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Abstract. The wide proliferation of sensors and devices of Internet of Things
(IoT), together with Artificial Intelligence (AI), has created the so-called Smart
Environments. From a network perspective, these solutions suffer from high la-
tency and increased data transmission. This paper proposes a Federated Learn-
ing (FL) architecture for Real-Time Traffic Estimation, supported by Roadside
Units (RSU’s) for model aggregation. The solution envisages that learning will
be done on clients with their local data, and fully distributed on the Edge, with
high learning rates, low latency, and less bandwidth usage. To achieve that,
this paper discusses tools and requirements for FL implementation towards a
model for real-time traffic estimation, as well as how such solution could be
evaluated using VANET and network simulators. As a first practical step, we
show a preliminary evaluation of a learning model using a data set of cars that
demonstrate a distributed learning strategy. In the future, we will use a similar
distributed strategy within our proposed architecture.

1. Introduction
The expansion of Internet of Things (IoT) sensors and devices, united to Artificial Intel-
ligence (AI), has created the so-called Smart Environments in industries, cities, factories,
agriculture among others [Valerio et al. 2017]. More specifically, Smart Cities congregate
and need many different Smart Applications, composing a truly Smart ecosystem [Va-
lerio et al. 2018]. Moreover, the proliferation of mobile computing and IoT results in
billions of mobile devices communicating each other and connected to Internet, generat-
ing huge amount of data bytes at the Edge of network. Cisco estimates that almost 850 ZB
(Zettabyte) will be generated at the Edge until 2021 [Index 2018].

Smart vehicles are often referred as important components of Smart Cities, pro-
viding smooth (and, in the future, autonomous) mobility to citizens. There are many pro-
posals to use Cloud Computing [Zhang et al. 2010] to support Smart Vehicles, and some
of them have already been implemented, like Cloud-based software update and training
of powerful Deep Learning (DL) models [Kehoe et al. 2015].

It is anticipated that there will be more than 200 sensors in vehicles in the fu-
ture, with the total sensor bandwidth ranging from 3Gbit s−1 (approximately 1.4TBh−1)
for 40Gbit s−1 (around 19TBh−1) [Heinrich 2017]. As estimated by Intel, each au-
tonomous vehicle will generate about 4000GB of data per day, equivalent to the mobile
data generated by almost 3000 people [Sensors 2017]. This will result in unprecedented
pressure on communication infrastructures. From the network point of view, the use of
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Cloud computing in this scenario brings issues like high latency and high bandwidth con-
sumption due to massive data transmission [Barik et al. 2020].

To solve this problem, Edge Computing, an emerging paradigm which takes com-
puting tasks and services from the core to the network edge, closer to end users and data
sources, has been widely recognized as a promising solution for the aforementioned is-
sues [Zhou et al. 2018].

What makes Edge Computing so promising is its applicability of local data anal-
ysis with strong Machine Learning (ML) usage, distributedly, as close as possible to the
final devices. This conjunction of technologies is known as “Edge Intelligence” (EI) [Va-
lerio et al. 2018]. According to Zhou et al. [2018], the main distributed ML technologies
are Gossip Training, Knowledge Transfer Learning, DNN Splitting, Gradient Compres-
sion, Aggregation Frequency Control, and Federated Learning (FL). Among these, FL
stands out for performing ML for data analysis directly on the final devices [Konečnỳ
et al. 2016b] and can be employed in both architectures. Notwithstanding, properly mod-
eling of FL to be run at the edge is needed, especially, in the contex of this paper, con-
sidering the amount of data generated by cars and how it can be efficiently utilized for
specific application scenarios. We are interested in using data generated by cars or by
other infrastructures (e.g., cameras) to precisely estimate traffic in a distribute way.

