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Abstract

We propose an approach for data clustering based on optimum-path forest. The

samples are taken as nodes of a graph, whose arcs are de�ned by an adjacency relation.

The nodes are weighted by their probability density values (pdf) and a connectivity

function is maximized, such that each maximum of the pdf becomes root of an optimum-

path tree (cluster), composed by samples \more strongly connected" to that maximum

than to any other root. We discuss the advantages over other pdf-based approaches

and present extensions to large datasets with results for interactive image segmentation

and for fast, accurate, and automatic brain tissue classi�cation in magnetic resonance

(MR) images.

1 Introduction

The identi�cation of natural groups of samples from a dataset, namely clustering [1], is a

crucial step in many applications of data analysis. The samples are usually represented by

feature vectors (e.g., points in <

n

), whose similarity between them depends on a distance

function (e.g., Euclidean). Natural groups are characterized by high concentrations of

samples in the feature space, which form the domes of the probability density function

(pdf), as illustrated in Figure 1a. These domes can be detected and separated by de�ning

the \inuence zones" of their maxima (Figure 1b). However, there are di�erent ways to

de�ne these inuence zones [2, 3] and the desired data partition may require to reduce the

number of irrelevant clusters (Figure 1c). In order to propose a more general and robust

solution, we reformulate this strategy as an optimum-path forest problem in a graph derived

from the samples.

The samples are nodes of a graph, whose arcs are de�ned by an adjacency relation

between them. The arcs are weighted by the distances between the feature vectors of their

corresponding samples and the nodes are also weighted by their probability density values,

which are computed from the arc weights. A path is a sequence of adjacent nodes and a

connectivity function evaluates the strength of connectedness between its terminal nodes.

1
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Let S be a set of relevant maxima in the pdf (e.g., samples A and B in Figure 1a). We

wish that each sample in the dataset (e.g., sample C in Figure 1a) be reached by a path

from S whose minimum density value along it is maximum. The connectivity function

assigns to any path in the graph, the minimum between the density values along it and a

handicap value of its starting node. The handicap values work as �ltering parameters on the

pdf, reducing the numbers of clusters by choosing the relevant maxima. The maximization

of the connectivity function for each sample, irrespective to its starting node, partitions

the graph into an optimum-path forest, where each root (maximum of the pdf) de�nes an

optimum-path tree (cluster) composed by its most strongly connected samples (Figure 1c).

A

C B

(a) (b) (c)

Figure 1: (a) A pdf of two relevant clusters in a 2D feature space (brighter samples show

higher density values). The maxima A and B compete for sample C by o�ering it paths

with some strength of connectedness. (b) The inuence zones of the pdf's maxima and (c)

the inuence zones of its relevant maxima.

Some pdf-based approaches assume either explicitly, or often implicitly, that the domes

have known shapes and/or can be �tted to parametric functions [4{7]. Given that the shapes

may be far from hyperelliptical, which is the classical assumption, several other methods

aim to obtain clusters by avoiding those assumptions [2, 3]. Among these approaches,

the mean-shift algorithm seems to be the most popular and actively pursued in computer

vision [2,8{13]. For each sample, it follows the direction of the pdf's gradient vector towards

the steepest maximum around that sample. The pdf is never explicitly computed and each

maximum should de�ne an inuence zone composed by all samples that achieve it. It

is not di�cult to see that this approach may present problems if the gradient vector is

poorly estimated or has magnitude zero. Besides, if a maximum consists of neighboring

points with the same density value, it may break its inuence zone into multiple ones. This

further increases the number of clusters which is usually higher than the desired one.

The proposed method circumvents those problems by �rst identifying one sample for

each relevant maximum of the pdf and then by de�ning the inuence zone of that maximum

(robustness). It uses the image foresting transform (IFT), here extended from the image

domain to the feature space [14]. The IFT has been successfully used to reduce image

processing problems into an optimum-path forest problem in a graph derived from the image,

by minimizing/maximizing a connectivity function. The image operator is computed from

one or more attributes of the forest. The connectivity function we use in the feature space
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is dual of the one used for the IFT-watershed transform from a gray-scale marker in the

image domain [15,16], which computes a morphological reconstruction [17] and a watershed

transform [18] in a same operation. That is, the obtained clusters are equivalent to the

dual-watershed regions of the �ltered pdf (the pdf without the irrelevant domes), being a

more general solution than the one obtained by the popular mean-shift algorithm [2].

The literature of graph-based approaches for data clustering is vast [1, 19{24]. Some

methods create a neighborhood graph (such as a minimum-spanning tree, the Gabriel graph)

from the data samples and then remove inconsistent arcs based on some criterion, being the

results sometimes hierarchical (e.g., the single-linkage algorithm [20]). Other approaches

search for a global minimum cut in the graph to create the clusters [22, 23]. As far as

we know, our approach is the �rst that models the clustering problem as an optimum-

path forest problem. It extends the main ideas under relative-fuzzy connectedness among

seeds [25,26] to other connectivity functions and applications where the seeds (root samples)

have to be identi�ed on-the-y. Another approach based on optimum-path forest has been

proposed for supervised classi�cation [27]. Our method di�ers from that in the graph

model, connectivity function, learning algorithm, and application, which is in our case,

unsupervised. Previous versions of our work have also been published [28,29]. The present

paper merges and extends them by improving methods and results for large datasets, such

as images.

