

Vision Transformers for Image Classification and Segmentation

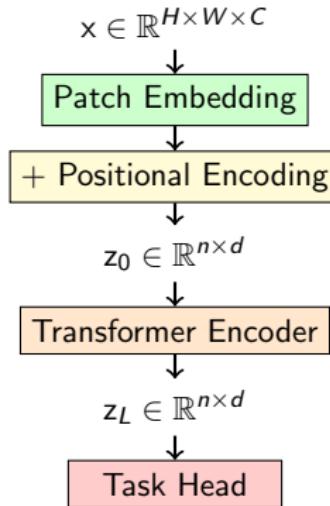
Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

What are Vision Transformers (ViTs)?

A Vision Transformer (ViT) is a neural network architecture adapted from Natural Language Processing to treat images as sequences of patches for Computer Vision tasks.



- Patch, Position, and Class Embeddings.
- Transformer Encoder.
- Classification Head (a simple MLP).
- Segmentation Head (more complex).

Extra challenges:

- Need dense pixel-wise predictions.
- Preserve spatial resolution.
- Handle multiple scales.

Converting Images to Sequences:

- Divide image into fixed-size patches (e.g., 16×16 pixels).
- Flatten each patch into a vector.
- Linear projection to embedding dimension d .

Mathematical Formulation

For an image $x \in \mathbb{R}^{H \times W \times C}$:

- Patch size: $P \times P$
- Number of patches: $n = \frac{HW}{P^2}$
- Flattened patch i : $x_p^i \in \mathbb{R}^{P^2 \cdot C}$
- Projection matrix: $E \in \mathbb{R}^{(P^2 \cdot C) \times d}$ (learnable)
- Embedded patch i : $z_p^i = x_p^i E \in \mathbb{R}^d$
- All embeddings: $[z_p^1; z_p^2; \dots; z_p^n] \in \mathbb{R}^{n \times d}$

Class and Position Embeddings

- ViTs are permutation-invariant, which makes it important to encode the spatial relationship among patches.
- Class and Position embeddings are tensors randomly initialized, which are learned during the encoder's training.
- A class embedding $x_{class} \in \mathbb{R}^d$ is added to sequence $[x_p^1 E; \dots; x_p^n E]$ of patch embeddings for image classification.
- The position embedding is then added to each term:

$$z_0 = [x_{class}; x_p^1 E; \dots; x_p^n E] + E_{pos} = [z_0^0; z_0^1; \dots; z_0^n]$$

where $E_{pos} \in \mathbb{R}^{(n+1) \times d}$.

Class [CLS] Token

Attention at each encoder's block among the $n + 1$ patch (token) embeddings aggregates information into the class embedding z_L^0 of the last block L , such that it can represent the image for classification.

Usage

- Input: $z_0 = [z_0^0; z_0^1; \dots; z_0^n]$.
- After encoder: Extract $z_L^0 \in \mathbb{R}^d$ from z_L .
- Classification: $y = \text{MLP}(z_L^0)$.

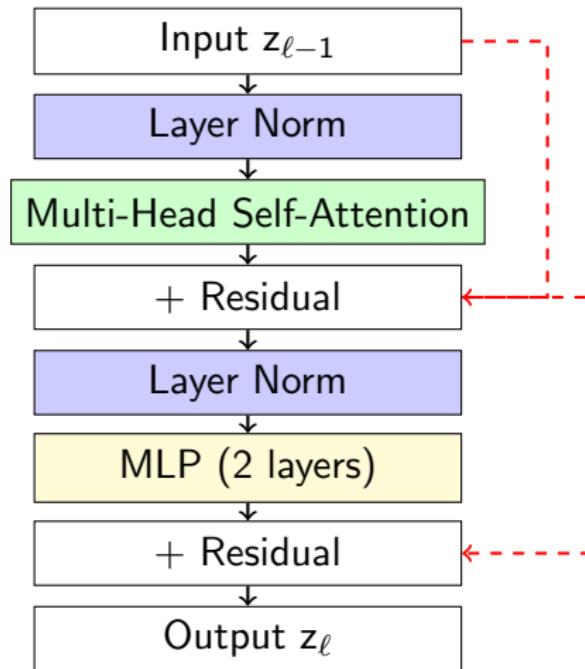
For segmentation, there is no class token: we need per-patch predictions (e.g., labeling each pixel or patch), not a single global representation.

