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Abstract—Current contrast enhancement algorithms occasion-
ally result in artifacts, over-enhancement, and unnatural effects
in the processed images. These drawbacks increase for images
taken under poor illumination conditions. In this paper, we
propose a content-aware algorithm that enhances dark images,
sharpens edges, reveals details in textured regions, and preserves
the smoothness of flat regions. The algorithm produces an ad hoc
transformation for each image, adapting the mapping functions
to each image’s characteristics to produce the maximum enhance-
ment. We analyze the contrast of the image in the boundary and
textured regions, and group the information with common char-
acteristics. These groups model the relations within the image,
from which we extract the transformation functions. The results
are then adaptively mixed, by considering the human vision
system characteristics, to boost the details in the image. Results
show that the algorithm can automatically process a wide range
of images—e.g., mixed shadow and bright areas, outdoor and
indoor lighting, and face images—without introducing artifacts,
which is an improvement over many existing methods.

Index Terms—Contrast enhancement, channel division, dark
image enhancement, contrast pair

EDICS Category: TEC-RST

I. INTRODUCTION

Contrast enhancement is essential to improve substandard
images that are captured in extreme lighting conditions, such
as excessively bright or dark environments that produce low
contrast images, or are backlit, which produces normal global-
contrast images with a low dynamic range in shadowed
areas. Several algorithms have been proposed to overcome
this problem: one of the simplest and most widely-used
techniques is Histogram Equalization (HE) [1]. In HE, the
cumulative density function (CDF) of the histogram is used
as the intensity transfer function; this method enhances the
contrast by distributing the CDF across the entire dynamic
range. However, this even distribution creates artifacts in the
smooth regions of the image. Moreover, it does not consider
the boundaries, which degrades the sharpness of the resulting
image.

Figure la presents a dark image, and Fig. 2a shows its
histogram, which exhibits high accumulation in the dark inten-
sities. Figure 1b is the result after HE; note the artifacts in the
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Fig. 1.  Various enhancement techniques for a dark image. (a) Original
image. (b) Result after HE, with artifacts. (c) Result of ORMIT, with minor
enhancements. (d) Result of the proposed approach, revealing details without
artifacts.

brighter regions of the image because a wider dynamic range
was assigned to the dark areas in the histogram due to their
dominance. This assignment expanded the dark regions and
compressed the bright ones, which created artifacts. Another
disadvantage of HE is the wash-out effect that occurs when
the original histogram does not occupy the entire dynamic
range of the image. Consequently, the equal redistribution
of HE can leave gaps in the final histogram. Thus, several
methods based on HE have been proposed in order to elim-
inate the shortcomings of the original technique [2]-[5]. For
example, the Bi-Histogram Equalization (BHE) method [2],
[5] splits the histogram into two parts based on where the
mean lies. Each part is then enhanced independently using
HE. BHE maintains the intensity mean of the original image,
which suppresses the over-enhancement problem. Unnatural
images are, however, still produced. Another popular method
is Adaptive Histogram Equalization (AHE) [3], [4], whereby
the histogram is equalized based on localized data. Even
though AHE provides significant contrast enhancement and
may preserve small details, over-enhancement and unnatural
images are still occasionally produced. Contrast stretching
algorithms and their adaptive versions (similar to AHE) are
additional types of methods that can produce good results
in dark images [6]; however, they produce no noticeable
improvement if the image already occupies the entire dynamic
range.

Consequently, researchers have developed more complex
methods to overcome the limitations of previous methods.
For instance, Safonov et al. [7] presented an enhancement
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Fig. 2. Histograms of Fig. 1 (Gray level vs. Number of pixels). (a)
Histogram of the dark image, with high accumulation in the dark intensities.
(b) Histogram of the HE result, which is spread equally, thereby creating
artifacts in the bright intensities. (c) Histogram of ORMIT result, which shows
no spread in the dark intensities. (d) Histogram of the result using the proposed
method, where the dark intensities are spread and the shape is maintained,
which reduces the artifacts.

method based on contrast stretching and alpha-blending of
both the brightness of the initial image and the estimations of
reflectance. It used bilateral filtering to estimate and correct the
reflectance of the image, while the brightness was corrected
using alpha-blending. The method is, however, computation-
ally expensive due to bilateral filtering, and it depends on
several constants to work properly. Another complex method
is the Multi-Scale Retinex (MSR) algorithm [8], which is a
fast version of the Retinex algorithm proposed by Land [9].
Note that the proposal by Land [9] is a different version of
the path-based Retinex [10]. The fast version of the MSR [8§]
is defined by

N
I = (log(I) — log(LPF,(I)), (1)

where LPF,(-) is the nth low-pass spatial filtering function
(each with a different standard deviation), I is the image to be
enhanced, I, is the enhanced image, and N is the number of
spatial filtering functions. Several other studies [11]-[14] have
explored different versions of the MSR [8] in an effort to im-
prove images; they performed a dark-tone correction based on
variations of the MSR algorithm. Nevertheless, methods based
on the MSR have high computational complexity. Another
widely-used method is the image enhancement algorithm,
Orthogonal Retino-Morphic Image Transform (ORMIT) [15],
which is defined as follows:

N
I =Y a;(I) x LPF(P,(F(I))) x Qi(F(I)) + (1), (2)
i=0
where P;(-) is an orthogonal basis of functions defined in
the range (0,1), Q;(-) is an anti-derivative of P;(-), LPF()
is a low-pass spatial filtering operator, F'(-) is a weighting
function similar to gamma correction, N is the number of
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bands, «; () and f;(-) are constants specific for each band, I
is the image to be enhanced, and I, is the enhanced image. The
choice of appropriate P;(-) functions allows the local contrast
to be incremented. The use of a low-pass filter removes
detail in the boundaries and produces a smooth variation in
the sharp boundaries, which is an undesirable effect. The
result of ORMIT applied to Fig. la (Fig. lc) shows no
noticeable improvement, and its histogram (Fig. 2c¢) does not
shift the dark distribution to increase its dynamic range. These
problems occur because the algorithm uses a pre-determined
set of functions to transform the image, which is not ideal for
all the different scenarios that exist. A solution to this problem
is to use the content of the image to enhance it.

