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Abstract—An automatic vehicle access control system (AVACS)
can be divided into three steps: vehicle location, vehicle license
plate (VLP) location, and VLP recognition. This paper presents a
new method for VLP location based on the horizontal gradient,
morphological operations, connected components analysis, and
statistical measures. First, the horizontal gradient is acquired
and a mean filter is applied on it. Morphological operations are
then used to darken non-VLP high-valued regions (saliences).
At this step, we work on an integer-valued image rather than on
the binary one, improving salience detection. Finally, the image is
binarized, then a connected component analysis is performed, and
statistical measures are used to decide among the VLP candidates.
Experiments show that, in a database of 722 images, our method
correctly locates the VLP in 95% of the cases, outperforming
previous approaches.

Index Terms—Vehicle license plate location; mathematical
morphology.

I. INTRODUCTION

An automatic vehicle access control system (AVACS) is

an intelligent transportation subsystem, based on image pro-

cessing and computer vision, that helps in different parking

and access tasks, as access authorization control. License plate

number is the central information for an AVACS, as it is an

unique identifier of a vehicle. The process to automatically

define it from digital images can be composed of three steps:

vehicle location, VLP location, and VLP recognition.

The VLP location step is typically the less robust and

the more computationally intensive. One important factor is

image type: in the literature, there are approaches that pro-

cess binary [1], [2], [3], monochrome (gray-level) [4], [5] or

color images [6], and also methods that manipulates different

types simultaneously [7]. VLP location based on mathematical

morphology [8] usually uses bottom- and top-hat [1] and

horizontal gradient [2] operations to highlight VLP saliences

(patterns) on the monochrome image. The resulting image is

then binarized and morphological operations are applied, trying

to keep only the VLP region.

The binarization phase is particularly sensitive: VLP region

may be eliminated due to bad binarization threshold estimation.

If non-VLP regions are the most highlighted ones, this will

cause partial or full VLP region elimination.

We propose a new VLP location method that tackles this

problem by delaying the binarization step. It is inspired by an

in-depth study of methods in the literature [1], [2], [3], from

which it shares some components. First, the horizontal gradient

is computed on the original monochrome image and a mean

filter is applied on the resulting integer-valued image. The

filtered image is processed with morphological operations, with

the specific goal to improve binarization, as we will see later.

VLP region candidates are identified in the resulting binary

image by a connected component analysis. Finally, statistical

measures are used to choose the most probable VLP region

candidate.

Experiments are carried out using two image databases:

377 images acquired by a digital camera at UFOP campus

and the 345 images of Greek vehicles available in [7]. Our

method achieved successful VLP location rate of 95% (we

also implemented other methods for comparison). Since there

are empirical parameters, a 5-fold cross-validation scheme was

used to estimate them.

The remainder of this paper is organized as follows. In

Section II, the proposed method’s steps are presented. Our

results and comparisons with results obtained by other methods

in the literature are shown in Section III. Finally, in Section IV,

we present our conclusions and possible future directions to

this work.

II. PROPOSED METHOD

Our method to solve the VLP location based on digital

images uses morphological operations, horizontal gradient,

connected component analysis and statistical decision. The

main contribution of it is that morphological operations are

applied on the horizontal gradient image. Note that horizontal

gradient operator is used to detect vertical edges. There is

a training phase where database images are used to estimate

some VLP parameters: plate’s height and width, distance

between characters, distance between the last letter and first

number. We used a 5-fold cross validation scheme to estimate

them. The flowchart in Fig. 1 shows method’s steps that are

detailed in the following subsections.

A. Horizontal Gradient

Our working hypothesis is that, in the image of a vehicle, its

front and its rear are mainly composed of horizontal lines [9],

while its VLP region has a clear predominance of vertical lines.

During horizontal gradient detection, we obtain the vertical

lines from the original image by applying the Sobel oper-

ator [8]. Fig. 2(b) shows the resulting image of horizontal

gradient detection on the original image in Fig. 2(a).
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Fig. 1. Steps of the vehicle license plate location method.