Transformer Encoder Block

Each encoder block $l = 1, 2, \dots, L$ processes information as follows.

- An input sequence z_{l-1} of token embeddings.
- Layer Normalization + Multi-head self-attention:
 - Each token attends to every other token.
 - Multiple attention heads capture different types of relationships.
- Add: Residual connection from input.
- Layer Normalization + Feed-forward network: a two-layer MLP applied to each token independently.
- Add: Residual connection from the previous residual layer.
- An output sequence z_l of token embeddings.

Transformer Encoder Block



Pre-LN architecture (modern standard): Layer normalization is applied *before* attention and MLP blocks, with residual connections bypassing each sub-block

What do different blocks learn?

For a self-supervised ViT (e.g., ViT-S/8 with 12 blocks), evidence from attention visualization and probing studies suggests:

Early Blocks (1-4):

- Low-level features.
- Colors, textures.
- Local patterns.

Middle (5-9):

- Increasing complexity.
- **Object part features.**
- Semantic grouping.

Final (10-12):

- Global semantics.
- Object-level features.
- Class-specific patterns.

Finding (Caron et al., 2021)

In **self-supervised** ViTs (DINO), the **last block's** attention maps spontaneously learn to segment objects and object parts **without any labels**.

Layer Normalization (LN)

Normalize each token's features independently to stabilize training.

Input: Token embedding $x \in \mathbb{R}^d$ where d is the embedding dimension.

Operation:

- ① Compute mean: $\mu = \frac{1}{d} \sum_{i=1}^d x_i$
- ② Compute variance: $\sigma^2 = \frac{1}{d} \sum_{i=1}^d (x_i - \mu)^2$
- ③ Normalize: $\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}}$
- ④ Scale and shift: $\text{LN}(x)_i = \gamma_i \hat{x}_i + \beta_i$

Parameters: $\gamma, \beta \in \mathbb{R}^d$ are **learnable** parameters (trained via backpropagation).

Self-Attention: Single Head

Setup:

- Input sequence: $Z \in \mathbb{R}^{n \times d}$ where n is number of tokens
- Each row is a token embedding: $z_i \in \mathbb{R}^d$

Step 1: Create Query, Key, Value matrices

For each token z_i , compute:

$$q_i = z_i W^Q \quad (\text{Query})$$

$$k_i = z_i W^K \quad (\text{Key})$$

$$v_i = z_i W^V \quad (\text{Value})$$

where $W^Q, W^K, W^V \in \mathbb{R}^{d \times d_k}$ are **learnable** weight matrices.

Typically $d_k = d$ (same dimension).

Self-Attention: Single Head

In matrix form:

$$Q = ZW^Q \in \mathbb{R}^{n \times d_k}$$

$$K = ZW^K \in \mathbb{R}^{n \times d_k}$$

$$V = ZW^V \in \mathbb{R}^{n \times d_k}$$

Step 2: Compute attention scores

Measure similarity between queries and keys:

$$A = \frac{QK^T}{\sqrt{d_k}} \in \mathbb{R}^{n \times n}$$

Element A_{ij} = similarity between token i 's query and token j 's key.

Division by $\sqrt{d_k}$ prevents extremely large values (scaled dot-product).

Self-Attention: Single Head

Step 3: Apply softmax

Normalize scores to get attention weights:

$$A' = \text{softmax}(A) \in \mathbb{R}^{n \times n}$$

Each row sums to 1: $\sum_{j=1}^n A'_{ij} = 1$

Step 4: Weighted sum of values

Output for each token is weighted combination of all values:

$$Z' = A'V \in \mathbb{R}^{n \times d_k}$$

Complete formula:

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Multi-Head Self-Attention

Run h attention operations in parallel, each with different learned projections.

