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a b s t r a c t

This paper presents a novel preprocessing method based on mathematical morphology techniques to
improve the subsequent thresholding quality of raw degraded word images. The raw degraded word
images contain undesirable shapes called critical shadows on the background that cause noise in binary
images. This noise constitutes obstacles to posterior segmentation of characters. Direct application of a
thresholding method produces inadequate binary versions of these degraded word images. Our prepro-
cessing method called Shadow Location and Lightening (SL*L) adaptively, accurately and without manual
fine-tuning of parameters locates these critical shadows on grayscale degraded images using morpholog-
ical operations, and lightens them before applying eventual thresholding process. In this way, enhanced
binary images without unpredictable and inappropriate noise can be provided to subsequent segmenta-
tion of characters. Then, adequate binary characters can be segmented and extracted as input data to
optical character recognition (OCR) applications saving computational effort and increasing recognition
rate. The proposed method is experimentally tested with a set of several raw degraded images extracted
from real photos acquired by unsophisticated imaging systems. A qualitative analysis of experimental
results led to conclusions that the thresholding result quality was significantly improved with the pro-
posed preprocessing method. Also, a quantitative evaluation using a testing data of 1194 degraded word
images showed the essentiality and effectiveness of the proposed preprocessing method to increase seg-
mentation and recognition rates of their characters. Furthermore, an advantage of the proposed method
is that Otsu’s method as a simple and easily implementable global thresholding technique can be suffi-
cient to reducing computational load.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In word image analysis (Nagy, 2000), thresholding aims at con-
verting the analyzed image to symbolic forms for modification,
storage, retrieval, reuse, and transmission (Nagy, 2000). So, thres-
holding (Alcorn and Hoggar, 1969; Bernsen, 1986) consists of a
crucial image-to-image transformation to help to extract binary
characters and recognize printed characters (Kamel and Zhao,
1993; Abak et al., 1997). Thresholding is a simple but effective tool
to distinguish word areas from background ones (Sankur and
Sezgin, 2004) and its performance affects quite critically the degree
of success on a subsequent character segmentation and recognition
in degraded document processing (Gatos et al., 2006).

In optical character recognition (OCR) applications, it is com-
mon practice to use binary characters as input data saving memory
space and computational effort (Impedovo et al., 1991) for dealing
with real-time processing requirements in industrial-like environ-
ll rights reserved.
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ments (Sauvola and Pietikäinen, 2000). So, OCR applications, like
most commercially available systems, require high quality binary
images as input data because their character recognition rate de-
pends on this quality. A raw degraded word image acquired by
an unsophisticated imaging system has been the key problem in
many OCR applications such as mobile reading system for visually
impaired, mobile translation device for foreign visitors in any
country, supporting system with embedded imaging device to rec-
ognize text information all along the road for car drivers (Thillou
and Gosselin, 2005).

Usually, the scanned and digitized image represents only a de-
graded version of the original scene because unsophisticated imag-
ing systems as well as imaging conditions are imperfect or
inappropriate (Flusser and Suk, 1998). Degradation in raw images
may occur due to several reasons which range from the acquisition
of source type to environmental conditions (Gatos et al., 2006).
Problems include the appearance of variable background intensity
caused by non-uniform intensity, shadows, smear, smudge and low
contrast (Gatos et al., 2006). Raw degraded images with problems
of changes in color or size, very low contrast, low quality of focal-
ization, and mainly poor and non-uniform illumination causing
shadows are verified by the sample presented in Fig. 1. Because
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Fig. 1. Sample of degraded word images scanned and extracted from poor quality
photos.

Type 2Type 3

Type 3Type 1

Fig. 2. Example of a digitized grayscale image with critical shadows (types 1, 2, and
3) due to a scenario under poor illumination conditions.
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of this degradation problem, it is quite complicated to obtain the
appropriate ubiquitous characters (Wang and Kangas, 2003) using
current thresholding methods for raw degraded images of traffic
signs, indicators, text documents to feed OCR systems. Threshold-
ing of such degraded images is not a trivial task, even though bin-
ary characters with good preservation of edges and corner are vital
to OCR performance (Trier and Jain, 1995).

1.1. Related works

There are several methods available to threshold images in or-
der to produce binary versions. Trier and Taxt (1995) experimen-
tally evaluated performances of several such techniques. These
methods can be classified into two classes, which are global and
local.

Sankur and Sezgin (2004) conducted an exhaustive survey of
forty image thresholding methods, both global and local. After a
quantitative performance evaluation, the survey has shown that
local methods perform better, but they require hard task to imple-
ment them and high computational effort to execute their
application.

A global thresholding method calculates a single threshold va-
lue for the entire image (Trier and Jain, 1995). Sahoo et al. (1988)
evaluated more than twenty global thresholding methods. They
concluded that Otsu’s class separability method provides the most
satisfactory thresholding results. Otsu’s method (Otsu, 1979) auto-
matically selects the proper threshold of a grayscale image, based
on a global histogram of 256 gray-levels. We have adopted this
method to threshold our preprocessed grayscale images in this
work.

On the other hand, a local adaptive thresholding method com-
putes a threshold for each pixel on the basis of information con-
tained in a neighborhood of the pixel (Trier and Jain, 1995). We
adopted the following four adaptive thresholding methods:

Adaptive Lightning Method (ALM) proposed by Nomura et al.
(2004): It automatically detects the luminance intensity of
grayscale versions by calculating the gray-level average of their
backgrounds. And, it adjusts the contrast between the relevant
objects and the image background by lightning each sliced
region of this image.
Mo and Mathews’s method (Mo and Mathews, 1998): Mo and
Mathews proposed an adaptive powerful algorithm based on
a quadratic filter system model to preprocess the input
degraded image before its thresholding. Then, they employed
a non-linear quadratic filter (Mo and Mathews, 1998) to
develop the algorithm for achieving edge enhancement and
noise reduction.
Yanowitz and Bruckstein’s method (Yanowitz and Bruckstein,
1989): It calculates a threshold surface that varies over different
image regions so as to fit the spatially changing background and
lighting conditions.
Niblack’s method (Niblack, 1986): The idea of this method is to
vary the threshold across the image, based on the local mean
and local standard deviation.

