
The Power of Software-defined Networking: Line-rate
Content-based Routing Using OpenFlow

Boris Koldehofe, Frank Dürr, Muhammad Adnan Tariq, Kurt Rothermel
Institute of Parallel and Distributed Systems

University of Stuttgart
〈firstname.lastname〉@ipvs.uni-stuttgart.de

ABSTRACT
A lot of research effort has been invested to support efficient content-
based routing. Nevertheless, practitioners often fall back to far less
expressive communication paradigms like multicast groups. The
benefits of content-based routing in minimizing bandwidth con-
sumption are often rendered useless by simpler communication pa-
radigms that rely on line-rate processing of data packets at the
switches of the network providers. Contrary content-based rout-
ing protocols face the inherent overhead in matching the content of
events against subscriptions leading to far lower throughput rates
and higher end-to-end delays. However, recent trends in network-
ing such as software defined networking in combination with net-
work virtualization have tremendous potential to change the pic-
ture. In our opinion this will significantly increase acceptance of
sophisticated middleware like content-based routing in the future.
To support our claims we outline in this paper a reference architec-
ture that may be used to build middleware for Future Internet appli-
cations. Furthermore, we provide a solution for realizing content-
based routing at line-rate relying on this reference architecture and
illustrate research problems that need to be addressed.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks;
C.2.4 [Distributed Systems]: Distributed applications[2cm]; D.2.11
[Software Architectures]: Data abstraction

Keywords
Content-Based Routing, Publish/Subscribe, Software Defined Net-
working, Network Virtualization

1. INTRODUCTION
Content-based routing as provided by publish/subscribe (pub/sub)
systems has evolved as a key paradigm for interactions between
loosely coupled application components (content publishers and
subscribers). The basic idea of content-based routing is to utilize
the diversity of information exchanged between application compo-
nents to increase the efficiency of forwarding. Using content-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG ’12 December 3-7, 2012, Montreal, Canada
Copyright 2012 ACM 978-1-4503-1607-1/12/12 ...$15.00.

forwarding rules (also called content filters) installed on content-
based routers (also termed brokers), bandwidth-efficiency is in-
creased by only forwarding content to the subset of subscribers who
are actually interested in the published content.

Many middleware implementations for content-based pub/sub
have been developed over the last decade (e.g., [15, 4, 14, 8, 3, 20,
21]). These approaches have proven to efficiently support content-
based routing between a large number of distributed application
components. However, implemented on the application layer, their
performance is still far behind the performance of communication
protocols implemented on the network layer w.r.t. throughput, end-
to-end latency, and bandwidth efficiency. A standard multilayer
switch or hardware router can forward packets at line-rate achiev-
ing data rates of 10 Gbps and more using dedicated hardware such
as TCAM memory. Moreover, they allow for switching delays of
only few microseconds. Finally, routing on the network layer is
more bandwidth efficient since it avoids sending the same informa-
tion over the same physical link multiple times, in contrast to an
overlay network where multiple logical links might share the same
physical link.

Therefore, it would be highly attractive to implement content-
based routing directly on the network layer. However, since changes
to existing standard network protocols and hardware seemed to
be unrealistic (as the slow support of the highly anticipated IPv6
standard shows), current research refrains from network layer im-
plementations, and instead tries to improve application layer ap-
proaches along several dimensions: 1) inferring the underlay topol-
ogy from the overlay topology [9, 12, 6], 2) specific hardware al-
lowing for efficient matching of advertisement and subscriptions
on network brokers [18], and 3) reducing the expressiveness of
content-routing to topic-based pub/sub [10].

Note, inferring the underlay topology using latency spaces as
proposed, for instance, by Vivaldi [6], comes at a significant cost.
Despite this effort, it is still hard to accurately infer advanced link
state information such as the current link utilization based on obser-
vations on end systems. Moreover, relying on dedicated hardware
for matching dramatically reduces the scope to which such a mid-
dleware can be deployed. Therefore, it seems reasonable to sac-
rifice the expressiveness of content-based pub/sub if line rate for-
warding becomes the major requirement. For instance, LIPSIN [10]
proposes topic-based pub/sub utilizing IP multicast for line-rate
forwarding.

