
Performance Evaluation of IoT Protocols under a
Constrained Wireless Access Network

Yuang Chen
Department of Biology

Queens University
Kingston, Canada

13yc45@queensu.ca

Thomas Kunz
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

tkunz@sce.carleton.ca

Abstract—One of the challenges faced by today’s Internet of
Things (IoT) is to efficiently support machine-to-machine
communication, given that the remote sensors and the gateway
devices are connected through low bandwidth, unreliable, or
intermittent wireless communication links. In this paper, we
quantitatively compare the performance of IoT protocols, namely
MQTT (Message Queuing Telemetry Transport), CoAP
(Constrained Application Protocol), DDS (Data Distribution
Service) and a custom UDP-based protocol in a medical setting.
The performance of the protocols was evaluated using a network
emulator, allowing us to emulate a low bandwidth, high system
latency, and high packet loss wireless access network. This paper
reports the observed performance of the protocols and arrives at
the conclusion that although DDS results in higher bandwidth
usage than MQTT, its superior performance with regard to data
latency and reliability makes it an attractive choice for medical
IoT applications and beyond.

Keywords—Internet of Things; Constrained Wireless Access
Network; Protocols; Medical Applications; CoAP; MQTT; DDS

I. INTRODUCTION
As the Internet of Things (IoT) expands to a plethora of

applications through the increasing minimization of hardware,
availability of versatile sensors, and “smart objects” [1], many
potential protocols are emerging for M2M communications.
From this, the question of which protocol to use for the Internet
of Things becomes a topic of high interest. Due to the remote
nature and need for wireless networking of smart objects, IoT
systems must be able to cope with potentially unreliable,
intermittent, and low bandwidth connections for its access
network. Several popular protocols at the application layer
available today are geared towards the M2M communication
role, namely MQTT (Message Queuing Telemetry Transport)
[2], CoAP (Constrained Application Protocol) [3], DDS (Data
Distribution Service) [4] and XMPP [5]. Today, the
quantitative comparison of IoT M2M communication protocols
within an unreliable, low bandwidth access network is still
largely unexplored. The objective of this research is to obtain
quantitative metrics that give insight into the actual
performance of the previously mentioned IoT protocols within
a constrained wireless access network under an applied
medical scenario. From this, conclusions can be drawn when
deciding upon which protocol(s) is(are) optimal for certain
required performance metrics, both specific to this medical
scenario and in general.

IoT is a concept that has the versatility to be applied to
almost any application. For this specific experiment, a medical
monitoring application was chosen due to the immediate and
significant benefits that could potentially result. Medical
sensors worn by patients stream measured data into a local
patient gateway, which in turn transfers this data to the central
server. That server, in turn, can provide access to the data to
caregivers, either by having caregivers retrieve/pull the
patients’ information from it, or by having the server push
information to the caregiver, for example, when critical
thresholds are breached (Figure 1). This IoT application will
potentially increase the amount of patients that a single
caregiver can monitor effectively.

Fig. 1. The patient health data monitoring system used in this study
The remainder of this paper is organized as follows: First,

the existing protocols are summarized in Section 2, followed
by a short survey of related work in Section 3. In Section 4, the
experimental environment is described. Section 5 presents and
analyzes the experiment results. Finally, conclusions are drawn
and future work is identified in Section 6.

II. PROTOCOL FEATURES
This section provides a summary of the main features for

the IoT protocols CoAP, MQTT, DDS and Custom UDP,
which are compared in this paper. We also initially explored
the use of XMPP, but had to drop this. XMPP was initially
intended for messaging/chat applications, the available
protocol implementations are tightly coupled with the chat
client GUI, and active development of the protocol seems to
have ceased.

This research is funded by an NSERC USRA from Carleton University

2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT)

978-1-5090-1743-0/16/$31.00 ©2016 IEEE

A. CoAP
CoAP is a stateless protocol developed by the IETF to

replace HTTP in resource-constrained devices. Being a UDP-
based RESTful protocol, it uses a request/reply structure and
has low overhead and a low degree of optional QoS. In order to
receive telemetry, a client must constantly request the server to
send the information. CoAP primarily supports a peer-to-peer
style of communication but can be expanded to support one-to-
many functions via the use of IP multicast.

B. MQTT
MQTT is a TCP-based publish-subscribe protocol

developed by IBM and then open-sourced for messaging
applications. In a publish-subscribe format, clients can either
“publish” data on a specific topic to the server or “subscribe”
to a topic where the server will automatically send new data on
the topic to the subscriber once registered. MQTT combines
the relatively high overhead and high QoS of TCP with the
one-to-one, one-to-many, and many-to-one capabilities of a
publish-subscribe format. Additionally, this protocol also
allows clients to specify which telemetry topics are of interest
and receive only data published through those topics.