These methods were selected because they have been fre-
quently referred to in the literature and appeared to be promising
to solve thresholding problems in degraded images. They work
well for a slowly changing background of degraded images. How-
ever, they have not provided the expected enhancement results
on binary versions of the degraded images that include the critical
shadows in this work. Inappropriate binary images like the one in
Fig. 3 can seriously hinder the subsequent segmentation (Lu, 1995;
Nomura et al., 2005) and extraction of characters from words, and
cause low performance on eventual OCR system.
1.2. Rationale and motivation for the work

A generalized preprocessing method for dealing with any degra-
dation problem in digital word images is desirable. However, due
to current hardware limitations, we have to develop methods for
solving key degradation problems in order to gain speed and qual-
ity in real-time applications. Also, it is difficult to obtain satisfac-
tory thresholding results from various kinds of document images
(Tsai and Lee, 2002). To maintain OCR accuracy with decreasing
quality of page image composition, production, and digitization,
it is essential to develop methods for document-specific OCR sys-
tems (Xu and Navy, 1999). Existing thresholding methods (Sankur
and Sezgin, 2004) have ignored the heterogeneity and diversity of
the background for real-time images. So, these methods are not
able to partially remove noise due to degradation in the back-
ground. In this work, the preprocessing constitutes the theory
and its application of recovering the symbol structure (Nagy,
2000) of degraded digital word images extracted from poor quality
photos taken in real-time.

This work devoted attention to the degradation due to uneven
illumination that yields ‘‘ghost” objects called critical shadows as
key problem. Technically, these critical shadows on the
background and the relevant objects on the foreground present
very close or quite equal pixel values that cause binary noise
after applying a conventional thresholding process. Fig. 2 shows
an example of degraded grayscale image with the undesirable
critical shadows. For instance, the application of a global
thresholding method (Otsu, 1979) may result in noisy and dis-
torted binary image verified in Fig. 3 because of these critical
shadows.

The critical shadows are classified according to corresponding
noise place in the binary image. In Fig. 2, we have three types of
critical shadows to be preprocessed:

Type 1: Isolated shadows are located on the middle area of a
grayscale image.
Type 2: Isolated shadows are located around the border of a
grayscale image.



Fig. 3. Noisy binary image with a conventional thresholding method.
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Type 3: Complex type whose shadows are located around the
border, and they cause noise connected to relevant objects
(characters).

The strategy of this work is the preprocessing of the critical
shadows on grayscale degraded images by locating and lightening
these image degradation problems before eventual thresholding
process. This preprocessing method is named Shadow Location
and Lightening (SL*L).

The goal of this method is to produce enhanced binary versions
of degraded grayscale word images that retain most of the useful
information while reducing the effect of noise. Our work’s motiva-
tion is to solve this non-linear thresholding problem by prepro-
cessing the critical shadows based on powerful morphological
operations. In this way, binary images without unpredictable and
inappropriate noise can be provided to segmentation process of
their objects (characters). Subsequently, the process can segment
and extract adequate binary characters in a high segmentation rate
with low computational load. Also, these binary characters can be
used as input data to commercially available optical character rec-
ognition (OCR) applications saving memory as well as computa-
tional effort and increasing recognition rate.

In the following section we present the reasons for adopting
mathematical morphology techniques and the algorithms based
on these techniques. In Section 3, we describe the SL*L method
with its parts. An experimental system using the SL*L method is
presented and described in Section 4. In Section 5, we evaluate
the experimental results of the SL*L method application with those
of Otsu’s method (Otsu, 1979). Section 7 states the conclusion of
this work.
2. Theoretical foundation for the SL*L method

We present some reasons for adopting mathematical morphol-
ogy techniques (Serra, 1982; Heijmans, 1992) in order to solve the
thresholding non-linear problem in this work:

� Mathematical morphology is a powerful methodology for pro-
cessing and analyzing the shape (form of objects) in images
(Talbot and Beare, 2002), and it is based on set-theoretical,
geometrical and topological concepts (Serra, 1982). The method-
ology has achieved a status as a powerful method for image
processing, and it is useful for analyzing the geometrical struc-
ture in an image (Heijmans, 1992).

� It is a versatile and powerful tool for extracting useful image
components in the representation and description of regions,
such as boundary, size, area, shape, or location in binary images
(Gao et al., 2001).

� The language of mathematical morphology (Serra, 1982; Gonz-
alez and Woods, 1993) is the set theory that represents objects
in an image, thus it can be used as a tool to locate, segment,
and extract the objects from the images. The images can be sub-
sequently processed to perform enhancement, edge detection,
thinning, thickening, or segmentation of their objects.

Now, we present two algorithms developed by using mathe-
matical morphology basic operations for dilation, erosion, and
‘‘hit-or-miss” transform of objects. The first is the thickening algo-
rithm to thicken the objects (characters and noise) in a noisy bin-
ary image. The second is the pruning algorithm to appropriately
‘‘clean-up” the thickened image with parasitic branches to obtain
an ‘‘image without spurs.”
2.1. Thickening algorithm

Thickening (Serra, 1982) is a morphological operation that
works to grow selected regions of foreground pixels in binary
images. In this work, the thickening algorithm is used to determine
boundaries of these regions that cover characters and noise in bin-
ary images. Using Eq. (1), the thickening (Soille, 1999) of a binary
image X by a structuring element B is denoted by X � B and defined
as the union between X and the hit-or-miss transform of X by B
(X � B):

X � B ¼ X [ ðX � BÞ: ð1Þ
2.2. Pruning algorithm

The pruning algorithm is an essential complement to the thick-
ening algorithm. It is used to clean up parasitic components from
8-connected objects in this work. The solution is based on sup-
pressing a parasitic branch by successively eliminating its end
point (Gonzalez and Woods, 1993).

The pruning operation is denoted by �, and its algorithm is
implemented by using the following equation as its mathematical
foundation (Gonzalez and Woods, 1993):

S� B ¼ S [
[n
i¼1

ðS � BiÞ � H

 !
\ X; ð2Þ

where S is a skeleton of the binary image X obtained by the thicken-
ing algorithm; B is a sequence of structuring elements to thicken
and to restore the image to its original form; H is a structuring ele-
ment to dilation of end points conditioned on X; n is the number of
structuring elements; � denotes hit-or-miss transform; � denotes
dilation.
3. Proposed SL*L method

Our proposed SL*L method is basically composed of four pro-
cesses according to the flow chart of its architecture shown in
Fig. 4:

Process 1: Obtaining an intermediate binary image.
Process 2: Obtaining a thickened image.
Process 3: Obtaining an image without spurs (IWS).
Process 4: Lightening the critical shadows of a degraded gray-
scale image.

Processes 1–3 are to adaptively delimitate the shadowy regions
for the critical shadows in grayscale images by applying mathe-
matical morphology techniques to corresponding intermediate
binary images. Process 4 is to lighten the critical shadows delimi-
tated by the IWS.

