
PostgreSQL 7.2 User’s Guide

The PostgreSQL Global Development Group



PostgreSQL 7.2 User’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.



Table of Contents
Preface.......................................................................................................................................................ix

1. What is PostgreSQL?....................................................................................................................ix
2. A Short History of PostgreSQL....................................................................................................ix

2.1. The Berkeley POSTGRES Project....................................................................................x
2.2. Postgres95..........................................................................................................................x
2.3. PostgreSQL.......................................................................................................................xi

3. Documentation Resources........................................................................................................... xii
4. Terminology and Notation......................................................................................................... xiii
5. Bug Reporting Guidelines.......................................................................................................... xiii

5.1. Identifying Bugs.............................................................................................................xiv
5.2. What to report.................................................................................................................xiv
5.3. Where to report bugs......................................................................................................xvi

6. Y2K Statement.......................................................................................................................... xvii

1. SQL Syntax.............................................................................................................................................1

1.1. Lexical Structure.........................................................................................................................1
1.1.1. Identifiers and Key Words..............................................................................................1
1.1.2. Constants........................................................................................................................2

1.1.2.1. String Constants.................................................................................................2
1.1.2.2. Bit-String Constants...........................................................................................3
1.1.2.3. Integer Constants...............................................................................................3
1.1.2.4. Floating-Point Constants....................................................................................3
1.1.2.5. Constants of Other Types...................................................................................4
1.1.2.6. Array constants..................................................................................................4

1.1.3. Operators........................................................................................................................5
1.1.4. Special Characters..........................................................................................................5
1.1.5. Comments.......................................................................................................................6

1.2. Columns......................................................................................................................................6
1.3. Value Expressions.......................................................................................................................8

1.3.1. Column References........................................................................................................8
1.3.2. Positional Parameters.....................................................................................................9
1.3.3. Operator Invocations......................................................................................................9
1.3.4. Function Calls.................................................................................................................9
1.3.5. Aggregate Expressions...................................................................................................9
1.3.6. Type Casts.....................................................................................................................10
1.3.7. Scalar Subqueries.........................................................................................................11

1.4. Lexical Precedence....................................................................................................................11

2. Queries..................................................................................................................................................13

2.1. Overview...................................................................................................................................13
2.2. Table Expressions......................................................................................................................13

2.2.1. FROM clause................................................................................................................14
2.2.1.1. Joined Tables....................................................................................................14
2.2.1.2. Subqueries........................................................................................................15
2.2.1.3. Table and Column Aliases...............................................................................16
2.2.1.4. Examples..........................................................................................................17

2.2.2. WHERE clause.............................................................................................................17

iii



2.2.3. GROUP BY and HAVING clauses...............................................................................18
2.3. Select Lists................................................................................................................................19

2.3.1. Column Labels..............................................................................................................20
2.3.2. DISTINCT....................................................................................................................20

2.4. Combining Queries...................................................................................................................21
2.5. Sorting Rows.............................................................................................................................21
2.6. LIMIT and OFFSET.................................................................................................................22

3. Data Types............................................................................................................................................24

3.1. Numeric Types..........................................................................................................................25
3.1.1. The Integer Types.........................................................................................................26
3.1.2. Arbitrary Precision Numbers........................................................................................27
3.1.3. Floating-Point Types.....................................................................................................27
3.1.4. The Serial Types...........................................................................................................28

3.2. Monetary Type..........................................................................................................................28
3.3. Character Types.........................................................................................................................29
3.4. Binary Strings...........................................................................................................................31
3.5. Date/Time Types.......................................................................................................................33

3.5.1. Date/Time Input............................................................................................................34
3.5.1.1.date .................................................................................................................34
3.5.1.2.time [ ( p ) ] [ without time zone ] ............................................35
3.5.1.3.time [ ( precision ) ] with time zone ..........................................35
3.5.1.4.timestamp [ ( precision ) ] without time zone .............................36
3.5.1.5.timestamp [ ( precision ) ] with time zone ...................................36
3.5.1.6.interval [ ( precision ) ] .................................................................37
3.5.1.7. Special values...................................................................................................37

3.5.2. Date/Time Output.........................................................................................................38
3.5.3. Time Zones...................................................................................................................39
3.5.4. Internals........................................................................................................................40

3.6. Boolean Type............................................................................................................................40
3.7. Geometric Types.......................................................................................................................41

3.7.1. Point..............................................................................................................................41
3.7.2. Line Segment................................................................................................................42
3.7.3. Box...............................................................................................................................42
3.7.4. Path...............................................................................................................................43
3.7.5. Polygon.........................................................................................................................43
3.7.6. Circle............................................................................................................................44

3.8. Network Address Data Types....................................................................................................44
3.8.1.inet .............................................................................................................................44
3.8.2.cidr .............................................................................................................................45
3.8.3.inet vs cidr ...............................................................................................................45
3.8.4.macaddr .......................................................................................................................46

3.9. Bit String Types.........................................................................................................................46

4. Functions and Operators....................................................................................................................47

4.1. Logical Operators......................................................................................................................47
4.2. Comparison Operators..............................................................................................................47
4.3. Mathematical Functions and Operators....................................................................................49
4.4. String Functions and Operators.................................................................................................51

iv



4.5. Binary String Functions and Operators.....................................................................................55
4.6. Pattern Matching.......................................................................................................................56

4.6.1. Pattern Matching withLIKE .........................................................................................57
4.6.2. POSIX Regular Expressions.........................................................................................57

4.7. Data Type Formatting Functions...............................................................................................60
4.8. Date/Time Functions and Operators.........................................................................................65

4.8.1.EXTRACT, date_part ..................................................................................................67
4.8.2.date_trunc .................................................................................................................71
4.8.3. Current Date/Time........................................................................................................71

4.9. Geometric Functions and Operators.........................................................................................73
4.10. Network Address Type Functions...........................................................................................76
4.11. Sequence-Manipulation Functions..........................................................................................77
4.12. Conditional Expressions.........................................................................................................79
4.13. Miscellaneous Functions.........................................................................................................81
4.14. Aggregate Functions...............................................................................................................83
4.15. Subquery Expressions.............................................................................................................84

5. Type Conversion...................................................................................................................................89

5.1. Introduction...............................................................................................................................89
5.2. Overview...................................................................................................................................89
5.3. Operators...................................................................................................................................91
5.4. Functions...................................................................................................................................93
5.5. Query Targets............................................................................................................................96
5.6.UNIONandCASEConstructs.....................................................................................................97

6. Arrays ...................................................................................................................................................99

7. Indexes................................................................................................................................................103

7.1. Introduction.............................................................................................................................103
7.2. Index Types.............................................................................................................................104
7.3. Multicolumn Indexes..............................................................................................................104
7.4. Unique Indexes........................................................................................................................105
7.5. Functional Indexes..................................................................................................................105
7.6. Operator Classes.....................................................................................................................106
7.7. Keys.........................................................................................................................................107
7.8. Partial Indexes.........................................................................................................................108
7.9. Examining Index Usage..........................................................................................................111

8. Inheritance..........................................................................................................................................113

9. Multiversion Concurrency Control ..................................................................................................116

9.1. Introduction.............................................................................................................................116
9.2. Transaction Isolation...............................................................................................................116
9.3. Read Committed Isolation Level.............................................................................................117
9.4. Serializable Isolation Level.....................................................................................................117
9.5. Data consistency checks at the application level....................................................................118
9.6. Locking and Tables.................................................................................................................118

9.6.1. Table-level locks.........................................................................................................119
9.6.2. Row-level locks..........................................................................................................120

9.7. Locking and Indexes...............................................................................................................120

v



10. Managing a Database......................................................................................................................122

10.1. Database Creation.................................................................................................................122
10.2. Accessing a Database............................................................................................................122
10.3. Destroying a Database...........................................................................................................123

11. Performance Tips.............................................................................................................................125

11.1. UsingEXPLAIN ..................................................................................................................125
11.2. Statistics used by the Planner................................................................................................128
11.3. Controlling the Planner with Explicit JOINs........................................................................131
11.4. Populating a Database...........................................................................................................132

11.4.1. Disable Autocommit.................................................................................................133
11.4.2. Use COPY FROM....................................................................................................133
11.4.3. Remove Indexes........................................................................................................133
11.4.4. ANALYZE Afterwards.............................................................................................133

A. Date/Time Support ...........................................................................................................................134

A.1. Date/Time Keywords..............................................................................................................134
A.2. Time Zones.............................................................................................................................135

A.2.1. Australian Time Zones..............................................................................................138
A.2.2. Date/Time Input Interpretation..................................................................................139

A.3. History of Units......................................................................................................................140

B. SQL Key Words.................................................................................................................................142

Bibliography ...........................................................................................................................................158

Index........................................................................................................................................................160

vi



List of Tables
1-1. Operator Precedence (decreasing)......................................................................................................11
3-1. Data Types..........................................................................................................................................24
3-2. Numeric Types....................................................................................................................................25
3-3. Monetary Types..................................................................................................................................29
3-4. Character Types..................................................................................................................................29
3-5. Specialty Character Type....................................................................................................................30
3-6. Binary String Types............................................................................................................................31
3-7. SQL Literal Escaped Octets...............................................................................................................31
3-8. SQL Output Escaped Octets...............................................................................................................31
3-9. Comparison of SQL99 Binary String and PostgreSQLBYTEAtypes................................................32
3-10. Date/Time Types...............................................................................................................................33
3-11. Date Input.........................................................................................................................................35
3-12. Time Input........................................................................................................................................35
3-13. Time With Time Zone Input.............................................................................................................36
3-14. Time Zone Input...............................................................................................................................37
3-15. Special Date/Time Constants...........................................................................................................37
3-16. Date/Time Output Styles..................................................................................................................38
3-17. Date-Order Conventions...................................................................................................................38
3-18. Geometric Types...............................................................................................................................41
3-19. Network Address Data Types...........................................................................................................44
3-20.cidr Type Input Examples..............................................................................................................45
4-1. Comparison Operators........................................................................................................................47
4-2. Mathematical Operators.....................................................................................................................49
4-3. Bit String Binary Operators................................................................................................................50
4-4. Mathematical Functions.....................................................................................................................50
4-5. Trigonometric Functions....................................................................................................................51
4-6. SQL String Functions and Operators.................................................................................................51
4-7. Other String Functions.......................................................................................................................52
4-8. SQL Binary String Functions and Operators.....................................................................................55
4-9. Other Binary String Functions...........................................................................................................56
4-10. Regular Expression Match Operators...............................................................................................58
4-11. Formatting Functions.......................................................................................................................60
4-12. Template patterns for date/time conversions....................................................................................61
4-13. Template pattern modifiers for date/time conversions.....................................................................62
4-14. Template patterns for numeric conversions......................................................................................63
4-15.to_char Examples..........................................................................................................................64
4-16. Date/Time Operators........................................................................................................................65
4-17. Date/Time Functions........................................................................................................................66
4-18. Geometric Operators........................................................................................................................73
4-19. Geometric Functions........................................................................................................................74
4-20. Geometric Type Conversion Functions............................................................................................75
4-21.cidr andinet Operators................................................................................................................76
4-22.cidr andinet Functions................................................................................................................76
4-23.macaddr Functions..........................................................................................................................77
4-24. Sequence Functions..........................................................................................................................77
4-25. Session Information Functions.........................................................................................................81

vii



4-26. System Information Functions.........................................................................................................81
4-27. Access Privilege Inquiry Functions..................................................................................................81
4-28. Catalog Information Functions.........................................................................................................82
4-29. Comment Information Functions.....................................................................................................82
4-30. Aggregate Functions.........................................................................................................................83
9-1. SQL Transaction Isolation Levels....................................................................................................116
11-1.pg_stats Columns.......................................................................................................................130
A-1. Month Abbreviations.......................................................................................................................134
A-2. Day of the Week Abbreviations.......................................................................................................134
A-3. PostgreSQL Field Modifiers............................................................................................................135
A-4. PostgreSQL Recognized Time Zones..............................................................................................135
A-5. PostgreSQL Australian Time Zones................................................................................................138
B-1. SQL Key Words...............................................................................................................................142

List of Examples
3-1. Using the character types...................................................................................................................30
3-2. Using theboolean type.....................................................................................................................40
3-3. Using the bit string types....................................................................................................................46
5-1. Exponentiation Operator Type Resolution.........................................................................................92
5-2. String Concatenation Operator Type Resolution................................................................................92
5-3. Absolute-Value and Factorial Operator Type Resolution...................................................................93
5-4. Factorial Function Argument Type Resolution..................................................................................94
5-5. Substring Function Type Resolution..................................................................................................95
5-6.character Storage Type Conversion...............................................................................................96
5-7. Underspecified Types in a Union.......................................................................................................97
5-8. Type Conversion in a Simple Union...................................................................................................97
5-9. Type Conversion in a Transposed Union............................................................................................97
7-1. Setting up a Partial Index to Exclude Common Values....................................................................109
7-2. Setting up a Partial Index to Exclude Uninteresting Values.............................................................109
7-3. Setting up a Partial Unique Index.....................................................................................................110

viii



Preface

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department. The
POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99 lan-
guage support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some commer-
cial databases. Traditional relational database management systems (RDBMS) support a data model con-
sisting of a collection of named relations, containing attributes of a specific type. In current commercial
systems, possible types include floating point numbers, integers, character strings, money, and dates. It is
commonly recognized that this model is inadequate for future data-processing applications. The relational
model successfully replaced previous models in part because of its “Spartan simplicity”. However, this
simplicity makes the implementation of certain applications very difficult. PostgreSQL offers substantial
additional power by incorporating the following additional concepts in such a way that users can easily
extend the system:

• inheritance
• data types
• functions

Other features provide additional power and flexibility:

• constraints
• triggers
• rules
• transactional integrity

These features put PostgreSQL into the category of databases referred to asobject-relational. Note that
this is distinct from those referred to asobject-oriented, which in general are not as well suited to support-
ing traditional relational database languages. So, although PostgreSQL has some object-oriented features,
it is firmly in the relational database world. In fact, some commercial databases have recently incorporated
features pioneered by PostgreSQL.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

ix



Preface

2. A Short History of PostgreSQL
The object-relational database management system now known as PostgreSQL (and briefly called Post-
gres95) is derived from the POSTGRES package written at the University of California at Berkeley. With
over a decade of development behind it, PostgreSQL is the most advanced open-source database available
anywhere, offering multiversion concurrency control, supporting almost all SQL constructs (including
subselects, transactions, and user-defined types and functions), and having a wide range of language bind-
ings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were pre-
sented inThe design of POSTGRESand the definition of the initial data model appeared inThe POST-
GRES data model. The design of the rule system at that time was described inThe design of the POST-
GRES rules system. The rationale and architecture of the storage manager were detailed inThe design of
the POSTGRES storage system.

Postgres has undergone several major releases since then. The first “demoware” system became opera-
tional in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described inThe im-
plementation of POSTGRES, was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rewrite rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix2, which is now owned by IBM3.) picked up the code and commercialized it.
POSTGRES became the primary data manager for the Sequoia 20004 scientific computing project in late
1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95 was
subsequently released to the Web to find its own way in the world as an open-source descendant of the
original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

x



Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregates were re-implemented. Support for the GROUP BY query clause was also
added. Thelibpq interface remained available for C programs.

• In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

• A new front-end library,libpgtcl , supported Tcl-based clients. A sample shell,pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 backend.

• The large-object interface was overhauled. The Inversion large objects were the only mechanism for
storing large objects. (The Inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Major enhancements in PostgreSQL include:

• Table-level locking has been replaced by multiversion concurrency control, which allows readers to
continue reading consistent data during writer activity and enables hot backups from pg_dump while
the database stays available for queries.

• Important backend features, including subselects, defaults, constraints, and triggers, have been imple-
mented.

• Additional SQL92-compliant language features have been added, including primary keys, quoted iden-
tifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

• Built-in types have been improved, including new wide-range date/time types and additional geometric
type support.

• Overall backend code speed has been increased by approximately 20-40%, and backend start-up time
has decreased by 80% since version 6.0 was released.

xi



Preface

3. Documentation Resources
This manual set is organized into several parts:

Tutorial

An informal introduction for new users

User’s Guide

Documents the SQL query language environment, including data types and functions.

Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensibility,
library interfaces, and application design issues.

Administrator’s Guide

Installation and server management information

Reference Manual

Reference pages for SQL command syntax and client and server programs

Developer’s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the Post-
greSQL project; application development information appears in theProgrammer’s Guide.

In addition to this manual set, there are other resources to help you with PostgreSQL installation and use:

man pages

TheReference Manual’s pages in the traditional Unix man format.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some platform-specific
issues.

READMEs

README files are available for some contributed packages.

Web Site

The PostgreSQL web site5 carries details on the latest release, upcoming features, and other informa-
tion to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the User’s Lounge6 section of the PostgreSQL web site
for details.

5. http://www.postgresql.org
6. http://www.postgresql.org/users-lounge/

xii



Preface

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation or
through the mailing lists. Consider contributing your knowledge back. If you learn something which
is not in the documentation, write it up and contribute it. If you add features to the code, contribute
them.

Even those without a lot of experience can provide corrections and minor changes in the documenta-
tion, and that is a good way to start. The <pgsql-docs@postgresql.org > mailing list is the place
to get going.

4. Terminology and Notation
The terms “PostgreSQL” and “Postgres” will be used interchangeably to refer to the software that accom-
panies this documentation.

An administrator is generally a person who is in charge of installing and running the server. Auser
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use/usr/local/pgsql/ as the root directory of the installation and/usr/local/pgsql/data as
the directory with the database files. These directories may vary on your site, details can be derived in the
Administrator’s Guide.

In a command synopsis, brackets ([ and] ) indicate an optional phrase or keyword. Anything in braces ({

and} ) and containing vertical bars (| ) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed from
a Unix shell may be preceded with a dollar sign (“$”). Commands executed from particular user accounts
such as root or postgres are specially flagged and explained. SQL commands may be preceded with “=>”
or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout the documentation
set. Please report problems to the documentation mailing list <pgsql-docs@postgresql.org >.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer

xiii



Preface

version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that the program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

• The exact sequence of stepsfrom program start-upnecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create table
and insert statements, if the output should depend on the data in the tables. We do not have the time
to reverse-engineer your database schema, and if we are supposed to make up our own data we would

xiv



Preface

probably miss the problem. The best format for a test case for query-language related problems is a file
that can be run through the psql frontend that shows the problem. (Be sure to not have anything in your
~/.psqlrc start-up file.) An easy start at this file is to use pg_dump to dump out the table declarations
and data needed to set the scene, then add the problem query. You are encouraged to minimize the size
of your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files, do not guess that the problem happens for “large files” or “mid-size
databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

• Any command line options and other start-up options, including concerned environment variables or
configuration files that you changed from the default. Again, be exact. If you are using a prepackaged
distribution that starts the database server at boot time, you should try to find out how that is done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the commandSELECT version(); to find out the version of
the server you are connected to. Most executable programs also support a--version option; at least
postmaster --version andpsql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. You can also look into the
READMEfile in the source directory or at the name of your distribution file or package name. If you run
a prepackaged version, such as RPMs, say so, including any subversion the package may have. If you
are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.2 we will almost certainly tell you to upgrade. There are tons of bug fixes
in each new release, that is why we make new releases.

xv



Preface

• Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation. In most cases it is sufficient to report the vendor and version, but do not assume everyone knows
what exactly “Debian” contains or that everyone runs on Pentiums. If you have installation problems
then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend
server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is
quite different from crash of the parent “postmaster” process; please don’t say “the postmaster crashed”
when you mean a single backend went down, nor vice versa. Also, client programs such as the interactive
frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org >. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresql.org > mailing list.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org > or
<pgsql-general@postgresql.org >. These mailing lists are for answering user questions and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please donot send reports to the developers’ mailing list <pgsql-hackers@postgresql.org >.
This list is for discussing the development of PostgreSQL and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report onpgsql-hackers , if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug report web-form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail . For more

xvi



Preface

information send mail to <majordomo@postgresql.org > with the single word help in the body of the
message.

6. Y2K Statement

Author: Written by Thomas Lockhart (<lockhart@fourpalms.org >) on 1998-10-22. Updated 2000-
03-31.

The PostgreSQL Global Development Group provides the PostgreSQL software code tree as a public
service, without warranty and without liability for its behavior or performance. However, at the time of
writing:

• The author of this statement, a volunteer on the PostgreSQL support team since November, 1996, is
not aware of any problems in the PostgreSQL code base related to time transitions around Jan 1, 2000
(Y2K).

• The author of this statement is not aware of any reports of Y2K problems uncovered in regression
testing or in other field use of recent or current versions of PostgreSQL. We might have expected to
hear about problems if they existed, given the installed base and the active participation of users on the
support mailing lists.

• To the best of the author’s knowledge, the assumptions PostgreSQL makes about dates specified with
a two-digit year are documented in the currentUser’s Guidein the chapter on data types. For two-digit
years, the significant transition year is 1970, not 2000; e.g.70-01-01 is interpreted as 1970-01-01,
whereas69-01-01 is interpreted as 2069-01-01.

• Any Y2K problems in the underlying OS related to obtaining the “current time” may propagate into
apparent Y2K problems in PostgreSQL.

Refer to The GNU Project8 and The Perl Institute9 for further discussion of Y2K issues, particularly as it
relates to open source, no fee software.

8. http://www.gnu.org/software/year2000.html
9. http://language.perl.com/news/y2k.html

xvii



Chapter 1. SQL Syntax

This chapter describes the syntax of SQL.

1.1. Lexical Structure
SQL input consists of a sequence ofcommands. A command is composed of a sequence oftokens, ter-
minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be akey word, an identifier, aquoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, commentscan occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance theUPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in theReference Manual.

1.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples ofkey words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found inAppendix B.

SQL identifiers and key words must begin with a letter (a-z , but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
digits (0-9), or underscores, although the SQL standard will not define a key word that contains digits or
starts or ends with an underscore.

1



Chapter 1. SQL Syntax

The system uses no more thanNAMEDATALEN-1 characters of an identifier; longer names can be
written in commands, but they will be truncated. By default,NAMEDATALENis 32 so the maximum
identifier length is 31 (but at the time the system is built,NAMEDATALENcan be changed in
src/include/postgres_ext.h ).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: thedelimited identifieror quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes (" ). A delimited identifier is always an identifier,
never a key word. So"select" could be used to refer to a column or table named “select”, whereas an
unquotedselect would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. This allows constructing table
or column names that would otherwise not be possible, such as ones containing spaces or ampersands.
The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiersFOO, foo and "foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other.1

1.1.2. Constants

There are four kinds ofimplicitly-typed constantsin PostgreSQL: strings, bit strings, integers, and
floating-point numbers. Constants can also be specified with explicit types, which can enable more
accurate representation and more efficient handling by the system. The implicit constants are described
below; explicit constants are discussed afterwards.

1.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (“’”), e.g.,’This

is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent single quotes

1. The folding of unquoted names to lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted
names should be folded to upper case. Thus,foo should be equivalent to"FOO" not "foo" according to the standard. If you want
to write portable applications you are advised to always quote a particular name or never quote it.

2



Chapter 1. SQL Syntax

(e.g.,’Dianne”s horse’ ). In PostgreSQL single quotes may alternatively be escaped with a backslash
(“\”, e.g., ’Dianne\’s horse’ ).

C-style backslash escapes are also available:\b is a backspace,\f is a form feed,\n is a newline,\r
is a carriage return,\t is a tab, and\ xxx , wherexxx is an octal number, is the character with the
corresponding ASCII code. Any other character following a backslash is taken literally. Thus, to include
a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespacewith at least one newlineare concatenated and
effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
’bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT ’foo’ ’bar’;

is not valid syntax, and PostgreSQL is consistent with SQL9x in this regard.

1.1.2.2. Bit-String Constants

Bit-string constants look like string constants with aB (upper or lower case) immediately before the
opening quote (no intervening whitespace), e.g.,B’1001’ . The only characters allowed within bit-string
constants are0 and1. Bit-string constants can be continued across lines in the same way as regular string
constants.

1.1.2.3. Integer Constants

Integer constants in SQL are sequences of decimal digits (0 though 9) with no decimal point and no
exponent. The range of legal values depends on which integer data type is used, but the plaininteger

type accepts values ranging from -2147483648 to +2147483647. (The optional plus or minus sign is
actually a separate unary operator and not part of the integer constant.)

1.1.2.4. Floating-Point Constants

Floating-point constants are accepted in these general forms:

digits .[ digits ][e[+-] digits ]
[ digits ]. digits [e[+-] digits ]
digits e[+-] digits

wheredigits is one or more decimal digits. At least one digit must be before or after the decimal
point. At least one digit must follow the exponent delimiter (e) if that field is present. Thus, a floating-

3



Chapter 1. SQL Syntax

point constant is distinguished from an integer constant by the presence of either the decimal point or the
exponent clause (or both). There must not be a space or other characters embedded in the constant.

These are some examples of valid floating-point constants:

3.5
4.
.001
5e2
1.925e-3

Floating-point constants are of typeDOUBLE PRECISION. REALcan be specified explicitly by using SQL
string notation or PostgreSQL type notation:

REAL ’1.23’ -- string style
’1.23’::REAL -- PostgreSQL (historical) style

1.1.2.5. Constants of Other Types

A constant of anarbitrary type can be entered using any one of the following notations:

type ’ string ’
’ string ’:: type
CAST ( ’ string ’ AS type )

The string’s text is passed to the input conversion routine for the type calledtype . The result is a constant
of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to the type the
constant must be (for example, when it is passed as an argument to a non-overloaded function), in which
case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:

typename ( ’ string ’ )

but not all type names may be used in this way; seeSection 1.3.6for details.

The :: , CAST() , and function-call syntaxes can also be used to specify runtime type conversions of
arbitrary expressions, as discussed inSection 1.3.6. But the formtype ’string ’ can only be used to
specify the type of a literal constant. Another restriction ontype ’string ’ is that it does not work for
array types; use:: or CAST() to specify the type of an array constant.

1.1.2.6. Array constants

The general format of an array constant is the following:

’{ val1 delim val2 delim ... }’

4



Chapter 1. SQL Syntax

wheredelim is the delimiter character for the type, as recorded in itspg_type entry. (For all built-in
types, this is the comma character “, ”.) Each val is either a constant of the array element type, or a
subarray. An example of an array constant is

’{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

Individual array elements can be placed between double-quote marks (" ) to avoid ambiguity problems
with respect to whitespace. Without quote marks, the array-value parser will skip leading whitespace.

(Array constants are actually only a special case of the generic type constants discussed in the previous
section. The constant is initially treated as a string and passed to the array input conversion routine. An
explicit type specification might be necessary.)

1.1.3. Operators

An operator is a sequence of up toNAMEDATALEN-1 (31 by default) characters from the following list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ? $

There are a few restrictions on operator names, however:

• $ (dollar) cannot be a single-character operator, although it can be part of a multiple-character operator
name.

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in+ or - , unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ‘ ? $

For example,@- is an allowed operator name, but*- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named@, you
cannot writeX*@Y; you must writeX* @Yto ensure that PostgreSQL reads it as two operator names not
one.

1.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This

5



Chapter 1. SQL Syntax

section only exists to advise the existence and summarize the purposes of these characters.

• A dollar sign ($) followed by digits is used to represent the positional parameters in the body of a
function definition. In other contexts the dollar sign may be part of an operator name.

• Parentheses (() ) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([] ) are used to select the elements of an array. SeeChapter 6for more information on arrays.

• Commas (, ) are used in some syntactical constructs to separate the elements of a list.

• The semicolon (; ) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

• The colon (: ) is used to select “slices” from arrays. (SeeChapter 6.) In certain SQL dialects (such as
Embedded SQL), the colon is used to prefix variable names.

• The asterisk (* ) has a special meaning when used in theSELECT command or with theCOUNTaggre-
gate function.

• The period (. ) is used in floating-point constants, and to separate table and column names.

1.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end
of the line, e.g.:

-- This is a standard SQL92 comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with/* and extends to the matching occurrence of*/ . These block comments
nest, as specified in SQL99 but unlike C, so that one can comment out larger blocks of code that may
contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

6



Chapter 1. SQL Syntax

1.2. Columns
A columnis either a user-defined column of a given table or one of the following system-defined columns:

oid

The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created WITHOUT OIDS, in which case this
column is not present).

tableoid

The OID of the table containing this row. This attribute is particularly handy for queries that select
from inheritance hierarchies, since without it, it’s difficult to tell which individual table a row came
from. Thetableoid can be joined against theoid column ofpg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this tuple. (Note: A tuple is an individual
state of a row; each update of a row creates a new tuple for the same logical row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted tuple. It is possible
for this field to be nonzero in a visible tuple: that usually indicates that the deleting transaction hasn’t
committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The tuple ID of the tuple within its table. This is a pair (block number, tuple index within block) that
identifies the physical location of the tuple. Note that although thectid can be used to locate the
tuple very quickly, a row’sctid will change each time it is updated or moved byVACUUM FULL .
Thereforectid is useless as a long-term row identifier. The OID, or even better a user-defined serial
number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that they are unique. Recommended practice when using OIDs for
row identification is to create a unique constraint on the OID column of each table for which the OID will
be used. Never assume that OIDs are unique across tables; use the combination oftableoid and row
OID if you need a database-wide identifier. (Future releases of PostgreSQL are likely to use a separate
OID counter for each table, so thattableoid mustbe included to arrive at a globally unique identifier.)