The basic concepts on pdf estimation from arc-weighted graphs are given in Section 2.

The proposed method is presented in Section 3 and Section 4 describes its extension to large

data sets. Results for interactive image segmentation and for fast, accurate and automatic

classi�cation of brain tissues are presented in Section 5, with experiments involving real

and synthetic MR images. Section 6 states our conclusions and discuss future work.

2 Weighted graphs and pdf estimation

A dataset N consists of samples from a given application, which may be pixels, objects,

images, or any other arbitrary entities. Each sample s 2 N is usually represented by a

feature vector ~v(s) and the distance between samples s and t in the corresponding feature

space is given by a function d(s; t) (e.g., d(s; t) = k~v(t) � ~v(s)k). Our problem consists of

identifying high concentrations of samples which can characterize relevant clusters for that

application. These clusters form domes in the pdf (Figure 1a), which can be computed by

Parzen Window [1]. However, the shape of the Parzen kernel and its parameters may be

chosen by several di�erent ways [30{33].

We say that a sample t is adjacent to a sample s (i.e., t 2 A(s) or (s; t) 2 A) when they

satisfy some adjacency relation. For example,

t 2 A

1

(s) if d(s; t) � d

f

, or (1)

t 2 A

2

(s) if t is a k-nearest neighbor of s in the feature space, (2)

where d

f

> 0 and k > 0 are real and integer parameters, respectively, which must be

computed by some optimization criterion, such as entropy minimization [34]. In Section 3.2,

we present another equivalent option which �nds the best value of k in Equation 2 by
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minimizing a graph-cut measure. Once A is de�ned, we have a graph (N ;A) whose the

nodes are the data samples in N and the arcs are de�ned by the adjacency relation A. The

distance values d(s; t) between adjacent samples are arc weights and the pdf values �(s)

(node weights) can be computed by some kernel. For example,

�(s) =

1

p

2��

2

jA(s)j

X

t2A(s)

exp

�

�d

2

(s; t)

2�

2

�

(3)

where � can be �xed by

� = max

8(s;t)2A

�

d(s; t)

3

�

(4)

to guarantee that most adjacent samples are considered for pdf estimation. Note that

� is de�ned by the maximum arc-weight in (N ;A) divided by 3, which may be di�erent

depending on the adjacency relation. Equation 2 de�nes a knn-graph (N ;A

2

) and, although

the kernel is Gaussian, only the k-nearest samples of s are used to compute its pdf value.

We may also use kernels with di�erent shapes and, although the Gaussian shape favors

round clusters, the choice of the connectivity function leads to the detection of clusters

with arbitrary shapes (Figures 1b and 1c).

In data clustering, we must take into account that clusters may present di�erent concen-

trations and the desired solution depends on a data scale. We have observed that clusters

with distinct concentrations are better detected, when we use A

2

. Besides, it is easier to �nd

the best integer parameter k than the real parameter d

f

for a given application. The scale

problem, however, is not possible to solve without hard constraints. Figures 2a and 2b, for

example, illustrate a pdf by Equation 3 and the inuence zones of its maxima, for k = 17

in Equation 2. The two less-concentrated clusters at the bottom can be separated, but the

largest and dense cluster at the top-left is divided into several inuence zones. The pdf

estimation is improved for the top-left cluster, when k = 40, but the two clusters at the

bottom are merged into a single one (Figure 2c). In order to obtain four clusters, as shown

in Figure 2d, we change a parameter in the connectivity function such that the irrelevant

clusters of Figure 2b are eliminated.

3 Data clustering by optimum-path forest

In Section 3.1, we show how to detect \relevant maxima" in the pdf and to compute the

inuence zones of those maxima as an optimum-path forest in (N ;A). A connectivity

function is de�ned such that irrelevant maxima are naturally eliminated during the process

and a single root sample is detected per maximum. These roots are labeled with distinct

integer numbers and their labels are propagated to each of their most strongly connected

samples, forming an optimum-path tree rooted at each maximum.

For adjacency relations given by Equation 2, di�erent choices of k lead to distinct

optimum-path forests, whose labeled trees represent distinct cuts in the graph (N ;A). The

best value of k is chosen as the one whose optimum-path forest minimizes a graph-cut

measure (Section 3.2).
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(a) (b) (c) (d)

Figure 2: (a-b) A pdf by Equation 3 and the inuence zones of its maxima for k = 17

in Equation 2. (c) The largest top-left cluster can be detected with k = 40, but the two

clusters at the bottom are merged into one. (d) Our approach can eliminate the irrelevant

clusters of (b) by parameter choice in the connectivity function.

3.1 Inuence zones from relevant maxima

A path �

t

in (N ;A) is a sequence of adjacent nodes with terminus t. A path �

t

= hti is said

trivial and �

t

= �

s

� hs; ti is the concatenation of a path �

s

by an arc (s; t) 2 A (Figure 3a).

A sample t is connected to a sample s when there is a path from s to t.