To describe each process of our method, we adopted the follow-
ing conventions to represent the images:

� A matrix of real numbers is used to represent digital images.
� A digital image function f ðx; yÞ is represented by an array of M

rows and N columns where the values of the coordinates ðx; yÞ
are discrete quantities.
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Fig. 4. Flow chart of the SL*L method architecture, where CST, IWS, and RIWS respectively mean critical shadow type, image without spurs, and repaired image without spurs.
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Fig. 5. Typical grayscale image degraded by critical shadows.
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Fig. 6. Binary version of the grayscale image presented in Fig. 5.
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� Let Z denote the set of integer values. The discrete coordinates
are integers from the Cartesian product Z� Z (also written as
Z2) where x coordinate ranges from 1 to M, and y coordinate
from 1 to N, in integer increments.

3.1. Process 1: Obtaining intermediate binary images

This process consists of obtaining an intermediate binary image.
Basically, we threshold a grayscale version of a raw degraded word
image or previous shadow lightened image. A global thresholding
process to obtain a binary image IX can be described as follows:

IX ¼ f ðx; yÞ 2 f0;1g
f ðx; yÞ ¼ 1 if gðx; yÞ 6 Tr

f ðx; yÞ ¼ 0 otherwise

����
� �

; ð3Þ

where gðx; yÞ 2 IG; IG is a grayscale image; Tr is a thresholding
value.

Fig. 5 presents a typical degraded grayscale image with the crit-
ical shadows to be lightened and Fig. 6 presents the binary version
resulted from this process. The resulting binary version is to work
as input data to the next process.
3.2. Process 2: Obtaining thickened images

In this process, the morphological thickening operation defined
by Eq. (1) is applied to the binary image IX. A thickened image IY is
obtained as follows:



Table 1
Algorithm for obtaining an IWS as the pruned image.

1: Input the thickened image IY resulted from Eq. (4)
2: Input the structuring elements presented in Fig. 8 to detect the

interconnecting pixels
3: For each non-zero pixel from IY

a: if the pixel does not belong to the border of IY and it is not an
interconnecting pixel according to the structuring elements, then

b: remove this pixel
4: Output the pruned image IWS
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Fig. 9. Sketch of the pruned version for the thickened image presented in Fig. 7.

CST 1

CST 2

CST 3CST 2

CST 3

Fig. 10. Sketch of the grayscale image presented in Fig. 5 with three types of critical
shadows.
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IY ¼ IX � SA; ð4Þ

where SA is a set of structuring elements to thicken the input image
IX.

This process is crucial in making the method able to locate crit-
ical shadows on degraded grayscale images. The resulting thick-
ened image (skeleton) provides reference data to make a rough
detection of boundaries for likely shadowy regions on the degraded
grayscale image. Fig. 7 shows the skeleton of the binary image pre-
sented in Fig. 6.

3.3. Process 3: Obtaining images without spurs (IWS)

The pruning operation presented in Section 2.2 is applied to the
thickened image IY to obtain the pruned image IWS as follows:

IWS ¼ IY � SB; ð5Þ

where SB is a set of structuring elements to prune the thickened im-
age IY.

The structuring elements shown in Fig. 8 have been created to
detect an interconnecting pixel. This pixel must belong to the 8-
connected object, that is, it must not be an ending point.

The definition of a relevant pixel is used to eliminate a parasitic
branch. If a pixel satisfies one of the two following conditions, then
it is considered relevant and must not be removed:

(1) The pixel belongs to the border of the image.
(2) It is an interconnecting pixel.

In addition, all eight neighbors of each non-relevant pixel (non-
zero) are analyzed. It is then possible to maintain the relevant pix-
els so that only a parasitic branch is eliminated. Table 1 presents
the pruning algorithm to obtain an IWS as a pruned version for
the thickened image. Fig. 9 shows the sketch of the pruned image
after applying this algorithm to the thickened version of Fig. 7.

In particular, there are situations in this process where a branch
must not be suppressed. Then, the pruning algorithm must be
adapted to provide the appropriate IWS to deal with one of three
types of critical shadows mentioned in Section 1.2 and illustrated
by the sketch in Fig. 10:

� Critical Shadow Type 1 abbreviated as CST 1
� Critical Shadow Type 2 abbreviated as CST 2
� Critical Shadow Type 3 abbreviated as CST 3
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Fig. 7. Sketch of the thickened version for the binary image presented in Fig. 6.

Fig. 8. Structuring elements created to detect interconnecting pixels in an ‘‘image
without spurs”. Where ‘‘�” represents the pixel of the 8-connected white object; ‘‘�”
represents the pixel of the black background or 8-connected white object; the
origin of each structuring element is at its center.
3.3.1. Obtaining the IWS for CST 1
In this type of critical shadow, the IWS must have an ‘‘enclosing

boundary” surrounding a shadowy region located on the middle
area (critical zone) of the sketch shown in Fig. 11. This critical zone
delimitates the following shadowy region l to locate CST 1:

l ¼ ðx; yÞ 2 Z2 xmin < x < xmax; ymin < y < ymax

f ðx; yÞ 2 IWS

����
� �

; ð6Þ

where IWS represents the pruned image; xmin and ymin are the min-
imum coordinates delimitating the critical zone; xmax and ymax are
the maximum coordinates delimitating the critical zone.

In this case, the pruning algorithm presented in Table 1 should
be adapted to provide the IWS using only the following condition:
the analyzed pixel is an interconnecting pixel. Executing the
adapted pruning algorithm for the critical zone delimitated by
Eq. (6), we can obtain the sketch presented in Fig. 12. It corre-
sponds to the IWS for locating CST 1 sketched in Fig. 10.

3.3.2. Obtaining the IWS for CST 2
When the critical shadows are disconnected from relevant ob-

jects (for example, characters) and located near to the upper or
lower border of a grayscale image, we have the situation shown
in Fig. 13. In this case, the IWS must provide appropriate bound-
aries to enclose eventual critical shadows on the shadowy region

(upper) or (lower) of the grayscale image.The critical zones
delimitate two regions as follows:

lA ¼ fðx; yÞ 2 Z2 j 0 < x < xat; 0 < y 6 N; f ðx; yÞ 2 IWSg ð7Þ
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Fig. 11. Sketch of the IWS for locating a CST 1 on the shadowy region l delimitated by Eq. (6).
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Fig. 12. Sketch of the IWS for locating CST 1 of the image in Fig. 10.
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Fig. 14. Sketch of the IWS for locating CST 2 sketched in Fig. 10.
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for shadowy region and

lB ¼ fðx; yÞ 2 Z2 j xpt < x 6 M; 0 < y 6 N; f ðx; yÞ 2 IWSg ð8Þ

for shadowy region , where IWS represents the pruned image; xat

is the maximum coordinate delimitating the upper critical zone;
xpt is the minimum coordinate delimitating the lower critical zone;
M is the total quantity of rows of the IWS; N is the total quantity
of columns of the IWS.

The pruning algorithm is applied to the variation of coordinates
defined by Eqs. (7) and (8). The resulting sketch of the IWS to locate
CST 2 of the image in Fig. 10 is presented in Fig. 14.

