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Abstract—Despite decades of research on automatic license
plate recognition (ALPR), optical character recognition (OCR)
still leaves room for improvement in this context, given that a
single OCR miss is enough to miss the entire plate. We propose an
OCR approach based on convolutional neural networks (CNNs)
for feature extraction. The architecture of our CNN is chosen
from thousands of random possibilities and its filter weights
are set at random and normalized to zero mean and unit
norm. By training linear support vector machines (SVMs) on
the resulting CNN features, we can achieve recognition rates of
over 98% for digits and 96% for letters, something that neither
SVMs operating on image pixels nor CNNs trained via back-
propagation can achieve. The results are obtained in a dataset
that has 182 samples per digit and 28 per letter, and suggest
the use of random CNNs as a promising alternative approach to
ALPR systems.

Keywords-convolutional neural networks, random search, ran-
dom filters, optical character recognition, vehicle license plate
recognition.

I. INTRODUCTION

Automatic license plate recognition (ALPR) has been ac-

tively investigated in view of numerous real-world applications

such as automatic toll collection, traffic law enforcement,

parking lot access control, and road traffic monitoring. In gen-

eral, an ALPR system consists of four main modules: image

preprocessing, license plate detection, character segmentation,

and optical character recognition (OCR) [1], [2]. While OCR

is currently considered a relatively solved problem, in the

context of ALPR systems, it can be particularly challenging

for the OCR module to recognize characters when they are not

correctly segmented or when there are variations on the plate

image perspective [3], [4], color [5], font, and occlusion [6],

illumination [7], background [8], and country standards [9],

[10].

In addition, the OCR module of ALPR systems must be

highly accurate, provided that it is enough to miss a single

character in the plate to miss the vehicle identification. In other

words, assuming Pacc as the license plate recognition accuracy

and Cacc as the character recognition accuracy, we have that

Pacc = Cc
acc, (1)

where c is the number of characters per license plate. So, for

example, if we have c = 7, we need Cacc ≈ 97.7% in order to

have Pacc ≈ 85%, which is considered a baseline performance

in commercial ALPR systems. Surprisingly, Tesseract,1 a well

known public OCR system, can only achieve a Cacc of

approximately 80% when operating on real-world license plate

characters.

We address the problem of ALPR by using convolutional

neural networks (CNNs) [11] for feature extraction and lin-

ear support vector machines (SVMs) [12] for classification2.

While CNNs have been actively investigated with excellent

results in text recognition [13], [14], to the best of our

knowledge, this is the first time that random CNNs are used

for vehicle identification.

Our CNN has four layer respectively implementing (i) filter

bank convolution, (ii) rectified-linear activation, (iii) spatial

pooling, and (iv) divisive normalization. Its architecture is

chosen from thousands of random possibilities and its filter

weights are set completely at random. The approach for

searching for optimal network architectures is inspired on the

work of [15], [16] and is guided by how good the architectures

perform in a dataset with 2,548 real-world plate character

samples. In addition to the architectural parameters, this search

space comprehends hyperpameters defining the behavior of the

activation, pooling, and normalization operations (Section II).

According to the methodology described in Section III, we

compare the performance of our approach with two baselines:

(i) linear SVMs operating directly in the image domain

(without an intermediate CNN) and (ii) traditional CNNs also

operating in the image domain, but with filter weights learned

via back-propagation [11]. As we present in Section IV,

our method can outperform the baselines, achieving highest

accuracies in the recognition of both digits and letters.

We hypothesize that we could achieve superior performance

when using random filters because of the statistical properties

enforced by the initialization of their weights and by the subse-

quent activation function. Given that they are mean-centered,

unit-normalized, and uniformly distributed in the filter feature

space, these filters compete evenly among themselves and are

not prone to overfitting. Moreover, while searching for good

1https://code.google.com/p/tesseract-ocr/
2The first author, with DECOM-UFOP, has spent his sabbatical year (2013-

2014) at the Institute of Computing, UNICAMP, Brazil, and was supported
by FAPESP.
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Fig. 1. A convolutional neural network (CNN) transforms a character image into a higher level representation that can be viewed as a multiband image.

architectures, the rectified linear activation enforces sparsity

in the information processing flow, thereby strengthening the

robustness of the features to the aforementioned variations in

plate characters.

The introduction and validation of random CNNs as a

promising alternative approach to ALPR systems is the main

contribution of this paper.