C. DDS
Created as a networking middleware to circumvent the

disadvantages of centralized publish-subscribe architecture,
DDS is a TCP-based protocol that features decentralized nodes
of clients across a system and allows these nodes to identify
themselves as subscribers or publishers through a localization
server. The use of this system negates the need for users to
identify where other potential nodes are or which topics they
are interested in, as the DDS nodes self-discover across a
network and send/receive telemetry anonymously based only
on topics. After linking publishers and subscribers, the
connection between these clients bypass the server and are
peer-to-peer (Figure 4).

Fig. 2. DDS communication architecture

D. Custom UDP
The Internet also provides a variety of application

protocols, using either UDP or TCP. As most of the
communication in the “traditional” Internet involves humans,
such protocols are not necessarily optimized for/design for
M2M communication. Nevertheless, for comparison purposes,
we designed our own application-layer protocol over UDP.
This protocol exchanges custom-designed JSON strings over
UDP server/client in publish-subscribe form. Because publish-
subscribe protocols lower overhead by removing the need for

constant client requests to obtain telemetry, the potential of a
UDP-based publish-subscribe protocol having very low
overhead combined with its one-to-many/many-to-one
capabilities is an attractive prospect for an ideal IoT protocol;
thus a custom protocol was created to match these
specifications and will be used in this study to determine the
performance of such an architecture. In the following, we
simply refer to this protocol as “custom UDP”.

III. RELATED WORK
There have been numerous qualitative reviews of various

communication protocols that could potentially be applicable
to IoT [6][7][8][9]. However, fewer papers related to the
quantitative comparison of IoT protocols have been published
to date. D. Thangavel et al. [10] compared the performance of
CoAP and MQTT under a common middleware with different
rates of packet loss and its effect on latency as well as overhead
vs. packet size. However, the influence of other network
conditions such as latency and bandwidth cap were not
considered in this research. S. Bandyopadhyay et al. [11]
compared the performance of CoAP’s request-response mode
and resource-observe mode with MQTT in terms of overhead
vs. various packet sizes among two different packet loss (0%
and 20%) conditions; additionally, power consumption vs.
bytes of data communicated was also assessed in this research,
however with packet loss being considered as the only factor
characterizing the network condition. N.De Caro et al. [12]
utilized smartphones as sensing platforms, then compared the
performance of CoAP vs MQTT in terms of per-layer
bandwidth usage, round trip time (for delay), and packet
received ratio based on a 20% packet loss; this research
compared the performance difference between a TCP-based
protocol and a UDP-based protocol; however, a comparison
between two different TCP-based IoT protocols such as MQTT
and DDS was lacking.

To the best of our knowledge, this study is the only
quantitative comparison including a wide set of IoT protocols
such as DDS and a custom UDP protocol. The comparison of
DDS' performance against other IoT protocols in this study in
particular is novel. This paper aims to provide a comprehensive
understanding of the actual performance for various IoT
protocol candidates across a low quality network with low
reliability, high latency, and narrow bandwidth. Through
varying each of network bandwidth, network average packet
loss rate, and network latency as an independent variable, trials
were performed to assess its impact on bandwidth consumed,
actual packet loss, and experienced telemetry latency; these
metrics will be used as indicators of various aspects of
performance for all protocols. Representative test results will
be also be presented visually in this paper. Furthermore, a set
of trials with a combination of narrow bandwidth, high latency,
and high packet loss will also be performed to allow better
gauging of protocol performance across a realistic low quality
network.

IV. EXPERIMENTAL SETUP
This section introduces both hardware setup and software

setup in the trials.

A. Hardware Setup
The testbed is shown in Figure 3 and Figure 4.

Patient Gateway/Caregiver APP
• 1x Raspberry Pi model 2 running Raspbian Linux

Sensors.

• 1x Cooking Hacks eHealth sensor kit revision 2
including the following items:

 - eHealth sensor system shield
 - Heart rate/blood oxygen sensor
 - Temperature sensor
 - Skin resistance sensor
 - Skin conductivity voltage sensor
 - Patient accelerometer/orientation sensor

• 1x Arduino Uno revision 3 Central Server

• 1x Windows laptop ASUS Zenbook running Virtual
Box Ubuntu

Links
• 1x Linksys network router used to set up the wireless

network between the patient gateway, the server, and
caregiver application.