Instead, we argue that the basic assumption of all of these ap-
proaches, which assume that changes to network protocols are prac-
tically infeasible, has changed significantly with the advent of new
networking technologies, namely, software-defined networking and
network virtualization. These trends are going to dramatically im-
pact how to configure pub/sub middleware in the future.

adnan
Text Box
© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in proceedings of 7th MW4NG Workshop of the 13th International Middleware Conference, pages 1-6, Montreal, Canada, December 2012.

Software-defined Networking. The adoption of the OpenFlow
standard [5] in state of the art switches supports a decoupling of the
control plane and data (forwarding) plane. In future middleware, it
will be possible to configure the forwarding tables of switches di-
rectly and “on-the-fly” using a controller process implemented in
software running on an external host. Currently, this technology is
already heavily used to configure communication flows in datacen-
ters or campus networks in order to optimize network throughput
[2], or to configure virtual networks [13]. The OpenFlow standard
also gained strong support from network operators and hardware
manufactures. Companies such as IBM, NEC, and HP already of-
fer first OpenFlow switches. The example of Google, which has
adopted OpenFlow throughout their networks recently, shows that
software-defined networking is ready to be used in productive sys-
tems [23].

Network virtualization. While it seems highly unlikely that an
Internet service provider (ISP) will provide applications direct ac-
cess to its routers and switches, the advent of virtual networking
will allow applications to access and configure a network of vir-
tual routers that in the future even will spread over multiple ISPs.
Software-defined networking using OpenFlow will also here be the
paradigm to flexibly configure the behavior of switches, which then
can be mapped to their physical counterparts without loss in perfor-
mance.

This paper we show that these trends will indeed allow for a gen-
eral purpose pub/sub middleware that results in comparable per-
formance to network layer implementations, i.e., pub/sub systems
supporting line-rate message forwarding, microseconds switching
delay, and close to optimal bandwidth efficiency not only with re-
spect to the overlay network but also the underlay network topol-
ogy. To this end, we present a reference architecture allowing for
the embedding of more sophisticated complex middleware solu-
tions – in particular, content-based pub/sub – by utilizing the Open-
Flow specification. Finally, we conclude with research problems
we consider worthwhile pursuing in the future.

2. REFERENCE ARCHITECTURE
Figure 1 illustrates the reference architecture we envision for the
configuration of group communication middleware in the Future
Internet, and on which we will rely in the remainder of the paper to
establish line-rate content-based routing. In this architecture, net-
work virtualization serves us as a basic abstraction to allocate a net-
work of virtual switches1. While state of the art approaches already
allow to allocate virtual networks of a single ISP [19], we will as-
sume in line with current research initiatives such as [1, 17] that an
application can allocate a virtual network over multiple ISPs. For
instance, in Figure 1 the virtual network consists of four switches
from three different ISPs. This way it will be possible to provide
access points very close to subscribers and publishers and estab-
lish routes within the network that provide predictable end-to-end
connectivity. The ISPs will provide the application with the com-
munication characteristics of the links connecting virtual switches
as well as a specification of the capabilities of the switches.

Once the middleware has selected an appropriate network of
switches and connected individual application components to the
switches (cf. virtual network configuration and access control in
Figure 1), we still need an abstraction to configure the virtual switc-
hes (in particular, their forwarding tables) minimizing bandwidth

1In this work, we use the term “switch” to refer to multilayer
switches that can base forwarding decisions on layer 2 to layer 4
header information such as MAC addresses, IP addresses, and port
numbers

Application Components

Internet
Service
Provider

Content Routing Middleware

Virtual Network
Configuration

#switches,
capabilities of
resources

Flow Table
Configuration
rouƟng overlay →

flow entries

Control Message Handler
advertisements, subscriptions

Ro
ut
in
g
O
ve
rla

y

O
pt
im

iza
tio

n
m
in
im

ize
s
fa
lse

 p
os
iti
ve
s

ISP A

Access Control
to virtual switches

App1 App2 AppN

publish, subscribe, advertise

Virtual Network

S P

P

SP
P

SS

P
Publisher

S

Subscriber Virtual Switch

of
fe
r v

irt
ua
l n
et
w
or
k

re
so
ur
ce
s

…

ISP B

ISP C

Figure 1: Architecture for configuration of virtual networks.

