
MO434 - Deep Learning
Transformers for Text Analysis

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO434 - Deep Learning



Motivation

Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.

Alexandre Xavier Falcão MO434 - Deep Learning



Motivation

Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.

Alexandre Xavier Falcão MO434 - Deep Learning



Motivation

Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.

Alexandre Xavier Falcão MO434 - Deep Learning



Motivation

Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.

Alexandre Xavier Falcão MO434 - Deep Learning



Motivation

Processing text requires understanding the relationships
between all words in a sentence, not just nearby ones.

Sequential models process words one at a time, creating a
bottleneck: early words may be “forgotten” by the time later
words are processed (long-range dependency problem).

Transformers overcome this limitation by processing all words
in parallel and using self-attention to capture relationships
between any pair of words, regardless of distance [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.

Alexandre Xavier Falcão MO434 - Deep Learning



Agenda

The encoder of a transformer.

Positional encoding.

Self-attention mechanism.

Other operations.

The decoder of a transformer.

Masked multi-head attention.

Cross-attention.

Tokenization and special tokens.

Encoder-only models (BERT) for representation learning.

Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

The encoder of a transformer is a context-based embedding
model, differently from word2vec which is a context-free
embedding model.

The difference is that the former correlates each word of a
sentence with the others (self-attention), generating a
different representation when they have distinct meanings.

Figures from Getting Started with Google BERT from now on.
Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

A transformer may have multiple encoders (left), being the
configuration of each encoder as shown on the right.

Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

An input sentence is always converted into a sequence of
token ids (by a tokenizer) when inserted into the model.

By training, a transformer learns an input embedding for each
word in a sentence, forming an input matrix X.

However, before the self-attention mechanism, it is important
to encode the position of each word in the sentence. This
requires a positional encoding matrix P such that X← X + P.

where pos is the position of the word in the sentence: 0 for ’I’,
1 for ’am’ and 2 for ’good’.

Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

The self-attention mechanism requires three matrices, Q (query),
K (key) and V (value), such that Q = XWQ , K = XWK and
V = XWV with the weight matrices W∗ learned by training.

A self-attention matrix Z with a new embedding for each word is
then defined by

Z = softmax

(
QKt

√
d

)
V,

where d is the embedding dimension of each word. Matrix

softmax
(
QKt
√
d

)
contains the attention weights between each pair

of words in the sentence. Matrix V provides the content
representations that get aggregated according to these attention
weights, producing a context-aware embedding for each word.

Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

The self-attention mechanism requires three matrices, Q (query),
K (key) and V (value), such that Q = XWQ , K = XWK and
V = XWV with the weight matrices W∗ learned by training.

A self-attention matrix Z with a new embedding for each word is
then defined by

Z = softmax

(
QKt

√
d

)
V,

where d is the embedding dimension of each word. Matrix

softmax
(
QKt
√
d

)
contains the attention weights between each pair

of words in the sentence. Matrix V provides the content
representations that get aggregated according to these attention
weights, producing a context-aware embedding for each word.

Alexandre Xavier Falcão MO434 - Deep Learning



The encoder of a transformer

To treat possible ambiguities, we usually use multiple
attention heads and the resulting self-attention matrices are
concatenated and multiplied by another weight matrix to
create the final Z.

The encoder block also contains a feedforward layer with two
dense layers with ReLU activation, additive skip connections,
and normalization to speed up convergence.

Alexandre Xavier Falcão MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

This is the foundation of transfer learning for NLP: pretrain
on a large corpus, then fine-tune on a smaller task-specific
dataset.

Alexandre Xavier Falcão MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

This is the foundation of transfer learning for NLP: pretrain
on a large corpus, then fine-tune on a smaller task-specific
dataset.

Alexandre Xavier Falcão MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

This is the foundation of transfer learning for NLP: pretrain
on a large corpus, then fine-tune on a smaller task-specific
dataset.

Alexandre Xavier Falcão MO434 - Deep Learning



Encoder-only models for representation learning

The encoder alone is powerful for learning contextual
representations. Given a sentence, each word’s embedding captures
its meaning in context.

Models like BERT (Bidirectional Encoder Representations
from Transformers) use only the encoder stack, trained on
large corpora with masked language modeling.

The resulting embeddings can be used directly for downstream
tasks: text classification, sentiment analysis, named entity
recognition, and more.

This is the foundation of transfer learning for NLP: pretrain
on a large corpus, then fine-tune on a smaller task-specific
dataset.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t − 1 is used as input,
being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t − 1 is used as input,
being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t − 1 is used as input,
being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t − 1 is used as input,
being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Differences lie on both multi-head attention sublayers.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

A self-attention matrix of the entire input sentence < sos >
Je vais bien can be computed at each head, but it has to
simulate all four steps: < sos >, < sos > Je, < sos > Je
vais, and < sos > Je vais bien.