In this paper, we bring intelligence to the Edge of the network with an architecture
for FL using decentralized data storage and processing. We focus on Real-Time Traffic
Estimation, aiming at the understanding of the traffic flow and routes suggestion. We
propose to reduce the use of resources from the Cloud by leveraging intelligence at the
edge through FL, as proposed by Konečnỳ et al. [2016b]. It consists of providing a DL
model trained in the cloud with historical data, so that vehicles can take advantage of this
learning model with their local data set. As the model is updated at the edge, it must be
uploaded to Roadside Units (RSU’s) [Zhang and Letaief 2019] for aggregation (model
update). Ultimately, this process let vehicles to learn directly from their data without the
need to send raw data over the network during this process.

As a first step towards the implementation of this model, we implemented a su-
pervised classification network on a federated learning setup. We obtained preliminary
results using 8144 training car images, and other 8041 testing images, to understand how
we could learn using such type of data, and afterwards apply it to estimate traffic. The
first results of the implementation suggest that training the model on the clients is feasible
to guarantee certain level of precision.

2. Background

Deep Learning (DL) uses Artificial Neural Networks (ANN) [Bithas et al. 2019] as pri-
mary source of modeling. ANNs consist of a series of layers that are capable of generating
non-linear outputs based on the layer activations and input data [Zhou et al. 2019]. Neu-
rons in the input layer receive data and propagate it to the middle layers [Zhou et al. 2018].
The neurons in the middle layers generate the weighted sums of the input data and emit
the weighted sums using the specific activation functions and the outputs are propagated
to the output layer. The use of more complex and abstract layers than a typical models
allows the ANN to achieve high precision inference in the tasks [Zhou et al. 2018]. In our



Figure 1. A smart vehicle perceives the environment through sensors and ex-
changes messages with the server. Usually, the vehicle sends the data to
the server; then, the server updates the model; and sends the response to
the client. Adapted from Zhang and Letaief’s [2019].

proposal, we implement the traffic prediction (in our initial prototype an image classifier)
through a NN that is updated either in the clients or in the cloud.

Federated Learning (FL) is a recently proposed ML paradigm that allows to collabora-
tively train a shared model for many users without direct access to raw data [Konečnỳ et al.
2015; McMahan et al. 2016]. Users train a ML model on the local data set and upload
it to a server for a global model aggregation [McMahan and Ramage 2017]. However,
moving data to a central server for training introduces a prohibitive communication over-
head [Zhang and Letaief 2019]. According to McMahan and Ramage [2017], the device
downloads the model trained in the Cloud with a large set of historical data, enhances it
by learning from the data on the devices and summarizes the changes as a small, focused
update. Only this update for the model is sent to the Cloud, using encrypted communi-
cation, where it is immediately averaged with other user updates to improve the shared
model. All training data remains on the device and no individual updates are stored in the
Cloud. FL has an increasingly important role to play in many applications, for example,
healthcare, finance and transportation [Lim et al. 2019]. FL is used in our architecture to
operate an intelligent, real-time traffic estimation at the edge of the network.

Real-Time Traffic Estimation. Connecting vehicles via Ad Hoc Vehicle Networks
(VANETs) represents an initial attempt to support safety-related applications, such as
traffic and new routes suggestion [Siegel et al. 2017]. Vehicles can communicate with the
infrastructure on the road through Vehicle-to-Infrastructure (V2I) communications to also
obtain information related to the road and traffic [Zhang and Letaief 2019] (see Fig. 1).
This infrastructure, composed of communications nodes installed within called Road Side
Unit (RSU), can provide Internet access to vehicles and can rebroadcast messages deliv-
ered by vehicles in low vehicle density scenarios [Barrachina et al. 2013].

Recently, with integrated processing for highly latency-sensitive tasks, it is possi-
ble to make decisions in real-time to control the vehicle with data pre-processing in order
to reduce communication bandwidth [Siegel et al. 2017], in the shortest time possible,
according to the application [Zhang and Letaief 2019].