consumption inside the virtual network, and to map the configura-
tion to the ISP’s physical infrastructure (cf. flow table configuration
in Figure 1). It will be crucial that the mapping of virtualized re-
sources to the physical resources can happen without sacrificing the
performance of the switches. In our reference architecture, we rely
on software-defined networking as the abstraction to configure the
virtual switches. The basic idea behind OpenFlow is to let a con-
troller directly modify the forwarding table (also called flow tables)
of a switch, i.e., to define the outgoing ports for messages of a cer-
tain communication flow. Examples of flows are a TCP connection
(defined by source/destination IP addresses and source/destination
port numbers), packets from a specific MAC address, or packets
labeled with a certain VLAN tag. The definition of flow table en-
tries can either be done proactively a priori to receiving packets of
a certain flow, or reactively when the switch receives a packet of
an unknown flow without matching flow table entry for the first
time. After the flow table entry has been configured, forwarding
happens at line-rate using dedicated hardware for matching flow
table entries – typically, a hardware switch can match the header
information of an incoming packet to all of its flow table entries
(up to 150,000 possible entries) in one clock cycle using ternary
content-addressable memory (TCAM).

The controller, which configures flow table entries, is typically
a process hosted on an external machine connected to the switches
via a control network (either implemented as a separate network
or “in-band” via the data network). Any data packet for which a
switch has no predefined flow configured will be forwarded to the
controller. The logic of the controller is in our case defined by
the content-routing middleware, i.e., all control messages are re-
ceived by the control message handler, and changes to the content-
based routing overlay are computed accordingly by the content-
routing overlay optimization component. The flow table configura-
tion component then implements those changes by reconfiguration
of appropriate switches of the virtual network. The component de-
cides whether and on which of the switches a new flow table entry
needs to be established or where changes to the current flow tables
are required. This way a decoupling between control and data plane
is achieved, i.e., for each established flow, packets are forwarded
at line-rate and only unknown packets will trigger a reconfiguration
of the network.

Since in our reference architecture the middleware performs the
reconfiguration of virtual switches, a further mapping stage of flow
tables from virtual switches to physical switches of the ISP is needed.

ISPs in addition need to map each flow entry to all physical switches
that establish a virtual link. For realizing the virtual link abstrac-
tion, the ISPs again can rely on software-defined networking such
as OpenFlow. Hence, we assume that processing of flows specified
for a virtual link is efficiently performed in hardware.

For the rest of this paper, we assume the availability of at least
the OpenFlow standard 1.2 to configure switches (in particular, the
functionality to define forwarding actions for groups, i.e., multiple
output ports, and IPv6 address support for flow definitions).

3. OPENFLOW-BASED PUB/SUB
In the following sections, we will first describe the basic approach
to enable content-based routing using the OpenFlow architecture
and afterwards present two concrete realizations of a content-based
pub/sub system.

3.1 Overview of Forwarding
In line with our reference architecture the control component of
OpenFlow will forward all pub/sub relevant control traffic to the
pub/sub middleware’s control handler. In particular, the control
traffic comprises all subscriptions indicating the interest of a sub-
scriber in events and all advertisements indicating the intention of
a publisher to send events with certain attributes. This way the
pub/sub middleware establishes i) a global view on the subscribers
(in more detail, their location in the network represented by the
switches they are attached to) and their subscriptions, ii) a global
view on publishers, their network locations, and the events they
might send.

Based on the global view on subscriptions and advertisements,
routing overlay optimization and flow table configuration identify
and proactively install suitable flow table entries on the switches.
To this end, content attributes need to be mapped to flow identifiers
that can be interpreted by switches for forwarding. Candidates of
such identifiers are the header information of standard layer 2 to
layer 4 headers (10 tuple of header fields as defined by OpenFlow)
since these are the fields that can be interpreted by existing mul-
tilayer switches. Using other address information for switching
would require modifications to hardware switches, which are un-
likely in the near future until pub/sub gains the same importance as
protocols like TCP/IP or UDP/IP. Since the IP destination address
field is the common field for addressing end systems in a routed net-
work, we decided to use the destination IP address field for defining
pub/sub flows. Moreover, we chose IPv6 as target protocol because
of the restricted address space of IPv4.