For head j (where $j = 1, \dots, h$):

$$Q^{(j)} = ZW^{Q(j)} \in \mathbb{R}^{n \times d_h}$$

$$K^{(j)} = ZW^{K(j)} \in \mathbb{R}^{n \times d_h}$$

$$V^{(j)} = ZW^{V(j)} \in \mathbb{R}^{n \times d_h}$$

where $d_h = d/h$ (head dimension), and

$$W^{Q(j)}, W^{K(j)}, W^{V(j)} \in \mathbb{R}^{d \times d_h}.$$

Compute attention output for head j :

$$\text{head}_j = \text{Attention}(Q^{(j)}, K^{(j)}, V^{(j)}) \in \mathbb{R}^{n \times d_h}$$

Multi-Head Self-Attention

Concatenate all heads:

$$\text{Concat} = [\text{head}_1 \parallel \text{head}_2 \parallel \cdots \parallel \text{head}_h] \in \mathbb{R}^{n \times d}$$

Project to output:

$$\text{MSA}(Z) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O$$

where $W^O \in \mathbb{R}^{d \times d}$ is a **learnable** output projection matrix.

Parameters: $h \times 3d \times d_h + d \times d = 4d^2$ total.

Example: ViT-Base has $d = 768$, $h = 12$, so $d_h = 64$.

Multi-Head Attention: Why multiple heads?

Different heads learn different relationships:

- **Head 1:** Spatial proximity (neighboring patches).
- **Head 2:** Color similarity (patches with similar hues).
- **Head 3:** Texture patterns (similar textures).
- **Head 4:** Object parts (semantically related regions).
- **...and so on.**

Each head has its own parameters ($W^{Q(j)}$, $W^{K(j)}$, $W^{V(j)}$), allowing it to specialize in capturing different types of patterns.

The model learns what each head should focus on during training.

Residual Connection

$$Z_{\text{out}} = Z_{\text{in}} + \text{SubLayer}(Z_{\text{in}})$$

where SubLayer can be MSA or FFN.

No learnable parameters — just element-wise addition.

Benefits:

- **Gradient flow:** Gradients can flow directly backward through the identity path, preventing vanishing gradients in deep networks.
- **Learning refinements:** The sublayer learns *changes* to the input, not entirely new representations.
- **Easier optimization:** Network can start with identity mappings and gradually learn transformations.

Feed-Forward Network (FFN)

Two-layer MLP applied independently to each token.

Formula:

$$\text{FFN}(z) = W_2 \cdot \text{GELU}(W_1 z + b_1) + b_2$$

Parameters:

- $W_1 \in \mathbb{R}^{d \times d_{\text{ff}}}$: First layer weights (expand).
- $b_1 \in \mathbb{R}^{d_{\text{ff}}}$: First layer bias.
- $W_2 \in \mathbb{R}^{d_{\text{ff}} \times d}$: Second layer weights (project back).
- $b_2 \in \mathbb{R}^d$: Second layer bias.

Typically $d_{\text{ff}} = 4d$ (expansion factor of 4).

Total parameters: $2 \times d \times d_{\text{ff}} + d_{\text{ff}} + d \approx 8d^2$.

FFN: Why expand then compress?

Dimension expansion creates capacity:

Think of $d_{\text{ff}} = 4d$ as creating a “higher-dimensional space” where:

- More complex transformations are possible.
- Different features can be processed independently.
- Non-linear interactions are learned.

Analogy: Like a bottleneck in opposite direction:

Token $\in \mathbb{R}^d$. $\xrightarrow{\text{expand}} \mathbb{R}^{4d}$ (more room for computation).
 $\xrightarrow{\text{compress}} \mathbb{R}^d$ (back to original size).

The intermediate $4d$ representation allows the network to compute complex functions that would be impossible with just a single linear layer.