3.3.3. Obtaining the IWS for CST 3
This is a complex type whose critical shadows are connected to

one or more relevant objects (for example, characters). Because of
this connection, the pruned image determined by process 3 in the
flow chart of Fig. 4 presents an interrupted or non-enclosing
boundary for the critical shadow. This interruption problem causes
an unideal IWS with untrue shadowy regions that cannot ade-
quately locate the critical shadows. These untrue regions tend to
trespass the critical x coordinates (xat and xpt). They invade areas
of relevant objects creating an overlapping region as illustrated
by the sketch of Fig. 15. Our idea comes to repair the interruption
problem in two steps by providing the repaired IWS to locate CST 3
as follows:
y

x

x
x

at

pt

A

ob

upper s

lower shad

Fig. 13. Sketch of the IWS for locating a CST 2 in the upper shadowy region lA delimita
coordinates from Eq. (8).
Step 1: Detecting boundaries of upper untrue shadowy regions
and as well as lower shadowy regions and shown in
Fig. 15.

Step 2: Determining line segments delimitated by the minimum
points (PA1 and PA2) as well as maximum points (PB1

and PB2) verified in Fig. 16.

3.3.3.1. Step 1: Boundary detection for untrue shadowy regions. Basi-
cally, these boundaries are detected by analyzing each object pixel
of the unideal IWS in Fig. 15 under the following conditions:

C-1 All the pixels must belong to the critical zone (upper or
lower) of the unideal IWS. Mathematically, the coordinates
ðx; yÞ of these pixels must belong to the upper shadowy
region given by Eq. (7) or lower shadowy region given by
Eq. (8).

C-2 The boundary for the second shadowy region ( or ) must
be determined after detecting the boundary for the first
shadowy region ( or ).

C-3 The detected boundary must have at least three consecutive
pixels located at different y coordinates of the unideal IWS.

C-4 When a local minimum or maximum as the extreme point
belongs to the border of the unideal IWS in Fig. 15, this
extremum of the detected boundary assumes one of the fol-
lowing equalities:
B

upper
critical
zone

lower
critical
zone

tained boundaries

hadowy region

owy region

μ

μ

A

B
(M,N)

ted by the coordinates from Eq. (7) or lower shadowy region lB delimitated by the
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B2
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zone
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TB1 TB2

TA1SA1
TA2

SA2

SB2

overlapping region
onto critical zones

interrupted boundaries

SB1

PA1

(M,N)

μ

μ μ

μA1 A2

B1 B2

Fig. 15. Sketch of the unideal IWS (UIWS) with upper untrue shadowy regions and as well as lower untrue shadowy regions and , where lA1
is from Eq. (17) and

delimitates the upper shadowy region above the boundary defined by points SA1, PA1, and TA1; lA2
is from Eq. (19) and delimitates the upper shadowy region above the

boundary defined by points SA2, PA2, and TA2; lB1
is from Eq. (18) and delimitates the lower shadowy region below the boundary defined by points SB1, PB1, and TB1; lB2

is
from Eq. (20) and delimitates the lower shadowy region below the boundary defined by points SB2, PB2, and TB2.

y

x

x

x
at

pt

PA1 PA 2

PB2
PB1

upper

critical

zone

lower

critical

zoneBn

An

(M,N)σ
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Fig. 16. Sketch of the repaired IWS (RIWS) with the new upper shadowy region and lower shadowy region for locating CST 3, where: rLA is the line segment delimitated
by the local minimum points (PA1 and PA2), and calculated by Eq. (25); rLB is the line segment delimitated by the local maximum points (PB1 and PB2).
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� SA1 	 PA1

� PA2 	 TA2

� SB1 	 PB1

� PB2 	 TB2
where S denotes a starting point; P denotes a point of local
minimum or maximum; T denotes an ending point; A repre-
sents an upper region; B represents a lower region; 1 is the
index to indicate the first untrue region of the pair; 2 is
the index to indicate the second untrue region of the pair.

C-5 The first y coordinate corresponding to the first shadowy
region ( or ) boundary may be the first y coordinate of
the unideal IWS, or the corresponding y coordinate of PA1

or PB1 which belongs to the border of the unideal IWS. Math-
ematically, the first y coordinate is given by
y ¼
1 if SA1 – PA1;

yPA1
otherwise

(
ð9Þ
for upper shadowy region and
y ¼
1 if SB1 – PB1;

yPB1
otherwise

(
ð10Þ
for lower shadowy region, where SA1, SB1, PA1, and PB1 are de-
scribed in the condition C-4; yPA1

is the y coordinate for PA1;
yPB1

is the y coordinate for PB1.
C-6 The last pixel corresponding to the first shadowy region
boundary is defined by TA1 or TB1 points presented in
Fig. 15. TA1 corresponds to the point whose x coordinate is
xat at the boundary of the first upper shadowy region .
TB1 corresponds to the point whose x coordinate is xpt at
the boundary of the first lower shadowy region . Mathe-
matically, the last pixel is given by the point with
coordinates
ðx; yÞ ¼ ðxat ; yTA1
Þ ð11Þ
for upper shadowy region and
ðx; yÞ ¼ ðxpt ; yTB1
Þ ð12Þ
for lower shadowy region, where yTA1
> 1 is the y coordinate

for TA1 representing the ending point for the first upper un-
true region; yTB1

> 1 is the y coordinate for TB1 representing
the ending point for the first lower untrue region.

C-7 The first pixel corresponding to the second shadowy region
( or ) boundary of the sketch in Fig. 15 is defined by SA2

or SB2 points similarly to the condition C-6. Mathematically,
the first pixel is given by the point with coordinates
ðx; yÞ ¼ ðxat ; ySA2
Þ ð13Þ
for upper shadowy region and
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Table 2
ðx; yÞ ¼ ðxpt; ySB2
Þ ð14Þ
Algorithm for detecting the boundaries of untrue shadowy regions.

1: Input the pruned image (IWS)
2: Calculate the coordinates for the boundary of the first untrue shadowy region

according to the conditions (C-1, C-3, C-4, C-5, C-6) presented in Section
3.3.3.1 and using Eqs. (17) and (18)

3: Calculate the coordinates for the boundary of the second untrue shadowy
region according to the conditions (C-1, C-2, C-3, C-4, C-7, C-8) presented in
Section 3.3.3.1 and using Eqs. (19) and (20)

4: Output the unideal image without spurs (UIWS) with the boundaries of untrue
shadowy regions
for lower shadowy region, where ySA2
< N is the y coordinate

for SA2 representing the starting point for the second upper
untrue region; ySB2

< N is the y coordinate for SB2 represent-
ing the starting point for the second lower untrue region.