Therefore, the elements to the right of each word can be
masked by −∞ in each given self-attention matrix Z.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

A self-attention matrix of the entire input sentence < sos >
Je vais bien can be computed at each head, but it has to
simulate all four steps: < sos >, < sos > Je, < sos > Je
vais, and < sos > Je vais bien.

Therefore, the elements to the right of each word can be
masked by −∞ in each given self-attention matrix Z.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcão MO434 - Deep Learning



The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one
cross-attention matrix per head, which captures the
relationships between target (decoder) and source (encoder)
words. Note that this is different from self-attention, where
queries, keys, and values all come from the same sequence.

Alexandre Xavier Falcão MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with
coverage – e.g., “playing” → “play” + “##ing”.

Most pretrained transformers (BERT, GPT) use subword
tokenization. Each token is mapped to an integer id and then to a
learned embedding vector.

Alexandre Xavier Falcão MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with
coverage – e.g., “playing” → “play” + “##ing”.

Most pretrained transformers (BERT, GPT) use subword
tokenization. Each token is mapped to an integer id and then to a
learned embedding vector.

Alexandre Xavier Falcão MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with
coverage – e.g., “playing” → “play” + “##ing”.

Most pretrained transformers (BERT, GPT) use subword
tokenization. Each token is mapped to an integer id and then to a
learned embedding vector.

Alexandre Xavier Falcão MO434 - Deep Learning



Tokenization strategies

Before feeding text into a transformer, it must be split into tokens.
Common strategies include:

Word-level: each word is a token. Simple, but cannot handle
unknown words (out-of-vocabulary problem).

Character-level: each character is a token. No unknown words,
but sequences become very long and lose word-level meaning.

Subword-level (BPE, WordPiece, SentencePiece): splits words
into frequent subword units. Balances vocabulary size with
coverage – e.g., “playing” → “play” + “##ing”.

Most pretrained transformers (BERT, GPT) use subword
tokenization. Each token is mapped to an integer id and then to a
learned embedding vector.

Alexandre Xavier Falcão MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

[CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence – used as the
sentence-level representation for classification tasks.

[SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

[PAD]: padding token to make all sequences in a batch the
same length.

For text classification and sentiment analysis, we feed the [CLS]
embedding into a dense layer – this is the basis of fine-tuning,
which we will explore in the hands-on notebook.

Alexandre Xavier Falcão MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

[CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence – used as the
sentence-level representation for classification tasks.

[SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

[PAD]: padding token to make all sequences in a batch the
same length.

For text classification and sentiment analysis, we feed the [CLS]
embedding into a dense layer – this is the basis of fine-tuning,
which we will explore in the hands-on notebook.

Alexandre Xavier Falcão MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

[CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence – used as the
sentence-level representation for classification tasks.

[SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

[PAD]: padding token to make all sequences in a batch the
same length.

For text classification and sentiment analysis, we feed the [CLS]
embedding into a dense layer – this is the basis of fine-tuning,
which we will explore in the hands-on notebook.

Alexandre Xavier Falcão MO434 - Deep Learning



Special tokens and the [CLS] representation

Pretrained models add special tokens to the input:

[CLS]: a classification token prepended to every input. After
passing through the encoder, its embedding aggregates
information from the entire sentence – used as the
sentence-level representation for classification tasks.

[SEP]: a separator token placed between sentence pairs (e.g.,
for question answering or natural language inference).

[PAD]: padding token to make all sequences in a batch the
same length.

For text classification and sentiment analysis, we feed the [CLS]
embedding into a dense layer – this is the basis of fine-tuning,
which we will explore in the hands-on notebook.

Alexandre Xavier Falcão MO434 - Deep Learning



Hands-on with transformers

Training can use cross entropy since the decoder generates a
probability distribution of the words in a vocabulary.

Let’s see how to use BERT from HuggingFace for text classification
and sentiment analysis TEXT CLASSIFICATION AND SENTIMENT ANALYSIS .

Although this course does not address self-supervised learning, let’s
see tTHE DESIGN OF THE ChatGPT MODEL FROM SCRATCH .

In the next lecture, we will apply Visual Transformers to image
analysis.

Alexandre Xavier Falcão MO434 - Deep Learning

http://localhost:8888/notebooks/text-classification-sentiment-analysis.ipynb
http://localhost:8888/notebooks-MO434/GPTFromScratch.ipynb


[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need, 2017.

Alexandre Xavier Falcão MO434 - Deep Learning