As a constraint, we have to make sure that the flows defined
for pub/sub applications do not interfere with other communica-
tion flows such as TCP connections, or IP multicast communication
flows sharing the same switches. Since pub/sub is a specific kind
of group communication, we decided to use IP addresses from the
IP multicast address range, in more detail, IPv6 multicast addresses
with global scope (address prefix ff0e::/8) since we aim for a
global pub/sub service spanning several ISPs.2 Therefore, we have
to make sure that other IP multicast flows are not using the same
addresses as pub/sub flows. Hence, we have to allocate a certain ad-
dress range from the global IPv6 multicast addresses for pub/sub.

The number of addresses in this range (denoted as N) is an im-
portant parameter influencing the performance of our pub/sub mid-
dleware by controlling the granularity of the flows between pub-
lishers and subscribers. For instance, a larger N facilitates creation
2IPv6 addresses with local organizational scope could also be used,
for instance, if the pub/sub system is only to be deployed within a
datacenter or local network of one organization. As a drawback,
such addresses are not accessible outside the organization.

of a large number of flows, thereby saving network bandwidth us-
age by minimizing the forwarding of unnecessary events on each
flow. Considering the huge address space of IPv6, allocating a
larger portion for pub/sub (for instance, a prefix of 28 bits, i.e., 100
bit pub/sub addresses) seems to be possible leaving enough space
for all other (current and future) IP multicast applications. How-
ever, such an allocation is subject to standardization and beyond a
technical discussion.

One address from the range (denoted as IPfix) is fixed to be
used to identify new subscriptions and advertisements in the system
for building the global view on subscriptions and advertisements
mentioned above, while the rest of the addresses are used to define
flows.

Published events are matched to installed flows according to their
attributes and forwarded based on the flow address (IPv6 multicast
address field). Since forwarding is solely based on flows addresses,
it is performed by switches in hardware at line-rate and microsec-
onds delay per switching operation. Note, since flow table entries
are installed proactively according to advertisements and subscrip-
tions, event messages will not require any additional handling by
the controller. This way any additional delays and reduction in
throughput are avoided.

3.2 Pub/Sub Operations
As the next step we detail further how subscriptions and adver-
tisements are performed. An application component specifies its
interest in receiving certain information by sending a subscription
sub1 to the OpenFlow switch to which the component is connected.
The header of the subscription message contains IPfix as a desti-
nation address. This destination address is used to identify a new
subscription that has to be forwarded to the control handler to build
the mentioned global view on subscriptions. We simply achieve the
forwarding to the control handler by not installing a flow table entry
for the address IPfix. Since the default action of OpenFlow is to
forward every packet without matching flow table entry to the con-
troller, the controller receives the subscription automatically with-
out the need for an extra flow table entry.

When a new subscription sub1 is received by the control handler,
the routing overlay optimization algorithm is executed to determine
the flows for the new subscription. In general, the subscriber will
be connected to all flows that cover the subscription sub1 (i.e., all
flows that forward events matching sub1). This possibly requires
the creation of new outgoing ports to existing flow table entries by
adding or updating actions (entries) in the flow tables of one or mul-
tiple OpenFlow switches. This is performed by the flow table con-
figuration component by sending Flow-mod messages to the cor-
responding switches. Moreover, the routing overlay optimization
algorithm may instruct the flow table configuration to create new
flows (or remove existing flows) to optimize event routing from
publishers to subscribers.

Similarly, an application component expresses its intent to pub-
lish a particular kind of information by issuing an advertisement to
the OpenFlow switch. The advertisement is also forwarded to the
controller using the address IPfix. By following the same chain of
steps new flows will be created or existing flows are updated ensur-
ing each subscriber will be covered by the resulting set of flows.

In the following, we will describe in more detail two possible
realization of a content-based pub/sub system using our OpenFlow
architecture, namely, channelization and in-network filtering.

