A Halo Merger Tree Generation and Evaluation Framework Sandra Robles^{1,2}, Jonathan S. Gómez³, Adín Ramírez Rivera⁴, Jenny A. González³, Nelson D. Padilla³, Diego Dujovne⁵ ¹Universidad Autónoma de Madrid, ²The University of Melbourne, ³Pontificia Universidad Católica de Chile, ⁴University of Campinas, ⁵Universidad Diego Portales

sandra.robles@unimelb.edu.au, adin@ic.unicamp.br

Introduction

- Galaxy formation and evolution, a complex non-linear problem.
- Two approaches to tackle this problem:
 - Large scale hydrodynamical simulations.

SAMs are best suited to compare galaxy formation and evolution theories with observations.

Halo merger trees

Encapsulate assembly history of halos.

Eventually lead to galaxy mergers.

	•		× 7	-	
19 A.		1 1 1 1 1 1 1 / 1 / 1 / 1 / 1 / 1 / 1 /	•		Sec.

Evaluation and Results

Mass

Distance

Kolmogorov Smirnov Test	1 Variable (M)	2 Variables (M, D)	3 Variables (M, D, T)	
Mass	0.43	0.57	0.21	
Main halo (MH) mass			0.14	
Subhalo (SH) mass	—		0.05	
Distance	_	0.05	0.06	
N. snapshots as subhalo			0.04	

• Merger trees generated with 3 variables yield the best results.

Credit: NASA, ESA, the Hubble Heritage.

Standard method based on DM only N-body simulations.