next up previous
Next: About this document ... Up: libopf Previous: Additional Information

Bibliography

1
J. P. Papa, A. X. Falcão, V. H. C. Albuquerque and J. M. R. da Silva Tavares.
Efficient supervised optimum-path forest classification for large datasets.
Pattern Recognition, 45(1):512-520, 2012.

2
J. P. Papa, A. X. Falcão, and Celso T. N. Suzuki.
Supervised pattern classification based on optimum-path forest.
International Journal of Imaging Systems and Technology, 19(2):120-131, 2009.

3
L.M. Rocha, F.A.M. Cappabianco, and A.X. Falcão.
Data clustering as an optimum-path forest problem with applications in image analysis.
International Journal of Imaging Systems and Technology, 19(2):50-68, 2009.

4
A.X. Falcão, J. Stolfi, and R.A. Lotufo.
The image foresting transform: Theory, algorithms, and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):19-29, Jan 2004.

5
J.P. Papa, A.X. Falc ao, and C.T.N. Suzuki.
Supervised pattern classification based on optimum-path forest.
Technical Report IC-08-20, Institute of Computing, University of Campinas, 2008.

6
J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Torres, and A.X. Falcão.
Rotation-invariant texture recognition.
In 3rd International Symposium on Visual Computing, volume Part II, LNCS 4842, pages 193-204, Lake Tahoe, Nevada, CA, USA, Nov 2007. Springer.

7
J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Torres, and A.X. Falcão.
Learning how to extract rotation-invariant and scale-invariant features from texture images.
EURASIP Journal on Advances in Signal Processing, 2008:1-16, 2008.

8
J.P. Papa, A.A. Spadotto, A.X. Falcão, and J.C. Pereira.
Optimum path forest classifier applied to laryngeal pathology detection.
In 15th International Conference on Systems, Signals and Image Processing, pages 249-252. Publishing House STU, Bratislava, 2008.

9
A.A. Spadotto, J.C. Pereira, R.C. Guido, J.P. Papa, A.X. Falcão, A.R. Gatto, P.C. Cola, and A.O. Shelp.
Oropharyngeal dysphagia identification using wavelets and optimum path forest.
In Proceedings of the 3th IEEE International Symposium on Communications, Control and Signal Processing, pages 735-740, 2008.
ISBN: 978-1-4244-1688-2.

10
J.B. MacQueen.
Some methods for classification and analysis of multivariate observations.
In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, pages 281-297. University of California Press, 1967.

11
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38, 1977.

12
J. C. Bezdek.
Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, 1981.

13
A.K. Jain, R. P.W. Duin, and J. Mao.
Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37, 2000.

14
Y. Cheng.
Mean shift, mode seeking, and clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):790-799, Aug 1995.

15
M. Herbin, N. Bonnet, and P. Vautrot.
A clustering method based on the estimation of the probability density function and on the skeleton by influence zones.
In Proceedings of the Pattern Recognition Letters, volume 17, pages 1141-1150, 1996.

16
D. Comaniciu and P. Meer.
A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603-619, 2002.

17
D. DeMenthon.
Spatio-temporal segmentation of video by hierarchical mean shift analysis.
In Proceedings of Statistical Methods in Video Processing Workshop, 2002.

18
D. Comaniciu, V. Ramesh, and P. Meer.
Real-time tracking of non-rigid objects using mean shift.
In IEEE Conference on Computer Vision and Pattern, pages 142-151, 2000.

19
D. Comaniciu and P. Meer.
Kernel-based object tracking.
In IEEE Trans. on Pattern Analysis and Machine Intelligence, volume 25, pages 564-577. IEEE Computer Society, May 2003.

20
J. Wang, B. Thiesson, Y. Xu, and M. Cohen.
Image and video segmentation by anisotropic kernel mean shift.
In Proc. of the 8th European Conference on Computer Vision, volume 3022, pages 238-249. Springer Berlin / Heidelberg, 2004.

21
Changjiang Yang, Ramani Duraiswami, and Larry Davis.
Efficient mean-shift tracking via a new similarity measure.
In CVPR '05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 176-183, Washington, DC, USA, 2005. IEEE Computer Society.

22
A.X. Falcão, B.S. da Cunha, and R.A. Lotufo.
Design of connected operators using the image foresting transform.
In Proc. of SPIE on Medical Imaging, volume 4322, pages 468-479, Feb 2001.

23
R.A. Lotufo, A.X. Falcão, and F. Zampirolli.
IFT-Watershed from gray-scale marker.
In Proceedings of XV Brazilian Symp. on Computer Graphics and Image Processing, pages 146-152. IEEE, Oct 2002.

24
L. Vincent.
Morphological grayscale reconstruction in image analysis.
IEEE Transactions on Image Processing, 2(2):176-201, Apr 1993.

25
S. Beucher and C. Lantuejoul.
Use of watersheds in contour detection.
In Proceedings of the International Workshop on Image Processing, Real-Time Edge and Motion Detection, 1979.



Joao Paulo Papa 2014-06-09