Symmetric adjacency relations (e.g., A

1

in Equation 1) result into symmetric connec-

tivity relations, but A

2

in Equation 2 is an asymmetric adjacency. Given that a maximum

of the pdf may be a subset of adjacent samples with a same density value, we need to

guarantee connectivity between any pair of samples in that maximum. Thus, any sample of

the maximum can be a representative and reach the other samples in that maximum and

in their inuence zones by an optimum path (Figures 1 and 2). This requires to extend the

adjacency relation A

2

to be symmetric in the plateaus of � in order to compute clusters.

if t 2 A

2

(s);

s =2 A

2

(t) and

�(s) = �(t), then

A

3

(t)  A

2

(t) [ fsg: (5)

A connectivity function f(�

t

) assigns a value to any path �

t

, representing a \strength of

connectedness" of t with respect to its starting node R(t) (root node). A path �

t

is optimum

when f(�

t

) � f(�

t

) for any other path �

t

, irrespective to its root. We wish to choose f such

that its maximization for every node t will constraint the roots of the optimum paths in

the maxima of the pdf. That is, we wish to assign to every sample t 2 N an optimum path

P

�

(t) whose strength of connectedness V (t) is the highest with respect to one among the

pdf's maxima.

V (t) = max

8�

t

2(N ;A)

ff(�

t

)g: (6)

The image foresting transform (IFT) [14] solves the problem by starting from trivial

paths for all samples. First, the maxima of f(hti) are detected and then optimum paths are
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propagated from those maxima to their adjacent nodes, and from them to their adjacents,

by following a non-increasing order of path values. That is,

if f(�

s

� hs; ti) > f(�

t

) then �

t

 �

s

� hs; ti. (7)

The only requirement is that f must be smooth. That is, for any sample t 2 N , there is an

optimum path P

�

(t) which either is trivial, or has the form P

�

(s) � hs; ti where

(a) f(P

�

(s)) � f(P

�

(t)),

(b) P

�

(s) is optimum,

(c) for any optimum path P

�

(s), f(P

�

(s) � hs; ti) = f(P

�

(t)) = V (t).

If we had one sample per maximum, forming a set R (bigger dots in Figure 3b), then

the maximization of function f

1

would solve the problem.

f

1

(hti) =

�

�(t) if t 2 R

�1 otherwise

f

1

(�

s

� hs; ti) = minff

1

(�

s

); �(t)g: (8)

Function f

1

has an initialization term and a path propagation term, which assigns to any

path �

t

the lowest density value along it. Every sample t 2 R de�nes an optimum trivial

path hti because it is not possible to reach t from another maximum of the pdf without

passing through samples with density values lower than �(t) (Figure 3b). The other samples

start with trivial paths of value �1 (Figure 3c), then any path from R has higher value

than that. Considering all possible paths from R to every sample t =2 R, the optimum path

P

�

(t) will be the one whose the lowest density value along it is maximum.

π
s

s
t

(b)(a)

1 2

2 1

3 3

3

55

5

P(t)*

3

1 2

2

3 3

3

55

55

(d)

t

P(t)

R(t)

1

(c)

Figure 3: (a) Path �

s

with possible extension hs; ti. (b) A graph whose node weights are

their pdf values �(t). There are two maxima with values 3 and 5, respectively. The bigger

dots indicate the root set R. (c) Trivial path values f

1

(hti) for each sample t. (d) Optimum-

path forest P for f

1

and the �nal path values V (t). The optimum path P

�

(t) (dashed line)

can be obtained by following the predecessors P (t) up to the root R(t) for every sample t.
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The optimum paths are stored in a predecessor map P , forming an optimum-path forest

with roots in R | i.e., a function with no cycles that assigns to each sample t =2 R its

predecessor P (t) in the optimum path from R or a marker nil when t 2 R. The optimum

path P

�

(t) with terminus t can be easily obtained by following P (t) backwards up to its

root R(t) in R (Figure 3d).

Given that we do not have the maxima of the pdf, the connectivity function must be

chosen such that its handicap values de�ne the relevant maxima of the pdf. For f

1

(hti) =

h(t) < �(t), for all t 2 N , some maxima of the pdf will be preserved and the others will

be reached by paths from the root maxima, whose values are higher than their handicap

values. For example, if

h(t) = �(t)� �; (9)

� = min

(s;t)2Aj�(t) 6=�(s)

j�(t)� �(s)j;

then all maxima of � are preserved. For higher values of �, the domes of the pdf with

height less than � will not de�ne inuence zones. Figure 4a shows an example where � is

an 1D pdf. If h(t) = �(t) � 2, then the number of maxima is reduced from four to two.

Figure 4b shows the map V and optimum-path forest P (vectors of the predecessor map),

indicating the inuences zones of the two remaining maxima. The number of clusters can

also be reduced by removing domes with area or volume below a threshold. This is done

when h results from an area or volume opening on the pdf [35]. We usually scale � within

an interval [1;K] (e.g., K = 100 or K = 1000) of real numbers, such that it is easier to set

� and to guarantee that h(t) < �(t) by subtracting 1 from h(t).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  50  100  150  200  250

pdf

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  50  100  150  200  250

Removed domes
Path value

Optimum-path forest

(a) (b)

Figure 4: (a) The gray boxes show an 1D pdf � with four maxima. (b) The map V (white)

and optimum-path forest P (vectors), indicating the inuence zones of the two remaining

maxima for f

1

(hti) = h(t) = �(t)� 2.

