
[1]

http://www.it-ebooks.info/

Kivy – Interactive Applications
and Games in Python
Second Edition

Create responsive cross-platform UI/UX applications
and games in Python using the open source Kivy library

Roberto Ulloa

BIRMINGHAM - MUMBAI

http://www.it-ebooks.info/

Kivy – Interactive Applications and Games in Python
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-692-6

www.packtpub.com

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Roberto Ulloa

Reviewers
Takumi Adachi

Philip Bjorge

Joe Dorocak

Vijay Mahrra

Edward C. Delaporte V

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Nikhil Karkal

Content Development Editor
Amey Varangaonkar

Technical Editor
Ankur Ghiye

Copy Editor
Adithi Shetty

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Disha Haria

Jason Monteiro

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

http://www.it-ebooks.info/

About the Author

Roberto Ulloa has a diverse academic record in multiple disciplines within
the field of computer science. Currently, he is working with artificial societies
as part of his PhD thesis at the University of Western Ontario. He obtained an
MSc degree from the University of Costa Rica and taught programming and
computer networking there. He has earned a living as a web developer, working
with Python/Django and PHP/Wordpress. He collaborates with various researchers
while also working on his own projects, including his blog (http://robertour.
com). He constantly worries that the Internet has already become aware of itself and
that we are not able to communicate with it because of the improbability of it being
able to speak any of the 6,000-plus odd human languages that exist on the planet.

I would like to thank Celina for supporting me in all my adventures,
in particular, this book. I am very grateful for the valuable
contributions and feedback of the Packt Publishing team, the editors,
and the reviewers. Also, I would like to thank all those people who
made the previous edition possible. Their ideas and encouragement
made that edition a success, which is why I have now been given the
opportunity to update and expand it with this second edition.

http://robertour.com
http://robertour.com
http://www.it-ebooks.info/

About the Reviewers

Takumi Adachi is an avid user and programmer of web and mobile
applications. His strong points include HTML/CSS, JavaScript and its many
frameworks and libraries, and Android development. He has also contributed
a little to Kivy Blueprints, Mark Vasilkov, Packt Publishing.

I want to thank my family, friends, Justin, and my past and present
employers for helping me get to where I am today.

Philip Bjorge is a full-stack developer who has worked on projects for health,
amusement parks, academics, and high-tech industries. Prior to joining Substantial,
a Seattle-based software design agency, he worked on the Xbox Music and Video
team at Microsoft. Most notably, he was a developer for Surface Music Kit, an app
that was featured at the Surface 2 press conference unveiling and was on display in
Microsoft stores nationwide.

http://www.it-ebooks.info/

Joe Dorocak, whose Internet moniker is Joe Codeswell, is a very experienced
programmer. He enjoys creating readable code that implements project requirements
efficiently and in a manner that can be easily understood. He considers writing code
akin to writing poetry. He crafts his code so it acts as communication, not only with
the machine platforms on which it runs, but also with the human programmers who
will read it in the future.

Joe has been employed directly and also in a contractual role by start-ups and by
many major top-shelf companies, including IBM, HP, and GTE/Sprint.

Joe is presently concentrating on application and web project consulting using
languages, frameworks, and tools and techniques, including Python, JavaScript,
web2py, Cython, memoization, and other performance enhancement techniques.
For more details on him, please visit https://www.linkedin.com/in/joedorocak.

Joe has also worked on Kivy Blueprints by Mark Vasilko and Functional Programming
in JavaScript by Dan Mantyla.

I am very grateful to Suzanne Coutinho and Nidhi Joshi of Packt
Publishing. They have always coordinated my efforts wisely,
professionally, and with a consistent human touch.

https://www.linkedin.com/in/joedorocak
http://www.it-ebooks.info/

Vijay Mahrra is an experienced system administrator, developer, and programmer
with over 20 years of experience from the very early days of the Web to the present
day, contributing his knowledge and experience to various free and open source
projects along the way.

You can find out more about him at http://about.me/vijay.mahrra

A big thank you to my mother, Nirmal; niece, Shreya; and everyone
at Packt Publishing. Thanks to Matt Saunders and Neil Levine for all
the years of hosting.

Edward C. Delaporte V has been creating and using software since the
mid 1980s.

Edward wants to thank all of the software developers who wrote
the code he learned from, especially those who took the time to also
write about their code, how to program, and how to program well.

http://about.me/vijay.mahrra
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 iii
Chapter 1: GUI Basics – Building an Interface	 1

Basic interface – Hello World!	 3
Basic widgets – labels and buttons	 7
Layouts	 10
Embedding layouts	 16
PageLayout – swiping pages	 19
Our project – Comic Creator	 22
Summary	 29

Chapter 2: Graphics – the Canvas	 31
Understanding the canvas	 32
Drawing basic shapes	 33
Adding images, colors, and backgrounds	 41
Structuring graphic instructions	 42
Rotating, translating, and scaling the coordinate space	 44
Comic Creator: PushMatrix and PopMatrix	 47
Summary	 53

Chapter 3: Widget Events – Binding Actions	 55
Attributes, ID, and root	 56
Basic widget events – dragging the stickman	 58
Localizing coordinates – adding stickmen	 65
Binding and unbinding events – sizing limbs and heads	 69
Binding events in the Kivy language	 74
Creating your own events – the magical properties	 77
Kivy and its properties	 80
Summary	 84

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 4: Improving the User Experience	 85
ScreenManager – selecting colors for the figures	 86
Color control on the canvas – coloring figures	 89
StencilView – limiting the drawing space	 93
Scatter – multi-touching to drag, rotate, and scale	 95
Recording gestures – line, circle, and cross	 99
Recognizing gestures – drawing with the finger	 101
Behaviors – enhancing widget's functionality	 107
Style – decorating the interface	 109
Factory – replacing a vertex instruction	 111
Summary	 113

Chapter 5: Invaders Revenge – an Interactive
Multi-touch Game	 115

Invaders Revenge – an animated multi-touch game	 116
Atlas – An efficient management of images	 118
Boom – simple sound effects	 120
Ammo – simple animation	 120
Invader – transitions for animations	 122
Dock – automatic binding in the Kivy language	 125
Fleet – infinite concatenation of animations	 126
Scheduling events with the clock	 128
Shooter – multi-touch control	 130
Invasion – moving the shooter with the keyboard	 134
Combining animations with '+' and '&'	 136
Summary	 138

Chapter 6: Kivy Player – a TED Video Streamer	 141
Video – play, pause, and stop	 142
AsyncImage – creating a cover for the video	 146
Subtitles – tracking the video progression	 149
Control bar – adding buttons to control the video	 153
Slider – including a progression bar	 157
Animation – hiding a widget	 159
Kivy inspector – debugging interfaces	 161
ActionBar – a responsive bar	 163
LoadDialog – displaying a directory of files	 168
ScrollView – displaying a list of videos	 171
Search – query the TED Developer API	 176
Summary	 177

Index	 179

http://www.it-ebooks.info/

[iii]

Preface
Mobile devices have transformed the way applications are perceived. They
have increased in interaction types; the user now expects gestures, multi-touches,
animations, responsiveness, virtual keyboards, and magic-pens. Moreover,
compatibility has become a must if you want to avoid the barriers imposed by
major operating systems. Kivy is an open source Python solution that covers these
market needs with an easy-to-learn and rapid development approach. Kivy continues
to grow fast and two versions have been released since the first publication of this
book in September 2013. Thanks to an enthusiastic community, Kivy is making its way
in an extremely competitive territory in which it stands out for offering both a cross-
platform and efficient alternative to native development and HTML5.

This book introduces you to the Kivy world, covering a large variety of important
topics related to interactive applications and games development. The components
presented in this book were selected according to their usefulness for developing
state-of-art applications and also for serving as an example of broader Kivy
functionalities. Following this approach, the book covers a big part of the
Kivy library.

This book provides you with examples to understand their use and how to
integrate the three projects that come with this book. The first one, the comic
creator, exemplifies how to build a user interface (Chapter 1, GUI Basics – Building
an Interface), how to draw vector shapes in the screen (Chapter 2, Graphics – the
Canvas), how to bind user interactions with pieces codes (Chapter 3, Widget Events
– Binding Actions), and other components related to improving the user experience
(Chapter 4, Improving the User Experience). The second project, Invaders Revenge, is an
interactive game that introduces you to the use of animations, scheduling of tasks,
keyboard events, and multi-touch control (Chapter 5, Invaders Revenge – an Interactive
Multi-touch Game). The third project, Kivy Player, teaches how we can control video
streams with a modern design and responsive interactions to maximize the use of the
screen (Chapter 6, Kivy Player – a TED Video Streamer).

http://www.it-ebooks.info/

Preface

[iv]

Occasionally, this book explains some technical but important Kivy concepts that are
related to the Kivy class structure and implementation, or the order and strategies to
draw on the screen. These explanations give the reader some insights into the Kivy
internals that will help them solve potential problems when they develop their own
projects. Even though they are not necessary for the comprehension of the main
topics of this book, they will become important lessons when the reader faces new
situations implementing their own applications.

This book grabs the reader's attention by stating interesting programming scenarios.
The sections are generally short and straightforward, making the learning process
constant. These short sections will also serve as a reference when the reader finishes
the book. However, serving as a reference doesn't prevent the text from achieving the
main goal, which is teaching bigger projects that connect the small topics. At the end
of this book, the reader will feel comfortable to start their own project.

What this book covers
Chapter 1, GUI Basics – Building an Interface, introduces the basic components and
layouts of Kivy and how to integrate them through the Kivy Language.

Chapter 2, Graphics – the Canvas, explains the use of the canvas and how to draw
vector figures on the screen.

Chapter 3, Widget Events – Binding Actions, teaches how to connect the interactions of
the user through the interface with particular code inside the program.

Chapter 4, Improving the User Experience, introduces a collection of useful components
to enrich the interaction of the user with the interface.

Chapter 5, Invaders Revenge – an Interactive Multi-touch Game, presents components
and strategies to build highly interactive applications.

Chapter 6, Kivy Player – a TED Video Streamer, builds a responsive and
professional-looking interface to control a video stream service.

http://www.it-ebooks.info/

Preface

[v]

What you need for this book
You need to have some programming experience before starting this book and
specifically have a good understanding of some software engineering concepts,
particularly inheritance and the difference between classes and instances. You should
be already familiar with Python. That said, the code is kept as simple as possible and
it avoids the use of very specific Python nuances, so any other developer can follow
it. No previous experience of Kivy is required, though some general programming
knowledge of event handling, scheduling, and user interfaces would boost your
learning. You also need to have Kivy 1.9.0 installed with all its requirements. The
installation instructions can be found at http://kivy.org/docs/gettingstarted/
installation.html.

Who this book is for
The book aims at developers, specifically Python developers, who want to create
UI/UX applications for different platforms. This book will also benefit developers
that are seeking for an alternative to HTML5 or native Android/iOS development,
looking forward to learn about mobile development and its demands (multi-touch,
gestures, and animations), or wishing to improve their understanding of object-
oriented topics such as inheritance, classes and instances, and event handling.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This is the reason we included the on_touch_down event."

http://kivy.org/docs/gettingstarted/installation.html
http://kivy.org/docs/gettingstarted/installation.html
http://www.it-ebooks.info/

Preface

[vi]

A block of code is set as follows:

1. # File name: hello.py
2. import kivy
3. kivy.require('1.9.0')
4.
5. from kivy.app import App
6. from kivy.uix.button import Label
7.
8. class HelloApp(App):
9. def build(self):
10 return Label(text='Hello World!')
11.
12. if __name__=="__main__":
13. HelloApp().run()

The numeration restarts at the beginning of each chapter providing a unique
identifier to each line code. Code from previous chapter will never be referenced,
instead it will be copied again if needed. When we wish to draw your attention to a
particular part of a code block, the relevant lines or items are set in bold, for example,
line 10.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "We need
an alternate way to stop the video (different from the Stop button)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

http://www.it-ebooks.info/

Preface

[vii]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[viii]

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.it-ebooks.info/

[1]

GUI Basics – Building an
Interface

Kivy is a free, open source Python library that allows for quick and easy
development of highly interactive multiplatform applications. Kivy's execution
speed is comparable to the native mobile alternative, Java for Android or Objective
C for iOS. Moreover, Kivy has the huge advantage of being able to run on multiple
platforms, just as HTML5 does; in which case, Kivy performs better because it
doesn't rely on a heavy browser, and many of its components are implemented
in C using the Cython library in such a way that most of the graphics processing
runs directly in the GPU. Kivy strikes a great balance between performance and
portability across various hardware and software environments. Kivy emerges with
a simple but ambitious goal in mind:

"… same code for every platform, at least what we use every day: Linux/Windows/
Mac OS X/Android/iOS"

Mathieu Virbel (http://txzone.net/2011/01/kivy-next-pymt-on-android-
step-1-done/)

This support has being extended to Raspberry Pi, thanks to a crowd funding
campaign started by Mathieu Virbel, the creator of Kivy. Kivy was introduced
for the first time at EuroPython 2011 as a Python framework designed for creating
natural user interfaces. Since then, it has grown bigger and attracted an enthusiastic
community.

http://txzone.net/2011/01/kivy-next-pymt-on-android-step-1-done/
http://txzone.net/2011/01/kivy-next-pymt-on-android-step-1-done/
http://www.it-ebooks.info/

GUI Basics – Building an Interface

[2]

This book requires some knowledge of Python, and very basic terminal skills, but
also it requires some understanding of Object-Oriented Programming (OOP)
concepts. In particular, it is assumed that you understand the concept of inheritance
and the difference between instances and classes. Refer to the following table to
review some of these concepts:

Concept URL
OOP http://en.wikipedia.org/wiki/Object-oriented_

programming

Inheritance http://en.wikipedia.org/wiki/Inheritance_(object-
oriented_programming)

Instance http://en.wikipedia.org/wiki/Instance_(computer_
science)

Class http://en.wikipedia.org/wiki/Class_(computer_
science)

Before we start, you will need to install Kivy. The installation process for all different
platforms is documented and regularly updated on the Kivy website: http://kivy.
org/docs/installation/installation.html.

All code in this book has been tested with Kivy 1.9.0 and both
Python 2.7 and Python 3.4 (but 3.3 should work fine as well).
Note that packaging support for mobile is not yet complete
for Python 3.3+. For now, if we want to create mobile apps for
Android or iOS, we should use Python 2.7. If you want to know
your Python version, you can execute python -V in a terminal
to check your installed Python version.

In this chapter, we start by creating user interfaces using one of Kivy's most fun
and powerful components – the Kivy language (.kv). The Kivy Language separates
logic from presentation in order to keep an easy and intuitive code; it also links
components at an interface level. In future chapters, you will also learn how to build
and modify interfaces dynamically using pure Python code and Kivy as a library.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Instance_(computer_science)
http://en.wikipedia.org/wiki/Instance_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://kivy.org/docs/installation/installation.html
http://kivy.org/docs/installation/installation.html
http://www.it-ebooks.info/

Chapter 1

[3]

Here is a list of all the skills that you are about to learn:

•	 Launching a Kivy application
•	 Using the Kivy language
•	 Instantiating and personalizing widgets (GUI components) through basic

properties and variables
•	 Differentiating between fixed, proportional, absolute, and relative

coordinates
•	 Creating responsive GUIs through layouts
•	 Modularizing code in different files

This chapter covers all the basics for building a Graphical User Interface (GUI)
in Kivy. First, we will learn techniques to run an application and how to use and
integrate widgets. After that, we will introduce the main project of the book, the
Comic Creator, and program the main structure of the GUI that we will continue
using in the following two chapters. At the end of this chapter, you will be able to
build a GUI starting from a pencil and paper sketch, and also learn some techniques
to make the GUI responsive to the size of the window.

Basic interface – Hello World!
Let's put our hands on our first code.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

GUI Basics – Building an Interface

[4]

The following is a Hello World program:

1. # File name: hello.py
2. import kivy
3. kivy.require('1.9.0')
4.
5. from kivy.app import App
6. from kivy.uix.button import Label
7.
8. class HelloApp(App):
9. def build(self):
10. return Label(text='Hello World!')
11.
12. if __name__=="__main__":
13. HelloApp().run()

This is merely Python code. Launching a Kivy program is not any
different from launching any other Python application.

In order to run the code, you open a terminal (line of commands or console)
and specify the following command in Windows or Linux: python hello.py
--size=150x100 (--size is a parameter to specify the screen size).

On a Mac, you must type in kivy instead of python after installing Kivy.app in /
Applications. Lines 2 and 3 verify that we have the appropriate version of Kivy
installed on our computer.

If you try to launch our application with an older Kivy version
(say 1.8.0) than the specified version, then line 3 will raise an
Exception error. This Exception is not raised if we have a
more recent version.

We omit the call to kivy.require in most of the examples in the book, but you will
find it in the code that you download online (https://www.packtpub.com/), and its
use is strongly encouraged in real-life projects. The program uses two classes from
the Kivy library (lines 5 and 6) – App and Label. The class App is the starting point of
any Kivy application. Consider App as the empty window where we will add other
Kivy components.

https://www.packtpub.com
http://www.it-ebooks.info/

Chapter 1

[5]

We use the App class through inheritance; the App class becomes the base class of the
HelloApp subclass or child class (line 8). In practice, this means that the HelloApp
class has all the variables and methods of App, plus whatever we define in the body
(lines 9 and 10) of the HelloApp class. Most importantly, App is the starting point of
any Kivy application. We can see that line 13 creates an instance of HelloApp and
runs it.

Now the HelloApp class's body just overrides one of the existing App class's methods,
the build(self) method. This method has to return the window content. In our
case, a Label that holds the text Hello World! (line 10). A Label is a widget that
allows you to display some text on the screen.

A widget is a Kivy GUI component. Widgets are the minimal graphical
units that we put together in order to create user interfaces.

The following screenshot shows the resulting screen after executing the
hello.py code:

So, is Kivy just another library for Python? Well, yes. But as part of the library, Kivy
offers its own language in order to separate the logic from the presentation and to
link elements of the interface. Moreover, remember that this library will allow you to
port your applications to many platforms.

Let's start to explore the Kivy language. We will separate the previous Python code
into two files, one for the presentation (interface), and another for the logic. The first
file includes the Python lines:

14. # File name: hello2.py
15. from kivy.app import App
16. from kivy.uix.button import Label
17.
18. class Hello2App(App):

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[6]

19. def build(self):
20. return Label()
21.
22. if __name__=="__main__":
23. Hello2App().run()

The hello2.py code is very similar to hello.py. The difference is that the method
build(self) doesn't have the Hello World! message. Instead, the message has been
moved to the text property in the Kivy language file (hello2.kv).

A property is an attribute that can be used to change the content,
appearance, or behavior of a widget.

The following is the code (rules) of hello2.kv, which shows how we modify the
Label content with the text property (line 27):

24. # File name: hello2.kv
25. #:kivy 1.9.0
26. <Label>:
27. text: 'Hello World!'

You might wonder how Python or Kivy knows that these two files (hello2.py and
hello2.kv) are related. This tends to be confusing at the beginning. The key is in the
name of the subclass of App, which in this case is HelloApp.

The beginning part of the App class's subclass name must coincide
with the name of the Kivy file. For example, if the definition of the
class is class FooApp(App), then the name of the file has to be
foo.kv and in the same directory of the main file (the one that
executes the run() method of App).

Once that consideration is included, this example can be run in the same way we
ran the previous one. We just need to be sure we are calling the main file – python
hello2.py -–size=150x100.

This is our first contact with the Kivy language, so we should have an in-depth
look at it. Line 25 (hello2.kv) tells Python the minimal version of Kivy that should
be used. It does the same thing as the previous lines 2 and 3 do in hello.py. The
instructions that start with #: in the header of a Kivy language are called directives.
We will also be omitting the version directive throughout the rest of this book, but
remember to include it in your own projects.

http://www.it-ebooks.info/

Chapter 1

[7]

The <Label>: rule (line 26) indicates that we are going to modify the Label class.

The Kivy language is expressed as a sequence of rules. A rule is a piece
of code that defines the content, behavior, and appearance of a Kivy
widget class. A rule always starts with a widget class name in angle
brackets followed by a colon, like this, <Widget Class>:

Inside the rule, we set the text property with 'Hello World!' (line 27). The code
in this section will generate the same output screen as before. In general, everything
in Kivy can be done using pure Python and importing the necessary classes from
the Kivy library, as we did in the first example (hello.py). However, there are
many advantages of using the Kivy language and therefore this book explains all
the presentation programming in the Kivy language, unless we need to add
dynamic components, in which case using Kivy as a traditional Python library is
more appropriate.

If you are an experienced programmer, you might have worried that modifying
the Label class affects all the instances we could potentially create from Label,
and therefore they will all contain the same Hello World text. That is true, and
we are going to study a better approach to doing this in the following section.

Basic widgets – labels and buttons
In the last section, we used the Label class, which is one of the multiple widgets that
Kivy provides. You can think of widgets as interface blocks that we use to set up a
GUI. Kivy has a complete set of widgets – buttons, labels, checkboxes, dropdowns,
and many more. You can find them all in the API of Kivy under the package kivy.
uix (http://kivy.org/docs/api-kivy.html).