Fig. 3. Testbed

Fig. 4. Sensor devices and patient gateway
The eHealth sensor system by Libelium is only compatible

with Arduino systems and not directly compatible with the
Raspberry Pi. We therefore attached the sensors to an Arduino
board and connected it via USB to the Raspberry Pi board
which acts as a “patient gateway” (Figure 4). The patient
gateway is connected to the central server through a wireless
network. The caregiver device in turn connects to the central

server to fetch patient information. The connections that will
be tested are the links from the patient gateway to the server
and from the server to a caregiver device.

B. Software Setup
It was necessary to develop server and client applications to

support the sending and reception of medical data for each
protocol using existing implementations. A reader application
was also developed to allow the telemetry received on the
Arduino to be available to Raspberry Pi.

To simulate a constrained low reliability network, NetEM
[13] is used to set packet loss and latency of outgoing packets;
TBF [14] is used to set bandwidth on both server and client.
NetEM is installed in locations where the patient gateway
publishes data to the central server and where the server
transmits telemetry to clients. In order to obtain precise latency
measurements (latency from time when data is sent from
patient gateway to the time received by a caregiver), a
roundtrip setting was used; this is achieved by having the same
patient gateway sending the telemetry additionally running the
caregiver application so that the round trip delay can be
accurately calculated without time synchronization among the
patient gateway, the central server, and the caregiver device.
The developed medical telemetry application over all protocols
features a basic statistics function showing packet loss and
latency. Wireshark [15] was used for measuring bandwidth
consumed.

All trials for each independent variable setting are set to run
for 10 minutes and 3 repetitions with the final reported result
being the average of the three trials. The format of
communication is a JSON string. Every packet contains 409
bytes of heart rate, blood oxygen, skin moisture, and
accelerometer measurement data. Every second, 4 packets are
sent. In 10 minutes, 409 bytes * 4 packets/second * 600
seconds = 981600 bytes total are sent.

Fig. 5. Software setup for each protocol
 The next paragraphs discuss in more detail how we set up
the various software components for each protocol. As
mentioned earlier, we are running both the patient and
caregiver application on the same device to facilitate
measurement of round-trip times. As neither of these two
applications is particularly CPU-intensive, they do not impact
each other. Some contention may be expected as we are

. Setting

Protocol
COAP COAP server --------------------> COAP client

COAP client <---------------------COAP server

MQTT MQTT publisher ------------>MQTT Broker
MQTT subscriber <---------- MQTT Broker

DDS DDS publisher -------------> DDS subscriber
DDS subscriber <------------DDS publisher

Customized
UDP

UDP client (publisher)------------> UDP server
UDP client (subscriber)<-----------UDP server

sending data wirelessly over the same bandwidth-limited
channel. However, for almost all wireless technologies, the
patient-server and server-caregiver communication would
interfere with each other, even if caregiver and patient
application were to execute on separate devices.
 CoAP: we used the CCoAP [16] implementation. To
establish a roundtrip message pathway, both CoAP server and
client applications are run on the gateway while a “stitched”
CoAP server and client application runs on the server. The
pathway starts with CoAP server on raspberry Pi sending
telemetry to the PC side CoAP client; as the PC side client
receives this telemetry, this data is transferred to the PC side
server and is sent back to the Raspberry Pi (Figure 5). It is
important to note that open source implementations of CoAP
are less readily available when compared to MQTT and do not
feature nearly as complete of a support environment (forums,
online communities); the source codes for these
implementations are poorly commentated and require
additional effort to be adapted for other uses outside of their
original examples. A popular CoAP implementation called
CCoAP is the “Californium” series by the Eclipse Foundation.
However, like the Paho MQTT implementation by Eclipse,
they require mandatory use of their own cloud servers and do
not provide any source code or information in regards to their
servers which greatly reduces the flexibility of its use.
 MQTT: we used the HiveMQ server [17] implementation
and the Mosquitto MQTT clients [18] (both subscriber and
publisher). To create a roundtrip for accurate latency readings,
both the publisher and subscriber were run on the gateway.
The broker was installed on the central PC server (Figure
5).There are many open source MQTT server and client
implementations available and the support for some of these
implementations are thorough such as HiveMQ server,
Mosquitto clients, Paho clients, ActiveMQ servers and clients
etc. However Paho requires the use of its own cloud servers to
function.
 DDS: In our experiements, we used the OpenDDS server
and the OpenDDS client [19]. To establish a roundtrip
message pathway, both OpenDDS server and client
applications are run on the patient gateway while a “stitched”
OpenDDS server and client application runs on the server
(Figure 5). DDS is supported by Linux as well as Windows;
the source code provided is very complete and well
supported/documented by the openDDS website. It was noted
that the time required for DDS to be compiled on raspberry pi
2 was 18 hours while all other protocols took less than 30
minutes.
 Custom UDP: Custom designed UDP client/server in
publish-subscribe form with JSON string as payload,
implemented based on the Socket API. Similar to MQTT, both
the publisher and the subscriber runs on raspberry Pi and a
broker runs on the central PC server (Figure 5).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
The three quantitative metrics that are measured to indicate

