
Vision Transformers for Image Classification and
Segmentation

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



What are Vision Transformers (ViTs)?

A Vision Transformer (ViT) is a neural network architecture
adapted from Natural Language Processing to treat images as
sequences of patches for Computer Vision tasks.

x ∈ RH×W×C

Patch Embedding

+ Positional Encoding

z0 ∈ Rn×d

Transformer Encoder

zL ∈ Rn×d

Task Head

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Agenda

Patch, Position, and Class Embeddings.

Transformer Encoder.

Classification Head (a simple MLP).

Segmentation Head (more complex).

Extra challenges:

Need dense pixel-wise predictions.

Preserve spatial resolution.

Handle multiple scales.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Patch Embedding

Converting Images to Sequences:

Divide image into fixed-size patches (e.g., 16× 16 pixels).

Flatten each patch into a vector.

Linear projection to embedding dimension d .

Mathematical Formulation

For an image x ∈ RH×W×C :

Patch size: P × P

Number of patches: n = HW
P2

Flattened patch i : xip ∈ RP2·C

Projection matrix: E ∈ R(P2·C)×d (learnable)

Embedded patch i : zip = xipE ∈ Rd

All embeddings: [z1
p; z2

p; . . . ; znp] ∈ Rn×d

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Class and Position Embeddings

ViTs are permutation-invariant, which makes it important to
encode the spatial relationship among patches.

Class and Position embeddings are tensors randomly
initialized, which are learned during the encoder’s training.

A class embedding xclass ∈ Rd is added to sequence
[x1

pE; . . . ; xnpE] of patch embeddings for image classification.

The position embedding is then added to each term:

z0 = [xclass ; x1
pE; . . . ; xnpE] + Epos = [z0

0; z1
0; . . . ; zn0]

where Epos ∈ R(n+1)×d .

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Class [CLS] Token

Attention at each encoder’s block among the n + 1 patch (token)
embeddings aggregates information into the class embedding z0

L of
the last block L, such that it can represent the image for
classification.

Usage

Input: z0 = [z0
0; z1

0; . . . ; zn0].

After encoder: Extract z0
L ∈ Rd from zL.

Classification: y = MLP(z0
L).

For segmentation, there is no class token: we need per-patch
predictions (e.g., labeling each pixel or patch), not a single global
representation.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Transformer Encoder Block

Each encoder block l = 1, 2, . . . , L processes information as
follows.

An input sequence zl−1 of token embeddings.

Layer Normalization + Multi-head self-attention:

Each token attends to every other token.

Multiple attention heads capture different types of
relationships.

Add: Residual connection from input.

Layer Normalization + Feed-forward network: a two-layer
MLP applied to each token independently.

Add: Residual connection from the previous residual layer.

An output sequence zl of token embeddings.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Transformer Encoder Block

Input z`−1

Layer Norm

Multi-Head Self-Attention

+ Residual

Layer Norm

MLP (2 layers)

+ Residual

Output z`

Pre-LN architecture (modern standard): Layer normalization is applied
before attention and MLP blocks, with residual connections bypassing
each sub-block

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



What do different blocks learn?

For a self-supervised ViT (e.g., ViT-S/8 with 12 blocks), evidence
from attention visualization and probing studies suggests:

Early Blocks (1-4):

Low-level
features.

Colors, textures.

Local patterns.

Middle (5-9):

Increasing
complexity.

Object part
features.

Semantic
grouping.

Final (10-12):

Global semantics.

Object-level
features.

Class-specific
patterns.

Finding (Caron et al., 2021)

In self-supervised ViTs (DINO), the last block’s attention maps
spontaneously learn to segment objects and object parts without
any labels.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Layer Normalization (LN)

Normalize each token’s features independently to stabilize training.

Input: Token embedding x ∈ Rd where d is the embedding
dimension.

Operation:

1 Compute mean: µ = 1
d

∑d
i=1 xi

2 Compute variance: σ2 = 1
d

∑d
i=1(xi − µ)2

3 Normalize: x̂i = xi−µ√
σ2+ε

4 Scale and shift: LN(x)i = γi x̂i + βi

Parameters: γ,β ∈ Rd are learnable parameters (trained via
backpropagation).