We are going to learn the basics of how to create our own personalized widget
without affecting the default configuration of Kivy widgets. In order to do that,
we will use inheritance to create the MyWidget class in the widgets.py file:

28.# File name: widgets.py
29. from kivy.app import App
30. from kivy.uix.widget import Widget
31.
32. class MyWidget(Widget):
33. pass
34.
35. class WidgetsApp(App):

http://kivy.org/docs/api-kivy.html
http://www.it-ebooks.info/

GUI Basics – Building an Interface

[8]

36. def build(self):
37. return MyWidget()
38.
39. if __name__=="__main__":
40. WidgetsApp().run()

In line 32, we inherit from the base class Widget and create the subclass MyWidget.
It is a general practice to create your own Widget for your applications instead of
using the Kivy classes directly, because we want to avoid applying our changes to
all future instances of the widget Kivy class. In the case of our previous example
(hello2.kv), modifying the Label class (line 26) would affect all of its future
instances. In line 37, we instantiated MyWidget instead of Label directly (as we did
in hello2.py), so we can now distinguish between our widget (MyWidget) and the
Kivy widget (Widget). The rest of the code is analogous to what we covered before.

The following is the corresponding Kivy language code (widgets.kv):

41. # File name: widgets.kv
42. <MyWidget>:
43. Button:
44. text: 'Hello'
45. font_size: 32
46. color: .8,.9,0,1
47. pos: 0, 100
48. size: 100, 50
49. Button:
50. text: 'World!'
51. font_size: 32
52. color: .8,.9,0,1
53. pos: 100,0
54. size: 100, 50

Note that now we are using buttons instead of labels. Most of the basic widgets
in Kivy work in similar ways. In fact, Button is just a subclass of Label that
incorporates more properties such as background color.

Compare the notation of line 26 (<Label>:) in hello2.kv with line 43 (Button:) of
the preceding code (widgets.kv). We used the rule class notation (<Class>:) for the
Label (and MyWidget) class, but a different notation (Instance:) for Button. In this
way, we defined that MyWidget has two instances of Button (line 43 and 49).

http://www.it-ebooks.info/

Chapter 1

[9]

Finally, we set the properties of the Button instances. The font_size property sets
the size of the text. The color property sets the text color and is specified in RGBA
format (red, green, blue, and alpha/transparency). The properties size and pos set
the size and position of the widget and consist of a pair of fixed coordinates (x for
horizontal and y for vertical), the exact pixels on the window.

Note that the coordinate (0, 0) is located at the bottom-left corner,
the Cartesian origin. Many other languages (including CSS) use
the top-left corner as the (0, 0) coordinate, so take note!

The following screenshot shows the output of widgets.py and widgets.kv with
some helpful annotations:

A couple of things can be improved in the previous code (widgets.kv). First, there
are some repeated properties for both buttons: pos, color, and font_size. Instead
of that, let's create our own Button as we did with MyWidget so it will be easy to
keep the buttons' design consistent. Second, the fixed position is quite annoying
because the widgets don't adjust when the screen is resized. Let's make it responsive
to the screen size in the widgets2.kv file:

55. # File name: widgets2.kv
56. <MyButton@Button>:
57. color: .8,.9,0,1
58. font_size: 32
59. size: 100, 50
60.
61. <MyWidget>:
62. MyButton:
63. text: 'Hello'
64. pos: root.x, root.top - self.height
65. MyButton:
66. text: 'World!'
67. pos: root.right - self.width, root.y

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[10]

In this code (widgets2.kv), we create (<MyButton@Button>:) and customize the
MyButton class (lines 56 to 59) and instances (line 62 to 67). Note the differences in
the manner we defined MyWidget and MyButton.

Because we did not define the MyButton base class in widgets.
py as we did with MyWidget (line 32 of widgets.py), we have to
specify @Class in the Kivy language rule (line 56). In the MyWidget
class case, we also needed to define its class from the Python side
because we instantiated it directly (line 37 of widgets.py).

In this example, each Button class's position is responsive in the sense that they are
always in the corners of the screen, no matter what the window size is. In order to
achieve that, we need to use two internal variables – self and root. You might be
familiar with the variable self. As you have probably guessed, it is just a reference
to the Widget itself. For example, self.height (line 64) has a value of 50 because
that is the height of that particular MyButton class. The variable root is a reference
to the Widget class at the top of the hierarchy. For example, the root.x (line 64) has
a value of 0 because that is the position in X-axis of the MyWidget instance created on
line 37 of widgets.py.

MyWidget uses all of the window's space by default; therefore, the origin is (0, 0).
The x and y and width and height are also widget properties, which we can
use to disjoint pos and size respectively.

Fixed coordinates are still a laborious way to organize widgets and elements in the
window. Let's move on to something smarter – layouts.

Layouts
No doubt, fixed coordinates are the most flexible way to organize elements in an
n-dimensional space; however, it is very time consuming. Instead, Kivy provides
a set of layouts that will facilitate the work of organizing widgets. A Layout is a
Widget subclass that implements different strategies to organize embedded widgets.
For example, one strategy could be organizing widgets in a grid (GridLayout).

Let's start with a simple FloatLayout example. It works in a very similar manner
to the way we organize widgets directly inside of another Widget subclass, except
that now we can use proportional coordinates ("percentages" of the total size of the
window) rather than fixed coordinates (exact pixels).

http://www.it-ebooks.info/

Chapter 1

[11]

That means that we won't need the calculations we did in the previous section with
self and root. Here is the Python code of an example that resembles the previous
one:

68. # File name: floatlayout.py
69.
70. from kivy.app import App
71. from kivy.uix.floatlayout import FloatLayout
72.
73. class FloatLayoutApp(App):
74. def build(self):
75. return FloatLayout()
76.
77. if __name__=="__main__":
78. FloatLayoutApp().run()

There is nothing really new in the preceding code (floatlayout.py), except the
use of FloatLayout (line 75). The interesting parts are in the corresponding Kivy
language (floatlayout.kv):

79. # File name: floatlayout.py
80. <Button>:
81. color: .8,.9,0,1
82. font_size: 32
83. size_hint: .4, .3
84.
85. <FloatLayout>:
86. Button:
87. text: 'Hello'
88. pos_hint: {'x': 0, 'top': 1}
89. Button:
90. text: 'World!'
91. pos_hint: {'right': 1, 'y': 0}

In floatlayout.kv, we use two new properties – size_hint (line 83) and pos_
hint (lines 88 and 91) .They are similar to size and pos but receive proportional
coordinates with values ranging from 0 to 1; (0, 0) is the bottom-left corner and (1,
1) is the top-right corner. For example, the size_hint property on line 83 sets the
width to 40 percent of the window width and the height to 30 percent of the current
window height. Something similar happens to the pos_hint property (lines 88 and
91 but the notation is different – a Python dictionary where the keys (for example,
'x' or 'top') indicate which part of the widget is referenced. For example, 'x'
is the left border.

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[12]

Note that we use the top key instead of the y one on line 88 and the right key
instead of the x one on line 91. The top and right keys respectively reference
the top and right edges of Button. In this case, we could have also used x and y for
both axes; for example, we could have written pos_hint: {'x': .85, 'y': 0} as
line 91. However, the right and top keys avoid us some calculations, making the
code clearer.

The next screenshot shows the result, and the available keys for the pos_hint
dictionary:

The available pos_hint keys (x, center_x, right, y, center_y, and top)
are useful to align the edges or for centering. For example, pos_hint:
{'center_x':.5, 'center_y':.5} would align a widget in the middle
no matter the size of the window.

We could have used the top and right properties with the fixed positioning of
widgets2.kv (line 64 and 67), but note that pos doesn't accept Python dictionaries
({'x':0,'y':0}), just pairs of values exclusively corresponding to (x, y). Therefore,
instead of using the pos property, we should use the x, center_x, right, y,
center_y, and top properties directly (not dictionary keys). For example, instead of
pos: root.x, root.top - self.height (line 64), we should have used:

x: 0
top: root.height

The properties x, center_x, right, y, center_y, and top
always specify fixed coordinates (pixels), and not proportional
ones. If we want to use proportional coordinates, we have to be
inside a Layout (or an App) and use the pos_hint property.

http://www.it-ebooks.info/

Chapter 1

[13]

We can also force a Layout to use fixed values, but there can be conflicts if we are
not careful with the properties. If we use any Layout; pos_hint and size_hint take
priority. If we want to use fixed positioning properties (pos, x, center_x, right,
y, center_y, top), we have to ensure that we are not using the pos_hint property.
Second, if we want to use the size, height, or width properties, then we need to
set a None value to the size_hint axis we want to use with absolute values. For
example, size_hint: (None, .10) allows us to use height property, but it keeps
the width of 10 percent for the window's size.

The following table summarizes what we have seen about the positioning and sizing
properties. The first and second columns indicate the name of the property and its
respective value. The third and fourth column indicate whether it is available for
layouts and for widgets.

Property Value For layouts For
widgets

size_hint A pair w, h: w, and h express
a proportion (from 0 to 1 or
None).

Yes No

size_
hint_x

size_
hint_y

A proportion from 0 to 1 or
None, indicating width (size_
hint_x) or height (size_
hint_y).

Yes No

pos_hint Dictionary with one x-axis key
(x, center_x, or right) and
one y-axis key (y, center_y, or
top). The values are proportions
from 0 to 1.

Yes No

size A pair w, h: w and h indicating
fixed width and height in pixels.

Yes, but set size_
hint: (None,
None)

Yes

width Fixed number of pixels. Yes, but set size_
hint_x: None

Yes

height Fixed number of pixels. Yes, but set size_
hint_y: None

Yes

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[14]

Property Value For layouts For
widgets

pos A pair x, y indicating a fixed
coordinate (x, y) in pixels.

Yes, but don't use
pos_hint

Yes

x, right or
center_x

Fixed number of pixels. Yes, but don't use x,
right or center_x
in pos_hint

Yes

y, top or
center_y

Fixed number of pixels. Yes, but don't use y,
top or center_y in
pos_hint

Yes

We have to be careful because some of the properties behave differently depending
on the layout we are using. Kivy currently has eight different layouts, which are
described in the following table. The left-hand side column shows the name of the
Kivy layout class. The right-hand side column describes briefly how they work.

Layout Details
FloatLayout Organizes the widgets with proportional coordinates by

the size_hint and pos_hint properties. The values are
numbers between 0 and 1, indicating a proportion to the
window size.

RelativeLayout Operates in the same way that FloatLayout does, but
the positioning properties (pos, x, center_x, right, y,
center_y, top) are relative to the Layout size and not the
window size.

GridLayout Organizes widgets in a grid. You have to specify at least one
of two properties – cols (for columns) or rows (for rows).

BoxLayout Organizes widgets in one row or one column depending
on whether the value of the orientation property is
horizontal or vertical.

StackLayout Similar to BoxLayout, but it goes to the next row or column
when it runs out of space. There is more flexibility to set the
orientation. For example, rl-bt organizes the widgets
in right-to-left, bottom-to-top order. Any combination of lr
(left to right), rl (right to left), tb (top to bottom), and bt
(bottom to top) is allowed.

http://www.it-ebooks.info/

Chapter 1

[15]

Layout Details
ScatterLayout Works in a similar manner to RelativeLayout but allows

multitouch gesturing for rotating, scaling, and translating. It
is slightly different in its implementation, so we will review
it later on.

PageLayout Stacks widgets on top of each other, creating a multipage
effect that allows flipping of pages using side borders. Very
often, we will use another layout to organize elements inside
each of the pages, which are simply widgets.

The Kivy API (http://kivy.org/docs/api-kivy.html) offers a detailed
explanation and good examples of each of the layouts. The behavioral difference of
the properties depends on the layout, and it is sometimes unexpected. Here are some
hints that will help us in the GUI building process:

•	 size_hint, size_hint_x, and size_hint_y work on all the layouts (except
PageLayout), but the behavior might be different. For example, GridLayout
will try to take an average of the x hints and y hints on the same row or
column respectively.

•	 You should use values from 0 to 1 with size_hint, size_hint_x, and
size_hint_y. However, you can use values higher than 1. Depending
on the layout, Kivy makes the widget bigger than the container or tries to
recalculate a proportion based on the sum of the hints on the same axis.

•	 pos_hint only works for FloatLayout, RelativeLayout, and BoxLayout. In
BoxLayout, only the axis-x keys (x, center_x, right) work in the vertical
orientation and vice-versa for the horizontal orientation. An analogous
rule applies for the fixed positioning properties (pos, x, center_x, right, y,
center_y, and top).

•	 size_hint, size_hint_x, and size_hint_y can always be set as None in
favor of size, width, and height.

There are more properties and particularities of each layout, but with the ones
covered, we will be able to build almost any GUI. In general, the recommendation is
to use the layout as it is and, instead of forcing it with the properties we are using, it
is better to have more layouts and combine them to reach our goals. The next section
will teach us how to embed layouts and will offer more comprehensive examples.

http://kivy.org/docs/api-kivy.html
http://www.it-ebooks.info/

GUI Basics – Building an Interface

[16]

Embedding layouts
Layouts are subclasses of widgets. We have already been embedding widgets
inside widgets since the beginning (line 43) and it won't matter if the widgets we
are embedding are also layouts. In this section, we will work with a comprehensive
example to explore the effect of the position properties discussed in the previous
section. The example is not visually appealing, but it will be useful to illustrate some
concepts and to provide some code that you can use to test different properties. The
following is the Python code (layouts.py) for the example:

92. # File name: layouts.py
93. from kivy.app import App
94. from kivy.uix.gridlayout import GridLayout
95.
96. class MyGridLayout(GridLayout):
97. pass
98.
99. class LayoutsApp(App):
100. def build(self):
101. return MyGridLayout()
102.
103. if __name__=="__main__":
104. LayoutsApp().run()

Nothing new in the preceding code – we just created MyGridLayout. The final output
is shown in the next screenshot, with some indications about the different layouts:

Embedding layouts

http://www.it-ebooks.info/

Chapter 1

[17]

In this screenshot, six different Kivy layouts are embedded into a GridLayout of
two rows (line 107) in order to show the behavior of different widget properties. The
code is straightforward, although extensive. Therefore, we are going to study the
corresponding Kivy language code (layouts.kv) in five fragments. The following is
fragment 1:

105. # File name: layouts.kv (Fragment 1)
106. <MyGridLayout>:
107. rows: 2
108. FloatLayout:
109. Button:
110. text: 'F1'
111. size_hint: .3, .3
112. pos: 0, 0
113. RelativeLayout:
114. Button:
115. text: 'R1'
116. size_hint: .3, .3
117. pos: 0, 0

In this code, MyGridLayout is defined by the number of rows with the rows property
(line 107). Then we add the first two layouts – FloatLayout and RelativeLayout
with one Button each. Both buttons have a defined property of pos: 0, 0 (lines
112 and 117) but note in the previous screenshot that the Button F1 (line 109) is in
the bottom-left corner of the whole window, whereas the Button R1 (line 114) is in
the bottom-left corner of RelativeLayout. The reason is that the pos coordinates in
FloatLayout are not relative to the position of the layout.

Note that pos_hint always uses relative coordinates, no matter the
layout we are using. In other words, the previous example wouldn't
have worked if we were using pos_hint instead of pos.

In fragment 2, one GridLayout is added to MyGridLayout:

118. # File name: layouts.kv (Fragment 2)
119. GridLayout:
120. cols: 2
121. spacing: 10
122. Button:
123. text: 'G1'

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[18]

124. size_hint_x: None
125. width: 50
126. Button:
127. text: 'G2'
126. Button:
128. text: 'G3'
129. size_hint_x: None
130. width: 50

In this case, we use the cols property to define two columns (line 120) and the
spacing property to separate the internal widgets by 10 pixels from each other
(line 121). Also, note in the previous screenshot that the first column is thinner
than the second. We achieved this by setting the size_hint_x to None and width
to 50 of the buttons G1 (line 122) and G3 (line 128).

In fragment 3, an AnchorLayout is added:

131. # File name: layouts.kv (Fragment 3)
132. AnchorLayout:
133. anchor_x: 'right'
135. anchor_y: 'top'
136. Button:
137. text: 'A1'
138. size_hint: .5, .5
139. Button:
140. text: 'A2'
141. size_hint: .2, .2

We have specified the anchor_x property to right and the anchor_y property
to top (line 134 and 135) in order to arrange elements in the top-right corner of the
window as shown in the previous screenshot with both buttons (lines 136 and 139).
This layout is very useful to embed other layouts inside it, for example, top menu
bars or side bars.

In fragment 4, a BoxLayout is added:

142. # File name: layouts.kv (Fragment 4)
143. BoxLayout:
144. orientation: 'horizontal'
145. Button:
146. text: 'B1'
147. Button:

http://www.it-ebooks.info/

Chapter 1

[19]

148. text: 'B2'
149. size_hint: 2, .3
150. pos_hint: {'y': .4}
151. Button:
152. text: 'B3'

The preceding code illustrates the use of BoxLayout with the orientation
property set to horizontal. Also, the lines 149 and 150 show how to use
size_hint and pos_hint to move the button B2 further up.

Finally, fragment 5 adds a StackLayout:

153. # File name: layouts.kv (Fragment 5)
154. StackLayout:
155. orientation: 'rl-tb'
156. padding: 10
157. Button:
158. text: 'S1'
159. size_hint: .6, .2
160. Button:
161. text: 'S2'
162. size_hint: .4, .4
163. Button:
164. text: 'S3'
165. size_hint: .3, .2
166. Button:
167. text: 'S4'
168. size_hint: .4, .3

In this case, we added four buttons of different sizes. It is important to pay attention
to the previous screenshot on embedding layouts to understand the rules that we
applied to organize the widgets with the orientation property set to rl-tb (right
to left, top to bottom, line 155). Also note that the padding property (line 156) adds
10 pixels of space between the widgets and the border of StackLayout.

PageLayout – swiping pages
The PageLayout works in a different manner from other layouts. It is a dynamic
layout, in the sense that it allows flipping through pages using its borders. The idea
is that its components are stacked in front of each other, and we can just see the one
that is on top.

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[20]

The following example illustrates its use, taking advantage of the example from the
previous section. The Python code (pagelayout.py) is presented here:

169. # File name: pagelayout.py
170. import kivy
171.
172. from kivy.app import App
173. from kivy.uix.pagelayout import PageLayout
174.
175. class MyPageLayout(PageLayout):
176. pass
177.
178. class PageLayoutApp(App):
179. def build(self):
180. return MyPageLayout()
181.
182. if __name__=="__main__":
183. PageLayoutApp().run()

There is nothing new in this code except the use of the PageLayout class. For the
Kivy language code (pagelayout.kv), we will study the properties of PageLayout.
We have simply modified the layouts.kv studied in the previous section by
changing the header of the file (lines 105 to 107), now called pagelayout.kv:

184. # File name: pagelayout.kv
185. <Layout>:
186. canvas:
187. Color:
188. rgba: 1, 1, 1, 1
189. Rectangle:
190. pos: self.pos
191. size: self.size
192.
193. <MyPageLayout>:
194. page: 3
195. border: 120
196. swipe_threshold: .4
197. FloatLay...

All the layouts inherit from a base class called Layout. In line 185, we are modifying
this base class in the same way we did earlier with the Button class (line 80).

http://www.it-ebooks.info/

Chapter 1

[21]

If we want to apply changes to all the child widgets that have
a common base class (such as Layout), we can introduce those
changes in the base class. Kivy will apply the changes to all the
classes that derive from it.

By default, layouts don't have a background color, which is not convenient when
PageLayout stacks them on top of each other, because we can see the elements of the
layouts on the bottom. Lines 186 to 191 will draw a white (line 187 and 188) rectangle
of the size (line 190) and position (line 191) of the Layout. In order to do this, we
need to use the canvas, which allows us to draw shapes directly on the screen. This
topic will be explained in-depth in the next chapter (Chapter 2, Graphics - The Canvas).
You can see the result in the following screenshot:

If you run the code on your computer, you will notice that it will take you to the
page corresponding to AnchorLayout in the example of the previous section. The
reason is that we set the page property to value 3 (line 194). Counting from 0, this
property tells Kivy which page to display first. The border property tells Kivy
how wide the side borders are (for sliding to the previous or the next screen).
Finally, swipe_threshold tells the percentage of the screen that we have to slide
over, in order to change the page. The next section will use some of the layouts and
properties learned so far to display a more professional screen.

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[22]

Our project – Comic Creator
We now have all the necessary concepts to be able to create any interface we want.
This section describes the project that we will improve on, as we go through the
following three chapters – the Comic Creator. The basic idea of the project is a simple
application to draw a stickman. The following screenshot is a sketch (wireframe) of
the GUI we are aiming for:

We can distinguish several areas in the sketch. First, we need a drawing space
(top-right) for our comics. We need a tool box (top-left) with some drawing tools to
draw our figures and also some general options (second from bottom to top) – clear
the screen, remove the last element, group elements, change color, and use the
gestures mode. Finally, it would be useful to have a status bar (center-bottom) to
provide some information to the user – number of figures and last action performed.
According to what we have learned in this chapter, there are multiple solutions to
organize this screen. We will use the following:

•	 AnchorLayout for the tool box area in the top-left corner. Inside it will be a
GridLayout of two columns for the drawing tools.