C-8 The last y coordinate corresponding to the second shadowy
region boundary may be the last y coordinate of the unideal
IWS, or the corresponding y coordinate of PA2 or PB2 which
belongs to the border of the unideal IWS. Mathematically,
the last y coordinate is given by
y ¼
N if PA2 – TA2;

yPA2
otherwise

(
ð15Þ
0

20
for upper shadowy region and
40

60

80
y ¼
N if PB2 – TB2

yPB2
otherwise

(
ð16Þ
0 50 100 150 200 250

Fig. 17. Sketch of the UIWS with the boundaries of untrue shadowy regions due to
CST 3 sketched in Fig. 10.
for lower shadowy region, where PA2, PB2, TA2, and TB2 are de-
scribed in the condition C-4; yPA2

is the y coordinate for PA2;
yPB2

is the y coordinate for PB2.

In summary, the coordinates to detect the boundaries of the un-
true shadowy regions given by the unideal IWS can be mathemat-
ically determined as follows:

(1) Coordinates of the first untrue shadowy region:�� �

lA1
¼ ðx; yÞ 2 Z2 0 < x 6 xat ; 0 < y 6 yTA1

f ðx; yÞ 2 UIWS

��� ð17Þ

for upper region and
�� �

lB1
¼ ðx; yÞ 2 Z2 xpt 6 x 6 M; 0 < y 6 yTB1

f ðx; yÞ 2 UIWS

��� ð18Þ

for lower region, where UIWS represents the unideal IWS
(pruned image); xat is the maximum x coordinate delimitating
the upper critical zone; xpt is the minimum x coordinate delim-
itating the lower critical zone; M is the total quantity of rows of
the UIWS; yTA1

is the y coordinate of the point defined by Eq.
(11); yTB1

is the y coordinate of the point defined by Eq. (12).

(2) Coordinates of the second untrue shadowy region:�� �
lA2
¼ ðx; yÞ 2 Z2 0 < x 6 xat; ySA2

6 y 6 N

f ðx; yÞ 2 UIWS

��� ð19Þ

for upper region and
�� �

lB2
¼ ðx; yÞ 2 Z2 xpt 6 x 6 M; ySB2

6 y 6 N

f ðx; yÞ 2 UIWS

��� ð20Þ

for lower region, where UIWS represents the unideal IWS
(pruned image); xat is the maximum coordinate delimitating
the upper critical zone; xpt is the minimum coordinate delim-
itating the lower critical zone; M is the total quantity of rows
of the UIWS; N is the total quantity of columns of the UIWS;
ySA2

is the y coordinate of the point defined by Eq. (13); ySB2
is

the y coordinate of the point defined by Eq. (14).
Table 2 presents the algorithm to provide the unideal IWS with
the boundaries of untrue shadowy regions due to the interruption
problem from CST 3. Fig. 17 presents the sketch of the unideal IWS
with the interrupted boundaries of untrue shadowy regions due to
CST 3 illustrated by the sketch of Fig. 10.

3.3.3.2. Step 2: Line segment finding. In this step, a line segment is
determined between two extreme points belonging to the inter-
rupted boundaries of the untrue shadowy regions detected above.
These extreme points are defined as follows:

� Local minimum points (PA1 and PA2) at which the x coordinate
assumes its minimum value for the boundaries of upper untrue
shadowy regions and of Fig. 15.

� Local maximum points (PB1 and PB2) at which the x coordinate
assumes its maximum value for the boundaries of lower untrue
shadowy regions and of Fig. 15.

Mathematically, the determination of the line segment between
two extreme points is as follows:

(1) For coordinates of local minimum points PA1 and PA2 at the
boundaries of upper regions and on the sketch of Fig. 15,
the respective minimum value of the x coordinate is deter-
mined as follows:

� min1ðxÞ – starting from the point SA1 and following the

boundary of upper shadowy region toward the point
TA1
lPA1
¼ fðx; yÞ 2 lA1

j ðx; yÞ ¼ ðxPA1 ; yPA1
Þg; ð21Þ

where lA1
is the first upper untrue shadowy region delim-

itated by Eq. (17); xPA1 ¼ min1ðxÞ; yPA1
is the corresponding

y coordinate for the point PA1 at the boundary of .
� min2ðxÞ – starting from the point SA2 and following the

boundary of upper shadowy region toward the point
TA2
lPA2
¼ fðx; yÞ 2 lA2

j ðx; yÞ ¼ ðxPA2 ; yPA2
Þg; ð22Þ

where lA2
is the second upper untrue shadowy region del-

imitated by Eq. (19); xPA2 ¼ min2ðxÞ; yPA2
is the corre-

sponding y coordinate for the point PA2 at the boundary
of .
(2) For coordinates of local maximum points PB1 and PB2 at the
boundaries of lower regions and on the sketch of Fig. 15,
the respective maximum value of the x coordinate is deter-
mined as follows:

� max1ðxÞ – starting from the point SB1 and following the

boundary of lower shadowy region toward the point
TB1
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lPB1
¼ fðx; yÞ 2 lB1

j ðx; yÞ ¼ ðxPB1 ; yPB1
Þg; ð23Þ

where lB1
is the first lower untrue shadowy region delim-

itated by Eq. (18); xPB1 ¼ max1ðxÞ; yPB1
is the correspond-

ing y coordinate for the point PB1 at the boundary of .
� max2ðxÞ – starting from the point SB2 and following the

boundary of lower shadowy region toward the point
TB2
m f

t the
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loc
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Ske
lPB2
¼ fðx; yÞ 2 lB2

j ðx; yÞ ¼ ðxPB2 ; yPB2
Þg; ð24Þ

where lB2
is the second lower untrue shadowy region del-

imitated by Eq. (20); xPB2 ¼ max2ðxÞ; yPB2
is the corre-

sponding y coordinate for the point PB2 at the boundary
of .
(3) Coordinates of the line segment:�8 9

rL ¼ ðx; yÞ 2 Z2

x ¼ m � ðy
 y1Þ þ x1

y1 6 y 6 y2

f ðx; yÞ 2 UIWS

������
><
>:

>=
>;; ð25Þ

where UIWS is the unideal IWS; m ¼ ðx2 
 x1Þ=ðy2 
 y1Þ;
x1 ¼ xPA1 (2 lPA1

from Eq. (21)) or xPB1 (2 lPB1
from Eq.

(23)); x2 ¼ xPA2 (2 lPA2
from Eq. (22)) or xPB2 (2 lPB2

from
Eq. (24)); y1 ¼ yPA1

(2 lPA1
from Eq. (21)) or yPB1

(2 lPB1
from

Eq. (23)); y2 ¼ yPA2
(2 lPA2

from Eq. (22)) or yPB2
(2 lPB2

from
Eq. (24)).
(4) Pruned image repaired by the line segment (repaired IWS
abbreviated as RIWS): �� �

RIWS ¼ UIWS

[
gðx; yÞ ¼

1 if ðx; yÞ 2 rL

0 otherwise
; ð26Þ

where UIWS is the unideal IWS; gðx; yÞ is a pixel from the
determined line segment; rL is from Eq. (25).
Table 4
Algorithm for lightening the critical shadows.