3.3 Channelization
An important concern in a content-based pub/sub system is to avoid
forwarding of events to the paths in the network where only non-

R1

R2

R4

R6 R3

R5

P

Adv: {Temp=[5,16]}

S1 S2

S3

Flow id: FF7E:0140:2000:*

S3 {Temp = [0,10]}

{Temp = [4,10]}

 {Temp = [11,18]}

{Temp = [14,20]}

Flow id: FF7E:0140:2001:*

Figure 2: Channelization example.

matching subscriptions are connected. From this point of view,
channelization is one promising way to reduce the forwarding of
unnecessary events by mapping advertisements and subscriptions
to a limited set of channels such that the event dissemination within
each channel is very efficient w.r.t. the reduction of unnecessary
events. In the setting of our flow-based approach, channels are at-
tractive because they can be easily mapped to flows as shown be-
low.

Typically, two approaches can be used to create channels. The
first approach uses absolute (structural) similarity between the sub-
scriptions and the advertisements (such as the area occupied by the
intersection of two subscriptions) to calculate their closeness to be
placed in the same channel. This approach restricts the content-
based model to predefined attributes with ordered data types and
known domain (i.e., numeric attributes).

An alternative approach, which often yields more efficient chan-
nelization and places no more restrictions on the content-based
model, is to rely on the event traffic published/matched by the ad-
vertisements/subscriptions in the recent past. However, in addition
to control messages dealing with advertisements and subscriptions,
the routing overlay optimization requires information on recently
published events that in this case needs to be collected in the con-
trol network. In this case, each subscriber/publisher periodically
forwards the list of recently received events to IPfix which then
will be used by the routing overlay optimization algorithm to recal-
culate and install new channels. Alternatively, this information can
also be asynchronously collected from the per-flow statistics (flow
packet counter) maintained at each OpenFlow switch by the flow
table configuration component.

The routing overlay optimization algorithm will in both cases
rely on channelization methods like spectral clustering [22] to cre-
ate clusters of subscribers and publishers. Each channel is treated
as a separate flow and is assigned a unique address from the range
of IPv6 multicast addresses reserved by the application (cf. Fig-
ure 2). The maximum number of channels is limited by the range
of reserved addresses. However, the runtime number of channels
in the system depends on the channelization algorithm and can be
dynamically adjusted according to the subscriptions and the adver-
tisements (as well as the event traffic in case of second approach) in
the system. Our initial results show for uniform as well as zipfian
distributions –modeling the diversity of interest of subscribers –
up to 100 channels are sufficient to perform efficient content-based

ε

d1= Temperature

d
2
=T

im
e

L2 =0
0 100

0

100

0 1

0 100
0

100

01

00 10

11

50

50

0
0

100

010

50

50

000

011

001 100 101

110 111

25 75

d1= Temperature

d1= Temperature d1= Temperature

d
2
=T

im
e

d
2
=T

im
e

d
2
=T

im
e

100

U1 =100 L1 =0

U2=100

 50

Adv ={ Temperature= [50,75], Time= [0,100] }

Figure 3: Decomposition of 2-dimensional space.

filtering in pub/sub systems.
Once the channels are calculated, the routing overlay optimiza-

tion calculates for each channel a minimum spanning tree which
overall results in minimum bandwidth consumption. The flow table
configuration component installs a separate flow for each channel
by adding/updating actions in flow table entries of the OpenFlow
switches in the network. In addition, it is necessary to send to each
publisher the flow id (i.e., IPv6 address) of all channels to which
it is supposed to forward its publications along with the aggregated
subscription of those channels. This step is necessary because a
publisher may publish an event that matches subscriptions belong-
ing to multiple different channels. If the channel information is not
available at the publishers, then each event should initially be sent
to the controller to determine the matching flows (channels), which
significantly increases the bandwidth utilization of the link to the
controller as well as effects the line-rate forwarding of events.

3.4 In-network Filtering
The channelization approach does not allow for the possibility to
prune unnecessary messages within each channel. An event for-
warded on a channel is always delivered to the subscribers (issuers)
of all the participant subscriptions. In this section, we present an
approach to facilitate the filtering (pruning) of events within the
switch network. First, we detail the method to decompose sub-
scriptions, advertisements, and events into a spatial representation.
Later, we describe how the spatial representation can be used to
perform in-network filtering of events in the network of switches.