Standard Classification Pipeline:

- 1 Image → Patch embeddings + position embeddings.
- 2 Add [CLS] token at the beginning.
- 3 Pass through L transformer encoder blocks.
- 4 Extract [CLS] token representation.
- 5 Classification head (MLP) for final prediction.

Training

- Pre-trained on large datasets (ImageNet-21k, JFT-300M).
- Fine-tuned on downstream tasks.
- Cross-entropy loss.
- Strong data augmentation crucial.

ViT Model Variants

Model	Blocks	Hidden Size	Heads	Params
ViT-Base	12	768	12	86M
ViT-Large	24	1024	16	307M
ViT-Huge	32	1280	16	632M

Patch Sizes:

- ViT/16: 16×16 patches (most common).
- ViT/32: 32×32 patches (faster, less accurate).
- ViT/14: 14×14 patches (higher resolution).

Exist several approaches of segmentation heads.

- **Linear Head (Simplest).**
 - Single linear layer per token.
 - Fast but limited expressiveness.
- **CNN-based Decoders (Traditional).**
 - U-Net style: progressive upsampling with skip connections.
 - Good for fine details but computationally expensive.
 - Example: SETR-PUP, UPerNet.
- **Transformer Decoders.**
 - Use attention mechanisms.
 - Example: Segmenter (mask transformer).
- **All-MLP Decoder (Modern best practice) \leftarrow SegFormer**
 - Lightweight, efficient, and powerful
 - We'll focus on this approach!

Efficient Hierarchical Transformer (NeurIPS 2021)

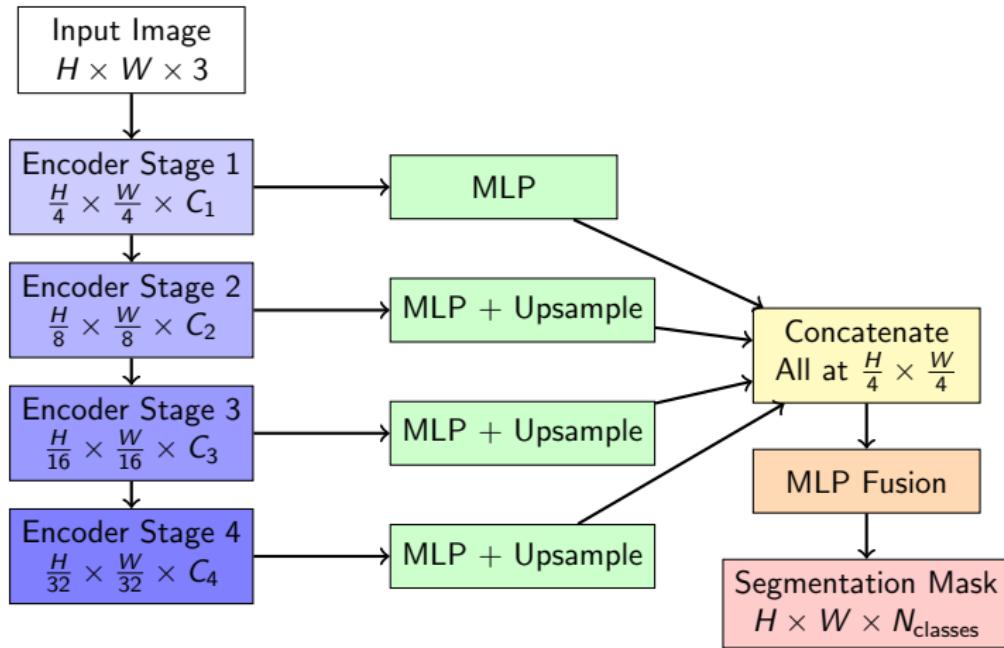
Encoder:

- Hierarchical structure.
- Mix-FFN layers.
- Overlapping patches.
- Multi-scale features.

Decoder:

- Lightweight All-MLP.
- Fuses multi-level features.
- No positional encoding.
- Efficient design.