A mean filter [3] is applied to the image, in order to

have VLP region more emphasized, as we expect it to have

a great concentration of high valued pixels. The final image

of Horizontal Gradient phase can be seen in Fig. 2(c). Filter’s

mask is a α1ŵP × α1ĥP -rectangle, where ŵP and ĥP are

the expected VLP width and height, respectively, parameters

mentioned before.

B. Filtering

At the filtering phase, the goal is to darken every non-VLP

region pixel. Morphological operations proposed in [1], [2]

are applied to the current monochrome image. The strategy

is to darken high valued regions (saliences) that don’t fit

the expected size. We use the aforesaid VLP parameters –

minimum character height in pixels (MINHCHAR) and maxi-

mum character height in pixels (MAXHCHAR) – to define the

operations’ structuring elements (SEs).

Small non-VLP salient regions are darkened by a morpho-

logical opening operation with a column SE of size equals to

MINHCHAR (see Fig. 2(d)). The joint application of mean fil-

ter and opening operation causes undesirable variation among

pixel values of VLP region though, perceived as gaps between

its vertical saliences. We restore smoothness in these values –

which is equivalent to replenish the artificial created gaps –

using a morphological closing operation with a line SE of size

equals to expected inter-character distance VLP parameter.

Big non-VLP salient regions are also darkened by morpho-

logical operations. A top-hap operation in an image with a

particular SE consists of subtracting the opening image with

the SE from the original image. As the opening image’s pixel

values are less than or equal their corresponding values in the

original image, with a column SE of size MAXHCHAR, big

salient regions will have their pixel’s values lowered, that is,

they will be obfuscated as shown in Fig. 2(e).

This resulting image may exhibit an unwanted feature:

the VLP region between the letters and the numbers may

be less salient. As a consequence, the binarization process

may perform poorly splitting VLP region into two, preventing

VLP location. We rejoin these VLP parts with a closing

morphological operation with a line SE of size equals to

expected distance in pixels between the last letter and the first

digit (another VLP parameter obtained during the training pre-

phase).

We close the Filtering phase by removing saliences in the

plate’s borders that may appear during the horizontal gradient

step if, for instance, the VLP is over a dark part of the

vehicle. If these saliences are left, we wouldn’t find the tightest

boundary of VLP’s characters, making later plate identification

hard or impossible. We apply an erosion operation followed by

a dilation operation, both using line SEs. The SEs’ sizes were

experimentally defined to be α2ŵP and α3ŵP , respectively.

C. Adjustment to the VLP

The goal of this phase is to generate tight potential VLP

regions in a binary image. First, we binarize the image to

separate salient regions from the background. Despite the

fact that we tried to darken non-VLP salient regions while

highlighting VLP region, it is still possible that it is not

as emphasized as we wanted and we could miss it during

binarization. Otsu’s method [10] is employed to automatically

define the binarization threshold and minimize the chance of

a miss (Fig. 2(g)).

In the connected component analysis, as we know the

expected size and shape of a VLP, we remove any region that

is not VLP-shaped from the binary image. A region is not

VLP-shaped if one of the following happens: a) its height is

greater than or equal to its width (disproportion); b) its width

is smaller than VLP parameter MINWCHARS (small objects);
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Fig. 2. Steps of the vehicle license plate location method: (a) Original image; (b) Horizontal gradient; (c) Mean filter on horizontal gradient; (d) Small saliences
darkened; (e) Big saliences darkened; (f) Erosion and dilation operations; (g) Binarization; (h) Finding the vehicle license plate.

or c) it touches image boundary. Although the VLP can be

near to the image margin, after applying the operations of the

filtering step (Section II-B), the object referring to the VLP

region will not be reaching the image margin.

In the final image, we maintain only objects’ bounding

boxes, that is, we end up with rectangular objects: the VLP

region candidates. Any two intercepting candidates are elim-

inated based on the fact that VLP is basically composed

of vertical edges and the associated candidate(s) does not

intercept any other candidate generated by vehicle’s horizontal

edges. Other vertical edge dominant candidates – like sticker

and brand names – are not close enough to the VLP to make

their candidates to intercept. On the other hand, candidates

originated from background noise – which we do want to

eliminate – have a greater chance to touch each other given

their random location.