•	 AnchorLayout for the drawing space in the top-right corner. Inside it will be a
RelativeLayout to have a relative space to draw in.

•	 AnchorLayout for the general options and status bar area at the bottom. Inside
it will be a BoxLayout with vertical orientation to organize the general options
on top of the status bar:

°° BoxLayout with horizontal orientation for the buttons of the
general options.

°° BoxLayout with horizontal orientation for the labels of the status bar.

http://www.it-ebooks.info/

Chapter 1

[23]

We are going to use that structure by creating different files for each area
– comiccreator.py, comiccreator.kv, toolbox.kv, generaltools.kv,
drawingspace.kv, and statusbar.kv. Let's start with comiccreator.py:

198. # File name: comiccreator.py
199. from kivy.app import App
200. from kivy.lang import Builder
201. from kivy.uix.anchorlayout import AnchorLayout
200.
201. Builder.load_file('toolbox.kv')
202. Builder.load_file('drawingspace.kv')
203. Builder.load_file('generaloptions.kv')
204. Builder.load_file('statusbar.kv')
205.
206. class ComicCreator(AnchorLayout):
207. pass
208.
209. class ComicCreatorApp(App):
210. def build(self):
211. return ComicCreator()
212.
213. if __name__=="__main__":
214. ComicCreatorApp().run()

Note that we are explicitly loading some of the files with the Builder.load_file
instruction (lines 203 to 206). There is no need to explicitly load comiccreator.
kv because Kivy automatically loads it by extracting the first part of the
ComicCreatorApp name. For ComicCreator, we choose AnchorLayout. It is not the
only option, but it gives clarity to the code, because the second level is also composed
of AnchorLayout instances.

Even though using a simple widget would have been clear, it is not possible, because
the Widget class doesn't honor the size_hint and pos_hint properties that are
necessary in the AnchorLayout internals.

Remember that only layouts honor the size_hint and
pos_hint properties.

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[24]

Here is the code for comiccreator.kv:

216. # File name: comiccreator.kv
217. <ComicCreator>:
218. AnchorLayout:
219. anchor_x: 'left'
220. anchor_y: 'top'
221. ToolBox:
222. id: _tool_box
223. size_hint: None, None
224. width: 100
225. AnchorLayout:
226. anchor_x: 'right'
227. anchor_y: 'top'
228. DrawingSpace:
229. size_hint: None, None
230. width: root.width - _tool_box.width
231. height: root.height - _general_options.height -
 _status_bar.height
232. AnchorLayout:
233. anchor_x: 'center'
234. anchor_y: 'bottom'
235. BoxLayout:
236. orientation: 'vertical'
237. GeneralOptions:
238. id: _general_options
239. size_hint: 1,None
240. height: 48
241. StatusBar:
242. id: _status_bar
243. size_hint: 1,None
244. height: 24

http://www.it-ebooks.info/

Chapter 1

[25]

This code follows the previously presented structure for the Comic Creator. There are
basically three AnchorLayout instances in the first level (lines 219, 226, and 233) and
a BoxLayout that organizes the general options and the status bar (line 236).

We set the width of the ToolBox to 100 pixels and the height of the GeneralOptions
and StatusBar to 48 and 24 pixels respectively (lines 241 and 245). This brings with
it an interesting problem – the drawing space should use the remaining width and
height of the screen (no matter the screen size). In order to achieve this, we will take
advantage of the Kivy id (lines 223, 239, and 243), which allows us to refer to other
components inside the Kivy language. On lines 231 and 232, we subtract tool_box.
width from root.width (line 231) and general_options.height and status_bar.
height from root.height (line 232).

A Kivy id allows us to create internal variables in order to access
properties of other widgets inside the Kivy language rules.

For now, let's continue exploring the Kivy language in the toolbox.kv:

245. # File name: toolbox.kv
246. <ToolButton@ToggleButton>:
247. size_hint: None, None
248. size: 48,48
249. group: 'tool'
250.
251. <ToolBox@GridLayout>:
252. cols: 2
253. padding: 2
254. ToolButton:
255. text: 'O'
256. ToolButton:
257. text: '/'
258. ToolButton:
259. text: '?'

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[26]

We created a ToolButton class that defines the size of the drawing tools and also
introduces a new Kivy widget – ToggleButton. The difference with the normal
Button is that it stays pressed until we click on it again. The following is an example
of the tool box with a ToolButton activated:

A ToggleButton instance can be associated with other ToggleButton instances, so
just one of them is clicked on at a time. We can achieve this by assigning the same
group property (line 250) to the ToggleButton instances that we want to react
together. In this case, we want all the instances of ToolButton belonging to the same
group, because we want to draw just one figure at a time; we make it part of the class
definition (line 247).

On line 252, we implement ToolBox as a subclass of GridLayout and we add some
character placeholders ('O', '/', and '?') to the ToolButton instances that we will
substitute for something more appropriate in the following chapters.

The following is the code for generaloptions.kv:

260. # File name: generaloptions.kv
261. <GeneralOptions@BoxLayout>:
262. orientation: 'horizontal'
263. padding: 2
264. Button:
265. text: 'Clear'
266. Button:
267. text: 'Remove'
268. ToggleButton:
269. text: 'Group'
268. Button:
270. text: 'Color'
271. ToggleButton:
272. text: 'Gestures'

http://www.it-ebooks.info/

Chapter 1

[27]

Here is an example of how inheritance can help us separate our components. We are
using ToggleButton instances (lines 269 and 273), and they are not affected by the
previous ToolButton implementation. Also, we didn't associate them to any group,
so they are independent of each other and will just keep a mode or state. The code
only defines the GeneralOptions class following our initial structure. The following
is the resulting screenshot:

The statusbar.kv file is very similar in the way it uses BoxLayout:

274. # File name: statusbar.kv
275. <StatusBar@BoxLayout>:
276. orientation: 'horizontal'
277. Label:
278. text: 'Total Figures: ?'
279. Label:
280. text: "Kivy started"

The difference is that it organizes labels and not buttons. The following is
the screenshot:

Finally, the code for drawingspace.kv:

281. # File name: drawingspace.kv
282. <DrawingSpace@RelativeLayout>:
283. Label:
284. markup: True
285. text: '[size=32px][color=#3e6643]The[/color]
 [sub]Comic[/sub] [i][b]Creator[/b][/i][/size]'

http://www.it-ebooks.info/

GUI Basics – Building an Interface

[28]

Apart from defining that DrawingSpace is a subclass of RelativeLayout, we
introduce the Kivy markup, a nice feature for styling the text of the Label class.
It works in a similar manner to XML-based languages. For example, in HTML,
I am bold would specify bold text. First, you have to activate it (line 285)
and then you just embed the text you want to style between [tag] and [/tag]
(line 286). You can find the complete tag list and description in the Kivy API, in the
documentation for Label (http://kivy.org/docs/api-kivy.uix.label.html).
In the previous example, size and color are self-explanatory; sub refers to
subindexed text; b to bold; and i to italics.

Here is the screenshot that shows the GUI of our project:

In the following chapters, we are going to add the respective functionality to this
interface that, for now, consists of placeholder widgets. However, it is exciting what
we got with just a few lines of code. Our GUI is ready to go and we will be working
on its logic from now on.

http://kivy.org/docs/api-kivy.uix.label.html
http://www.it-ebooks.info/

Chapter 1

[29]

Summary
This chapter covered all the basics and introduced some not-so-basic concepts of
Kivy. We covered how to configure classes, instances, and templates. Here is a list of
Kivy elements we have learned to use in this chapter:

•	 Basic widgets – Widget, Button, ToggleButton, and Label
•	 Layouts – FloatLayout, RelativeLayout, BoxLayout, GridLayout,

StackLayout, AnchorLayout, and PageLayout
•	 Properties – pos, x, y, center_x, center_y, top, right, size, height, width,

pos_hint, size_hint, group, spacing, padding, color, text, font_size,
cols, rows, orientation, anchor_x, and anchor_y

•	 Variables – self and root
•	 Others – id and the markup tags size, color, b, i, and sub

There are many more elements from the Kivy language that we can use, but with this
chapter, we have understood the general idea of how to organize elements. With the
help of the Kivy API, we should be able to display most of the elements available
for GUI design. There is, however, a very important element we need to study
separately – the canvas, which allows us to draw vector shapes inside widgets, such
as the white rectangle we draw as background in the PageLayout example. It is a
very important topic to master in Kivy, and the entire next chapter, Graphics - The
Canvas, will be dedicated to it.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[31]

Graphics – the Canvas
Any Kivy Widget contains a Canvas object. A Kivy Canvas is a set of drawing
instructions that define the graphical representation of Widget.

Be careful with the name because it tends to be confusing! A
Canvas object is not what we draw on (for example, as it is in
HTML5); it is a set of instructions to draw in the coordinate space.

The coordinate space refers to the place in which we draw. All the Kivy widgets
share the same coordinate space, and a Canvas instance, the instructions to draw on
it. A coordinate space is not restricted to the size of the window or the application
screen, which means that we can draw outside of the visible area.

We will discuss how to draw and manipulate the representation of the widgets
through the instructions we add to the Canvas object. Here is a list of the most
important skills that we will cover:

•	 Drawing basic geometric shapes (straight and curve lines, ellipses, and
polygons) through vertex instructions

•	 Using colors, and rotating, translating, and scaling the coordinate space
through the context instructions

•	 The difference between vertex and context instructions and how they
complement each other

•	 The three different sets of instructions of Canvas that we can use to modify
the order of execution of the graphics instructions

•	 Storing and retrieving the current coordinate space context through
PushMatrix and PopMatrix

http://www.it-ebooks.info/

Graphics – the Canvas

[32]

Using the Kivy canvas brings with it some technical challenges because Kivy
integrates graphic processing with efficiency in mind. These challenges are not
initially obvious, but there is nothing particularly difficult about them if we
understand the underlying problem. This is why the next section is dedicated to
introduce the main considerations that we face when we use the canvas.

Understanding the canvas
Before studying the examples of this chapter, it is important to recapitulate the
following particularities related to the graphics display:

•	 The coordinate space refers to the place in which we draw, which is not
restricted to the windows size

•	 A Canvas object is a set of instructions to draw in the coordinate space,
not the place we draw in

•	 All Widget objects contain their own Canvas (canvases, which we will
see later) but all of them share the same coordinate space, the one in the
App object.

For example, if we add a rotation instruction to a specific Canvas instance
(for example, the canvas of a button), then this will also affect all the subsequent
graphics instructions that are going to display graphics in the coordinate space. It
doesn't matter if the graphics belong to canvases of different widgets; they all share
the same coordinate space.

Therefore, we need to learn techniques to leave the coordinate space context in its
original state after modifying it with graphics instructions.

All the graphics instructions added to different Canvas
objects, which at the same time belong to different Widget
objects, affect the same coordinate space. It is our task to
make sure that the coordinate space is in its original state
after modifying it with the graphics instructions.

Another important concept that we need to extend is the one of the Widget.
We already know that widgets are the blocks that allow us to build interfaces.

http://www.it-ebooks.info/

Chapter 2

[33]

A Widget is also a place marker (with its position and size),
but not necessarily a placeholder. The instructions of the
canvas of a widget are not restricted to the specific area of
the widget but to the whole coordinate space.

This directly adds to the previous problem of sharing a coordinate space. Not only
do we need to control the fact that we share a coordinate space, but also, we have no
restrictions on where to draw. On one hand, this makes Kivy very efficient and gives
us a lot of flexibility. On the other hand, this seems to be a lot to control. Fortunately,
Kivy provides the necessary tools to easily work around the problem.

The next section will present the available graphics instructions that can be added
to the canvas in order to draw basic shapes. After this, we will explore graphic
instructions that change the coordinate space context and exemplify the problems
of sharing the coordinate space. The final section concentrates on illustrating the
acquired knowledge inside the Comic Creator, where we learn the most common
techniques to master the use of the canvas considering its particularities. By the end
of this chapter, we will be in complete control of the graphics that are displayed on
the screen.

Drawing basic shapes
Before starting, let's introduce the Python code that we will reuse in all the examples
of this chapter:

1. # File name: drawing.py
2. from kivy.app import App
3. from kivy.uix.relativelayout import RelativeLayout
4.
5. class DrawingSpace(RelativeLayout):
6. pass
7.
8. class DrawingApp(App):
9. def build(self):
10. return DrawingSpace()
11.
12. if __name__=="__main__":
13. DrawingApp().run()

http://www.it-ebooks.info/

Graphics – the Canvas

[34]

We created the subclass DrawingSpace from RelativeLayout. It could have been
inherited from any Widget but using RelativeLayout is generally a good choice for
graphics because we usually want to draw inside the widget, and that means relative
to its position.

Let's start with the canvas. There are basically two types of instructions that we can
add to a canvas: vertex instructions and context instructions.

The vertex instructions inherit from the VertexInstruction base
class, and allow us to draw vector shapes in the coordinate space.
The context instructions (Color, Rotate, Translate, and Scale)
inherit from the ContextInstruction base class, and let us apply
transformations to the coordinate space context. By coordinate space
context, we mean the conditions in which the shapes (specified in the
vertex instructions) are drawn in the coordinate space.

Basically, vertex instructions are what we draw and context instructions affect
where and how we draw. The following is the screenshot for the first example
of this chapter:

In the preceding screenshot, the gray grid will simplify reading the coordinates
that appear in the code. Also, the white letters associated with each cell will be used
to refer to the shapes. Neither the grid nor the letters are part of the Kivy example.
The preceding screenshot illustrates 10 basic figures that we learn to draw with
vertex instructions. Almost all the available Kivy classes are represented in this
example and we can create any 2D geometric shape with them. Since the vertex
instructions use fixed coordinates, it is important to run this example with a screen
size of 500 x 200 (python drawing.py --size=500x200) in order to visualize the
shapes correctly.

http://www.it-ebooks.info/

Chapter 2

[35]

We will study the Kivy language (drawing.kv) with small code fragments associated
to the respective figure (and coordinates) next to it, so it would be easier to follow.
Let's start with the shape A (rectangle):

Following is the code snippet for shape A:

14. # File name: drawing.kv (vertex instructions)
15. <DrawingSpace>:
16. canvas:
17. Rectangle:
18. pos: self.x+10,self.top-80
19. size: self.width*0.15, self.height*0.3

Rectangle is a good starting point because it resembles the way we set properties
in widgets. We just have to set the pos and size properties.

The pos and size properties of the vertex instructions are different
from the pos and size properties of Widget, since they belong to
the VertexInstruction base class. All the values to specify the
properties of the vertex instructions are given in fixed values.

This means that we cannot use the size_hint or pos_hint properties as we did
with the widgets in Chapter 1, GUI Basics – Building an Interface. However, we can
use the properties of self to achieve similar results (Line 18 and 19).

Let's proceed with the shape B (Pac-Man-like figure):

http://www.it-ebooks.info/

Graphics – the Canvas

[36]

Following is the code snippet for shape B:

20. Ellipse:
21. angle_start: 120
22. angle_end: 420
23. pos: 110, 110
24. size: 80,80

The Ellipse works very similar to Rectangle, but it has three new properties:
angle_start, angle_end, and segments. The first two properties specify the
initial and final angle of the ellipse. The angle 0° is North (or 12 o'clock) and they
add up in the clockwise direction. So, the angle_start is 120° (90° + 30°), which is
the lower jaw of the Pac-Man-like figure (Line 21). The angle_end value is 420° (360°
+ (90°-30°)), which is bigger than angle_start because we need Kivy to follow the
clockwise direction to paint the Ellipse. If we specify a lower value than angle_
start, Kivy will follow a counter clockwise direction, painting where the mouth of
the Pac-Man is, instead of its body.

Let's continue with the shape C (triangle):

25. Ellipse:
26. segments: 3
27. pos: 210,110
28. size: 60,80

The triangle of shape C is actually another Ellipse that we obtain thanks to the
segments property (Line 26). Let's put it this way: if you have to draw an ellipse
with three lines, the best you would end up with is a triangle. If you have four
lines, you would end up with a rectangle. You actually need infinite lines for a
perfect Ellipse, but a computer cannot process that (neither the screen has enough
resolution to support this), so we need to stop at some point. The default segments
are 180. Notice that if you have a circle (that is, size: x,x), you will always get
equilateral polygons (for example, a square if you specify just four segments).

http://www.it-ebooks.info/

Chapter 2

[37]

We can analyze shapes D, E, F, and G together:

29. Triangle:
30. points: 310,110,340,190,380,130
31. Quad:
32. points: 410,110,430,180,470,190,490,120
33. Line:
34. points: 10,30, 90,90, 90,10, 10,60
35. Point:
36. points: 110,30, 190,90, 190,10, 110,60
37. pointsize: 3

Triangle (shape D), Quad (shape E), and Line (shape F) work similarly.
Their points property (Lines 30, 32, and 34) indicates the corners of a triangle,
quadrilateral, and a line, respectively. The points property is a sequence of
coordinates in the format (x1, y1, x2, y2). Point is also similar to these three
shapes. It uses the points property (Line 36) but in this case to indicate a sequence
of points (shape G). It also uses the pointsize (Line 37) property to indicate the
size of the Points.

Let's proceed with the shape H:

38. Bezier:
39. points: 210,30, 290,90, 290,10, 210,60
40. segments: 360
41. dash_length: 10
42. dash_offset: 5

http://www.it-ebooks.info/

Graphics – the Canvas

[38]

Bezier is a curved line that uses the points property as a set of 'attractors' of the
curve line (there is a math formalism behind Bézier curves that we are not going to
cover in this book because it is out of its scope, but you can find enough information
in Wikipedia http://en.wikipedia.org/wiki/Bézier_curve). The points are
attractors because the line does not touch all of them (just the first and the last of
them). The points of Bezier (Line 39) are at the same distance from each other as
the points of the Line (Line 34), or the Point (Line 36); they were just translated 100
pixels to the right. You can visually compare the result of the Bezier curve (shape H),
with the results of the Line (shape G) or the Point (shape H). We included two other
properties dash_length (Line 41), for the length of the dashes of the discontinuous
line, and dash_offset (Line 42) for the distance between the dashes.

Let's cover the last shapes I and J:

43. Mesh:
44. mode: 'triangle_fan'
45. vertices: 310,30,0,0, 390,90,0,0, 390,10,0,0,
 310,60,0,0
46. indices: 0,1,2,3
47. Mesh:
48. mode: 'triangle_fan'
49. vertices: 430,90,0,0, 470,90,0,0, 490,70,0,0,
 450,10,0,0, 410,70,0,0, 430,90,0,0,
50. indices: 0,1,2,3,4,5

We added two Mesh instructions (Lines 43 and 47). A Mesh instruction is a
compound of triangles and has many applications in computer graphics and
games. There is not enough space in this book to cover the advanced techniques to
use this instruction, but at the very least we will understand its basics and be able
to draw flat polygons. The mode property is set to triangle_fan (Line 44), which
means that the triangles of the mesh are filled with color, instead of, for example,
just drawing the border.

http://en.wikipedia.org/wiki/B�zier_curve
http://www.it-ebooks.info/

Chapter 2

[39]

The vertices property is a tuple of coordinates. For the purpose of this example,
we will just ignore all the 0s. This will leave us with four coordinates (or vertices)
in line 45. These points are relatively the same as shapes F, G, and H. Let's imagine
for the shape I how the triangles are created as we traverse them, left to right on
the vertex list using three vertex points each time. The shape I is composed of two
triangles. The first triangle uses the first, second, and third vertices; and the second
triangle uses the first, third, and fourth vertices. In general, if we are in the ith vertex
of the list, a triangle is drawn using the first vertex, the (i-1)th vertex, and the ith
vertex. The final mesh (shape J) presents another example. It contains three triangles
that are surrounded by a blue line in the following screenshot:

The indexes property contains a list with the same number of vertices
(not counting the 0s) and instructs the order in which the vertices list is
traversed, altering the triangles that compose the mesh.

So far, all the polygons that we studied have been colored in. If we need to draw the
border of the polygon, we should use Line instead. In principle, this seems easy
for a basic shape such as a triangle, but how do we draw a circle with just points?
Fortunately, Line has the appropriate properties to make things easier.

The next example will show how you can build the figures in the following
screenshot:

Line examples

http://www.it-ebooks.info/

Graphics – the Canvas

[40]

We have kept the gray coordinates and the letter to identify each cell in the
screenshot. The Python code should be run in a screen size of 400 x 100: python
drawing.py --size=400x100. The following is the drawing.kv code for the
previous screenshot:

51. # File name: drawing.kv (Line Examples)
52. <DrawingSpace>:
53. canvas:
54. Line:
55. ellipse: 10, 20, 80, 60, 120, 420, 180
56. width: 2
57. Line:
58. circle: 150, 50, 40, 0, 360, 180
59. Line:
60. rectangle: 210,10,80,80
61. Line:
62. points: 310,10,340,90,390,20
63. close: True

In the previous code, we added four Line instructions using specific properties.
The first Line instruction (in line 54, shape A) is similar to our Pac-Man (line 20).
The ellipse property (line 55) specifies x, y, width, height, angle_start, angle_
end, and segments, respectively. The order of the parameters is difficult to remember
so we should always keep the Kivy API next to us (http://kivy.org/docs/api-
kivy.graphics.vertex_instructions.html). We also set width of Line to make
it thicker (line 56).