Real-time traffic estimation can be performed in several ways, often translated into



an estimate of traffic flow. According to Kar et al. [2017], turning Vehicles into nodes in
Edge Computing can enable estimation of current traffic. Traffic flow can be estimated
using several information generated at the edge. For instance, images from surveillance
cameras or road cameras can serve input data sets to learning algorithms, which allow us
to capture information from sets of vehicles in a traffic jam as well as from approaching
vehicles, resulting in a wealth of knowledge about real-time traffic conditions. Another
examples of important information is geolocation of cameras, vehicles speed and accel-
eration, weather conditions, and so on. All such information can be combined into a
learning framework to better estimate and understand traffic behavior, allowing better
route suggestion and traffic delay estimations.

3. Related Work
Among the various ways of dealing with network setbacks in the context of applications
with Smart Vehicles, ML presents many techniques and forms of deployment (centralized,
distributed, etc.), which makes it highly applicable and versatile. We chose to work with
FL as it operates distributedly. The following works bring ways to apply it in Smart
Vehicles scenarios. In the following, we discuss how each of them contributes to address
the aspects presented in Section 1.

In Rizwan et al.’s [2016] work, a vehicle collects data through ten IoT sensors in
real time and sends them to the cloud via the Internet. Then, it performs Big Data analysis
to understand local traffic and make predictions. These forecasts are presented to the user,
from time to time, in the form of local traffic conditions, but do not show new routes. The
scheme of this work does not guarantee low latency, since its focus is to work on the
infrastructure in the Cloud and presentation to the user.

Bonawitz et al. [2019] use FL and follow the cloud aggregation approach in a
similar application. Despite not going that far in applications involving vehicles, the
authors mention FL with mobility. In this sense, they emphasize the success of placing
fewer packets on the network, because the data remains on the device, transmitting the
models only, thus a reduction in bandwidth use is considerable.

Vehicles and FL, in turn, are already part of studies by Ye et al. [2020]. Once
again, the importance of the aggregation model is highlighted. The application, images
from vehicle cameras, runs on an infrastructure with a central server and vehicle clients
that share their local models. For that, the Central Server chooses M local models to add.
In order to select the best local DL with satisfactory image quality and computing ca-
pacity, the election process is formulated with a two-dimensional contractual-theoretical
theory of reward image compensation, resolved by a greedy solution. The Central Server
in this work does not necessarily represent the Cloud, but any other type of Central server.
This opens room to bring this entity closer to the user, placing it in a Fog or Edge. In addi-
tion, it is important to select not only the best, but also a good enough number of models
to perform the aggregation, otherwise the application may be deficient.

A point previously addressed, but well explored by Lu et al. [2019], is synchro-
nization. Their solution focuses more on privacy than on traffic. They created an archi-
tecture with Macrobase stations (MBS), several RSU’s and mobile vehicles. MBS have
powerful computing and storage resources. In addition, each RSU is connected to MBS
by uplink and to vehicles (V2R) by downlink. RSUs serve as more connection points on



the route. The vehicle then sends data to the one closest to it at the moment. The MBS
figure can be the Cloud or another Central server. However, it is a centralized point that
uses RSUs as a form of Access Point (AC) only.

Samarakoon et al. [2018] propose an approach to minimize energy consumption
in all vehicle network users (VUEs), with power transmission and resource allocation to-
gether to enable ultra-reliable low latency communication (URLLC) using Extreme The-
ory of Value (EVT). With FL, the distribution of these extreme events is estimated by the
VUE in a decentralized manner. Here, we have a solution that seeks total decentraliza-
tion. However, during aggregation, at least one vehicle must be elected as central and
V2V sharing, which can be costly for the network as it is always necessary to make an
election, something that the authors themselves concluded.

A neglected aspect in the literature is scalability. Most of the literature work with
reduced areas. The work of Konečnỳ et al. [2016a] considers scalability, but focused on
model training directly on devices. They employed algorithm optimization to decrease
the network usage, something different from the proposal in this paper, but with a similar
purpose.

As observed in the analysis of the selected studies, the distribution of ML, espe-
cially through FL, is still a very preliminary proposal. FL is a way of distributing learning
across devices. A few works focus on privacy at the edge, something different from this
paper, which aims much more at network aspects than privacy. When it comes specifically
to vehicles, there are some approaches, but very little focused on traffic applications. It
is also observed the aggregation of the model is still done through a central point. In our
proposal, this aggregation point can be at the edge of the network.