Transaction identifiers are 32-bit quantities. In a long-lived database it is possible for transaction IDs to
wrap around. This is not a fatal problem given appropriate maintenance procedures; see theAdministra-
tor’s Guide for details. However, it is unwise to depend on uniqueness of transaction IDs over the long
term (more than one billion transactions).

7



Chapter 1. SQL Syntax

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem --- note that the limit is on number of
SQL queries, not number of tuples processed.

1.3. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of theSELECT command,
as new column values inINSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called ascalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also calledscalar expressions(or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value; seeSection 1.1.2.

• A column reference.

• A positional parameter reference, in the body of a function declaration.

• An operator invocation.

• A function call.

• An aggregate expression.

• A type cast.

• A scalar subquery.

• ( expression )

Parentheses are used to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location inChapter 4. An example is theIS NULL clause.

We have already discussed constants inSection 1.1.2. The following sections discuss the remaining op-
tions.

1.3.1. Column References

A column can be referenced in the form:

correlation . columnname ‘[’ subscript ‘]’

correlation is either the name of a table, an alias for a table defined by means of a FROM clause, or
the key wordsNEWor OLD. (NEW and OLD can only appear in the action portion of a rule, while other
correlation names can be used in any SQL statement.) The correlation name and separating dot may be
omitted if the column name is unique across all the tables being used in the current query. Ifcolumn is

8



Chapter 1. SQL Syntax

of an array type, then the optionalsubscript selects a specific element or elements in the array. If no
subscript is provided, then the whole array is selected. (SeeChapter 6for more about arrays.)

1.3.2. Positional Parameters

A positional parameter reference is used to indicate a parameter in an SQL function. Typically this is used
in SQL function definition statements. The form of a parameter is:

$number

For example, consider the definition of a function,dept , as

CREATE FUNCTION dept (text) RETURNS dept
AS ’SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

1.3.3. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules ofSection 1.1.3or is one of the tokens AND,
OR, and NOT. Which particular operators exist and whether they are unary or binary depends on what
operators have been defined by the system or the user.Chapter 4describes the built-in operators.

1.3.4. Function Calls

The syntax for a function call is the name of a function (which is subject to the syntax rules for identifiers
of Section 1.1.1), followed by its argument list enclosed in parentheses:

function ([ expression [, expression ... ]] )

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is inChapter 4. Other functions may be added by the user.

9



Chapter 1. SQL Syntax

1.3.5. Aggregate Expressions

An aggregate expressionrepresents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression )
aggregate_name (ALL expression )
aggregate_name (DISTINCT expression )
aggregate_name ( * )

whereaggregate_name is a previously defined aggregate, andexpression is any value expression
that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given ex-
pression yields a non-NULL value. (Actually, it is up to the aggregate function whether to ignore NULLs
or not --- but all the standard ones do.) The second form is the same as the first, sinceALL is the default.
The third form invokes the aggregate for all distinct non-NULL values of the expression found in the in-
put rows. The last form invokes the aggregate once for each input row regardless of NULL or non-NULL
values; since no particular input value is specified, it is generally only useful for thecount() aggregate
function.

For example,count(*) yields the total number of input rows;count(f1) yields the number of input
rows in whichf1 is non-NULL;count(distinct f1) yields the number of distinct non-NULL values
of f1 .

The predefined aggregate functions are described inSection 4.14. Other aggregate functions may be added
by the user.

1.3.6. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression AS type )
expression :: type

TheCASTsyntax conforms to SQL92; the syntax with:: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as shown inSection 1.1.2.5. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast may be omitted if there is no ambiguity as to the type that a value expression must
produce (for example, when it is assigned to a table column); the system will automatically apply a type
cast in such cases.

It is also possible to specify a type cast using a function-like syntax:

typename ( expression )

10



Chapter 1. SQL Syntax

However, this only works for types whose names are also valid as function names. For example,double

precision can’t be used this way, but the equivalentfloat8 can. Also, the namesinterval , time ,
and timestamp can only be used in this fashion if they are double-quoted, because of parser conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided
in new applications.

1.3.7. Scalar Subqueries

A scalar subquery is an ordinarySELECT in parentheses that returns exactly one row with one column.
TheSELECT query is executed and the single returned value is used in the surrounding value expression.
It is an error to use a query that returns more than one row or more than one column as a scalar subquery.
(But if, during a particular execution, the subquery returns no rows, there is no error; the scalar result is
taken to be NULL.) The subquery can refer to variables from the surrounding query, which will act as
constants during any one evaluation of the subquery. See alsoSection 4.15.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

1.4. Lexical Precedence
The precedence and associativity of the operators is hard-wired into the parser. Most operators have
the same precedence and are left-associative. This may lead to non-intuitive behavior; for example the
Boolean operators< and> have a different precedence than the Boolean operators<= and>=. Also,
you will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance

SELECT 5 ! - 6;

will be parsed as

SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late -- that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 1-1. Operator Precedence (decreasing)

Operator/Element Associativity Description

:: left PostgreSQL-style typecast

[ ] left array element selection

11



Chapter 1. SQL Syntax

Operator/Element Associativity Description

. left table/column name separator

- right unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS test for TRUE, FALSE,
UNKNOWN, NULL

ISNULL test for NULL

NOTNULL test for NOT NULL

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE string pattern matching

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

12



Chapter 2. Queries

2.1. Overview
A queryis the process of retrieving or the command to retrieve data from a database. In SQL theSELECT
command is used to specify queries. The general syntax of theSELECT command is

SELECT select_list FROMtable_expression [ sort_specification ]

The following sections describe the details of the select list, the table expression, and the sort specification.
The simplest kind of query has the form

SELECT * FROM table1;

Assuming that there is a table called table1, this command would retrieve all rows and all columns from
table1. (The method of retrieval depends on the client application. For example, the psql program will
display an ASCII-art table on the screen, client libraries will offer functions to retrieve individual rows and
columns.) The select list specification* means all columns that the table expression happens to provide.
A select list can also select a subset of the available columns or even make calculations on the columns
before retrieving them; seeSection 2.3. For example, if table1 has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numeric data type).

FROM table1 is a particularly simple kind of table expression. In general, table expressions can be com-
plex constructs of base tables, joins, and subqueries. But you can also omit the table expression entirely
and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way.

SELECT random();

2.2. Table Expressions
A table expressionspecifies a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROM clause. The derived table that is

13



Chapter 2. Queries

produced by all these transformations provides the input rows used to compute output rows as specified
by the select list of column value expressions.

2.2.1. FROM clause

The FROM clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROMtable_reference [, table_reference [, ...]]

A table reference may be a table name or a derived table such as a subquery, a table join, or complex
combinations of these. If more than one table reference is listed in the FROM clause they are cross-joined
(see below) to form the derived table that may then be subject to transformations by the WHERE, GROUP
BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the keyword ONLY
precedes the table name. However, the reference produces only the columns that appear in the named table
--- any columns added in subtables are ignored.

2.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. INNER, OUTER, and CROSS JOIN are supported.

Join Types

CROSS JOIN

T1 CROSS JOIN T2

For each combination of rows fromT1 andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inT2. If the tables have N and M rows respectively, the
joined table will have N * M rows. A cross join is equivalent to anINNER JOIN ON TRUE.

Tip: FROMT1 CROSS JOIN T2 is equivalent to FROMT1, T2.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join column list )
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional for all joins. INNER is the default; LEFT, RIGHT, and
FULL imply an OUTER JOIN.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

14



Chapter 2. Queries

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to TRUE for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of a JOIN USING has one column for each of the equated pairs
of input columns, followed by all of the other columns from each table. Thus,USING (a, b, c)

is equivalent toON (t1.a = t2.a AND t1.b = t2.b AND t1.c = t2.c) with the exception
that if ON is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of exactly those
column names that appear in both input tables. As with USING, these columns appear only once in
the output table.

The possible types of qualified JOIN are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an INNER JOIN is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is returned with NULL values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an INNER JOIN is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is returned with NULL values in columns of T1.
This is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an INNER JOIN is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is returned with null values in columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, a joined row with
null values in the columns of T1 is returned.

Joins of all types can be chained together or nested: either or both ofT1 andT2 may be joined tables.
Parentheses may be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

2.2.1.2. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses andmustbe named using an AS
clause. (SeeSection 2.2.1.3.)

FROM (SELECT * FROM table1) AS alias_name

15



Chapter 2. Queries

This example is equivalent toFROM table1 AS alias_name . More interesting cases, which can’t be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

2.2.1.3. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in further processing. This is called atable alias.

FROMtable_reference AS alias

Here,alias can be any regular identifier. The alias becomes the new name of the table reference for the
current query -- it is no longer possible to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard) is that
an implicit table reference is added to the FROM clause, so the query is processed as if it were written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquery.

Parentheses are used to resolve ambiguities. The following statement will assign the aliasb to the result
of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

FROMtable_reference alias

This form is equivalent to the previously treated one; the AS key word is noise.

FROMtable_reference [AS] alias ( column1 [, column2 [, ...]] )

In this form, in addition to renaming the table as described above, the columns of the table are also given
temporary names for use by the surrounding query. If fewer column aliases are specified than the actual
table has columns, the remaining columns are not renamed. This syntax is especially useful for self-joins
or subqueries.

When an alias is applied to the output of a JOIN clause, using any of these forms, the alias hides the
original names within the JOIN. For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

16



Chapter 2. Queries

is not valid: the table alias A is not visible outside the alias C.

2.2.1.4. Examples

FROM T1 INNER JOIN T2 USING (C)
FROM T1 LEFT OUTER JOIN T2 USING (C)
FROM (T1 RIGHT OUTER JOIN T2 ON (T1.C1=T2.C1)) AS DT1
FROM (T1 FULL OUTER JOIN T2 USING (C)) AS DT1 (DT1C1, DT1C2)

FROM T1 NATURAL INNER JOIN T2
FROM T1 NATURAL LEFT OUTER JOIN T2
FROM T1 NATURAL RIGHT OUTER JOIN T2
FROM T1 NATURAL FULL OUTER JOIN T2

FROM (SELECT * FROM T1) DT1 CROSS JOIN T2, T3
FROM (SELECT * FROM T1) DT1, T2, T3

Above are some examples of joined tables and complex derived tables. Notice how the AS clause renames
or names a derived table and how the optional comma-separated list of column names that follows renames
the columns. The last two FROM clauses produce the same derived table from T1, T2, and T3. The AS
keyword was omitted in naming the subquery as DT1. The keywords OUTER and INNER are noise that
can be omitted also.

2.2.2. WHERE clause

The syntax of the WHERE clause is

WHEREsearch_condition

wheresearch_condition is any value expression as defined inSection 1.3that returns a value of
typeboolean .

After the processing of the FROM clause is done, each row of the derived table is checked against the
search condition. If the result of the condition is true, the row is kept in the output table, otherwise (that
is, if the result is false or NULL) it is discarded. The search condition typically references at least some
column in the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of an
inner join in the WHERE clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

17



Chapter 2. Queries

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is proba-
bly not as portable to other products. For outer joins there is no choice in any case: they must be done
in the FROM clause. A ON/USING clause of an outer join is not equivalent to a WHERE condition,
because it determines the addition of rows (for unmatched input rows) as well as the removal of rows
from the final result.

FROM FDT WHERE
C1 > 5

FROM FDT WHERE
C1 IN (1, 2, 3)

FROM FDT WHERE
C1 IN (SELECT C1 FROM T2)

FROM FDT WHERE
C1 IN (SELECT C3 FROM T2 WHERE C2 = FDT.C1 + 10)

FROM FDT WHERE
C1 BETWEEN (SELECT C3 FROM T2 WHERE C2 = FDT.C1 + 10) AND 100

FROM FDT WHERE
EXISTS (SELECT C1 FROM T2 WHERE C2 > FDT.C1)

In the examples above,FDT is the table derived in the FROM clause. Rows that do not meet the search
condition of the where clause are eliminated fromFDT. Notice the use of scalar subqueries as value
expressions. Just like any other query, the subqueries can employ complex table expressions. Notice how
FDT is referenced in the subqueries. QualifyingC1 asFDT.C1 is only necessary ifC1 is also the name of a
column in the derived input table of the subquery. Qualifying the column name adds clarity even when it
is not needed. This shows how the column naming scope of an outer query extends into its inner queries.

2.2.3. GROUP BY and HAVING clauses

After passing the WHERE filter, the derived input table may be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM ...
[WHERE ...]
GROUP BYgrouping_column_reference [, grouping_column_reference ]...

The GROUP BY clause is used to group together rows in a table that share the same values in all the
columns listed. The order in which the columns are listed does not matter (as opposed to an ORDER BY
clause). The purpose is to reduce each group of rows sharing common values into one group row that is
representative of all rows in the group. This is done to eliminate redundancy in the output and/or obtain
aggregates that apply to these groups.

Once a table is grouped, columns that are not used in the grouping cannot be referenced except in aggre-
gate expressions, since a specific value in those columns is ambiguous - which row in the group should it
come from? The grouped-by columns can be referenced in select list column expressions since they have a
known constant value per group. Aggregate functions on the ungrouped columns provide values that span
the rows of a group, not of the whole table. For instance, asum(sales) on a table grouped by product

18



Chapter 2. Queries

code gives the total sales for each product, not the total sales on all products. Aggregates computed on the
ungrouped columns are representative of the group, whereas individual values of an ungrouped column
are not.

Example:

SELECT pid, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING ( pid )
GROUP BY pid, p.name, p.price;

In this example, the columnspid , p.name , andp.price must be in the GROUP BY clause since they
are referenced in the query select list. The column s.units does not have to be in the GROUP BY list since
it is only used in an aggregate expression (sum() ), which represents the group of sales of a product. For
each product, a summary row is returned about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by select columns in the query select list. Grouping by value expressions
instead of simple column names is also allowed.

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

If a table has been grouped using a GROUP BY clause, but then only certain groups are of interest, the
HAVING clause can be used, much like a WHERE clause, to eliminate groups from a grouped table.
PostgreSQL allows a HAVING clause to be used without a GROUP BY, in which case it acts like another
WHERE clause, but the point in using HAVING that way is not clear. A good rule of thumb is that a
HAVING condition should refer to the results of aggregate functions. A restriction that does not involve
an aggregate is more efficiently expressed in the WHERE clause.

Example:

SELECT pid AS "Products",
p.name AS "Over 5000",
(sum(s.units) * (p.price - p.cost)) AS "Past Month Profit"

FROM products p LEFT JOIN sales s USING ( pid )
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY pid, p.name, p.price, p.cost

HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped, while the
HAVING clause restricts the output to groups with total gross sales over 5000.

2.3. Select Lists
As shown in the previous section, the table expression in theSELECT command constructs an intermedi-
ate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by theselect list. The select list determines whichcolumnsof the intermediate
table are actually output. The simplest kind of select list is* which emits all columns that the table ex-

19



Chapter 2. Queries

pression produces. Otherwise, a select list is a comma-separated list of value expressions (as defined in
Section 1.3). For instance, it could be a list of column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained inSection 2.2.1.3. The name space available in
the select list is the same as in the WHERE clause (unless grouping is used, in which case it is the same
as in the HAVING clause). If more than one table has a column of the same name, the table name must
also be given, as in

SELECT tbl1.a, tbl2.b, tbl1.c FROM ...

(see alsoSection 2.2.2).

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each retrieved row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference any
columns in the table expression of the FROM clause; they could be constant arithmetic expressions as
well, for instance.

2.3.1. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display). For
example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified via AS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the function.
For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROM clause (see Section
2.2.1.3). This pipeline will in fact allow you to rename the same column twice, but the name chosen in
the select list is the one that will be passed on.

2.3.2. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination of
duplicates. The DISTINCT key word is written directly after the SELECT to enable this:

SELECT DISTINCT select_list ...

(Instead of DISTINCT the word ALL can be used to select the default behavior of retaining all rows.)

20



Chapter 2. Queries

Obviously, two rows are considered distinct if they differ in at least one column value. NULLs are con-
sidered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subselects in
FROM the construct can be avoided, but it is very often the most convenient alternative.

2.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

query1 andquery2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

query1 UNION query2 UNION query3

which really says

( query1 UNION query2 ) UNION query3

UNION effectively appends the result ofquery2 to the result ofquery1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates all duplicate rows,
in the sense of DISTINCT, unless ALL is specified.

INTERSECT returns all rows that are both in the result ofquery1 and in the result ofquery2 . Dupli-
cate rows are eliminated unless ALL is specified.

EXCEPT returns all rows that are in the result ofquery1 but not in the result ofquery2 . Again,
duplicates are eliminated unless ALL is specified.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they both return the same number of columns, and that the corresponding
columns have compatible data types, as described inSection 5.6.

21



Chapter 2. Queries

2.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that case
will depend on the scan and join plan types and the order on disk, but it must not be relied on. A particular
output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumn1 [ASC | DESC] [, column2 [ASC | DESC] ...]

column1 , etc., refer to select list columns. These can be either the output name of a column (seeSection
2.3.1) or the number of a column. Some examples:

SELECT a, b FROM table1 ORDER BY a;
SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, sum(b) FROM table1 GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:

SELECT a, b FROM table1 ORDER BY a + b;

References to column names in the FROM clause that are renamed in the select list are also allowed:

SELECT a AS b FROM table1 ORDER BY a;

But these extensions do not work in queries involving UNION, INTERSECT, or EXCEPT, and are not
portable to other DBMS.

Each column specification may be followed by an optional ASC or DESC to set the sort direction. ASC is
default. Ascending order puts smaller values first, where “smaller” is defined in terms of the< operator.
Similarly, descending order is determined with the> operator.

If more than one sort column is specified, the later entries are used to sort rows that are equal under the
order imposed by the earlier sort specifications.

2.6. LIMIT and OFFSET

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number ]

LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If a
limit count is given, no more than that many rows will be returned. LIMIT ALL is the same as omitting a
LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows to the client. OFFSET 0 is the
same as omitting an OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped
before starting to count the LIMIT rows that are returned.

22



Chapter 2. Queries

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query resultwill give inconsistent
resultsunless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

23



Chapter 3. Data Types
PostgreSQL has a rich set of native data types available to users. Users may add new types to PostgreSQL
using theCREATE TYPE command.

Table 3-1shows all general-purpose data types included in the standard distribution. Most of the alter-
native names listed in the “Aliases” column are the names used internally by PostgreSQL for historical
reasons. In addition, some internally used or deprecated types are available, but they are not listed here.

Table 3-1. Data Types

Type Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying( n) varbit( n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in 2D plane

bytea binary data

character( n) char( n) fixed-length character string

character varying( n) varchar( n) variable-length character string

cidr IP network address

circle circle in 2D plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IP host address

integer int , int4 signed four-byte integer

interval( p) general-use time span

line infinite line in 2D plane

lseg line segment in 2D plane

macaddr MAC address

money US-style currency

numeric [ ( p, s ) ] decimal [ ( p, s ) ] exact numeric with selectable
precision

oid object identifier

path open and closed geometric path in
2D plane

point geometric point in 2D plane

polygon closed geometric path in 2D plane

24



Chapter 3. Data Types

Type Name Aliases Description

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [ ( p) ] [ without

time zone ]

time of day

time [ ( p) ] with time

zone

timetz time of day, including time zone

timestamp [ ( p) ] without

time zone

timestamp date and time

timestamp [ ( p) ] [ with

time zone ]

timestamptz date and time, including time
zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying ,
boolean , char , character , character varying , varchar , date , double precision , integer , in-

terval , numeric , decimal , real , smallint , time , timestamp (both with or without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as open and closed paths, or have several possibilities for formats, such as the date and time types.
Most of the input and output functions corresponding to the base types (e.g., integers and floating-point
numbers) do some error-checking. Some of the input and output functions are not invertible. That is, the
result of an output function may lose precision when compared to the original input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric oper-
ators for some data types may silently underflow or overflow.

3.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers
and fixed-precision decimals.

Table 3-2. Numeric Types

Type name Storage size Description Range

smallint 2 bytes Fixed-precision -32768 to +32767

integer 4 bytes Usual choice for
fixed-precision

-2147483648 to
+2147483647

25



Chapter 3. Data Types

Type name Storage size Description Range

bigint 8 bytes Very large range
fixed-precision

-9223372036854775808
to
9223372036854775807

decimal variable user-specified precision,
exact

no limit

numeric variable user-specified precision,
exact

no limit

real 4 bytes variable-precision,
inexact

6 decimal digits
precision

double precision 8 bytes variable-precision,
inexact

15 decimal digits
precision

serial 4 bytes autoincrementing integer1 to 2147483647

bigserial 8 bytes autoincrementing integer1 to
9223372036854775807

The syntax of constants for the numeric types is described inSection 1.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer toChapter 4for more information. The
following sections describe the types in detail.

3.1.1. The Integer Types

The typessmallint , integer , bigint store whole numbers, that is, numbers without fractional com-
ponents, of various ranges. Attempts to store values outside of the allowed range will result in an error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Thesmallint type is generally only used if disk space is at a premium. Thebigint type
should only be used if theinteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for eight-
byte integers. On a machine without such support,bigint acts the same asinteger (but still takes up
eight bytes of storage). However, we are not aware of any reasonable platform where this is actually the
case.

SQL only specifies the integer typesinteger (or int ) andsmallint . The typebigint , and the type
namesint2 , int4 , andint8 are extensions, which are shared with various other RDBMS products.

Note: If you have a column of type smallint or bigint with an index, you may encounter problems
getting the system to use that index. For instance, a clause of the form

... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and PostgreSQL
currently cannot use an index when two different data types are involved. A workaround is to single-
quote the constant, thus:

... WHERE smallint_column = ’42’

26



Chapter 3. Data Types

This will cause the system to delay type resolution and will assign the right type to the constant.

3.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers of practically unlimited size and precision, while being able to
store all numbers and carry out all calculations exactly. It is especially recommended for storing mone-
tary amounts and other quantities where exactness is required. However, thenumeric type is very slow
compared to the floating-point types described in the next section.

In what follows we use these terms: Thescaleof anumeric is the count of decimal digits in the fractional
part, to the right of the decimal point. Theprecisionof anumeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERIC(precision , scale )

The precision must be positive, the scale zero or positive. Alternatively,

NUMERIC(precision )

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereasnumeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer accuracy. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the system
will attempt to round the value. If the value cannot be rounded so as to satisfy the declared limits, an error
is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

3.1.3. Floating-Point Types

The data typesreal anddouble precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE 754 binary floating point (single and double precision,
respectively), to the extent that the underlying processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Managing
these errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed further here, except for the following points:

27



Chapter 3. Data Types

• If you require exact storage and calculations (such as for monetary amounts), use thenumeric type
instead.

• If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

• Comparing two floating-point values for equality may or may not work as expected.

Normally, thereal type has a range of at least -1E+37 to +1E+37 with a precision of at least 6 decimal
digits. Thedouble precision type normally has a range of around -1E+308 to +1E+308 with a pre-
cision of at least 15 digits. Values that are too large or too small will cause an error. Rounding may take
place if the precision of an input number is too high. Numbers too close to zero that are not representable
as distinct from zero will cause an underflow error.

3.1.4. The Serial Types

Theserial data types are not truly types, but are a notational convenience for setting up unique identifier
columns in tables. In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);

is equivalent to specifying:

CREATE SEQUENCEtablename _colname _seq;
CREATE TABLEtablename (

colname integer DEFAULT nextval(’ tablename _colname _seq’) UNIQUE NOT NULL
);

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. UNIQUE and NOT NULL constraints are applied to ensure that explicitly-inserted values will
never be duplicates, either.

The type namesserial andserial4 are equivalent: both createinteger columns. The type names
bigserial andserial8 work just the same way, except that they create abigint column.bigserial

should be used if you anticipate use of more than 231 identifiers over the lifetime of the table.

Implicit sequences supporting theserial types are not automatically dropped when a table containing a
serial type is dropped. So, the following commands executed in order will likely fail:

CREATE TABLEtablename ( colname SERIAL);
DROP TABLEtablename ;
CREATE TABLEtablename ( colname SERIAL);

The sequence will remain in the database until explicitly dropped usingDROP SEQUENCE. (This an-
noyance will probably be changed in some future release.)

28



Chapter 3. Data Types

3.2. Monetary Type

Deprecated: The money type is deprecated. Use numeric or decimal instead, in combination with
the to_char function. The money type may become a locale-aware layer over the numeric type in a
future release.

The money type stores U.S.-style currency with fixed decimal point representation. If PostgreSQL is
compiled with locale support then themoney type uses locale-specific output formatting.

Input is accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such as’$1,000.00’ . Output is in the latter form.

Table 3-3. Monetary Types

Type Name Storage Description Range

money 4 bytes Fixed-precision -21474836.48 to
+21474836.47

3.3. Character Types

Table 3-4. Character Types

Type name Description

character( n) , char( n) Fixed-length blank padded

character varying( n) , varchar( n) Variable-length with limit

text Variable unlimited length

SQL defines two primary character types:character( n) andcharacter varying( n) , wheren is a
positive integer. Both of these types can store strings up ton characters in length. An attempt to store a
longer string into a column of these types will result in an error, unless the excess characters are all spaces,
in which case the string will be truncated to the maximum length. (This somewhat bizarre exception is
required by the SQL standard.) If the string to be stored is shorter than the declared length, values of type
character will be space-padded; values of typecharacter varying will simply store the shorter
string.

Note: Prior to PostgreSQL 7.2, strings that were too long were silently truncated, no error was raised.

The notationschar( n) andvarchar( n) are aliases forcharacter( n) andcharacter varying( n) ,
respectively.character without length specifier is equivalent tocharacter(1) ; if character vary-

ing is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

29



Chapter 3. Data Types

In addition, PostgreSQL supports the more generaltext type, which stores strings of any length. Unlike
character varying , text does not require an explicit declared upper limit on the size of the string.
Although the typetext is not in the SQL standard, many other RDBMS packages have it as well.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case ofchar-

acter plus the padding. Long strings will be compressed by the system automatically, so the physical
requirement on disk may be less. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed forn in the data type declaration is less than that.
It wouldn’t be very useful to change this because with multibyte character encodings the number of char-
acters and bytes can be quite different anyway. If you desire to store long strings with no specific upper
limit, use text or character varying without a length specifier, rather than making up an arbitrary
length limit.)

Tip: There are no performance differences between these three types, apart from the increased stor-
age size when using the blank-padded type.

Refer toSection 1.1.2.1for information about the syntax of string literals, and toChapter 4for information
about available operators and functions.

Example 3-1. Using the character types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES (’ok’);
SELECT a, char_length(a) FROM test1; -- ➊

a | char_length

------+-------------

ok | 4

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES (’ok’);
INSERT INTO test2 VALUES (’good ’);
INSERT INTO test2 VALUES (’too long’);
ERROR: value too long for type character varying(5)

SELECT b, char_length(b) FROM test2;
b | char_length

-------+-------------

ok | 2

good | 5

➊ Thechar_length function is discussed inSection 4.4.

There are two other fixed-length character types in PostgreSQL. Thename type existsonly for storage of
internal catalog names and is not intended for use by the general user. Its length is currently defined as 32
bytes (31 usable characters plus terminator) but should be referenced using the macroNAMEDATALEN. The
length is set at compile time (and is therefore adjustable for special uses); the default maximum length
may change in a future release. The type"char" (note the quotes) is different fromchar(1) in that it
only uses one byte of storage. It is internally used in the system catalogs as a poor-man’s enumeration
type.

30



Chapter 3. Data Types

Table 3-5. Specialty Character Type

Type Name Storage Description

"char" 1 byte Single character internal type

name 32 bytes Thirty-one character internal type

3.4. Binary Strings
Thebytea data type allows storage of binary strings.

Table 3-6. Binary String Types

Type Name Storage Description

bytea 4 bytes plus the actual binary
string

Variable (not specifically limited)
length binary string

A binary string is a sequence of octets that does not have either a character set or collation associated with
it. Bytea specifically allows storing octets of zero value and other “non-printable” octets.

Octets of certain valuesmustbe escaped (but all octet valuesmaybe escaped) when used as part of a
string literal in an SQL statement. In general, to escape an octet, it is converted into the three-digit octal
number equivalent of its decimal octet value, and preceded by two backslashes. Some octet values have
alternate escape sequences, as shown inTable 3-7.