A first step in the content-based enhancement was the
intensity pair distribution algorithm [16]. This algorithm com-
bines the global properties of HE and the local properties of
AHE. Both expansion and anti-expansion forces are used—the
former models the intensity difference in the image, and the
latter models the noise and intensity similarity. Moreover, the
anti-expansion force is used as damping factor to compensate
for the large accumulation in the expansion force. However,
the accuracy of this reduction requires a manual adjustment
in the algorithm parameters. Then, the transformation func-
tion can be generated by processing these forces. Yet, the
accumulation of mixed forces (bright and dark intensities)
in this algorithm leads to artifacts, and the method cannot
handle sharp boundaries, although some modifications have
been proposed [17], [18]. Furthermore, the intensity pair algo-
rithm produces no noticeable improvement without specifically
tuning its parameters.

In general, current enhancement algorithms use global infor-
mation, which result in the creation of artifacts, such as halo-
effects in sharp boundaries or noise effects. These algorithms
also require significant computation time due to their complex-
ity. Furthermore, they transform the image by using predefined
functions that cannot anticipate all possible scenarios, and
current methods employ smoothing functions that remove
the sharpness from the resulting image. Additionally, these
methods increase the contrast of flat regions, introducing
artifacts and creating odd-looking images. To overcome all
these problems, we analyze the content of the image and
determine the transformation function based on the results of
that analysis.

Given that humans have difficulty distinguishing the details
in the dark areas of an image, especially compared to the mid
and bright areas, our goal is to enhance the dark areas of the
image without introducing artifacts. Unfortunately, this is a
challenging task because the dark and bright regions need to
be treated independently, and each image has different com-
binations of those regions. Thus, assigning a fixed dynamic
range to each region will lead to undesired effects. Conse-
quently, we propose a content-aware method that analyzes
the contrast in the boundaries and in the texture regions to
produce ad hoc transformation functions. We separate the
different characteristics of the image and then group them
by simulating the human visual characteristics. Due to the
independent treatment needed for the groups, we build specific
functions for each group that will enhance its characteristics.
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Fig. 3. An abstraction of the proposed algorithm.
Finally, the results of the groups’ transformations are mixed
adaptively to boost the details in the image. Figure 1d shows
the result of the proposed method applied to Fig. la, which
exhibits a greater improvement in the mixed regions (dark and
bright) compared to the other methods. This improvement is
due to the particular transformation function that was created
through the analysis of the image, which preserves the image
characteristics while revealing the details. In addition, the
histogram corresponding to the proposed method (Fig. 2d)
demonstrates that characteristics of the image were indeed
preserved. Rather than change the shape of the histogram
(as HE does) or redistribute it poorly (as ORMIT does),
the proposed method spreads the dynamic range of the dark
intensities and maintains the shapes of their distributions.
This paper is organized as follows: Section II describes the
method of using contrast pairs in the channel division, as
well as the procedure to build the transformation functions.
Section III presents an evaluation framework for the enhance-
ment algorithm. Section IV presents results that illustrate the
effectiveness of the method compared with previous research.
Finally, Section V provides some concluding remarks.

II. CHANNEL DIVISION ENHANCEMENT

Unlike previous methods that use fixed transformation func-
tions, the proposed algorithm builds an ad hoc transformation
function based on information extracted from the image. That
information comes from the contrast in the boundaries and the
texture regions. Inspired by intensity pairs [16], we encode
contrast using contrast pairs. These pairs model the contrast
relation between the intensities of two neighboring pixels.
In other words, consider that, in the enhancement process,
each contrast pair acts like a force that spreads the intensities
that define it. Hence, when many pixels that share similar
characteristics (such as dark or bright intensities) are neigh-
bors, the forces created by their contrast pairs will separate
their intensities. Conversely, isolated pixels will maintain their
intensities due to the lack of interaction. Thus, we accumulate
the contrast-pairs into local contrast indicator (LCI) functions,
and merge such functions into channels, to reduce the artifact
creation—a process that we termed channel division. We
introduce this process because the accumulation of mixed
contrast-pairs inaccurately spread the dynamic range of some

Local Contrast Transformation Region
Functions

Merge using
Weighting
Functions

Enhanced

Images Image

intensities, due to the contribution of intensities with different
characteristics, such as bright intensities contributing to the
separation of dark intensities. Then, we group the channels
into region channels, which may simulate human visual char-
acteristics, and create a set of transformation functions from
their accumulated LCIs. Furthermore, we used a finer grain
for the channel division—i.e., intensity channels, that allow us
to control the interference and overlap of the contrast pairs.
These intensity channels became the building blocks for the
region channels. Finally, we used the region channel functions
to enhance the specific characteristics of each image, and we
merge the results of that process to reduce the artifacts and
to ensure maximum enhancement. Figure 3 summarizes the
entire algorithm.

To implement the proposed algorithm, we first transform the
image to the Hue-Saturation-Value (HSV) color space. Then,
we apply the proposed algorithm to the image intensity (V
component). After the enhancement, we use the hue (H) and
saturation (S) components from the original image and merge
them with the enhanced intensities to create the final image.
This procedure maintains the color (HS) of the image while
improving its intensity level (V).