With regard to synchronization, at first our proposal foresees synchronization, as
discussed in Section 4. However, the aggregation distribution will enable this to done
differently, using aggregation rounds accordingly to the current status of the network (e.g.
number of vehicles, amount of information being obtained, and so on). In summary, the
innovative points of this work in relation to the related works is the use of FL to improve
response time and reduce network use, validated specifically in traffic applications, and
to distribute the aggregation by the RSU’s.

4. Proposal
The goal of our work is to bring intelligence to the Edge of the network through an ar-
chitecture based on RSU’s and FL with the intention of ensuring low latency and the best
possible use of bandwidth by decreasing the amount of data traveling through the net-
work. This paper brings an initial discussion on an infrastructure architecture to achieve
such objective.

The proposed architecture includes vehicles, road side units (RSUs), and the
cloud. Initially, we are considering a real-time traffic estimation application, but the ar-
chitecture can be used to other applications in the VANETs context. Therefore, we used
existing ML solutions which can be applied for Real-Traffic Estimation [Adetiloye and
Awasthi 2017, 2019], then the main focus is bringing it as FL architecture at the Edge
of network. The proposed model considers that the communication with Edge devices
occurs in unreliable networks with limited upload speeds, which makes it crucial to min-
imize this communication. This can be achieved by communicating solely the learning



Figure 2. Architecture scheme. The initial global model is trained in the Cloud
and distributed to RSUs, at the Edge. Each vehicle that enters and con-
nects one of the RSUs will receive a copy of that model to execute FL.
Then, the RSUs aggregate the model and redistribute it as needed.

model, while the raw data is kept at the edge, e.g. on vehicles or cameras generating traffic
images. Note that camera images can come from traffic cameras, surveillance cameras,
and dashboard cameras on vehicles, for instance.

4.1. Architecture

Our architecture (see Fig. 2) comprises a Cloud that performs the heavy computing for
training and aggregating models, a set of RSU’s as intermediate aggregators, and end-
point vehicles that collect and process individual data. Vehicles communicate with RSU’s,
which in turn can communicate with the Cloud. We consider the Cloud and the RSUs as
computing servers that can perform heavy model aggregation tasks.

A global model is updated in the computing servers using data sets composed of
historical data collected over time. This data set should contain data collected at the edge
according to the needs of the application(s) being considered. In our specific application,
we consider that cars, cameras, weather stations, and other relevant sensors generate data
for traffic estimation. In the current stage, we only started to investigate image data sets.



Computing servers distribute the model after updating it towards the corresponding subset
of nodes that need it in the network, following the hierarchy presented in Figure 2.

With the model in place, vehicles can run the ML method using local data. From
time to time, an aggregation function is executed in the computing servers, in which
vehicles share their local models to update the intermediate and the global models. Ini-
tially, we propose to distribute the aggregation by placing it in the RSU’s or in the Cloud.
However, determining where the aggregation is executed can be flexible and dynamic
depending on the amount of data generated and the variability of the model through time.

4.2. Proposed Methodology

Different algorithms can be used in FL. Nilsson et al. [Nilsson et al. 2018] indicate
three algorithms: Federated Averaging (FedAvg), Federated Stochastic Variance Reduced
Gradient (FSVRG), and Cooperative Machine Learning (CO-OP).

We chose to use FedAvg in this work as it has the most simplified strategy and
often the best performance [Nilsson et al. 2018]. According to [Nilsson et al. 2018],
FedAvg trains a particular model wt, where t denotes the iteration round, by sharing it
with a fraction of clients and then pooling their individual models. For each round of
learning, FedAvg randomly initializes the global model w0. The server selects a subset
of clients St, such that |St| = C · K ≥ 1 where C is the fraction of the K clients, and
distributes the current global model to the clients in St. At the k-th client, it updates
(through stochastic gradient descent) its version of the model wkt using its local data and
producing the next iteration of modelswkt+1. The local models are transmitted to the server
which fuses them together to produce a new global model wt+1 that will be transmitted,
and the process iterates. We formalize this process in Algorithm 1.