The second Line instruction (line 57, shape B) introduces a property that has no
counterpart in the vertex instructions: circle. The difference with the ellipse
property is that the first three parameters (line 58) define the center (150, 50) and
radius (40) of Circle. The rest remains the same. The third Line (line 59, shape C)
is defined by rectangle (line 60) and the parameters are simply x, y, width, and
height. The last Line (line 61, shape D) is the most flexible way to define polygons.
We specified the points (line 62), as many as we want. The close property (line 63)
connects the first and last points.

We covered most of the instructions and properties related to vertex instructions.
We should be able to draw any geometrical shape in two dimensions with Kivy.
If you want more details about each of the instructions, you should visit the Kivy
API (http://kivy.org/docs/api-kivy.graphics.vertex_instructions.html).
Now, it is the turn of context instructions to decorate these boring black and
white polygons.

http://kivy.org/docs/api-kivy.graphics.vertex_instructions.html
http://kivy.org/docs/api-kivy.graphics.vertex_instructions.html
http://kivy.org/docs/api-kivy.graphics.vertex_instructions.html
http://www.it-ebooks.info/

Chapter 2

[41]

Adding images, colors, and backgrounds
In this section, we will discuss how to add images and colors to our graphics and
how to control which graphic comes on top of which one. We continue using the
same Python code of the first section. This time, we run it with a 400 x 100 screen
size: python drawing.py --size=400x100. The following screenshot shows the
final result of this section:

Images and Colors

The following is the corresponding drawing.kv code:

64. # File name: drawing.kv (Images and colors)
65. <DrawingSpace>:
66. canvas:
67. Ellipse:
68. pos: 10,10
69. size: 80,80
70. source: 'kivy.png'
71. Rectangle:
72. pos: 110,10
73. size: 80,80
74. source: 'kivy.png'
75. Color:
76. rgba: 0,0,1,.75
77. Line:
78. points: 10,10,390,10
79. width: 10
80. cap: 'square'
81. Color:
82. rgba: 0,1,0,1
83. Rectangle:
84. pos: 210,10
85 size: 80,80
86. source: 'kivy.png'
87. Rectangle:
88. pos: 310,10
89. size: 80,80

http://www.it-ebooks.info/

Graphics – the Canvas

[42]

This code starts with Ellipse (line 67) and Rectangle (line 71). We used the source
property, which inserts an image to decorate each polygon. The kivy.png image is
80 x 80 pixels with a white background (without any alpha/transparency channel).
The result is shown in the first two columns of the "Images and Colors" screenshot.

In line 75, we used the context instruction Color to change the color (with the rgba
property: red, green, blue, and alpha) of the coordinate space context. This means
that the next vertex instruction will be drawn with the color changed by rgba. A
context instruction basically changes the current coordinate space context. In the
screenshot, you can see the thin blue bar (or very dark gray bar in the printed version
of this book) at the bottom (line 77) that appears as transparent blue (line 76) instead
of the default white (1,1,1,1) of the previous examples. We set the ends shape of
the line, to a square with the cap property (line 80).

We changed the color again in line 81. After this, we drew two more rectangles, one
with the kivy.png image and another without it. In the preceding screenshot, you
can see that the white part of the image has become as green, or light gray in the
printed version of this book, as the basic Rectangle on the right.

The Color instruction acts as a light that illuminates the
kivy.png image, it doesn't simply paint over it.

There is another important detail to notice in the screenshot. The blue (dark gray
in the printed version) line at the bottom goes over the first two polygons and goes
under the last two. The instructions are executed in order and this might bring some
unwanted results. Kivy provides a solution to make this execution more flexible, and
structured, which we will introduce in the next section.

Structuring graphic instructions
Apart from the canvas instance, a Widget includes two other canvas instances:
canvas.before and canvas.after.

The Widget class has three sets of instructions (canvas.
before, canvas, and canvas.after) to organize the order of
execution. With them, we can control which elements will go to the
background or stay on the foreground.

http://www.it-ebooks.info/

Chapter 2

[43]

The following drawing.kv file shows an example of these three sets
(lines 92, 98, and 104) of instructions:

90. # File name: drawing.kv (Before and After Canvas)
91. <DrawingSpace>:
92. canvas.before:
93. Color:
94. rgba: 1,0,0,1
95. Rectangle:
96. pos: 0,0
97. size: 100,100
98. canvas:
99. Color:
100. rgba: 0,1,0,1
101. Rectangle:
102. pos: 100,0
103. size: 100,100
104. canvas.after:
105. Color:
106. rgba: 0,0,1,1
107. Rectangle:
108. pos: 200,0
109. size: 100,100
110. Button:
111. text: 'A very very very long button'
112. pos_hint: {'center_x': .5, 'center_y': .5}
113. size_hint: .9,.1

In each set, a rectangle of different color is drawn (lines 95, 101, and 107).
Here is a diagram that illustrates the execution order of the canvases. The numbers
on the top-left margin of each code block indicates the order of execution:

Execution order of the canvas

http://www.it-ebooks.info/

Graphics – the Canvas

[44]

Notice that we didn't define any canvas, canvas.before, or canvas.after for
Button but Kivy does internally. Since Button displays graphics on the screen
(for example, it contains Rectangle associated with the background_color
property), then it has instructions in its canvas sets. The final result is shown in the
following screenshot (executed with: python drawing.py --size=300x100):

Before and after canvas

The graphics of Button (the child) are covered up by the set of instructions in
canvas.after. It is clear that the instructions of canvas.before and canvas are
executed before the displaying Button, but what is executed between them? It is
necessary when we work with inheritance, and we want to add instructions in the
subclass that should be executed before the canvas set of instructions of the base
class. Also, it is a convenience when we mix Python code and Kivy language rules.
We will study some practical examples in the last section of this chapter related to
the Comic Creator, and review the topic in Chapter 4, Improving the User Experience.

For now, it is good enough to understand that we have three sets of instructions
(Canvas) that provide some flexibility when we display graphics on the screen.
Let's now explore some more context instructions related to transformations of the
vertex instruction.

Rotating, translating, and scaling the
coordinate space
Rotate, Translate, and Scale are context instructions that are applied to the
vertex instructions, which are displayed in the coordinate space. They could bring
unexpected results if we forget that the coordinate space is shared among all
widgets, and it occupies the size of the window (actually bigger than that because
there is no restriction on the coordinates and we can draw outside the window).
First, we are going to understand the behavior of this instruction in this section and,
in the next section, we can analyze the problems they bring in a deeper way, and
learn techniques to make things easier.

http://www.it-ebooks.info/

Chapter 2

[45]

Let's start with the new drawing.kv code:

114. # File name: drawing.kv (Rotate, Translate and Scale)
115. <DrawingSpace>:
116. pos_hint: {'x':.5, 'y':.5}
117. canvas:
118. Rectangle:
119. source: 'kivy.png'
120. Rotate:
121. angle: 90
122. axis: 0,0,1
123. Color:
124. rgb: 1,0,0 # Red color
125. Rectangle:
126. source: 'kivy.png'
127. Translate:
128. x: -100
129. Color:
130. rgb: 0,1,0 # Green color
131. Rectangle:
132. source: 'kivy.png'
133. Translate:
134. y: -100
135. Scale:
136. xyz:(.5,.5,0)
137. Color:
138. rgb: 0,0,1 # Blue color
139. Rectangle:
140. source: 'kivy.png'

In this code, the first thing we did is position the coordinates (0, 0) of DrawingSpace
(RelativeLayout) in the center of the screen (line 116). We created Rectangle with
the kivi.png figure, which we had previously modified to indicate the original x
axis and y axis.

http://www.it-ebooks.info/

Graphics – the Canvas

[46]

The result is presented in the top-right of the following screenshot (executed with
python drawing.py --size=200x200):

Rotate, Translate and Scale

In the line 120, we applied the Rotate instruction by 90° on the z axis (line 122).
The value is (x, y, z), which means we can use any vector in the 3D space. Think
of this as nailing a pin to the bottom-left corner of DrawingSpace, which we then
rotate in the counter clockwise direction.

By default, the pin nail of the rotation is always the coordinates (0, 0)
but we can alter this behavior with the origin property.

The top-left section of the screenshot ("Rotate, Translate, and Scale") shows the
result after the rotation. We drew the same rectangle with red color (using the rgb
property instead of the rgba property) to highlight it. After adding a rotation to the
coordinate space context, we also modified the relative X-axis and Y-axis. Line 128
considers that the axes are rotated, and in order to translate the coordinate space
down (usually Y-axis), it sets -100px to the X-axis. We drew the same Rectangle
with green Color in the bottom left corner. Notice that the image still rotates and it
will rotate as long as we don't bring the coordinate space context to its original angle.

Context instructions are persistent until we change them
back again. Another way to avoid this is working inside
RelativeLayout. If you remember from the previous chapter,
it allows us to work with coordinates relative to the widget.

http://www.it-ebooks.info/

Chapter 2

[47]

To scale or zoom out the image, we translated the coordinate space context
(line 133) to use the bottom-right section of the screenshot. Notice that we use the
Y-axis instead of the X-axis, since the context is still rotated. The scaling is done in
line 135, where the image will be reduced to half the width and half the height. The
Scale instruction reduces towards the (0, 0) coordinate, which initially is at the
bottom-left corner. However, after all these modifications of the context, we need
to think where this coordinate is. First, we rotated the axis (line 120) so the X-axis
is vertical and the Y-axis is horizontal. After translating the coordinate space down
(line 127) and then right (line 133), the (0, 0) coordinate is in the bottom-right corner
with the X-axis being the vertical one and the Y-axis being the horizontal one.

Scale uses proportions to the current size of the coordinate space
context and not the original size. For example, to recover the original
size, we should use xyz: (2,2,0) and not just xyz: (1,1,0).

So far, in this chapter, we have discussed that a Canvas instance is a set of instructions
that contains context instructions and vertex instructions. The context instructions
apply changes (colors or transformation) to the coordinate space context that affects the
conditions in which the vertex instructions are displayed in the coordinate space.

We will use some of the knowledge to add Stickman to our project in the next and
final section of this chapter. We will introduce two important context instructions
to deal with the issues of sharing the same coordinate space between widgets:
PushMatrix and PopMatrix.

Comic Creator: PushMatrix and
PopMatrix
Let's insert some graphics to the project we started in Chapter 1, GUI Basics –
Building an Interface. Before this, we need to recapitulate two important lessons
of this chapter related to the coordinate space:

•	 The coordinate space is not restricted to any position or size. It normally
has its origin in the bottom-left corner of the screen. To avoid this, we use
RelativeLayout, which internally performs a translation to the position of
the Widget.

•	 Once the coordinate space context is transformed by any instruction, it
stays like that until we specify something different. RelativeLayout also
addresses this problem with two contextual instructions, which we will
study in this section: PushMatrix and PopMatrix.

http://www.it-ebooks.info/

Graphics – the Canvas

[48]

We use RelativeLayout in this section to avoid the problems of the shared
coordinate space, but we will also explain the alternatives to it when we are inside
any other type of Widget. We will add a new file (comicwidgets.kv) to our project.
In comicreator.py, we need to add our new file to Builder:

Builder.load_file('comicwidgets.kv')

The file comicwidgets.kv will contain special widgets, which we will create for the
project. In this chapter, we will add the StickMan class:

141. # File name: comicwidgets.kv
142. <StickMan@RelativeLayout>:
143. size_hint: None, None
144. size: 48,48
145. canvas:
146. PushMatrix
147. Line:
148. circle: 24,38,5
149. Line:
150. points: 24,33,24,15
151. Line:
152. points: 14,5,24,15
153. Line:
154. points: 34,5,24,15
155. Translate:
156. y: 48-8
157. Rotate:
158. angle: 180
159. axis: 1,0,0
160. Line:
161. points: 14,5,24,15
162. Line:
163. points: 34,5,24,15
164. PopMatrix

http://www.it-ebooks.info/

Chapter 2

[49]

On line 142, the StickMan subclass inherits from RelativeLayout to facilitate the
positioning and use of context instructions. We defined StickMan of size 48 x 48.
StickMan is composed of six lines that define the head, body, left leg, right leg, left
arm, and right arm (line 147 to 163). You can see the result of StickMan three times in
the following screenshot:

Comic Creator

The first StickMan is part of the design of the last ToolButton and the other two
appear in the drawing space; one of them is scaled. Notice that the code of the legs
(lines 151 to 154) is exactly the same as the arms (lines 160 to 163); the difference is
that we translated the coordinate space upwards (lines 155 and 156) and rotated it
180° in the x-axis (lines 157 to 159). With this, we saved ourselves some math to
draw the stickman.

We translated and rotated the coordinate space context; therefore, we should undo
these context changes so everything will remain as it was at the beginning. Instead
of adding more instructions to Translate and Rotate back to the coordinate space
context, we used two convenient Kivy instructions: PushMatrix and PopMatrix.
At the beginning, we used a PushMatrix (line 146), which will save the current
coordinate space context and, at the end, we used a PopMatrix (line 164) to return
the context to its original state.

http://www.it-ebooks.info/

Graphics – the Canvas

[50]

PushMatrix saves the current coordinate space context and
PopMatrix retrieves the last saved coordinate space context.
Therefore, the transformation instructions (Scale, Rotate, and
Translate) surrounded by PushMatrix and PopMatrix won't
affect the rest of the interface.

We will extend this approach to add shapes to the other two instances of ToolButton
(circle and line) in the top-left corner of ToolBox. We add this code in toolbox.kv:

165. # File name: toolbox.kv
166. <ToolButton@ToggleButton>:
167. size_hint: None,None
168. size: 48,48
169. group: 'tool'
170. canvas:
171. PushMatrix:
172. Translate:
173. xy: self.x,self.y
174. canvas.after:
175. PopMatrix:
176.
177. <ToolBox@GridLayout>:
178. cols: 2
179. padding: 2
180. ToolButton:
181. canvas:
182. Line:
183. circle: 24,24,14
184. ToolButton:
185. canvas:
186. Line:
187. points: 10,10,38,38
188. ToolButton:
189. StickMan:
190. pos_hint: {'center_x':.5,'center_y':.5}

http://www.it-ebooks.info/

Chapter 2

[51]

In the ToolButton class (line 166), we used a PushMatrix (line 171) in the canvas
set of instructions to save the current state of the coordinate space. Then, Translate
(line 172) moves the graphic instructions to the position of ToolButton so we can
use relative coordinates on each ToolButton (line 180 to 190). Finally, PopMatrix
(line 175) was added to canvas.after to restore the coordinate space.

It is important to follow the execution order of the different canvases (instruction
sets). For example, let's slowly follow the execution order of the canvases of
ToolButton that contains the circle (line 180): first, canvas of the ToolButton class
that has PushMatrix and Translate (line 170); second, canvas of the ToolButton
instance, which has the circle (line 181), and third, canvas.after of the base class,
which has PopMatrix (line 174). We just implemented the same technique used for
RelativeLayout.

RelativeLayout internally contains PushMatrix and
PopMatrix. Therefore, we can add instructions safely inside it,
which won't affect the rest of the interface.

Let's conclude this chapter by scaling our stickman in the drawing space and illustrate
one more particularity of the execution order of the canvases. The following is the
code of drawingspace.kv:

191. # File name: drawingspace.kv
192. <DrawingSpace@RelativeLayout>:
193. StickMan:
194. pos_hint: {'center_x':.5,'center_y':.5}
195. canvas.before:
196. Translate:
197. xy: -self.width/2, -self.height/2
198. Scale:
199. xyz: 2,2,0
200. StickMan:

http://www.it-ebooks.info/

Graphics – the Canvas

[52]

The first StickMan was translated and rotated (lines 193 to 199), but not the second
one (line 200). We discussed that the context instructions affect the coordinate space
globally, but when we see the result in the screenshot ("Comic Creator"), we realize
that the second instance was neither scaled nor translated by the lines 196 and 198.
What happened? The answer is not obvious. Is the answer related to PushMatrix
and PopMatrix inside the canvas of the StickMan class (lines 146 and 164)? No, it
isn't, because both of them are inside the same set of instructions.

The way we implemented ToolButton follows the way the RelativeLayout class
is implemented. StickMan inherits from RelativeLayout, so there is actually
another PushMatrix in canvas.before and its respective PopMatrix in canvas.
after of the StickMan class (inherited from RelativeLayout). The instructions
from lines 196 to 199 are executed after PopMatrix is executed in canvas.before of
RelativeLayout and, therefore, the context is restored on the respective PushMatrix
of RelativeLayout.

Finally, notice that the instructions must be in canvas.before because they are
added before the existent instructions, the ones that actually draw the stickman. In
other words, if we simply add them in the canvas, then the stickman would be drawn
before the translation and scaling.

The rest of the files of the Comic Creator comiccreator.kv, generaloptions.kv, and
statusbar.kv were not modified, so we are not presenting them again. The context
and vertex instructions are easy to understand. However, we must be very careful
with the order of execution and make sure to leave the coordinate space context in its
normal state after executing the desired vertex instructions. Finally, take into account
that everything you see in the screen is displayed by an instruction (or instructions)
inside the canvas, including, for example, Label texts and the Button backgrounds.

http://www.it-ebooks.info/

Chapter 2

[53]

Summary
This chapter explained the necessary concepts to understand the use of the
canvas. We covered the use of vertex and context instructions, and how to
manipulate the order of the execution of instructions. We covered how to deal
with the transformation of canvas, either reversing all the transformations or using
RelativeLayout. The following is the whole set of components we learnt to use,
in this chapter:

•	 The vertex instructions (and many of their respective properties): Rectangle
(pos, size), Ellipse (pos, size, angle_start, angle_end, segments),
Triangle (points), Quad (points), Point (points, pointsize), Line
(points, ellipse, circle, rectangle, width, close, dash_lenght,
dash_offset, and cap), Bezier (points, segments, dash_lenght,
and dash_offset,), and Mesh (mode, vertices, indices)

•	 The source property that applies to all the vertex instructions
•	 The three set of canvas instructions: canvas.before, canvas, and

canvas.after

•	 The context instructions (and some of their properties): Color (rgba,
rgb), Rotate (angle, axis,origin), Translate (x, y, xy), Scale (xyz),
PushMatrix, and PopMatrix

The list is quite comprehensive, but of course there are some remaining components
that we can find in the Kivy API. The important part is that we discussed the
concepts behind the use of the canvas. Feel free to play with the provided examples
to reinforce the important concepts of this chapter. You should feel comfortable to
put things together and enliven your interface, so you can actually draw with it. The
next chapter will focus on event handling and manipulating Kivy objects directly
from Python.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[55]

Widget Events – Binding
Actions

In this chapter, you will learn how to integrate actions into the Graphical User
Interface (GUI) components; some of the actions will be associated with the canvas
and others with the Widget management. We will learn how to handle events
dynamically in order to make the application respond to the user interactions. In this
chapter, you will acquire the following skills:

•	 Reference different parts of the GUI through IDs and properties
•	 Override, bind, unbind, and create Kivy events
•	 Add widgets to other widgets dynamically
•	 Add vertex and context instructions to the canvas dynamically
•	 Translate relative and absolute coordinates between a widget, its parent,

and its window
•	 Use properties to keep the GUI updated with the changes

This is an exciting chapter because our application will start interacting with the
user applying the concepts acquired in the previous two chapters. All the basic
functionality of our Comic Creator project will be ready by the end. This includes
shapes that can be dragged, sizeable circles, and lines, clearing the widget space,
removing the last added figure, grouping several widgets to drag them together,
and keeping the status bar updated about the last actions of the user.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[56]

Attributes, ID, and root
In Chapter 1, GUI Basics – Building an Interface, we distinguished between four main
components for our Comic Creator: tool box, drawing space, general options, and status
bar. In this chapter, we will make these components interact with each other and,
therefore, we need to add some attributes to the classes of the project we created in
the previous chapters. These attributes will reference different parts of the interface
so that they can communicate. For example, the ToolBox class needs to have a
reference to the DrawingSpace instance, so the ToolButton instances can draw their
respective figures inside it. The following diagram shows all the relationships that
are created in the comiccreator.kv file:

Internal References of the Comic Creator

We also learned in Chapter 1, GUI Basics – Building an Interface, that ID lets us
reference other widgets in the Kivy language.

The IDs are only meant to be used within the Kivy language.
Therefore, we need to create attributes in order to reference the
elements inside the Python code.