3.4.1 Spatial Indexing
The content-based schema consisting of d attributes can be mod-
eled geometrically as a d-dimensional space (denoted as Ω) such
that each dimension represents an attribute. We employ spatial in-
dexing to divide the d-dimensional space into regular sub-spaces
that serve as enclosing approximations for subscriptions, advertise-
ments, and events [21]. As illustrated in Figure 3, any subspace can
be identified by a binary string called a dz-expression. In particular,
dz-expressions fulfill following properties:

1. The shorter the dz-expression the larger is the corresponding
sub-space in Ω.

2. A sub-space represented by dz-expression dz1 is covered by
the sub-space represented by dz2, iff dz2 is a prefix of dz1.

The subscription/advertisement can be composed of several dz-
expressions. For instance, in Figure 3, the spatial representation

R1

R2

R4

R6 R3

R5

P Adv = 0

00* R5
01* R2

S1 Sub = 01

00* R6

01* S1

S2 Sub = 00

00* S2

S3 Sub = 01

01* R3
01* S3
010* R4

00*

00*

01*

01*

S3 Sub = 010

010* S4

010*

Event = 0001

Figure 4: In-network filtering example.

of advertisement Adv = {Temperature = [50, 75] ∧ T ime =
[0, 100]} requires two dz-expressions {100, 110}. Nevertheless,
an event is represented by the smallest (finest resolution) sub-space
that encloses the value represented by it.

3.4.2 Event Filtering
The content routing optimization uses the covering (or contain-

ment) relation between the spatial representations of newly arrived
and the existing advertisements/subscriptions to set up flows be-
tween publishers and subscribers. In particular, each flow is asso-
ciated with a sub-space and is identified by the corresponding dz.
On the arrival of new advertisement Adv1, the routing optimization
algorithm checks for the containment relation between the dz of
Adv1 and the dz associated with the existing flows3, and performs
one of the three actions: (1) If the dz of Adv1 is covered, then the
newly arrived advertisement is mapped to the existing flows. For
instance, a newly arrived advertisement 0 is mapped to the existing
flows 00 and 01. (2) If dz of an existing flow is covered, then the
existing flow is divided into sub flows. For instance, existing flow
0 is divided into sub flows 00 and 01 on the arrival of an advertise-
ment 00. (3) If no containment relation exists, then a separate flow
is created for the newly arrived advertisement.

Similarly, the arrival of a new subscription may divide an ex-
isting flow into sub flows. For instance, in Figure 4, the arrival of
sub = {00} divides the flow 0 into two sub-flows {00∗, 01∗} (note
that only few least significant bits from the bits representing the
range of reserved IPv6 addresses are shown to reduce complexity).
The symbol ∗ is used to represent standard wildcard/masking op-
erations, which are supported by hardware switches for matching
IP addresses using Class-less Interdomain Routing (CIDR). Such
wildcards are naturally supported by TCAM memory typically used
in switches to store “don’t care” values (∗) besides 0 and 1. There-
fore, an event (e.g., 0100) can be matched against the dz of the
flow (e.g., 01∗) in hardware by the switch during forwarding. The
creation of two sub flows reduces unnecessary events by limiting
the forwarding of events matching 01∗ to the OpenFlow switches
R5 and R6 as well as subscriber S2 in the example. Likewise,
the advent of subscription sub = {010} creates a new flow 010∗
to avoid forwarding of events matching 011∗ to the network path
connecting subscriber S3.

3In case an advertisement is represented by multiple dz-
expressions, the covering relation is checked for each dz separately.

3.4.3 Discussion
It is worth noting that the total sub-spaces (created as a result of
spatial indexing) depend on the number of decompositions of the d-
dimensional space. Each decomposition step generates sub-spaces
with finer granularity, capable of representing subscriptions/adverti-
sements with higher accuracy. For instance, using the decomposi-
tion of Figure 3, a subscription sub1 = {Temperature = [0, 100]
∧T ime = [0, 25]} can be represented by the sub-spaces {000, 001,
100, 101}. These sub-spaces do not provide an accurate represen-
tation, and hence may match events that do not belong to the orig-
inal subscription (sub1) resulting in the dissemination of unneces-
sary events in the switch network. However, if another decomposi-
tion step is performed on dimension d2, then sub1 can be accurately
mapped by the newly generated sub-spaces, i.e., {0000, 0010,
1000, 1010}.