Table 3-7. SQL Literal Escaped Octets

Decimal Octet
Value

Description Input Escaped
Representation

Example Printed Result

0 zero octet ’\\000’ select

’\\000’::bytea;

\000

39 single quote ’\\” or

’\\047’

select

’\”::bytea;

’

92 backslash ’\\\\’ or

’\\134’

select

’\\\\’::bytea;

\\

Note that the result in each of the examples above was exactly one octet in length, even though the
output representation of the zero octet and backslash are more than one character.Bytea output octets
are also escaped. In general, each “non-printable” octet decimal value is converted into its equivalent
three digit octal value, and preceded by one backslash. Most “printable” octets are represented by their
standard representation in the client character set. The octet with decimal value 92 (backslash) has a
special alternate output representation. Details are inTable 3-8.

Table 3-8. SQL Output Escaped Octets

31



Chapter 3. Data Types

Decimal Octet
Value

Description Output Escaped
Representation

Example Printed Result

92 backslash \\ select

’\\134’::bytea;

\\

0 to 31 and

127 to 255

“non-printable”
octets

\### (octal

value)

select

’\\001’::bytea;

\001

32 to 126 “printable” octets ASCII
representation

select

’\\176’::bytea;

~

SQL string literals (input strings) must be preceded with two backslashes due to the fact that they must
pass through two parsers in the PostgreSQL backend. The first backslash is interpreted as an escape char-
acter by the string-literal parser, and therefore is consumed, leaving the octets that follow. The remaining
backslash is recognized by thebytea input function as the prefix of a three digit octal value. For example,
a string literal passed to the backend as’\\001’ becomes’\001’ after passing through the string-literal
parser. The’\001’ is then sent to thebytea input function, where it is converted to a single octet with a
decimal value of 1.

For a similar reason, a backslash must be input as’\\\\’ (or ’\\134’ ). The first and third backslashes
are interpreted as escape characters by the string-literal parser, and therefore are consumed, leaving two
backslashes in the string passed to thebytea input function, which interprets them as representing a
single backslash. For example, a string literal passed to the backend as’\\\\’ becomes’\\’ after
passing through the string-literal parser. The’\\’ is then sent to thebytea input function, where it is
converted to a single octet with a decimal value of 92.

A single quote is a bit different in that it must be input as’\” (or ’\\134’ ), notas’\\” . This is because,
while the literal parser interprets the single quote as a special character, and will consume the single
backslash, thebytea input function doesnot recognize a single quote as a special octet. Therefore a
string literal passed to the backend as’\” becomes”’ after passing through the string-literal parser. The
”’ is then sent to thebytea input function, where it is retains its single octet decimal value of 39.

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms of
escaping and unescapingbytea strings. For example, you may also have to escape line feeds and carriage
returns if your interface automatically translates these. Or you may have to double up on backslashes if
the parser for your language or choice also treats them as an escape character.

Bytea provides most of the functionality of the binary string type per SQL99 section 4.3. A comparison
of SQL99 Binary Strings and PostgreSQLbytea is presented inTable 3-9.

Table 3-9. Comparison of SQL99 Binary String and PostgreSQLBYTEAtypes

SQL99 BYTEA

Name of data typeBINARY LARGE OBJECTor
BLOB

Name of data typeBYTEA

Sequence of octets that does not have either a
character set or collation associated with it.

same

32



Chapter 3. Data Types

SQL99 BYTEA

Described by a binary data type descriptor
containing the name of the data type and the
maximum length in octets

Described by a binary data type descriptor
containing the name of the data type with no
specific maximum length

All binary strings are mutually comparable in
accordance with the rules of comparison predicates.

same

Binary string values can only be compared for
equality.

Binary string values can be compared for equality,
greater than, greater than or equal, less than, less
than or equal

Operators operating on and returning binary strings
include concatenation, substring, overlay, and trim

Operators operating on and returning binary
strings include concatenation, substring, and trim.
The leading andtrailing arguments for trim
are not yet implemented.

Other operators involving binary strings include
length, position, and the like predicate

same

A binary string literal is comprised of an even
number of hexadecimal digits, in single quotes,
preceded by “X”, e.g.X’1a43fe’

A binary string literal is comprised of octets
escaped according to the rules shown inTable 3-7

3.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types.

Table 3-10. Date/Time Types

Type Description Storage Earliest Latest Resolution

timestamp [

( p) ]

without time

zone

both date and
time

8 bytes 4713 BC AD 1465001 1 microsecond /
14 digits

timestamp [

( p) ] [ with

time zone ]

both date and
time

8 bytes 4713 BC AD 1465001 1 microsecond /
14 digits

interval [

( p) ]

for time
intervals

12 bytes -178000000
years

178000000
years

1 microsecond

date dates only 4 bytes 4713 BC 32767 AD 1 day

time [ ( p) ]

[ without

time zone ]

times of day
only

8 bytes 00:00:00.00 23:59:59.99 1 microsecond

time [ ( p) ]

with time

zone

times of day
only

12 bytes 00:00:00.00+1223:59:59.99-12 1 microsecond

33



Chapter 3. Data Types

time , timestamp , and interval accept an optional precision valuep which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
effective limit of precision is determined by the underlying double precision floating-point number used
to store values (in seconds forinterval and in seconds since 2000-01-01 fortimestamp ). The useful
range ofp is from 0 to about 6 fortimestamp , but may be more forinterval . The system will accept
p ranging from 0 to 13.

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide output time-
zone support, and these systems usually contain information for only the time period 1902 through 2038
(corresponding to the full range of conventional Unix system time).timestamp with time zone and
time with time zone will use time zone information only within that year range, and assume that
times outside that range are in UTC.

To ensure an upgrade path from versions of PostgreSQL earlier than 7.0, we recognizedatetime (equiv-
alent totimestamp ) andtimespan (equivalent tointerval ). These types are now restricted to having
an implicit translation totimestamp and interval , and support for these will be removed in the next
release of PostgreSQL (likely named 7.3).

The typesabstime andreltime are lower precision types which are used internally. You are discouraged
from using any of these types in new applications and are encouraged to move any old ones over when
appropriate. Any or all of these internal types might disappear in a future release.

3.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional PostgreSQL, and others. For some formats, ordering of month and day in date input can be am-
biguous and there is support for specifying the expected ordering of these fields. The commandSET Dat-

eStyle TO ’US’ or SET DateStyle TO ’NonEuropean’ specifies the variant “month before day”,
the commandSET DateStyle TO ’European’ sets the variant “day before month”. TheISO style is
the default but this default can be changed at compile time or at run time.

PostgreSQL is more flexible in handling date/time than the SQL standard requires. SeeAppendix Afor
the exact parsing rules of date/time input and for the recognized text fields including months, days of the
week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 1.1.2.5for more information. SQL9x requires the following syntax

type [ ( p) ] ’ value ’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified fortime , timestamp , andinterval types.

34



Chapter 3. Data Types

3.5.1.1. date

The following are some possible inputs for thedate type.

Table 3-11. Date Input

Example Description

January 8, 1999 Unambiguous

1999-01-08 ISO-8601 format, preferred

1/8/1999 U.S.; read as August 1 in European mode

8/1/1999 European; read as August 1 in U.S. mode

1/18/1999 U.S.; read as January 18 in any mode

19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 Year and day of year

99008 Year and day of year

J2451187 Julian day

January 8, 99 BC Year 99 before the Common Era

3.5.1.2. time [ ( p ) ] [ without time zone ]

Per SQL99, this type can be specified astime or astime without time zone . The optional precision
p should be between 0 and 13, and defaults to the precision of the input time literal.

The following are validtime inputs.

Table 3-12. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

allballs Same as 00:00:00

3.5.1.3. time [ ( precision ) ] with time zone

This type is defined by SQL92, but the definition exhibits properties which lead to questionable usefulness.
In most cases, a combination ofdate , time , timestamp without time zone andtimestamp with

35



Chapter 3. Data Types

time zone should provide a complete range of date/time functionality required by any application.

The optional precisionp should be between 0 and 13, and defaults to the precision of the input time literal.

time with time zone accepts all input also legal for thetime type, appended with a legal time zone,
as follows:

Table 3-13. Time With Time Zone Input

Example Description

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

Refer toTable 3-14for more examples of time zones.

3.5.1.4. timestamp [ ( precision ) ] without time zone

Valid input for thetimestamp [ ( p) ] without time zone type consists of a concatenation of a
date and a time, followed by an optionalADor BC, followed by an optional time zone. (See below.) Thus

1999-01-08 04:05:06

is a valid timestamp without time zone value that is ISO-compliant. In addition, the wide-spread
format

January 8 04:05:06 1999 PST

is supported.

The optional precisionp should be between 0 and 13, and defaults to the precision of the inputtimestamp

literal.

For timestamp without time zone , any explicit time zone specified in the input is silently swal-
lowed. That is, the resulting date/time value is derived from the explicit date/time fields in the input value,
and is not adjusted for time zone.

3.5.1.5. timestamp [ ( precision ) ] with time zone

Valid input for the timestamp type consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. (See below.) Thus

1999-01-08 04:05:06 -8:00

is a validtimestamp value that is ISO-compliant. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

36



Chapter 3. Data Types

The optional precisionp should be between 0 and 13, and defaults to the precision of the inputtimestamp

literal.

Table 3-14. Time Zone Input

Time Zone Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

3.5.1.6. interval [ ( precision ) ]

interval values can be written with the following syntax:

Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Quantity Unit...] [Direction]

where:Quantity is a number (possibly signed),Unit is second , minute , hour , day , week, month ,
year , decade , century , millennium , or abbreviations or plurals of these units;Direction can be
ago or empty. The at sign (@) is optional noise. The amounts of different units are implicitly added up
with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample,’1 12:59:10’ is read the same as’1 day 12 hours 59 min 10 sec’ .

The optional precisionp should be between 0 and 13, and defaults to the precision of the input literal.

3.5.1.7. Special values

The following SQL-compatible functions can be used as date or time input for the corresponding data type:
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP. The latter two accept an optional precision
specification.

PostgreSQL also supports several special constants for convenience.

Table 3-15. Special Date/Time Constants

Constant Description

epoch 1970-01-01 00:00:00+00 (Unix system time zero)

infinity Later than other valid times

-infinity Earlier than other valid times

invalid Illegal entry

now Current transaction time

today Midnight today

37



Chapter 3. Data Types

Constant Description

tomorrow Midnight tomorrow

yesterday Midnight yesterday

zulu, allballs, z 00:00:00.00 GMT

’now’ is evaluated when the value is first interpreted.

Note: As of PostgreSQL version 7.2, ’current’ is no longer supported as a date/time constant.
Previously, ’current’ was stored as a special value, and evaluated to ’now’ only when used in an
expression or type conversion.

3.5.2. Date/Time Output

Output formats can be set to one of the four styles ISO 8601, SQL (Ingres), traditional PostgreSQL, and
German, using theSET DateStyle. The default is the ISO format.

Table 3-16. Date/Time Output Styles

Style Specification Description Example

’ISO’ ISO-8601 standard 1997-12-17 07:37:16-08

’SQL’ Traditional style 12/17/1997 07:37:16.00 PST

’PostgreSQL’ Original style Wed Dec 17 07:37:16 1997 PST

’German’ Regional style 17.12.1997 07:37:16.00 PST

The output of thedate and time styles is of course only the date or time part in accordance with the
above examples.

The SQL style has European and non-European (U.S.) variants, which determines whether month follows
day or vice versa. (See alsoSection 3.5.1for how this setting affects interpretation of input values.)

Table 3-17. Date-Order Conventions

Style Specification Description Example

European day /month /year 17/12/1997 15:37:16.00 MET

US month /day /year 12/17/1997 07:37:16.00 PST

interval output looks like the input format, except that units likeweek or century are converted to
years and days. In ISO mode the output looks like

[ Quantity Units [ ... ] ] [ Days ] Hours:Minutes [ ago ]

38



Chapter 3. Data Types

There are several ways to affect the appearance of date/time types:

• ThePGDATESTYLEenvironment variable used by the backend directly on postmaster start-up.
• ThePGDATESTYLEenvironment variable used by the frontend libpq on session start-up.
• SET DATESTYLE SQL command.

3.5.3. Time Zones

PostgreSQL endeavors to be compatible with SQL92 definitions for typical usage. However, the SQL92
standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although thedate type does not have an associated time zone, thetime type can. Time zones in the
real world can have no meaning unless associated with a date as well as a time since the offset may
vary through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant integer offset from GMT/UTC. It is not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We recommendnot using the SQL92 typetime with time zone (though it is sup-
ported by PostgreSQL for legacy applications and for compatibility with other RDBMS implementations).
PostgreSQL assumes your local time zone for any type containing only date or time. Further, time zone
support is derived from the underlying operating system time-zone capabilities, and hence can handle
daylight-saving time and other expected behavior.

PostgreSQL obtains time-zone support from the underlying operating system for dates between 1902 and
2038 (near the typical date limits for Unix-style systems). Outside of this range, all dates are assumed to
be specified and used in Universal Coordinated Time (UTC).

All dates and times are stored internally in UTC, traditionally known as Greenwich Mean Time (GMT).
Times are converted to local time on the database server before being sent to the client frontend, hence by
default are in the server time zone.

There are several ways to affect the time-zone behavior:

• TheTZ environment variable is used by the backend directly on postmaster start-up as the default time
zone.

• The PGTZenvironment variable, if set at the client, is used by libpq to send aSET TIME ZONE
command to the backend upon connection.

• The SQL commandSET TIME ZONE sets the time zone for the session.
• The SQL92 qualifier on

timestamp AT TIME ZONE ’zone ’

wherezone can be specified as a text time zone (e.g.’PST’ ) or as an interval (e.g.INTERVAL ’-

08:00’ ).

39



Chapter 3. Data Types

Note: If an invalid time zone is specified, the time zone becomes GMT (on most systems anyway).

Note: If the runtime option AUSTRALIAN_TIMEZONESis set then CST and EST refer to Australian time
zones, not American ones.

3.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713BC to far into the future, using the assumption that
the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

3.6. Boolean Type
PostgreSQL provides the SQL99 typeboolean . boolean can have one of only two states: “true” or
“false”. A third state, “unknown”, is represented by the SQL NULL state.

Valid literal values for the “true” state are:

TRUE

’t’

’true’

’y’

’yes’

’1’

For the “false” state, the following values can be used:

FALSE

’f’

’false’

’n’

’no’

’0’

Using the key wordsTRUEandFALSE is preferred (and SQL-compliant).

Example 3-2. Using theboolean type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, ’sic est’);
INSERT INTO test1 VALUES (FALSE, ’non est’);
SELECT * FROM test1;

a | b

40



Chapter 3. Data Types

---+---------
t | sic est
f | non est

SELECT * FROM test1 WHERE a;
a | b

---+---------
t | sic est

Example 3-2shows thatboolean values are output using the letterst andf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval AS

integer) does not work). This can be accomplished using the CASEexpression: CASE WHENboolval

THEN ’value if true’ ELSE ’value if false’ END . See also Section 4.12.

boolean uses 1 byte of storage.

3.7. Geometric Types
Geometric types represent two-dimensional spatial objects. The most fundamental type, the point, forms
the basis for all of the other types.

Table 3-18. Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (x,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line

lseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 4+32n bytes ((x1,y1),...) Closed path (similar to
polygon)

path 4+32n bytes [(x1,y1),...] Open path

polygon 4+32n bytes ((x1,y1),...) Polygon (similar to
closed path)

circle 24 bytes <(x,y),r> Circle (center and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections.

3.7.1. Point

Points are the fundamental two-dimensional building block for geometric types.

41



Chapter 3. Data Types

point is specified using the following syntax:

( x , y )
x , y

where the arguments are

x

The x-axis coordinate as a floating-point number

y

The y-axis coordinate as a floating-point number

3.7.2. Line Segment

Line segments (lseg ) are represented by pairs of points.

lseg is specified using the following syntax:

( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )

x1 , y1 , x2 , y2

where the arguments are

(x1 ,y1 )
(x2 ,y2 )

The end points of the line segment

3.7.3. Box

Boxes are represented by pairs of points that are opposite corners of the box.

box is specified using the following syntax:

( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )

x1 , y1 , x2 , y2

where the arguments are

42



Chapter 3. Data Types

(x1 ,y1 )
(x2 ,y2 )

Opposite corners of the box

Boxes are output using the first syntax. The corners are reordered on input to store the upper right corner,
then the lower left corner. Other corners of the box can be entered, but the lower left and upper right
corners are determined from the input and stored.

3.7.4. Path

Paths are represented by connected sets of points. Paths can beopen, where the first and last points in
the set are not connected, andclosed, where the first and last point are connected. Functionspopen(p)

andpclose(p) are supplied to force a path to be open or closed, and functionsisopen(p) and is-

closed(p) are supplied to test for either type in a query.

path is specified using the following syntax:

( ( x1 , y1 ) , ... , ( xn , yn ) )
[ ( x1 , y1 ) , ... , ( xn , yn ) ]

( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1 , ... , xn , yn )

x1 , y1 , ... , xn , yn

where the arguments are

(x ,y )

End points of the line segments comprising the path. A leading square bracket ("[") indicates an open
path, while a leading parenthesis ("(") indicates a closed path.

Paths are output using the first syntax.

3.7.5. Polygon

Polygons are represented by sets of points. Polygons should probably be considered equivalent to closed
paths, but are stored differently and have their own set of support routines.

polygon is specified using the following syntax:

( ( x1 , y1 ) , ... , ( xn , yn ) )
( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1 , ... , xn , yn )

x1 , y1 , ... , xn , yn

where the arguments are

43



Chapter 3. Data Types

(x ,y )

End points of the line segments comprising the boundary of the polygon

Polygons are output using the first syntax.

3.7.6. Circle

Circles are represented by a center point and a radius.

circle is specified using the following syntax:

< ( x , y ) , r >

( ( x , y ) , r )
( x , y ) , r

x , y , r

where the arguments are

(x ,y )

Center of the circle

r

Radius of the circle

Circles are output using the first syntax.

3.8. Network Address Data Types
PostgreSQL offers data types to store IP and MAC addresses. It is preferable to use these types over plain
text types, because these types offer input error checking and several specialized operators and functions.

Table 3-19. Network Address Data Types

Name Storage Description Range

cidr 12 bytes IP networks valid IPv4 networks

inet 12 bytes IP hosts and networks valid IPv4 hosts or
networks

macaddr 6 bytes MAC addresses customary formats

IP v6 is not supported, yet.

44



Chapter 3. Data Types

3.8.1. inet

The inet type holds an IP host address, and optionally the identity of the subnet it is in, all in one field.
The subnet identity is represented by the number of bits in the network part of the address (the “netmask”).
If the netmask is 32, then the value does not indicate a subnet, only a single host. Note that if you want to
accept networks only, you should use thecidr type rather thaninet .

The input format for this type isx.x.x.x/y wherex.x.x.x is an IP address andy is the number of
bits in the netmask. If the/y part is left off, then the netmask is 32, and the value represents just a single
host. On display, the/y portion is suppressed if the netmask is 32.

3.8.2. cidr

Thecidr type holds an IP network specification. Input and output formats follow Classless Internet Do-
main Routing conventions. The format for specifying classless networks isx.x.x.x/y wherex.x.x.x
is the network andy is the number of bits in the netmask. Ify is omitted, it is calculated using assump-
tions from the older classful numbering system, except that it will be at least large enough to include all
of the octets written in the input.

Here are some examples:

Table 3-20.cidr Type Input Examples

CIDR Input CIDR Displayed abbrev (CIDR)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

3.8.3. inet vs cidr

The essential difference betweeninet andcidr data types is thatinet accepts values with nonzero bits
to the right of the netmask, whereascidr does not.

Tip: If you do not like the output format for inet or cidr values, try the host (), text (), and abbrev ()
functions.

45



Chapter 3. Data Types

3.8.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

’08002b:010203’

’08002b-010203’

’0800.2b01.0203’

’08-00-2b-01-02-03’

’08:00:2b:01:02:03’

which would all specify the same address. Upper and lower case is accepted for the digitsa throughf .
Output is always in the last of the shown forms.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to map
MAC addresses to hardware manufacturer names.

3.9. Bit String Types
Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types:BIT( x ) andBIT VARYING( x ) ; wherex is a positive integer.

BIT type data must match the lengthx exactly; it is an error to attempt to store shorter or longer bit
strings.BIT VARYING is of variable length up to the maximum lengthx ; longer strings will be rejected.
BIT without length is equivalent toBIT(1) , BIT VARYING without length specification means unlimited
length.

Note: Prior to PostgreSQL 7.2, BIT type data was zero-padded on the right. This was changed to com-
ply with the SQL standard. To implement zero-padded bit strings, a combination of the concatenation
operator and the substring function can be used.

Refer toSection 1.1.2.2for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; seeChapter 4.

Example 3-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00’);
INSERT INTO test VALUES (B’10’, B’101’);
ERROR: bit string length does not match type bit(3)

SELECT SUBSTRING(b FROM 1 FOR 2) FROM test;

46



Chapter 4. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in theProgrammer’s Guide. The psql commands
\df and\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators described in
this chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present
in other RDBMS products, and in many cases this functionality is compatible and consistent between
various products.

4.1. Logical Operators
The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where NULL represents “unknown”. Observe the following truth
tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

4.2. Comparison Operators

Table 4-1. Comparison Operators

Operator Description

47



Chapter 4. Functions and Operators

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison operators are
binary operators that return values of typeboolean ; expressions like1 < 2 < 3 are not valid (because
there is no< operator to compare a Boolean value with3).

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEENx AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEENx AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite the
first one into the second one internally.

To check whether a value is or is not NULL, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but less standard, constructs

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (NULL represents an un-
known value, and it is not known whether two unknown values are equal.)

Some applications may (incorrectly) require thatexpression = NULL returns true if
expression evaluates to the NULL value. To support these applications, the run-time option

48



Chapter 4. Functions and Operators

transform_null_equals can be turned on (e.g.,SET transform_null_equals TO ON; ).
PostgreSQL will then convertx = NULL clauses tox IS NULL . This was the default behavior in
releases 6.5 through 7.1.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar toIS NULL in that they will always return TRUE or FALSE, never NULL, even when
the operand is NULL. A NULL input is treated as the logical value UNKNOWN.

4.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without common mathemat-
ical conventions for all possible permutations (e.g. date/time types) we describe the actual behavior in
subsequent sections.

Table 4-2. Mathematical Operators

Name Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 - 3 -1

* Multiplication 2 * 3 6

/ Division (integer division
truncates results)

4 / 2 2

% Modulo (remainder) 5 % 4 1

^ Exponentiation 2.0 ^ 3.0 8

|/ Square root |/ 25.0 5

||/ Cube root ||/ 27.0 3

! Factorial 5 ! 120

!! Factorial (prefix
operator)

!! 5 120

@ Absolute value @ -5.0 5

& Binary AND 91 & 15 11

| Binary OR 32 | 3 35

# Binary XOR 17 # 5 20

~ Binary NOT ~1 -2

<< Binary shift left 1<< 4 16

>> Binary shift right 8>> 2 2

49



Chapter 4. Functions and Operators

The “binary” operators are also available for the bit string typesBIT andBIT VARYING.

Table 4-3. Bit String Binary Operators

Example Result

B’10001’ & B’01101’ 00001

B’10001’ | B’01101’ 11101

B’10001’ # B’01101’ 11110

~ B’10001’ 01110

B’10001’ << 3 01000

B’10001’ >> 2 00100

Bit string arguments to&, | , and# must be of equal length. When bit shifting, the original length of the
string is preserved, as shown here.

Table 4-4. Mathematical Functions

Function Return Type Description Example Result

abs (x ) (same as x) absolute value abs(-17.4) 17.4

cbrt (dp) dp cube root cbrt(27.0) 3

ceil (numeric ) numeric smallest integer not
less than argument

ceil(-42.8) -42

degrees (dp) dp radians to degrees degrees(0.5) 28.6478897565412

exp (dp) dp exponential exp(1.0) 2.71828182845905

floor (numeric ) numeric largest integer not
greater than
argument

floor(-42.8) -43

ln (dp) dp natural logarithm ln(2.0) 0.693147180559945

log (dp) dp base 10 logarithm log(100.0) 2

log (b numeric , x
numeric )

numeric logarithm to baseb log(2.0, 64.0) 6.0000000000

mod(y , x ) (same as argument
types)

remainder ofy /x mod(9,4) 1

pi () dp “Pi” constant pi() 3.14159265358979

pow(e dp, n dp) dp raise a number to
exponente

pow(9.0, 3.0) 729

radians (dp) dp degrees to radians radians(45.0) 0.785398163397448

random () dp value between 0.0
to 1.0

random()

round (dp) dp round to nearest
integer

round(42.4) 42

50



Chapter 4. Functions and Operators

Function Return Type Description Example Result

round (v numeric ,
s integer )

numeric round tos decimal
places

round(42.4382,

2)

42.44

sign (numeric ) numeric sign of the
argument (-1, 0, +1)

sign(-8.4) -1

sqrt (dp) dp square root sqrt(2.0) 1.4142135623731

trunc (dp) dp truncate toward
zero

trunc(42.8) 42

trunc (numeric , s
integer )

numeric truncate tos
decimal places

trunc(42.4382,

2)

42.43

In the table above,dp indicatesdouble precision . The functionsexp , ln , log , pow, round (1 argu-
ment),sqrt , andtrunc (1 argument) are also available for the typenumeric in place ofdouble pre-

cision . Functions returning anumeric result takenumeric input arguments, unless otherwise specified.
Many of these functions are implemented on top of the host system’s C library; accuracy and behavior in
boundary cases could therefore vary depending on the host system.

Table 4-5. Trigonometric Functions

Function Description

acos (x ) inverse cosine

asin (x ) inverse sine

atan (x ) inverse tangent

atan2 (x , y ) inverse tangent ofy /x

cos (x ) cosine

cot (x ) cotangent

sin (x ) sine

tan (x ) tangent

All trigonometric functions have arguments and return values of typedouble precision .

4.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesCHARACTER, CHARACTER VARYING, and TEXT. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theCHARACTERtype. Generally, the functions described
here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for bit-string types.

SQL defines some string functions with a special syntax where certain keywords rather than commas are
used to separate the arguments. Details are inTable 4-6. These functions are also implemented using the
regular syntax for function invocation. (SeeTable 4-7.)

51



Chapter 4. Functions and Operators

Table 4-6. SQL String Functions and Operators

Function Return Type Description Example Result

string ||

string
text string

concatenation
’Postgre’ ||

’SQL’

PostgreSQL

bit_length (string )integer number of bits in
string

bit_length(’jose’) 32

char_length (string )
or charac-

ter_length (string )

integer number of
characters in string

char_length(’jose’) 4

lower (string ) text Convert string to
lower case.

lower(’TOM’) tom

octet_length (string )integer number of bytes in
string

octet_length(’jose’) 4

position (substring
in string )

integer location of specified
substring

position(’om’

in ’Thomas’)

3

substring (string
[from integer ]
[for integer ])

text extract substring substring(’Thomas’

from 2 for 3)

hom

trim ([leading |
trailing | both]
[characters ]
from string )

text Removes the
longest string
containing only the
characters (a
space by default)
from the
beginning/end/both
ends of the
string .

trim(both ’x’

from ’xTomxx’)

Tom

upper (string ) text Convert string to
upper case.

upper(’tom’) TOM

Additional string manipulation functions are available and are listed below. Some of them are used inter-
nally to implement the SQL-standard string functions listed above.

Table 4-7. Other String Functions

Function Return Type Description Example Result

ascii (text ) integer Returns the ASCII
code of the first
character of the
argument.

ascii(’x’) 120

52



Chapter 4. Functions and Operators

Function Return Type Description Example Result

btrim (string
text , trim text )

text Remove (trim) the
longest string
consisting only of
characters intrim
from the start and
end ofstring .

btrim(’xyxtrimyyx’,’xy’)trim

chr (integer ) text Returns the
character with the
given ASCII code.

chr(65) A

convert (string
text ,
[src_encoding
name,]
dest_encoding
name)

text Converts string
using
dest_encoding .
The original
encoding is
specified by
src_encoding .
If src_encoding
is omitted, database
encoding is
assumed.

convert(’text_in_unicode’,

’UNICODE’,

’LATIN1’)

text_in_unicode

represented in ISO
8859-1

initcap (text ) text Converts first letter
of each word
(whitespace
separated) to upper
case.

initcap(’hi

thomas’)

Hi Thomas

length (string ) integer length of string length(’jose’) 4

lpad (string
text , length
integer [, fill
text ])

text Fills up the
string to length
length by
prepending the
charactersfill (a
space by default). If
thestring is
already longer than
length then it is
truncated (on the
right).

lpad(’hi’, 5,

’xy’)

xyxhi

ltrim (string
text , trim text )

text Removes the
longest string
containing only
characters from
trim from the start
of the string.

ltrim(’zzzytrim’,’xyz’) trim

53



Chapter 4. Functions and Operators

Function Return Type Description Example Result

pg_client_encoding ()name Returns current
client encoding
name.

pg_client_encoding()SQL_ASCII

repeat (text ,
integer )

text Repeat text a
number of times.

repeat(’Pg’, 4) PgPgPgPg

rpad (string
text , length
integer [, fill
text ])

text Fills up the
string to length
length by
appending the
charactersfill (a
space by default). If
thestring is
already longer than
length then it is
truncated.

rpad(’hi’, 5,

’xy’)

hixyx

rtrim (string
text, trim text)

text Removes the
longest string
containing only
characters from
trim from the end
of the string.

rtrim(’trimxxxx’,’x’) trim

strpos (string ,
substring )

text Locates specified
substring. (same as
posi-

tion( substring

in string ) , but
note the reversed
argument order)

strpos(’high’,’ig’) 2

substr (string ,
from [, count ])

text Extracts specified
substring. (same as
sub-

string( string

from from for

count ) )

substr(’alphabet’,

3, 2)

ph

to_ascii (text [,
encoding ])

text Converts text from
multibyte encoding
to ASCII.

to_ascii(’Karel’) Karel

trans-

late (string
text , from text ,
to text )

text Any character in
string that
matches a character
in thefrom set is
replaced by the
corresponding
character in theto
set.

translate(’12345’,

’14’, ’ax’)

a23x5

54



Chapter 4. Functions and Operators

Function Return Type Description Example Result

encode (data
bytea , type
text )

text Encodes binary
data to ASCII-only
representation.
Supported types
are: ’base64’, ’hex’,
’escape’.

encode(’123\\000\\001’,

’base64’)

MTIzAAE=

decode (string
text , type text )

bytea Decodes binary
data fromstring
previously encoded
with encode().
Parameter type is
same as in
encode().

decode(’MTIzAAE=’,

’base64’)

123\000\001

The to_ascii function supports conversion from LATIN1, LATIN2, WIN1250 (CP1250) only.