Following is the comiccreator.kv file of the Comic Creator project with some
modifications to create the necessary IDs and attributes:

1. File Name: comiccreator.kv
2. <ComicCreator>:
3. AnchorLayout:
4. anchor_x: 'left'
5. anchor_y: 'top'
6. ToolBox:
7. id: _tool_box
8. drawing_space: _drawing_space
9. comic_creator: root

http://www.it-ebooks.info/

Chapter 3

[57]

10. size_hint: None,None
11. width: 100
12. AnchorLayout:
13. anchor_x: 'right'
14. anchor_y: 'top'
15. DrawingSpace:
16. id: _drawing_space
17. status_bar: _status_bar
18. general_options: _general_options
19. tool_box: _tool_box
20. size_hint: None,None
21. width: root.width - _tool_box.width
22. height: root.height - _general_options.height -
 _status_bar.height
23. AnchorLayout:
24. anchor_x: 'center'
25. anchor_y: 'bottom'
26. BoxLayout:
27. orientation: 'vertical'
28. GeneralOptions:
29. id: _general_options
30. drawing_space: _drawing_space
31. comic_creator: root
32. size_hint: 1,None
33. height: 48
34. StatusBar:
35. id: _status_bar
36. size_hint: 1,None
37. height: 24

The IDs in lines 7, 16, 29, and 35 have been added to the comiccreator.kv. Following
the previous diagram (Internal References of the Comic Creator), the IDs are used to
create the attributes in lines 8, 17, 18, 19, and 30.

The names of the attributes and IDs don't have to be different. In
the previous code, we just added '_' to the IDs to distinguish them
from the attributes. That is to say, the _status_bar ID, is only
accessible within the .kv files, and the status_bar attribute, is
intended to be used inside the Python code. Both could have had
the same name without causing any conflict.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[58]

As an example, line 8 created the attribute drawing_space, which references the
DrawingSpace instance. This means that the ToolBox (line 6) instance can now access
the DrawingSpace instance in order to draw figures on it.

One component that we often want to have access to is the base widget
(ComicCreator) of the rule hierarchy. Lines 9 and 31 complete the referencing
using root to have access to it through the comic_creator attribute.

The reserved root keyword is an internal Kivy language variable that
always refers to the base widget in the rule hierarchy. The other two
important keywords are self and app. The keyword self refers to
the current widget, and app refers to the instance of the application.

These are all the changes that are needed in the Comic Creator project to create the
attributes. We can run the project as usual with Python comicreator.py and we will
obtain the same result as Chapter 2, Graphics – the Canvas.

We created the links between the interface components with attributes. In the
following sections, we will frequently use the created attributes to access different
parts of the interface.

Basic widget events – dragging the
stickman
Basic Widget events correspond to touches on the screen. However, the concept
of touch in Kivy is broader than might be intuitively assumed. It includes mouse
events, finger touches, and magic pen touches. For the sake of simplicity, we will
often assume in this chapter that we are using a mouse but it doesn't really change if
we were to use a touch screen (and the finger or magic pen instead). The following
are the three basic Widget events:

•	 on_touch_down: When a new touch starts, for example, the action of
clicking a button of the mouse or touching the screen.

•	 on_touch_move: When the touch is moved, for example, dragging the
mouse or sliding the finger over the screen.

•	 on_touch_up: When the touch ends, for example, releasing the mouse
button or lifting a finger from the screen.

http://www.it-ebooks.info/

Chapter 3

[59]

Notice that on_touch_down takes place each time before on_touch_move,
and on_touch_up happens; the bullet list order reflects the necessary execution
order. Finally, on_touch_move cannot happen at all if there is no moving action.
These events allow us to add drag capability to our Stickman so that we can place
it wherever we want after adding it. We modify the header of comicwidgets.kv
as follows:

38. # File name: comicwidgets.kv
39. #:import comicwidgets comicwidgets
40. <DraggableWidget>:
41. size_hint: None, None
42.
43. <StickMan>:
44. size: 48,48
45. ...

The code now includes a rule for a new Widget called DraggableWidget.
Line 41 deactivates size_hint so that we can use fixed sizes (for example, line 44).
The size_hint: None, None instruction has been removed from the StickMan
because it will inherit from DraggableWidget in the Python code. The import
directive on line 39 is responsible for importing the respective comicwidgets.py file:

46. # File name: comicwidgets.py
47. from kivy.uix.relativelayout import RelativeLayout
48. from kivy.graphics import Line
49.
50. class DraggableWidget(RelativeLayout):
51. def __init__(self, **kwargs):
52. self.selected = None
53. super(DraggableWidget, self).__init__(**kwargs)

The comicwidgets.py file contains the new DraggableWidget class. This class
inherits from RelativeLayout (line 50). The selected attribute in line 52 will
indicate whether the DraggableWidget instance is selected or not. Notice that
selected is not part of Kivy; it is an attribute that we just created as part of the
DraggableWidget class.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[60]

The __init__ constructor in Python is the right place to define class
object attributes by simply using the self reference without declaring
them at the class level; this often causes confusion to programmers
coming from other object-oriented languages, such as C++ or Java.

In the comicwidgets.py file, we also have to override the three methods associated
with the touch events (on_touch_down, on_touch_move, and on_touch_up). Each of
these methods receives MotionEvent as a parameter (touch), which contains a lot
of useful information related to the event, for instance, the coordinates of the touch,
type of touch, the number of taps (or clicks), duration, the input device, and many
more that can be used for advanced tasks (http://kivy.org/docs/api-kivy.
input.motionevent.html#kivy.input.motionevent.MotionEvent).

Let's start with on_touch_down:

54. def on_touch_down(self, touch):
55. if self.collide_point(touch.x, touch.y):
56. self.select()
57. return True
58. return super(DraggableWidget, self).on_touch_down(touch)

In line 55, we used the most common strategy in Kivy to detect if the touch is on top
of a widget: the collide_point method. It allows us to detect whether the event
actually happens inside a specific DraggableWidget by checking the coordinates of
the touch.

Every active Widget receives all the touch events (MotionEvent)
that happen inside the app (coordinate space), and we can use the
collide_point method to detect whether the event occurs in any
particular Widget.

This means it is up to the programmer to implement the logic that will discriminate
between the possibility of a particular Widget doing something (in this case, to call
on the method select in line 56) with the event, or whether it will just let it pass by
calling the base class method (line 58) and hence, the default behavior.

http://kivy.org/docs/api-kivy.input.motionevent.html#kivy.input.motionevent.MotionEvent
http://kivy.org/docs/api-kivy.input.motionevent.html#kivy.input.motionevent.MotionEvent
http://www.it-ebooks.info/

Chapter 3

[61]

The most common way of handling an event is by using collide_point,
but other criteria can be used. Kivy gives us absolute freedom in this. Line 55
provides the simplest case of checking whether the event occurred inside the
Widget. If the coordinate of the event was actually inside the Widget, we call
on the select() method, which will set the figure as being selected (details
explained later in this chapter).

It is important to understand the returning value of an event (line 57) and also what
calling the method of the base class means (line 58). The Kivy GUI has a hierarchical
structure, so each Widget instance always has a corresponding parent Widget
(except if the Widget instance is the root of the hierarchy).

The returning value of the touch event tells the parent whether we took care of
the event or not by returning True or False, respectively. Therefore, we need to be
careful because we are in full control of the widgets that receive the event. Finally,
we can also use the returning value of super (base class reference) to find out
whether one of the children has taken care of the event already.

In general, the structure of the on_touch_down method overriding lines 54 to 58,
is the most common way to take care of a basic event:

1.	 Make sure that the event happens inside Widget (line 55).
2.	 Do what has to be done (line 56).
3.	 Return True indicating that the event was processed (line 57).
4.	 If the event falls outside the Widget, then we propagate the event to the

children and return the result (line 58).

Even though this is the most common way, and probably recommended for
beginners, we can deviate from this in order to achieve different goals; we will
soon expand this with other examples. First, let's review the select method:

59. def select(self):
60. if not self.selected:
61. self.ix = self.center_x
62. self.iy = self.center_y
63. with self.canvas:
64. self.selected = Line(rectangle=
 (0,0,self.width,self.height), dash_offset=2)

http://www.it-ebooks.info/

Widget Events – Binding Actions

[62]

First, we need to ensure that nothing has been selected before (line 60) using the
select attribute we created earlier (line 52). If this is the case, we save the center
coordinates of DraggableWidget (lines 61 and 62), and we dynamically draw a
rectangle on its border (line 63 and 64), as illustrated in the following screenshot:

Line 63 is a convenience based on the with Python statement. It is equivalent to the
call in the add method with self.canvas.add(Rectangle(…)), with the advantage
that it allows us to add many instructions at the same time. For example, we could
use it to add three instructions:

with self.canvas:
 Color(rgb=(1,0,0))
 Line(points=(0,0,5,5))
 Rotate()
 ...

In Chapter 2, Graphics – the Canvas, we used Kivy language to add shapes to the
canvas. Now, we used Python code directly and not the Kivy language syntax
anymore, although the Python with statement slightly resembles it and it is
frequently used in the Kivy API. Notice that we kept the Line instance in the
selected attribute in line 64 because we will need it in order to remove the rectangle
once the widget is not selected anymore. Also, the DraggableWidget instance will be
aware of when it is selected, either whether it contains a reference or is None.

That condition is used in the on_touch_move method:

65. def on_touch_move(self, touch):
66. (x,y) = self.parent.to_parent(touch.x, touch.y)
67. if self.selected and self.parent.collide_point
 (x - self.width/2, y - self.height/2):
68. self.translate(touch.x-self.ix,touch.y-self.iy)
69. return True
70. return super(DraggableWidget, self).on_touch_move(touch)

http://www.it-ebooks.info/

Chapter 3

[63]

In this event, we control the dragging of DraggableWidget. In line 67, we make sure
that DraggableWidget is selected. In the same line, we use collide_point again but
this time, we use parent (drawing space) instead of self. This is the reason why the
previous line (line 66) transformed the widget coordinates to values that are relative
to the corresponding parent with the to_parent method. In other words, we have
to check the parent (drawing space) because the Stickman can be dragged inside
the whole of the drawing space, and not just inside DraggableWidget itself. The next
section will explain in detail how to localize coordinates to different parts of the screen.

Another detail of line 67 is that we check the left corner of the future position of
DraggableWidget by subtracting half its width and height from the current touch
(touch.x - self.width/2, touch.y - self.height/2). This is in order to make
sure that we don't drag the shape outside the drawing space because we will drag it
from the center.

If the conditions are True, we call the translate method:

71. def translate(self, x, y):
72. self.center_x = self.ix = self.ix + x
73. self.center_y = self.iy = self.iy + y

The method moves the DraggableWidget (x, y) pixels by assigning new values to the
center_x and center_y properties (lines 72 and 73). It also updates the ix and iy
properties that we created in the select method before lines 61 and 62.

The last two lines (lines 69 and 70) of the on_touch_move method follow the same
approach of the on_touch_down method (line 57 and 58), and also the on_touch_up
method (lines 77 and 78):

74. def on_touch_up(self, touch):
75. if self.selected:
76. self.unselect()
77. return True
78. return super(DraggableWidget, self).on_touch_up(touch)

The on_touch_up event undoes the on_touch_down status. First, it checks
whether it is selected using our selected attribute. If it is, then it calls the
unselected() method:

79. def unselect(self):
80. if self.selected:
81. self.canvas.remove(self.selected)
82. self.selected = None

http://www.it-ebooks.info/

Widget Events – Binding Actions

[64]

This method will dynamically call the remove method to remove the Line vertex
instruction from the canvas (line 81), and set our attribute selected to None (line 82)
to indicate that the widget is not being dragged anymore. Notice the different ways
in which we add the Line vertex instruction (line 63 and 64) and remove it (line 81).

There are two more lines of code in comicwidgets.py:

83. class StickMan(DraggableWidget):
84. pass

These lines define our StickMan, which now inherits from DraggableWidget
(line 83) instead of from RelativeLayout.

A final change is necessary in drawingspace.kv, which now looks as follows:

85. # File name: drawingspace.kv
86. <DrawingSpace@RelativeLayout>:
87. Canvas.before:
88. Line:
89. rectangle: 0, 0, self.width - 4,self.height - 4
90. StickMan:

We added a border to canvas.before of the drawing space (lines 87 and 88), which
will serve us a reference to visualize where the canvas starts or ends. We also kept
a StickMan instance in the drawing space. You can run the application (python
comiccreator.py) and drag the StickMan over the drawing space.

http://www.it-ebooks.info/

Chapter 3

[65]

In this section, you learned the three basic touch events of any Widget. They are
strongly dependent on the coordinates, and therefore it will be necessary to learn
how to properly manipulate the coordinates. We introduce this technique in the
on_touch_move method, but it will be the main topic in the next section, which
explores the possible ways that Kivy offers to localize coordinates.

Localizing coordinates – adding stickmen
In the last section, we used the to_parent() method (line 66) to translate the
coordinates relative to the DrawingSpace, to its parent. Remember that we were
inside DraggableWidget and the coordinates we received were relative to parent
(DrawingSpace).

These coordinates are convenient for DraggableWidget because we positioned
it in the parent's coordinates. The method allows us to use the coordinates in the
parent's collide_point. This is no longer convenient for when we want to check
the coordinates on the parent's parent space or when we need to draw something
directly on the canvas of a Widget.

Before studying more examples, let's review the theory. You learned that
RelativeLayout is very useful because it is simpler to think inside a constraint space
to localize our objects. The problems start when we need to translate coordinates to
another Widget area. Let's consider the following screenshot of a Kivy program:

The code to generate this example is not shown here since it is very straightforward.
If you want to test it, you can find the code under the folder 04 - Embedding
RelativeLayouts/ and run it with python main.py --size=150x75. It consists
of three RelativeLayouts embedded into each other. The Blue (darker gray) is
parent of the Green (light gray) and the Green is parent of Red (middle gray). The
a (in the top-right corner) is a Label instance located at the position (5, 5) inside
Red (middle gray) RelativeLayout. The Blue layout (dark gray) is the size of the
window (150 x 75). The rest of the elements are indicators (no part of the code) to
help you understand the example.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[66]

The preceding screenshot includes some measurements that help explain the four
methods of localizing coordinates that the Widget class provides:

•	 to_parent(): This method transforms relative coordinates inside
RelativeLayout to the parent of RelativeLayout. For example,
red.to_parent(a.x, a.y) returns the coordinates of a relative to
the green (light gray) layout, which are (50+5, 25+5) = (55, 30).

•	 to_local(): This method transforms the coordinates of parent of
RelativeLayout to RelativeLayout. For example, red.to_local(55,30)
returns (5,5), the coordinates of the a label relative to the red layout
(middle gray).

•	 to_window(): This method transforms the coordinates of the current
Widget to absolute coordinates with respect to the window. For example,
a.to_window(a.x, a.y) returns the absolute coordinates of a which
are(100 + 5, 50 + 5) = (105, 55).

•	 to_widget(): This method transforms the absolute coordinates to
coordinates within the parent of the current widget. For example, a.to_
widget(105,55) returns (5,5), again the coordinates of a relative to the red
(middle gray) layout.

The last two methods don't use the red layout to transform the coordinates because
in this case, Kivy assumes that the coordinates are always relative to the parent.
There is also a Boolean parameter (called relative), which controls whether the
coordinates are relative inside the Widget.

Let's study a real example in the Comic Creator project. We will add events to the tool
box buttons, so that we can add figures to the drawing space. In this process, we will
encounter a scenario in which we have to use one of the before-mentioned methods
to localize our coordinates correctly to the Widget.

This code corresponds to the header of the toolbox.py file:

91. # File name: toolbox.py
92. import kivy
93.
94. import math
95. from kivy.uix.togglebutton import ToggleButton
96. from kivy.graphics import Line
97. from comicwidgets import StickMan, DraggableWidget
98.
99. class ToolButton(ToggleButton):
100. def on_touch_down(self, touch):

http://www.it-ebooks.info/

Chapter 3

[67]

101. ds = self.parent.drawing_space
102. if self.state == 'down' and ds.collide_point
 (touch.x, touch.y):
103. (x,y) = ds.to_widget(touch.x, touch.y)
104. self.draw(ds, x, y)
105. return True
106. return super(ToolButton, self).on_touch_down(touch)
107.
108. def draw(self, ds, x, y):
109. pass

The structure in lines 99 to 106 is already familiar. Line 102 makes sure that
ToolButton is in the 'down' state and that the event happened in the DrawingSpace
instance (referenced by ds). Remember that the parent of ToolButton is ToolBox
and that we added an attribute that references the DrawingSpace instance in
comiccreator.kv at the beginning of the chapter.

The draw method is called in line 104. It will draw the respective shapes according
to the derived classes (ToolStickMan, ToolCircle, and ToolLine). We need to
be sure that we send the right coordinates to the draw method. Therefore, before
calling it, we need to translate the absolute coordinates (received in on_touch_down
of ToolButton) to relative coordinates (appropriated for the drawing space) with the
to_widget event (line 103).

We know that the coordinates we received (touch.x and
touch.y) are absolute because ToolStickman is not
RelativeLayout, whereas the DrawingSpace (ds) is.

Let's continue studying the toolbox.py file and see how ToolStickMan actually
adds StickMan:

110. class ToolStickman(ToolButton):
111. def draw(self, ds, x, y):
112. sm = StickMan(width=48, height=48)
113. sm.center = (x,y)
114. ds.add_widget(sm)

http://www.it-ebooks.info/

Widget Events – Binding Actions

[68]

We create an instance of Stickman (line 112), use the translated coordinates (line 103)
to center the Stickman, and finally (line 119), add it to the DrawingSpace instance
with the add_widget method (line 114). We just need to update a few lines in
toolbox.kv in order to run the project with new changes:

115. # File name: toolbox.kv
116. #:import toolbox toolbox
117.
118. <ToolButton>:
119. …
120. <ToolBox@GridLayout>:
121. …
122. ToolStickman:

First, we need to import toolbox.py (line 116), then we remove @ToggleButton
from ToolButton (line 118) because we added it in toolbox.py, and finally we
replace the last ToolButton for our new ToolStickman widget (line 122). At this
point, we are able to add stickmen to the drawing space and also drag them over it.

We have covered the basics now, so let's learn how to bind and unbind events
dynamically.

http://www.it-ebooks.info/

Chapter 3

[69]

Binding and unbinding events – sizing
limbs and heads
In the previous two sections, we override basic events to perform actions we want.
In this section, you will learn how to bind and unbind events dynamically. It was
quite an easy job to add our Stickman because it is a Widget already, but what about
the graphics, the circle, and the rectangle? We could create some widgets for them,
just as we did with the Stickman, but let's attempt something braver before that.
Instead of just clicking on the drawing space, let's drag the mouse on its border to
decide the size of the circle or line:

Using mouse to set the size

Once we finish the dragging (and we are satisfied with the size), let's dynamically
create DraggableWidget that will contain the shape, so we can also drag them over
the DrawingSpace instance. The following class diagram will help us understand the
whole inheritance structure of the toolbox.py file:

http://www.it-ebooks.info/

Widget Events – Binding Actions

[70]

The diagram includes ToolButton and ToolsStickman, which were explained in
the last section, but it also includes three new classes called ToolFigure, ToolLine,
and ToolCircle.

The ToolFigure class has six methods. Let's start with a quick overview of these
methods and then highlight the important and new parts:

1.	 draw: This method overrides draw of ToolButton (lines 108 and 109). The
position where we touch down indicates the starting point of our figure,
either the center for a circle or one of the ends of a line.
123. class ToolFigure(ToolButton):
124. def draw(self, ds, x, y):
125. (self.ix, self.iy) = (x,y)
126. with ds.canvas:
127. self.figure=self.create_figure(x,y,x+1,y+1)
128. ds.bind(on_touch_move=self.update_figure)
129. ds.bind(on_touch_up=self.end_figure)

2.	 update_figure: This method updates the end-point of the figure when we
drag. Either the end of a line or the radius (distance from the starting point to
the end point) of the circle.
130. def update_figure(self, ds, touch):
131. if ds.collide_point(touch.x, touch.y):
132. (x,y) = ds.to_widget(touch.x, touch.y)
133. ds.canvas.remove(self.figure)
134. with ds.canvas:
135. self.figure = self.create_figure
 (self.ix, self.iy,x,y)

3.	 end_figure: This method indicates the final end point of the figure with
the same logic as in update_figure. Also, we put the final figure inside
DraggableWidget (see widgetize).
136. def end_figure(self, ds, touch):
137. ds.unbind(on_touch_move=self.update_figure)
138. ds.unbind(on_touch_up=self.end_figure)
139. ds.canvas.remove(self.figure)
140. (fx,fy) = ds.to_widget(touch.x, touch.y)
141. self.widgetize(ds,self.ix,self.iy,fx,fy)

http://www.it-ebooks.info/

Chapter 3

[71]

4.	 widgetize: This method creates DraggableWidget and places the figure
in it. It uses four coordinates that have to be localized correctly with the
localization methods:
142. def widgetize(self,ds,ix,iy,fx,fy):
143. widget = self.create_widget(ix,iy,fx,fy)
144. (ix,iy) = widget.to_local(ix,iy,relative=True)
145. (fx,fy) = widget.to_local(fx,fy,relative=True)
146. widget.canvas.add(self.create_figure(ix,iy,fx,fy))
147. ds.add_widget(widget)

5.	 create_figure: This method will be overridden by ToolLine (lines 153 and
154) and ToolCircle (lines 162 to 163). It creates the respective figure, given
four coordinates:
148. def create_figure(self,ix,iy,fx,fy):
149. pass

6.	 create_widget: This method is also overridden by ToolLine (lines 156 to
159) and ToolCircle (lines 165 to 169). It creates a respectively positioned
and sized DraggableWidget given four coordinates.

