MO434 - Deep Learning
Transformers for Text Analysis

Alexandre Xavier Falcio

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcdo MO434 - Deep Learning



Motivation

@ Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Alexandre Xavier Falcdo MO434 - Deep Learning



Motivation

@ Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

@ Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Alexandre Xavier Falcdo MO434 - Deep Learning



Motivation

@ Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

@ Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

@ Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

Alexandre Xavier Falcdo MO434 - Deep Learning



Motivation

@ Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

@ Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

@ Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

@ A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Alexandre Xavier Falcdo MO434 - Deep Learning



Motivation

@ Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

@ Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

@ Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

@ A transformer is a deep architecture to solve
sequence-to-sequence tasks.

@ Let's understand how a transformer works with a language
translation task.

Alexandre Xavier Falcdo MO434 - Deep Learning



Agenda

@ The encoder of a transformer.

e Positional encoding.
e Self-attention mechanism.

o Other operations.

@ The decoder of a transformer.

o Masked multi-head attention.

o Cross-attention.

@ Tokenization and special tokens.
@ Encoder-only models (BERT) for representation learning.

Alexandre Xavier Falcdo MO434 - Deep Learning



The encoder of a transformer

@ The encoder of a transformer is a context-based embedding

model, differently from word2vec which is a context-free
embedding model.

@ The difference is that the former correlates each word of a
sentence with the others (self-attention), generating a
different representation when they have distinct meanings.

Figures from Getting Started with Google BERT from now on.

Alexandre Xavier Falcdo MO434 - Deep Learning



The encoder of a transformer

A transformer may have multiple encoders (left), being the
configuration of each encoder as shown on the right.

m]



The encoder of a transformer

@ An input sentence is always converted into a sequence of
token ids (by a tokenizer) when inserted into the model.

@ By training, a transformer learns an input embedding for each
word in a sentence, forming an input matrix X.

@ However, before the self-attention mechanism, it is important
to encode the position of each word in the sentence. This
requires a positional encoding matrix P such that X <~ X+ P.

where pos is the position of the word in the sentence: 0 for 'I’,

1 for 'am’ and 2 for 'good’. o

Alexandre Xavier Falcdo MO434 - Deep Learning



The encoder of a transformer

The self-attention mechanism requires three matrices, Q (query),
K (key) and V (value), such that Q = XW®?, K = XWX and
V = XW" with the weight matrices W* learned by training.

Alexandre Xavier Falcdo MO434 - Deep Learning



The encoder of a transformer

The self-attention mechanism requires three matrices, Q (query),
K (key) and V (value), such that Q = XW®?, K = XWX and
V = XW" with the weight matrices W* learned by training.

A self-attention matrix Z with a new embedding for each word is
then defined by

QKt>
Z = softmax V,
<ﬂ

where d is the embedding dimension of each word. Matrix
softmax (QT}TJ) contains the attention weights between each pair
of words in the sentence. Matrix V provides the content
representations that get aggregated according to these attention
weights, producing a context-aware embedding for each word.

Alexandre Xavier Falcdo MO434 - Deep Learning



The encoder of a transformer _

@ To treat possible ambiguities, we usually use multiple
attention heads and the resulting self-attention matrices are

concatenated and multiplied by another weight matrix to
create the final Z.

@ The encoder block also contains a feedforward layer with two
dense layers with RelLU activation, additive skip connections,
and normalization to speed up convergence.

[m] = =

DA



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

Alexandre Xavier Falcdo MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

e Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

Alexandre Xavier Falcdo MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word's embedding captures

its meaning in context.

e Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

@ The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

Alexandre Xavier Falcdo MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word's embedding captures
its meaning in context.

e Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

@ The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

@ This is the foundation of transfer learning for NLP: pretrain
on a large corpus, then fine-tune on a smaller task-specific
dataset.

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transforme_

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t — 1 is used as input,

being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

[m] = = =

DA



The decoder of a transforme_

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t — 1 is used as input,

being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

[m] = = =

DA



The decoder of a transforme_

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t — 1 is used as input,

being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

[m] = =

DA



Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t — 1 is used as input,

being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

[m] = = =

DA



Differences lie on both multi-head attention sublayers.

DA



The decoder of a transformer

o A self-attention matrix of the entire input sentence < sos >
Je vais bien can be computed at each head, but it has to
simulate all four steps: < sos >, < sos > Je, < sos > Je
vais, and < sos > Je vais bien.

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transformer

@ A self-attention matrix of the entire input sentence < sos >

Je vais bien can be computed at each head, but it has to

simulate all four steps: < sos >, < sos > Je, < sos > Je
vais, and < sos > Je vais bien.

@ Therefore, the elements to the right of each word can be

masked by —oo in each given self-attention matrix Z.

m]

=

DA



The decoder of a transformer

@ Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transformer

@ Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

@ Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transformer

@ Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

@ Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

@ The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transformer

@ Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

@ Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

@ The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

@ At each given head, the query, key and value matrices are
Q = MW?, K = RW¥, and V = RW".

Alexandre Xavier Falcdo MO434 - Deep Learning



The decoder of a transformer

@ Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

@ Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

@ The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

@ At each given head, the query, key and value matrices are
Q = MW?, K = RW¥, and V = RW".

@ As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcdo MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

@ Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

Alexandre Xavier Falcdo MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

@ Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

@ Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

Alexandre Xavier Falcdo MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

@ Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

@ Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

e Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with
coverage — e.g., ‘playing” — “play” + “##ing".

Alexandre Xavier Falcdo MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

@ Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

@ Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

e Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with

coverage — e.g., ‘playing” — “play” + “##ing".

Most pretrained transformers (BERT, GPT) use subword
tokenization. Each token is mapped to an integer id and then to a
learned embedding vector.

Alexandre Xavier Falcdo MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

o [CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence — used as the
sentence-level representation for classification tasks.

Alexandre Xavier Falcdo MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

o [CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence — used as the
sentence-level representation for classification tasks.

@ [SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

Alexandre Xavier Falcdo MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

o [CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence — used as the
sentence-level representation for classification tasks.

@ [SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

e [PAD]: padding token to make all sequences in a batch the
same length.

Alexandre Xavier Falcdo MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

o [CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence — used as the
sentence-level representation for classification tasks.

@ [SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

e [PAD]: padding token to make all sequences in a batch the
same length.

For text classification and sentiment analysis, we feed the [CLS]
embedding into a dense layer — this is the basis of fine-tuning,
which we will explore in the hands-on notebook.

Alexandre Xavier Falcdo MO434 - Deep Learning



Hands-on with transformers

Training can use cross entropy since the decoder generates a
probability distribution of the words in a vocabulary.

Let's see how to use BERT from HuggingFace for text classification
and sentiment analysis

Although this course does not address self-supervised learning, let's
see

In the next lecture, we will apply Visual Transformers to image
analysis.

Alexandre Xavier Falcdo MO434 - Deep Learning


http://localhost:8888/notebooks/text-classification-sentiment-analysis.ipynb
http://localhost:8888/notebooks-MO434/GPTFromScratch.ipynb

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polosukhin.
Attention is all you need, 2017.

m]

=

DA