4.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating binary string values.
Strings in this context include values of the typeBYTEA.

SQL defines some string functions with a special syntax where certain keywords rather than commas are
used to separate the arguments. Details are inTable 4-8. Some functions are also implemented using the
regular syntax for function invocation. (SeeTable 4-9.)

Table 4-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result

string ||

string
bytea string

concatenation
’\\\\Postgre’::bytea

||

’\\047SQL\\000’::bytea

\\Postgre’SQL\000

octet_length (string )integer number of bytes in
binary string

octet_length(’jo\\000se’::bytea)5

position (substring
in string )

integer location of specified
substring

position(’\\000om’::bytea

in

’Th\\000omas’::bytea)

3

substring (string
[from integer ]
[for integer ])

bytea extract substring substring(’Th\\000omas’::bytea

from 2 for 3)

h\000o

55



Chapter 4. Functions and Operators

Function Return Type Description Example Result

trim ([both]
characters
from string )

bytea Removes the
longest string
containing only the
characters
from the
beginning/end/both
ends of the
string .

trim(’\\000’::bytea

from

’\\000Tom\\000’::bytea)

Tom

Additional binary string manipulation functions are available and are listed below. Some of them are used
internally to implement the SQL-standard string functions listed above.

Table 4-9. Other Binary String Functions

Function Return Type Description Example Result

btrim (string
bytea , trim
bytea )

bytea Remove (trim) the
longest string
consisting only of
characters intrim
from the start and
end ofstring .

btrim(’\\000trim\\000’::bytea,’\\000’::bytea)trim

length (string ) integer length of binary
string

length(’jo\\000se’::bytea)5

encode (string
bytea , type
text )

text Encodes binary
string to
ASCII-only
representation.
Supported types
are: ’base64’, ’hex’,
’escape’.

encode(’123\\000456’::bytea,

’escape’)

123\000456

decode (string
text , type text )

bytea Decodes binary
string from
string previously
encoded with
encode(). Parameter
type is same as in
encode().

decode(’123\\000456’,

’escape’)

123\000456

4.6. Pattern Matching
There are two separate approaches to pattern matching provided by PostgreSQL: the SQLLIKE operator
and POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, or want to make pattern-driven substitu-

56



Chapter 4. Functions and Operators

tions or translations, consider writing a user-defined function in Perl or Tcl.

4.6.1. Pattern Matching with LIKE

string LIKE pattern [ ESCAPE escape-character ]
string NOT LIKE pattern [ ESCAPE escape-character ]

Everypattern defines a set of strings. TheLIKE expression returns true if thestring is contained in
the set of strings represented bypattern . (As expected, theNOT LIKE expression returns false ifLIKE

returns true, and vice versa. An equivalent expression isNOT (string LIKE pattern ) .)

If pattern does not contain percent signs or underscore, then the pattern only represents the string itself;
in that caseLIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

’abc’ LIKE ’abc’ true
’abc’ LIKE ’a%’ true
’abc’ LIKE ’_b_’ true
’abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but
a different one may be selected by using theESCAPEclause. To match the escape character itself, write
two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that
contains a backslash you must write two backslashes in the query. Thus, writing a pattern that actually
matches a literal backslash means writing four backslashes in the query. You can avoid this by selecting
a different escape character withESCAPE; then backslash is not special toLIKE anymore. (But it is still
special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writingESCAPE ”. In this case there is no way to turn
off the special meaning of underscore and percent signs in the pattern.

The keyword ILIKE can be used instead of LIKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~~ is equivalent toLIKE , and~~* corresponds toILIKE . There are also!~~ and !~~*

operators that representNOT LIKE andNOT ILIKE . All of these operators are PostgreSQL-specific.

57



Chapter 4. Functions and Operators

4.6.2. POSIX Regular Expressions

Table 4-10. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, case
sensitive

’thomas’ ~ ’.*thomas.*’

~* Matches regular expression, case
insensitive

’thomas’ ~* ’.*Thomas.*’

!~ Does not match regular
expression, case sensitive

’thomas’ !~ ’.*Thomas.*’

!~* Does not match regular
expression, case insensitive

’thomas’ !~* ’.*vadim.*’

POSIX regular expressions provide a more powerful means for pattern matching than theLIKE function.
Many Unix tools such asegrep, sed, or awk use a pattern matching language that is similar to the one
described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (aregular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As withLIKE , pattern characters match string characters exactly unless they are special
characters in the regular expression language --- but regular expressions use different special characters
thanLIKE does. UnlikeLIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Regular expressions (“RE”s), as defined in POSIX 1003.2, come in two forms: modern REs (roughly those
of egrep; 1003.2 calls these “extended” REs) and obsolete REs (roughly those ofed; 1003.2 “basic” REs).
PostgreSQL implements the modern form.

A (modern) RE is one or more non-emptybranches, separated by| . It matches anything that matches one
of the branches.

A branch is one or morepieces, concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is anatompossibly followed by a single* , +, ?, or bound. An atom followed by* matches a
sequence of 0 or more matches of the atom. An atom followed by+ matches a sequence of 1 or more
matches of the atom. An atom followed by? matches a sequence of 0 or 1 matches of the atom.

A boundis { followed by an unsigned decimal integer, possibly followed by, possibly followed by an-
other unsigned decimal integer, always followed by} . The integers must lie between 0 andRE_DUP_MAX

(255) inclusive, and if there are two of them, the first may not exceed the second. An atom followed by
a bound containing one integeri and no comma matches a sequence of exactlyi matches of the atom.
An atom followed by a bound containing one integeri and a comma matches a sequence ofi or more
matches of the atom. An atom followed by a bound containing two integersi andj matches a sequence
of i throughj (inclusive) matches of the atom.

Note: A repetition operator (?, * , +, or bounds) cannot follow another repetition operator. A repetition
operator cannot begin an expression or subexpression or follow ^ or | .

58



Chapter 4. Functions and Operators

An atomis a regular expression enclosed in() (matching a match for the regular expression), an empty
set of() (matching the null string), abracket expression(see below),. (matching any single character),
^ (matching the null string at the beginning of the input string),$ (matching the null string at the end of
the input string), a\ followed by one of the characters^.[$()|*+?{\ (matching that character taken as
an ordinary character), a\ followed by any other character (matching that character taken as an ordinary
character, as if the\ had not been present), or a single character with no other significance (matching that
character). A{ followed by a character other than a digit is an ordinary character, not the beginning of a
bound. It is illegal to end an RE with\ .

Note that the backslash (\ ) already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in the query.

A bracket expressionis a list of characters enclosed in[] . It normally matches any single character from
the list (but see below). If the list begins with^ , it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated by- , this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g.[0-9] in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint, e.g.a-c-e . Ranges are very collating-
sequence-dependent, and portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible^ ). To include a literal- ,
make it the first or last character, or the second endpoint of a range. To use a literal- as the first endpoint
of a range, enclose it in[. and.] to make it a collating element (see below). With the exception of these
and some combinations using[ (see next paragraphs), all other special characters, including\ , lose their
special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as
if it were a single character, or a collating-sequence name for either) enclosed in[. and.] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multiple-character collating element can thus match more
than one character, e.g. if the collating sequence includes ach collating element, then the RE[[.ch.]]*c

matches the first five characters ofchchcc .

Within a bracket expression, a collating element enclosed in[= and=] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were[. and.] .)
For example, ifo and^ are the members of an equivalence class, then[[=o=]] , [[=^=]] , and[o^] are
all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in[: and :] stands for the list of
all characters belonging to that class. Standard character class names are:alnum , alpha , blank , cntrl ,
digit , graph , lower , print , punct , space , upper , xdigit . These stand for the character classes
defined in ctype. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two special cases of bracket expressions: the bracket expressions[[:<:]] and[[:>:]] match
the null string at the beginning and end of a word respectively. A word is defined as a sequence of word
characters which is neither preceded nor followed by word characters. A word character is an alnum
character (as defined by ctype) or an underscore. This is an extension, compatible with but not specified
by POSIX 1003.2, and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, it
matches the longest. Subexpressions also match the longest possible substrings, subject to the constraint

59



Chapter 4. Functions and Operators

that the whole match be as long as possible, with subexpressions starting earlier in the RE taking priority
over ones starting later. Note that higher-level subexpressions thus take priority over their lower-level
component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered
longer than no match at all. For example,bb* matches the three middle characters ofabbbc ,
(wee|week)(knights|nights) matches all ten characters ofweeknights , when(.*).* is matched
againstabc the parenthesized subexpression matches all three characters, and when(a*)* is matched
againstbc both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.x

becomes[xX] . When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that (e.g.)[x] becomes[xX] and[^x] becomes[^xX] .

There is no particular limit on the length of REs, except insofar as memory is limited. Memory
usage is approximately linear in RE size, and largely insensitive to RE complexity, except
for bounded repetitions. Bounded repetitions are implemented by macro expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An RE like, say,
((((a{1,100}){1,100}){1,100}){1,100}){1,100} will (eventually) run almost any existing
machine out of swap space.1

4.7. Data Type Formatting Functions

Author: Written by Karel Zak (<zakkr@zf.jcu.cz >) on 2000-01-24

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. These functions all follow a common calling convention: the first argument is the
value to be formatted and the second argument is a template that defines the output or input format.

Table 4-11. Formatting Functions

Function Returns Description Example

to_char (timestamp ,
text )

text convert time stamp to
string

to_char(timestamp

’now’,’HH12:MI:SS’)

to_char (interval ,
text )

text convert interval to string to_char(interval

’15h 2m

12s’,’HH24:MI:SS’)

to_char (int , text ) text convert int4/int8 to stringto_char(125,

’999’)

1. This was written in 1994, mind you. The numbers have probably changed, but the problem persists.

60



Chapter 4. Functions and Operators

Function Returns Description Example

to_char (double

precision , text )
text convert real/double

precision to string
to_char(125.8,

’999D9’)

to_char (numeric ,
text )

text convert numeric to stringto_char(numeric

’-125.8’,

’999D99S’)

to_date (text , text ) date convert string to date to_date(’05 Dec

2000’, ’DD Mon

YYYY’)

to_timestamp (text ,
text )

timestamp convert string to time
stamp

to_timestamp(’05

Dec 2000’, ’DD Mon

YYYY’)

to_number (text ,
text )

numeric convert string to numericto_number(’12,454.8-

’, ’99G999D9S’)

In an output template string, there are certain patterns that are recognized and replaced with appropriately-
formatted data from the value to be formatted. Any text that is not a template pattern is simply copied
verbatim. Similarly, in an input template string, template patterns identify the parts of the input data string
to be looked at and the values to be found there.

Table 4-12. Template patterns for date/time conversions

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

US microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AMor A.M. or PMor P.M. meridian indicator (upper case)

amor a.m. or pmor p.m. meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCor B.C. or ADor A.D. era indicator (upper case)

bc or b.c. or ad or a.d. era indicator (lower case)

MONTH full upper case month name (blank-padded to 9
chars)

61



Chapter 4. Functions and Operators

Pattern Description

Month full mixed case month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars)

Mon abbreviated mixed case month name (3 chars)

mon abbreviated lower case month name (3 chars)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full mixed case day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month (1-5) where first week start on the
first day of the month

WW week number of year (1-53) where first week start
on the first day of the year

IW ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman Numerals (I-XII; I=January) -
upper case

rm month in Roman Numerals (I-XII; I=January) -
lower case

TZ timezone name - upper case

tz timezone name - lower case

Certain modifiers may be applied to any template pattern to alter its behavior. For example, “FMMonth” is
the “Month ” pattern with the “FM” prefix.

Table 4-13. Template pattern modifiers for date/time conversions

Modifier Description Example

62



Chapter 4. Functions and Operators

Modifier Description Example

FMprefix fill mode (suppress padding
blanks and zeroes)

FMMonth

THsuffix add upper-case ordinal number
suffix

DDTH

th suffix add lower-case ordinal number
suffix

DDth

FX prefix Fixed format global option (see
below)

FX Month DD Day

SPsuffix spell mode (not yet implemented)DDSP

Usage notes:

• FMsuppresses leading zeroes or trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

• to_timestamp and to_date skip multiple blank spaces in the input string if theFX option is not
used.FX must be specified as the first item in the template; for exampleto_timestamp(’2000

JUN’,’YYYY MON’) is right, but to_timestamp(’2000 JUN’,’FXYYYY MON’) returns an error,
becauseto_timestamp expects one blank space only.

• If a backslash (“\ ”) is desired in a string constant, a double backslash (“\\ ”) must be entered; for
example’\\HH\\MI\\SS’ . This is true for any string constant in PostgreSQL.

• Ordinary text is allowed into_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern keywords. For
example, in’"Hello Year: "YYYY’ , theYYYYwill be replaced by year data, but the singleY will
not be.

• If you want to have a double quote in the output you must precede it with a backslash, for example
’\\"YYYY Month\\"’ .

• YYYYconversion from string totimestamp or date is restricted if you use a year with more than 4
digits. You must use some non-digit character or template afterYYYY, otherwise the year is always inter-
preted as 4 digits. For example (with year 20000):to_date(’200001131’, ’YYYYMMDD’) will be
interpreted as a 4-digit year; better is to use a non-digit separator after the year, liketo_date(’20000-

1131’, ’YYYY-MMDD’) or to_date(’20000Nov31’, ’YYYYMonDD’) .

• MillisecondMSand microsecondUSvalues in a conversion from string to time stamp are used as part
of the seconds after the decimal point. For exampleto_timestamp(’12:3’, ’SS:MS’) is not 3
milliseconds, but 300, because the conversion counts it as 12 + 0.3. This means for the formatSS:MS,
the input values12:3 , 12:30 , and12:300 specify the same number of milliseconds. To get three
milliseconds, one must use12:003 , which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example:to_timestamp(’15:12:02.020.001230’,’HH:MI:SS.MS.US’)

is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230 seconds.

63



Chapter 4. Functions and Operators

Table 4-14. Template patterns for numeric conversions

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)

THor th convert to ordinal number

V shift n digits (see notes)

EEEE scientific notation (not implemented yet)

Usage notes:

• A sign formatted usingSG, PL, or MI is not an anchor in the number; for example,to_char(-12,

’S9999’) produces’ -12’ , but to_char(-12, ’MI9999’) produces’- 12’ . The Oracle imple-
mentation does not allow the use ofMI ahead of9, but rather requires that9 precedeMI.

• 9 specifies a value with the same number of digits as there are9s. If a digit is not available use blank
space.

• THdoes not convert values less than zero and does not convert decimal numbers.

• PL, SG, andTHare PostgreSQL extensions.

• V effectively multiplies the input values by10^ n, wheren is the number of digits followingV. to_char

does not support the use ofV combined with a decimal point. (E.g.,99.9V99 is not allowed.)

Table 4-15.to_char Examples

Input Output

to_char(now(),’Day, DD HH12:MI:SS’) ’Tuesday , 06 05:39:18’

to_char(now(),’FMDay, FMDD

HH12:MI:SS’)

’Tuesday, 6 05:39:18’

to_char(-0.1,’99.99’) ’ -.10’

64



Chapter 4. Functions and Operators

Input Output

to_char(-0.1,’FM9.99’) ’-.1’

to_char(0.1,’0.9’) ’ 0.1’

to_char(12,’9990999.9’) ’ 0012.0’

to_char(12,’FM9990999.9’) ’0012’

to_char(485,’999’) ’ 485’

to_char(-485,’999’) ’-485’

to_char(485,’9 9 9’) ’ 4 8 5’

to_char(1485,’9,999’) ’ 1,485’

to_char(1485,’9G999’) ’ 1 485’

to_char(148.5,’999.999’) ’ 148.500’

to_char(148.5,’999D999’) ’ 148,500’

to_char(3148.5,’9G999D999’) ’ 3 148,500’

to_char(-485,’999S’) ’485-’

to_char(-485,’999MI’) ’485-’

to_char(485,’999MI’) ’485’

to_char(485,’PL999’) ’+485’

to_char(485,’SG999’) ’+485’

to_char(-485,’SG999’) ’-485’

to_char(-485,’9SG99’) ’4-85’

to_char(-485,’999PR’) ’ <485>’

to_char(485,’L999’) ’DM 485

to_char(485,’RN’) ’ CDLXXXV’

to_char(485,’FMRN’) ’CDLXXXV’

to_char(5.2,’FMRN’) V

to_char(482,’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,’"Pre:"999" Post:"

.999’)

’Pre: 485 Post: .800’

to_char(12,’99V999’) ’ 12000’

to_char(12.4,’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’

4.8. Date/Time Functions and Operators
Table 4-17shows the available functions for date/time value processing.Table 4-16illustrates the behav-
iors of the basic arithmetic operators (+, * , etc.). For formatting functions, refer toSection 4.7. You should
be familiar with the background information on date/time data types (seeSection 3.5).

The date/time operators described below behave similarly for types involving time zones as well as those
without.

65



Chapter 4. Functions and Operators

Table 4-16. Date/Time Operators

Name Example Result

+ timestamp ’2001-09-28 01:00’
+ interval ’23 hours’

timestamp ’2001-09-29 00:00’

+ date ’2001-09-28’ +interval

’1 hour’
timestamp ’2001-09-28 01:00’

+ time ’01:00’ + interval ’3
hours’

time ’04:00’

- timestamp ’2001-09-28 23:00’ -
interval ’23 hours’

timestamp ’2001-09-28’

- date ’2001-09-28’ -interval

’1 hour’
timestamp ’2001-09-27 23:00’

- time ’05:00’ - interval ’2
hours’

time ’03:00’

- interval ’2 hours’ - time

’05:00’
time ’03:00:00’

* interval ’1 hour’ * int ’3’ interval ’03:00’

/ interval ’1 hour’ / int ’3’ interval ’00:20’

The date/time functions are summarized below, with additional details in subsequent sections.

Table 4-17. Date/Time Functions

Name Return Type Description Example Result

age (timestamp ) interval Subtract from todayage(timestamp

’1957-06-13’)

43 years 8 mons

3 days

age (timestamp ,
timestamp )

interval Subtract argumentsage(’2001-04-

10’, timestamp

’1957-06-13’)

43 years 9 mons

27 days

current_date date Today’s date; see
below

current_time time Time of day; see
below

current_timestamp timestamp Date and time; see
below

date_part (text ,
timestamp )

double

precision

Get subfield
(equivalent to
extract ); see also
below

date_part(’hour’,

timestamp

’2001-02-16

20:38:40’)

20

66



Chapter 4. Functions and Operators

Name Return Type Description Example Result

date_part (text ,
interval )

double

precision

Get subfield
(equivalent to
extract ); see also
below

date_part(’month’,

interval ’2

years 3

months’)

3

date_trunc (text ,
timestamp )

timestamp Truncate to
specified precision;
see alsobelow

date_trunc(’hour’,

timestamp

’2001-02-16

20:38:40’)

2001-02-16

20:00:00+00

extract (field
from timestamp )

double

precision

Get subfield; see
alsobelow

extract(hour

from timestamp

’2001-02-16

20:38:40’)

20

extract (field
from interval )

double

precision

Get subfield; see
alsobelow

extract(month

from interval

’2 years 3

months’)

3

isfinite (timestamp )boolean Test for finite time
stamp (neither
invalid nor infinity)

isfinite(timestamp

’2001-02-16

21:28:30’)

true

isfinite (interval )boolean Test for finite
interval

isfinite(interval

’4 hours’)

true

now() timestamp Current date and
time (equivalent to
cur-

rent_timestamp );
seebelow

timeofday() text Current date and
time; seebelow

timeofday() Wed Feb 21

17:01:13.000126

2001 EST

timestamp (date ) timestamp date to
timestamp

timestamp(date

’2000-12-25’)

2000-12-25

00:00:00

timestamp (date ,
time )

timestamp date andtime to
timestamp

timestamp(date

’1998-02-

24’,time

’23:07’)

1998-02-24

23:07:00

4.8.1. EXTRACT, date_part

EXTRACT (field FROMsource )

Theextract function retrieves sub-fields from date/time values, such as year or hour.source is a value
expression that evaluates to typetimestamp or interval . (Expressions of typedate or time will be
cast totimestamp and can therefore be used as well.)field is an identifier or string that selects what

67



Chapter 4. Functions and Operators

field to extract from the source value. Theextract function returns values of typedouble precision .
The following are valid values:

century

The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the conven-
tional definition which puts most years in the 1900’s in the twentieth century.

day

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 200

dow

The day of the week (0 - 6; Sunday is 0) (fortimestamp values only)

SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5

doy

The day of the year (1 - 365/366) (fortimestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 47

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (Result may
be negative.); forinterval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 982352320

SELECT EXTRACT(EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800

68



Chapter 4. Functions and Operators

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME ’17:12:28.5’);
Result: 28500000

millennium

The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5’);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 38

month

For timestamp values, the number of the month within the year (1 - 12) ; forinterval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

69



Chapter 4. Functions and Operators

quarter

The quarter of the year (1 - 4) that the day is in (fortimestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 1

second

The seconds field, including fractional parts (0 - 592)

SELECT EXTRACT(SECOND FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 40

SELECT EXTRACT(SECOND FROM TIME ’17:12:28.5’);
Result: 28.5

timezone_hour

The hour component of the time zone offset.

timezone_minute

The minute component of the time zone offset.

week

From atimestamp value, calculate the number of the week of the year that the day is in. By defi-
nition (ISO 8601), the first week of a year contains January 4 of that year. (The ISO week starts on
Monday.) In other words, the first Thursday of a year is in week 1 of that year.

SELECT EXTRACT(WEEK FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 7

year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time val-
ues for display, seeSection 4.7.

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-functionextract :

date_part(’ field ’, source )

Note that here thefield value needs to be a string. The valid field values fordate_part are the same
as forextract .

SELECT date_part(’day’, TIMESTAMP ’2001-02-16 20:38:40’);

60 if leap seconds are implemented by the operating system

70



Chapter 4. Functions and Operators

Result: 16

SELECT date_part(’hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

4.8.2. date_trunc

The functiondate_trunc is conceptually similar to thetrunc function for numbers.

date_trunc(’ field ’, source )

source is a value expression of typetimestamp (values of typedate andtime are cast automatically).
field selects to which precision to truncate the time stamp value. The return value is of typetimestamp

with all fields that are less than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute
hour
day
month
year
decade
century
millennium

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00+00

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00+00

4.8.3. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME ( precision )

71



Chapter 4. Functions and Operators

CURRENT_TIMESTAMP (precision )

CURRENT_TIMEandCURRENT_TIMESTAMPcan optionally be given a precision parameter, which causes
the result to be rounded to that many fractional digits. Without a precision parameter, the result is given
to full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Note: The SQL99 standard requires these functions to be written without any parentheses, unless a
precision parameter is given. As of PostgreSQL 7.2, an empty pair of parentheses can be written, but
this is deprecated and may be removed in a future release.

SELECT CURRENT_TIME;
14:39:53.662522-05

SELECT CURRENT_DATE;
2001-12-23

SELECT CURRENT_TIMESTAMP;
2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
2001-12-23 14:39:53.66-05

The functionnow() is the traditional PostgreSQL equivalent toCURRENT_TIMESTAMP.

There is alsotimeofday() , which for historical reasons returns a text string rather than atimestamp

value:

SELECT timeofday();
Sat Feb 17 19:07:32.000126 2001 EST

It is quite important to realize thatCURRENT_TIMESTAMPand related functions all return the time as
of the start of the current transaction; their values do not increment while a transaction is running. But
timeofday() returns the actual current time.

All the date/time data types also accept the special literal valuenow to specify the current date and time.
Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Note: You do not want to use the third form when specifying a DEFAULT value while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not

72



Chapter 4. Functions and Operators

be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

4.9. Geometric Functions and Operators
The geometric typespoint , box , lseg , line , path , polygon , andcircle have a large set of native
support functions and operators.

Table 4-18. Geometric Operators

Operator Description Usage

+ Translation box ’((0,0),(1,1))’ +

point ’(2.0,0)’

- Translation box ’((0,0),(1,1))’ -

point ’(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1))’ *

point ’(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2))’ /

point ’(2.0,0)’

# Intersection ’((1,-1),(-1,1))’ #

’((1,1),(-1,-1))’

# Number of points in polygon # ’((1,0),(0,1),(-1,0))’

## Point of closest proximity point ’(0,0)’ ## lseg

’((2,0),(0,2))’

&& Overlaps? box ’((0,0),(1,1))’ &&

box ’((0,0),(2,2))’

&< Overlaps to left? box ’((0,0),(1,1))’ & <

box ’((0,0),(2,2))’

&> Overlaps to right? box ’((0,0),(3,3))’ & >

box ’((0,0),(2,2))’

<-> Distance between circle ’((0,0),1)’ <- >

circle ’((5,0),1)’

<< Left of? circle ’((0,0),1)’ <<

circle ’((5,0),1)’

<^ Is below? circle ’((0,0),1)’ <^

circle ’((0,5),1)’

>> Is right of? circle ’((5,0),1)’ >>

circle ’((0,0),1)’

>^ Is above? circle ’((0,5),1)’ >^

circle ’((0,0),1)’

73



Chapter 4. Functions and Operators

Operator Description Usage

?# Intersects or overlaps lseg ’((-1,0),(1,0))’ ?#

box ’((-2,-2),(2,2))’

?- Is horizontal? point ’(1,0)’ ?- point

’(0,0)’

?-| Is perpendicular? lseg ’((0,0),(0,1))’ ?-|

lseg ’((0,0),(1,0))’

@-@ Length or circumference @-@ path ’((0,0),(1,0))’

?| Is vertical? point ’(0,1)’ ?| point

’(0,0)’

?|| Is parallel? lseg ’((-1,0),(1,0))’ ?||

lseg ’((-1,2),(1,2))’

@ Contained or on point ’(1,1)’ @ circle

’((0,0),2)’

@@ Center of @@ circle ’((0,0),10)’

~= Same as polygon ’((0,0),(1,1))’

~= polygon

’((1,1),(0,0))’

Table 4-19. Geometric Functions

Function Returns Description Example

area (object) double precision area of item area(box

’((0,0),(1,1))’)

box (box, box) box intersection box box(box

’((0,0),(1,1))’,box

’((0.5,0.5),(2,2))’)

center (object) point center of item center(box

’((0,0),(1,2))’)

diameter (circle) double precision diameter of circle diameter(circle

’((0,0),2.0)’)

height (box) double precision vertical size of box height(box

’((0,0),(1,1))’)

isclosed (path) boolean a closed path? isclosed(path

’((0,0),(1,1),(2,0))’)

isopen (path) boolean an open path? isopen(path

’[(0,0),(1,1),(2,0)]’)

length (object) double precision length of item length(path

’((-1,0),(1,0))’)

74



Chapter 4. Functions and Operators

Function Returns Description Example

pclose (path) path convert path to closed popen(path

’[(0,0),(1,1),(2,0)]’)

npoint (path) integer number of points npoints(path

’[(0,0),(1,1),(2,0)]’)

popen (path) path convert path to open pathpopen(path

’((0,0),(1,1),(2,0))’)

radius (circle) double precision radius of circle radius(circle

’((0,0),2.0)’)

width (box) double precision horizontal size width(box

’((0,0),(1,1))’)

Table 4-20. Geometric Type Conversion Functions

Function Returns Description Example

box (circle ) box circle to box box(circle

’((0,0),2.0)’)

box (point , point ) box points to box box(point ’(0,0)’,

point ’(1,1)’)

box (polygon ) box polygon to box box(polygon

’((0,0),(1,1),(2,0))’)

circle (box ) circle to circle circle(box

’((0,0),(1,1))’)

circle (point , double

precision )
circle point to circle circle(point

’(0,0)’, 2.0)

lseg (box ) lseg box diagonal to lseg lseg(box

’((-1,0),(1,0))’)

lseg (point , point ) lseg points to lseg lseg(point

’(-1,0)’, point

’(1,0)’)

path (polygon ) point polygon to path path(polygon

’((0,0),(1,1),(2,0))’)

point (circle ) point center point(circle

’((0,0),2.0)’)

point (lseg , lseg ) point intersection point(lseg

’((-1,0),(1,0))’,

lseg

’((-2,-2),(2,2))’)

75



Chapter 4. Functions and Operators

Function Returns Description Example

point (polygon ) point center point(polygon

’((0,0),(1,1),(2,0))’)

polygon (box ) polygon 12 point polygon polygon(box

’((0,0),(1,1))’)

polygon (circle ) polygon 12-point polygon polygon(circle

’((0,0),2.0)’)

polygon (npts ,
circle )

polygon npts polygon polygon(12, circle

’((0,0),2.0)’)

polygon (path ) polygon path to polygon polygon(path

’((0,0),(1,1),(2,0))’)

4.10. Network Address Type Functions

Table 4-21.cidr and inet Operators

Operator Description Usage

< Less than inet ’192.168.1.5’ < inet

’192.168.1.6’

<= Less than or equal inet ’192.168.1.5’ <=

inet ’192.168.1.5’

= Equals inet ’192.168.1.5’ = inet

’192.168.1.5’

>= Greater or equal inet ’192.168.1.5’ >=

inet ’192.168.1.5’

> Greater inet ’192.168.1.5’ > inet

’192.168.1.4’

<> Not equal inet ’192.168.1.5’ <>

inet ’192.168.1.4’

<< is contained within inet ’192.168.1.5’ <<

inet ’192.168.1/24’

<<= is contained within or equals inet ’192.168.1/24’ <<=

inet ’192.168.1/24’

>> contains inet’192.168.1/24’ >>

inet ’192.168.1.5’

>>= contains or equals inet ’192.168.1/24’ >>=

inet ’192.168.1/24’

All of the operators forinet can be applied tocidr values as well. The operators<<, <<=, >>, >>=

test for subnet inclusion: they consider only the network parts of the two addresses, ignoring any host part,
and determine whether one network part is identical to or a subnet of the other.

