Next: About this document ...
Up: libopf
Previous: Additional Information
- 1
-
J. P. Papa, A. X. Falcão, V. H. C. Albuquerque
and J. M. R. da Silva Tavares.
Efficient supervised optimum-path forest classification for large datasets.
Pattern Recognition,
45(1):512-520, 2012.
- 2
-
J. P. Papa, A. X. Falcão, and Celso T. N. Suzuki.
Supervised pattern classification based on optimum-path forest.
International Journal of Imaging Systems and Technology,
19(2):120-131, 2009.
- 3
-
L.M. Rocha, F.A.M. Cappabianco, and A.X. Falcão.
Data clustering as an optimum-path forest problem with applications
in image analysis.
International Journal of Imaging Systems and Technology,
19(2):50-68, 2009.
- 4
-
A.X. Falcão, J. Stolfi, and R.A. Lotufo.
The image foresting transform: Theory, algorithms, and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(1):19-29, Jan 2004.
- 5
-
J.P. Papa, A.X. Falc ao, and C.T.N. Suzuki.
Supervised pattern classification based on optimum-path forest.
Technical Report IC-08-20, Institute of Computing, University of
Campinas, 2008.
- 6
-
J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Torres, and A.X.
Falcão.
Rotation-invariant texture recognition.
In 3rd International Symposium on Visual Computing, volume Part
II, LNCS 4842, pages 193-204, Lake Tahoe, Nevada, CA, USA, Nov 2007.
Springer.
- 7
-
J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Torres, and A.X.
Falcão.
Learning how to extract rotation-invariant and scale-invariant
features from texture images.
EURASIP Journal on Advances in Signal Processing, 2008:1-16,
2008.
- 8
-
J.P. Papa, A.A. Spadotto, A.X. Falcão, and J.C. Pereira.
Optimum path forest classifier applied to laryngeal pathology
detection.
In 15th International Conference on Systems, Signals and Image
Processing, pages 249-252. Publishing House STU, Bratislava, 2008.
- 9
-
A.A. Spadotto, J.C. Pereira, R.C. Guido, J.P. Papa, A.X. Falcão, A.R.
Gatto, P.C. Cola, and A.O. Shelp.
Oropharyngeal dysphagia identification using wavelets and optimum
path forest.
In Proceedings of the 3th IEEE International Symposium on
Communications, Control and Signal Processing, pages 735-740, 2008.
ISBN: 978-1-4244-1688-2.
- 10
-
J.B. MacQueen.
Some methods for classification and analysis of multivariate
observations.
In Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, pages 281-297. University of
California Press, 1967.
- 11
-
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1-38, 1977.
- 12
-
J. C. Bezdek.
Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, 1981.
- 13
-
A.K. Jain, R. P.W. Duin, and J. Mao.
Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(1):4-37, 2000.
- 14
-
Y. Cheng.
Mean shift, mode seeking, and clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(8):790-799, Aug 1995.
- 15
-
M. Herbin, N. Bonnet, and P. Vautrot.
A clustering method based on the estimation of the probability
density function and on the skeleton by influence zones.
In Proceedings of the Pattern Recognition Letters, volume 17,
pages 1141-1150, 1996.
- 16
-
D. Comaniciu and P. Meer.
A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
24:603-619, 2002.
- 17
-
D. DeMenthon.
Spatio-temporal segmentation of video by hierarchical mean shift
analysis.
In Proceedings of Statistical Methods in Video Processing
Workshop, 2002.
- 18
-
D. Comaniciu, V. Ramesh, and P. Meer.
Real-time tracking of non-rigid objects using mean shift.
In IEEE Conference on Computer Vision and Pattern, pages
142-151, 2000.
- 19
-
D. Comaniciu and P. Meer.
Kernel-based object tracking.
In IEEE Trans. on Pattern Analysis and Machine Intelligence,
volume 25, pages 564-577. IEEE Computer Society, May 2003.
- 20
-
J. Wang, B. Thiesson, Y. Xu, and M. Cohen.
Image and video segmentation by anisotropic kernel mean shift.
In Proc. of the 8th European Conference on Computer Vision,
volume 3022, pages 238-249. Springer Berlin / Heidelberg, 2004.
- 21
-
Changjiang Yang, Ramani Duraiswami, and Larry Davis.
Efficient mean-shift tracking via a new similarity measure.
In CVPR '05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1, pages
176-183, Washington, DC, USA, 2005. IEEE Computer Society.
- 22
-
A.X. Falcão, B.S. da Cunha, and R.A. Lotufo.
Design of connected operators using the image foresting transform.
In Proc. of SPIE on Medical Imaging, volume 4322, pages
468-479, Feb 2001.
- 23
-
R.A. Lotufo, A.X. Falcão, and F. Zampirolli.
IFT-Watershed from gray-scale marker.
In Proceedings of XV Brazilian Symp. on Computer Graphics and
Image Processing, pages 146-152. IEEE, Oct 2002.
- 24
-
L. Vincent.
Morphological grayscale reconstruction in image analysis.
IEEE Transactions on Image Processing, 2(2):176-201, Apr 1993.
- 25
-
S. Beucher and C. Lantuejoul.
Use of watersheds in contour detection.
In Proceedings of the International Workshop on Image
Processing, Real-Time Edge and Motion Detection, 1979.
Joao Paulo Papa
2014-06-09