Unlike previous intensity-pair based methods [16]-[18],
we use a simplified expansion force, in the form of a LCIL.
Moreover, in our experiments, we found that the inclusion of
the anti-expansion force, that models the intensity similarity
(smoothness) of the image and that is used as a damping
factor [16]—[18], produced no noticeable improvements to the
enhanced image, thus we did not use it. Moreover, previ-
ous methods adjusted the transformation function by tuning
the contributions of the expansion and anti-expansion forces
manually. In contrast, our method uses the channel division
and mixture process to adjust the final transformation, which
thereby enhances the image. Furthermore, since our method
uses a quadratic space in the number of intensities, our simpler
LCI functions compensate for the complexity introduced by
the channel division, especially compared to previous methods.
In average, for a general image, of approximately 415 thousand
pixels (665 x 625), our method needs 368 ms to enhance it.
Specifically, images of 533 x 400 and 1000 x 664 pixels are
processed in 163ms and 583 ms. We compute these times
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Fig. 4.  Different approaches to accumulate the votes of three contrast
pairs, pg , pg and pLB) . (a) A single channel accumulation of contrast pairs
(as previous methods did) is divided into (b) two different channels. The
accumulated contrast pairs are shown in the boxes, and their local contrast
indicators (represented by the arrows) shift the identity function (in gray) into
their transformation functions (shown in (a) black and (b) blue and red).

using a 4GB RAM and 2.5 GHz dual-core computer, with
un-optimized code written in C++.

A. Contrast Pair

We model the contrast—i.e., the intensity difference be-
tween two pixels—in the image through contrast-pairs, which
are similar to those proposed by Jen et al. [16]. A contrast
pair acts like a force that spreads apart the intensities that
define it. We model the interaction of the contrast pairs as a
local contrast indicator function. Consequently, we define a
contrast pair, p], between two given intensities, ¢ and j, as a
set of votes for every intensity in the intensity set {i,...,j}.
Moreover, we can consider the contrast pair, p?, to be a vector
of intensities whose length is equal to the intensities that has
ones (votes) in the set {i,...,j} and zeros anywhere else,
similar to the vectors shown in Fig. 4. Spatially, the contrast
pairs are constructed from the image using the eight neighbors
of each pixel. We define the set of contrast pairs for a pixel

(z,y) as

Pla,y) ={pe ) [@y) e M@y}l )
where pﬁ(z,’y,) is a contrast pair, .4 (x,y) contains the eight
neighbors of (z,y), and I(z,y) and I(a’,y’) are the intensities
of the pixels (z,y) and (a,y"), respectively. The contrast pairs
can be computed efficiently by scanning the top-left neighbors
of each pixel (i.e., the three neighbors above the pixel and the
one directly to its left), and the other four pairs are processed
when the bottom-right neighbors are scanned. This process
is possible because the contrast pairs are commutative—i.e.,
pl = pj-, and both define the same interval [16].

We classify the contrast pairs of each image into two
classes: edge and smooth. The former is found in the bound-
aries and texture regions, while the latter is found in the flat
regions. To classify the pairs, we take the intensity difference
between the pair’s intensities. If it exceeds some defined
threshold € (in our experiments we used 10 intensity levels),
then it is considered an edge contrast pair; otherwise it is
considered a smooth contrast pair.
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To create the transformation functions, we use the LCI
from the contrast pairs. Unlike Jen et al. [16], we use only
the normalized LCI to compute the transformation function
because we found that the channel division provides more
enhancement than the proposed method by Jen et al. Con-
sequently, the LCI in the proposed model is the accumulation
of the votes defined by the contrast pairs. In addition, we
focus on the edge contrast pairs because their accumulation
determines the transformation needed to reveal the details of
the image. As shown in Fig. 4, the LCI produce different
slopes according to their accumulation. Hence, when there is a
high accumulation of contrast pairs, a steep slope is generated
in the transformation function, and the intensities are spread
farther apart. In contrast, when there is a small accumulation,
the slope is close to the identity function, which maintains
the intensities throughout the transformation. This procedure
also preserves the aspect of the flat regions by ignoring the
contribution of the smooth contrast pairs in the transformation.
Hence, those intensities are not separated, which maintains the
appearance in the flat regions. As a result, the accumulation
of all the edge contrast pairs generates an LCI function, f,

defined by
F@=Y"> pl), €)

T,y p€Pe(z,y)

where f(i) is the ith position of the LCI f, which acts like
a vector of the accumulated votes from the contrast pairs, x
and y are coordinates of the image, P.(x,y) is the set of
neighboring-edge contrast pairs for pixel (z,y), p(7) is the ith
position in an edge contrast pair of (z,y), ¢ is the intensity
index in the range 0 < ¢ < N, and NV is the maximum number
of intensities. Note that, for simplicity, the intensities have
been removed from the contrast-pair notation for pairs that
are identifiable. Furthermore, the edge contrast pairs for the
pixel (z,y), P.(z,y), are defined by

Po(z,y) = {pye ) | @,y)) € N (,y)

L (5)
/\|I(x7y) —I(.’I} 7y)‘2‘€}7

where (z,y) and (a’,y’) are positions of the pixels in the
image with intensities I(z,y) and I(2',y'), 4 (x,y) contains
the eight neighbors of (z,y), and ¢ is a constant. Once the
LCI is computed, it is integrated and normalized by

k .
> im0 f(0)
where F'(k) is the kth position in the integrated force F', f(i)
is the ith position in the LCI f, k is the intensity index in
the range 0 < k < N, and N is the maximum number of
intensities.

Since the transformation function should be monotonically
increasing and single valued [1], we normalize and project the
transformation function 7" onto the identity transformation I,
which is defined by I(z) = /N for 0 < x < N. Then the
transformation function can be defined by

I(k) + F(k)

— s 7 < k < N.
max(I + F)’ O<k<N )

T(k) =
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Fig. 5. Two (a) synthetic images, with same global contrast but different
local contrast, produced different (b) transformations and (c) enhanced images.
The top row, shows an image with few interaction between its intensities and
few enhancement, while the bottom row shows high interaction between its
intensities and high enhancement in comparison with the top row.