76



Chapter 4. Functions and Operators

Table 4-22.cidr and inet Functions

Function Returns Description Example Result

broadcast (inet ) inet broadcast address
for network

broadcast(’192.168.1.5/24’)192.168.1.255/24

host (inet ) text extract IP address
as text

host(’192.168.1.5/24’)192.168.1.5

masklen (inet ) integer extract netmask
length

masklen(’192.168.1.5/24’)24

set_masklen (inet ,integer )inet set netmask length
for inet value

set_masklen(’192.168.1.5/24’,16)192.168.1.5/16

netmask (inet ) inet construct netmask
for network

netmask(’192.168.1.5/24’)255.255.255.0

network (inet ) cidr extract network part
of address

network(’192.168.1.5/24’)192.168.1.0/24

text (inet ) text extract IP address
and masklen as text

text(inet

’192.168.1.5’)

192.168.1.5/32

abbrev (inet ) text extract abbreviated
display as text

abbrev(cidr

’10.1.0.0/16’)

10.1/16

All of the functions forinet can be applied tocidr values as well. Thehost (), text (), andabbrev ()
functions are primarily intended to offer alternative display formats. You can cast a text field to inet using
normal casting syntax:inet(expression) or colname::inet .

Table 4-23.macaddr Functions

Function Returns Description Example Result

trunc (macaddr ) macaddr set last 3 bytes to
zero

trunc(macaddr

’12:34:56:78:90:ab’)

12:34:56:00:00:00

The functiontrunc (macaddr ) returns a MAC address with the last 3 bytes set to 0. This can be used to
associate the remaining prefix with a manufacturer. The directorycontrib/mac in the source distribution
contains some utilities to create and maintain such an association table.

Themacaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-
ing.

4.11. Sequence-Manipulation Functions

Table 4-24. Sequence Functions

Function Returns Description

nextval (text ) bigint Advance sequence and return new
value

77



Chapter 4. Functions and Operators

Function Returns Description

currval (text ) bigint Return value most recently
obtained withnextval

setval (text ,bigint ) bigint Set sequence’s current value

setval (text ,bigint ,boolean ) bigint Set sequence’s current value and
is_called flag

This section describes PostgreSQL’s functions for operating onsequence objects. Sequence objects (also
called sequence generators or just sequences) are special single-row tables created withCREATE SE-
QUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The se-
quence functions provide simple, multiuser-safe methods for obtaining successive sequence values from
sequence objects.

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names, the
sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval(’foo’) operates on sequence foo

nextval(’FOO’) operates on sequence foo

nextval(’"Foo"’) operates on sequence Foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is occa-
sionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple server processes executenextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtained bynextval for this sequence in the current server process.
(An error is reported ifnextval has never been called for this sequence in this process.) Notice
that because this is returning a process-local value, it gives a predictable answer even if other server
processes are executingnextval meanwhile.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’slast_value

field to the specified value and sets itsis_called field to true , meaning that the nextnextval

will advance the sequence before returning a value. In the three-parameter form,is_called may
be set eithertrue or false . If it’s set to false , the nextnextval will return exactly the specified
value, and sequence advancement commences with the followingnextval . For example,

SELECT setval(’foo’, 42); Next nextval() will return 43
SELECT setval(’foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval() will return 42

The result returned bysetval is just the value of its second argument.

78



Chapter 4. Functions and Operators

Important: To avoid blocking of concurrent transactions that obtain numbers from the same sequence,
a nextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions may
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

If a sequence object has been created with default parameters,nextval() calls on it will return successive
values beginning with one. Other behaviors can be obtained by using special parameters in theCREATE
SEQUENCEcommand; see its command reference page for more information.

4.12. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

CASE

CASE WHENcondition THEN result
[WHEN ...]
[ELSE result ]

END

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other lan-
guages. CASE clauses can be used wherever an expression is valid.condition is an expression that
returns aboolean result. If the result is true then the value of the CASE expression isresult . If the re-
sult is false any subsequent WHEN clauses are searched in the same manner. If no WHENcondition
is true then the value of the case expression is theresult in the ELSE clause. If the ELSE clause is
omitted and no condition matches, the result is NULL.

An example:

=> SELECT * FROM test;
a

---

1

2

3

=> SELECT a,
CASE WHEN a=1 THEN ’one’

WHEN a=2 THEN ’two’
ELSE ’other’

END

79



Chapter 4. Functions and Operators

FROM test;
a | case

---+-------

1 | one

2 | two

3 | other

The data types of all theresult expressions must be coercible to a single output type. SeeSection 5.6
for more detail.

CASE expression
WHENvalue THEN result
[WHEN ...]
[ELSE result ]

END

This “simple” CASE expression is a specialized variant of the general form above. Theexpression is
computed and compared to all thevalue s in the WHEN clauses until one is found that is equal. If no
match is found, theresult in the ELSE clause (or NULL) is returned. This is similar to theswitch

statement in C.

The example above can be written using the simple CASE syntax:

=> SELECT a,
CASE a WHEN 1 THEN ’one’

WHEN 2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case

---+-------

1 | one

2 | two

3 | other

COALESCE

COALESCE( value [, ...])

TheCOALESCEfunction returns the first of its arguments that is not NULL. This is often useful to substi-
tute a default value for NULL values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, ’(none)’) ...

80



Chapter 4. Functions and Operators

NULLIF

NULLIF ( value1 , value2 )

TheNULLIF function returns NULL if and only ifvalue1 andvalue2 are equal. Otherwise it returns
value1 . This can be used to perform the inverse operation of theCOALESCEexample given above:

SELECT NULLIF(value, ’(none)’) ...

Tip: COALESCEand NULLIF are just shorthand for CASE expressions. They are actually converted into
CASE expressions at a very early stage of processing, and subsequent processing thinks it is dealing
with CASE. Thus an incorrect COALESCEor NULLIF usage may draw an error message that refers to
CASE.

4.13. Miscellaneous Functions

Table 4-25. Session Information Functions

Name Return Type Description

current_user name user name of current execution
context

session_user name session user name

user name equivalent tocurrent_user

The session_user is the user that initiated a database connection; it is fixed for the duration of that
connection. Thecurrent_user is the user identifier that is applicable for permission checking. Currently
it is always equal to the session user, but in the future there might be “setuid” functions and other facilities
to allow the current user to change temporarily. In Unix parlance, the session user is the “real user” and
the current user is the “effective user”.

Note that these functions have special syntactic status in SQL: they must be called without trailing paren-
theses.

Deprecated: The function getpgusername() is an obsolete equivalent of current_user .

Table 4-26. System Information Functions

Name Return Type Description

version text PostgreSQL version information

version() returns a string describing the PostgreSQL server’s version.

81



Chapter 4. Functions and Operators

Table 4-27. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user ,
table , access )

boolean does user have access to table

has_table_privilege (table ,
access )

boolean does current user have access to
table

has_table_privilege determines whether a user can access a table in a particular way. The user can
be specified by name or by ID (pg_user .usesysid ), or if the argument is omittedcurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.) The
desired access type is specified by a text string, which must evaluate to one of the valuesSELECT, INSERT,
UPDATE, DELETE, RULE, REFERENCES, or TRIGGER. (Case of the string is not significant, however.)

Table 4-28. Catalog Information Functions

Name Return Type Description

pg_get_viewdef (viewname ) text Get CREATE VIEW command
for view

pg_get_ruledef (rulename ) text Get CREATE RULE command
for rule

pg_get_indexdef (indexOID ) text Get CREATE INDEX command
for index

pg_get_userbyid (userid ) name Get user name given ID

These functions extract information from the system catalogs.pg_get_viewdef() ,
pg_get_ruledef() , and pg_get_indexdef() respectively reconstruct the creating command for
a view, rule, or index. (Note that this is a decompiled reconstruction, not the verbatim text of the
command.)pg_get_userbyid() extracts a user’s name given ausesysid value.

Table 4-29. Comment Information Functions

Name Return Type Description

obj_description (objectOID ,
tablename )

text Get comment for a database
object

obj_description (objectOID )text Get comment for a database
object (deprecated)

col_description (tableOID ,
columnnumber )

text Get comment for a table column

These functions extract comments previously stored with theCOMMENT command.NULL is returned if
no comment can be found matching the specified parameters.

The two-parameter form of obj_description() returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,’pg_class’) would retrieve the comment for a table with OID 123456.

82



Chapter 4. Functions and Operators

The one-parameter form ofobj_description() requires only the object OID. It is now deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment could be returned.

col_description() returns the comment for a table column, which is specified by the OID of its table
and its column number.obj_description() cannot be used for table columns since columns do not
have OIDs of their own.

4.14. Aggregate Functions

Author: Written by Isaac Wilcox <isaac@azartmedia.com > on 2000-06-16

Aggregate functionscompute a single result value from a set of input values. The special syntax con-
siderations for aggregate functions are explained inSection 1.3.5. Consult thePostgreSQL Tutorialfor
additional introductory information.

Table 4-30. Aggregate Functions

Function Description Notes

AVG(expression ) the average (arithmetic mean) of
all input values

Finding the average value is
available on the following data
types:smallint , integer ,
bigint , real , double

precision , numeric ,
interval . The result is of type
numeric for any integer type
input,double precision for
floating-point input, otherwise the
same as the input data type.

count (*) number of input values The return value is of type
bigint .

count (expression ) Counts the input values for which
the value ofexpression is not
NULL.

The return value is of type
bigint .

max(expression ) the maximum value of
expression across all input
values

Available for all numeric, string,
and date/time types. The result
has the same type as the input
expression.

min (expression ) the minimum value of
expression across all input
values

Available for all numeric, string,
and date/time types. The result
has the same type as the input
expression.

83



Chapter 4. Functions and Operators

Function Description Notes

stddev (expression ) the sample standard deviation of
the input values

Finding the standard deviation is
available on the following data
types:smallint , integer ,
bigint , real , double

precision , numeric . The result
is of typedouble precision

for floating-point input, otherwise
numeric .

sum(expression ) sum ofexpression across all
input values

Summation is available on the
following data types:smallint ,
integer , bigint , real ,
double precision , numeric ,
interval . The result is of type
bigint for smallint or
integer input,numeric for
bigint input,double

precision for floating-point
input, otherwise the same as the
input data type.

variance (expression ) the sample variance of the input
values

The variance is the square of the
standard deviation. The supported
data types and result types are the
same as for standard deviation.

It should be noted that except forCOUNT, these functions return NULL when no rows are selected. In par-
ticular,SUMof no rows returns NULL, not zero as one might expect.COALESCEmay be used to substitute
zero for NULL when necessary.

4.15. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

EXISTS

EXISTS ( subquery )

The argument of EXISTS is an arbitrary SELECT statement, orsubquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is TRUE; if the
subquery returns no rows, the result of EXISTS is FALSE.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned,
not all the way to completion. It is unwise to write a subquery that has any side-effects (such as calling
sequence functions); whether the side-effects occur or not may be difficult to predict.

84



Chapter 4. Functions and Operators

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally uninteresting. A common coding convention is to write all EXISTS
tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1
row, even if there are multiple matching tab2 rows:

SELECT col1 FROM tab1
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

IN (scalar form)

expression IN ( value [, ...])

The right-hand side of this form of IN is a parenthesized list of scalar expressions. The result is TRUE if
the left-hand expression’s result is equal to any of the right-hand expressions. This is a shorthand notation
for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields NULL, or if there are no equal right-hand values and at least
one right-hand expression yields NULL, the result of the IN construct will be NULL, not FALSE. This is
in accordance with SQL’s normal rules for Boolean combinations of NULL values.

Note: This form of IN is not truly a subquery expression, but it seems best to document it in the same
place as subquery IN.

IN (subquery form)

expression IN ( subquery )

The right-hand side of this form of IN is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result. The result of IN
is TRUE if any equal subquery row is found. The result is FALSE if no equal row is found (including the
special case where the subquery returns no rows).

Note that if the left-hand expression yields NULL, or if there are no equal right-hand values and at least
one right-hand row yields NULL, the result of the IN construct will be NULL, not FALSE. This is in
accordance with SQL’s normal rules for Boolean combinations of NULL values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression , expression [, ...]) IN ( subquery )

85



Chapter 4. Functions and Operators

The right-hand side of this form of IN is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result. The result of IN is TRUE if any equal subquery row
is found. The result is FALSE if no equal row is found (including the special case where the subquery
returns no rows).

As usual, NULLs in the expressions or subquery rows are combined per the normal rules of SQL Boolean
expressions. Two rows are considered equal if all their corresponding members are non-null and equal;
the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of that
row comparison is unknown (NULL). If all the row results are either unequal or NULL, with at least one
NULL, then the result of IN is NULL.

NOT IN (scalar form)

expression NOT IN ( value [, ...])

The right-hand side of this form of NOT IN is a parenthesized list of scalar expressions. The result is
TRUE if the left-hand expression’s result is unequal to all of the right-hand expressions. This is a shorthand
notation for

expression <> value1
AND
expression <> value2
AND
...

Note that if the left-hand expression yields NULL, or if there are no equal right-hand values and at least
one right-hand expression yields NULL, the result of the NOT IN construct will be NULL, not TRUE
as one might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of
NULL values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, NULLs are much more likely
to trip up the novice when working with NOT IN than when working with IN. It’s best to express your
condition positively if possible.

NOT IN (subquery form)

expression NOT IN ( subquery )

The right-hand side of this form of NOT IN is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result. The
result of NOT IN is TRUE if only unequal subquery rows are found (including the special case where the
subquery returns no rows). The result is FALSE if any equal row is found.

Note that if the left-hand expression yields NULL, or if there are no equal right-hand values and at least
one right-hand row yields NULL, the result of the NOT IN construct will be NULL, not TRUE. This is in
accordance with SQL’s normal rules for Boolean combinations of NULL values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression , expression [, ...]) NOT IN ( subquery )

86



Chapter 4. Functions and Operators

The right-hand side of this form of NOT IN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and
compared row-wise to each row of the subquery result. The result of NOT IN is TRUE if only unequal
subquery rows are found (including the special case where the subquery returns no rows). The result is
FALSE if any equal row is found.

As usual, NULLs in the expressions or subquery rows are combined per the normal rules of SQL Boolean
expressions. Two rows are considered equal if all their corresponding members are non-null and equal;
the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of that
row comparison is unknown (NULL). If all the row results are either unequal or NULL, with at least one
NULL, then the result of NOT IN is NULL.

ANY

expression operator ANY (subquery )
expression operator SOME (subquery )

The right-hand side of this form of ANY is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using the
given operator , which must yield a Boolean result. The result of ANY is TRUE if any true result is
obtained. The result is FALSE if no true result is found (including the special case where the subquery
returns no rows).

SOME is a synonym for ANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields NULL for the operator’s result,
the result of the ANY construct will be NULL, not FALSE. This is in accordance with SQL’s normal rules
for Boolean combinations of NULL values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression , expression [, ...]) operator ANY (subquery )
( expression , expression [, ...]) operator SOME (subquery )

The right-hand side of this form of ANY is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the givenoperator . Presently, only= and<>
operators are allowed in row-wise ANY queries. The result of ANY is TRUE if any equal or unequal row
is found, respectively. The result is FALSE if no such row is found (including the special case where the
subquery returns no rows).

As usual, NULLs in the expressions or subquery rows are combined per the normal rules of SQL Boolean
expressions. Two rows are considered equal if all their corresponding members are non-null and equal;
the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of that
row comparison is unknown (NULL). If there is at least one NULL row result, then the result of ANY
cannot be FALSE; it will be TRUE or NULL.

ALL

expression operator ALL ( subquery )

The right-hand side of this form of ALL is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using the

87



Chapter 4. Functions and Operators

givenoperator , which must yield a Boolean result. The result of ALL is TRUE if all rows yield TRUE
(including the special case where the subquery returns no rows). The result is FALSE if any false result is
found.

NOT IN is equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields NULL for the operator’s result, the
result of the ALL construct will be NULL, not TRUE. This is in accordance with SQL’s normal rules for
Boolean combinations of NULL values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression , expression [, ...]) operator ALL ( subquery )

The right-hand side of this form of ALL is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the givenoperator . Presently, only= and
<> operators are allowed in row-wise ALL queries. The result of ALL is TRUE if all subquery rows are
equal or unequal, respectively (including the special case where the subquery returns no rows). The result
is FALSE if any row is found to be unequal or equal, respectively.

As usual, NULLs in the expressions or subquery rows are combined per the normal rules of SQL Boolean
expressions. Two rows are considered equal if all their corresponding members are non-null and equal;
the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of that
row comparison is unknown (NULL). If there is at least one NULL row result, then the result of ALL
cannot be TRUE; it will be FALSE or NULL.

Row-wise comparison

( expression , expression [, ...]) operator ( subquery )
( expression , expression [, ...]) operator ( expression , expression [, ...])

The left-hand side is a list of scalar expressions. The right-hand side can be either a list of scalar expres-
sions of the same length, or a parenthesized subquery, which must return exactly as many columns as
there are expressions on the left-hand side. Furthermore, the subquery cannot return more than one row.
(If it returns zero rows, the result is taken to be NULL.) The left-hand side is evaluated and compared
row-wise to the single subquery result row, or to the right-hand expression list. Presently, only= and<>
operators are allowed in row-wise comparisons. The result is TRUE if the two rows are equal or unequal,
respectively.

As usual, NULLs in the expressions or subquery rows are combined per the normal rules of SQL Boolean
expressions. Two rows are considered equal if all their corresponding members are non-null and equal;
the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of the
row comparison is unknown (NULL).

88



Chapter 5. Type Conversion

5.1. Introduction
SQL queries can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. However,
the implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these
results can be tailored by a user or programmer usingexplicit type coercion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections inChapter 3andChapter 4for more information on specific data types and allowed functions
and operators.

TheProgrammer’s Guidehas more details on the exact algorithms used for implicit type conversion and
coercion.

5.2. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. PostgreSQL has an extensible type system that is much more general
and flexible than other RDBMS implementations. Hence, most type conversion behavior in PostgreSQL
should be governed by general rules rather than byad hocheuristics, to allow mixed-type expressions to
be meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: integers,
floating-point numbers, strings, names, and key words. Most extended types are first tokenized into strings.
The SQL language definition allows specifying type names with strings, and this mechanism can be used
in PostgreSQL to start the parser down the correct path. For example, the query

tgl=> SELECT text ’Origin’ AS "Label", point ’(0,0)’ AS "Value";
Label | Value

--------+-------
Origin | (0,0)

(1 row)

has two literal constants, of typetext andpoint . If a type is not specified for a string literal, then the
placeholder typeunknownis assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators.

89



Chapter 5. Type Conversion

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls have one
or more arguments which, for any specific query, must be matched to the functions available in the
system catalog. Since PostgreSQL permits function overloading, the function name alone does not
uniquely identify the function to be called; the parser must select the right function based on the data
types of the supplied arguments.

Query targets

SQL INSERT andUPDATE statements place the results of expressions into a table. The expressions
in the query must be matched up with, and perhaps converted to, the types of the target columns.

UNIONandCASEconstructs

Since all select results from a unionizedSELECTstatement must appear in a single set of columns,
the types of the results of eachSELECTclause must be matched up and converted to a uniform set.
Similarly, the result expressions of aCASEconstruct must be coerced to a common type so that the
CASEexpression as a whole has a known output type.

Many of the general type conversion rules use simple conventions built on the PostgreSQL function and
operator system tables. There are some heuristics included in the conversion rules to better support con-
ventions for the SQL standard native types such assmallint , integer , andreal .

The PostgreSQL parser uses the convention that all type conversion functions take a single argument
of the source type and are named with the same name as the target type. Any function meeting these
criteria is considered to be a valid conversion function, and may be used by the parser as such. This
simple assumption gives the parser the power to explore type conversion possibilities without hardcoding,
allowing extended user-defined types to use these same features transparently.

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL stan-
dard types. There are several basictype categoriesdefined:boolean , numeric , string , bitstring ,
datetime , timespan , geometric , network , and user-defined. Each category, with the exception of
user-defined, has apreferred typewhich is preferentially selected when there is ambiguity. In the user-
defined category, each type is its own preferred type. Ambiguous expressions (those with multiple candi-
date parsing solutions) can often be resolved when there are multiple possible built-in types, but they will
raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

• Implicit conversions should never have surprising or unpredictable outcomes.
• User-defined types, of which the parser has noa priori knowledge, should be “higher” in the type

hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type (of
course, only if conversion is necessary).

• User-defined types are not related. Currently, PostgreSQL does not have information available to it on
relationships between types, other than hardcoded heuristics for built-in types and implicit relationships
based on available functions in the catalog.

• There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query should
proceed without spending extra time in the parser and without introducing unnecessary implicit con-
version functions into the query.

90



Chapter 5. Type Conversion

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines an explicit function with the correct argument types, the parser should use this new function
and will no longer do the implicit conversion using the old function.

5.3. Operators
The operand types of an operator invocation are resolved following the procedure below. Note that this
procedure is indirectly affected by the precedence of the involved operators. SeeSection 1.4for more
information.

Operand Type Resolution

1. Check for an exact match in thepg_operator system catalog.

a. If one argument of a binary operator isunknown type, then assume it is the same type as
the other argument for this check. Other cases involvingunknown will never find a match
at this step.

2. Look for the best match.

a. Make a list of all operators of the same name for which the input types match or can be co-
erced to match. (unknown literals are assumed to be coercible to anything for this purpose.)
If there is only one, use it; else continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have any exact matches. If only one candidate remains, use it; else
continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible matches
on input types. Keep all candidates if none have any exact or binary-compatible matches. If
only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most positions
where type coercion will be required. Keep all candidates if none accept preferred types. If
only one candidate remains, use it; else continue to the next step.

e. If any input arguments are “unknown”, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the "string" category if any
candidate accepts that category (this bias towards string is appropriate since an unknown-
type literal does look like a string). Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Also note whether any of the candidates accept a preferred
data type within the selected category. Now discard operator candidates that do not accept
the selected type category; furthermore, if any candidate accepts a preferred type at a given
argument position, discard candidates that accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

91



Chapter 5. Type Conversion

Examples

Example 5-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of typedouble

precision . The scanner assigns an initial type ofinteger to both arguments of this query expression:

tgl=> SELECT 2 ^ 3 AS "Exp";
Exp

-----
8

(1 row)

So the parser does a type conversion on both operands and the query is equivalent to
tgl=> SELECT CAST(2 AS double precision) ^ CAST(3 AS double precision) AS "Exp";

Exp
-----

8
(1 row)

or
tgl=> SELECT 2.0 ^ 3.0 AS "Exp";

Exp
-----

8
(1 row)

Note: This last form has the least overhead, since no functions are called to do implicit type conver-
sion. This is not an issue for small queries, but may have an impact on the performance of queries
involving large tables.

Example 5-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex extended
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

tgl=> SELECT text ’abc’ || ’def’ AS "Text and Unknown";
Text and Unknown

------------------
abcdef

(1 row)

In this case the parser looks to see if there is an operator takingtext for both arguments. Since there is,
it assumes that the second argument should be interpreted as of typetext .

Concatenation on unspecified types:

tgl=> SELECT ’abc’ || ’def’ AS "Unspecified";
Unspecified

92



Chapter 5. Type Conversion

-------------
abcdef

(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the “preferred type” for strings,text , is used as the specific type to resolve the unknown literals
to.

Example 5-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator@, all of which implement
absolute-value operations for various numeric data types. One of these entries is for typefloat8 , which
is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
a non-numeric input:

tgl=> select @ text ’-4.5’ as "abs";
abs

-----
4.5

(1 row)

Here the system has performed an implicit text-to-float8 conversion before applying the chosen operator.
We can verify that float8 and not some other type was used:
tgl=> select @ text ’-4.5e500’ as "abs";
ERROR: Input ’-4.5e500’ is out of range for float8

On the other hand, the postfix operator! (factorial) is defined only for integer data types, not for float8.
So, if we try a similar case with! , we get:

tgl=> select text ’44’ ! as "factorial";
ERROR: Unable to identify a postfix operator ’!’ for type ’text’

You may need to add parentheses or an explicit cast

This happens because the system can’t decide which of the several possible! operators should be pre-
ferred. We can help it out with an explicit cast:
tgl=> select cast(text ’44’ as int8) ! as "factorial";

factorial
---------------------

2673996885588443136
(1 row)

5.4. Functions
The argument types of function calls are resolved according to the following steps.

93



Chapter 5. Type Conversion

Function Argument Type Resolution

1. Check for an exact match in thepg_proc system catalog. (Cases involvingunknown will never find
a match at this step.)

2. If no exact match appears in the catalog, see whether the function call appears to be a trivial type
coercion request. This happens if the function call has just one argument and the function name is
the same as the (internal) name of some data type. Furthermore, the function argument must be either
an unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is coerced to the named data type without any explicit
function call.

3. Look for the best match.

a. Make a list of all functions of the same name with the same number of arguments for which
the input types match or can be coerced to match. (unknown literals are assumed to be
coercible to anything for this purpose.) If there is only one, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have any exact matches. If only one candidate remains, use it; else
continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible matches
on input types. Keep all candidates if none have any exact or binary-compatible matches. If
only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most positions
where type coercion will be required. Keep all candidates if none accept preferred types. If
only one candidate remains, use it; else continue to the next step.

e. If any input arguments areunknown , check the type categories accepted at those argument
positions by the remaining candidates. At each position, select thestring category if any
candidate accepts that category (this bias towards string is appropriate since an unknown-
type literal does look like a string). Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot be
deduced without more clues. Also note whether any of the candidates accept a preferred data
type within the selected category. Now discard candidates that do not accept the selected
type category; furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Examples

Example 5-4. Factorial Function Argument Type Resolution

There is only oneint4fac function defined in thepg_proc catalog. So the following query automatically
converts theint2 argument toint4 :

tgl=> SELECT int4fac(int2 ’4’);
int4fac

94



Chapter 5. Type Conversion

---------
24

(1 row)

and is actually transformed by the parser to
tgl=> SELECT int4fac(int4(int2 ’4’));

int4fac
---------

24
(1 row)

Example 5-5. Substring Function Type Resolution

There are twosubstr functions declared inpg_proc . However, only one takes two arguments, of types
text andint4 .

If called with a string constant of unspecified type, the type is matched up directly with the only candidate
function type:

tgl=> SELECT substr(’1234’, 3);
substr

--------
34

(1 row)

If the string is declared to be of typevarchar , as might be the case if it comes from a table, then the
parser will try to coerce it to becometext :

tgl=> SELECT substr(varchar ’1234’, 3);
substr

--------
34

(1 row)

which is transformed by the parser to become
tgl=> SELECT substr(text(varchar ’1234’), 3);

substr
--------

34
(1 row)

Note: Actually, the parser is aware that text and varchar are binary-compatible, meaning that one
can be passed to a function that accepts the other without doing any physical conversion. Therefore,
no explicit type conversion call is really inserted in this case.