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Self-Attention: Single Head

Setup:

Input sequence: Z ∈ Rn×d where n is number of tokens

Each row is a token embedding: zi ∈ Rd

Step 1: Create Query, Key, Value matrices
For each token zi , compute:

qi = ziW
Q (Query)

ki = ziW
K (Key)

vi = ziW
V (Value)

where WQ ,WK ,WV ∈ Rd×dk are learnable weight matrices.

Typically dk = d (same dimension).

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Self-Attention: Single Head

In matrix form:

Q = ZWQ ∈ Rn×dk

K = ZWK ∈ Rn×dk

V = ZWV ∈ Rn×dk

Step 2: Compute attention scores
Measure similarity between queries and keys:

A =
QKT

√
dk
∈ Rn×n

Element Aij = similarity between token i ’s query and token j ’s key.

Division by
√
dk prevents extremely large values (scaled

dot-product).

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Self-Attention: Single Head

Step 3: Apply softmax
Normalize scores to get attention weights:

A′ = softmax(A) ∈ Rn×n

Each row sums to 1:
∑n

j=1 A
′
ij = 1

Step 4: Weighted sum of values
Output for each token is weighted combination of all values:

Z′ = A′V ∈ Rn×dk

Complete formula:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Multi-Head Self-Attention

Run h attention operations in parallel, each with different learned
projections.

For head j (where j = 1, . . . , h):

Q(j) = ZWQ(j) ∈ Rn×dh

K(j) = ZWK(j) ∈ Rn×dh

V(j) = ZWV (j) ∈ Rn×dh

where dh = d/h (head dimension), and
WQ(j),WK(j),WV (j) ∈ Rd×dh .

Compute attention output for head j :

headj = Attention(Q(j),K(j),V(j)) ∈ Rn×dh

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Multi-Head Self-Attention

Concatenate all heads:

Concat = [head1‖head2‖ · · · ‖headh] ∈ Rn×d

Project to output:

MSA(Z) = Concat(head1, . . . , headh)WO

where WO ∈ Rd×d is a learnable output projection matrix.

Parameters: h × 3d × dh + d × d = 4d2 total.

Example: ViT-Base has d = 768, h = 12, so dh = 64.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Multi-Head Attention: Why multiple heads?

Different heads learn different relationships:

Head 1: Spatial proximity (neighboring patches).

Head 2: Color similarity (patches with similar hues).

Head 3: Texture patterns (similar textures).

Head 4: Object parts (semantically related regions).

...and so on.

Each head has its own parameters (WQ(j),WK(j),WV (j)), allowing
it to specialize in capturing different types of patterns.

The model learns what each head should focus on during training.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Residual Connection

Zout = Zin + SubLayer(Zin)

where SubLayer can be MSA or FFN.

No learnable parameters — just element-wise addition.

Benefits:

Gradient flow: Gradients can flow directly backward through
the identity path, preventing vanishing gradients in deep
networks.

Learning refinements: The sublayer learns changes to the
input, not entirely new representations.

Easier optimization: Network can start with identity
mappings and gradually learn transformations.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Feed-Forward Network (FFN)

Two-layer MLP applied independently to each token.

Formula:
FFN(z) = W2 · GELU(W1z + b1) + b2

Parameters:

W1 ∈ Rd×dff : First layer weights (expand).

b1 ∈ Rdff : First layer bias.

W2 ∈ Rdff×d : Second layer weights (project back).

b2 ∈ Rd : Second layer bias.

Typically dff = 4d (expansion factor of 4).

Total parameters: 2× d × dff + dff + d ≈ 8d2.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



FFN: Why expand then compress?

Dimension expansion creates capacity:

Think of dff = 4d as creating a “higher-dimensional space” where:

More complex transformations are possible.

Different features can be processed independently.

Non-linear interactions are learned.

Analogy: Like a bottleneck in opposite direction:

Token ∈ Rd .
expand−−−−→. R4d (more room for computation).

compress−−−−−→. Rd (back to original size).