B. Intensity Channels

As stated before, the contrast pairs may belong to different
intensity regions. Thus, one accumulation of contrast pairs
does not represents the intensity relations, and may separate
the intensities that should stay together. To overcome this
problem, we group the contrast pairs into intensity channels.
Thereby, each contrast pair is accumulated into an intensity
channel (LCI) that corresponds to each intensity, in order to
isolate the contribution of the contrast pairs. Consequently, the
transformations extracted from the intensity channels produce
better results than a global transformation because the LCI
of each channel affects only its peers. Hence, our proposed
transformations avoid the incorporation of LCIs that exces-
sively spread the intensities of the group, and consequently,
compress other intensities. For instance, Fig. 5 shows two
synthetic images with two different patterns and with the same
global contrast but different local contrast. The first row shows
a low local-contrast pattern, while the second row shows a
high local-contrast pattern. After applying the channel division
approach to both images, we can see that the second image
produces a steeper transformation, in the range of the dark in-
tensities (from 5 to 30 in Fig. 5b). Consequently, the steepness
is translated into more enhancement as seen in the resultant
images (as shown in Fig. 5c, the first-row transformation maps
30 to 33, while the second-row transformation maps it to 52;
the other dark intensity is leave as is in both cases). Moreover,
the bright intensity is equally enhanced in both cases (from
180 to 189) due to the equal number of pixels interacting in the
boundary between the dark and bright intensities. Whereby, the
local-neighborhood contrast affects the final transformation.
Therefore, our algorithm maintains the flat regions in the
image and enhances the textured regions, which avoids the
introduction of artifacts.

To explore this phenomenon further, let p%, p§ and pZ be
three contrast pairs, with their respective set of votes cast in
the intensity sets {A,...,E}, {B,...,C}, and {B,..., D},
such that A < B < C' < D < E. In the global accumulation

©) (d)

Edge contrast pairs of (a) the original image, (b) the result of HE,
(c) the result of ORMIT, and (d) the result of the proposed approach. The
pairs reveal the level of detail exposed in each image.

Fig. 6.

approach, the three contrast pairs are accumulated into the
same LCI, as shown in Fig. 4a. This process leads to over-
enhancement problems and artifacts because the pairs of the
intensity B (p% and pX) create a mixed LCI with the pairs
of the intensity A (pﬁ). Therefore, the intensities A and E,
which would be spread evenly, as shown in Fig. 4b, are spread
farther apart due to the contribution of the B-pairs, although
those pairs are unrelated to A and E. These errors can be
avoided if each group’s pairs are separated and each LCI is
computed independently.

The creation of intensity channels enhances the contrast
of one image’s area without introducing artifacts. Previous
methods, even those that use image information [16]-[18],
fail to avoid artifacts because they use the image information
without considering its intensity relations. Figure 6 shows the
edge contrast pairs of a face image damaged by shadows. We
can see that the shadows in the image hide the details in the
face, as shown in Fig. 6a. Although other methods reveal some
details of the scene, as shown in Figs. 6b and 6c¢, the face is not
distinguishable. The proposed method, however, can recover
these details, as shown in Fig. 6d. This distinction is due to the
channel division approach, in which the pairs in the shadow
areas force the intensities of those around them to spread apart
without affecting other areas’ intensities, unlike the HE result,
which reveals more background details than face details due
to its equal distribution characteristic.

The intensity channel LCI, f*, for the intensity i is defined

by
Fo = > ») ®)

T,y pEPI(z,y)

where f7(j) is the jth position in the LCI £, x and y are
coordinates of the image, P!(x,y) is the set of the eight
neighboring edge contrast pairs for the pixel (z,y) such that
the intensity ¢ is within that pair’s intensity, and p(j) is the
jth position in an edge contrast pair of (z,y). Note that ¢ and
j vary from zero to the maximum number of intensity levels,
N. Furthermore, the set of edge contrast pairs for the pixel
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Fig. 7. Enhancement produced by the channel division using different
intensity region channels. (a) The original dark images. (b-d) The enhanced
images showing specific characteristics (dark, mid, and bright tones): (b) dark,
(c) middle, and (d) bright region channels.

(7,y) and intensity i, P?, is defined by

Pi(p) = {p)" ") | (2!, f) € N (2, y)

I(z,y)
NI (z,y) —I(2',y)|> ¢ ©))

A(i=I(z,y)vi=1I("y)},

where (x,y) and (2’,y’) are the positions of the pixels in
the image with intensities I(x,y) and I(z’,y’), respectively,
A (z,y) contains the eight neighbors of (z,y), and ¢ is a
constant. Finally, the accumulation for each intensity channel
LCI, Fi, is computed as in Eq. (6), and their transformation
functions, T", are projected as in Eq. (7), by replacing f with
f* as follows:

, S o Fi0)
F'(k :37 10
W Yo i) (o
Ti(k):w 0<k<N. (an

max(I + F")’

C. Region Channels

Grouping the contrast pairs into intensity channels is not
sufficient to produce the best enhancement, as there may be
(intensity) channels with similar properties. We propose to mix
the channels with similar characteristics into region channels.
Consequently, a region channel is a mix of intensity channels
that share some characteristics. Hence, an image may have R
different region channels that are defined by

max i
i=I" T

TT min ,
Ir =1 +1

max min

1<r<R, (12)
where T, is the rth region channel transformation, T" is the
transformation function for each intensity channel ¢, and I ;
and I .. are the lower and upper bound (intensities) for the
rth region channel (the (r—1)st and the (r+1)st channel may

share their upper and lower bounds with the rth channel).
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Fig. 8. A set of weighting functions. We construct the weighting functions
for the region channels from (a) a set of shifted Gaussians. The final functions
are (b) those Gaussians normalized.