We also want to avoid the division of the inuence zone of a maximum into multiple

inuence zones, each one rooted at a sample of that maximum. Given that the IFT algo-

rithm �rst identi�es the maxima of the pdf, before propagating their inuence zones, we

can change it to detect a �rst sample t per maximum, de�ning the set R on-the-y. We

then change h(t) by �(t) and this sample will conquer the remaining samples of the same
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maximum. Thus the �nal connectivity function f

2

becomes

f

2

(hti) =

�

�(t) if t 2 R:

h(t) otherwise:

f

2

(�

s

� hs; ti) = minff(�

s

); �(t)g: (10)

Algorithm 1 presents the IFT modi�ed for a graph (N ;A) and connectivity function

f

2

. It identi�es a single root in each relevant maximum, labels it with a consecutive integer

number l, and computes optimum paths for f

2

from the roots, by following a non-increasing

order of path values. The optimum-path values are stored in V , while the root labels L(t)

and predecessors P (t) are propagated to each sample t. The roots R(t) do not need to be

propagated.

Algorithm 1 { Clustering by Optimum-Path Forest

Input: Graph (N ;A) and functions h and �, h(t) < �(t) for all t 2 N .

Output: Label map L.

Auxiliary: Path-value map V , predecessor map P , priority queue Q, variables tmp and l 1.

1. For each t 2 N , set P (t) nil, V (t) h(t), and insert t in Q.

2. While Q is not empty, do

3. Remove from Q a sample s such that V (s) is maximum.

4. If P (s) = nil then set L(s) l, l l + 1, and V (s) �(s).

5. For each t 2 A(s) such that V (t) < V (s), do

6. Compute tmp minfV (s); �(t)g.

7. If tmp > V (t), then

8. Set L(t) L(s), P (t) s, and V (t) tmp.

9. Update position of t in Q.

Line 1 initializes maps and inserts all samples in Q. At each iteration of the main loop

(Lines 2{9), an optimum path P

�

(s) with value V (s) is obtained in P when we remove its

last sample s from Q (Line 3). Ties are broken in Q using �rst-in-�rst-out (FIFO) policy.

That is, when two optimum paths reach an ambiguous sample s with the same maximum

value, s is assigned to the �rst path that reached it. The test P (s) = nil in Line 4 identi�es

P

�

(s) as a trivial path hsi. Given that the optimum paths are found in a non-increasing

order of values, trivial paths indicate samples in the maxima. By changing V (s) to �(s),

as de�ned by Equation 10 and indicated in Line 4, we are forcing a �rst sample in each

maximum to conquer the rest of the samples in that maximum. Therefore, s 2 R becomes

root of the forest in Line 4 and a distinct label l is assigned to it. Lines 5{9 evaluate if

the path that reaches an adjacent sample t through s is better than the current path with

terminus t and update Q, V , L, and P accordingly. Note that, the condition in Line 5

avoids to evaluate adjacent nodes already removed from Q.

The computation of P was shown to facilitate the description of the algorithm. However,

it is not needed for data clustering. One may initialize L(t) nil in Line 1, remove P (t) s

in Line 8, and replace P (s) = nil by L(s) = nil in Line 4.

Algorithm 1 runs in �(jAj + jN j log jN j) if Q is a balanced heap data structure [14].

This running time may be reduced to �(jAj+ jN jK) if we convert � and h to integer values

in the range of [0;K] and implement Q with bucket sorting [36]. We are using the heap

implementation with real path values in this work.
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3.2 Estimation of the best knn-graph

The results of Algorithm 1 will also depend on the choice of A (e.g., the value of k in the case

of a knn-graph). Considering the inuence zones a cut in the graph (N ;A

3

) (Equation 5),

we wish to determine the value of k which optimizes some graph-cut measure.

Clustering validity measures could be used but they usually assume compact and well

separated clusters [37,38]. The measure should be independent of the shape of the clusters.

Thus we use the graph-cut measure for multiple clusters as suggested in [23].

Let 1=d(s; t) be the arc weights in a knn-graph (N ;A

3

). Algorithm 1 can provide in L

a graph cut for each value of k 2 [1; (jN j � 1)]. This cut is measured by C(k).

C(k) =

c

X

i=1

W

0

i

W

i

+W

0

i

; (11)

W

i

=

X

(s;t)2A

3

jL(s)=L(t)=i

1

d(s; t)

; (12)

W

0

i

=

X

(s;t)2A

3

jL(s)=i;L(t) 6=i

1

d(s; t)

; (13)

(14)

The best cut is de�ned by the minimum value of C(k), where W

0

i

considers all arc weights

between cluster i and other clusters, and W

i

considers all arc weights within cluster i =

1; 2; : : : ; c. The desired minimum in C(k) is usually within k 2 [1; k

max

], for k

max

� jN j,

which represents the most reasonable solution for a given scale. Therefore, we usually

constraint the search within that interval.

4 Extensions to large datasets

The choice of the adjacency parameter, d

f

or k, by optimization requires the execution

of Algorithm 1 several times (e.g., k

max

). Depending on the number of nodes and execu-

tions, the clustering process may take minutes running on modern PCs. Given that we

have to compute and store the arcs, the problem becomes unsurmountable for 2D and 3D

images with thousands of pixels and millions of voxels. Therefore, we present two possible

extensions for large datasets.