The intermediate 4d representation allows the network to compute
complex functions that would be impossible with just a single
linear layer.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



ViT for Classification

Standard Classification Pipeline:

1 Image → Patch embeddings + position embeddings.

2 Add [CLS] token at the beginning.

3 Pass through L transformer encoder blocks.

4 Extract [CLS] token representation.

5 Classification head (MLP) for final prediction.

Training

Pre-trained on large datasets (ImageNet-21k, JFT-300M).

Fine-tuned on downstream tasks.

Cross-entropy loss.

Strong data augmentation crucial.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



ViT Model Variants

Model Blocks Hidden Size Heads Params

ViT-Base 12 768 12 86M
ViT-Large 24 1024 16 307M
ViT-Huge 32 1280 16 632M

Patch Sizes:

ViT/16: 16× 16 patches (most common).

ViT/32: 32× 32 patches (faster, less accurate).

ViT/14: 14× 14 patches (higher resolution).

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



ViT for Semantic Segmentation

Exist several approaches of segmentation heads.

Linear Head (Simplest).
Single linear layer per token.
Fast but limited expressiveness.

CNN-based Decoders (Traditional).
U-Net style: progressive upsampling with skip connections.
Good for fine details but computationally expensive.
Example: SETR-PUP, UPerNet.

Transformer Decoders.
Use attention mechanisms.
Example: Segmenter (mask transformer).

All-MLP Decoder (Modern best practice) ← SegFormer
Lightweight, efficient, and powerful
We’ll focus on this approach!

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SegFormer

Efficient Hierarchical Transformer (NeurIPS 2021)

Encoder:

Hierarchical structure.

Mix-FFN layers.

Overlapping patches.

Multi-scale features.

Decoder:

Lightweight All-MLP.

Fuses multi-level features.

No positional encoding.

Efficient design.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SegFormer Architecture

Input Image
H ×W × 3

Encoder Stage 1
H
4 ×

W
4 × C1

Encoder Stage 2
H
8 ×

W
8 × C2

Encoder Stage 3
H
16 ×

W
16 × C3

Encoder Stage 4
H
32 ×

W
32 × C4

MLP

MLP + Upsample

MLP + Upsample

MLP + Upsample

Concatenate
All at H

4 ×
W
4

MLP Fusion

Segmentation Mask
H ×W × Nclasses

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SegFormer Encoder: What Changes from ViT?

Four Key Modifications to Standard ViT:

1 Hierarchical Structure
ViT: Single-scale features → SegFormer: Multi-scale pyramid.

2 Efficient Self-Attention (SRA)
ViT: O(n2) complexity → SegFormer: Reduced via spatial

downsampling.

3 Mix-FFN (replaces positional encoding)
ViT: Fixed PE → SegFormer: 3×3 conv for local information.

4 Overlapping Patch Embedding
ViT: Non-overlapping patches → SegFormer: Overlapping for local

continuity.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Difference 1: Hierarchical Multi-Scale Encoder

ViT (Single-Scale):

One resolution: H
16 ×

W
16 .

All blocks at same scale.

Single feature map output.

SegFormer (Multi-Scale):

4 stages: H
4 ,

H
8 ,

H
16 ,

H
32 .

Progressive downsampling.

Multi-level feature
pyramid.

Stage Configuration (MiT-B0):

Stage Resolution Channels Blocks Heads
1 H/4×W /4 32 2 1
2 H/8×W /8 64 2 2
3 H/16×W /16 160 2 5
4 H/32×W /32 256 2 8

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Difference 2: Spatial-Reduction Attention (SRA)

Problem with ViT: Self-attention has O(n2) complexity.

Attention(Q,K,V) = Softmax

(
QKT

√
dk

)
V

SegFormer Solution: Reduce spatial dimensions of K and V.
Given input X ∈ Rn×d (where n is number of tokens):

Q = XWQ ∈ Rn×d (unchanged)

K = SR(X)WK ∈ R
n
R2×d (reduced by factor R2)

V = SR(X)WV ∈ R
n
R2×d (reduced by factor R2)

where SR(X) is spatial reduction via convolution with stride R
(e.g., kernel size 7× 7, stride R = 4).

Complexity: O(n2)→ O
(
n · n

R2

)
= O

(
n2

R2

)
.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SRA: Stage-wise Reduction Ratios

Insight: Higher resolution stages need more reduction.

