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Introduction 2 

  Current detailed simulators are slow (~200 KIPS)  

  Simulation performance wall 
 More complex targets (multicore, memory hierarchy, …) 
 Hard to parallelize 

  Problem: Time to simulate 1000 cores @ 2GHz for 1s at 
 200 KIPS:   4 months 
 200 MIPS:  3 hours 

  Alternatives? 
  FPGAs: Fast, good progress, but still hard to use 
  Simplified/abstract models: Fast but inaccurate 



ZSim Techniques 3 

  Three techniques to make 1000-core simulation practical: 
1.  Detailed DBT-accelerated core models to speed up sequential 

simulation 
2.  Bound-weave to scale parallel simulation 
3.  Lightweight user-level virtualization to bridge user-level/full-

system gap 

  ZSim achieves high performance and accuracy: 
  Simulates 1024-core systems at 10s-1000s of MIPS 
  100-1000x faster than current simulators 
 Validated against real Westmere system, avg error ~10% 



This Presentation is Also a Demo! 4 

  ZSim is simulating these slides 
 OOO cores @ 2 GHz 
 3-level cache hierarchy 

 

Total cycles and 
instructions simulated 

(in billions)  
Current simulation speed and basic stats 

(updated every 500ms) 

ZSim performance relevant when busy 
Running 2-core laptop CPU 
~12x slower than 16-core server 

Busy (> 0.9 cores active) 

0.1 < cores active < 0.9 

Idle (< 0.1 cores active) ! 



Main Design Decisions 5 

  General execution-driven simulator: 

Functional 
model 

Timing 
model 

Emulation? (e.g., gem5, MARSSx86) 
Instrumentation? (e.g., Graphite, Sniper) 

Cycle-driven? 
Event-driven? 

 Functional model “for free” 
 Base ISA = Host ISA (x86) 

DBT-accelerated, 
instruction-driven core 

+ 
Event-driven uncore 

Dynamic Binary Translation (Pin) 



Outline 6 

  Introduction 
  Detailed DBT-accelerated core models 
  Bound-weave parallelization 
  Lightweight user-level virtualization 
 



  Shift most of the work to DBT instrumentation phase 

  

        

  Instruction-driven models: Simulate all stages at once for each 
instruction/ µop 
  Accurate even with OOO if instruction window prioritizes older instructions 
  Faster, but more complex than cycle-driven 

  See paper for details 

Accelerating Core Models 7 

mov  (%rbp),%rcx 
add  %rax,%rbx 
mov  %rdx,(%rbp) 
ja  40530a 

Load(addr = (%rbp)) 
mov  (%rbp),%rcx 
add  %rax,%rdx 
Store(addr = (%rbp)) 
mov  %rdx,(%rbp) 
BasicBlock(BBLDescriptor) 
ja  10840530a 

Basic block Instrumented basic block Basic block descriptor 

Insµop decoding 
µop dependencies, 
functional units, latency  
Front-end delays 

+ 



Detailed OOO Model 8 

  OOO core modeled and validated against Westmere 
Main Features 

Fetch 

Decode 

Issue 

OOO 
Exec 

Commit 

Wrong-path fetches 
Branch Prediction 

Front-end delays (predecoder, decoder) 
Detailed instruction to µop decoding 

Rename/capture stalls 
IW with limited size and width 

Functional unit delays and contention 
Detailed LSU (forwarding, fences,…) 

Reorder buffer with limited size and width 



Detailed OOO Model 9 

  OOO core modeled and validated against Westmere 

Fetch 

Decode 

Issue 

OOO 
Exec 

Commit 

Fundamentally Hard to Model 

Wrong-path execution 

Rarely used 
instructions 

 
BTB 
LSD 
TLBs 

In Westmere, wrong-path instructions don’t 
affect recovery latency or pollute caches  

Skipping OK 

Not Modeled (Yet) 



Single-Thread Accuracy 10 

  9.7% average IPC error, max 24%, 18/29 within 10% 

  29 SPEC CPU2006 apps for 50 Billion instructions 
  Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT 
  Simulated: OOO cores @ 2.27 GHz, detailed uncore 



Single-Thread Performance 11 

  Host: E5-2670 @ 2.6 GHz (single-thread simulation) 
  29 SPEC CPU2006 apps for 50 Billion instructions 

40 MIPS hmean 

12 MIPS hmean 

~3x between least and 
most detailed models! 