4.1 Clustering with size constraint

Algorithm 1 is computed within a small subset N

0

� N and then the classi�cation of the

remaining samples in NnN

0

is done one by one, as though the sample were part of the

forest. In general, N

0

may be chosen by some random procedure. One can repeat the

process several times and take a �nal decision by majority vote (Section 5.2). We then

compute the best knn-graph (N

0

;A

3

) as described before.

Let V and L be the optimum maps obtained from (N

0

;A

3

) by Algorithm 1. A sample

t 2 NnN

0

is classi�ed in one of the clusters by identifying which root would o�er it an
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optimum path. By considering the adjacent samples s 2 A

3

(t) � N

0

, we compute � by

Equation 3, evaluate the paths �

s

� hs; ti, and select the one that satis�es

V (t) = max

8(s;t)2A

3

fminfV (s); �(t)gg: (15)

Let the node s

�

2 N

0

be the one that satis�es Equation 15. The classi�cation simply assigns

L(s

�

) as the cluster of t.

4.2 Clustering with spatial constraint

If we considerably reduce the number of arcs by adding some spatial constraint to the

adjacency computation, then the entire image domain N can be used to form the nodes of

the graph. For example, Algorithm 1 can be directly executed in (N ;A

4

), where

t 2 A

4

(s) if d(s; t) � d

f

and kt� sk � d

i

: (16)

The parameter d

f

can be computed using the �rst approach in a small subset N

0

� N .

This subset may consist, for example, of every 16 � 16 pixels obtained by uniform sampling

in the original image (Section 5.1). The best knn-graph (N

0

;A

3

) is computed and the

maximum arc weight used to set � by Equation 4 and d

f

in Equation 16. Figure 5 illustrates

four images and their respective pdfs, when d

i

= 5 in Equation 16 and the density values

in Equation 3 are scaled from [1� 100].

Smaller values of d

i

increase e�ciency, but also the number of clusters. The choice of h

in Equation 10 then becomes paramount to reduce the number of irrelevant clusters. The

next section shows results of both extensions to large datasets.

5 Results in image segmentation

A multi-dimensional and multi-parametric image

^

I is a pair (N ;

~

I) where N � Z

n

is the

image domain in n dimensions and

~

I(s) = fI

1

(s); I

2

(s); : : : ; I

m

(s)g is a vectorial func-

tion, which assigns m image properties (parameters) to each pixel t 2 N . For example,

fI

1

(t); I

2

(t); I

3

(t)g may be the red, green and blue values of t in a color image

^

I. We

present segmentation results for 2D (natural scenes) and 3D (MR-images) datasets in this

section.

5.1 Natural scenes

Objects in natural scenes usually consist of a single connected component each, but parts of

the background may present similar image features. The clustering with spatial constraint

seems to be more suitable in this case, because the clusters can be broken into disconnected

regions such that similar parts of object and background are more likely to fall in di�erent

regions (Figure 7).

The graph (N ;A

4

) can be created as described in Section 4.2, but the image features play

an important role in the segmentation results. Instead of using

~

I(s) as the image features

of each pixel s 2 N , we describe in Section 5.1.1 other options based on image smoothing
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a-d) Natural images and (e-h) their pdfs, computed with d

i

= 5 in Equation 16

and density values scaled from [1� 100] in Equation 3.

in several scales. Note that the choice of the best feature set for a given segmentation task

is subject for a future work, given the variability of the natural scenes.

Algorithm 1 computes a �ltered pdf in V (inferior reconstruction of � from h) and the

dual-watershed regions of it in L (the inuence zones of the maxima of V ). This represents

an extension of the IFT-watershed transform from gray-scale marker [16] from the image

domain to the feature space. Section 5.1.2 then presents a comparative analysis of the

proposed approach with respect to [16] and the mean-shift algorithm [2].

Finally, the clustering results are not usually enough to solve image segmentation. Some

global information is needed to indicate which regions compose the object (Figure 7). We

then take the user's help for this task. Section 5.1.3 presents an interactive approach, where

the user involvement is reduced to draw markers that either merge object regions or split

a selected region, when clustering fails in separating object and background (Figures 8a-

8h). The method used for region splitting is the IFT-watershed transform from labeled

markers [39].
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5.1.1 Multiscale image features.

Multscale image smoothing can be computed by linear convolutions with Gaussians [40]

and/or by various types of levelings [17, 41{43]. In this paper, we are using sequences of

opening by reconstruction and closing by reconstruction, computed over each image band

I

i

, i = 1; 2; : : : ;m, for disks of radii j = 1; 2; : : : ; S (e.g., S = 4). Gaussian �lters can provide

smoother contours than morphological reconstructions, but the latter better preserves the

natural indentations and protusions of the shapes.

Let ~v

i

(s) = (v

i;1

(s); v

i;2

(s); : : : ; v

i;S

(s)) be the pixel intensities v

i;j

(s), j =

1; 2; : : : ; S, of the multiscale smoothing on each band I

i

, i = 1; 2; 3 of an

RGB image. The feature vector ~v(s) assigned to each pixel s 2 N is

(v

1;1

(s); : : : ; v

1;S

(s); v

2;1

(s); : : : ; v

2;S

(s); v

3;1

(s); : : : ; v

3;S

(s)), and the distance d(s; t) between

these vectors is Euclidean.