1: Input the degraded grayscale image
2: Get the binary version using Eq. (3)
Table 3 presents the algorithm to determine the line segments
delimitated by two extreme points at the interrupted boundaries
of the UIWS.

After applying this algorithm, the resulting line segments must
delimitate new true shadowy regions and of the repaired IWS
(RIWS) as shown in Fig. 16. Fig. 18 presents the sketch of the RIWS
or repairing the interrupted boundaries of the UIWS.

unideal image without spurs (UIWS) obtained from the algorithm
n Table 2
e the coordinates of local minimum points (PA1 and PA2 presented in

ng Eqs. (21) and (22)
al minimum points exist then calculate the coordinates of the line
limitated by these two points using Eq. (25)
e the coordinates of local maximum points (PB1 and PB2 presented in
g Eqs. (23) and (24)
al maximum points exist then calculate the coordinates of the line
limitated by these two points using Eq. (25)
rdinates of a line segment exist then replace the pixels corresponding
rdinates from the UIWS with the pixels from the line segment using

he RIWS as the repaired IWS

50 100 150 200 250

tch of the repaired IWS (RIWS) for locating CST 3 of the image in Fig. 10.
with the line segments correcting the interrupted boundaries of
the UIWS presented in Fig. 17.

3.4. Process 4: Lightening critical shadows

This process consists of lightening the critical shadowy regions
for CST 1, CST 2, and CST 3 located by the previous process. The pix-
el intensity of the shadow to be lightened is automatically calcu-
lated (Nomura et al., 2004) as the gray-level average (GLav) for
the background of a grayscale image IG:

GLav ¼
P

hðx; yÞ
NB

; ð27Þ

where hðx; yÞ ¼ ff ðx; yÞ 2 IG j f ðx; yÞ < thresholdg; NB is the total
quantity of background pixels.

The shadow lightening algorithm uses the boundaries of shad-
owy regions represented by the IWS or RIWS as input data. The
algorithm analyzes each pixel from the IWS or RIWS to detect
the starting, the ending, and all the coordinates of the boundary
that delimitates a shadowy region with the critical shadows. The
detected boundary must provide appropriate data to lighten the
eventual shadowy region. In this lightening process, a pixel within
the shadowy region is replaced with the above calculated gray-le-
vel average (GLav) intensity. Then, the new lightened pixels replace
the pixels from the critical shadows providing the preprocessed
grayscale images with the lightened shadows before an eventual
thresholding.

Table 4 presents the algorithm to lighten the shadowy regions
with the critical shadows on degraded grayscale images.

4. Experimental system

Fig. 19 shows the steps of an experimental system employing
the SL*L method for morphological preprocessing of raw degraded
3: Get the thickened version using Eq. (4)
4: Calculate the gray-level average (GLav) for the grayscale image using Eq. (27)
5: Get the IWS for CST 1 using the shadowy region given by Eq. (6)
6: Get the IWS for CST 2 considering the areas delimitated by Eq. (7) for upper
shadowy region and delimitated by Eq. (8) for lower shadowy region
7: Get the RIWS for CST 3 from the algorithm presented in Table 3
8: For each pruned image (IWS or RIWS) to locate each type of critical shadow
(CST 1, CST 2, or CST 3)

a: delimitate the shadowy region on the grayscale image
b: replace the pixel from this shadowy region with the above calculated GLav

9: Output the preprocessed grayscale image with the lightened critical shadows

EGAMIDELACSDNADECNAHNEEGAMIROLOCLANIGIRO

INTERMEDIATE BINARY IMAGE

SHADOW LIGHTENING 1

REPAIRED IMAGE WITHOUT SPURS

ENHANCED BINARY IMAGE
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1

2

3

4

5

6

7

8

9

Fig. 19. Main steps of the experimental system based on the SL*L method.
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grayscale images extracted from real photos. The steps of the
experimental system proceed as follows:

4.1. Step 1: Obtaining pre-enhanced grayscale images

In this step, the following functions are executed:

� Converting an original color image into a grayscale version.
� Standardizing the size of each grayscale image.
� Pre-enhancing the scaled grayscale image.

The details of these functions are described in our previous
work (Nomura et al., 2004). A resulting image of this step is shown
in Fig. 20.

4.2. Step 2: Obtaining an intermediate binary image

The binary image in Fig. 21 is the result of global thresholding
on the grayscale image in Fig. 20 with Otsu’s method. This binary
image is to detect the boundaries of shadowy regions for CST 1,
CST 2, and CST 3 of the degraded grayscale image.

4.3. Step 3: Obtaining a thickened image

The thickened image in Fig. 22 is obtained by applying the mor-
phological thickening algorithm to the image in Fig. 21. This thick-
ened image presents parasitic components which are not useful for
delimitating shadowy regions of the grayscale version.

4.4. Step 4: Obtaining the IWS for locating CST 1

The image in Fig. 20 shows a small CST 1 that corresponds to a
separation dash between letters and digits in a word photo. Eqs.
(28) and (29) define the critical zone where the shadowy region
should be located on the experimental images:

1
3

ncol < c <
2
3

ncol; ð28Þ
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Fig. 20. Grayscale version after standardizing the size and pre-enhancing the
original image in Fig. 2. An isolated critical shadow is located on the middle area.
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Fig. 21. Binary version after applying Otsu’s method to the image in Fig. 20.
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Fig. 22. Thickened version after applying the morphological thickening algorithm
to the image in Fig. 21.
where c is the index for the columns of the shadowy region, and ncol
is the total quantity of columns of the IWS.

In addition,

1
6

nrow 6 r 6
5
6

nrow; ð29Þ

where r is the index for the rows of the shadowy region, and nrow is
the total quantity of rows of the IWS.

By considering this critical zone, the adapted pruning algorithm
is applied to the image of Fig. 22. The IWS for locating the shadowy
region corresponding to CST 1 (separation dash) is presented in
Fig. 23. This IWS is used as input data to lighten the shadowy re-
gion that includes the separation dash as a critical shadow.

4.5. Step 5: Lightening the shadowy region for CST 1

In this step, the pixel intensities of the shadowy region which
includes CST 1 (separation dash) are replaced with the gray-level
average intensity of the image background.

The grayscale image in Fig. 24 is the result after lightening the
shadowy region for CST 1.

Fig. 25 presents the binary version (without the separation
dash) of the lightened grayscale image in Fig. 24.