For each remaining candidate, we define a tighter bounding

box. First, its initial corresponding bounding box is cut off

the monochrome image of the Filtering phase (Section II-B,

image in Fig. 2(f)) and is considered as a separated candidate

image. A new binarization takes place with Otsu’s method.

Before, candidate’s boundary is expanded to include lower-

valued pixels by a dilation operation with a 5 × 5-square SE,

improving threshold estimation. Adopting the same reasoning

as in Section II-B, the binary image may contain undesired

regions, which are erased by a α4ŵP -line-SE erosion operation

followed by a α5ŵP × α5ĥP -rectangle-SE dilation. The final

candidate bounding box wC ×hC is computed as the one that

surrounds all remaining regions in the resulting image (see the

full process in Fig. 3).

The resulting candidate bounding box is checked to see

if minimum dimension constraints are satisfied: wC ≥
MINWCHARS and hC ≥ MINHCHAR, where wC and hC

stand for the width and height of the bounding box. If they

are not, the candidate is discarded, unless it is the single one,

in which case the original looser bounding box is kept.

If there is no candidate or all of them are discarded, a

histogram equalization is performed in the original image,

to get a contrast improvement, and the location process is

repeated from its very beginning.

D. Decision among candidates

We expect homogeneousness among pixels’ values of the

VLP region in the filtered image (Fig. 2(f)). So, we use

the coefficient of variation (CV) [11] to measure candidates’

quality and to decide among then which is the actual VLP.

For every candidate, we take into account only those pixels

remaining at the end of the Adjustment to the VLP step. We

evaluate the mean and standard deviation values of those pixels

in the corresponding image obtained at the end of Filtering step

(Section II-B).

The quality measure V of a candidate is defined as:

V =
µ

CV
=

µ2

σ
,

(a) (b)

(c) (d)

Fig. 3. Operations in a candidate regarding the vehicle license plate: (a)
Region corresponding to the image obtained at the end of Section II-B; (b)
Region binarization; (c) Erosion and dilation; (d) Bounding box update.
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where µ and σ stand for the mean and standard deviation of

those pixels’ values and the coefficient variation is CV = σ
µ
.

The candidate with the largest V is chosen as the VLP

(Fig. 2(h)). A final dilation by a 7×7-SE is applied to guarantee

that no VLP character is (partially) cut off.

III. RESULTS

We carried out tests to compare our method with three

other ones [2], [4], [12]. The methods were implemented in

MATLAB and the source codes are available in [13]. The

runtime of our method is 0.73± 0.18 seconds for each image,

on an Intel Pentium Dual-Core T2370, 1.73 GHz with 2

GB RAM running Ubuntu Linux 9.10. We believe that an

optimized version of the code would be suitable to real-time

applications.

A. Validation methodology

Every image in the experiments was manually labeled with

its minimum bounding box that includes all VLP characters,

i.e., rchar (Fig. 4(a)) and its minimum bounding box that

includes the entire VLP, i.e., rvlp (Fig. 4(b)). The labeled

images are also available in [13].

Results are presented with respect to the located area la and

the excessive area ea defined as follows:

la =
area(rchar ∩ rmet)

area(rchar)
(1)

ea =
area(rvlp ∩ rmet)

area(rvlp)
(2)

where rmet is the region found by the method and area() is

a function that obtains the area, in pixels, of a given region.

Experimentally, we determined what is a successful loca-

tion: it is one with la ≥ 85% and ea ≤ 100%. Within the

first limit, no VLP character information is lost and within the

second, extra pixels do not mess up the recognition.

As some of the implemented methods [4], [12] don’t make

clear how they choose among candidates, in the results, we

considered the best candidate to be the one with the highest

la value.

B. Image database

Two image databases are used: 377 images (800×600

pixels), acquired at UFOP campus in order to emulate typical

AVACS conditions (Brazilian vehicles), and 345 images (93 of

(a)

(b)

Fig. 4. Examples of labeling of images: (a) Minimum bounding box that
includes all the characters; (b) Minimum bounding box that includes the entire
vehicle license plate.