Stage Resolution Tokens n Reduction R K,V size
1 H/4×W /4 HW

16 8 n
64

2 H/8×W /8 HW
64 4 n

16

3 H/16×W /16 HW
256 2 n

4

4 H/32×W /32 HW
1024 1 n (no reduction)

Design Principle:

Early stages (high-res): Aggressive reduction to save
computation.

Later stages (low-res): Less/no reduction for global context.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Difference 3: Mix-FFN (No Positional Encoding!)

ViT FFN:

FFN(z) = W2 · GELU(W1z + b1) + b2

Requires fixed positional
encoding

Problem: PE must be
interpolated for different
resolutions

SegFormer Mix-FFN:

Mix-FFN(z) = W2·GELU(

DWConv3×3(W1z + b1))

+ b2

3×3 depthwise convolution.

Provides positional info
implicitly.

Resolution-agnostic!

Benefit: Mix-FFN introduces zero-padded 3×3 convolution that:

Leaks location information to each token.

Eliminates need for explicit positional encoding.

Works seamlessly across different input resolutions.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Difference 4: Overlapping Patch Embedding

Patch Embedding in Each Stage:

ViT:

Kernel: 16× 16.

Stride: 16.

Non-overlapping patches.

Loss of local continuity.

SegFormer:

Kernel: 7× 7 (stage 1),
3× 3 (others).

Stride: 4 (stage 1), 2
(others).

Overlapping patches.

Preserves local structure.

Stage 1 Patch Embedding:

Input: H ×W × 3
Conv 7×7, stride 4−−−−−−−−−−−→ H

4
× W

4
× C1

Subsequent Stages (2-4):

Input:
H

2i−1
× W

2i−1
× Ci−1

Conv 3×3, stride 2−−−−−−−−−−−→ H

2i
× W

2i
× Ci

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



Complete SegFormer Encoder Block

Modified Transformer Block Structure:

ẑ = LayerNorm(z)

z′ = z + SRA-MHSA(ẑ) (vs. standard MHSA in ViT)

ẑ′ = LayerNorm(z′)

zout = z′ + Mix-FFN(ẑ′) (vs. standard FFN in ViT)

where:

SRA-MHSA: Spatial-Reduction Multi-Head Self-Attention

Mix-FFN: W2 · GELU(DWConv3×3(W1ẑ′ + b1)) + b2

Key Point: Same overall structure as ViT (Pre-LN, residual
connections), but with efficient attention and implicit positional
encoding.

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SegFormer Encoder: Complete Architecture

Input Image
H ×W × 3

Patch Embed (7×7, s=4)

2× Transformer Blocks
SRA (R=8), Mix-FFN

H
4

× W
4

× 32

Patch Embed (3×3, s=2)

2× Transformer Blocks
SRA (R=4), Mix-FFN

H
8

× W
8

× 64

Patch Embed (3×3, s=2)

2× Transformer Blocks
SRA (R=2), Mix-FFN

H
16

× W
16

× 160

Patch Embed (3×3, s=2)

2× Transformer Blocks
SRA (R=1), Mix-FFN

H
32

× W
32

× 256

All-MLP Decoder
(next slides)

Alexandre Xavier Falcão MO445(MC940) - Image Analysis



SegFormer Decoder (All-MLP Head)

Given multi-scale features from all 4 stages:

For each stage i = 1, 2, 3, 4 with features Fi ∈ R
H

2i+1×
W

2i+1×Ci :

1 Project to unified dimension:

F̃i = Linear(Fi ) ∈ R
H

2i+1×
W

2i+1×C

2 Upsample to resolution H
4 ×

W
4 :

F̂i = Upsample(F̃i ) ∈ R
H
4
×W

4
×C

3 Concatenate all upsampled features:

Ffused = Concat(F̂1, F̂2, F̂3, F̂4) ∈ R
H
4
×W

4
×4C

4 Final MLP and upsample:

Logits = Upsample(MLP(Ffused)) ∈ RH×W×Nclasses

Alexandre Xavier Falcão MO445(MC940) - Image Analysis