And, if the function is called with anint4 , the parser will try to convert that totext :

tgl=> SELECT substr(1234, 3);
substr

--------
34

95



Chapter 5. Type Conversion

(1 row)

which actually executes as
tgl=> SELECT substr(text(1234), 3);

substr
--------

34
(1 row)

This succeeds because there is a conversion function text(int4) in the system catalog.

5.5. Query Targets
Values to be inserted into a table are coerced to the destination column’s data type according to the
following steps.

Query Target Type Resolution

1. Check for an exact match with the target.

2. Otherwise, try to coerce the expression to the target type. This will succeed if the two types are known
binary-compatible, or if there is a conversion function. If the expression is an unknown-type literal,
the contents of the literal string will be fed to the input conversion routine for the target type.

3. If the target is a fixed-length type (e.g.char or varchar declared with a length) then try to find a
sizing function for the target type. A sizing function is a function of the same name as the type, taking
two arguments of which the first is that type and the second is an integer, and returning the same type.
If one is found, it is applied, passing the column’s declared length as the second parameter.

Example 5-6.character Storage Type Conversion

For a target column declared ascharacter(20) the following query ensures that the target is sized
correctly:

tgl=> CREATE TABLE vv (v character(20));
CREATE
tgl=> INSERT INTO vv SELECT ’abc’ || ’def’;
INSERT 392905 1
tgl=> SELECT v, length(v) FROM vv;

v | length
----------------------+--------

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved totext by default, allowing
the || operator to be resolved astext concatenation. Then thetext result of the operator is coerced to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the parser knows thattext andbpchar are binary-compatible, this coercion is implicit and
does not insert any real function call.) Finally, the sizing functionbpchar(bpchar, integer) is found
in the system catalogs and applied to the operator’s result and the stored column length. This type-specific
function performs the required length check and addition of padding spaces.

96



Chapter 5. Type Conversion

5.6. UNIONand CASEConstructs
SQL UNIONconstructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. TheINTERSECTandEXCEPT

constructs resolve dissimilar types in the same way asUNION. A CASEconstruct also uses the identical
algorithm to match up its component expressions and select a result data type.

UNIONand CASEType Resolution

1. If all inputs are of typeunknown , resolve as typetext (the preferred type for string category).
Otherwise, ignore theunknown inputs while choosing the type.

2. If the non-unknown inputs are not all of the same type category, fail.

3. If one or more non-unknown inputs are of a preferred type in that category, resolve as that type.

4. Otherwise, resolve as the type of the first non-unknown input.

5. Coerce all inputs to the selected type.

Examples

Example 5-7. Underspecified Types in a Union

tgl=> SELECT text ’a’ AS "Text" UNION SELECT ’b’;
Text

------
a
b

(2 rows)

Here, the unknown-type literal’b’ will be resolved as type text.

Example 5-8. Type Conversion in a Simple Union

tgl=> SELECT 1.2 AS "Double" UNION SELECT 1;
Double

--------
1

1.2
(2 rows)

The literal1.2 is of typedouble precision , the preferred type in the numeric category, so that type is
used.

97



Chapter 5. Type Conversion

Example 5-9. Type Conversion in a Transposed Union

Here the output type of the union is forced to match the type of the first clause in the union:

tgl=> SELECT 1 AS "All integers"
tgl-> UNION SELECT CAST(’2.2’ AS REAL);

All integers
--------------

1
2

(2 rows)

SinceREAL is not a preferred type, the parser sees no reason to select it overINTEGER (which is what
the 1 is), and instead falls back on the use-the-first-alternative rule. This example demonstrates that the
preferred-type mechanism doesn’t encode as much information as we’d like. Future versions of Post-
greSQL may support a more general notion of type preferences.

98



Chapter 6. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in type or user-defined type can be created. To illustrate their use, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brackets ([] ) to the data type name of
the array elements. The above query will create a table namedsal_emp with a text string (name), a
one-dimensional array of typeinteger (pay_by_quarter ), which represents the employee’s salary
by quarter, and a two-dimensional array oftext (schedule ), which represents the employee’s weekly
schedule.

Now we do someINSERTs. Observe that to write an array value, we enclose the element values within
curly braces and separate them by commas. If you know C, this is not unlike the syntax for initializing
structures.

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
’{20000, 25000, 25000, 25000}’,
’{{"talk", "consult"}, {"meeting"}}’);

Now, we can run some queries onsal_emp . First, we show how to access a single element of an array at
a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

name
-------

Carol
(1 row)

The array subscript numbers are written within square brackets. PostgreSQL uses the “one-based” num-
bering convention for arrays, that is, an array ofn elements starts witharray[1] and ends withar-

ray[ n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter
----------------

99



Chapter 6. Arrays

10000
25000

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by writ-
ing lower subscript : upper subscript for one or more array dimensions. This query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

schedule
--------------------

{{"meeting"},{""}}
(1 row)

We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’Bill’;

with the same result. An array subscripting operation is taken to represent an array slice if any of the
subscripts are written in the formlower : upper . A lower bound of 1 is assumed for any subscript
where only one value is specified.

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
WHERE name = ’Carol’;

or updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
WHERE name = ’Carol’;

An array can be enlarged by assigning to an element adjacent to those already present, or by assigning to
a slice that is adjacent to or overlaps the data already present. For example, if an array value currently has
4 elements, it will have five elements after an update that assigns to array[5]. Currently, enlargement in
this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

The syntax forCREATE TABLE allows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
squares integer[3][3]

);

However, the current implementation does not enforce the array size limits --- the behavior is the same as
for arrays of unspecified length.

100



Chapter 6. Arrays

Actually, the current implementation does not enforce the declared number of dimensions either. Arrays
of a particular element type are all considered to be of the same type, regardless of size or number of
dimensions.

The current dimensions of any array value can be retrieved with thearray_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’Carol’;

array_dims
------------

[1:2][1:1]
(1 row)

array_dims produces atext result, which is convenient for people to read but perhaps not so convenient
for programs.

To search for a value in an array, you must check each value of the array. This can be done by hand (if
you know the size of the array):

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. Although it is not part of the primary PostgreSQL distribution, there is an extension available
that defines new functions and operators for iterating over array values. Using this, the above query could
be:

SELECT * FROM sal_emp WHERE pay_by_quarter[1:4] *= 10000;

To search the entire array (not just specified columns), you could use:

SELECT * FROM sal_emp WHERE pay_by_quarter *= 10000;

In addition, you could find rows where the array had all values equal to 10 000 with:

SELECT * FROM sal_emp WHERE pay_by_quarter **= 10000;

To install this optional module, look in thecontrib/array directory of the PostgreSQL source distribu-
tion.

Tip: Arrays are not sets; using arrays in the manner described in the previous paragraph is often a
sign of database misdesign. The array field should generally be split off into a separate table. Tables
can obviously be searched easily.

Note: A limitation of the present array implementation is that individual elements of an array cannot
be SQL NULLs. The entire array can be set to NULL, but you can’t have an array with some elements
NULL and some not. Fixing this is on the to-do list.

101



Chapter 6. Arrays

Quoting array elements. As shown above, when writing an array literal value you may write double
quotes around any individual array element. Youmustdo so if the element value would otherwise confuse
the array-value parser. For example, elements containing curly braces, commas, double quotes, back-
slashes, or white space must be double-quoted. To put a double quote or backslash in an array element
value, precede it with a backslash.

Tip: Remember that what you write in an SQL query will first be interpreted as a string literal, and
then as an array. This doubles the number of backslashes you need. For example, to insert a text

array value containing a backslash and a double quote, you’d need to write

INSERT ... VALUES (’{"\\\\","\\""}’);

The string-literal processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\","\""} . In turn, the strings fed to the text data type’s input routine become \

and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the query to get one
backslash into the stored array element.)

102



Chapter 7. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

7.1. Introduction
The classical example for the need of an index is if there is a table similar to this:

CREATE TABLE test1 (
id integer,
content varchar

);

and the application requires a lot of queries of the form

SELECT content FROM test1 WHERE id = constant ;

Ordinarily, the system would have to scan the entiretest1 table row by row to find all matching entries.
If there are a lot of rows intest1 and only a few rows (possibly zero or one) returned by the query, then
this is clearly an inefficient method. If the system were instructed to maintain an index on theid column,
then it could use a more efficient method for locating matching rows. For instance, it might only have to
walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: Terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can scan
the index relatively quickly and flip to the appropriate page, and would not have to read the entire book
to find the interesting location. As it is the task of the author to anticipate the items that the readers are
most likely to look up, it is the task of the database programmer to foresee which indexes would be of
advantage.

The following command would be used to create the index on theid column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The nametest1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use theDROP INDEX command. Indexes can be added to and removed from tables
at any time.

Once the index is created, no further intervention is required: the system will use the index when it thinks
it would be more efficient than a sequential table scan. But you may have to run theANALYZE command
regularly to update statistics to allow the query planner to make educated decisions. Also readChapter 11
for information about how to find out whether an index is used and when and why the planner may choose
to not use an index.

Indexes can benefitUPDATEs andDELETE s with search conditions. Indexes can also be used in join
queries. Thus, an index defined on a column that is part of a join condition can significantly speed up
queries with joins.

103



Chapter 7. Indexes

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should be
removed. Note that a query or data manipulation command can use at most one index per table.

7.2. Index Types
PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type is more ap-
propriate for a particular query type because of the algorithm it uses. By default, theCREATE INDEX
command will create a B-tree index, which fits the most common situations. In particular, the PostgreSQL
query optimizer will consider using a B-tree index whenever an indexed column is involved in a compar-
ison using one of these operators:<, <=, =, >=, >

R-tree indexes are especially suited for spatial data. To create an R-tree index, use a command of the form

CREATE INDEXname ON table USING RTREE (column );

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators:<<, &<, &>, >>, @, ~=, && (Refer toSection 4.9
about the meaning of these operators.)

The query optimizer will consider using a hash index whenever an indexed column is involved in a com-
parison using the= operator. The following command is used to create a hash index:

CREATE INDEXname ON table USING HASH (column );

Note: Because of the limited utility of hash indexes, a B-tree index should generally be preferred over
a hash index. We do not have sufficient evidence that hash indexes are actually faster than B-trees
even for = comparisons. Moreover, hash indexes require coarser locks; see Section 9.7.

The B-tree index is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index
method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index is an
implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that all of
these access methods are fully dynamic and do not have to be optimized periodically (as is the case with,
for example, static hash access methods).

7.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);

(Say, you keep your/dev directory in a database...) and you frequently make queries like

104



Chapter 7. Indexes

SELECT name FROM test2 WHERE major = constant AND minor = constant ;

then it may be appropriate to define an index on the columnsmajor andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 16 columns
may be specified. (This limit can be altered when building PostgreSQL; see the filepg_config.h .)

The query optimizer can use a multicolumn index for queries that involve the firstn consecutive columns
in the index (when used with appropriate operators), up to the total number of columns specified in the
index definition. For example, an index on(a, b, c) can be used in queries involving all ofa, b, andc ,
or in queries involving botha andb, or in queries involving onlya, but not in other combinations. (In a
query involvinga andc the optimizer might choose to use the index fora only and treatc like an ordinary
unindexed column.)

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined withAND.
For instance,

SELECT name FROM test2 WHERE major = constant OR minor = constant ;

cannot make use of the indextest2_mm_idx defined above to look up both columns. (It can be used to
look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are almost certainly inappropriate.

7.4. Unique Indexes
Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEXname ON table ( column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
NULL values are not considered equal.

PostgreSQL automatically creates unique indexes when a table is declared with a unique constraint or a
primary key, on the columns that make up the primary key or unique columns (a multicolumn index, if
appropriate), to enforce that constraint. A unique index can be added to a table at any later time, to add a
unique constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly.

105



Chapter 7. Indexes

7.5. Functional Indexes
For afunctional index, an index is defined on the result of a function applied to one or more columns of
a single table. Functional indexes can be used to obtain fast access to data based on the result of function
calls.

For example, a common way to do case-insensitive comparisons is to use thelower function:

SELECT * FROM test1 WHERE lower(col1) = ’value’;

This query can use an index, if one has been defined on the result of thelower(column) operation:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

The function in the index definition can take more than one argument, but they must be table columns, not
constants. Functional indexes are always single-column (namely, the function result) even if the function
uses more than one input field; there cannot be multicolumn indexes that contain function calls.

Tip: The restrictions mentioned in the previous paragraph can easily be worked around by defining a
custom function to use in the index definition that computes any desired result internally.

7.6. Operator Classes
An index definition may specify anoperator classfor each column of an index.

CREATE INDEXname ON table ( column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on four-byte integers would use theint4_ops class; this operator class includes comparison
functions for four-byte integers. In practice the default operator class for the column’s data type is usually
sufficient. The main point of having operator classes is that for some data types, there could be more
than one meaningful ordering. For example, we might want to sort a complex-number data type either
by absolute value or by real part. We could do this by defining two operator classes for the data type and
then selecting the proper class when making an index. There are also some operator classes with special
purposes:

• The operator classesbox_ops andbigbox_ops both support R-tree indexes on thebox data type.
The difference between them is thatbigbox_ops scales box coordinates down, to avoid floating-point
exceptions from doing multiplication, addition, and subtraction on very large floating-point coordi-
nates. If the field on which your rectangles lie is about 20 000 units square or larger, you should use
bigbox_ops .

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,

106



Chapter 7. Indexes

opc.opcname AS ops_name,
opr.oprname AS ops_comp

FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND

amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid

ORDER BY acc_method, ops_name, ops_comp

7.7. Keys

Author: Written by Herouth Maoz (<herouth@oumail.openu.ac.il >). This originally appeared on
the User’s Mailing List on 1998-03-02 in response to the question: "What is the difference between
PRIMARY KEY and UNIQUE constraints?".

Subject: Re: [QUESTIONS] PRIMARY KEY | UNIQUE

What’s the difference between:

PRIMARY KEY(fields,...) and
UNIQUE (fields,...)

- Is this an alias?
- If PRIMARY KEY is already unique, then why
is there another kind of key named UNIQUE?

A primary key is the field(s) used to identify a specific row. For example, Social Security numbers identi-
fying a person.

A simply UNIQUE combination of fields has nothing to do with identifying the row. It’s simply an in-
tegrity constraint. For example, I have collections of links. Each collection is identified by a unique num-
ber, which is the primary key. This key is used in relations.

However, my application requires that each collection will also have a unique name. Why? So that a
human being who wants to modify a collection will be able to identify it. It’s much harder to know, if you
have two collections named “Life Science”, the one tagged 24433 is the one you need, and the one tagged
29882 is not.

So, the user selects the collection by its name. We therefore make sure, within the database, that names
are unique. However, no other table in the database relates to the collections table by the collection Name.
That would be very inefficient.

107



Chapter 7. Indexes

Moreover, despite being unique, the collection name does not actually define the collection! For example,
if somebody decided to change the name of the collection from “Life Science” to “Biology”, it will still
be the same collection, only with a different name. As long as the name is unique, that’s OK.

So:

• Primary key:

• Is used for identifying the row and relating to it.
• Is impossible (or hard) to update.
• Should not allow NULLs.

• Unique field(s):
• Are used as an alternative access to the row.
• Are updatable, so long as they are kept unique.
• NULLs are acceptable.

As for why no non-unique keys are defined explicitly in standard SQL syntax? Well, you must understand
that indexes are implementation-dependent. SQL does not define the implementation, merely the relations
between data in the database. PostgreSQL does allow non-unique indexes, but indexes used to enforce
SQL keys are always unique.

Thus, you may query a table by any combination of its columns, despite the fact that you don’t have an
index on these columns. The indexes are merely an implementation aid that each RDBMS offers you, in
order to cause commonly used queries to be done more efficiently. Some RDBMS may give you additional
measures, such as keeping a key stored in main memory. They will have a special command, for example

CREATE MEMSTORE ONtable COLUMNScols

(This is not an existing command, just an example.)

In fact, when you create a primary key or a unique combination of fields, nowhere in the SQL specification
does it say that an index is created, nor that the retrieval of data by the key is going to be more efficient
than a sequential scan!

So, if you want to use a combination of fields that is not unique as a secondary key, you really don’t
have to specify anything - just start retrieving by that combination! However, if you want to make the
retrieval efficient, you’ll have to resort to the means your RDBMS provider gives you - be it an index, my
imaginaryMEMSTOREcommand, or an intelligent RDBMS that creates indexes without your knowledge
based on the fact that you have sent it many queries based on a specific combination of keys... (It learns
from experience).

7.8. Partial Indexes
A partial indexis an index built over a subset of a table; the subset is defined by a conditional expression
(called thepredicateof the partial index). The index contains entries for only those table rows that satisfy
the predicate.

108



Chapter 7. Indexes

A major motivation for partial indexes is to avoid indexing common values. Since a query searching for a
common value (one that accounts for more than a few percent of all the table rows) will not use the index
anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up queries that do use the index. It will also speed up many table update operations
because the index does not need to be updated in all cases.Example 7-1shows a possible application of
this idea.

Example 7-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP range of
your organization but some are from elsewhere (say, employees on dial-up connections). If your searches
by IP are primarily for outside accesses, you probably do not need to index the IP range that corresponds
to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,
...

);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0’ AND client_ip < inet ’192.168.100.255’);

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32’;

A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet ’192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the distribu-
tion of values is inherent (due to the nature of the application) and static (not changing over time), this is
not difficult, but if the common values are merely due to the coincidental data load this can require a lot
of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested
in; this is shown inExample 7-2. This results in the same advantages as listed above, but it prevents the
“uninteresting” values from being accessed via that index at all, even if an index scan might be profitable
in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot of care and
experimentation.

Example 7-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

109



Chapter 7. Indexes

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involveorder_nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on theamount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 may be among the billed or among the unbilled orders.

Example 7-2also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be used
in a query only if the system can recognize that the query’s WHERE condition mathematicallyimplies
the index’s predicate. PostgreSQL does not have a sophisticated theorem prover that can recognize math-
ematically equivalent predicates that are written in different forms. (Not only is such a general theorem
prover extremely difficult to create, it would probably be too slow to be of any real use.) The system can
recognize simple inequality implications, for example “x< 1” implies “x < 2”; otherwise the predicate
condition must exactly match the query’s WHERE condition or the index will not be recognized to be
usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea here
is to create a unique index over a subset of a table, as inExample 7-3. This enforces uniqueness among
the rows that satisfy the index predicate, without constraining those that do not.

Example 7-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (subject text,
target text,
success bool,
...);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient way of doing it when there are few successful trials and many unsuccessful
ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that data
sets with peculiar distributions will cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier

110



Chapter 7. Indexes

example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will not be much.

More information about partial indexes can be found inThe case for partial indexes, Partial indexing in
POSTGRES: research project, andGeneralized Partial Indexes.

7.9. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage is done with theEX-
PLAIN command; its application for this purpose is illustrated inSection 11.1.

It is difficult to formulate a general procedure for determining which indexes to set up. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation will be necessary in most cases. The rest of this section gives some tips for that.

• Always runANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to guess the number of rows returned by a query, which is needed by
the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having runANALYZE is therefore a lost cause.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 100000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows will
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not in
production use yet. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (described in theAdministrator’s Guide). For instance, turning off
sequential scans (enable_seqscan ) and nested-loop joins (enable_nestloop ), which are the most
basic plans, will force the system to use a different plan. If the system still chooses a sequential scan
or nested-loop join then there is probably a more fundamental problem for why the index is not used,
for example, the query condition does not match the index. (What kind of query can use what kind of
index is explained in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting

111



Chapter 7. Indexes

reality. So you should time your query with and without indexes. TheEXPLAIN ANALYZE command
can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (described in theAdministrator’s
Guide). An inaccurate selectivity estimate is due to insufficient statistics. It may be possible to help this
by tuning the statistics-gathering parameters (seeALTER TABLE reference).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine the
issue.

112



Chapter 8. Inheritance
Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (
name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row of capitalsinheritsall attributes (name, population, and altitude) from its parent, cities.
The type of the attribute name istext , a native PostgreSQL type for variable length ASCII strings. The
type of the attribute population isfloat , a native PostgreSQL type for double precision floating-point
numbers. State capitals have an extra attribute, state, that shows their state. In PostgreSQL, a table can
inherit from zero or more other tables, and a query can reference either all rows of a table or all rows of a
table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+
|Madison | 845 |
+----------+----------+

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500ft or higher:

113



Chapter 8. Inheritance

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

+----------+----------+
|name | altitude |
+----------+----------+
|Las Vegas | 2174 |
+----------+----------+
|Mariposa | 1953 |
+----------+----------+

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed --SELECT,
UPDATE andDELETE -- support this “ONLY” notation.

In some cases you may wish to know which table a particular tuple originated from. There is a system
column calledTABLEOID in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

+---------+----------+----------+
|tableoid |name | altitude |
+---------+----------+----------+
|37292 |Las Vegas | 2174 |
+---------+----------+----------+
|37280 |Mariposa | 1953 |
+---------+----------+----------+
|37280 |Madison | 845 |
+---------+----------+----------+

If you do a join with pg_class you can see the actual table name:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

+---------+----------+----------+
|relname |name | altitude |
+---------+----------+----------+
|capitals |Las Vegas | 2174 |
+---------+----------+----------+

114



Chapter 8. Inheritance

|cities |Mariposa | 1953 |
+---------+----------+----------+
|cities |Madison | 845 |
+---------+----------+----------+

Deprecated: In previous versions of PostgreSQL, the default was not to get access to child tables.
This was found to be error prone and is also in violation of SQL99. Under the old syntax, to get the
sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending * , as well as explicitly specify not
scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for an
undecorated table name is to scan its child tables too, whereas before the default was not to do so.
To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresql.conf file.

A limitation of the inheritance feature is that indexes (including unique constraints) and foreign key con-
straints only apply to single tables, not to their inheritance children. Thus, in the above example, specify-
ing that another table’s columnREFERENCES cities(name) would allow the other table to contain city
names but not capital names. This deficiency will probably be fixed in some future release.

115



Chapter 9. Multiversion Concurrency Control

Multiversion Concurrency Control (MVCC) is an advanced technique for improving database perfor-
mance in a multiuser environment. Vadim Mikheev (<vadim@krs.ru >) provided the implementation for
PostgreSQL.

9.1. Introduction
Unlike most other database systems which use locks for concurrency control, PostgreSQL maintains data
consistency by using a multiversion model. This means that while querying a database each transaction
sees a snapshot of data (adatabase version) as it was some time ago, regardless of the current state of
the underlying data. This protects the transaction from viewing inconsistent data that could be caused by
(other) concurrent transaction updates on the same data rows, providingtransaction isolationfor each
database session.

The main difference between multiversion and lock models is that in MVCC locks acquired for querying
(reading) data don’t conflict with locks acquired for writing data and so reading never blocks writing and
writing never blocks reading.

9.2. Transaction Isolation
The ANSI/ISO SQL standard defines four levels of transaction isolation in terms of three phenomena that
must be prevented between concurrent transactions. These undesirable phenomena are:

dirty reads

A transaction reads data written by concurrent uncommitted transaction.

non-repeatable reads

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

The four transaction isolation levels and the corresponding behaviors are described inTable 9-1.

Table 9-1. SQL Transaction Isolation Levels

Isolation Level Dirty Read Non-Repeatable
Read

Phantom Read

Read uncommitted Possible Possible Possible

116



Chapter 9. Multiversion Concurrency Control

Isolation Level Dirty Read Non-Repeatable
Read

Phantom Read

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

PostgreSQL offers the read committed and serializable isolation levels.

9.3. Read Committed Isolation Level
Read Committedis the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECT query sees only data committed before the query began and never sees either uncom-
mitted data or changes committed during query execution by concurrent transactions. (However, theSE-
LECT does see the effects of previous updates executed within this same transaction, even though they
are not yet committed.) Notice that two successiveSELECTs can see different data, even though they
are within a single transaction, when other transactions commit changes during execution of the first
SELECT.

If a target row found by a query while executing anUPDATE statement (orDELETE or SELECT FOR
UPDATE) has already been updated by a concurrent uncommitted transaction then the second transaction
that tries to update this row will wait for the other transaction to commit or rollback. In the case of rollback,
the waiting transaction can proceed to change the row. In the case of commit (and if the row still exists;
i.e. was not deleted by the other transaction), the query will be re-executed for this row to check that the
new row version still satisfies the query search condition. If the new row version satisfies the query search
condition then the row will be updated (or deleted or marked for update). Note that the starting point for
the update will be the new row version; moreover, after the update the doubly-updated row is visible to
subsequentSELECTs in the current transaction. Thus, the current transaction is able to see the effects of
the other transaction for this specific row.

The partial transaction isolation provided by Read Committed level is adequate for many applications, and
this level is fast and simple to use. However, for applications that do complex queries and updates, it may
be necessary to guarantee a more rigorously consistent view of the database than the Read Committed
level provides.

9.4. Serializable Isolation Level
Serializableprovides the highest transaction isolation. This level emulates serial transaction execution, as
if transactions had been executed one after another, serially, rather than concurrently. However, applica-
tions using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable level, aSELECT query sees only data committed before the
transaction began and never sees either uncommitted data or changes committed during transaction ex-
ecution by concurrent transactions. (However, theSELECT does see the effects of previous updates
executed within this same transaction, even though they are not yet committed.) This is different from
Read Committed in that theSELECT sees a snapshot as of the start of the transaction, not as of the start
of the current query within the transaction.

117



Chapter 9. Multiversion Concurrency Control

If a target row found by a query while executing anUPDATE statement (orDELETE or SELECT FOR
UPDATE) has already been updated by a concurrent uncommitted transaction then the second transaction
that tries to update this row will wait for the other transaction to commit or rollback. In the case of rollback,
the waiting transaction can proceed to change the row. In the case of a concurrent transaction commit, a
serializable transaction will be rolled back with the message

ERROR: Can’t serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serializable
transaction began.

When the application receives this error message, it should abort the current transaction and then retry
the whole transaction from the beginning. The second time through, the transaction sees the previously-
committed change as part of its initial view of the database, so there is no logical conflict in using the
new version of the row as the starting point for the new transaction’s update. Note that only updating
transactions may need to be retried --- read-only transactions never have serialization conflicts.

The Serializable transaction level provides a rigorous guarantee that each transaction sees a wholly consis-
tent view of the database. However, the application has to be prepared to retry transactions when concur-
rent updates make it impossible to sustain the illusion of serial execution, and the cost of redoing complex
transactions may be significant. So this level is recommended only when update queries contain logic
sufficiently complex that they may give wrong answers in the Read Committed level.

9.5. Data consistency checks at the application level
Because readers in PostgreSQL don’t lock data, regardless of transaction isolation level, data read by one
transaction can be overwritten by another concurrent transaction. In other words, if a row is returned by
SELECT it doesn’t mean that the row still exists at the time it is returned (i.e., sometime after the current
transaction began); the row might have been modified or deleted by an already-committed transaction that
committed after this one started. Even if the row is still valid “now”, it could be changed or deleted before
the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and con-
currently executing transactions may very well see different snapshots. So the whole concept of “now” is
somewhat suspect anyway. This is not normally a big problem if the client applications are isolated from
each other, but if the clients can communicate via channels outside the database then serious confusion
may ensue.

To ensure the current existence of a row and protect it against concurrent updates one must useSELECT
FOR UPDATE or an appropriateLOCK TABLE statement. (SELECT FOR UPDATE locks just the
returned rows against concurrent updates, whileLOCK TABLE protects the whole table.) This should
be taken into account when porting applications to PostgreSQL from other environments.

Note: Before version 6.5 PostgreSQL used read-locks and so the above consideration is also the
case when upgrading to 6.5 (or higher) from previous PostgreSQL versions.

118



Chapter 9. Multiversion Concurrency Control

9.6. Locking and Tables
PostgreSQL provides various lock modes to control concurrent access to data in tables. Some of these lock
modes are acquired by PostgreSQL automatically before statement execution, while others are provided
to be used by applications. All lock modes acquired in a transaction are held for the duration of the
transaction.

9.6.1. Table-level locks

AccessShareLock

A read-lock mode acquired automatically on tables being queried.

Conflicts with AccessExclusiveLock only.

RowShareLock

Acquired bySELECT FOR UPDATE andLOCK TABLE for IN ROW SHARE MODEstatements.

Conflicts with ExclusiveLock and AccessExclusiveLock modes.

RowExclusiveLock

Acquired byUPDATE, DELETE , INSERT andLOCK TABLE for IN ROW EXCLUSIVE MODE

statements.

Conflicts with ShareLock, ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock
modes.

ShareUpdateExclusiveLock

Acquired byVACUUM (withoutFULL) andLOCK TABLE table forIN SHARE UPDATE EXCLU-

SIVE MODEstatements.

Conflicts with ShareUpdateExclusiveLock, ShareLock, ShareRowExclusiveLock, ExclusiveLock
and AccessExclusiveLock modes.