Experimentally, we found that mixing our intensity channels
into three regions (R equal three), that may simulate the human
visual system, further improves the resultant image. We ap-
proximate each region channel to accommodate dark, middle
and bright intensities (which may be similar to the human
visual system regions: De Vries-Rose, Weber and Saturation—
despite previous research showed [19], [20] the viability of
approximating the human visual response with three regions,
for our channel division approach this possibility is yet to
be proven in further research), respectively. Consequently, we
build a transformation function for each region channel that
will spread its intensities due to the interactions of that region’s
intensities. These functions produce different results, as shown
in Fig. 7, which are then merged using weighting functions
to create the final image. Because we are working with dark
images, we give more importance to the dark intensities,
compared to the other intensities, to boost the enhancement
of the dark intensities without compromising the result of the
other two region channels.

To illustrate the region channels, Fig. 7 presents dark im-
ages enhanced by the specially-constructed functions given in
Eq. (12), which are defined by each region channel. Although
the images are composed mostly of dark intensities, the
image from the dark region channel (Fig. 7b) is enhanced
more because of the abundance of dark intensities in that
channel; thus, the interactions of these intensities lead to a
greater contrast within the dark components of the image.
Conversely, the components of the middle and bright region-
channel images (Figs. 7c and 7d) are preserved because their
contrast pairs accumulated a LCI that does not separate them,
thereby avoiding over-enhancement in areas containing those
intensities. These results also show the advantage of using
multiple channels over a single channel approach. For instance,
in the single channel approach, due to the mixed interaction
of bright and dark pixels and the high interaction of the dark
contrast pairs, the bright intensities will be separated by the
LCI from the dark contrast pairs, which may generate artifacts.

As previously discussed, each region channel possesses
different characteristics of the original image (see Fig. 7).
Given that we are working with dark images, the dark region
channel will be wider than normal and will have as many or
more elements as the other two region channels. Consequently,
we approximate the width of the each region channel to one-
third of the intensity range. These values were determined
experimentally to yield the most optimal results. Moreover,
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Fig. 9. Dark image: “Girl.” (a) Original image, (b) HE result, (c) intensity
pair result, (d) LRM result, (¢) ORMIT result, and (f) proposed method result.

previous research [19], regarding the various possible widths
for these regions, supported this equal distribution.

Finally, the enhanced image is a mixture of the region
channels; each channel has a different weighting function
that emphasizes its characteristics. The final transformation
function J can be computed by

R

9(i)zzwr(i)'Tr(i)> (13)
r=1

where w, is the weighting function for the rth region channel,

and 7..(¢) indicates the ith position in the rth region channel

transformation function. Lastly, the image is enhanced by

I(z,y) = 7 (I(z,y)),

where I(x,y) is the intensity of the pixel (x,y) in the original
image, & is the final transformation function, and I, is the
enhanced image.

In our experiments, each channel has a different weighting
function that emphasizes its characteristics. Figure 8a shows
three weighting functions for the intensity region channels that
emphasize the dark region channel to reduce the dark look of
the images. The final weighting functions are shifted Gaussian
functions that have been normalized. To construct them, we
place their centers in the limits of the intensity range and in
the center of the middle region channel. Note that the standard
deviation of each Gaussian is proportional to each region in
the image. We then normalize the three Gaussian functions so
that the contribution of their weights sum to one, as shown in
Fig. 8b.

(14)

III. EVALUATION FRAMEWORK

Image enhancement is a common procedure. Yet, a simple
or standard method to algorithmically assess the quality of
an image like a human would does not exist. This type

(d (e) ®

Fig. 10. Dark image: “Street.” (a) Original image, (b) HE result, (c) intensity
pair result, (d) LRM result, (¢) ORMIT result, and (f) proposed method result.

of perceptive contrast measurement is a complex task since
several conditions must be considered, such as the state of
adaptation of the observer, boundaries between adjacent areas
and their relations, the size of the internal structures of the
image, and the spatial frequency of the stimuli. Consequently,
several contrast models have been introduced to model how the
human eye perceives luminance changes, including the Weber
law, the power law, and the Michelson law [21].

In addition, several methods have been proposed that at-
tempt to measure the contrast in an image consistently. For
example, Gordon and Rangayan [22] proposed a local contrast
measure defined by the average of the intensity values detected
in two rectangular windows centered on a current pixel. Their
method was later improved using the local edge information
from the image [23]. Similarly, various measures that quantify
contrast block-wise, in which the maximum and minimum
intensities inside a block are analyzed to calculate the measure
of the enhancement, have been proposed [20], [24], [25].
Unfortunately, these measures are inconsistent because they
often fail to reflect the clear improvements in some images,
thus scoring it incorrectly. The use of contrast alone is not
enough; over-enhanced pictures score high in contrast-based
measures, even if their quality is not the best. In response,
Morrow et al. [26] proposed a measure based on the analysis
of the contrast histogram in search of certain characteristics;
however, this method was still limited by its emphasis on
contrast.

A. Quantitative Measures

To evaluate the image we use three different metrics:
measure of enhancement by entropy (EMEE) [25], structural
similarity [27], and the newly-proposed metric based on the
contrast pairs.



0

Fig. 11. Dark image: “Building.” (a) Original image, (b) HE result, (c)
intensity pair result, (d) LRM result, (¢) ORMIT result, and (f) proposed
method result.

The measure of enhancement by entropy is used to find the
average ratio of maximum to minimum intensities in decibels,
and it is based upon the concept of entropy [25]. Agaian et
al. defined the metric as

1 k2 ki I]rcnlax @
EMEEo ks (1) = 3= > 0 | i
122 91 k=1 kol (15)
Iz
X In = ,
I e

where the given image [ is broken up into k1 ks blocks, J;7™
and [, ,’;nlm are the maximum and minimum intensity in the given
(k, 1) block, and c is a small constant to avoid division by zero.
In our evaluation we used o« = 0.2, ¢ = 1, and a block size
of 16 x 16 pixels.