The multiscale image features are also used for gradient computation in both IFT-

watershed transforms, from gray-scale marker [16] and from labeled marker [39]. A gradient

image (N ; G) is computed using adjacency relation A

5

(8-neighborhood), as follows.

t 2 A

5

(s) if kt� sk �

p

2; (17)

~

G

i

(s) =

S

X

j=1

X

8t2A

5

(s)

[v

i;j

(t)� v

i;j

(s)]

~

st; (18)

G(s) = max

i=1;2;3

k

~

G

i

(s)k (19)

where

~

st is the unit vector connecting s to t in the image domain (Figure 6).

(a) (b) (c) (d)

Figure 6: (a-d) Gradient images computed from the images in Figures 5a- 5d using Equa-

tion 19. Lower brightness values indicate higher gradient values.
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5.1.2 Comparative analysis.

When comparing segmentation methods, we must be careful to avoid exper-

imental comparisons between di�erent implementations. The mean-shift code

(http://www.caip.rutgers.edu/riul/research/code/EDISON) requires adjustments of some

parameters, uses di�erent image features, and merges the labeled clusters based on a dis-

tance criterion between maxima [10]. The same criterion could be applied in our approach,

with no guarantee that object and background will be separated. For this reason, we believe

that the clustering should minimize the number of object's regions as mush as possible and

let the user to complete the process (Section 5.1.3).

Figures 7a- 7d present the labeled clusters of Algorithm 1 for f

2

with h(t) = �(t) � 1

and �(t) 2 [1; 100] (Figures 5e- 5h). These results are similar to those of the mean-shift

approach [2], when the mean-shift merges the inuence zones of samples in a same maximum

and solves gradient problems on plateaus (Section 1). These objects are divided into several

regions, but their boundaries are preserved. In order to reduce the number of regions for

interactive segmentation, we run Algorithm 1 with h computed by volume opening on � [35]

(Figures 7e- 7h).

The IFT-watershed transform from gray-scale marker uses the volume closing to create a

marker h(t) > G(t) and runs the IFT on an image graph (N ;A

5

) to minimize a connectivity

function f

4

(see the duality with Equation 10).

f

4

(hti) =

�

G(t) if t 2 R

h(t) otherwise

f

4

(�

s

� hs; ti) = maxff

4

(�

s

); G(t)g (20)

whereR is the set of the relevant minima in G, which become the only minima of V (superior

reconstruction of G from the marker h). Their inuence zones appear in L. The constraint

d

f

in Equation 16 allows a higher radius d

i

= 5 than the one used in Equation 17. This

together with the use of � rather than G usually reduces the number of regions with respect

to the number obtained by the IFT-watershed from gray-scale marker (Figures 7i- 7l).

5.1.3 Interactive segmentation.

The regions in Figures 7e- 7h are obtained by separating the clusters into 4-connected image

components. The partition helps the user to identify which regions compose the object and

select markers to merge them (Figures 8a- 8d). It also shows when a region includes object

and background (e.g., Figure 8d), but their pixels can be easily separated with an IFT-

watershed transform from labeled markers [39] constrained to that region. The markers

are labeled as internal and external seed pixels, forming a set R. The IFT algorithm runs

on an image graph (N ;A

5

) to minimize a connectivity function f

3

(see the duality with

Equation 8).

f

3

(hti) =

�

G(t) if t 2 R

+1 otherwise

f

3

(�

s

� hs; ti) = maxff

3

(�

s

); G(t)g: (21)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Clustering results using Algorithm 1 for f

2

with (a)-(d) h(t) = �(t) � 1 and

(e)-(h) h from volume opening on �. (i)-(l) Results with IFT-watershed from gray-scale

marker [16].

The object region is rede�ned by the optimum-path forest rooted at the internal seeds.

Figures 8e- 8h show the resulting segmentation from the markers and regions of Fig-

ures 8a- 8d. Similar results could be obtained from the gradient images in Figures 6a- 6d

by using only the IFT-watershed transform from labeled markers (Figures 8i- 8l). However,

the proposed method helps the user to �nd directly the e�ective locations for the markers,

usually reducing the number of markers and user's involvement.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: (a)-(d) The user selects markers to merge regions and/or separate object and

background in a given region. (e)-(h) Segmentation results. (i)-(l) Similar results with the

IFT-watershed transform from labeled markers. User's involvement can be reduced with

the visual guidance of (a)-(d).

5.2 MR-images of the brain

The classi�cation of the brain tissues is a fundamental task in several medical applica-

tions [44{47]. In this section, we present a fast, accurate and automatic approach for

gray-matter (GM) and white-matter (WM) classi�cation in MRT1-images of the brain, but

it can be extended to other imaging protocols.

An MRT1-image of the brain is a pair (N ; I), where N contains millions of voxels whose

intensities I(t) are usually darker in GM than in WM (exceptions might occur due to noise,

inhomogeneity, and partial volume). Our problem consists of �nding two clusters, one with
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GM voxels and the other with WM voxels. The clustering with size constraint is used for

this purpose (Section 4.1).