ShareLock

Acquired byCREATE INDEX andLOCK TABLE table forIN SHARE MODEstatements.

Conflicts with RowExclusiveLock, ShareUpdateExclusiveLock, ShareRowExclusiveLock, Exclu-
siveLock and AccessExclusiveLock modes.

ShareRowExclusiveLock

Acquired byLOCK TABLE for IN SHARE ROW EXCLUSIVE MODEstatements.

Conflicts with RowExclusiveLock, ShareUpdateExclusiveLock, ShareLock,
ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock modes.

ExclusiveLock

Acquired byLOCK TABLE table forIN EXCLUSIVE MODEstatements.

Conflicts with RowShareLock, RowExclusiveLock, ShareUpdateExclusiveLock, ShareLock,
ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock modes.

119



Chapter 9. Multiversion Concurrency Control

AccessExclusiveLock

Acquired byALTER TABLE , DROP TABLE , VACUUM FULL andLOCK TABLE statements.

Conflicts with all modes (AccessShareLock, RowShareLock, RowExclusiveLock, ShareUpdateEx-
clusiveLock, ShareLock, ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock).

Note: Only AccessExclusiveLock blocks SELECT (without FOR UPDATE) statement.

9.6.2. Row-level locks

Row-level locks are acquired when rows are being updated (or deleted or marked for update). Row-level
locks don’t affect data querying. They block writers tothe same rowonly.

PostgreSQL doesn’t remember any information about modified rows in memory and so has no limit to the
number of rows locked at one time. However, locking a row may cause a disk write; thus, for example,
SELECT FOR UPDATE will modify selected rows to mark them and so will result in disk writes.

In addition to table and row locks, short-term share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a tuple is fetched or
updated. Application writers normally need not be concerned with page-level locks, but we mention them
for completeness.

9.7. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL.

The various index types are handled as follows:

GiST and R-Tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after statement
is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after page is
processed.

Page-level locks provide better concurrency than index-level ones but are subject to deadlocks.

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released imme-
diately after each index tuple is fetched/inserted.

B-tree indexes provide the highest concurrency without deadlock conditions.

120



Chapter 9. Multiversion Concurrency Control

In short, B-tree indexes are the recommended index type for concurrent applications.

121



Chapter 10. Managing a Database
Although thesite administratoris responsible for overall management of the PostgreSQL installation,
some databases within the installation may be managed by another person, designated thedatabase ad-
ministrator. This assignment of responsibilities occurs when a database is created. A user may be assigned
explicit privileges to create databases and/or to create new users. A user assigned both privileges can per-
form most administrative tasks within PostgreSQL, but will not by default have the same operating system
privileges as the site administrator.

TheAdministrator’s Guidecovers these topics in more detail.

10.1. Database Creation
Databases are created by theCREATE DATABASE command issued from within PostgreSQL. createdb
is a shell script provided to give the same functionality from the Unix command line.

The PostgreSQL backend must be running for either method to succeed, and the user issuing the command
must be the PostgreSQLsuperuseror have been assigned database creation privileges by the superuser.

To create a new database namedmydb from the command line, type

% createdb mydb

and to do the same from within psql type

=> CREATE DATABASE mydb;

If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: Permission denied.

You automatically become the database administrator of the database you just created. Database names
must have an alphabetic first character and are limited to 31 characters in length. PostgreSQL allows you
to create any number of databases at a given site.

TheAdministrator’s Guidediscusses database creation in more detail, including advanced options of the
CREATE DATABASE command.

10.2. Accessing a Database
Once you have constructed a database, you can access it by:

• Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

• Using an existing graphical frontend tool like PgAccess or ApplixWare (via ODBC) to create and
manipulate a database. These possibilities are not covered in this tutorial.

122



Chapter 10. Managing a Database

• Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further inThe PostgreSQL Programmer’s Guide.

You probably want to start up psql, to try out the examples in this manual. It can be activated for the mydb
database by typing the command:

% psql mydb

You will be greeted with the following message:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>

This prompt indicates thatpsql is listening to you and that you can type SQL queries into a work space
maintained by the terminal monitor. The psql program itself responds to special commands that begin
with the backslash character,\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

Once you have finished entering your queries into the work space, you can pass the contents of the work
space to the PostgreSQL server by typing:

mydb=> \g

This tells the server to process the query. If you terminate your query with a semicolon, the\g is not
necessary. psql will automatically process semicolon terminated queries. To read queries from a file, say
myFile , instead of entering them interactively, type:

mydb=> \i myFile

To get out of psql and return to Unix, type

mydb=> \q

and psql will quit and return you to your command shell. (For more escape codes, type\? at thepsql
prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in SQL queries. Single-line
comments are denoted by-- . Everything after the dashes up to the end of the line is ignored. Multiple-
line comments, and comments within a line, are denoted by/* ... */ .

123



Chapter 10. Managing a Database

10.3. Destroying a Database
If you are the owner of the database mydb, you can destroy it using the SQL command

=> DROP DATABASE mydb;

or the Unix shell script

% dropdb mydb

This action physically removes all of the Unix files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

124



Chapter 11. Performance Tips
Query performance can be affected by many things. Some of these can be manipulated by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

11.1. Using EXPLAIN
PostgreSQL devises aquery planfor each query it is given. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance. You can use theEX-
PLAIN command to see what query plan the system creates for any query. Plan-reading is an art that
deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quoted byEXPLAIN are:

• Estimated start-up cost (time expended before output scan can start, e.g., time to do the sorting in a
SORT node).

• Estimated total cost (if all tuples are retrieved, which they may not be --- a query with a LIMIT will
stop short of paying the total cost, for example).

• Estimated number of rows output by this plan node (again, without regard for any LIMIT).

• Estimated average width (in bytes) of rows output by this plan node.

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-page
units using some fairly arbitrary fudge-factors. If you want to experiment with these factors, see the list
of run-time configuration parameters in theAdministrator’s Guide.)

It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s also
important to realize that the cost only reflects things that the planner/optimizer cares about. In particular,
the cost does not consider the time spent transmitting result tuples to the frontend --- which could be a
pretty dominant factor in the true elapsed time, but the planner ignores it because it cannot change it by
altering the plan. (Every correct plan will output the same tuple set, we trust.)

Rows output is a little tricky because it isnot the number of rows processed/scanned by the query --- it is
usually less, reflecting the estimated selectivity of any WHERE-clause constraints that are being applied
at this node. Ideally the top-level rows estimate will approximate the number of rows actually returned,
updated, or deleted by the query.

Here are some examples (using the regress test database after a vacuum analyze, and 7.2 development
sources):

regression=# EXPLAIN SELECT * FROM tenk1;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..333.00 rows=10000 width=148)

125



Chapter 11. Performance Tips

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = ’tenk1’;

you will find out that tenk1 has 233 disk pages and 10000 tuples. So the cost is estimated at 233
page reads, defined as 1.0 apiece, plus 10000 *cpu_tuple_cost which is currently 0.01 (tryshow
cpu_tuple_cost).

Now let’s modify the query to add a qualification clause:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..358.00 rows=1007 width=148)

The estimate of output rows has gone down because of the WHERE clause. However, the scan will still
have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the extra
CPU time spent checking the WHERE condition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If you
try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it will
change after eachANALYZE command, because the statistics produced byANALYZE are taken from a
randomized sample of the table.

Modify the query to restrict the qualification even more:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..181.09 rows=49 width=148)

and you will see that if we make the WHERE condition selective enough, the planner will eventually
decide that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 tuples
because of the index, so it wins despite the fact that each individual fetch is more expensive than reading
a whole disk page sequentially.

Add another condition to the qualification:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50 AND
regression-# stringu1 = ’xxx’;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..181.22 rows=1 width=148)

The added clausestringu1 = ’xxx’ reduces the output-rows estimate, but not the cost because we still
have to visit the same set of tuples.

Let’s try joining two tables, using the fields we have been discussing:

regression=# EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50
regression-# AND t1.unique2 = t2.unique2;

126



Chapter 11. Performance Tips

NOTICE: QUERY PLAN:

Nested Loop (cost=0.00..330.41 rows=49 width=296)
- > Index Scan using tenk1_unique1 on tenk1 t1

(cost=0.00..181.09 rows=49 width=148)
- > Index Scan using tenk2_unique2 on tenk2 t2

(cost=0.00..3.01 rows=1 width=148)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and
so its cost and row count are the same because we are applying theunique1 < 50 WHERE clause at
that node. Thet1.unique2 = t2.unique2 clause is not relevant yet, so it doesn’t affect row count of
the outer scan. For the inner scan, the unique2 value of the current outer-scan tuple is plugged into the
inner index scan to produce an index qualification liket2.unique2 = constant . So we get the same
inner-scan plan and costs that we’d get from, say,explain select * from tenk2 where unique2

= 42 . The costs of the loop node are then set on the basis of the cost of the outer scan, plus one repetition
of the inner scan for each outer tuple (49 * 3.01, here), plus a little CPU time for join processing.

In this example the loop’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in general, because in general you can have WHERE clauses that mention both relations
and so can only be applied at the join point, not to either input scan. For example, if we addedWHERE

... AND t1.hundred < t2.hundred , that would decrease the output row count of the join node, but
not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. See alsoSection
11.3.)

regression=# set enable_nestloop = off;
SET VARIABLE
regression=# EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50
regression-# AND t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Hash Join (cost=181.22..564.83 rows=49 width=296)
- > Seq Scan on tenk2 t2

(cost=0.00..333.00 rows=10000 width=148)
- > Hash (cost=181.09..181.09 rows=49 width=148)

- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..181.09 rows=49 width=148)

This plan proposes to extract the 50 interesting rows oftenk1 using ye same olde index scan, stash them
into an in-memory hash table, and then do a sequential scan oftenk2 , probing into the hash table for
possible matches oft1.unique2 = t2.unique2 at eachtenk2 tuple. The cost to readtenk1 and set
up the hash table is entirely start-up cost for the hash join, since we won’t get any tuples out until we
can start readingtenk2 . The total time estimate for the join also includes a hefty charge for CPU time to
probe the hash table 10000 times. Note, however, that we are NOT charging 10000 times 181.09; the hash
table setup is only done once in this plan type.

127



Chapter 11. Performance Tips

It is possible to check on the accuracy of the planner’s estimated costs by using EXPLAIN ANALYZE.
This command actually executes the query, and then displays the true runtime accumulated within each
plan node along with the same estimated costs that a plain EXPLAIN shows. For example, we might get
a result like this:

regression=# EXPLAIN ANALYZE
regression-# SELECT * FROM tenk1 t1, tenk2 t2
regression-# WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Nested Loop (cost=0.00..330.41 rows=49 width=296) (actual time=1.31..28.90 rows=50 loops=1)
- > Index Scan using tenk1_unique1 on tenk1 t1

(cost=0.00..181.09 rows=49 width=148) (actual time=0.69..8.84 rows=50 loops=1)
- > Index Scan using tenk2_unique2 on tenk2 t2

(cost=0.00..3.01 rows=1 width=148) (actual time=0.28..0.31 rows=1 loops=50)
Total runtime: 30.67 msec

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention to
is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan is executed once per outer tuple in the above nested-loop plan. In such cases, the “loops”
value reports the total number of executions of the node, and the actual time and rows values shown are
averages per-execution. This is done to make the numbers comparable with the way that the cost estimates
are shown. Multiply by the “loops” value to get the total time actually spent in the node.

The “total runtime” shown by EXPLAIN ANALYZE includes executor startup and shutdown time, as well
as time spent processing the result tuples. It does not include parsing, rewriting, or planning time. For a
SELECT query, the total runtime will normally be just a little larger than the total time reported for the
top-level plan node. For INSERT, UPDATE, and DELETE queries, the total runtime may be considerably
larger, because it includes the time spent processing the output tuples. In these queries, the time for the
top plan node essentially is the time spent computing the new tuples and/or locating the old ones, but it
doesn’t include the time spent making the changes.

It is worth noting that EXPLAIN results should not be extrapolated to situations other than the one you
are actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables. The
planner’s cost estimates are not linear and so it may well choose a different plan for a larger or smaller
table. An extreme example is that on a table that only occupies one disk page, you’ll nearly always get a
sequential scan plan whether indexes are available or not. The planner realizes that it’s going to take one
disk page read to process the table in any case, so there’s no value in expending additional page reads to
look at an index.

11.2. Statistics used by the Planner
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

128



Chapter 11. Performance Tips

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept inpg_class ’s reltuples and
relpages columns. We can look at it with queries similar to this one:

regression=# select relname, relkind, reltuples, relpages from pg_class
regression-# where relname like ’tenk1%’;

relname | relkind | reltuples | relpages
---------------+---------+-----------+----------

tenk1 | r | 10000 | 233
tenk1_hundred | i | 10000 | 30
tenk1_unique1 | i | 10000 | 30
tenk1_unique2 | i | 10000 | 30

(4 rows)

Here we can see thattenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons,reltuples andrelpages are not updated on-the-fly, and so they usually contain
only approximate values (which is good enough for the planner’s purposes). They are initialized with
dummy values (presently 1000 and 10 respectively) when a table is created. They are updated by certain
commands, presentlyVACUUM , ANALYZE , andCREATE INDEX . A stand-aloneANALYZE , that is
one not part ofVACUUM , generates an approximatereltuples value since it does not read every row
of the table.

Most queries retrieve only a fraction of the rows in a table, due to having WHERE clauses that restrict the
rows to be examined. The planner thus needs to make an estimate of theselectivityof WHERE clauses, that
is, the fraction of rows that match each clause of the WHERE condition. The information used for this task
is stored in thepg_statistic system catalog. Entries inpg_statistic are updated byANALYZE and
VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look atpg_statistic directly, it’s better to look at its viewpg_stats when examining the
statistics manually.pg_stats is designed to be more easily readable. Furthermore,pg_stats is readable
by all, whereaspg_statistic is only readable by the superuser. (This prevents unprivileged users from
learning something about the contents of other people’s tables from the statistics. Thepg_stats view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

regression=# select attname, n_distinct, most_common_vals from pg_stats where table-
name = ’road’;

attname | n_distinct | most_common_vals
---------+------------+-------------------------------------------------------
------------------------------------------------------------------------------
------------------------------------------------------------------------------
------------------------------------------------------------------------------
------------------------------------------------------------------------------
------

name | -0.467008 | {"I- 580 Ramp","I- 880 Ramp","Sp Rail-
road ","I- 580 ","I- 680 Ramp","I-
80 Ramp","14th St ","5th St ","Mis-
sion Blvd","I- 880 "}

thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}
(2 rows)
regression=#

129



Chapter 11. Performance Tips

As of PostgreSQL 7.2 the following columns exist inpg_stats :

Table 11-1.pg_stats Columns

Name Type Description

tablename name Name of table containing column

attname name Column described by this row

null_frac real Fraction of column’s entries that
are NULL

avg_width integer Average width in bytes of
column’s entries

n_distinct real If greater than zero, the estimated
number of distinct values in the
column. If less than zero, the
negative of the number of distinct
values divided by the number of
rows. (The negated form is used
when ANALYZE believes that the
number of distinct values is likely
to increase as the table grows; the
positive form is used when the
column seems to have a fixed
number of possible values.) For
example, -1 indicates a unique
column in which the number of
distinct values is the same as the
number of rows.

most_common_vals text[] A list of the most common values
in the column. (Omitted if no
values seem to be more common
than any others.)

most_common_freqs real[] A list of the frequencies of the
most common values, ie, number
of occurrences of each divided by
total number of rows.

histogram_bounds text[] A list of values that divide the
column’s values into groups of
approximately equal population.
Themost_common_vals , if
present, are omitted from the
histogram calculation. (Omitted if
column data type does not have a
< operator, or if the
most_common_vals list
accounts for the entire
population.)

130



Chapter 11. Performance Tips

Name Type Description

correlation real Statistical correlation between
physical row ordering and logical
ordering of the column values.
This ranges from -1 to +1. When
the value is near -1 or +1, an
index scan on the column will be
estimated to be cheaper than
when it is near zero, due to
reduction of random access to the
disk. (Omitted if column data
type does not have a< operator.)

The maximum number of entries in themost_common_vals and histogram_bounds arrays can be
set on a column-by-column basis using theALTER TABLE SET STATISTICS command. The de-
fault limit is presently 10 entries. Raising the limit may allow more accurate planner estimates to be
made, particularly for columns with irregular data distributions, at the price of consuming more space
in pg_statistic and slightly more time to compute the estimates. Conversely, a lower limit may be
appropriate for columns with simple data distributions.

11.3. Controlling the Planner with Explicit JOINs
Beginning with PostgreSQL 7.1 it is possible to control the query planner to some extent by using explicit
JOIN syntax. To see why this matters, we first need some background.

In a simple join query, such as

SELECT * FROM a,b,c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that
joins A to B, using the WHERE clause a.id = b.id, and then joins C to this joined table, using the other
WHERE clause. Or it could join B to C and then join A to that result. Or it could join A to C and then
join them with B --- but that would be inefficient, since the full Cartesian product of A and C would have
to be formed, there being no applicable WHERE clause to allow optimization of the join. (All joins in the
PostgreSQL executor happen between two input tables, so it’s necessary to build up the result in one or
another of these fashions.) The important point is that these different join possibilities give semantically
equivalent results but may have hugely different execution costs. Therefore, the planner will explore all
of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning may take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive search to ageneticprobabilistic search through a limited
number of possibilities. (The switch-over threshold is set by theGEQO_THRESHOLDrun-time parameter
described in theAdministrator’s Guide.) The genetic search takes less time, but it won’t necessarily find
the best possible plan.

131



Chapter 11. Performance Tips

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query.

In PostgreSQL 7.1, the planner treats all explicit JOIN syntaxes as constraining the join order, even though
it is not logically necessary to make such a constraint for inner joins. Therefore, although all of these
queries give the same result:

SELECT * FROM a,b,c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

the second and third take less time to plan than the first. This effect is not worth worrying about for only
three tables, but it can be a lifesaver with many tables.

You do not need to constrain the join order completely in order to cut search time, because it’s OK to use
JOIN operators in a plain FROM list. For example,

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

forces the planner to join A to B before joining them to other tables, but doesn’t constrain its choices
otherwise. In this example, the number of possible join orders is reduced by a factor of 5.

If you have a mix of outer and inner joins in a complex query, you might not want to constrain the planner’s
search for a good ordering of inner joins inside an outer join. You can’t do that directly in the JOIN syntax,
but you can get around the syntactic limitation by using subselects. For example,

SELECT * FROM d LEFT JOIN
(SELECT * FROM a, b, c WHERE ...) AS ss
ON (...);

Here, joining D must be the last step in the query plan, but the planner is free to consider various join
orders for A,B,C.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
force it to choose a better order via JOIN syntax --- assuming that you know of a better order, that is.
Experimentation is recommended.

132



Chapter 11. Performance Tips

11.4. Populating a Database
One may need to do a large number of table insertions when first populating a database. Here are some
tips and techniques for making that as efficient as possible.

11.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means issuingBEGIN at the
start andCOMMIT at the end. Some client libraries may do this behind your back, in which case you
need to make sure the library does it when you want it done.) If you allow each insertion to be committed
separately, PostgreSQL is doing a lot of work for each record added.

11.4.2. Use COPY FROM

UseCOPY FROM STDIN to load all the records in one command, instead of using a series ofINSERT
commands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not necessary
to turn off autocommit, since it is only one command anyway.

11.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk-load withCOPY, then
create any indexes needed for the table. Creating an index on pre-existing data is quicker than updating it
incrementally as each record is loaded.

If you are augmenting an existing table, you canDROP INDEX , load the table, then recreate the index.
Of course, the database performance for other users may be adversely affected during the time that the
index is missing. One should also think twice before dropping unique indexes, since the error checking
afforded by the unique constraint will be lost while the index is missing.

11.4.4. ANALYZE Afterwards

It’s a good idea to runANALYZE or VACUUM ANALYZE anytime you’ve added or updated a lot of
data, including just after initially populating a table. This ensures that the planner has up-to-date statistics
about the table. With no statistics or obsolete statistics, the planner may make poor choices of query plans,
leading to bad performance on queries that use your table.

133



Appendix A. Date/Time Support
PostgreSQL uses an internal heuristic parser for all date/time support. Dates and times are input as strings,
and are broken up into distinct fields with a preliminary determination of what kind of information may be
in the field. Each field is interpreted and either assigned a numeric value, ignored, or rejected. The parser
contains internal lookup tables for all textual fields, including months, days of the week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used by
the parser to decode dates and times.

A.1. Date/Time Keywords

Table A-1. Month Abbreviations

Month Abbreviations

April Apr

August Aug

December Dec

February Feb

January Jan

July Jul

June Jun

March Mar

November Nov

October Oct

September Sep, Sept

Note: The month May has no explicit abbreviation, for obvious reasons.

Table A-2. Day of the Week Abbreviations

Day Abbreviation

Sunday Sun

Monday Mon

Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

134



Appendix A. Date/Time Support

Day Abbreviation

Saturday Sat

Table A-3. PostgreSQL Field Modifiers

Identifier Description

ABSTIME Keyword ignored

AM Time is before 12:00

AT Keyword ignored

JULIAN, JD, J Next field is Julian Day

ON Keyword ignored

PM Time is on or after after 12:00

T Next field is time

The keywordABSTIME is ignored for historical reasons; in very old releases of PostgreSQL invalidAB-

STIME fields were emitted as “Invalid Abstime”. This is no longer the case however and this keyword will
likely be dropped in a future release.

A.2. Time Zones
PostgreSQL contains internal tabular information for time zone decoding, since there is no *nix standard
system interface to provide access to general, cross-timezone information. The underlying OSis used to
provide time zone information foroutput, however.

The following table of time zones recognized by PostgreSQL is organized by time zone offset from UTC,
rather than alphabetically; this is intended to facilitate matching local usage with recognized abbreviations
for cases where these might differ.

Table A-4. PostgreSQL Recognized Time Zones

Time Zone Offset from UTC Description

NZDT +13:00 New Zealand Daylight Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Standard Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer
Standard Time

ACSST +10:30 Central Australia Summer
Standard Time

135



Appendix A. Date/Time Support

Time Zone Offset from UTC Description

CADT +10:30 Central Australia Daylight
Savings Time

SADT +10:30 South Australian Daylight Time

AEST +10:00 Australia Eastern Standard Time

EAST +10:00 East Australian Standard Time

GST +10:00 Guam Standard Time, USSR
Zone 9

LIGT +10:00 Melbourne, Australia

SAST +09:30 South Australia Standard Time

CAST +09:30 Central Australia Standard Time

AWSST +09:00 Australia Western Summer
Standard Time

JST +09:00 Japan Standard Time,USSR Zone
8

KST +09:00 Korea Standard Time

MHT +09:00 Kwajalein Time

WDT +09:00 West Australian Daylight Time

MT +08:30 Moluccas Time

AWST +08:00 Australia Western Standard Time

CCT +08:00 China Coastal Time

WADT +08:00 West Australian Daylight Time

WST +08:00 West Australian Standard Time

JT +07:30 Java Time

ALMST +07:00 Almaty Summer Time

WAST +07:00 West Australian Standard Time

CXT +07:00 Christmas (Island) Time

ALMT +06:00 Almaty Time

MAWT +06:00 Mawson (Antarctica) Time

IOT +05:00 Indian Chagos Time

MVT +05:00 Maldives Island Time

TFT +05:00 Kerguelen Time

AFT +04:30 Afganistan Time

EAST +04:00 Antananarivo Savings Time

MUT +04:00 Mauritius Island Time

RET +04:00 Reunion Island Time

SCT +04:00 Mahe Island Time

IT +03:30 Iran Time

EAT +03:00 Antananarivo, Comoro Time

BT +03:00 Baghdad Time

136



Appendix A. Date/Time Support

Time Zone Offset from UTC Description

EETDST +03:00 Eastern Europe Daylight Savings
Time

HMT +03:00 Hellas Mediterranean Time (?)

BDST +02:00 British Double Standard Time

CEST +02:00 Central European Savings Time

CETDST +02:00 Central European Daylight
Savings Time

EET +02:00 Eastern Europe, USSR Zone 1

FWT +02:00 French Winter Time

IST +02:00 Israel Standard Time

MEST +02:00 Middle Europe Summer Time

METDST +02:00 Middle Europe Daylight Time

SST +02:00 Swedish Summer Time

BST +01:00 British Summer Time

CET +01:00 Central European Time

DNT +01:00 Dansk Normal Tid

FST +01:00 French Summer Time

MET +01:00 Middle Europe Time

MEWT +01:00 Middle Europe Winter Time

MEZ +01:00 Middle Europe Zone

NOR +01:00 Norway Standard Time

SET +01:00 Seychelles Time

SWT +01:00 Swedish Winter Time

WETDST +01:00 Western Europe Daylight Savings
Time

GMT +00:00 Greenwich Mean Time

UT +00:00 Universal Time

UTC +00:00 Universal Time, Coordinated

Z +00:00 Same as UTC

ZULU +00:00 Same as UTC

WET +00:00 Western Europe

WAT -01:00 West Africa Time

NDT -02:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time

AWT -03:00 (unknown)

NFT -03:30 Newfoundland Standard Time

NST -03:30 Newfoundland Standard Time

AST -04:00 Atlantic Standard Time (Canada)

137



Appendix A. Date/Time Support

Time Zone Offset from UTC Description

ACST -04:00 Atlantic/Porto Acre Summer
Time

ACT -05:00 Atlantic/Porto Acre Standard
Time

EDT -04:00 Eastern Daylight Time

CDT -05:00 Central Daylight Time

EST -05:00 Eastern Standard Time

CST -06:00 Central Standard Time

MDT -06:00 Mountain Daylight Time

MST -07:00 Mountain Standard Time

PDT -07:00 Pacific Daylight Time

AKDT -08:00 Alaska Daylight Time

PST -08:00 Pacific Standard Time

YDT -08:00 Yukon Daylight Time

AKST -09:00 Alaska Standard Time

HDT -09:00 Hawaii/Alaska Daylight Time

YST -09:00 Yukon Standard Time

AHST -10:00 Alaska-Hawaii Standard Time

HST -10:00 Hawaii Standard Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

A.2.1. Australian Time Zones

Australian time zones and their naming variants account for fully one quarter of all time zones in the
PostgreSQL time zone lookup table. There are two naming conflicts with time zones commonly used in
the United States,CSTandEST.

If the runtime optionAUSTRALIAN_TIMEZONESis set thenCST, EST, andSAT will be interpreted as
Australian timezone names. Without this option,CST andEST are taken as American timezone names,
while SAT is interpreted as a noise word indicatingSaturday .

Table A-5. PostgreSQL Australian Time Zones

Time Zone Offset from UTC Description

ACST +09:30 Central Australia Standard Time

CST +10:30 Australian Central Standard Time

EST +10:00 Australian Eastern Standard Time

138



Appendix A. Date/Time Support

Time Zone Offset from UTC Description

SAT +09:30 South Australian Standard Time

A.2.2. Date/Time Input Interpretation

The date/time types are all decoded using a common set of routines.

Date/Time Input Interpretation

1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. If the numeric token contains a colon (":"), this is a time string. Include all subsequent
digits and colons.

b. If the numeric token contains a dash ("-"), slash ("/"), or two or more dots ("."), this is a
date string which may have a text month.

c. If the token is numeric only, then it is either a single field or an ISO-8601 concatenated date
(e.g.19990113 for January 13, 1999) or time (e.g. 141516 for 14:15:16).

d. If the token starts with a plus ("+") or minus ("-"), then it is either a time zone or a special
field.

2. If the token is a text string, match up with possible strings.

a. Do a binary-search table lookup for the token as either a special string (e.g.today ), day
(e.g.Thursday ), month (e.g.January ), or noise word (e.g.at , on).

Set field values and bit mask for fields. For example, set year, month, day fortoday , and
additionally hour, minute, second fornow.

b. If not found, do a similar binary-search table lookup to match the token with a time zone.

c. If not found, throw an error.

3. The token is a number or number field.

a. If there are more than 4 digits, and if no other date fields have been previously read, then
interpret as a “concatenated date” (e.g.19990118 ). 8 and 6 digits are interpreted as year,
month, and day, while 7 and 5 digits are interpreted as year, day of year, respectively.

b. If the token is three digits and a year has already been decoded, then interpret as day of
year.

c. If four or six digits and a year has already been read, then interpret as a time.

d. If four or more digits, then interpret as a year.

e. If in European date mode, and if the day field has not yet been read, and if the value is less
than or equal to 31, then interpret as a day.

f. If the month field has not yet been read, and if the value is less than or equal to 12, then
interpret as a month.

139



Appendix A. Date/Time Support

g. If the day field has not yet been read, and if the value is less than or equal to 31, then
interpret as a day.

h. If two digits or four or more digits, then interpret as a year.

i. Otherwise, throw an error.

4. If BC has been specified, negate the year and add one for internal storage (there is no year zero in
the Gregorian calendar, so numerically1BCbecomes year zero).

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to 4 digits.
If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years 1-99AD may be entered by using 4 digits with leading zeros (e.g. 0099 is 99AD).
Previous versions of PostgreSQL accepted years with three digits and with single digits, but as of
version 7.0 the rules have been tightened up to reduce the possibility of ambiguity.