150. def create_widget(self,ix,iy,fx,fy):
151. pass

Most of the statements from the preceding methods have already been covered.
The new topic of this code is the dynamic bind/unbind of events. The main
problem we needed to solve is that we didn't want the on_touch_move and on_
touch_up events active all the time. We needed to activate them (bind) from the
moment the user starts drawing (on_touch_down of ToolButton that calls on the
method draw) until the user decides the size and does a touch up. Therefore, we
bound update_figure and end_figure, respectively, to the on_touch_move and
on_touch_up events of DrawingSpace when the method draw is called on (lines 128
and 129). Also, we unbound them when the user ends the figure on method end_
figure (lines 137 and 138). Notice that we can unbind the same method that is being
executed (end_figure) from the on_touch_up event. We want to avoid calling the
methods update_figure and end_figure unnecessarily. With this approach, they
are going to be called only when the figure is drawn for the first time.

There are a few other interesting things in this code that deserve some attention.
In line 125, we created two class attributes (self.ix and self.iy) to keep the
coordinates of the initial touch. We use those coordinates each time we update the
figure (line 135) and when we put the figure into a Widget (line 141).

http://www.it-ebooks.info/

Widget Events – Binding Actions

[72]

We also use some of the localizing methods that we covered in the previous
section. In lines 132 and 140, we used to_widget to translate the coordinates to
the DrawingSpace instance. The lines 144 and 145 use to_local to translate the
coordinates to DraggableWidget.

DraggableWidget is instructed to translate the coordinates
to its inner relative space with the parameter relative=True
because DraggableWidget is relative and we are trying to draw
inside it (not inside the parent: the drawing space).

There is some basic math involved in the calculation of the position and sizes
of the figures and widgets. We have intentionally moved it to the deeper classes
of the inheritance: ToolLine and ToolCircle. The following is their code, the last
part of toolbox.py:

152. class ToolLine(ToolFigure):
153. def create_figure(self,ix,iy,fx,fy):
154. return Line(points=[ix, iy, fx, fy])
155.
156. def create_widget(self,ix,iy,fx,fy):
157. pos = (min(ix, fx), min(iy, fy))
158. size = (abs(fx-ix), abs(fy-iy))
159. return DraggableWidget(pos = pos, size = size)
160.
161. class ToolCircle(ToolFigure):
162. def create_figure(self,ix,iy,fx,fy):
163. return Line(circle=[ix,iy,math.hypot(ix-fx,iy-fy)])
164.
165. def create_widget(self,ix,iy,fx,fy):
166. r = math.hypot(ix-fx, iy-fy)
167. pos = (ix-r, iy-r)
168. size = (2*r, 2*r)
169. return DraggableWidget(pos = pos, size = size)

The math involves concepts of geometry that escape the scope of this book.
It is important to understand that the methods of this code section adapts the
calculations to create either lines or circles. Finally, we apply some changes to the
ToolBox class in toolbox.kv:

170. # File name: toolbox.kv
171. ...
172.
173. <ToolBox@GridLayout>:

http://www.it-ebooks.info/

Chapter 3

[73]

174. cols: 2
175. padding: 2
176. tool_circle: _tool_circle
177. tool_line: _tool_line
178. tool_stickman: _tool_stickman
179. ToolCircle:
180. id: _tool_circle
181. canvas:
182. Line:
183. circle: 24,24,14
184. ToolLine:
185. id: _tool_line
186. canvas:
187. Line:
188. points: 10,10,38,38
189. ToolStickman:
190. id: _tool_stickman
191. StickMan:
192. pos_hint: {'center_x':.5,'center_y':.5}

The new classes ToolCircle (line 179), ToolLine (line 184), and ToolStickMan
(line 189) have replaced the previous ToolButton instances. Now, we can also add
and scale lines and circles to the drawing space:

We also created some attributes (lines 176, 177, and 178) that will be useful in
Chapter 4, Improving the User Experience, when we use gestures to create figures.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[74]

Binding events in the Kivy language
So far, we have been handling events in two ways: overridding an event method
(for example, on_touch_event) and binding a personalize method to a related
event method (for example, ds.bind(on_touch_move=self.update_figure)).
In this section, we will discuss a different way, that is, binding events in the Kivy
language. Potentially, we could have done this since the beginning of this chapter
when we started working with DraggableWidget but there is a difference. If we
use the Kivy language, we can easily add the event to a specific instance and not to
all the instances of the same class. In this sense, it resembles dinamically binding an
instance to its callback with the bind method.

We are going to concentrate on new events specific to Button and ToggleButton.
The following is the code for generaloption.kv:

193. # File name: generaloptions.kv
194. #:import generaloptions generaloptions
195. <GeneralOptions>:
196. orientation: 'horizontal'
197. padding: 2
198. Button:
199. text: 'Clear'
200. on_press: root.clear(*args)
201. Button:
202. text: 'Remove'
203. on_release: root.remove(*args)
204. ToggleButton:
205. text: 'Group'
206. on_state: root.group(*args)
207. Button:
208. text: 'Color'
209. on_press: root.color(*args)
210. ToggleButton:
211. text: 'Gestures'
212. on_state: root.gestures(*args)

http://www.it-ebooks.info/

Chapter 3

[75]

The Button class has two extra events: on_press and on_release. The former
is similar to on_touch_down and the latter is similar to on_touch_up. However, in
this case, we don't need to worry about calling the collide_point method. We
used on_press for the Clear Button (line 200) and the Color Button (line 209) and
on_release for the Remove Button (line 203) to illustrate both methods, but for
this particular case, it does not really matter which one we pick. The on_state
event is already a part of the Button class, although more commonly used in the
ToggleButton instances. This event is triggered every time the state of ToogleButton
changes from 'normal' to 'down' and vice versa. The on_state event is used in
lines 206 and 212. All the events are bound to methods in the root, which are defined
in the generaloptions.py file:

213. # File name: generaloptions.py
214. from kivy.uix.boxlayout import BoxLayout
215. from kivy.properties import NumericProperty, ListProperty
216.
217. class GeneralOptions(BoxLayout):
218. group_mode = False
219. translation = ListProperty(None)
220.
221. def clear(self, instance):
222. self.drawing_space.clear_widgets()
223.
224. def remove(self, instance):
225. ds = self.drawing_space
226. if len(ds.children) > 0:
227. ds.remove_widget(ds.children[0])
228.
229. def group(self, instance, value):
230. if value == 'down':
231. self.group_mode = True
232. else:
233. self.group_mode = False
234. self.unselect_all()
235.
236. def color(self, instance):
237. pass
238.
239. def gestures(self, instance, value):
240. pass
241.
242. def unselect_all(self):

http://www.it-ebooks.info/

Widget Events – Binding Actions

[76]

243. for child in self.drawing_space.children:
244. child.unselect()
245.
246. def on_translation(self,instance,value):
247. for child in self.drawing_space.children:
248. if child.selected:
249. child.translate(*self.translation)

The GeneralOptions method illustrates a few other methods of the Widget class.
The clear method removes all the widgets from the DrawingSpace instance
through the clear_widgets method (line 222). The following screenshot
show the result of clicking on it:

The remove_widget method removes the last added Widget instance accessing the
children list (line 227). The group method modifies the group_mode attribute of
line 218 according to the 'down' or 'normal' ToggleButton state. The color and
gestures methods will be completed in Chapter 4, Improving the User Experience.

The group mode will allow the user to select several DraggableWidget instances in
order to drag them at the same time. We activated or deactivated the group mode
according to the state of the ToggleButton. In the next section, we will actually
allow multiple selections and dragging in the DraggableWidget class. For now,
we will just get the controls ready with the unselect_all and on_translation
methods.

http://www.it-ebooks.info/

Chapter 3

[77]

When the group mode is deactivated, we make sure that all the selected widgets are
unselected, by calling the unselect_all method (line 242). The unselect_all
method traverses the list of children calling the internal method unselect of each
DraggableWidget (line 79).

Lastly, the on_translation method also traverses the children list calling the
internal translate method (line 71) of each DraggableWidget. The question is;
what calls the on_translation method? One of the most useful features of Kivy
provides the answer to this question; this will be explained in the next section.

Creating your own events – the magical
properties
This section covers the use of the Kivy properties. A Kivy property triggers an event
every time we modify it. There are different types of properties, from the simple
NumericProperty or StringProperty to much more complex versions such as
ListProperty, DictProperty, or ObjectProperty. For example, if we define a
StringProperty called text, then an on_text event is going to be triggered each
time the text is modified.

Once we define a Kivy property, Kivy internally creates
an event associated with that property. The property event
is referenced adding the prefix on_ to the name of the
property. For example, the on_translation method
(line 246) is associated with ListProperty in line 219
called translation.

All the properties work in the same way. For example, the state property that we
used in the ToogleButton class is actually a property that creates the on_state
event. We already used this event in line 206. We define the property and Kivy
creates the event for us.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[78]

In the context of this book, a property will always refer to a Kivy
property and it should not be confused with a Python property,
which is a different concept not covered in this book. An attribute
is used to describe variables (references, objects, and instances) that
belong to the class. As a general rule, a Kivy property is always an
attribute but an attribute is not necessarily a Kivy property.

In this section, we implement group mode, which offers the possibility of selecting and
dragging several figures (DraggableWidgets instances) at the same time by pressing
the Group button (line 204). In order to do this, we can take advantage of the relation
between the translation property and the on_translation method. Basically,
every time we modify the translation property, the on_translation event is
triggered. Say that we drag three figures at the same time (with the group mode) as
shown in the following screenshot:

The three figures are selected but the events are handled by the circle, since it is the
one that has the pointer on top. The circle needs to tell the line and the stickman to
translate. Instead of calling the on_translation method, it only needs to modify the
translation property, and the on_translation event is triggered. Let's include
these changes in comicwidgets.py. We need four modifications.

First, we need to add the touched attribute (line 252) to indicate which of the
selected figures receives the event (for example, the circle in the previous screenshot).
We do this in the constructor:

250. def __init__(self, **kwargs):
251. self.selected = None
252. self.touched = False
253. super(DraggableWidget, self).__init__(**kwargs)

http://www.it-ebooks.info/

Chapter 3

[79]

Second, we need to set the touched attribute to True (line 256) when one of the
DraggableWidget instances receives the event. We do this in the on_touch_down
method:

254. def on_touch_down(self, touch):
255. if self.collide_point(touch.x, touch.y):
256. self.touched = True
257. self.select()
258. return True
259. return super(DraggableWidget, self).on_touch_down(touch)

Third, we need to check that DraggableWidget is the one that is currently being
touched (received the on_touch_down event previously). We add this to the
condition in line 262. The most important change is in line 264. Instead of calling
the translate method directly, we modify the translation property of general
options (self.parent.general_options) setting the number of pixels the widget
has been translated to the property. This will trigger the on_translation method
of GeneralOptions, which at the same time calls the translate method for each
selected DraggableWidget. This is the resulting code for on_touch_move:

260. def on_touch_move(self, touch):
261. (x,y) = self.parent.to_parent(touch.x, touch.y)
262. if self.selected and self.touched and self.parent.collide_
 point(x - self.width/2, y -self.height/2):
263. go = self.parent.general_options
264. go.translation=(touch.x-self.ix,touch.y-self.iy)
265. return True
266. return super(DraggableWidget, self).on_touch_move(touch)

Fourth, we need to set the touched attribute to False (line 268) on the on_touch_up
event, and also avoid calling the unselect method when we use group_mode
(line 270). Here is the code for the on_touch_up method:

267. def on_touch_up(self, touch):
268. self.touched = False
269. if self.selected:
270. if not self.parent.general_options.group_mode:
271. self.unselect()
272. return super(DraggableWidget, self).on_touch_up(touch)

This example could be considered artificial, since we theoretically could have called
the on_translation method from the start. However, properties are crucial in order
to keep consistency of the internal state of a variable and the screen display. The
example from the next section will improve your understanding of this.

http://www.it-ebooks.info/

Widget Events – Binding Actions

[80]

Kivy and its properties
Even though we have only touched upon explanations of properties in the previous
section, the truth is that we have been using them since the beginning of this chapter.
Kivy's internals are full of properties. They are almost everywhere. For example,
when we implemented DraggableWidget, we simply modified the center_x
property (line 72 and 73), and the whole Widget was then kept updated because
there is a chain of properties involved in the use of center_x.

The last example in this chapter illustrates how powerful Kivy properties are. Here is
the code for statusbar.py:

273. # File name: statusbar.py
274. from kivy.uix.boxlayout import BoxLayout
275. from kivy.properties import NumericProperty, ObjectProperty
276.
277. class StatusBar(BoxLayout):
278. counter = NumericProperty(0)
279. previous_counter = 0
280.
281. def on_counter(self, instance, value):
282. if value == 0:
283. self.msg_label.text="Drawing space cleared"
284. elif value - 1 == self.__class__.previous_counter:
285. self.msg_label.text = "Widget added"
286. elif value + 1 == StatusBar.previous_counter:
287. self.msg_label.text = "Widget removed"
288. self.__class__.previous_counter = value

The way Kivy properties work can be perceived as confusing by some advanced
Python or Java programmers. The confusion happens when a programmer assumes
that counter (line 278) is a static attribute of the StatusBar class because counter
is defined in an equivalent way to the Python static attributes (for example,
previous_counter in line 279). The assumption is incorrect.

Kivy properties are declared as static attribute classes (since they
belong to the class), but they are always internally transformed to
attribute instances. They actually belong to the object as we would
have declared them in the constructor.

http://www.it-ebooks.info/

Chapter 3

[81]

We need to distinguish between a static attribute of a class and an attribute of a
class instance. In Python, previous_counter (line 279) is a static attribute of the
StatusBar class. This means that it is shared among all the StatusBar instances, and
it can be accessed in any of the ways shown in lines 284 and 286 (however, line 284 is
recommended because it is independent of the class name). In contrast, the selected
variable (line 251) is an attribute of a DraggableWidget instance. This means that there
is a selected variable per StatusBar object. It is not shared among them. They are
created until the constructor (__init__) is called. The only way to access it is through
obj.selected (line 251). The counter property (line 278) behaves more similarly to
the selected attribute than to the previous_counter static attribute, in the sense that
there is one counter property and one selected attribute in each instance.

Now that this has been clarified, we can move on to study the example. The counter
is defined as NumericProperty in line 278. It corresponds to the on_counter method
(line 281) and modifies Label (msg_text) defined in the statusbar.kv file:

289. # File name: statusbar.kv
290. #:import statusbar statusbar
291. <StatusBar>:
292. msg_text: _msg_label
293. orientation: 'horizontal'
294. Label:
295. text: 'Total Figures: ' + str(root.counter)
296. Label:
297. id: _msg_label
298. text: "Kivy started"

Note that we use id (line 297) again in order to define msg_text (line 292). Also, we
use counter defined in line 278 to update the Total Figures message in line 295. The
specific part (str(root.counter)) of text is updated automatically when counter
is modified.

So, we just need to modify the counter property, and the interface is updated
automatically. Let's update the counter in drawingspace.py:

299. # File name: drawingspace.py
300. from kivy.uix.relativelayout import RelativeLayout
301.
302. class DrawingSpace(RelativeLayout):
303. def on_children(self, instance, value):
304. self.status_bar.counter = len(self.children)

http://www.it-ebooks.info/

Widget Events – Binding Actions

[82]

We updated counter with the length of children of the DrawingSpace in the
method on_children. Then, on_children is called every time we add (line 114 or
147) or remove (line 222 or 227) widgets from the children list of the DrawingSpace
because children is also a Kivy property.

Don't forget to import this file into drawingspace.py in the drawingspace.kv file,
in which we also removed the border of the drawing space:

305. # File name: drawingspace.kv
306. #:import drawingspace drawingspace
307. <DrawingSpace@RelativeLayout>:

The following diagram shows a chain of elements (properties, methods, and widgets)
that are associated with the children property:

It is important to compare again the way we gain access to the counter property
and the msg_label attribute. We defined the counter property in the StatusBar
(line 278) and used it in Label through the root (line 295). In the msg_label case, we
started defining id (line 297) and then the attribute of the Kivy language (line 292).
Then, we were able used msg_label in the Python code (lines 283, 285 and 287)

Remember that an attribute is not necessarily a Kivy property.
An attribute is an element of the class, whereas a Kivy property
also associates the attribute with an event.

http://www.it-ebooks.info/

Chapter 3

[83]

You can find the complete list of available properties in the Kivy API (http://kivy.
org/docs/api-kivy.properties.html). There are two specific properties that
should at least be mentioned: BoundedNumericProperty and AliasProperty.
The BoundedNumericProperty property allows the setting of the maximum and
minimum values. If the value is beyond the range, an Exception is thrown. The
AliasProperty property offers a way in which we can extend the properties; it
allows us to create our own properties in case the necessary property does not exist.

One last thing that deserves attention is that attributes of the vertex instructions
are used as properties when we create them with the Kivy language. For example,
if we change the position of the line inside ToolLine, it will be updated
automatically. However, this just applies inside the Kivy language, not when we
add the vertex instructions dynamically, as we did in toolbox.py. In our case, we
had to remove and create a new vertex instruction every time we needed to update
the figures (lines 133 to 135). However, we could have created our own properties
to handle the updates. An example will be offered in Chapter 6, Kivy Player – a TED
Video Streamer, when we add subtitles to the videos.

Let's run the code one last time to see the final result with the status bar counting
figures and indicating our last action:

http://kivy.org/docs/api-kivy.properties.html
http://kivy.org/docs/api-kivy.properties.html
http://www.it-ebooks.info/

Widget Events – Binding Actions

[84]

Summary
We covered most of the topics related to event handling in this chapter.
You learned how to override different kind of events, dynamic binding and
unbinding, assigning events in the Kivy language, and creating our own. You also
learned about Kivy properties, how to manage the localization of coordinates to
different widgets, and many methods related to adding, removing, and updating
objects of Kivy Widget and canvas. Here are the events, methods, properties, and
attributes that were covered:

•	 The events we covered are on_touch_up, on_touch_move and on_touch_
down (of Widget); on_press and on_release (of Button); and on_state
(of ToggleButton)

•	 The attributes we covered are x and y of MotionEvent (touch); center_x,
center_y, canvas, parent, and children of Widget, and state of
ToggleButton.

•	 The following methods of Widget:
°° bind and unbind to attach events dynamically
°° collide_points, to_parent, to_local, to_window, and to_widget

to work with coordinates
°° add_widget, remove_widget, and clear_widgets to dynamically

modify the children widgets
°° The methods add and remove of canvas to dynamically add and

remove vertex and context instructions

•	 Kivy properties: NumericProperty and ListProperty

There are two other important types of events related to the clock and keyboard.
This chapter was focused on widget and property events but we will see how to use
other events in Chapter 5, Invaders Revenge – an Interactive Multi-touch Game. The next
chapter is going to introduce a list of interesting topics on Kivy in order to improve
the user experience with our Comic Creator.

http://www.it-ebooks.info/

[85]

Improving the User
Experience

This chapter presents an overview of useful components that Kivy provides to make
the programmer's life easier when it is time to improve the user experience. Some
Kivy components reviewed in this chapter are related to widgets that include very
particular functionalities (for example, a color palette); in this case, you will learn
the basic techniques to control them. Other widgets will help us expand the use of
the canvas, for example, changing the color, rotating and scaling shapes, or handling
gestures. Finally, we will quickly improve the look and feel of the application with a
few tips. All the sections are intended to increase the usability of the application and
are self-contained. The following is the list of topics we will review in the chapter:

•	 Switching between different screens
•	 Using the Kivy palette widget to select colors
•	 Controlling the visible area of the canvas
•	 Rotating and scaling with multi-touch gestures
•	 Creating single gestures to draw on the screen
•	 Enhancing the design with a few global changes

More importantly, we will discuss how to incorporate these topics into a current
working project. This will reinforce your previously acquired knowledge and
explore a new programming situation in which we need to add functionality to an
existent code. At the end of this chapter, you should feel comfortable with exploring
all the different widgets that the Kivy API offers, and quickly understand how to
integrate them into your code.

http://www.it-ebooks.info/

Improving the User Experience

[86]

ScreenManager – selecting colors for the
figures
The ScreenManager class lets us handle different screens in the same window. In
Kivy, screens are preferred over windows, because we are programming for different
devices with different screen sizes. Therefore, it is difficult (if not impossible) to have
windows that adapt properly to all devices. Just imagine yourself juggling windows
with your fingers on your mobile phone.

So far, all our figures have been of the same color. Let's allow the user to add some
color to make the Comic Creator more versatile. Kivy provides us with a Widget
called ColorPicker, which is displayed in the following screenshot:

As you can see, this Widget requires a wide space, so it would be difficult to
accommodate it in our current interface.