II. PROPOSED CONVOLUTIONAL NETWORK

In this work, convolutional neural networks (CNN) can be

viewed as a sequence of four linear and non-linear image

processing layers. Given an input image, our CNN essen-

tially extracts a higher level representation, named multiband
image, whose pixel attributes are concatenated into a high-

dimensional feature vector for later pattern recognition (Fig-

ure 1).3

In order to describe the aforementioned operations, let Î =
(DI , �I) be a multiband image such that DI ⊂ Z2 is the image

domain and �I(p) = {I1(p), I2(p), . . . , Im(p)} is the attribute

vector of a pixel p = (xp, yp) ∈ DI . When Î is a grayscale

image, m = 1 and Î = (DI , I). In addition, assume A(p) as a

squared region centered at p of size LA×LA, such data A ⊂
DI and q ∈ A(p) iff max(|xq−xp|, |yq−yp|) ≤ (LA−1)/2.

A. Filter Bank Convolution

Let Φ = (A,W ) be a filter with weights W (q) asso-

ciated with pixels q ∈ A(p). In the case of multiband

filters, filter weights can be represented as vectors �Wi(q) =
{wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i of the bank,

and a multiband filter bank Φ = {Φ1,Φ2, . . . ,Φn} is a set of

filters Φi = (A, �Wi), i = {1, 2, . . . , n}.
The convolution between an input image Î and a filter Φi

produces a band i of the filtered image Ĵ = (DJ , �J), where

DJ ⊂ DI and �J = (J1, J2, . . . , Jn), such that for each p ∈
DJ ,

Ji(p) =
∑

∀q∈A(p)

�I(q) · �Wi(q). (2)

The weights of Φi are randomly generated from U(0, 1) and

are further normalized to zero mean and unit norm in order to

ensure that they are spread over the unit sphere.

3In this paper, CNNs are described from an image processing perspective,
with terms like image domain, image band, etc., used throughout.

B. Rectified Linear Activation

The activation layer of our network consists of rectified

linear units of the type present in many state-of-the-art CNN

architectures [15], [17] and simply perform

Ji(p) = max(Ji(p), 0). (3)

Notwithstanding its simplicity, this activation function play

an important role in the network information flow, specially

when coupled with random filters initialized as described in

the previous section, in which case it enforces sparsity in the

network by discarding 50% of the expected filter responses,

thereby improving the overall robustness of the features being

extracted.

C. Spatial Pooling

Spatial pooling is a foundational operation in the CNN

literature [11] that aims at bringing translational invariance

to the features by aggregating activations from the same filter

in a given region.

Let B(p) be pooling regions of size LB × LB centered at

pixel p. In addition, let DK = DJ/s be a regular subsampling

of every s pixels p ∈ DJ . We call s the stride of the pooling

operation. Given that DJ ⊂ Z2, if s = 2, |DK | = |DJ |/4, for

example. The pooling operation resulting in the image K̂ =
(DK , �K) is defines as

Ki(p) = α

√ ∑
∀q∈B(p)

Ji(q)α, (4)

where p ∈ DK are pixels in the new image, i = {1, 2, . . . , n}
are the image bands, and α is a hyperparamter that controls

the sensitivity of the operation. In other words, our pooling

operation is the Lα-norm of values in B(p).
D. Divisive Normalization

The last operation of our CNN is divisive normalization,

another mechanism widely used in top-performing CNNs [15],

[17] that is based on gain control mechanisms found in cortical

neurons [18].

This operation is also defined within a squared region C(p)
of size LC × LC centered at pixel p such that

Oi(p) =
Ki(p)√∑n

j=1

∑
∀q∈C(p) Kj(q) ·Kj(q)

(5)
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for each pixel p ∈ DO ⊂ DK of the resulting image Ô =
(DO, �O). Divisive normalization promotes competition among

filters (input image bands j) such that high responses will

prevail even more over low ones, further strengthening the

robustness of the CNN output feature vector �O.

E. CNN Hyperparameters

Most operations described in the previous sections have

hyperparameters that need to be determined according to the

problem at hand. For example, the size of the filter region

— i.e., the receptive field of convolutional neurons — is an

architectural hyperparameter of the network. In a nutshell, the

filtering operation requires the definition of the filter size LA
and the number of filters n; the pooling operation requires

the definition of the pooling size LB, the stride s, and the

pooling sensitivity α; and the normalization operation requires

the definition of LC . Indeed, LA, n, LB, s, α, and LC can be

seen as the architectural parameters of our network.

III. METHODOLOGY

A. Dataset

The dataset of plate characters that we use in this work

was obtained from Brazilian license plate images captured in

a real-world setting, and are available in [19]. Given that we

are interesting in evaluating the proposed CNN-based OCR

system, the first two steps of the recognition pipeline —

namely (i) plate detection and (ii) character segmentation —

were respectively implemented according to the methods of

Mendes et al. [20] and of Nomura et al. [21].