The structural similarity metric was proposed by Wang
et al. [27], as an alternative to intensity-based metrics. The
structural similarity is based on the assumptions that natural
images are highly structured, since their pixels exhibit strong
dependencies, and that the human visual system is highly
optimized to recover the structural information from an image.
Wang ef al’s proposed metric is a combination of three
components: luminance, contrast, and structure. We estimate
the luminance of the image as the mean intensity such that

1
Hr = ﬁwzyl(z7y)a

where N is the number of pixels in the image, and I(z,y)
is the intensity at the position of the pixel (x,y). Instead of
using the correlation proposed by Wang et al., we use the
ratio of the original image luminance to that of the enhanced

(16)
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Fig. 12.
intensity pair result, (d) LRM result, (¢) ORMIT result, and (f) proposed
method result.

Dark image: “Subway.” (a) Original image, (b) HE result, (c)

image. This process allows us to identify the differences in
images, given that the enhanced image should be brighter
than the original, and simultaneously determine the structural
similarities between the images. Note that the definition by
Wang et al. measures only the similarity to the dark image.
Thus, we define the luminance index by the ratio

Z(Im Ie) = Ziﬁ,?

a7)

where [, is the original image, /. is the enhanced image, and
the means are given by Eq. (16). Wang et al. estimate the
contrast as the standard deviation of the image, given by

1
Ir=yIN_1 ;(I(:c,y) — pr)?

(18)

Similar to the luminance index, we use the ratio of the contrast
of the original image to that of the enhanced image. Hence,
the contrast index is defined by

(I, 1) = 2=
g

IO

19)

Likewise, the structural index is given by the correlation
coefficient, which is defined as
o1, 1. Tk

Ioale = ’
S( ) o101, +k

(20)

where k is a constant to avoid division by zero, and oy, , is
estimated by

1
O = > o, y) = pr,)Te(w,y) — pr.), (21)
x,Y
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Fig. 13.  EMEE (see Eq. (15)) of the results via different methods. The

methods with higher values should indicate better quality images; however,
this metric does not properly reflect the enhancement of each image.

where N is the number of pixels of the images, I,(z,y) and
I.(z,y) are the intensities in the (z,y) position of each image.
For our evaluation, we do not mix these indexes as Wang ef al.
proposed. Instead, we analyze them separately, which allows
us to do a deeper analysis on the enhancement of each image.

A good enhanced image should have sharp boundaries with
smooth regions between the boundaries. To measure these two
characteristics, we use the mean of both the edge and the
smooth contrast-pair sets. First, we classify the pixels in the
image according to the majority of types of contrast pairs it
creates, such that

E={p] ||i—j|>e}, (22)
S={p] i —jl<e}, (23)

where [E and S represent the edge and smooth contrast-
pair sets, respectively, p] is a contrast pair, ¢ and j are the
intensities of that contrast pair, and ¢ is the defined threshold.
We then compute the mean of each class using
_ ZpEC Pe
He = Ng
where C' = {E, S} are the contrast-pair classes, pc is the mean
of class C, p. is the contrast (intensity difference) of pixel p
that belongs to class C, and N¢ is the number of pixels in class
C. A good enhanced image should have a high edge mean
and a small smooth mean, indicating a high contrast change
in the boundaries and low contrast change in the flat regions.
Consequently, the image can be defined by these two metrics.
If we define the images by their two normalized means I =
(um, ps), a space S is formed that holds all the images. The
images close to the diagonal, defined by

(24)

(25)

will have a better appearance. Consequently, by computing
the distance between any image I’ = (pp, p5) € S and the
diagonal line, we can rank the quality of the images using
Eq. (26): The images with the smallest distance present a better
enhancement than those farther from the diagonal.

_pptpg—1
V2

D) (26)
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Fig. 14. Distance from the diagonal (see Eq. (26)) of the results via different
methods. The methods with smaller distances produce better enhanced images.

B. Qualitative Measures

The enhanced images are for human consumption; therefore,
gauging the success of the enhancement based on human
opinion is necessary. A subjective measure based on human
observation is an effective and reasonable approach. For this
study, we asked observers to evaluate the images in four
different categories:

o Similarity: This characteristic refers to the similarity of
the enhanced image compared to the original image. It
is used to describe how close the enhanced image is
to the original one, while accounting for the potential
improvements made to the enhanced image. The question
was phrased, “Which enhanced image is most similar to
or better than the original?”

o Edge details: This characteristic refers to the amount
of detail perceived in the enhanced image. It is used to
describe how many details the enhancement algorithm
preserves and/or reveals from the original image. The
question was phrased, “Which enhanced image reveals
more of the original image’s details?”

e Color and tonal rendition: This characteristic refers to
any improvements in the colors and tones of the enhanced
images with respect to the original. The question was
phrased, “Which enhanced image presents better colors
and tones with respect to the original?”

o Artifacts: This characteristic refers to the robustness
of the algorithm against the creation of artifacts. It is
used to measure the artifacts created by the enhancement
algorithm. The question was phrased, “Which enhanced
image presents fewer artifacts?”

For each set of images and for each category, the evaluators
were asked to select the result that best exemplified their
opinions. They were not informed of the methods that pro-
duced each result, and the images were presented in random
order. These actions were taken to remove any bias created by
viewing previous image sets. We then computed the selection
percentage for each method based on the surveyed images
chosen by the observers.
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Fig. 15. Structural similarity indexes of the results from different image enhancement methods: (a) luminance (see Eq. (17)), (b) contrast (see Eq. (19)), and

(c) structural (see Eq. (20)). The methods with higher combined indexes produced better images.