There is a bug in Kivy 1.9.0 that prevents ColorPicker from
working in Python 3 (it is already fixed in the development version
1.9.1-dev, which is available at https://github.com/kivy/
kivy/). You can use Python 2, or there is an alternative code for
Python 3 included in the code that you can download from the Packt
Publishing website. Instead of the ColorPicker, there is a widget
based on GridLayout to select a few colors. The concepts that we
will discuss in this section are also reflected in that code.

https://github.com/kivy/kivy/
https://github.com/kivy/kivy/
http://www.it-ebooks.info/

Chapter 4

[87]

The ScreenManager class allows us to have multiple screens instead of just one
Widget (ComicCreator), and also lets us switch easily between the screens. Here is
a new Kivy file (comicscreenmanager.kv) that contains the ComicScreenManager
class definition:

1. # File name: comicscreenmanager.kv
2. #:import FadeTransition kivy.uix.screenmanager.FadeTransition
3. <ComicScreenManager>:
4. transition: FadeTransition()
5. color_picker: _color_picker
6. ComicCreator:
7. Screen:
8. name: 'colorscreen'
9. ColorPicker:
10. id: _color_picker
11. color: 0,.3,.6,1
12. Button:
13. text: "Select"
14. pos_hint: {'center_x': .75, 'y': .05}
15. size_hint: None, None
16. size: 150, 50
17. on_press: root.current = 'comicscreen'

We embedded the ColorPicker instance inside a Screen widget (line 7), instead of
adding it directly to the ComicScreenManager.

A ScreenManager instance must contain widgets of the Screen base
class. No other types of Widget (label, button, or layouts) are allowed.

Since we have also added our ComicCreator to ScreenManager (line 6), we
need to make sure that our ComicCreator inherits from the Screen class in the
comiccreator.kv file, so we need to change the file header:

18. # File name: comiccreator.kv
19. <ComicCreator@Screen>:
20. name: 'comicscreen'
21. AnchorLayout:…

http://www.it-ebooks.info/

Improving the User Experience

[88]

The name property (line 20) is used to identify the screen with an ID, in this case
comicscreen, and it is used to change between the screens of ScreenManeger
through its current property. For example, the Button instance that we added
to ColorPicker (line 12), uses the name property to change the current screen in
the on_press event (line 17). The root refers to the ScreenManager class and the
current property tells it what the active Screen is. In this case comicscreen, the
name we assigned to identify the ComicCreator instance. Notice that we add the
Python code directly (line 17) instead of calling a method as we did in Chapter 3,
Widget Events – Binding Actions.

We also gave a name (colorscreen) to the screen that contains the ColorPicker
instance. We will use this name to activate ColorPicker with the Color button in the
general options area. We need to modify the color method of generaloptions.py:

22. def color(self, instance):
23. self.comic_creator.manager.current = 'colorscreen'

The Color button now switches the screen in order to display the ColorPicker
instance. Notice the way we access ScreenManager (line 23). First, we use the
comic_creator reference in the GeneralOptions class to access the ComicCreator
instance. Second, we use the manager attribute of Screen to access its corresponding
ScreenManager. Finally, we change current Screen, analogous to line 17.

ComicScreenManager now becomes the main Widget of the ComicCreator project so
the comicreator.py file has to change accordingly:

24. # File name: comiccreator.py
25. from kivy.app import App
26. from kivy.lang import Builder
27. from kivy.uix.screenmanager import ScreenManager
28.
29. Builder.load_file('toolbox.kv')
30. Builder.load_file('comicwidgets.kv')
31. Builder.load_file('drawingspace.kv')
32. Builder.load_file('generaloptions.kv')
33. Builder.load_file('statusbar.kv')
34. Builder.load_file('comiccreator.kv')
35.
36. class ComicScreenManager(ScreenManager):
37. pass
38.
39. class ComicScreenManagerApp(App):

http://www.it-ebooks.info/

Chapter 4

[89]

40. def build(self):
41. return ComicScreenManager()
42.
43. if __name__=="__main__":
44. ComicScreenManagerApp().run()

Since we changed the name of the app to ComicScreenManagerApp (line 44),
we explicitly load the comiccreator.kv file (line 34). Remember that the
comicscreenmanager.kv file is going to be called automatically since the name of
the app is now ComicScreenManagerApp.

One last interesting thing about the ScreenManager is that we can use transitions.
Just as an example, the lines 2 and 4 import and use a simple FadeTransition.

Kivy provides a set of transitions (FadeTransition,
SwapTransition, SlideTransition, and WipeTransition)
to switch between the Screen instances of ScreenManager.
Check the Kivy API for more information on how to customize
them with different parameters at http://kivy.org/docs/
api-kivy.uix.screenmanager.html

After these changes, we can switch between the two screens, ColorPicker and
ComicCreator, by clicking on the Color button of general options, or the Select
button of ColorPicker. We also set a different color in the ColorPicker instance
with the color property (line 11); however, the selection of the color still has no
effect on the drawing process. The next section covers how to set the selected color to
the figures we draw.

Color control on the canvas – coloring
figures
The previous section focused on the selection of colors from a canvas but this
selection didn't really have an effect yet. In this section, we will actually use the
selected color. Assigning a color can be tricky if we are not careful. If you recall, in
Chapter 3, Widget Events – Binding Actions, Color is a context instruction that we must
add to the canvas. Moreover, we have to be sure that we add the instruction before
we draw the actual figure. Basically, selecting a color is similar to picking a crayon
color to draw on a piece of paper. Until you change the crayon, you will continue
drawing with its color.

http://kivy.org/docs/api-kivy.uix.screenmanager.html
http://kivy.org/docs/api-kivy.uix.screenmanager.html
http://www.it-ebooks.info/

Improving the User Experience

[90]

When the color of the context changes, it stays in that state
until some other instruction modifies it explicitly. In Chapter 2,
Graphics – the Canvas, we use PushMatrix and PopMatrix
for a similar problem but they only apply to transformation
instructions (Translate, Rotate, and Scale) because they
relate to the coordinate space (that explains the matrix part of
the instructions names: PushMatrix and PopMatrix).

Let's study a small example (from the Comic Creator project) to understand this
concept better:

45. # File name: color.py
46. from kivy.app import App
47. from kivy.uix.gridlayout import GridLayout
48. from kivy.lang import Builder
49.
50. Builder.load_string("""
51. <GridLayout>:
52. cols:2
53. Label:
54. color: 0.5,0.5,0.5,1
55. canvas:
56. Rectangle:
57. pos: self.x + 10, self.y + 10
58. size: self.width - 20, self.height - 20
59. Widget:
60. canvas:
61. Rectangle:
62. pos: self.x + 10, self.y + 10
63. size: self.width - 20, self.height - 20
64. """)
65.
66. class LabelApp(App):
67. def build(self):
68. return GridLayout()
69.
70. if __name__=="__main__":
71. LabelApp().run()

http://www.it-ebooks.info/

Chapter 4

[91]

Notice that we use the load_string method of the Builder class
instead of using the load_file method. This method allows us to
embed Kivy language statements inside a Python code file.

One of the properties of Label is called color; it changes the color of the Label text.
We change color to gray (line 54) in the first Label but it doesn't clean the context.
Observe the result in the following screenshot:

The rectangle of Label (line 56), but also the rectangle of Widget (Line 61) have both
changed color. Kivy tries to keep all its components as simple as possible to avoid
unnecessary instructions. We will follow this approach for the colors, so we won't
worry about the color until we need to use it. Any other components can take care
of their own color.

We can now implement the changes in the Comic Creator. There are only three
methods where we draw in the drawing space (all of them are in the toolbox.py file).
Here are those methods with the corresponding new lines highlighted:

•	 The draw method in the ToolStickman class:
72. def draw(self, ds, x, y):
73. sm = StickMan(width=48, height=48)
74. sm.center = (x,y)
75. screen_manager = self.parent.comic_creator.manager
76. color_picker = screen_manager.color_picker
77. sm.canvas.before.add(Color(*color_picker.color))
78. ds.add_widget(sm)

•	 The draw method in the ToolFigure class:
79. def draw(self, ds, x, y):
80. (self.ix, self.iy) = (x,y)
81. screen_manager = self.parent.comic_creator.manager
82. color_picker = screen_manager.color_picker
83. with ds.canvas:
84. Color(*color_picker.color)
85. self.figure=self.create_figure(x,y,x+1,y+1)
86. ds.bind(on_touch_move=self.update_figure)
87. ds.bind(on_touch_up=self.end_figure)

http://www.it-ebooks.info/

Improving the User Experience

[92]

•	 The widgetize method in the ToolFigure class:
88. def widgetize(self,ds,ix,iy,fx,fy):
89. widget = self.create_widget(ix,iy,fx,fy)
90. (ix,iy) = widget.to_local(ix,iy,relative=True)
91. (fx,fy) = widget.to_local(fx,fy,relative=True)
92. screen_manager = self.parent.comic_creator.manager
93. color_picker = screen_manager.color_picker
94. widget.canvas.add(Color(*color_picker.color))
95. widget.canvas.add(self.create_figure(ix,iy,fx,fy))
96. ds.add_widget(widget)

All three methods have a pair of specific instructions in common; you can find
them in lines 75 and 76, 81 and 82, and 92 and 93. These are reference chains to get
access to the ColorPicker instance. After this, we just add a Color instruction to the
canvas (as we learned in Chapter 2, Graphics – the Canvas) using the selected color in
color_picker (lines 77, 84, and 94).

The "splat" operator (*) on lines 77, 84, and 94 is used in
Python to unpack argument lists. In this case, the Color
constructor is meant to receive three parameters with the red,
green, and blue values, but we have a list stored in color_
picker.color, for example, (1,0,1), so we need to unpack it
to get three separated values 1,0,1.

We also use canvas.before in the draw method of the ToolStickman class (line 77).
This is used to ensure that the Color instruction is executed before the instructions
we added in canvas of Stickman (the comicwidgets.kv file). This is not necessary
in the other two methods because we have full control of the canvas order inside
those methods.

Finally, we must import the Color class in the header of the file from kivy.
graphics import Line, Color. We can now take a break and enjoy the result
of our hard work with our Comic Creator:

http://www.it-ebooks.info/

Chapter 4

[93]

At a later point in time, we can discuss whether our drawing is just an avid
Comic Creator fan or a narcissistic alien with an oversized t-shirt. For now, it
seems more useful to learn how to limit the drawing space to the specific area
that occupies the window.

StencilView – limiting the drawing space
In Chapter 3, Widget Events – Binding Actions, we avoided drawing outside of the
drawing space by using simple mathematics and collide_points. It was far from
perfect (for example, it fails in the group mode or when we resize it), and it was
tedious and prone to programming mistakes.

That was sufficient for a first example, however, StencilView is the easier
way to go here. StencilView limits the drawing area to the space occupied
by itself. Anything drawn outside that area is hidden. First, let's modify the file
drawingspace.py with the following header:

97. # File name: drawingspace.py
98. from kivy.uix.stencilview import StencilView
99.
100. class DrawingSpace(StencilView):
101. ...

The DrawingSpace instance inherits now from StencilView, instead of
RelativeLayout. The StencilView class doesn't use relative coordinates (as the
RelativeLayout class does) but we would like to keep relative coordinates in the
drawing space because they are convenient for drawing purposes. In order to do this,
we can modify the top-right AnchorLayout, so the DrawingSpace instance is inside a
RelativeLayout instance. We do this in the comiccreator.kv file:

102. AnchorLayout:
103. anchor_x: 'right'
104. anchor_y: 'top'
105. RelativeLayout:
106. size_hint: None,None
107. width: root.width - _tool_box.width
108. height: root.height - _general_options.height -
 _status_bar.height
109. DrawingSpace:
110. id: _drawing_space
111. general_options: _general_options
112. tool_box: _tool_box
113. status_bar: _status_bar

http://www.it-ebooks.info/

Improving the User Experience

[94]

When we embed the DrawingSpace instance (line 109) inside a RelativeLayout
instance (line 105) of the same size (by default, the DrawingSpace instance uses
size_hint: 1, 1 occupying all the area of the RelativeLayout parent), then the
coordinates inside the DrawingSpace instance are relative to the RelativeLayout
instance. Since they are of the same size, then the coordinates are also relative to the
DrawingSpace instance.

We kept the DrawingSpace ID (line 110) and attributes (lines 111 to 113). Since we
have a new level of indentation and the DrawingSpace class is not relative itself,
this affects the way we localize the coordinates in the ToolBox instance, specifically,
in on_touch_down of the ToolButton class, and update_figure and end_figure
of the ToolFigure class. The following is the new code for on_touch_down of the
ToolButton class:

114. def on_touch_down(self, touch):
115. ds = self.parent.drawing_space
116. if self.state == 'down' and\
 ds.parent.collide_point(touch.x, touch.y):
117. (x,y) = ds.to_widget(touch.x, touch.y)
118. self.draw(ds, x, y)
119. return True
120. return super(ToolButton,
 self).on_touch_down(touch)

We receive absolute coordinates in this method since we are inside ToolButton,
which doesn't belong to any RelativeLayout instance. The drawing space also
receives absolute coordinates, but it will interpret them inside the context of
the RelativeLayout instance that it is embedded in. The right approach for the
DrawingSpace instance is to ask its RelativeLayout parent who will collide the
coordinates (received in the ToolButton) correctly (line 116)

The following is the new code of update_figure and end_figure of the
ToolFigure class:

121. def update_figure(self, ds, touch):
122. ds.canvas.remove(self.figure)
123. with ds.canvas:
124. self.figure = self.create_figure(self.ix,
 self.iy,touch.x,touch.y)
125.
126. def end_figure(self, ds, touch):
127. ds.unbind(on_touch_move=self.update_figure)
128. ds.unbind(on_touch_up=self.end_figure)
129. ds.canvas.remove(self.figure)
130. self.widgetize(ds,self.ix,self.iy,touch.x,touch.y)

http://www.it-ebooks.info/

Chapter 4

[95]

We removed some instructions because we no longer need them. First off, we
don't need to use the to_widget method anymore in either of the two methods,
since we are already getting the coordinates from the RelativeLayout parent. And
secondly, we don't need to worry about applying the collide_point method in the
update_figure method because StencilView will be in charge of it; any drawing
that takes place outside the bounds is discarded.

With just a few changes, we ensured that nothing will be drawn outside of the
drawing space, and, with that guarantee, we can now proceed to discuss how to drag,
rotate, and scale the figures.

Scatter – multi-touching to drag, rotate,
and scale
In the previous chapter (Chapter 3, Widget Events – Binding Actions), you learned how
to use events to drag widgets. You learned how to use the on_touch_up, on_touch_
move, and on_touch_down events. However, the Scatter class already provides
that functionality and also lets us scale and rotate using two fingers, as one would
on a mobile or tablet screen. All the functionality is included inside the Scatter
class; however, we need to apply a few changes to keep our project consistent. In
particular, we still want our group mode to work, so that translating, scaling, and
rotating can happen at the same time. Let us implement the changes in four big steps
in the comicwidgets.py file:

1.	 Replace the DraggableWidget base class. Let's use Scatter instead of
RelativeLayout (line 132 and 135):
131. # File name: comicwidgets.py
132. from kivy.uix.scatter import Scatter
133. from kivy.graphics import Line
134.
135. class DraggableWidget(Scatter):

Both Scatter and RelativeLayout use relative coordinates.

http://www.it-ebooks.info/

Improving the User Experience

[96]

2.	 Make sure that the on_touch_down event of DraggableWidget is sent to the
base class (Scatter) by calling the super method (line 140) before return
True (line 141) inside the condition. If you don't do that, the Scatter base
class will never receive the event on_touch_down and nothing will happen:
136. def on_touch_down(self, touch):
137. if self.collide_point(touch.x, touch.y):
138. self.touched = True
139. self.select()
140. super(DraggableWidget,
 self).on_touch_down(touch)
141. return True
142. return super(DraggableWidget,
 self).on_touch_down(touch)

The super method is useful for the base class (Scatter) and the
return statement is useful for the parent (DrawingSpace)

3.	 Remove the on_touch_move method and add an on_pos method, which is
called when the pos property is modified. Since Scatter will be responsible
for dragging, we don't need on_touch_move anymore. Instead, we will use
the pos property that is modified by Scatter. Remember that the properties
trigger an event that will call on the on_pos method:
143. def on_pos(self, instance, value):
144. if self.selected and self.touched:
145. go = self.parent.general_options
146. go.translation = (self.center_x- self.ix,
 self.center_y - self.iy)
147. self.ix = self.center_x
148. self.iy = self.center_y

4.	 Scatter has two other properties: rotation and scale. We can use the same
idea as with pos and on_pos, and add the on_rotation and on_scale
methods:

149. def on_rotation(self, instance, value):
150. if self.selected and self.touched:
151. go = self.parent.general_options
152. go.rotation = value
153.
154. def on_scale(self, instance, value):
155. if self.selected and self.touched:
156. go = self.parent.general_options
157. go.scale = value

http://www.it-ebooks.info/

Chapter 4

[97]

The on_rotation and on_scale methods modify a couple of new properties
(lines 152 and 157) that we need to add to the GeneralOptions class. This will
help us to keep the group mode working. The following code is the new header of
generaloptions.py that includes the new properties:

158. # File name: generaloptions.py
159. from kivy.uix.boxlayout import BoxLayout
160. from kivy.properties import NumericProperty, ListProperty
161.
162. class GeneralOptions(BoxLayout):
163. group_mode = False
164. translation = ListProperty(None)
165. rotation = NumericProperty(0)
166. scale = NumericProperty(0)

We import NumericProperty along with ListProperty (line 160); and we create
the two missing properties: rotation and scale (lines 165 and 166). We also need
to add the on_rotation (line 167) and on_scale (line 172) methods (associated
with the rotation and scale properties), which will ensure that all the selected
components are rotated or scaled at once, by traversing the list of children that have
been added to the drawing space (line 173 and 177):

167 def on_rotation(self, instance, value):
168. for child in self.drawing_space.children:
169. if child.selected and not child.touched:
170. child.rotation = value
171.
172. def on_scale(self, instance, value):
173. for child in self.drawing_space.children:
174. if child.selected and not child.touched:
175. child.scale = value

A final modification is necessary. We need to change the on_translation method to
check that the current child in the loop is not the one being touched (if this happens,
call the police!), because this could cause an infinitive recursion since we modify the
properties that call on this event in the first place. Here is the new on_translation
method in the generaloptions.py file:

176. def on_translation(self,instance,value):
177. for child in self.drawing_space.children:
178. if child.selected and not child.touched:
179. child.translate(*self.translation)

http://www.it-ebooks.info/

Improving the User Experience

[98]

At this point, we are able to translate, rotate, or scale the figures with our fingers,
even in the group mode.

Kivy provides a way to simulate multi-touch with the mouse. It is
limited but you can still test this section with your one-mouse laptop.
All you have to do is right-click on the figure you want to rotate. A
translucent red circle will appear on the screen. Then, you can use the
normal left dragging as if it were a second finger to rotate or scale. To
clear the simulated multi-touch, you left-click on the red icon.

The next screenshot cut shows our StickMan being rotated and scaled at the
same time as the line next to him. The small StickMan on the right is just a reference
to compare against the original size. The simulated multi-touch gesture is being
applied to the line on the right and that is why you can see a red (gray in the printed
version) dot:

In Chapter 1, GUI Basics – Building an Interface, we briefly mention ScatterLayout
but now the difference between ScatterLayout and Scatter may be clear.

http://www.it-ebooks.info/

Chapter 4

[99]

ScatterLayout is a Kivy layout that inherits from Scatter and
contains FloatLayout. This allows you to use the size_hint and
pos_hint properties when you add widgets inside it. ScatterLayout
also uses relative coordinates. This doesn't mean you cannot add other
widgets inside a simple Scatter; it just means that Scatter doesn't
honor size_hint or pos_hint.

With the use of Scatter, we are able to drag, rotate, and scale our figures. This is
a great improvement of functionality in our Comic Creator. Let's now increase the
interaction with the user even more, learn how to create our own gestures, and use
them inside our project.

Recording gestures – line, circle, and
cross
What about drawing with one finger? Can we recognize gestures? It is possible to do
this with Kivy. First, we need to record the gestures that we want to use. A gesture
is represented as a long string that contains the points of a stroke over the screen.
The following code uses the Kivy Gesture and GestureDatabase classes to record
gesture strokes. It can be run with Python gesturerecorder.py:

180. # File Name: gesturerecorder.py
181. from kivy.app import App
182. from kivy.uix.floatlayout import FloatLayout
183. from kivy.graphics import Line, Ellipse
184. from kivy.gesture import Gesture, GestureDatabase
185.
186. class GestureRecorder(FloatLayout):
187.
188. def on_touch_down(self, touch):
189. self.points = [touch.pos]
190. with self.canvas:
191. Ellipse(pos=(touch.x-5,touch.y-5),size=(10,10))
192. self.Line = Line(points=(touch.x, touch.y))
193.
194. def on_touch_move(self, touch):
195. self.points += [touch.pos]
196. self.line.points += [touch.x, touch.y]
197.
198. def on_touch_up(self, touch):

http://www.it-ebooks.info/

Improving the User Experience

[100]

199. self.points += [touch.pos]
200. gesture = Gesture()
201. gesture.add_stroke(self.points)
202. gesture.normalize()
203. gdb = GestureDatabase()
204. print ("Gesture:",
 gdb.gesture_to_str(gesture).decode(encoding='UTF-8'))
205.
206. class GestureRecorderApp(App):
207. def build(self):
208. return GestureRecorder()
209.
210. if __name__=="__main__":
211. GestureRecorderApp().run()

The previous code prints the gesture string representations using the Gesture and
GestureDatabase classes (line 184). The on_touch_down, on_touch_move, and on_
touch_up methods collect points of the stroke lines 189, 195, and 199. The following
screenshots are examples of strokes collected with gesturerecorded.py:

The small Circle in the preceding figures (lines 190 and 191) indicates the starting
point, and the line indicates the path that the stroke follows. The most relevant part
is coded in lines 200 to 204. We create Gesture (line 200), add points for the stroke
with the add_stroke method (line 201), normalize to a default number of points
(line 202), and create a GestureDatabase instance (line 203) that we use in line 204 to
generate the string (gesture_to_str) and print it on the screen.

http://www.it-ebooks.info/

Chapter 4

[101]

The following screenshot shows the terminal output for the stroke line
(corresponding to the first figure on the left in the preceding figures set):

In the preceding screenshot, the long string starting with 'eNq1Vktu…' is the gesture
serialization. We use these long strings as descriptors of the gestures that Kivy
understands and uses to associate the stroke with any action we want to perform.
The next section explains how to achieve this.