protocol performance are bandwidth consumed, experienced
latency and experienced packet loss. By varying system
latency, system packet loss, and network bandwidth cap (i.e.,

capping the wireless link throughput) independently through
network emulation tools NetEM and TBF, the quantitative
metrics are measured with several independent variable
settings. The following are some analysis and selected visuals
to rationalize and show our results.

A. Bandwidth Consumption
In all tests, 981600 bytes of application data was transmitted by
the patient application in a 10 minute interval. With network
packet loss rate changing from 0% to 25%, or network system
latency changing from 0 to 400 ms, TCP-based protocols and
UDP-based protocols responded differently in terms of
bandwidth consumption, as shown in Figures 6 and 7. Note
that, for latency, we did not simply added a fixed amount of
latency but delayed packets based on a uniform distribution,
ranging from 80% to 120% of the target latency. CoAP and
Custom UDP do not consume additional bandwidth with
increased network packet loss or increased network latency
because no re-transmission is involved. MQTT and DDS
increase their bandwidth consumption with higher rates of
network packet loss, as expected of TCP-based protocols
because of the inherent re-transmission mechanisms to
guarantee packet delivery. An interesting observation is that
MQTT showed little change in bandwidth consumed until the
200 ms system latency where it begins to decrease while DDS
shows a stable level of consumption through all settings. The
overall decreasing trend of MQTT as system latency increases
could be explained by the nature of TCP handshakes; as the
client is waiting for the acknowledgment of the server, the high
latency of the network creates standby time in the system
where no telemetry is sent or received. Under all network
conditions of increasing network packet loss rate and
increasing network latency, DDS always consumes
approximately twice the bandwidth when compared against
MQTT; obviously, DDS then must generate at least twice the
number of control packets as MQTT does.

Fig. 6. Bandwidth consumption vs. network packet loss rate

Fig. 7. Bandwidth consumption vs. system latency

B. Experienced Latency
Experienced telemetry latency was measured by varying

system latency, network packet loss rate, and bandwidth cap.
The results are shown in Figures 8, 9 and 10. When network
latency varies, the experienced latency of CoAP and custom
UDP is very close to the system latency. DDS outperforms
MQTT significantly when the network latency rises from
100ms to 400ms; it is observed that in these conditions, where
DDS has a latency close to system latency, MQTT shows
much higher experienced latency. When network packet loss
rate increases from 5% to 25%, both DDS and MQTT show no
packet loss but come with very different costs in terms of
experienced telemetry latency; DDS experiences relatively
little additional latency while MQTT reaches more than 1000
ms of experienced latency. Additionally DDS shows very
steady, minimal latency without significant changes while
network cap bandwidth decreases. In contrast, MQTT
experienced increasing latency when the network cap
bandwidth decreased. DDS outperforms MQTT in terms of
latency under all degraded network conditions.

Fig. 8. Experienced latency vs. added system latency

Fig. 9. Experienced telemetry latency vs. network packet loss rate

Fig. 10. Telemetry latency vs. network bandwidth

C. Experienced Packet Loss
It was observed in Figure 11 that given the network has a

consistent rate of packet loss, the experienced packet loss of
CoAP and custom UDP will take to a level very close to the
system rate. On the other hand, both TCP-based protocols
MQTT and DDS have no experienced packet loss regardless of
network packet loss rate.

Fig. 11. Actual telemetry loss vs. network packet loss

D. Low Quality Wireless Network
In order to approximate the performance of all protocols in

an application under a constrained, low quality wireless
network, network packet loss was set to 10%, system latency to
100ms ± 20ms, and bandwidth cap to 6.25kB/s to simulate
such an environment; the trial results are shown in Figures 12
and 13. In order to evaluate the protocols’ control overhead
proportional to the application data, the overhead was
normalized by subtracting the amount of application data from
the total amount of transferred bytes to obtain the number of
control packets; then the number of control packets was
divided by the amount of application data. It is observed that
DDS generates the most telemetry overhead; in order to
transfer 100 bytes of user data, DDS generates ~289 bytes of
control data. MQTT generates ~76 bytes of control data for
transferring 100 bytes of user data. However, by utilizing more
bandwidth than MQTT, DDS subsequently shows significantly
better performance in terms of telemetry latency averaging at
234 ms, less than half of MQTT’s 578ms latency.