A.3. History of Units

Note: Contributed by José Soares (<jose@sferacarta.com >)

The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609) and probably takes
its name from the Scaliger’s father, the Italian scholar Julius Caesar Scaliger (1484-1558). Astronomers
have used the Julian period to assign a unique number to every day since 1 January 4713 BC. This is the
so-called Julian Day (JD). JD 0 designates the 24 hours from noon UTC on 1 January 4713 BC to noon
UTC on 2 January 4713 BC.

“Julian Day” is different from “Julian Date”. The Julian calendar was introduced by Julius Caesar in 45
BC. It was in common use until the 1582, when countries started changing to the Gregorian calendar. In
the Julian calendar, the tropical year is approximated as 365 1/4 days = 365.25 days. This gives an error
of about 1 day in 128 years. The accumulating calendar error prompted Pope Gregory XIII to reform the
calendar in accordance with instructions from the Council of Trent.

In the Gregorian calendar, the tropical year is approximated as 365 + 97 / 400 days = 365.2425 days.
Thus it takes approximately 3300 years for the tropical year to shift one day with respect to the Gregorian
calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar only years divisible by 4 are leap years.

140



Appendix A. Date/Time Support

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that 15
October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal, and
Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to change,
and the Greek orthodox countries didn’t change until the start of this century. The reform was observed
by Great Britain and Dominions (including what is now the USA) in 1752. Thus 2 Sep 1752 was followed
by 14 Sep 1752. This is why Unix systems have cal produce the following:

% cal 9 1752
September 1752

S M Tu W Th F S
1 2 14 15 16

17 18 19 20 21 22 23
24 25 26 27 28 29 30

Note: SQL92 states that “Within the definition of a ‘datetime literal’, the ‘datetime value’s are con-
strained by the natural rules for dates and times according to the Gregorian calendar”. Dates between
1752-09-03 and 1752-09-13, although eliminated in some countries by Papal fiat, conform to “natural
rules” and are hence valid dates.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century BC.
Legend has it that the Emperor Huangdi invented the calendar in 2637 BC. The People’s Republic of
China uses the Gregorian calendar for civil purposes. Chinese calendar is used for determining festivals.

141



Appendix B. SQL Key Words
Table B-1lists all tokens that are key words in the SQL standard and in PostgreSQL 7.2. Background
information can be found inSection 1.1.1.

SQL distinguishes betweenreservedandnon-reservedkey words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words only
have a special meaning in particular contexts and can be used as identifiers in other contexts. Most non-
reserved key words are actually the names of built-in tables and functions specified by SQL. The concept
of non-reserved key words essentially only exists to declare that some predefined meaning is attached to
a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special status in
the parser as compared to an ordinary identifier. (The latter is usually the case for functions specified by
SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be used as column
labels (for example,SELECT 55 AS CHECK, even though CHECK is a reserved key word).

In Table B-1in the column for PostgreSQL we classify as “non-reserved” those key words that are explic-
itly known to the parser but are allowed in most or all contexts where an identifier is expected. Some key
words that are otherwise non-reserved cannot be used as function or data type names and are marked ac-
cordingly. (Most of these words represent built-in functions or data types with special syntax. The function
or type is still available but it cannot be redefined by the user.) Labeled “reserved” are those tokens that
are only allowed as “AS” column label names (and perhaps in very few other contexts). Some reserved
key words are allowable as names for functions; this is also shown in the table.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key words
as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studyingTable B-1that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table B-1. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

ABORT non-reserved

ABS non-reserved

ABSOLUTE non-reserved reserved reserved

ACCESS non-reserved

ACTION non-reserved reserved reserved

ADA non-reserved non-reserved

ADD non-reserved reserved reserved

ADMIN reserved

AFTER non-reserved reserved

AGGREGATE non-reserved reserved

ALIAS reserved

142



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

ALL reserved reserved reserved

ALLOCATE reserved reserved

ALTER non-reserved reserved reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved

ANY reserved reserved reserved

ARE reserved reserved

ARRAY reserved

AS reserved reserved reserved

ASC reserved reserved reserved

ASENSITIVE non-reserved

ASSERTION reserved reserved

ASSIGNMENT non-reserved

ASYMMETRIC non-reserved

AT non-reserved reserved reserved

ATOMIC non-reserved

AUTHORIZATION non-reserved reserved reserved

AVG non-reserved reserved

BACKWARD non-reserved

BEFORE non-reserved reserved

BEGIN non-reserved reserved reserved

BETWEEN reserved (can be
function)

non-reserved reserved

BINARY reserved (can be
function)

reserved

BIT non-reserved (cannot be
function or type)

reserved reserved

BITVAR non-reserved

BIT_LENGTH non-reserved reserved

BLOB reserved

BOOLEAN reserved

BOTH reserved reserved reserved

BREADTH reserved

BY non-reserved reserved reserved

C non-reserved non-reserved

CACHE non-reserved

CALL reserved

CALLED non-reserved

143



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

CARDINALITY non-reserved

CASCADE non-reserved reserved reserved

CASCADED reserved reserved

CASE reserved reserved reserved

CAST reserved reserved reserved

CATALOG reserved reserved

CATALOG_NAME non-reserved non-reserved

CHAIN non-reserved non-reserved

CHAR non-reserved (cannot be
function or type)

reserved reserved

CHARACTER non-reserved (cannot be
function or type)

reserved reserved

CHARACTERISTICS non-reserved

CHARACTER_LENGTH non-reserved reserved

CHARACTER_SET_CATALOG non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved

CHAR_LENGTH non-reserved reserved

CHECK reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS reserved

CLASS_ORIGIN non-reserved non-reserved

CLOB reserved

CLOSE non-reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved (cannot be
function or type)

non-reserved reserved

COBOL non-reserved non-reserved

COLLATE reserved reserved reserved

COLLATION reserved reserved

COLLATION_CATALOG non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved

144



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

COLUMN reserved reserved reserved

COLUMN_NAME non-reserved non-reserved

COMMAND_FUNCTION non-reserved non-reserved

COMMAND_FUNCTION_CODE non-reserved

COMMENT non-reserved

COMMIT non-reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved

COMPLETION reserved

CONDITION_NUMBER non-reserved non-reserved

CONNECT reserved reserved

CONNECTION reserved reserved

CONNECTION_NAME non-reserved non-reserved

CONSTRAINT reserved reserved reserved

CONSTRAINTS non-reserved reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved

CONSTRUCTOR reserved

CONTAINS non-reserved

CONTINUE reserved reserved

CONVERT non-reserved reserved

COPY non-reserved

CORRESPONDING reserved reserved

COUNT non-reserved reserved

CREATE non-reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved (can be
function)

reserved reserved

CUBE reserved

CURRENT reserved reserved

CURRENT_DATE reserved reserved reserved

CURRENT_PATH reserved

CURRENT_ROLE reserved

145



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

CURRENT_TIME reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved

CURRENT_USER reserved reserved reserved

CURSOR non-reserved reserved reserved

CURSOR_NAME non-reserved non-reserved

CYCLE non-reserved reserved

DATA reserved non-reserved

DATABASE non-reserved

DATE reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved

DAY non-reserved reserved reserved

DEALLOCATE reserved reserved

DEC non-reserved (cannot be
function or type)

reserved reserved

DECIMAL non-reserved (cannot be
function or type)

reserved reserved

DECLARE non-reserved reserved reserved

DEFAULT reserved reserved reserved

DEFERRABLE reserved reserved reserved

DEFERRED non-reserved reserved reserved

DEFINED non-reserved

DEFINER non-reserved

DELETE non-reserved reserved reserved

DELIMITERS non-reserved

DEPTH reserved

DEREF reserved

DESC reserved reserved reserved

DESCRIBE reserved reserved

DESCRIPTOR reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved

DIAGNOSTICS reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved

146



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

DISPATCH non-reserved

DISTINCT reserved reserved reserved

DO reserved

DOMAIN reserved reserved

DOUBLE non-reserved reserved reserved

DROP non-reserved reserved reserved

DYNAMIC reserved

DYNAMIC_FUNCTION non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved

EACH non-reserved reserved

ELSE reserved reserved reserved

ENCODING non-reserved

ENCRYPTED non-reserved

END reserved reserved reserved

END-EXEC reserved reserved

EQUALS reserved

ESCAPE non-reserved reserved reserved

EVERY reserved

EXCEPT reserved reserved reserved

EXCEPTION reserved reserved

EXCLUSIVE non-reserved

EXEC reserved reserved

EXECUTE non-reserved reserved reserved

EXISTING non-reserved

EXISTS non-reserved (cannot be
function or type)

non-reserved reserved

EXPLAIN non-reserved

EXTERNAL reserved reserved

EXTRACT non-reserved (cannot be
function or type)

non-reserved reserved

FALSE reserved reserved reserved

FETCH non-reserved reserved reserved

FINAL non-reserved

FIRST reserved reserved

FLOAT non-reserved (cannot be
function or type)

reserved reserved

FOR reserved reserved reserved

147



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

FORCE non-reserved

FOREIGN reserved reserved reserved

FORTRAN non-reserved non-reserved

FORWARD non-reserved

FOUND reserved reserved

FREE reserved

FREEZE reserved (can be
function)

FROM reserved reserved reserved

FULL reserved (can be
function)

reserved reserved

FUNCTION non-reserved reserved

G non-reserved

GENERAL reserved

GENERATED non-reserved

GET reserved reserved

GLOBAL non-reserved reserved reserved

GO reserved reserved

GOTO reserved reserved

GRANT non-reserved reserved reserved

GRANTED non-reserved

GROUP reserved reserved reserved

GROUPING reserved

HANDLER non-reserved

HAVING reserved reserved reserved

HIERARCHY non-reserved

HOLD non-reserved

HOST reserved

HOUR non-reserved reserved reserved

IDENTITY reserved reserved

IGNORE reserved

ILIKE reserved (can be
function)

IMMEDIATE non-reserved reserved reserved

IMPLEMENTATION non-reserved

IN reserved (can be
function)

reserved reserved

INCREMENT non-reserved

INDEX non-reserved

148



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

INDICATOR reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

INITIALLY reserved reserved reserved

INNER reserved (can be
function)

reserved reserved

INOUT non-reserved reserved

INPUT reserved reserved

INSENSITIVE non-reserved non-reserved reserved

INSERT non-reserved reserved reserved

INSTANCE non-reserved

INSTANTIABLE non-reserved

INSTEAD non-reserved

INT reserved reserved

INTEGER reserved reserved

INTERSECT reserved reserved reserved

INTERVAL non-reserved (cannot be
function or type)

reserved reserved

INTO reserved reserved reserved

INVOKER non-reserved

IS reserved (can be
function)

reserved reserved

ISNULL reserved (can be
function)

ISOLATION non-reserved reserved reserved

ITERATE reserved

JOIN reserved (can be
function)

reserved reserved

K non-reserved

KEY non-reserved reserved reserved

KEY_MEMBER non-reserved

KEY_TYPE non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved

LARGE reserved

LAST reserved reserved

LATERAL reserved

LEADING reserved reserved reserved

149



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

LEFT reserved (can be
function)

reserved reserved

LENGTH non-reserved non-reserved

LESS reserved

LEVEL non-reserved reserved reserved

LIKE reserved (can be
function)

reserved reserved

LIMIT reserved reserved

LISTEN non-reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved

LOCALTIME reserved

LOCALTIMESTAMP reserved

LOCATION non-reserved

LOCATOR reserved

LOCK non-reserved

LOWER non-reserved reserved

M non-reserved

MAP reserved

MATCH non-reserved reserved reserved

MAX non-reserved reserved

MAXVALUE non-reserved

MESSAGE_LENGTH non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved

METHOD non-reserved

MIN non-reserved reserved

MINUTE non-reserved reserved reserved

MINVALUE non-reserved

MOD non-reserved

MODE non-reserved

MODIFIES reserved

MODIFY reserved

MODULE reserved reserved

MONTH non-reserved reserved reserved

MORE non-reserved non-reserved

MOVE non-reserved

MUMPS non-reserved non-reserved

150



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

NAME non-reserved non-reserved

NAMES non-reserved reserved reserved

NATIONAL non-reserved reserved reserved

NATURAL reserved (can be
function)

reserved reserved

NCHAR non-reserved (cannot be
function or type)

reserved reserved

NCLOB reserved

NEW reserved reserved

NEXT non-reserved reserved reserved

NO non-reserved reserved reserved

NOCREATEDB non-reserved

NOCREATEUSER non-reserved

NONE non-reserved (cannot be
function or type)

reserved

NOT reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved (can be
function)

NULL reserved reserved reserved

NULLABLE non-reserved non-reserved

NULLIF non-reserved (cannot be
function or type)

non-reserved reserved

NUMBER non-reserved non-reserved

NUMERIC non-reserved (cannot be
function or type)

reserved reserved

OBJECT reserved

OCTET_LENGTH non-reserved reserved

OF non-reserved reserved reserved

OFF reserved reserved

OFFSET reserved

OIDS non-reserved

OLD reserved reserved

ON reserved reserved reserved

ONLY reserved reserved reserved

OPEN reserved reserved

OPERATION reserved

OPERATOR non-reserved

151



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

OPTION non-reserved reserved reserved

OPTIONS non-reserved

OR reserved reserved reserved

ORDER reserved reserved reserved

ORDINALITY reserved

OUT non-reserved reserved

OUTER reserved (can be
function)

reserved reserved

OUTPUT reserved reserved

OVERLAPS reserved (can be
function)

non-reserved reserved

OVERLAY non-reserved

OVERRIDING non-reserved

OWNER non-reserved

PAD reserved reserved

PARAMETER reserved

PARAMETERS reserved

PARAMETER_MODE non-reserved

PARAMETER_NAME non-reserved

PARAMETER_ORDINAL_POSITION non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved

PARAMETER_SPECIFIC_NAME non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved

PARTIAL non-reserved reserved reserved

PASCAL non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PENDANT non-reserved

PLI non-reserved non-reserved

POSITION non-reserved (cannot be
function or type)

non-reserved reserved

POSTFIX reserved

PRECISION non-reserved reserved reserved

PREFIX reserved

PREORDER reserved

PREPARE reserved reserved

152



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

PRESERVE reserved reserved

PRIMARY reserved reserved reserved

PRIOR non-reserved reserved reserved

PRIVILEGES non-reserved reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved

PUBLIC reserved (can be
function)

reserved reserved

READ non-reserved reserved reserved

READS reserved

REAL reserved reserved

RECURSIVE reserved

REF reserved

REFERENCES reserved reserved reserved

REFERENCING reserved

REINDEX non-reserved

RELATIVE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved

REPLACE non-reserved

RESET non-reserved

RESTRICT non-reserved reserved reserved

RESULT reserved

RETURN reserved

RETURNED_LENGTH non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved

RETURNS non-reserved reserved

REVOKE non-reserved reserved reserved

RIGHT reserved (can be
function)

reserved reserved

ROLE reserved

ROLLBACK non-reserved reserved reserved

ROLLUP reserved

ROUTINE reserved

ROUTINE_CATALOG non-reserved

ROUTINE_NAME non-reserved

153



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

ROUTINE_SCHEMA non-reserved

ROW non-reserved reserved

ROWS reserved reserved

ROW_COUNT non-reserved non-reserved

RULE non-reserved

SAVEPOINT reserved

SCALE non-reserved non-reserved

SCHEMA non-reserved reserved reserved

SCHEMA_NAME non-reserved non-reserved

SCOPE reserved

SCROLL non-reserved reserved reserved

SEARCH reserved

SECOND non-reserved reserved reserved

SECTION reserved reserved

SECURITY non-reserved

SELECT reserved reserved reserved

SELF non-reserved

SENSITIVE non-reserved

SEQUENCE non-reserved reserved

SERIALIZABLE non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved

SESSION non-reserved reserved reserved

SESSION_USER reserved reserved reserved

SET non-reserved reserved reserved

SETOF non-reserved (cannot be
function or type)

SETS reserved

SHARE non-reserved

SHOW non-reserved

SIMILAR non-reserved

SIMPLE non-reserved

SIZE reserved reserved

SMALLINT reserved reserved

SOME reserved reserved reserved

SOURCE non-reserved

SPACE reserved reserved

SPECIFIC reserved

SPECIFICTYPE reserved

SPECIFIC_NAME non-reserved

154



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

SQL reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved

SQLSTATE reserved reserved

SQLWARNING reserved

START non-reserved reserved

STATE reserved

STATEMENT non-reserved reserved

STATIC reserved

STATISTICS non-reserved

STDIN non-reserved

STDOUT non-reserved

STRUCTURE reserved

STYLE non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved

SUBLIST non-reserved

SUBSTRING non-reserved (cannot be
function or type)

non-reserved reserved

SUM non-reserved reserved

SYMMETRIC non-reserved

SYSID non-reserved

SYSTEM non-reserved

SYSTEM_USER reserved reserved

TABLE reserved reserved reserved

TABLE_NAME non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved reserved reserved

TERMINATE reserved

THAN reserved

THEN reserved reserved reserved

TIME non-reserved (cannot be
function or type)

reserved reserved

TIMESTAMP non-reserved (cannot be
function or type)

reserved reserved

TIMEZONE_HOUR reserved reserved

TIMEZONE_MINUTE reserved reserved

TO reserved reserved reserved

155



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

TOAST non-reserved

TRAILING reserved reserved reserved

TRANSACTION non-reserved reserved reserved

TRANSACTIONS_COMMITTED non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved

TRANSACTION_ACTIVE non-reserved

TRANSFORM non-reserved

TRANSFORMS non-reserved

TRANSLATE non-reserved reserved

TRANSLATION reserved reserved

TREAT reserved

TRIGGER non-reserved reserved

TRIGGER_CATALOG non-reserved

TRIGGER_NAME non-reserved

TRIGGER_SCHEMA non-reserved

TRIM non-reserved (cannot be
function or type)

non-reserved reserved

TRUE reserved reserved reserved

TRUNCATE non-reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved

UNCOMMITTED non-reserved non-reserved

UNDER reserved

UNENCRYPTED non-reserved

UNION reserved reserved reserved

UNIQUE reserved reserved reserved

UNKNOWN non-reserved reserved reserved

UNLISTEN non-reserved

UNNAMED non-reserved non-reserved

UNNEST reserved

UNTIL non-reserved

UPDATE non-reserved reserved reserved

UPPER non-reserved reserved

USAGE reserved reserved

USER reserved reserved reserved

156



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

USER_DEFINED_TYPE_CATALOG non-reserved

USER_DEFINED_TYPE_NAME non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved

USING reserved reserved reserved

VACUUM non-reserved

VALID non-reserved

VALUE reserved reserved

VALUES non-reserved reserved reserved

VARCHAR non-reserved (cannot be
function or type)

reserved reserved

VARIABLE reserved

VARYING non-reserved reserved reserved

VERBOSE reserved (can be
function)

VERSION non-reserved

VIEW non-reserved reserved reserved

WHEN reserved reserved reserved

WHENEVER reserved reserved

WHERE reserved reserved reserved

WITH non-reserved reserved reserved

WITHOUT non-reserved reserved

WORK non-reserved reserved reserved

WRITE reserved reserved

YEAR non-reserved reserved reserved

ZONE non-reserved reserved reserved

157



Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are available at
the University of California, Berkeley, Computer Science Department web site1

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky,The Practical SQL Handbook: Using Structured
Query Language, Third Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh Darwen,A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date,An Introduction to Database Systems, Volume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant Navathe,Fundamentals of Database Systems, 3rd Edition,
Addison-Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon,Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman,Principles of Database and Knowledge: Base Systems, Volume 1, Computer Science
Press, 1988.

PostgreSQL-Specific Documentation

Stefan Simkovics,Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of Infor-
mation Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition ofINTERSECTandEXCEPTconstructs
into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr. Georg Gottlob
and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group,The Postgres95 User Manual, University of California, Sept.
5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optimizer2, University of Califor-
nia, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

158



Bibliography

Proceedings and Articles

Nels Olson,Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a Database
System”,ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data model3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes4 ”, Proc. Eleventh International Conference on
Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. No.95CH35724, 1995, p.
420-7.

M. Stonebraker and L. Rowe, “The design of POSTGRES5”, Proc. ACM-SIGMOD Conference on Man-
agement of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc. IEEE
Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage system6”, Proc. VLDB Conference, Sept. 1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES rules system7”, SIG-
MOD Record 18(3), Sept. 1989.

M. Stonebraker, “The case for partial indexes8”, SIGMOD Record 18(4), Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTGRES9”, Transactions on
Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views in
Database Systems10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

3. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-13.pdf
4. http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z
5. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M85-95.pdf
6. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-06.pdf
7. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-82.pdf
8. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf
9. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-34.pdf
10. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-36.pdf

159



Index

A
aggregate functions,9

alias

(See label)

all, 84

and

operator,47

any,84

arrays,99

constants,4

auto-increment

(See serial)

average

function,83

B
B-tree

(See indexes)

between,48

bigint, 25

bigserial,28

binary strings

concatenation,55

length,56

bit strings

constants,3

data type,46

Boolean

data type,40

operators

(See operators, logical)

box (data type),42

C
case,79

case sensitivity

SQL commands,2

character strings

concatenation,51

constants,2

data types,29

length,51

cidr, 45

circle,44

columns

system columns,7

col_description,81

comments

in SQL,6

comparison

operators,47

concurrency,116

conditionals,79

constants,2

currval,77

D

data types,24

constants,4

numeric,25

type casts,10

date

constants,37

current,71

data type,35

output format,38

(See Also Formatting)

decimal

(See numeric)

dirty reads,116

distinct,20

double precision,25

E

except,21

exists,84

160



Index

F
false,40

float4

(See real)

float8

(See double precision)

floating point,25

constants,3

formatting,60

functions,47

G
group,18

H
hash

(See indexes)

has_table_privilege,81

I
identifiers,1

in, 84

indexes,103

B-tree,104

hash,104

multicolumn,104

on functions,105

partial,108

R-tree,104

unique,105

inet (data type),45

int2

(See smallint)

int4

(See integer)

int8

(See bigint)

integer,25

intersection,21

interval,37

isolation levels,116

read committed,117

read serializable,117

J

joins,14

cross,14

left, 15

natural,15

outer,14

K

key words

list of, 142

syntax,1

L

label

column,20

table,16

length

binary strings

(See binary strings, length)

character strings

(See character strings, length)

like, 57

limit, 22

line, 42

locking,119

M

MAC address

(See macaddr)

macaddr (data type),46

161



Index

N

network

addresses,44

nextval,77

non-repeatable reads,116

not

operator,47

not in,84

nullif, 81

numeric (data type),25

O

obj_description,81

offset

with query results,22

OID, 7

operators,47

logical,47

precedence,11

syntax,5

or

operator,47

P

path (data type),43

pg_get_indexdef,81

pg_get_ruledef,81

pg_get_userbyid,81

pg_get_viewdef,81

phantom reads,116

point,41

polygon,43

Q

quotes

and identifiers,2

escaping,2

R
R-tree

(See indexes)

real,25

regular expressions,57

(See Also pattern matching)

S
select

select list,19

sequences,77

and serial type,28

serial,28

serial4,28

serial8,28

setval,77

smallint,25

some,84

sorting

query results,21

standard deviation,83

strings

(See character strings)

subqueries,15, 84

substring,51, 55

syntax

SQL,1

T
text

(See character strings)

time

constants,37

current,71

data type,35, 35

output format,38

(See Also Formatting)

time with time zone

data type,35

time without time zone

time,35

time zones,39, 135

timestamp

data type,36

162



Index

timestamp without time zone

data type,36

true,40

types

(See data types)

U
union,21

user

current,81

V
variance,83

version,81

W
where,17

163


	PostgreSQL 7.2 User's Guide
	Table of Contents
	List of Tables
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Documentation Resources
	4. Terminology and Notation
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to report
	5.3. Where to report bugs

	6. Y2K Statement

	Chapter 1. SQL Syntax
	1.1. Lexical Structure
	1.1.1. Identifiers and Key Words
	1.1.2. Constants
	1.1.2.1. String Constants
	1.1.2.2. BitString Constants
	1.1.2.3. Integer Constants
	1.1.2.4. FloatingPoint Constants
	1.1.2.5. Constants of Other Types
	1.1.2.6. Array constants

	1.1.3. Operators
	1.1.4. Special Characters
	1.1.5. Comments

	1.2. Columns
	1.3. Value Expressions
	1.3.1. Column References
	1.3.2. Positional Parameters
	1.3.3. Operator Invocations
	1.3.4. Function Calls
	1.3.5. Aggregate Expressions
	1.3.6. Type Casts
	1.3.7. Scalar Subqueries

	1.4. Lexical Precedence

	Chapter 2. Queries
	2.1. Overview
	2.2. Table Expressions
	2.2.1. FROM clause
	2.2.1.1. Joined Tables
	Join Types
	2.2.1.2. Subqueries
	2.2.1.3. Table and Column Aliases
	2.2.1.4. Examples

	2.2.2. WHERE clause
	2.2.3. GROUP BY and HAVING clauses

	2.3. Select Lists
	2.3.1. Column Labels
	2.3.2. DISTINCT

	2.4. Combining Queries
	2.5. Sorting Rows
	2.6. LIMIT and OFFSET

	Chapter 3. Data Types
	3.1. Numeric Types
	3.1.1. The Integer Types
	3.1.2. Arbitrary Precision Numbers
	3.1.3. FloatingPoint Types
	3.1.4. The Serial Types

	3.2. Monetary Type
	3.3. Character Types
	3.4. Binary Strings
	3.5. Date/Time Types
	3.5.1. Date/Time Input
	3.5.1.1. date
	3.5.1.2. time [ ( p ) ] [ without time zone ]
	3.5.1.3. time [ ( precision ) ] with time zone
	3.5.1.4. timestamp [ (precision) ] without time zone
	3.5.1.5. timestamp [ (precision) ] with time zone
	3.5.1.6. interval [ ( precision ) ]
	3.5.1.7. Special values

	3.5.2. Date/Time Output
	3.5.3. Time Zones
	3.5.4. Internals

	3.6. Boolean Type
	3.7. Geometric Types
	3.7.1. Point
	3.7.2. Line Segment
	3.7.3. Box
	3.7.4. Path
	3.7.5. Polygon
	3.7.6. Circle

	3.8. Network Address Data Types
	3.8.1. inet
	3.8.2. cidr
	3.8.3. inet vs cidr
	3.8.4. macaddr

	3.9. Bit String Types

	Chapter 4. Functions and Operators
	4.1. Logical Operators
	4.2. Comparison Operators
	4.3. Mathematical Functions and Operators
	4.4. String Functions and Operators
	4.5. Binary String Functions and Operators
	4.6. Pattern Matching
	4.6.1. Pattern Matching with LIKE
	4.6.2. POSIX Regular Expressions

	4.7. Data Type Formatting Functions
	4.8. Date/Time Functions and Operators
	4.8.1. EXTRACT, datepart
	4.8.2. datetrunc
	4.8.3. Current Date/Time

	4.9. Geometric Functions and Operators
	4.10. Network Address Type Functions
	4.11. SequenceManipulation Functions
	4.12. Conditional Expressions
	4.13. Miscellaneous Functions
	4.14. Aggregate Functions
	4.15. Subquery Expressions

	Chapter 5. Type Conversion
	5.1. Introduction
	5.2. Overview
	5.3. Operators
	5.4. Functions
	5.5. Query Targets
	5.6. UNION and CASE Constructs

	Chapter 6. Arrays
	Chapter 7. Indexes
	7.1. Introduction
	7.2. Index Types
	7.3. Multicolumn Indexes
	7.4. Unique Indexes
	7.5. Functional Indexes
	7.6. Operator Classes
	7.7. Keys
	7.8. Partial Indexes
	7.9. Examining Index Usage

	Chapter 8. Inheritance
	Chapter 9. Multiversion Concurrency Control
	9.1. Introduction
	9.2. Transaction Isolation
	9.3. Read Committed Isolation Level
	9.4. Serializable Isolation Level
	9.5. Data consistency checks at the application level
	9.6. Locking and Tables
	9.6.1. Tablelevel locks
	9.6.2. Rowlevel locks

	9.7. Locking and Indexes

	Chapter 10. Managing a Database
	10.1. Database Creation
	10.2. Accessing a Database
	10.3. Destroying a Database

	Chapter 11. Performance Tips
	11.1. Using EXPLAIN
	11.2. Statistics used by the Planner
	11.3. Controlling the Planner with Explicit JOINs
	11.4. Populating a Database
	11.4.1. Disable Autocommit
	11.4.2. Use COPY FROM
	11.4.3. Remove Indexes
	11.4.4. ANALYZE Afterwards


	Appendix A. Date/Time Support
	A.1. Date/Time Keywords
	A.2. Time Zones
	A.2.1. Australian Time Zones
	A.2.2. Date/Time Input Interpretation

	A.3. History of Units

	Appendix B. SQL Key Words
	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