800×600 pixels and 252 of 640×480 pixels), available in [7]

and used for comparison purposes (Greek vehicles).

For the first image database, the expected size for the VLP

is 17.60±2.44 tall and 88.21±10.10 wide (based on the image

of characters labeled) with minimum and maximum height and

width of 13, 28, 73, and 122, respectively. For the Greek image

database, the expected size for the VLP is 26.84 ± 6.16 tall

and 117.43±22.56 wide with minimum and maximum height

and width of 15, 51, 71, and 182, respectively.

MINHCHAR, MAXHCHAR, and MINWCHARS constant

values, 12, 53, and 67, respectively, are closely associated with

our method’s invariance to scale. The more the first two are

spread out, the less accurate we are on VLP salient region

detection. If MINWCHARS is small, it is probable that the

candidate number raises too much and candidate decision is

more difficult.

As mentioned before, every VLP parameter of our

method were obtained empirically using 5-fold cross-validation

scheme. Each partition of the cross-validation technique con-

tains images of the two databases, i.e., the methods were

parameterized and executed based on the two image databases.

Values for α1, α2, α3, α4, and α5 heuristic parameters were

setup to 0.20, 0.40, 0.60, 0.05, and 0.10, respectively, using
another small database of 10 images.

C. Analysis of results

In Table I, we present the results obtained with the Brazilian

images, the Greek images and with all images. The results

presented are not considering decision step. That is, the candi-

date that best fits to the VLP is chosen. We take this decision

because two methods [4], [12] do not explain how the decision

is made among candidates. From the left to right columns,

we show the description, the optimum location (la > 85%
and ea < 100%), the excessive location (la > 85% and

ea ≥ 100%), the location error (la ≤ 85% and ea < 100%),

the “naı̈ve” location (la > 0) rates, and the mean number of

candidates generated by each method. Values in the table are

obtained by a 5-fold cross-validation scheme, and we present

their mean and standard deviation (µ ± σ).

Fig. 6 summarizes the results obtained by each method for

each image in graphs of located area versus excessive area.

With the usual “naı̈ve” location metric, our method obtains

the highest rates for all databases, but the performance dif-

ference is not always statiscally significant. With “optimum”

location metric (la > 85% and ea < 100%), however, which

takes location and excessive area tradeoff into account, the

values reported in [4], [12] decrease drastically. From this

result, we argue that these methods could not become part of

an AVACS, since their located VLP would not contain enough

information for vehicle identification. Moreover, the number

of VLP candidates produced by [12] is significantly bigger

than the other methods, what makes candidate selection harder.

On the other hand, our method and method [2] generate the

smallest number of VLP candidates.

Our method obtains successful VLP optimum location rate

of 94.18%±0.20% (92.04%±0.59% and 96.52%±0.33% for
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(a) (b) (c) (d)

Fig. 5. Examples of errors in the location of the vehicle license plate: (a) Location vehicle brand name (decision error); (b) Location of brand symbol (decision
error); (c) Location of extra region; (d) Location of only part of vehicle license plate.

TABLE I
RESULTS OBTAINED WITH THE BRAZILIAN, GREEK, AND ALL IMAGE DATABASES.

optimum location excessive location location error “naı̈ve” location candidates number

Brazilian database
la > 85% and la > 85% and la ≤ 85% and

la > 0
ea < 100% ea ≥ 100% ea < 100%

Suryanarayana et al. method ([2]) 93.10% ± 1.18% 0.00% ± 0.00% 6.37% ± 1.05% 94.03% ± 1.45% 2.14 ± 1.27

Vargas et al. method ([4]) 34.74% ± 2.03% 13.79% ± 0.43% 39.53% ± 3.26% 54.64% ± 1.97% 4.43 ± 4.07

Wang et al. method ([12]) 54.63% ± 1.78% 17.52% ± 1.40% 23.60% ± 1.38% 98.14% ± 0.40% 25.22 ± 10.01

Proposed method 94.43% ± 0.50% 1.59% ± 0.55% 2.12% ± 0.54% 96.02% ± 0.64% 2.57 ± 1.75