IV. RESULTS

In this section, we discuss the performance of the proposed
method compared with four alternative methods: histogram
equalization (HE), intensity pair algorithm [16], local range
modification (LRM) [6], and Orthogonal Retino-Morphic Im-
age Transform (ORMIT) [15]. The HE and LRM methods are
known for their ability to reveal the details in dark images. Yet,
they cannot enhance mixed images (i.e., those with dark and
bright regions), and they produce artifacts in the final image.
Similarly, the intensity pair algorithm ineffectively uses the
content of the image, producing unnoticeable improvements.
The ORMIT, on the other hand, is a widely-used algorithm in
consumer electronic devices that provides a good comparison
point for demonstrating the superior enhancement capability of
the proposed algorithm. To analyze the performances of these
algorithms, each method was used to process ten different
images in varied locations; all the images were either dark
or had shadows. The images included buildings and people,
outdoor and indoor scenes, total darkness and mixed light
(i.e., dark due to shadows), and close-up and wide depth-of-
field images. This large variety of images was employed to
validate the superiority of our content-aware algorithm over
other methods that are optimized only for certain types of
images. Note that we evaluated the images quantitatively and
qualitatively.

A. Quantitative Measure

First, we evaluated the methods using the EMEE from
Eq. (15). However, this metric does not measure the enhance-
ment as perceived by humans, instead it measures the local
contrast variation in each image. For example, the result from
HE in “Boat” and “Ocean” images, or from intensity pair in
“Emp. State” image (Fig. 16) have a high EMEE value, as
shown in Fig. 13, but the enhancement is imperceptible. This
effect occurred for other images as well, and in general this
metric is not consistent through different images. However, is
interesting to note, that the EMEE values, in the “Fountain”
image, for HE and for the proposed method are both high,
which shows that the proposed method increases the contrast
(as much as HE does) and maintains the appearance of the
image (something that HE does not). Thus, we used two

additional metrics, the structural similarity index and contrast-
pair based metric, to evaluate the enhancement. Figure 14
shows the distances of the mean of the enhanced image’s
contrast-pairs from the diagonal (see Eq. (26)). And Fig. 15
shows the structural similarity indexes of the enhanced images.

Considering our proposed metric, the proposed method
scored better in the “Boat,” “Building,” “Girl,” and “Street”
images. It revealed details in the shadow areas, as shown in the
face of the girl in Fig. 9—an image for which other methods
scored poorly in the contrast-pair based metric, and had poor
balance in the structural similarity indexes. Additionally, the
algorithm was able to maintain the smoothness in the regions
of the face and the background. Moreover, ORMIT created
strange effects in the skin and in the hair. The proposed
algorithm, however, was aware of the texture information in
those areas and enhanced them accordingly. Despite the fact
that ORMIT had a higher luminance index—due to a wash-out
effect—than the proposed method, as shown in Fig. 15a, the
contrast index of ORMIT was lower than the proposed method,
as shown in Fig. 15b. The structural index, given in Fig. 15c,
of both methods was high, indicating that both methods did
not introduce errors into the images.

The proposed method was able to recover details in mixed
images as well. For example, the “Street” image (Fig. 10) had
a shadow due to a building that hid some of the details in
the image, but other areas in the image were well-exposed.
The proposed method was able to reveal the details near
the building and maintain the details in other parts of the
image because it created different transformation functions.
This behavior is verified in the distance score, and in the
balance of the luminance, contrast, and structural indexes—
all of which exhibited high scores for the proposed method.
The HE result revealed some details in the shadow, but it gave
an odd look to the resulting image, as reflected by its structural
index. In addition the HE result was over-enhanced, producing
a large distance value for the enhanced image, as well as a
high luminance index. The other methods produced similar
inferior scores with poorly enhanced images.

The proposed method was also able to handle images with
complex textures, as shown in the “Building” image (Fig. 11),
outperforming the other methods. Both the luminance and con-
trast index are better than other methods, and it maintained an
acceptable structural index. Furthermore, the proposed method
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Fig. 16. Dark images, from top to bottom: “Ocean,” “Boat,” “Guy,” “Fountain,” “Empire State,” and “ Girls.” (a) Original image, (b) HE result, (c) intensity

pair result, (d) LRM result, (¢) ORMIT result, and (f) proposed method result.

revealed details and maintained smoothness in the regions
between the textures. This feature can also be appreciated
in the “Subway” image (Fig. 12), for which the proposed
approach scored better than the other methods, maintained
smoothness in the flat regions while revealing the details in
the boundaries, and simultaneously increased the brightness of
the overall image. These effects are supported by its luminance
and contrast indexes, which are not as high as those from the
over-enhanced HE result, and by its structural index.

The distances of the other images, however, varied due
to enhancement errors. For example, the “Fountain” image
(Fig. 16) was over-enhanced by HE, and was darkened by
the LRM and intensity pair methods. The over-enhancement
gave a false positive in the HE score—the saturated regions

resulted in a small contrast mean, while a high contrast in
the boundaries was produced. The worst distance score using
the proposed method was for the “Ocean” image (Fig. 16).
Visually it produced a better result compared to the other meth-
ods, but this improvement was not reflected in the contrast-
pair metric because the means of the contrast pairs were
more compact in the image and had small standard deviation
compared to the over-enhanced HE result. The results of the
other methods had several edge contrast pairs due to the
nearly black tones in the ocean area, thus yielding a better
value on the metric. However, the structural similarity index
reveals that the proposed method maintained the structure
of the image, while producing good luminance and contrast
indexes. In general, the structural similarity indexes of ORMIT
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Fig. 17. Percentage of preference for each image according to (a) similarity and (b) edge details.

and the proposed method revealed that they produce the best
enhanced images for luminance and contrast, respectively, and
simultaneously maintained the structure of the original image.

