

Graph Learning Network A Structure Learning Algorithm {DARWIN.PILCO AND ADIN}@IC.UNICAMP.BR ☆ https://gitlab.com/mipl/graph-learning-network/

CONTEXT

A Problem. Current deep learning graphmodels do not support extreme variations: complete changes in the structure of graphs in each layer.

• Proposal. Use graph convolutions to propose expected node features, and predict the best structure based on them. Recursively repeat these steps to enhance the prediction and the embeddings.

CONTRIBUTIONS

- i Two prediction functions: nodes' features and adjacency
- ii A recurrent architecture
- iii An end-to-end learning framework for predicting graphs' structure
 iv Introduction of new synthetic datasets,
 i.e., 3D surface functions and geometric images

A Proposed Method: GLN

Loss Functions:

- Intersection over Union (IoU) of adjacency
- Class-balanced
 - Cross-Entropy (HED)
- **E** Regularization

Learnable matrices

Embedding functions

Non linearities

B

ANALYSIS

Recurrent Block

 $H_{\text{int}}^{(l)} = \sum_{i=1}^{k} \sigma_{l} \left(\hat{A}^{(l)} H_{i}^{(l)} W_{i}^{(l)} \right)$ $H_{\text{local}}^{(l)} = \sigma_{l} \left(\hat{A}^{(l)} H_{\text{int}}^{(l)} U^{(l)} \right)$ $H_{\text{global}}^{(l)} = \sigma_{l} \left(H_{\text{local}}^{(l)} Z^{(l)} \right)$ $A^{(l+1)} = \sigma_{l} \left(M^{(l)} H_{\text{local}}^{(l)} Q^{(l)} H_{\text{global}}^{(l)}^{\top} M^{(l)}^{\top} \right)$

C RESULTS

Elliptic hyperboloid Elliptic paraboloid Torus Saddle

Dissimilarity MMD between pred. and GT (smaller is better) on the 3D Surface.

MMD varying the input structure on Community C = 4 (left) and C = 2 (right).

Losses			Metrics					
IoU	HED	Reg	Acc↑	IoU↑	Dice↑	Deg↓	Clus↓	Orb↓
_	\checkmark	_	0.9997	0.9747	0.9872	0.0068	0.0011	0.1069
_	\checkmark	\checkmark	0.9997	0.9749	0.9872	0.0065	0.0010	0.0972
\checkmark	_	_	0.7997	0.0524	0.0996	1.8624	1.9980	0.9827
\checkmark	_	\checkmark	0.8938	0.0953	0.1740	1.7689	1.9491	1.1862
\checkmark	\checkmark	_	0.9997	0.9749	0.9872	0.0063	0.0002	0.0619
\checkmark	\checkmark	\checkmark	0.9997	0.9749	0.9872	0.0062	0.0002	0.0053

Ablation of GLN using Geometric Figures.

i Not predicted edges (FN), extra predicted edges (FP), and correctly predicted ones.