For instance, we can use FedAvg as follows. Once a model has been initialized
in the Cloud, it is transmitted to RSU’s and, at last, sent to vehicles. Then, within each
vehicle, using local sensory data it will update the model using a Real-Time Traffic Es-
timation application. Over time, and with the unique experience from each vehicle, the
model distributed in the vehicles will start to differ among each other. Then, the vehicles
will share their local models to the computing servers for aggregation. Afterwards, the
model will be redistributed, and the process will start again. Note that in this scenario, the
data collected by the vehicles stay within them, and only the trained model is distributed.

5. Evaluating the Proposal
Once the architecture has been deployed, methods and mechanisms utilized to run models
and distribute the knowledge will be evaluated. In this section, first, we show preliminary
results regarding one of the tools needed in the proposed architecture. Then, we discuss
how we plan to evaluate the whole proposal, using simulations, as the solution deployment
evolves.

5.1. Federated Learning Initial Assessment

The implementation of this solution will take place in two stages: development and sim-
ulation. The development is about building the FL, which includes the model of learning,
training, manipulation of the dataset, its distribution to clients and aggregation with Fe-
dAvg. This section shows the feasibility of distributedly learning a deep learning model



Algorithm 1 FedAvg, adapted from Nilsson et al.’s [2018].
Require: Amount of clients K in the system, a fraction K of clients to select the models

from, a set {ηk} of learning rates, and a ClientUpdate function defined according to
the application.

1: initialize w0

2: for each round t = 0, 1, . . . do
3: m← max(bC ·Kc, 1)
4: St is a random set of m clients
5: for each client k ∈ St in parallel do
6: wkt+1 = ClientUpdate(k, wt) . Real-Time Traffic Estimation
7: end for
8: ησ =

∑
kεSt ηk

9: wt+1 =
∑
kεSt

ηk
ησ
wkt+1

10: end for

(in our case a deep learning classifier) in a federated learning setup, that is, the model is
learned in the clients and distributed to them. The results show how clients (car) perform
on executing learning after they receive the model a centralized server (e.g., a cloud or
RSU).

5.1.1. Implementation

We used Python and TensorFlow in conjunction with the Keras library at this point. The
crucial points to be evaluated are the construction of the model and the parameters that
define the number of clients and rounds.

The application made here is a simple supervised learning approach, that is, it
associates the image to its correct label. The training shows which label should go to
which image. This will serve as the basis for counting vehicles in the traffic flow.

To evaluate the model, we compute two metrics from the experiments: accuracy
and loss. The classification accuracy can be seen as the percentage of learning, i.e., the
association the model makes between the image and the correct label, that clients obtain
after training. And the loss is how far the predicted values deviate from current values in
training data. As we will demonstrate, while the loss decreases, the accuracy increases.
Similarly, the accuracy depends on how the model is fit.

The development took place on Google Colab platform. A single computer was
used, but with GPU support enabled to help processing. At this stage, no other form of
distribution has been implemented so far, such as using multiple CPU’s or partitioning
among cores, and the clients used here are simulated in the code and its quantity is fixed.

The TensorFlow framework works in conjunction with Keras, an open-source neu-
ral network library that offers an extensive range of algorithms. The data chosen for initial
construction is the Cars196 [Krause et al. 2013] data set that comprises a set of car im-
ages and category labels. The sequence of implementation and testing took place in the
following order:



(a) 100 epochs (b) 200 epochs

Figure 3. Loss and accuracy percentages when training the proposed model for
(a) 100 and (b) 200 epochs.

1. Images, labels and clients are loaded. Currently, the number of clients is fixed, but
it will be dynamic from the moment it is integrated with the simulation.

2. Model definition: a Multilayer Perceptron was implemented. This is a point that
can lead to different scenarios, since the model can be changed to other neural
networks, such as the Convolutional Neural Network (CNN), for example. To
compose the training, part of the images were used for this purpose (8144) and the
remaining images were used for testing.