4.6. Step 6: Obtaining the IWS for locating CST 2 and CST 3

Fig. 26 displays the thickened image after applying the thicken-
ing algorithm to the intermediate binary image in Fig. 25. The crit-
ical x coordinate was adopted as 50% of the total quantity of rows
dividing the image into upper and lower critical zones, that is,
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Fig. 23. Image without spurs (IWS) including the enclosing boundary of CST 1.
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Fig. 24. Grayscale image with the lightened shadowy region for CST 1.
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Fig. 25. Binary version of the image in Fig. 24 after processing CST 1.
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Fig. 26. Thickened version of the binary image in Fig. 25.
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Fig. 27. Pruned version after applying the morphological pruning algorithm to the
thickened image in Fig. 26.
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Fig. 28. Example of an overlapping shadowy region caused by the interrupted
boundary line (gray lines on the area B of the image in Fig. 27).
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Fig. 30. Preprocessed grayscale version after applying the shadow lightening
algorithm to the image in Fig. 24.
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Fig. 31. Binary version for the lightened image in Fig. 30. There is an isolated noise
still to be removed.
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Fig. 32. Intermediate IWS based on the image of Fig. 31 to locate the remaining
noise.
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Fig. 33. Final version of the enhanced binary image. The stop condition (no more
noise) of the method is satisfied.
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xat ¼ xpt ¼ 15. The IWS in Fig. 27 is the pruned version after apply-
ing the morphological pruning algorithm to the image in Fig. 26.

In this IWS, the two types of critical shadows are as follows:

� CST 2: The resulting noise is isolated, and this noise is located
around the lower border of the image in Fig. 27. The correspond-
ing boundary of the shadowy region for this noise is indicated by
the area C on the image of Fig. 27.

� CST 3: The corresponding binary noise in Fig. 25 is connected to
one or more characters. So, the boundaries are interrupted
resulting in untrue shadowy regions. The boundary interrup-
tions are automatically repaired by determining a line segment
that delimitates a new and correct shadowy region. An interrup-
tion is indicated by the area A, and another one is indicated by
the area B on the unideal IWS in Fig. 27. The interruption prob-
lem located at the area B causes an overlapping shadowy region
(grayscale part) as shown in the image of Fig. 28.

4.7. Step 7: Repairing the boundary line interruption

Fig. 29 presents the repaired version of the unideal IWS in
Fig. 27 after applying the algorithms presented in Tables 2 and 3.
The line segments, that repair the interruptions at the boundary
lines, provide correct shadowy regions of CST 3 as input data to
be lightened.

4.8. Step 8: Applying the algorithm to lighten shadows

The shadow lightening algorithm presented in Table 4 uses the
repaired IWS in Fig. 29 as reference data to lighten the shadowy re-
gions of the image in Fig. 24.

The resulting lightened version as the preprocessed grayscale
image is shown in Fig. 30.

The image in Fig. 31 corresponds to the binary version of the
lightened image in Fig. 30. We can verify in the image of Fig. 31
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Fig. 29. Repaired version of the unideal IWS in Fig. 27. The line segments (gray
color) repair the interruptions of the boundary lines and delimitate correct shadowy
regions to be lightened.
an isolated noise (superior zone) still to be removed. For locating
this remaining noise, Fig. 31’s image is input data to obtain another
IWS in Fig. 32.

In fact, the steps 2–8 are repeated until the IWS is not generated
more, that is, it does not exist valid IWS.

4.9. Step 9: Obtaining the enhanced binary image

Finally, we have the enhanced binary word image in Fig. 33. In
this step, the stop condition of the algorithm to lighten shadows is
satisfied (it does not exist valid IWS for critical shadows), that is,
there is no noise on the image of Fig. 33.

5. Experimental results

To evaluate the proposed preprocessing method (SL*L), a testing
set of 1194 raw degraded word images was extracted from data of
real photos automatically taken by unsophisticated cameras sub-
jected to non-controlled environmental conditions (weather, lumi-
nosity, smog, smear, movement).

Two sets of binary images were generated from these raw de-
graded word images data as follows:

� First set: By directly applying Otsu’s method to the grayscale
versions of raw degraded word images.
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Fig. 36. Sample III: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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� Second set: By applying the SL*L preprocessing method to the
grayscale versions of raw degraded word images and subse-
quently applying Otsu’s method to these preprocessed grayscale
images.

The generated binary images were used as input data to seg-
ment their relevant objects (letters or digits). As validating crite-
rion, the segmentation process was considered as correctly
performed if all the objects were properly extracted from the origi-
nal image and they matched the characters of this image in terms
of their positions as well as quantities.

Table 5 presents segmentation performances using the binary
versions (first set) of original degraded word images and the binary
ones (second set) of these degraded word images preprocessed by
the SL*L method as input data.

To inspect the effectiveness of the proposed preprocessing
method, comparisons of the thresholding results for some sample
data from the testing set of 1194 degraded word images are pre-
sented in Figs. 34–43. The listed images in each figure respectively
correspond to (a) the grayscale version of a raw degraded word im-
age, (b) the thresholding result applying only Otsu’s method to the
degraded word image, (c) the preprocessing result applying the
SL*L method to the degraded word image, and (d) the binary
Table 5
Segmentation performances for different sets of thresholding results from degraded
word images.

Thresholding results Testing
images

Segmented
images

Segmented
characters

First set (without
preprocessing)

1194 nonea nonea

Second set (with the SL*L
preprocessing)

1194 1010 7098

a It was not possible to correctly segment and extract relevant objects from this
set of binary images because of strong noise caused by critical shadows.
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Fig. 35. Sample II: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.

Fig. 37. Sample IV: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 34. Sample I: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 38. Sample V: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 39. Sample VI: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 40. Sample VII: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 41. Sample VIII: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 42. Sample IX: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 43. Sample X: (a) degraded word image; (b) thresholding result by Otsu’s
method; (c) preprocessed image by the SL*L method; (d) enhanced binary version
after applying Otsu’s method to the SL*L preprocessed image.
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Fig. 44. Segmentation results for sample I: (I-1) using the original degraded word image
input data.
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Fig. 45. Segmentation results for sample II: (II-1) using the original degraded word imag
input data.
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version after applying Otsu’s method to the grayscale image pre-
processed by the SL*L method. Figs. 34–38 present thresholding re-
sults using some samples of raw degraded word images extracted
from real photos automatically taken by unsophisticated imaging
systems installed along the roads of Uberlândia City in Brasil
(Nomura, 2002). The degraded word images of Figs. 39–41 were
extracted from the ICDAR 2003 Robust Reading Dataset (ICDAR,
2003) used to text locating and page segmentation competitions.
The degraded plate images of Figs. 42 and 43 were extracted from
the number plate photos available on the Montana Department of
Justice site (Montana Department of Justice, 2007).