Greek database
la > 85% and la > 85% and la ≤ 85% and

la > 0
ea < 100% ea ≥ 100% ea < 100%

Suryanarayana et al. method ([2]) 93.85% ± 0.80% 0.87% ± 0.19% 5.29% ± 0.88% 98.55% ± 0.34% 3.14 ± 2.48

Vargas et al. method ([4]) 64.64% ± 1.72% 5.21% ± 0.80% 27.11% ± 1.92% 86.95% ± 1.04% 6.41 ± 4.96

Wang et al. method ([12]) 62.32% ± 0.59% 2.32% ± 0.45% 31.59% ± 0.66% 95.07% ± 0.23% 19.41 ± 7.43

Proposed method 96.52% ± 0.18% 0.87% ± 0.20% 2.61% ± 0.15% 99.13% ± 0.19% 1.53 ± 1.20

The two database
la > 85% and la > 85% and la ≤ 85% and

la > 0
ea < 100% ea ≥ 100% ea < 100%

Suryanarayana et al. method ([2]) 93.46% ± 0.95% 0.42% ± 0.09% 5.85% ± 0.94% 96.19% ± 0.89% 2.62 ± 2.01

Vargas et al. method ([4]) 49.03% ± 1.80% 9.70% ± 0.43% 33.59% ± 2.44% 70.08% ± 1.46% 5.38 ± 4.62

Wang et al. method ([12]) 58.31% ± 0.90% 10.25% ± 0.69% 27.42% ± 0.58% 96.68% ± 0.22% 22.44 ± 9.33

Proposed method 95.43% ± 0.20% 1.25% ± 0.33% 2.35% ± 0.34% 97.51% ± 0.40% 2.07 ± 1.60

the Brazilian and Greek databases, respectively) considering

our decision algorithm and 95.43%±0.20% without this deci-

sion, exhibiting the best performance among all the methods.

Method [4] is more susceptible to background variations

than ours. This is its main source of errors, when vertical and

horizontal projections of a preprocessed image are computed,

hindering the choice of robust constants.

On the other hand, method [12] is not scale invariant. If its

assumption that the plate region has a maximum width (step

6 of [12]) is not respected, the VLP detection (step 7 of [12])

loses its efficacy: as no lateral growth is allowed, a narrow VLP

would be missed. As the database contains images where the

VLP width varies from 71 to 182 (Section III-B), this may

explain its relatively poor performance.

Our method barely fails in deciding among candidates.

There are regions in the vehicle (e.g., bus identification num-

ber) that may have big horizontal gradients and size close to

the VLP size. These regions might be wrongly selected as the

VLP region. We present some failure scenarios in Fig. 5.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new VLP location method

based on the horizontal gradient, morphological operations

on monochrome and binary images, connected component

analysis, and statistical measures. As other gradient-based

methods, our approach is sensitive to light changes and noise,

as depicted in Figure 5(d). VLP was only partially located

due to a shadow region. On the other had, our method is

scale invariant, as long as VLP dimensions fall into a pre-

specified (sparse) range. In average, we obtained a successful

VLP location rate of 95%, outperforming previous methods in

both databases, which have very different characteristics.

We also introduced a methodology to statistically evaluate

the located VLPs’ quality. With that, we are able to quantita-

tively compare methods in the literature.

The methods presented in the literature for VLP location use

the assumption that the vehicle is presented in the image to be

processed. We consider an AVACS as a system composed of

vehicle tracking and location from video, then VLP location,

and finally VLP character recognition.

The use of vehicle tracking videos can enhance our

method’s robustness to scale changes, as we can obtain ve-

hicle’s width in pixels. The VLP parameters could be better

estimated having this width information. In addition to that,

with multiple frames, we can define the one which best

represents the vehicle and its VLP.

Another straightforward improvement is adding VLP char-

acter recognition phase to the method. The decision among
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Fig. 6. Results (located area × excessive area): (a) Suryanarayana et al. method [2]; (b) Vargas et al. method [4]; (c) Wang et al. method [12]; (d) Proposed
method.

candidates would be more accurate with this extra information.

Both features would bring our method closer to a full AVACS.
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