Clearly, fine grain sub-spaces are desirable as they avoid for-
warding of unnecessary events. However, the decomposition steps
needed to generate sub-spaces with finer granularity also increase
the length of the dz-expressions (representing those sub-spaces). In
practice, the length of dz-expression and hence the number of sub-
spaces are limited by the range of IPv6 multicast addresses reserved
by the application. In Section 3.1, we argued that reserving an ad-
dress range with 100 bits seems to be possible as it leaves sufficient
addresses to be used for other purposes.

An important research challenge in this direction is to develop
methods to lower the number of bits needed to perform efficient
in-network filtering of events. For instance, one promising solution
is to perform spatial indexing only on those dimensions that cor-
respond to more selective attributes (i.e., filtering on the attributes
results in less number of unnecessary messages). The attributes
for the spatial indexing can be dynamically selected by the con-
troller as a result of periodic collection of traffic statistics from the
OpenFlow switches. We envision the study of different methods to
perform efficient in-network filtering of events utilizing a smaller
number of bits as an ongoing future work.

4. CONCLUSION AND FUTURE WORK
In this paper, we have shown that software-defined networking pro-
vides a powerful abstraction to configure middleware – in particu-
lar, publish/subscribe middleware – for the Future Internet with the
potential to yield significant performance gains. While our concrete
future work will be on extending and evaluating the approaches to-
wards content-based routing, there is a number of interesting re-
search questions that are worthwhile to pursue by a larger research
community. Those comprise:

Minimizing flow table size. Typically, a switch only has up
to 150,000 flow table entries which are shared between all appli-
cations. In this paper, we have outlined two approaches that can
adjust the trade-off between the number of flow table entries and
bandwidth efficiency (number of false positives). However, further
research is required to find an optimal solution given a restricted
number of flow table entries.

Scalable controller. The controller has to perform computa-
tional complex tasks such as optimal route calculation (distribution
trees) or subscriber clustering. In particular, these tasks become
challenging in large-scale and highly dynamic systems with larger
topologies, many publishers and subscribers, high churn rates, dy-
namic link state, etc. Although a single controller might look like
a potential bottleneck at first sight, it could still be implemented
scalably by utilizing, for instance, the large resources of data cen-
ters (“the cloud”). This requires suitable algorithms that scale up to
many cores and scale out to multiple machines. Another possibility

to improve scalability is a distributed controller as described next.
Decentralized control and coordination. Although we assumed

a single logical controller in this paper, the control plane could be
distributed to several controllers to improve scalability and robust-
ness. However, this raises several questions: How many controllers
do we need and where to place them [7]? And how to coordinate
controllers in order to achieve a consistent and optimal behavior,
while letting each controller base its decisions on a local and/or ag-
gregated view? For instance, controllers could be organized hierar-
chically, or in a (flat) peer-to-peer topology, both requiring different
coordination concepts.

Correct operation and verification. Distributed protocols make
it hard to achieve correct operation such as loop-free forwarding or
constant reachability, in particular, during transitional phases like
the re-configuration of distribution trees. However, central control
and a globe view on the system – as used in this paper – facili-
tate the design of correct algorithms and ease the verification of the
running system as first approaches demonstrate [11, 16].

Quality of Service (QoS). Many applications such as network
control systems rely on QoS properties like a maximum end-to-
end delay. This requires the implementation of resource reserva-
tion mechanisms or scheduling algorithms for forwarding. Since
forwarding is done on the network layer, we can benefit from ex-
isting layer 3 protocols and the access to switches/routers – assum-
ing suitable interfaces for virtualized switches/routers –, which are
likely to outperform application layer approaches.

Virtual network abstractions. Providing a virtual network span-
ning resources from multiple providers is a problem that we did not
focus on in this paper. However, for achieving optimal performance
one question is how many and which physical switches and routers
should be exposed in the virtual network? In a multi-provider (ISP)
scenario, one might also be able to choose from switches of alter-
native providers based on advanced optimization metrics like mon-
etary costs.

