ctrl 1
4-core system

1 1000-cycle intervals

©1 Divide components
among 2 domains

Domain O i Domain 1

Bound Phase: Unordered simulation until

cycle 1000, gather access traces
Host Thread O Core O Core 1 i Core 3 Core 1

Host Thread 1 Core 3 Core 2

Weave Phase: Parallel event-driven simulation of Bound Phase
gathered traces until cycle 1000 (until cycle 2000)

Host
Time

\ 4




Bound-Weave Take-Aways

Minimal synchronization:
Bound phase: Unordered accesses (like lax)
Weave: Only sync on actual dependencies

No ordering violations in weave phase

Works with standard event-driven models
e.g., 110 lines to integrate with DRAMSim2

See paper for details!
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Multithreaded Accuracy
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23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM
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11.2% avg perf error (not IPC), 10/23 within 10%

Similar differences as single-core results

Scalability, contention model validation = see paper



1024-Core Performance

71 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)
71 Results for the 14/23 parallel apps that scale
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Bound-Weave Scalability
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Lightweight User-Level Virtualization ,

No 1Kcore OSs } ZSim has to be

No parallel full-system DBT user-level for now

Problem: User-level simulators limited to simple workloads

Lightweight user-level virtualization: Bridge the gap with
full-system simulation

Simulate accurately if time spent in OS is minimal



Lightweight User-Level Virtualization .

Multiprocess workloads
Scheduler (threads > cores)
Time virtualization

System virtualization

See paper for:

Simulator-OS deadlock
avoidance

Signals
ISA extensions

Fast-forwarding



ZSim Limitations

Not implemented yet:
Multithreaded cores

Detailed NoC models
Virtual memory (TLBs)

Fundamentally hard:
Simulating speculation (e.g., transactional memory)
Fine-grained message-passing across whole chip

Kernel-intensive applications
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Conclusions o

Three techniques to make 1Kcore simulation practical
DBT-accelerated models: 10-100x faster core models

Bound-weave parallelization: ~10-15x speedup from
parallelization with minimal accuracy loss

Lightweight user-level virtualization: Simulate complex
workloads without full-system support

ZSim achieves high performance and accuracy:

Simulates 1024-core systems at 10s-1000s of MIPS
Validated against real Westmere system, avg error ~10%

Source code available soon at



