
ZSIM: FAST AND ACCURATE MICROARCHITECTURAL
SIMULATION OF THOUSAND-CORE SYSTEMS

DANIEL SANCHEZ
MIT

ISCA-40
JUNE 27, 2013

CHRISTOS KOZYRAKIS
STANFORD

Introduction 2

  Current detailed simulators are slow (~200 KIPS)

  Simulation performance wall
 More complex targets (multicore, memory hierarchy, …)
 Hard to parallelize

  Problem: Time to simulate 1000 cores @ 2GHz for 1s at
 200 KIPS: 4 months
 200 MIPS: 3 hours

  Alternatives?
  FPGAs: Fast, good progress, but still hard to use
  Simplified/abstract models: Fast but inaccurate

ZSim Techniques 3

  Three techniques to make 1000-core simulation practical:
1.  Detailed DBT-accelerated core models to speed up sequential

simulation
2.  Bound-weave to scale parallel simulation
3.  Lightweight user-level virtualization to bridge user-level/full-

system gap

  ZSim achieves high performance and accuracy:
  Simulates 1024-core systems at 10s-1000s of MIPS
  100-1000x faster than current simulators
 Validated against real Westmere system, avg error ~10%

This Presentation is Also a Demo! 4

  ZSim is simulating these slides
 OOO cores @ 2 GHz
 3-level cache hierarchy

Total cycles and
instructions simulated

(in billions)
Current simulation speed and basic stats

(updated every 500ms)

ZSim performance relevant when busy
Running 2-core laptop CPU
~12x slower than 16-core server

Busy (> 0.9 cores active)

0.1 < cores active < 0.9

Idle (< 0.1 cores active) !

Main Design Decisions 5

  General execution-driven simulator:

Functional
model

Timing
model

Emulation? (e.g., gem5, MARSSx86)
Instrumentation? (e.g., Graphite, Sniper)

Cycle-driven?
Event-driven?

 Functional model “for free”
 Base ISA = Host ISA (x86)

DBT-accelerated,
instruction-driven core

+
Event-driven uncore

Dynamic Binary Translation (Pin)

Outline 6

  Introduction
  Detailed DBT-accelerated core models
  Bound-weave parallelization
  Lightweight user-level virtualization

  Shift most of the work to DBT instrumentation phase

  Instruction-driven models: Simulate all stages at once for each
instruction/ µop
  Accurate even with OOO if instruction window prioritizes older instructions
  Faster, but more complex than cycle-driven

  See paper for details

Accelerating Core Models 7

mov (%rbp),%rcx
add %rax,%rbx
mov %rdx,(%rbp)
ja 40530a

Load(addr = (%rbp))
mov (%rbp),%rcx
add %rax,%rdx
Store(addr = (%rbp))
mov %rdx,(%rbp)
BasicBlock(BBLDescriptor)
ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding
µop dependencies,
functional units, latency
Front-end delays

+

Detailed OOO Model 8

  OOO core modeled and validated against Westmere
Main Features

Fetch

Decode

Issue

OOO
Exec

Commit

Wrong-path fetches
Branch Prediction

Front-end delays (predecoder, decoder)
Detailed instruction to µop decoding

Rename/capture stalls
IW with limited size and width

Functional unit delays and contention
Detailed LSU (forwarding, fences,…)

Reorder buffer with limited size and width

Detailed OOO Model 9

  OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO
Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

Rarely used
instructions

BTB
LSD
TLBs

In Westmere, wrong-path instructions don’t
affect recovery latency or pollute caches

Skipping OK

Not Modeled (Yet)

Single-Thread Accuracy 10

  9.7% average IPC error, max 24%, 18/29 within 10%

  29 SPEC CPU2006 apps for 50 Billion instructions
  Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT
  Simulated: OOO cores @ 2.27 GHz, detailed uncore

Single-Thread Performance 11

  Host: E5-2670 @ 2.6 GHz (single-thread simulation)
  29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

~3x between least and
most detailed models!