Fig. 12. Control overhead proportioned to application data in low quality

wireless network

Fig. 13. Experienced latency in low quality wireless network

VI. CONCLUSIONS AND FUTURE WORK
Two types of conclusions are drawn from this study.

In terms of software availability, implementation readiness,
and support environments of the protocols, the source code of
OpenDDS as an implementation of DDS is provided in full on
its website and is well documented; this is also true for MQTT.
Additionally, MQTT has a versatile variety of implementations
and possesses many online resources of forums and
communities. In contrast, the open source implementation of
CoAP is less readily available and poorly supported or
commentated.

In terms of protocol performance, this study has revealed
that both TCP-based protocols, DDS and MQTT, experience
zero packet loss under degraded network conditions of up to
25% average network packet loss rate and 400 ms system
latency. However, DDS significantly outperforms MQTT in
terms of experienced telemetry latency in various poor network
conditions such as high system latency, high network packet
loss rate, and narrow network bandwidth cap. Despite DDS
showing significantly higher bandwidth consumption than
MQTT, its superior performance on data latency and reliability
makes it the more attractive candidate for not only medical IoT
applications, but any IoT system that requires loss-less, low
latency performance. The UDP based CoAP and custom UDP
are potentially viable for certain applications that require low
bandwidth consumption and low latency; however as with any
UDP-based protocol, the significant caveat of unpredictable
packet loss will likely prevent it from being used in many IoT
applications.

It is recommendable to establish more comparisons of basic
performance metrics and appropriate supporting qualitative
observations (human readability, ease of implementation) for
other M2M protocols that can potentially be applied in an IoT
scenario. Possible candidates include AMQP, JMS, and other
protocols that become of interest as IoT develops and becomes
the ubiquitous focus of technology.

REFERENCES

[1] D. Giusto, A. Lera, G. Morabito, L. Atzori, The Internet of Things,
Springer, 2010. ISBN 978-1-4419-1673-0

[2] MQTT protocol specification (http://mqtt.org)
[3] CoAP protocol specification (http://coap.technology)
[4] DDS protocol specification (http://www.omg.org/spec/DDS)
[5] XMPP protocol specification (http://xmpp.org)
[6] R. Sutaria, and R. Govindachari, "Making sense of interoperability:

Protocols and Standardization initiatives in IOT." ComNet 2013,
Hyderabad, India, 8-9 Nov 2013

[7] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. McCann and K.K.
Leung. “A Survey on the IETF Protocol Suite For The Internet of
Things: Standards, Challengs, and Opportunities”, IEEE Wireless
Communications, pp. 91-98, December 2013

[8] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A survey”,
Computer Networks 54 (2010) pp. 2787-2805

[9] A. Asensio, A. Marco, R. Blasco, and R. Casas, “Protocol and
Architecture to Bring Things into Internet of Things”, International
Journal of Distributed Sensor Networks, Volume 2014, April 2014.

[10] D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. TAN, "Performance
evaluation of MQTT and CoAP via a common middleware" 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), Singapore, pp.1-6, 21-24 April
2014

[11] S. Bandyopadhyay, and A. Bhattacharyya, "Lightweight Internet
Protocols for Web Enablement of Sensors using Constrained Gateway
Devices" 2013 International Conference on Computing, Networking and
Communications (ICNC), pp.334-340, San Diego, CA, USA, 28-31
Jan 2013

[12] N. D. Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali,
"Comparison of two lightweight protocols for smartphone-based
sensing", 2013 IEEE 20th Symposium on Communications and
Vehicular Technology in Benelux (SCVT), Namur, Belgium, 21Nov -2
Dec 2013

[13] NetEM: Software suite provides Network Emulation functionality
(http://www.linuxfoundation.org/collaborate/workgroups/networking/ne
tem)

[14] TBF: Token Bucket Filter used to control network bandwidth
(http://linux.die.net/man/8/tc-tbf)

[15] Wireshark: network protocol analyzer (http://www.wireshark.org)
[16] CCoAP (Californium CoAP) project for CoAP server and client

implementation (https://www.eclipse.org/californium/)
[17] HiveMQ project for MQTT server (broker) implementation

 (http://www.hivemq.com/)
[18] Mosquitto project for MQTT clients (both publisher and subscriber)

implementation (http://mosquitto.org/)
[19] OpenDDS project for DDS server and client implementation

(http://www.opendds.org/)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