A total of 2,548 character images were extracted from the

plate images by cropping the segmented regions and shrinking

it to an aspect ratio of 5:4 and a size of 20× 16 pixels. Given

the small image size, in Figure 2 we are able to show the

entire dataset, with 1,820 digits and 728 letters. Note that, in

some cases, segmentation did not perform well and that we

have variations in typesetting, scale, rotation, lightning, etc.
This dataset will be made public in [22].

B. Evaluation Protocol

In general, license plates are usually composed by letters

followed by numbers. Since this is a priori information that can

be used in the context of automatic license plate recognition

(ALPR), in our experiments we separately evaluate OCR

modules for letter and for digit recognition.

In order to evaluate each OCR module, we randomly split

the corresponding dataset samples into training and test sets

by considering 90% of the samples for training and 10%

for testing. We then use the training set to build the OCR

module and the test set to measure its accuracy. Our evaluation

protocol consist of repeating this random split procedure 30

times and reporting the resulting mean accuracy and standard

deviation.

C. CNN Hyperparameter Random Optimization
As presented in Section II, the proposed random CNN that

we use for feature extraction requires the definition of several

hyperparameters that here we optimize by random search. This

strategy has shown to be a very good choice to tackle this

problem [15], [23], and in the context of our work can be

described by the following steps:

1) Randomly — and uniformly, in our case — sample

values from the CNN hyperparameter search space;

2) Extract features from the dataset images with this CNN;

3) Evaluate the CNN according to some performance mea-

sure;

4) Repeat steps 1–3 until some criterion is met.

In accordance to the notation of Section II, the hyperparameter

search space that we explore in this work (Step 1) is a discrete

one, and can be defined as lists of possible values for:

• filter size LA = {3, 5, 7, 9};
• number of filters n = {32, 64, 96, 128};
• pooling size LB = {0, 3, 5, 7, 9};
• pooling stride s = {1, 2, 3};
• pooling sensitivity α = {1, 2, 3, 10};
• normalization size LC = {0, 3, 5, 7, 9} .

Once we extract features from all samples (Step 2), the evalua-

tion criterion used to measure the performance of the candidate

CNN (Step 3) is the mean accuracy obtained by training a

hard-margin (C = 105) linear support vector machine (SVM)

according to the protocol described in Section III-B. Note that

we are dealing with high-dimensional features vectors rang-

ing from 512 to 100k elements, and preliminar experiments

showed that the use of other kernels such as Radial basis

function (RBF) does not bring to us promising results and

are too expensive to be evaluated in this context. Finally, our

termination criterion (Step 4) is to simply iterate 2,000 times

over Steps 1–3 and selecting the best performing CNN at the

end.
An important remark is that some combinations of hyper-

parameter values are invalid due to the small size of the input

images. In these cases, we simply ignore this combination and

sample the next one. In addition, note that the optimization

may result in CNNs with no pooling or normalization layers,

since we considered zero as a possible choice for their sizes.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of the proposed approach in

the dataset described in Section III-A according to the protocol

presented in Section III-B and following the hyperparameter

optimization procedure detailed in Section III-C. This experi-

ment took 3 hours for digits and half an hour for letters running

in cluster with eight Intel Core i7 @3770GHz machines.
In Fig. 3, we present histograms summarizing the random

search, with mean accuracies in the horizontal axis and number

of random CNNs that achieved such accuracy in the vertical

axis. It is possible to observe that a large number of CNNs

produce accurate results, but just a few result in peak perfor-

mance. Indeed, this is somehow in accordance to the findings

of [15].
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Fig. 2. Dataset used in the experiments with 2,548 characters split into 1,820 digits (0-9, 10 classes) and 728 letters (A-Z, 26 classes). A total of 182 samples
per digit and 28 samples per letter are available.
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Fig. 3. Histograms summarizing the hyperparameter random optimization of CNNs for digits (left) and letters (right).

In Tables I and II, we present the hyperparameter sets that

led to the five best performing random CNNs for digits and

letters, respectively. Considering filter sizes, apparently LA =
9 performs best for digits and LA = 5 for letters. Also, we

can see a trend towards the highest number of filters allowed

(n = 128) in both cases. It is not possible to infer anything

concrete about pooling regions LB for digits, but LB = 7
always performed best for letters. The opposite can be said

regarding pooling strides, where s = 1 was always the best

choice for digits and no tendency was observed for letters.

Other regularities such as α = 10 for letters, LC = 3 for

digits, and LC = 0 can also be observed. Taken together, the

diversity in performance shown in Fig. 3 combined with the

values shown in Tables I and II allow us to conclude that

TABLE I
FIVE BEST CNNS FOR DIGITS. SEE SECTION III-C FOR DETAILS.