~10-100x faster

Outline 12

  Introduction
  Detailed DBT-accelerated core models
  Bound-weave parallelization
  Lightweight user-level virtualization

Parallelization Techniques 13

  Parallel Discrete Event Simulation (PDES):
 Divide components across host threads
  Execute events from each component

maintaining illusion of full order

  Lax synchronization: Allow skews above inter-component
latencies, tolerate ordering violations

Core 1 Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host
Thread 0

Host
Thread 1

5 10

15 15

10 5

 Scalable
  Inaccurate

 Accurate
 Not scalable

Skew < 10 cycles

Characterizing Interference 14
Path-altering interference

If we simulate two accesses out of order, their
paths through the memory hierarchy change

Path-preserving interference
If we simulate two accesses out of order, their

timing changes but their paths do not

GETS A
HIT

Core 0

LLC

Mem

GETS A
MISS

1 2

Core1 Core 0

LLC

Mem

GETS A
HIT

GETS A
MISS

2 1

Core 1

GETS B
HIT

Core 0

LLC (blocking)

Mem

GETS A
MISS

1 2

Core 1

3 4

5
6 GETS A

HIT

Core 0

LLC (blocking)

Mem

GETS A
MISS

2 1

Core 1

4 5

6
3

In small intervals (1-10K cycles), path-altering
interference is extremely rare (<1 in 10K accesses)

Bound-Weave Parallelization 15

  Divide simulation in small intervals (e.g., 1000 cycles)
  Two parallel phases per interval: Bound and weave

Bound-Weave equivalent to PDES
for path-preserving interference

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave Example 16

  2-core host simulating
4-core system

  1000-cycle intervals
  Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Unordered simulation until
cycle 1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of
gathered traces until cycle 1000

Bound Phase
(until cycle 2000)

…
Core 3

Core 2 Core 0

Core 1 Host Thread 0

Host Thread 1
Host
Time

Bound-Weave Take-Aways 17

  Minimal synchronization:
 Bound phase: Unordered accesses (like lax)
 Weave: Only sync on actual dependencies

  No ordering violations in weave phase

  Works with standard event-driven models
 e.g., 110 lines to integrate with DRAMSim2

  See paper for details!

Multithreaded Accuracy 18

  23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM

  11.2% avg perf error (not IPC), 10/23 within 10%
 Similar differences as single-core results

  Scalability, contention model validation see paper

1024-Core Performance 19

  Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)
  Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

~5x between least and
most detailed models!

~100-1000x faster

Bound-Weave Scalability 20

10.1-13.6x speedup @ 16 cores

Outline 21

  Introduction
  Detailed DBT-accelerated core models
  Bound-weave parallelization
  Lightweight user-level virtualization

Lightweight User-Level Virtualization 22

  No 1Kcore OSs
  No parallel full-system DBT

  Problem: User-level simulators limited to simple workloads

  Lightweight user-level virtualization: Bridge the gap with
full-system simulation
 Simulate accurately if time spent in OS is minimal

ZSim has to be
user-level for now

Lightweight User-Level Virtualization 23

  Multiprocess workloads
  Scheduler (threads > cores)
  Time virtualization
  System virtualization
  See paper for:

 Simulator-OS deadlock
avoidance

 Signals
  ISA extensions
 Fast-forwarding

ZSim Limitations 24

  Not implemented yet:
 Multithreaded cores
 Detailed NoC models
 Virtual memory (TLBs)

  Fundamentally hard:
 Simulating speculation (e.g., transactional memory)
 Fine-grained message-passing across whole chip
 Kernel-intensive applications

Conclusions 25

  Three techniques to make 1Kcore simulation practical
 DBT-accelerated models: 10-100x faster core models
 Bound-weave parallelization: ~10-15x speedup from

parallelization with minimal accuracy loss
 Lightweight user-level virtualization: Simulate complex

workloads without full-system support

  ZSim achieves high performance and accuracy:
 Simulates 1024-core systems at 10s-1000s of MIPS
 Validated against real Westmere system, avg error ~10%

  Source code available soon at zsim.csail.mit.edu