~10-100x faster 



Outline 12 

  Introduction 
  Detailed DBT-accelerated core models 
  Bound-weave parallelization 
  Lightweight user-level virtualization 
 



Parallelization Techniques 13 

  Parallel Discrete Event Simulation (PDES): 
 Divide components across host threads 
  Execute events from each component 

maintaining illusion of full order 

 

  Lax synchronization: Allow skews above inter-component 
latencies, tolerate ordering violations 

Core 1 Core 0 

Mem 0 

L3 Bank 0 L3 Bank 1 

Host 
Thread 0 

Host 
Thread 1 

5 10 

15 15 

10 5 

 Scalable 
  Inaccurate 

 Accurate 
 Not scalable 

Skew < 10 cycles 



Characterizing Interference 14 
Path-altering interference 

If we simulate two accesses out of order, their 
paths through the memory hierarchy change 

Path-preserving interference 
If we simulate two accesses out of order, their 

timing changes but their paths do not 

GETS A 
HIT 

Core 0 

LLC 

Mem 

GETS A 
MISS 

1 2 

Core1 Core 0 

LLC 

Mem 

GETS A 
HIT 

GETS A 
MISS 

2 1 

Core 1 

GETS B 
HIT 

Core 0 

LLC (blocking) 

Mem 

GETS A 
MISS 

1 2 

Core 1 

3 4 

5 
6 GETS A 

HIT 

Core 0 

LLC (blocking) 

Mem 

GETS A 
MISS 

2 1 

Core 1 

4 5 

6 
3 

In small intervals (1-10K cycles), path-altering 
interference is extremely rare (<1 in 10K accesses) 



Bound-Weave Parallelization 15 

  Divide simulation in small intervals (e.g., 1000 cycles) 
  Two parallel phases per interval: Bound and weave 

Bound-Weave equivalent to PDES 
for path-preserving interference 

Bound phase: Find paths 

Weave phase: Find timings 



Bound-Weave Example 16 

  2-core host simulating 
4-core system 

  1000-cycle intervals 
  Divide components 

among 2 domains Core 1 

L1I 

Core 0 Core 2 Core 3 

L1D L1I L1D L1I L1D L1I L1D 

Mem Ctrl 0 Mem Ctrl 1 

L2 L2 L2 L2 

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3 

Domain 0 Domain 1 

Core 0 

Core 3 

Core 1 

Core 2 

Bound Phase:  Unordered simulation until 
cycle 1000, gather access traces 

Domain 0 

Domain 1 

Weave Phase: Parallel event-driven simulation of 
gathered traces until cycle 1000 

Bound Phase 
(until cycle 2000) 

… 
Core 3 

Core 2 Core 0 

Core 1 Host Thread 0 

Host Thread 1 
Host 
Time 



Bound-Weave Take-Aways 17 

  Minimal synchronization: 
 Bound phase: Unordered accesses (like lax) 
 Weave: Only sync on actual dependencies 

  No ordering violations in weave phase  

  Works with standard event-driven models 
 e.g., 110 lines to integrate with DRAMSim2 

  See paper for details! 



Multithreaded Accuracy 18 

  23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM 

  11.2% avg perf error (not IPC), 10/23 within 10% 
 Similar differences as single-core results 

  Scalability, contention model validation  see paper 



1024-Core Performance 19 

  Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads) 
  Results for the 14/23 parallel apps that scale 

200 MIPS hmean 

41 MIPS hmean 

~5x between least and 
most detailed models! 

~100-1000x faster 



Bound-Weave Scalability 20 

10.1-13.6x speedup @ 16 cores 



Outline 21 

  Introduction 
  Detailed DBT-accelerated core models 
  Bound-weave parallelization 
  Lightweight user-level virtualization 
 



Lightweight User-Level Virtualization 22 

  No 1Kcore OSs 
  No parallel full-system DBT 

  Problem: User-level simulators limited to simple workloads 

  Lightweight user-level virtualization: Bridge the gap with 
full-system simulation 
 Simulate accurately if time spent in OS is minimal 

ZSim has to be 
user-level for now 



Lightweight User-Level Virtualization 23 

  Multiprocess workloads 
  Scheduler (threads > cores) 
  Time virtualization 
  System virtualization 
  See paper for: 

 Simulator-OS deadlock 
avoidance 

 Signals 
  ISA extensions 
 Fast-forwarding 



ZSim Limitations 24 

  Not implemented yet: 
 Multithreaded cores 
 Detailed NoC models 
 Virtual memory (TLBs) 

  Fundamentally hard:  
 Simulating speculation (e.g., transactional memory) 
 Fine-grained message-passing across whole chip 
 Kernel-intensive applications 
 



Conclusions 25 

  Three techniques to make 1Kcore simulation practical 
 DBT-accelerated models: 10-100x faster core models 
 Bound-weave parallelization: ~10-15x speedup from 

parallelization with minimal accuracy loss 
 Lightweight user-level virtualization: Simulate complex 

workloads without full-system support 

  ZSim achieves high performance and accuracy: 
 Simulates 1024-core systems at 10s-1000s of MIPS 
 Validated against real Westmere system, avg error ~10% 

  Source code available soon at zsim.csail.mit.edu 