# LA n LB s α LC acc. (μ± σ)

1 9 128 3 1 2 3 98.3±1.05
2 9 128 5 1 1 3 98.2±0.86
3 9 128 3 1 3 3 98.2±1.13
4 9 96 5 1 1 3 98.2±1.01
5 9 128 7 1 10 0 98.1±1.20

hyperparameter optimization is indeed an important step to

building effective random CNNs.

We now compare the best systems from Tables I and II

with two baseline approaches. The first baseline takes raw
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TABLE III
COMPARISON WITH TWO BASELINE APPROACHES.

approach
background accuracy (μ± σ)

norm. digits letters

raw pixels no 69.2±3.54 66.3±4.62
raw pixels yes 95.2±1.53 88.5±3.01
traditional CNN no 73.1±2.68 77.8±3.83
traditional CNN yes 95.1±1.55 86.0±4.21
random CNN no 98.3±1.05 95.1±1.64
random CNN yes 98.5±0.72 96.8±1.74

TABLE II
FIVE BEST CNNS FOR LETTERS. SEE SECTION III-C FOR DETAILS.

# LA n LB s α LC acc. (μ± σ)

1 5 128 7 2 10 0 95.1±1.88
2 5 128 7 1 10 0 94.7±2.25
3 5 96 7 3 10 0 94.0±2.22
4 5 96 7 3 10 0 94.0±2.22
5 5 64 7 1 3 0 93.9±2.49

pixel values as input to classifiers of the same type that we

use in our approach, i.e., hard-margin linear SVMs. Note

that our goal here is to compare the features generated by

CNN with those of raw pixels, and the optimization of the

classifier hyperparameters (in our case C) is out of scope.

The second baseline approach, in turn, is a “traditional” CNN

whose filter weights are learned via back-propagation and

whose architecture was determined as the best performing

one out of several possible configurations of single hidden

layer CNNs. The best architecture found for this baseline CNN

consisted of 5 filtering neurons of size 7×7 and pooling unists

of size 2 × 2. Training such traditional CNN required 100

epochs for digits and 200 for letters using the implementation

of [24]. Additionally, we also compare the methods using a

preprocessing step for background normalization known to

substantially improve performance. This step is done by simple

analyzing the intensity of the red channel - so we need to have

the input image as a color one. If it is above a threshold, the

image is then inverted.

Observe that the best CNN architectures found by our

random optimization procedure use much more filters than the

traditional CNNs. For such traditional CNNs, the higher the

number of filters, the higher both the number of weights to be

learn through backpropagation algorithm and also the number

of samples required to such learn are. If the number of samples

are not enough for such learning process, the generalization

capability of the learned network is seriously compromised.

In contrast, our proposed approach uses randomly predefined

filters as stated earlier.

The results are presented in Table III. While we can ob-

serve that both baselines are greatly benefited by background

normalization, our approach performs well with and without

normalization, suggesting that random CNNs are inherently

able to correct for problems in absolute pixel intensities.

Considering the results without background normalization,

both the method based on raw pixels as well as the traditional

CNNs perform badly, while random CNNs perform well. With

background normalization, raw pixels and traditional CNNs

present better performances, but random CNNs still perform

over 3% better for digits and over 8% better for letters. These

results clearly support the use of random CNNs as a promising

alternative approach to ALPR systems.

V. CONCLUSIONS

In this work, we proposed the use of random convolutional

neural networks (CNNs) to extract features for vehicle license
plate character recognition. We presented two networks, one

for the recognition of digits and the other for letters, whose

optimal architectures were chosen by random optimization

from thousands of possibilities.

We demonstrated in our experiments that when we train

linear SVMs with features extracted with the proposed random

CNNs, we can achieve a significantly better performance as

compared to training linear SVMs on image pixels or learning

the filters weights with back-propagation instead of setting

them at random. Indeed, we believe that the statistical prop-

erties of random filters coupled with rectified linear activation

units were essential in achieving superior results.

While other methods proposed in the literatue can achieve

comparable levels of performance [25], [26], the datasets used

are different, and therefore it is not clear whether or not they

impose the same challenges. For this reason, as future work,

we intend to compare our approach with these methods in a

challenging dataset such as the one used in this paper. We

also plan to evaluate other filter learning techniques, specially

unsupervised ones as in [27], [28], [29], but using a few

training samples. Finally, we also intend to investigate how

different strategies of data augmentation from this dataset

might contribute in the conception of even better ALPR

systems.
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