Also, to confirm the essentialness of the SL*L preprocessing
method, Figs. 44–53 show the segmentation results inputting the
original degraded word images without preprocessing and de-
graded word ones preprocessed by the SL*L method for samples
I–X. The implemented segmentation process was based on the
adaptive morphological approach (Nomura et al., 2005) to segment
characters from degraded images.

Furthermore, Table 6 shows the recognition results applying a
state-of-the-art OCR engine to the original grayscale images and
the binary images preprocessed by the SL*L presented in Figs.
34–43. As validating criterion, a character from the input image
was considered as correctly recognized if its corresponding OCR re-
sult found the same code and position at the original image. In Ta-
ble 6, the recognition rate was calculated by dividing the number
of recognized characters by the total number of characters.

6. Discussion

In experiments for quantitative evaluation, using the first set of
1194 binary images generated by directly applying Otsu’s method
to the degraded images, the segmentation engine was not able to
correctly segment and extract their relevant objects because of
strong noise caused by critical shadows. On the other hand, using
the second set of 1194 binary images enhanced by applying the
SL*L preprocessing method to the degraded images before thres-
holding, the segmentation engine was able to correctly segment
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Fig. 46. Segmentation results for sample III: (III-1) using the original degraded word image as input data; (III-2) using the grayscale image preprocessed by the SL*L method as
input data.
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Fig. 47. Segmentation results for sample IV: (IV-1) using the original degraded word image as input data; (IV-2) using the grayscale image preprocessed by the SL*L method
as input data.
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Fig. 48. Segmentation results for sample V: (V-1) using the original degraded word image as input data; (V-2) using the grayscale image preprocessed by the SL*L method as
input data.
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Fig. 49. Segmentation results for sample VI: (VI-1) using the original degraded
word image as input data; (VI-2) using the grayscale image preprocessed by the
SL*L method as input data.

742 S. Nomura et al. / Pattern Recognition Letters 30 (2009) 729–744
and extract 7098 objects (characters) from 1010 binary versions of
the testing set.

This segmentation performance shows that the SL*L preprocess-
ing method was essential to generate enhanced binary images as
appropriate input data.

The thresholding results in Figs. 34–43 show that Otsu’s meth-
od applied to the degraded word image produced inappropriate
noise due to the critical shadows. Whereas this noise was com-
pletely removed from binary versions after applying the SL*L pre-
processing method to the degraded word images even using
Otsu’s method as the simplest thresholding method. A simple vi-
sual comparison between (b) and (d) thresholding results of Figs.
34–43 is practically enough to verify that the SL*L preprocessing
method significantly contributed to remove noise and provide rel-
evant features of characters from binary images.

Also, in Figs. 44–53 can be verified that the segmentation pro-
cess was not able to correctly segment the binary characters of ori-
ginal degraded images thresholded by Otsu’s method without
preprocessing. However, it is verified that the characters of word
images preprocessed by the SL*L method were adequately seg-
mented according to the validating criterion for segmentation (all
the extracted segments match the characters from the original
word image regarding their positions and quantities).

In Table 6, the recognition rates by applying a state-of-the-art
OCR engine to the images preprocessed by the SL*L method were
equal or far higher than the rates by applying this OCR engine to
the original degraded images. From the total number of 72 charac-
ters to be recognized, the OCR engine was able to recognize 47
characters using the preprocessed images and only 18 ones using
the original degraded images as input data. In other words, the
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Fig. 50. Segmentation results for sample VII: (VII-1) using the original degraded word image as input data; (VII-2) using the grayscale image preprocessed by the SL*L method
as input data.
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Fig. 51. Segmentation results for sample VIII: (VIII-1) using the original degraded word image as input data; (VIII-2) using the grayscale image preprocessed by the SL*L
method as input data.
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Fig. 52. Segmentation results for sample IX: (IX-1) using the original degraded word image as input data; (IX-2) using the grayscale image preprocessed by the SL*L method
as input data.
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Fig. 53. Segmentation results for sample X: (X-1) using the original degraded word image as input data; (X-2) using the grayscale image preprocessed by the SL*L method as
input data.
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recognition rate increased 40% due to the SL*L method application.
This increase is due to the high quality binary images provided
by the SL*L preprocessing method and required by most commer-
cially available OCR engines to work in real-time processing
conditions.

7. Conclusion

A novel morphological method called Shadow Location and
Lightening (SL*L) was proposed to preprocess raw degraded word
images. In this method, powerful mathematical morphology oper-
ations were taken advantage to locate and lighten the critical shad-
ows as the key problem that causes noise on thresholding results.
We implemented the SL*L method on an experimental system to
preprocess raw degraded word images and obtain enhanced binary
versions without noise. Experimental evaluation confirmed that
the preprocessing of raw degraded word images by the SL*L meth-
od was crucial and useful to provide more enhanced binary ver-
sions than the simple application of widely known thresholding
methods. Otsu’s method application to the degraded word images



Table 6
Comparison of recognition results applying different input images to a state-of-the-
art OCR engine.

Without preprocessing With the SL*L preprocessing

Input image OCR result Rate Input image OCR result Rate

I Fig. 34a 6RA�6Q:lz2 0 Fig. 34d GRA6012 1.00
II Fig. 35a 9:IFFa’fis6 0 Fig. 35d GNF”6e 0.57
III Fig. 36a t1MF6ses 0 Fig. 36d GEF66e6 0.57
IV Fig. 37a GLS�gue 0.43 Fig. 37d GLS97S1 0.86
V Fig. 38a 1.3D�1{_7s 0 Fig. 38d b=v167’ 0.43
VI Fig. 39a TESCO 1.00 Fig. 39d TESCO 1.00
VII Fig. 40a VALUE 1.00 Fig. 40d VALUE 1.00
VIII Fig. 41a DANCE 1.00 Fig. 41d DANCE 1.00
IX Fig. 42a 2390 0 Fig. 42d v2380 1.00
X Fig. 43a 00�aooum 0 Fig. 43d 00000000 1.00
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preprocessed by the SL*L method was enough to improve the
quality of binary versions. We concluded that the SL*L method
can produce appropriate thresholding results with useful features
of characters while reducing the effect of noise, that is, the goal
was achieved to solve the non-linear problem caused by critical
shadows on degraded word images. Furthermore, the SL*L method
provided a better utilization of significant degraded word images
to be fed as input data to subsequent segmentation and recognition
processes. These degraded images had to be discarded due to
excessive noise and poor quality features of their binary versions
generated by conventional thresholding methods without the
SL*L preprocessing application. The SL*L method is expected to
contribute to preprocessing and utilization of vital degraded word
images for industrial-like environment systems represented by
most commercially available OCR-based applications.
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