5. REFERENCES
[1] B. Ahlgren, P. A. Aranda, P. Chemouil, S. Oueslati, L. M.

Correia, H. Karl, M. Söllner, and A. Welin. Content,
connectivity, and cloud: ingredients for the network of the
future. IEEE Communications Magazine, 49(7):62–70, 2011.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: dynamic flow scheduling for data center
networks. In Proceedings of the 7th USENIX conference on
Networked systems design and implementation (NSDI),
pages 19–19, 2010.

[3] J. A. Briones, B. Koldehofe, and K. Rothermel. SPINE :
Adaptive Publish/Subscribe for Wireless Mesh Networks.
Studia Informatika Universalis, 7(3):320–353, 2009.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[5] O. M. E. Committee. Software-defined Networking: The New
Norm for Networks. Open Networking Foundation, 2012.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. ACM SIGCOMM
Computer Communication Review, 34:15–26, 2004.

[7] B. Heller, R. Sherwood, and N. McKeown. The controller
placement problem. In Proceedings of the First Workshop on
Hot Topics in Software-defined Networks (HotSDN), pages
7–12, 2012.

[8] H.-A. Jacobsen, A. K. Y. Cheung, G. Li, B. Maniymaran,
V. Muthusamy, and R. S. Kazemzadeh. The PADRES

publish/subscribe system. In Principles and Applications of
Distributed Event-Based Systems, pages 164–205. 2010.

[9] X. Jin, W. Tu, and S. H. G. Chan. Scalable and efficient
end-to-end network topology inference. IEEE Transactions
on Parallel and Distributed Systems, 19(6):837–850, 2008.

[10] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander. LIPSIN: line speed publish/subscribe
inter-networking. In Proceedings of the ACM SIGCOMM
conference on Data communication, pages 195–206, 2009.

[11] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
VerfiFlow: Verifying network-wide invariants in real time. In
Proceedings of the First Workshop on Hot Topics in
Software-defined Networks (HotSDN), pages 49–54, 2012.

[12] M. Kwon and S. Fahmy. Path-aware overlay multicast.
Computer Networks, 47(1):23–45, 2005.

[13] J. Marias, E. Jacob, D. Sanchez, and Y. Demchenko. An
OpenFlow based network virtualization framework for the
cloud. In Proceedings of the IEEE Third International
Conference on Cloud Computing Technology and Science
(CloudCom), pages 672–678, 2011.

[14] G. Mühl. Large-Scale Content-Based Publish-Subscribe
Systems. PhD thesis, TU Darmstadt, November 2002.

[15] P. Pietzuch. Hermes: A Scalable Event-Based Middleware.
PhD thesis, University of Cambridge, Feb 2004.

[16] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proceedings
of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 323–334, 2012.

[17] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin,
I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Cáceres, M. Ben-Yehuda, W. Emmerich, and F. Galán. The
reservoir model and architecture for open federated cloud
computing. IBM Journal of Research and Development,
53(4):1–11, 2009.

[18] M. Sadoghi, H. Singh, and H.-A. Jacobsen. fpga-ToPSS:
line-speed event processing on fpgas. In Proceedings of the
5th ACM international conference on Distributed
event-based system (DEBS), pages 373–374, 2011.

[19] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann,
R. Bless, A. Greenhalgh, A. Wundsam, M. Kind,
O. Maennel, and L. Mathy. Network virtualization
architecture: proposal and initial prototype. In Proceedings
of the 1st ACM workshop on Virtualized infrastructure
systems and architectures (VISA ’09), 2009.

[20] A. Tariq, B. Koldehofe, G. Koch, and K. Rothermel.
Providing probabilistic latency bounds for dynamic
publish/subscribe systems. In Proceedings of the 16th
ITG/GI Conference on Kommunikation in Verteilten
Systemen (KiVS), pages 155–166, 2009.

[21] M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and
K. Rothermel. Meeting subscriber-defined QoS constraints in
publish/subscribe systems. Concurrency and Computation:
Practice and Experience, 23(11):2140–2153, 2011.

[22] M. A. Tariq, B. Koldehofe, G. G. Koch, and K. Rothermel.
Distributed spectral cluster management: A method for
building dynamic publish/subscribe systems. In Proceedings
of the 6th ACM International Conference on Distributed
Event-Based Systems (DEBS), pages 213–224, 2012.

[23] Urs Hölzle. OpenFlow @ Google. Open Networking
Summit, 2012.