The most critical problem is the inhomogeneity. We �rst reduce it by transforming I(t)

into a new voxel intensity J(t), 8t 2 N (Section 5.2.1). A graph (N

0

;A

3

) is created by

subsampling 0:02% of the voxels in N , such that 0:01% of these voxels have values below

the mean intensity inside the brain and 0:01% above it. This usually allows a fair amount

of samples from both GM and WM tissues. A feature vector ~v(t) consists of the value J(t)

and the values of its 18 closest neighbors in the image domain. When a neighbor is out of

the brain, we repeat J(t) in the vector. The arc-weights are Euclidean distances between

their corresponding feature vectors and the pdf is computed by Equation 3 using the best

value of k 2 [1; 30]. The method usually �nds two clusters within this range. When it �nds

more than two clusters, we force two clusters by assigning a GM label to those with mean

intensity below the mean intensity in the brain and a WM label otherwise. Equation 15 is

evaluated to classify the remaining voxels in NnN

0

. Finally, the whole process is executed

a few times (e.g., 7) and the class with majority vote is chosen for every voxel in order to

guarantee stability.

The method has been evaluated for real and synthetic images (Section 5.2.2). It rep-

resents an advance with respect to our previous approach [29], which did not use neither

inhomogeneity reduction nor majority vote.

5.2.1 Inhomogeneity Reduction.

We reduce inhomogeneity based on three observations. First, it a�ects little the intensities

of nearby voxels in a same tissue (e.g., S

0

and T

0

in Figure 9a). Second, similar observation

is valid for intensity di�erences between WM and GM voxels (e.g., S

i

and T

i

, i = 1; 2, in

Figure 9a, respectively) in nearby regions of the image domain. Third, most voxels on the

surface of the brain belongs to GM. The third observation led us to identify reference voxels

for GM on the surface of the brain. Another clustering by optimum-path forest (OPF) is

executed to divide the voxels on the surface of the brain into GM and WM voxels. The GM

voxels are used as reference. Let t be a voxel in the brain, C(t) be the closest reference voxel

of t on the surface of the brain and V

C(t)

be the set of reference voxels within an adjacency

radius equal to 6mm from C(t) in the image domain. The purpose V

C(t)

is to avoid outliers

among reference voxels. The new intensity J(t) is the average of the following intensity

di�erences.

J(t) =

1

j V

C(t)

j

X

8r2V

C(t)

j I(t)� I(r) j : (22)

After transformation, we expect similar intensities for GM voxels and similar intensities for

WM voxels all over the brain (Figure 9b).
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(a) (b)

Figure 9: (a) The intensities of nearby voxels, S

0

and T

0

, are little a�ected by the inhomo-

geneity, and similar observation is valid for the intensity di�erences between WM (S

i

) and

GM (T

i

) voxels, i = 1; 2, in nearby regions of the image domain. Note that, I(S

0

) = 1738,

I(T

0

) = 1716, I(S

1

) = 1737, I(T

1

) = 1283 (their di�erence is 454), I(S

2

) = 2222 and

I(T

2

) = 1712 (their di�erence is 510). (b) After transformation, the voxel intensities in

WM get closer (J(S

1

) = 963 and J(S

2

) = 807) and the same is valid for the GM intensities

(J(T

1

) = 366 and J(T

2

) = 259). This transformation avoids that S

1

and T

2

fall in the same

cluster.

5.2.2 Evaluation.

We selected 8 synthetic images with 181� 217� 181 voxels from the Brainweb database

1

,

with noise from 3%, 5%, 7%, and 9%, and inhomogeneity 20% and 40%, respectively. We

have also performed the same experiment for the �rst 8 real images (with 9-bit intensity

values) from the IBSR dataset

2

. In those datasets, ground-truth images are available, so

we computed the Dice similarity between ground truth and the segmentation results. For

each image, we executed the methods 9 times to compute mean and standard deviation of

the Dice similarities.

The methods OPF

1

and OPF

2

represent our previous [29] and current approaches for

GM/WM classi�cation. The majority vote in OPF

2

was computed over 7 executions. The

classi�cation of the remaining voxels by Equation 15 can be substituted by a Bayesian clas-

si�er. By doing that, any loss in e�ectiveness reinforce the importance of the connectivity

in the feature space for pattern classi�cation. We then include a third approach, which

uses OPF

2

to classify the subsamples N

0

followed by a Bayesian classi�er on NnN

0

and

majority vote over 7 executions (OPF

2

+Bayes).

The results for GM and WM are shown in Tables 1 and 2 for the synthetic images, and

in Tables 3 and 4 for the ISBR images, respectively. They show that the mean e�ectiveness

of OPF

2

is superior than those obtained by OPF

1

and OPF

2

+Bayes. The inhomogeneity

reduction and majority vote usually improve the clustering by OPF, and the connectivity

in the feature space (Equation 15) seems to be important for classi�cation. These results

are also good as compared to those obtained by recent approaches. In [34], for example,

1

URL: http://www.bic.mni.mcgill.ca/brainweb

2

URL: www.cma.mgh.harvard.edu/ibsr
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Phantom Dice similarity mean � std. dev.(%)

GM OPF

1

OPF

2

OPF

2

+Bayes

1 (3%,20%) 95.15 � 0.17 95.47 � 0.05 95.50 � 0.02

2 (5%,20%) 95.10 � 0.17 95.30 � 0.05 95.51 � 0.04

3 (7%,20%) 94.36 � 1.03 95.49 � 0.02 95.00 � 0.08

4 (9%,20%) 94.06 � 0.27 94.95 � 0.01 93.98 � 0.04

5 (3%,40%) 90.90 � 1.28 93.57 � 0.07 93.50 � 0.03

6 (5%,40%) 91.23 � 1.25 93.27 � 0.08 93.51 � 0.04

7 (7%,40%) 91.10 � 0.72 93.50 � 0.03 92.91 � 0.05

8 (9%,40%) 90.66 � 1.21 92.84 � 0.02 92.30 � 0.04

Table 1: GM classi�cation of the synthetic images: mean and standard deviation of the

Dice similarities using OPF

1

[29], the proposed method OPF

2

, and the hybrid approach

OPF

2

+Bayes.Majority vote is used in the two last cases.

