Graph Learning Network A Structure Learning Algorithm

\{DARWIN.PILCO AND ADIN\}@IC.UNICAMP.BR
\& \downarrow https:/ / gitlab.com/mipl/graph-learning-network/

- Context

A Problem. Current deep learning graphmodels do not support extreme variations: complete changes in the structure of graphs in each layer.
? Proposal. Use graph convolutions to propose expected node features, and predict the best structure based on them. Recursively repeat these steps to enhance the prediction and the embeddings.

CONTRIBUTIONS

i Two prediction functions: nodes' features and adjacency
ii A recurrent architecture
iii An end-to-end learning framework for predicting graphs' structure
iv Introduction of new synthetic datasets, i.e., 3D surface functions and geometric images

Dissimilarity MMD between pred. and GT (smaller is better) on the 3D Surface.

MMD varying the input structure on Community $C=4$ (left) and $C=2$ (right).

Losses			Metrics					
IoU	HED	Reg	Acc \uparrow	IoU \uparrow	Dice \uparrow	Deg \downarrow	Clus \downarrow	Orb \downarrow
-	\checkmark	-	0.9997	0.9747	0.9872	0.0068	0.0011	0.1069
-	\checkmark	\checkmark	0.9997	0.9749	0.9872	0.0065	0.0010	0.0972
\checkmark	-	-	0.7997	0.0524	0.0996	1.8624	1.9980	0.9827
\checkmark	-	\checkmark	0.8938	0.0953	0.1740	1.7689	1.9491	1.1862
\checkmark	\checkmark	-	0.9997	0.9749	0.9872	0.0063	0.0002	0.0619
\checkmark	\checkmark	\checkmark	0.9997	0.9749	0.9872	0.0062	0.0002	0.0053

Ablation of GLN using Geometric Figures.

I Proposed Method: GLN

Loss Functions

Intersection over Union (IoU) of adjacency
$\Delta \sqrt{\Delta}$ Class-balanced Cross-Entropy (HED)
ㅡㅡ Regularization

$$
\begin{aligned}
H_{\mathrm{int}}^{(l)} & =\sum_{i=1}^{k} \sigma_{l}\left(\hat{A}^{(l)} H_{i}^{(l)} W_{i}^{(l)}\right) \\
H_{\mathrm{local}}^{(l)} & =\sigma_{l}\left(\hat{A}^{(l)} H_{\mathrm{int}}^{(l)} U^{(l)}\right) \\
H_{\text {global }}^{(l)} & =\sigma_{l}\left(H_{\text {local }}^{(l)} Z^{(l)}\right) \\
A^{(l+1)} & =\sigma_{l}\left(M^{(l)} H_{\text {local }}^{(l)} Q^{(l)} H_{\text {global }}^{(l)} M^{(l)^{\top}}\right)
\end{aligned}
$$

(i) Learnable matrices

Non linearities
Embedding functions

© Results

Elliptic hyperboloid Elliptic paraboloid

Saddle

(i) Not predicted edges (FN), extra predicted edges (FP), and correctly predicted ones.

Community $\mathrm{C}=4$

Geometrical Figures dataset segmentation