Overall, the proposed method did a better job at producing
images with means closer to ideal images—i.e., points closer
to the diagonal in the space defined by the edge and smooth
means. Furthermore, the structural similarity indexes reveal
that the proposed method procured good luminance and con-
trast indexes while maintaining the structural index. As Fig. 15
shows, the proposed method maintained the image’s structure
during the enhancement process and simultaneously increased
the luminance and the contrast more than other methods.
Moreover, the proposed method out-performed the intensity
pair algorithm, which produced sub-par results as revealed
by the contrast-pair based metric and the structural similarity
indexes. Unfortunately, enhancement errors in the HE results
skewed the distance scores, which also introduced peaks in the
luminance and contrast indexes, but kept the structural index
low in comparison to other methods. Hence, we performed
a subjective evaluation of the methods to better assess their
performances.

B. Qualitative Measure

Using a survey we qualitatively evaluated 75 people, 57% of
which had some knowledge regarding image processing prior
to the study. We showed the participants ten different groups
of images (Figs. 9-12, 16) consisting of the original image
and the results of the different methods (HE, LRM, intensity
pair, ORMIT, and the proposed method). They evaluated the
results using four different parameters: similarity, edge details,
color and tone, and artifacts—as described in Section III-B.
We explained the questions to the evaluators in English
with additional references for the technical details to ensure
that everyone evaluated the images in consistent manner. On
average, the proposed method outperformed the other methods
in most of the images in all the categories.

The similarity percentages (Fig. 17a) revealed a preference
for the proposed method, with the exception of the “Boat,”

“Emp. State,” and “Girls” images, for which the evaluators
preferred the ORMIT algorithm. Although the application
of the proposed method to the “Boat” image resulted in
brighter colors, most of the participants favored the ORMIT
result, which had softer colors. The “Emp. State” result from
the proposed method was slightly brighter than the ORMIT
algorithm; however, 11% more participants chose the ORMIT
result. In the “Subway” image, the participants preferred
the result of the proposed method, which presented lower
enhancement, by more than 15% over the ORMIT result.
These findings reveal the variability of personal taste.

The results of the level of edge detail (Fig. 17b) were
consistent with the similarity results; the proposed method
outperformed other methods in seven of the ten image groups.
For the “Subway” image, the increment of the original image’s
edge details in the ORMIT result was preferred over the
proposed method result, but only by a difference of 1.4%.
Additionally, the subjective preferences regarding the revealed
details for the “Street” image agreed with our quantitative
evaluation, as 46% of the participants acknowledged that
the proposed method revealed more details than the other
methods. This scene was particularly difficult due to the
mixture of bright and dark areas in the image. Interestingly,
the HE results scored higher in terms of its revealed details
than it did in terms of the similarity measure because the
participants generally agreed that the HE method produced
an improvement in the detail level despite the artifacts and
over-enhancement.

In the color and tonal reproduction results (Fig. 18a), the re-
sult of the proposed method for the “Boat” image had a lower
preference score—probably because the participants consid-
ered the brightness increment to be an over-enhancement, and
they preferred the color produced by the other methods, such
as ORMIT. For the other images, however, the evaluators
agreed that the results of the proposed method were the
best with the exception of the “Girls” image, for which they
preferred the ORMIT result. The colors in the “Emp. State”
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image generated by the proposed method were preferred over
those of ORMIT, despite the evaluators’ preference for the
ORMIT result in terms of similarity to the original. The
color preference results support the robustness of the proposed
method, indicating that it preserves the intensities in smooth
regions and maintains even colors over large areas, while
simultaneously revealing the details in the images.

The evaluators were also asked to select the images with the
fewest artifacts (Fig. 18b). In general, the proposed method
was the best at reducing the appearance of artifacts. In the
“Emp. State” image, the proposed method outperformed the
ORMIIT algorithm by 5%; however, in the “Girls” and “Boat”
images, the ORMIT method had a higher preference rate
among the evaluators, of 47% and 37%, respectively. Difficult
images such as “Girl,” “Fountain,” and “Ocean,” which were
very dark—and thus prone to artifact creation and unnatural
appearance—had a high acceptance rate among the evaluators.

In general, image quality is difficult to assess because it
depends on human preferences. Even our results that per-
formed poorly according to our quantitative evaluation—such
as “Guy” and “Ocean”—were chosen over the results of the
other methods in the qualitative evaluation. Likewise, results of
the proposed method for images such as “Subway,” which did
not exhibit as much enhancement as the other methods, were
preferred by the evaluators. Ultimately, the individual tastes
and backgrounds of the evaluators determined which type of
pictures they preferred.

Although the proposed method was able to enhance a wide
set of images, it remains limited in certain extreme cases, as
shown in Fig. 19. For example, the proposed method cannot re-
cover information from the shadowed or dark areas of images
that have near-black intensities. Some parts of the images are
still enhanced, but significant amounts of near-black intensities
produce undesired effects in the high intensities. Nevertheless,
these undesired effects can be minimized by adjusting the
weighting functions for the intensity region channels. This
adjustment avoids over-enhancement in images with near-
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Percentage of evaluators who preferred each image according to (a) color and tonal rendition and (b) the presence of fewer artifacts.

black intensities, due to the high accumulation of dark contrast
pairs.

V. CONCLUSION

In the present paper, we introduced a content-aware en-
hancement algorithm that can improve images from a variety
of different environments. The algorithm creates different
enhancement functions based on the contents of the image,
thereby improving its enhancement capabilities while reducing
the artifacts and other unnatural effects in the resulting images.
The method analyzes the contents through contrast pairs,
which are grouped together according to their intensities.
Ideally, this process increases the enhancement and level of
detail revealed. Ultimately, the enhancement is intended to
mimic the human visual perception, which is accomplished by
adaptively combining different region channels. This mixture
allows us to enhance some characteristics, such as the details
in dark and bright regions, while preserving others, such as
the tones in smooth and flat regions.

The proposed method is robust because it adapts its trans-
formation functions to the contents of the image, which avoids
the introduction of errors in the image. The mixture of different
region channels also increases the quality of the output because
it allows a distinct enhancement for different parts of the
image. This process avoids over-enhancement problems in
areas with normal dynamic ranges.
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