SegFormer Architecture



Four Key Modifications to Standard ViT:

① Hierarchical Structure

ViT: Single-scale features → SegFormer: Multi-scale pyramid.

② Efficient Self-Attention (SRA)

ViT: $O(n^2)$ complexity → SegFormer: Reduced via spatial downsampling.

③ Mix-FFN (replaces positional encoding)

ViT: Fixed PE → SegFormer: 3×3 conv for local information.

④ Overlapping Patch Embedding

ViT: Non-overlapping patches → SegFormer: Overlapping for local continuity.

Difference 1: Hierarchical Multi-Scale Encoder

ViT (Single-Scale):

- One resolution: $\frac{H}{16} \times \frac{W}{16}$.
- All blocks at same scale.
- Single feature map output.

SegFormer (Multi-Scale):

- 4 stages: $\frac{H}{4}, \frac{H}{8}, \frac{H}{16}, \frac{H}{32}$.
- Progressive downsampling.
- Multi-level feature pyramid.

Stage Configuration (MiT-B0):

Stage	Resolution	Channels	Blocks	Heads
1	$H/4 \times W/4$	32	2	1
2	$H/8 \times W/8$	64	2	2
3	$H/16 \times W/16$	160	2	5
4	$H/32 \times W/32$	256	2	8

Difference 2: Spatial-Reduction Attention (SRA)

Problem with ViT: Self-attention has $O(n^2)$ complexity.

$$\text{Attention}(Q, K, V) = \text{Softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$$

SegFormer Solution: Reduce spatial dimensions of K and V.
Given input $X \in \mathbb{R}^{n \times d}$ (where n is number of tokens):

$$Q = XW_Q \in \mathbb{R}^{n \times d} \quad (\text{unchanged})$$

$$K = \text{SR}(X)W_K \in \mathbb{R}^{\frac{n}{R^2} \times d} \quad (\text{reduced by factor } R^2)$$

$$V = \text{SR}(X)W_V \in \mathbb{R}^{\frac{n}{R^2} \times d} \quad (\text{reduced by factor } R^2)$$

where $\text{SR}(X)$ is spatial reduction via convolution with stride R (e.g., kernel size 7×7 , stride $R = 4$).

Complexity: $O(n^2) \rightarrow O\left(n \cdot \frac{n}{R^2}\right) = O\left(\frac{n^2}{R^2}\right)$.

SRA: Stage-wise Reduction Ratios

Insight: Higher resolution stages need more reduction.

Stage	Resolution	Tokens n	Reduction R	K,V size
1	$H/4 \times W/4$	$\frac{HW}{16}$	8	$\frac{n}{64}$
2	$H/8 \times W/8$	$\frac{HW}{64}$	4	$\frac{n}{16}$
3	$H/16 \times W/16$	$\frac{HW}{256}$	2	$\frac{n}{4}$
4	$H/32 \times W/32$	$\frac{HW}{1024}$	1	n (no reduction)

Design Principle:

- Early stages (high-res): Aggressive reduction to save computation.
- Later stages (low-res): Less/no reduction for global context.

Difference 3: Mix-FFN (No Positional Encoding!)

ViT FFN:

$$\text{FFN}(z) = W_2 \cdot \text{GELU}(W_1 z + b_1) + b_2$$

SegFormer Mix-FFN:

$$\text{Mix-FFN}(z) = W_2 \cdot \text{GELU}($$

$$\text{DWConv}_{3 \times 3}(W_1 z + b_1)) + b_2$$

- Requires fixed positional encoding
- Problem: PE must be interpolated for different resolutions
- 3×3 depthwise convolution.
- Provides positional info implicitly.
- Resolution-agnostic!

Benefit: Mix-FFN introduces zero-padded 3×3 convolution that:

- Leaks location information to each token.
- Eliminates need for explicit positional encoding.
- Works seamlessly across different input resolutions.

Difference 4: Overlapping Patch Embedding

Patch Embedding in Each Stage:

ViT:

- Kernel: 16×16 .
- Stride: 16.
- Non-overlapping patches.
- Loss of local continuity.