5.2. Experimental Results
Model training was influenced by the number of training epochs, i.e., the number of times
the model saw the full data set and adjusted on it. We run the model with The number
of clients was fixed at 10 and epochs were run at 100 and 200. Taking into account that
this will be done for each client, this value must be computed more accurately in a more
complex implementation within a dynamic mobile environment. However, it is noticed,
from a certain point, the accuracy stabilizes. The same is true with loss.

Results for accuracy and loss 100 and 200 epochs are presented in Fig. 3. The first
point, then, is that the values of epochs should be computed more precisely considering
the number of clients as parameters. In the preliminary tests, it was already possible to
start at around 80% accuracy. The idea is that the value of epochs can be calculated to
support training to deliver high precision to clients in different scenarios. This may also
indicate that it could be a good idea to spend more time training and adjusting, as this
time can be compensated through more precise route estimates for each user. In this first
scenario, the execution of the model at each client took an average of 2.51 seconds over
10 executions (standard deviation of 0.06), which suggests the feasibility of running the
federated learning at the edge with the utilized data set.

One of the next steps is to also test other types of neural networks and start work-
ing with larger numbers of clients, before integrating with simulation and moving on to
dynamic clients.

5.3. Simulation Planning
To evaluate our proposal, we will use a simulated environment that provides us with traffic
data. For the traffic flow, the works of Adetiloye and Awasthi [2017, 2019], among others,



suggest the use of data sets of images to estimate, by means of vehicle counting, how
congested the road is. According to Adetiloye and Awasthi [2019], traffic congestion is
defined as a particular amount of vehicles within a pre-defined distance within each other
(commonly few meters in between). Traffic images, with roads and cars, can be used
to estimate traffic. However, due to limitations on the simulations to produce imagery,
we will focus on locally producing traffic estimation from the simulation software. We
will also consider other types of information that can impact traffic, such as weather
conditions, to be incorporate into the model.

Assessing the performance of the architecture will demand traffic simulations and
network monitoring. To simulate RSUs and vehicles mobility, we plan to utilize OM-
NET++, SUMO, and VEINS. The OMNET++ Network simulator (Objective Modular
Network Testbed in C++) is used to model and evaluate Network performance. It can be
manipulated to create different scenarios for testing. SUMO (Simulation of Urban MO-
bility) will be responsible for the generation of vehicle traffic, managing the flow of vehi-
cles, lane characteristics, coordinates, speed, and acceleration of vehicles. Finally, VEINS
(Vehicles in Network Simulation) will offer a graphical interface between OMNET++ and
SUMO, allowing the construction of predefined graphics for vehicle networks, as well as
collecting statistics from the simulated application.

This set of tools will operate with the 802.11p protocol stack, but Long Term
Evolution (LTE) can also be considered, which are both implemented in the considered
tools. Data transferred in the network, latency of traffic estimate, and accuracy are metrics
initially planned to be collected.

6. Conclusion
We have shown the feasibility of implementing FL for real-time traffic estimation on a
reduced and controlled scale. The accuracy of learning reached high values within few
training rounds, but still interesting points were identified that should be evaluated in the
next steps.

The developed code applies, in the end, Supervised Learning, where the data set
and labels must be provided. In the next step of this research, we will integrate the learning
phase with the simulation, where the number of clients (cars) will be dynamically set on
the simulation environment. Other future directions are:

1. Investigate different models as well as how to tune the distributed model and its
parameters.

2. Define equations and methods to dynamically compute parameters such as com-
munication rounds for model aggregation and the ideal number of epochs in differ-
ent scenarios. It is clear that the amount of epochs affects the accuracy of learning,
but it also affects performance.

3. Identify where aggregation can be best run (e.g. cloud or RSUs) based on com-
puting requirements, performance, and response time.

4. Evaluate the proposal considering different network communication technologies
(e.g. WiFi and 5G).
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Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P. (2016a). Federated op-
timization: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527.
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