Phantom Dice similarity mean � std. dev.(%)

WM OPF

1

OPF

2

OPF

2

+Bayes

1 (3%,20%) 93.43 � 0.19 94.10 � 0.04 93.74 � 0.06

2 (5%,20%) 93.40 � 0.20 93.89 � 0.04 93.75 � 0.09

3 (7%,20%) 92.55 � 0.93 93.91 � 0.02 92.79 � 0.16

4 (9%,20%) 91.93 � 0.54 93.08 � 0.05 91.01 � 0.09

5 (3%,40%) 88.30 � 0.64 91.75 � 0.06 91.23 � 0.04

6 (5%,40%) 88.19 � 0.67 91.40 � 0.05 91.04 � 0.10

7 (7%,40%) 87.77 � 0.81 91.39 � 0.03 89.93 � 0.13

8 (9%,40%) 87.03 � 0.73 90.45 � 0.04 88.48 � 0.10

Table 2: WM classi�cation of the synthetic images: mean and standard deviation of the

Dice similarities using OPF

1

[29], the proposed method OPF

2

, and the hybrid approach

OPF

2

+Bayes.Majority vote is used in the two last cases.

the Dice similarities vary within [93%; 95%] for WM and [89%; 92%] for GM classi�cations,

using the Brainweb images with only 20% of inhomogeneity and noise from 3% to 9%. In

the case of the ISBR dataset, the Dice similarities in [34] achieved 80% for GM and 88%

for WM.

The computational time for each execution of the OPF clustering is about 50 seconds

on modern PCs, plus 20 seconds for inhomogeneity reduction. Five executions are usually

enough to obtain good results with majority vote. Therefore GM/WM classi�cation can

take about 5:33 minutes using OPF

2

, being about 6 times faster than the approach proposed

in [34].
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IBSR Dice similarity mean � std. dev.(%)

GM OPF

1

OPF

2

OPF

2

+Bayes

1 92.22 � 0.87 90.33 � 0.09 90.34 � 0.12

2 90.99 � 2.93 91.72 � 0.02 87.54 � 0.30

3 93.86 � 0.14 91.99 � 0.10 91.13 � 0.13

4 88.19 � 5.97 92.32 � 0.10 90.33 � 0.18

5 90.20 � 1.73 90.33 � 0.02 88.00 � 0.09

6 85.02 � 4.21 89.42 � 0.05 89.68 � 0.11

7 91.22 � 3.35 91.34 � 0.08 87.29 � 0.15

8 88.46 � 4.39 90.80 � 0.02 88.27 � 0.10

Table 3: GM classi�cation of the ISBR images: mean and standard deviation of the Dice

similarities using OPF

1

[29], the proposed method OPF

2

, and the hybrid approach OPF

2

+

Bayes.Majority vote is used in the two last cases.

IBSR Dice similarity mean � std. dev.(%)

WM OPF

1

OPF

2

OPF

2

+Bayes

1 84.98 � 2.03 84.41 � 0.10 77.14 � 0.57

2 86.55 � 2.93 87.96 � 0.09 74.10 � 1.07

3 86.07 � 0.85 85.61 � 0.11 77.17 � 0.56

4 85.99 � 3.31 86.07 � 0.11 73.60 � 0.82

5 84.59 � 1.40 85.54 � 0.07 74.83 � 0.38

6 83.00 � 3.32 87.94 � 0.05 88.11 � 0.80

7 87.39 � 2.79 87.04 � 0.25 74.86 � 0.50

8 86.05 � 3.41 88.09 � 0.09 79.43 � 0.45

Table 4: WM classi�cation of the ISBR images: mean and standard deviation of the Dice

similarities using OPF

1

[29], the proposed method OPF

2

, and the hybrid approach OPF

2

+

Bayes.Majority vote is used in the two last cases.

6 Conclusions

We presented a clustering approach based on optimum-path forest (OPF ) with two possible

extensions to large datasets. The method identi�es the inuence zones of relevant maxima

of the pdf based on the choice of a connectivity function. We showed the advantages of

the OPF clustering over some baseline approaches, which include theorectical aspects and

practical results. The method was shown to be fast and accurate for automatic GM/WM

classi�cation using real and synthetic images, and useful to guide the user's actions in the

interactive segmentation of natural scenes.

The e�ectiveness of the OPF clustering depends on the descriptor (feature and distance

function) and the connectivity function. In the case of large datasets, it also depends on a

representative subsampling process. These aspects need further investigation in the context

of each application. The user can also provide labeled subsamples by drawing markers in

the image and the OPF approach can be easily extended to supervised classi�cation. This
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was not exploited for interactive segmentation, but the idea is the same. Our future work

goes in this direction.
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