SegFormer:

- Kernel: 7×7 (stage 1), 3×3 (others).
- Stride: 4 (stage 1), 2 (others).
- Overlapping patches.**
- Preserves local structure.

Stage 1 Patch Embedding:

$$\text{Input: } H \times W \times 3 \xrightarrow{\text{Conv } 7 \times 7, \text{ stride } 4} \frac{H}{4} \times \frac{W}{4} \times C_1$$

Subsequent Stages (2-4):

$$\text{Input: } \frac{H}{2^{i-1}} \times \frac{W}{2^{i-1}} \times C_{i-1} \xrightarrow{\text{Conv } 3 \times 3, \text{ stride } 2} \frac{H}{2^i} \times \frac{W}{2^i} \times C_i$$

Complete SegFormer Encoder Block

Modified Transformer Block Structure:

$$\hat{z} = \text{LayerNorm}(z)$$

$$z' = z + \text{SRA-MHSA}(\hat{z}) \quad (\text{vs. standard MHSA in ViT})$$

$$\hat{z}' = \text{LayerNorm}(z')$$

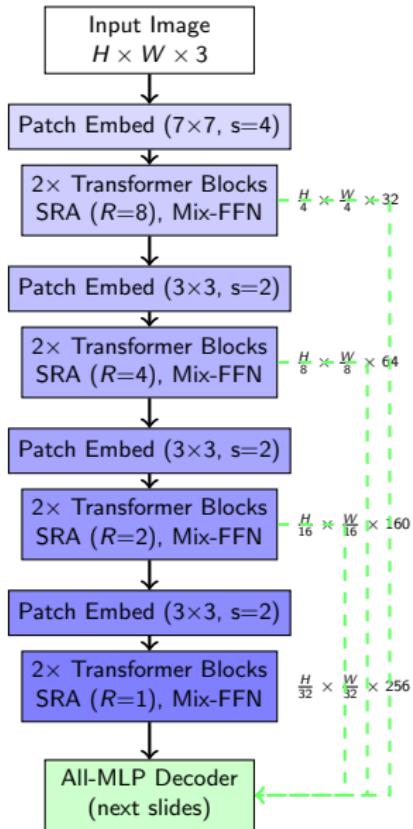
$$z_{\text{out}} = z' + \text{Mix-FFN}(\hat{z}') \quad (\text{vs. standard FFN in ViT})$$

where:

- **SRA-MHSA**: Spatial-Reduction Multi-Head Self-Attention
- **Mix-FFN**: $W_2 \cdot \text{GELU}(\text{DWConv}_{3 \times 3}(W_1 \hat{z}' + b_1)) + b_2$

Key Point: Same overall structure as ViT (Pre-LN, residual connections), but with efficient attention and implicit positional encoding.

SegFormer Encoder: Complete Architecture



SegFormer Decoder (All-MLP Head)

Given multi-scale features from all 4 stages:

For each stage $i = 1, 2, 3, 4$ with features $F_i \in \mathbb{R}^{\frac{H}{2^{i+1}} \times \frac{W}{2^{i+1}} \times C_i}$:

① Project to unified dimension:

$$\tilde{F}_i = \text{Linear}(F_i) \in \mathbb{R}^{\frac{H}{2^{i+1}} \times \frac{W}{2^{i+1}} \times C}$$

② Upsample to resolution $\frac{H}{4} \times \frac{W}{4}$:

$$\hat{F}_i = \text{Upsample}(\tilde{F}_i) \in \mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times C}$$

③ Concatenate all upsampled features:

$$F_{\text{fused}} = \text{Concat}(\hat{F}_1, \hat{F}_2, \hat{F}_3, \hat{F}_4) \in \mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times 4C}$$

④ Final MLP and upsample:

$$\text{Logits} = \text{Upsample}(\text{MLP}(F_{\text{fused}})) \in \mathbb{R}^{H \times W \times N_{\text{classes}}}$$