Recognizing gestures – drawing with the
finger
The previous section explained how to obtain string representations from gestures.
The current section explains how to use those string representations to recognize the
gestures. Kivy has some tolerance error in the gesture recognition, so you don't have
to worry about repeating exactly the same stroke.

To start, we copied the strings that were generated from the strokes in the previous
section into a new file called gestures.py. The strings are assigned to different
variables. The following code corresponds to gestures.py:

212. # File Name: gestures.py
213. line45_str = 'eNq1VktuI0cM3fdFrM0I...
214. circle_str = 'eNq1WMtuGzkQvM+P2JcI/Sb5A9rrA...
215. cross_str = 'eNq1V9tuIzcMfZ8fSV5qiH...

Only the first few characters of the strings are shown in the previous code but
you can download the complete file from the Packt Publishing website, or use the
previous section to generate your own strings.

http://www.it-ebooks.info/

Improving the User Experience

[102]

Next, we will use these strings in the drawingspace.py file. Let's start importing the
necessary classes in the header first:

216. # File name: drawingspace.py
217. from kivy.uix.stencilview import StencilView
218. from kivy.gesture import Gesture, GestureDatabase
219. from gestures import line45_str, circle_str, cross_str
220.
221. class DrawingSpace(StencilView):

In the preceding code, we import the Gesture and GestureDatabase classes
(line 218) along with the gesture string representations added to gestures.py
(lines 219). We added several methods to the DrawingSpace class. Let's quickly
review each of the methods, and, at the end, highlight the key parts:

•	 __init__: This method creates the attributes of the class and fills
GestureDatabase using str_to_gesture in order to transform the strings
into gestures, and add_gesture to add the gestures to the database:
222. def __init__(self, *args, **kwargs):
223. super(DrawingSpace, self).__init__()
224. self.gdb = GestureDatabase()
225. self.line45 = self.gdb.str_to_gesture(line45_str)
226. self.circle = self.gdb.str_to_gesture(circle_str)
227. self.cross = self.gdb.str_to_gesture(cross_str)
228. self.line135 = self.line45.rotate(90)
229. self.line225 = self.line45.rotate(180)
230. self.line315 = self.line45.rotate(270)
231. self.gdb.add_gesture(self.line45)
232. self.gdb.add_gesture(self.line135)
233. self.gdb.add_gesture(self.line225)
234. self.gdb.add_gesture(self.line315)
235. self.gdb.add_gesture(self.circle)
236. self.gdb.add_gesture(self.cross)

•	 activate and deactivate: These methods bind or unbind the methods
to the touch events in order to start the gesture recognition mode. These
methods are called by the gesture Button of the general options:
237. def activate(self):
238. self.tool_box.disabled = True
239. self.bind(on_touch_down=self.down,
240. on_touch_move=self.move,

http://www.it-ebooks.info/

Chapter 4

[103]

241. on_touch_up=self.up)
242.
243. def deactivate(self):
244. self.unbind(on_touch_down=self.down,
245. on_touch_move=self.move,
246. on_touch_up=self.up)
247. self.tool_box.disabled = False

•	 down, move and ups: These methods record the points of the stroke in a very
similar way that the previous section did:
248. def down(self, ds, touch):
249. if self.collide_point(*touch.pos):
250. self.points = [touch.pos]
251. self.ix = self.fx = touch.x
252. self.iy = self.fy = touch.y
253. return True
254.
255. def move(self, ds, touch):
256. if self.collide_point(*touch.pos):
257. self.points += [touch.pos]
258. self.min_and_max(touch.x, touch.y)
259. return True
260.
261. def up(self, ds, touch):
262. if self.collide_point(*touch.pos):
263. self.points += [touch.pos]
264. self.min_and_max(touch.x, touch.y)
265. gesture = self.gesturize()
266. recognized = self.gdb.find(gesture,
 minscore=0.50)
267. if recognized:
268. self.discriminate(recognized)
269. return True

•	 gesturize: This method creates a Gesture instance from the collected points
in the previous methods:
270. def gesturize(self):
271. gesture = Gesture()
272. gesture.add_stroke(self.points)
273. gesture.normalize()
274. return gesture

http://www.it-ebooks.info/

Improving the User Experience

[104]

•	 min_and_max: This method keeps track of the extreme points of the stroke:
275. def min_and_max(self, x, y):
276. self.ix = min(self.ix, x)
277. self.iy = min(self.iy, y)
278. self.fx = max(self.fx, x)
279. self.fy = max(self.fy, y)

•	 Discriminate: This method calls the corresponding method according to the
recognized gesture:
280. def discriminate(self, recognized):
281. if recognized[1] == self.cross:
282. self.add_stickman()
283. if recognized[1] == self.circle:
284. self.add_circle()
285. if recognized[1] == self.line45:
286. self.add_line(self.ix,self.iy,self.fx,self.fy)
287. if recognized[1] == self.line135:
288. self.add_line(self.ix,self.fy,self.fx,self.iy)
289. if recognized[1] == self.line225:
290. self.add_line(self.fx,self.fy,self.ix,self.iy)
291. if recognized[1] == self.line315:
292. self.add_line(self.fx,self.iy,self.ix,self.fy)

•	 add_circle, add_Line, add_stickman: These methods use the
corresponding ToolButton of ToolBox to add a figure according to the
recognized gesture:
293. def add_circle(self):
294. cx = (self.ix + self.fx)/2.0
295. cy = (self.iy + self.fy)/2.0
296. self.tool_box.tool_circle.widgetize(self, cx, cy,
 self .fx, self.fy)
297.
298. def add_line(self,ix,iy,fx,fy):
299. self.tool_box.tool_line.widgetize(self,ix,iy,fx,fy)
300.
301. def add_stickman(self):
302. cx = (self.ix + self.fx)/2.0
303. cy = (self.iy + self.fy)/2.0
304. self.tool_box.tool_stickman.draw(self,cx,cy)

http://www.it-ebooks.info/

Chapter 4

[105]

•	 on_children: This method keeps the counter of the Status Bar updated:
305. def on_children(self, instance, value):
306. self.status_bar.counter = len(self.children)

The DrawingSpace class is now in charge of capturing strokes on the screen, search
for them in the gesture database (that contains the gestures of the last section), and
draw a shape accordingly. It also offers the possibility of activating and deactivating
the gesture recognition. Let's cover this in four parts.

First, we need to create the GestureDatabase instance (line 224) and use it to
create the gestures from the strings (lines 225 to 227). We rotate the line45
gesture by 90 degrees (lines 228 to 230) four times with the rotate method, so the
GestureDatabase instance recognizes the line gesture in different directions. Then,
we load GestureDatabase with the generated gestures (lines 231 to 236). We added
all of these instructions in the constructor of the class, the __init__ method (lines
222 to 236), so the DrawingSpace class has all the elements to recognize gestures.

Second, we need to capture the gesture stroke. In order to do this, we use the touch
events. We have created the methods associated with them: down (line 248), move
(line 255), and up (line 261). These methods are similar to the on_touch_down,
on_touch_move, and on_touch_up methods of the last section in the sense that they
register the points of the stroke. However, they also keep track of the extreme axes of
the stroke to define a bounding box for the stroke as the following figure illustrates:

These points are used to define the size of the shape we will draw. The up method,
firstly, uses the registered points to create a Gesture instance (line 265), secondly,
makes the query to the GestureDatabase instance using the find method (line 266),
and thirdly, calls the discriminate method to draw the appropriate shape (line
280). The minscore parameter of the find method (line 266) is used to indicate the
precision of the search.

http://www.it-ebooks.info/

Improving the User Experience

[106]

We use a low level (0.50) since we know that the strokes are very
different, and that a mistake in this application can be easily undone.

Third, we implement the discriminate method (line 280) to discriminate the
recognized variable from among the three possible shapes of our tool box. The
recognized variable (returned by the find method of GestureDatabase) is a pair,
where the first element is the score of the recognition, and the second element is
the actual recognized gesture. We use the second value (recognized[1]) for the
discrimination process (line 281) and then call the corresponding method (add_
stickman, add_line, and add_circle). In the case of lines, it also decides the order
in which to send the coordinates to match the direction.

Fourth, the activate and deactivate methods provide an interface in order to
activate or deactivate the gesture mode (the application mode in which we can use
gestures). To activate the mode, the activate method binds the on_touch_up, on_
touch_move, and on_tourch_down events to the corresponding up, move, and down
methods. It also uses the disabled property (lines 238) to disable the tool box widget
when the gesture mode is on. The deactivate method unbinds the events and
restores the disabled property.

We applied the disabled property to the entire ToolBox
instance, but it automatically looks for the children that belong
to it and deactivates them as well. Basically, the event is never
sent to the children.

The gestures mode is activated and deactivated from the general options buttons
with the gestures ToggleButton. We need to change the definition of the gestures
method in the generaloptions.py file:

307. def gestures(self, instance, value):
308. if value == 'down':
309. self.drawing_space.activate()
310. else:
311. self.drawing_space.deactivate()

When gestures ToggleButton is down, then the gesture mode is activated;
otherwise, the normal functionality of the tool box operates.

In the next lesson, we will learn how to enhance the functionality of our widgets
using behaviors.

http://www.it-ebooks.info/

Chapter 4

[107]

Behaviors – enhancing widget's
functionality
Behaviors were introduced recently in the Kivy version 1.8.0, and allow us to
increase the functionality and flexibility of the existing widgets. Basically, they let
us inject classic behaviors of certain widgets into other behaviors. For example,
we can use ButtonBehavior in order to add the on_press and on_release
functionality to a Label or Image widget. Currently, there are three types of behavior
(ButtonBehavior, ToggleButtonBehavior, and DragBehavior) and more will
be coming in the next Kivy releases.

Let's add some credits to our application. We want to add some functionality to the
Status Bar so that when we click, a Popup will appear and show some text. First,
we will import the necessary components into the statusbar.py header, and also
change the class definition of StatusBar:

312. # File name: statusbar.py
313. import kivy
314. from kivy.uix.boxlayout import BoxLayout
315. from kivy.properties import NumericProperty, ObjectProperty
316. from kivy.uix.behaviors import ButtonBehavior
317. from kivy.uix.popup import Popup
318. from kivy.uix.label import Label
319.
320. class StatusBar(ButtonBehavior, BoxLayout):

In the previous code, we have added the ButtonBehavior, Popup, and Label
class (lines 316 and 318). Moreover, we made StatusBar inherit from both
ButtonBehavior and BoxLayout at the same time with Python's multiple
inheritance. We can add behaviors to any type of widget, and remember from
Chapter 1, GUI Basics – Building an Interface, that layouts are also widgets. We take
advantage of the ButtonBehavior that StatusBar is inheriting from, in order to
use the on_press method:

321. def on_press(self):
322. the_content = Label(text = "Kivy: Interactive Apps
 and Games in Python\nRoberto Ulloa, Packt
 Publishing")
323. the_content.color = (1,1,1,1)
324. popup = Popup(title='The Comic Creator',
 content = the_content, size_hint=(None, None),
 size=(350, 150))
325. popup.open()

http://www.it-ebooks.info/

Improving the User Experience

[108]

We override the on_press method to display a Popup window on the screen with
the credits of the application.

Notice that behaviors don't change the appearance of the widget;
only the functionality that is most often related to processing
interactions based upon the users input.

In lines 322 and 323, we create a Label instance with the text we want to show, and
make sure that the color is white. In line 324, we create the Popup instance with a
title, and the Label instance as content. Finally, in line 325, we display the Popup
instance. Here is the result we get after clicking the Status Bar:

In theory, we can add behaviors to any widget. However, there are practical
limitations that could lead to unexpected results. For example, what happens when
we add ButtonBehavior to ToggleButton? ToggleButton inherits from Button
and Button from ButtonBehavior. As a consequence, we inherit the same method
twice. Multiple inheritance is indeed tricky sometimes. This example was obvious
(why would we think about making a class that inherits from ButtonBehavior and
ToggleButton?). However, there are many other complex widgets that already
include functionality for the touch events.

You should be careful when adding behaviors to widgets that overlap
the functionality related to the behaviors. The current behaviors,
ButtonBehavior, ToggleButtonBehavior, DragBehavior,
CompoundSelectionBehavior, and FocusBehavior are related
to touch events.

http://www.it-ebooks.info/

Chapter 4

[109]

A special example of this is the Video widget, which we will explore in Chapter 6,
Kivy Player – a TED Video Streamer. This widget has a property called state, the same
name as the state property of ToggleButton. This will cause a name conflict if we
want to use multiple inheritances from both classes.

You may have noticed that we set the Label color of the label explicitly to white
(line 323), which is the label's default color anyway. We did this in order to have
everything ready for the next section in which we will decorate our interface.

Style – decorating the interface
In this section, we will redecorate our interface to improve the look and feel
of it. With very few strategic changes, we will completely renovate the way our
application looks with a few steps. Let's start changing the background color
from black to white. We will do this in the comicreator.py file, and here is its
new header:

326. # File name: comiccreator.py
327. import kivy
328. from kivy.app import App
329. from kivy.lang import Builder
330. from kivy.uix.screenmanager import ScreenManager
331. from kivy.core.window import Window
332.
333. Window.clearcolor = (1, 1, 1, 1)
334.
335. Builder.load_file('style.kv')

We imported the Window class that manages the configurations of the application
window, and controls some global parameters and events, such as the keyboard
events, which will be covered in Chapter 5, Invaders Revenge – an Interactive Multitouch
Game. We use the Window class to change the background color of the application to
white with the clearcolor property (line 333). Finally, we add a
new file to Builder. The file called style.kv is presented here:

336. # File name: style.kv
337.
338. <Label>:
339. bold: True
340. color: 0,.3,.6,1
341.

http://www.it-ebooks.info/

Improving the User Experience

[110]

342. <Button>:
343. background_normal: 'normal.png'
344. background_down: 'down.png'
345. color: 1,1,1,1

We need colors that contrast with the white background that we just applied on
the entire window. Therefore, we are making changes on two of the basic widgets
of Kivy, Label and Button, and this affects all the components that inherit from
them. We have set the bold property (line 339) of Label to True, and set the color
property (line 340) to blue (gray in the printed version).

We have also changed the default background of the Button class and introduced
how to create rounded buttons. The background_normal property (line 343)
indicates the background image that Button uses in its normal state, whereas the
background_down property (line 344) indicates the image that Button uses when it
is pressed.

Finally, we have reset the color property (line 345) of Button to white. You may
wonder why we did that if the default color of the text of the Button class is white.
The problem is that we just changed the color of the Label class, and, since Button
inherits from label, the change also affects the Button class.

The order of the rules also matters. If we put the <Button>: rule
first, then it won't work anymore because the <Label>: rule will
overwrite the <Button>: rule.

We can see the result of our embellished interface:

http://www.it-ebooks.info/

Chapter 4

[111]

There is still something not quite right with the new design. The lines of our figures
are quite thin compared to the rest of the fonts, and somehow the contrast is lost
with a white background. Let's learn a quick remedy to change the default properties
of our lines.

Factory – replacing a vertex instruction
This final section of this chapter teaches a valuable trick to change the default
properties of the vertex instructions. We want to change the width of all the lines on
our interface. This includes the circles, lines, and stickmen. Of course, we could revisit
all the classes that create the Line vertex instructions (remember that the circles are
also Line instances, and the stickmen are composed of Line instances as well), and
change the width property in all of them. Needless to say, that would be tedious.

Instead, we will replace the default Line class. Indeed, this is equivalent to what
we just did in the previous section when we changed the label and button default
properties. We have a problem in that we cannot create rules in the Kivy language
to change the vertex instructions. But there is an equivalent way around this, using
Python code in a new file called style.py:

346. # File name: style.py
347. from kivy.graphics import Line
348. from kivy.factory import Factory
349.
350. class NewLine (Line):
351. def __init__(self, **kwargs):
352. if not kwargs.get('width'):
353. kwargs['width'] = 1.5
354. Line.__init__(self, **kwargs)
355.
356. Factory.unregister('Line')
357. Factory.register('Line', cls=NewLine)

In this code, we have created our own NewLine class that inherits from the Kivy Line
class (line 350). With a little Python trick, we have changed the kwargs parameter
of the constructor method (__init__) in order to set a different default width (line
353). The kwargs parameter is a dictionary that contains all the properties that are
explicitly set when a Line instance is created. In this case, if the width property is
not indicated in the constructor (line 352), we set the width default to 1.5 (line 353).
Then, we call the constructor of the base class with the adjusted kwargs (line 354).

http://www.it-ebooks.info/

Improving the User Experience

[112]

Now, it is time to replace the default Kivy Line class with ours. We need to import
the Kivy Factory (line 348) that we can use to register or unregister classes, and
instance them in the Kivy language. First, we need to unregister the current Line
with the unregister method (line 356). Then, we need to register our NewLine with
the register method (line 357). In both methods, the first parameter represents
the name that is used to instance the class from the Kivy language. Since we are
replacing the class, we will register the NewLine class with the same name. In the
register method (line 357), the second parameter (cls) indicates the class that
we register.

We could use the Factory class to add different lines that we
need to constantly use in the Kivy language. For example, we
could register our new class with the name ThickLine and then
instance it in the Kivy language.

We purposely avoided this strategy, since we actually want to replace the default
Line, so we can affect all the Line instances that we create directly in the Kivy
language. However, we shouldn't forget to use the NewLine class to create the
instances that the user will create dynamically. We need to import NewLine from the
style file and set an alias name (Line) so we can reference the class with the same
name (line 362). We also need to remove the one we imported from kivy.graphics
(line 362) in the toolbox.py file to avoid a name conflict:

358. # File name: toolbox.py
359. import math
360. from kivy.uix.togglebutton import ToggleButton
361. from kivy.graphics import Color
362. from style import Line
363. from comicwidgets import StickMan, DraggableWidget

http://www.it-ebooks.info/

Chapter 4

[113]

Here is the final screenshot of our Comic Creator, which shows off the thicker lines:

Summary
This chapter covered some specific and useful topics that improve the user
experience. We added several screens and switched between them with
ScreenManager. We learned how to use colors in the canvas, and we should now
have a good understanding of how this works internally. We also learned how
to limit the drawing area to the drawing space with StencilView. We used
Scatter to add rotating and scaling capabilities to DraggableWidget and expanded
the functionality through the use of properties and associated events. We also
introduced the use of gestures to make the interface more dynamic. We covered how
to enhance widget using behaviors. Finally, we learned how to improve the interface
by modifying the default widgets and vertex instructions.

http://www.it-ebooks.info/

Improving the User Experience

[114]

Here is a review of all the classes with their respective methods, properties, and
attributes that we learned to use in this chapter:

•	 ScreenManager: The transistion and current properties
•	 FadeTransition, SwapTransition, SlideTransition, and

WipeTransition transitions
•	 Screen: The name and manager properties
•	 ColorPicker: The color property
•	 StencilView

•	 Scatter: The rotate and scale properties, and the on_translate, on_
rotate and on_scale methods (events)

•	 ScatterLayout: The size_hint and pos_hint properties
•	 Gesture: The add_stroke, normalize, and rotate methods
•	 GestureDatabase: The gesture_to_str, str_to_gesture, add_gesture,

and find methods
•	 Widget: The disabled property
•	 ButtonBehavior, ToggleBehavior and DragBehavior: The on_press

method
•	 Popup: The title and content properties
•	 Window: The clearcolor attribute
•	 Factory: The register and unregister methods

These are all useful components that help us create more attractive and
dynamic applications. In this chapter, we gave an example on how to demonstrate
the possibilities of the classes. Although we didn't exhaustively explore all the
options, we should feel comfortable to use any of these components to enhance
applications. We can always check the Kivy API for a more comprehensive list of
properties and methods.

The next chapter will introduce personalized multi-touch control, animations,
as well as the clock and keyboard events. We will create a new interactive project,
a game that resembles the Arcade game Space Invaders.

http://www.it-ebooks.info/

[115]

Invaders Revenge – an
Interactive Multi-touch Game

This chapter introduces a collection of components and strategies to make
animated and dynamic applications. Most of them are particularly useful for
game development. This chapter is full of examples of how to combine different
Kivy elements and teaches strategies to control multiple events happening at the
same time. The examples are all integrated in a completely new project, a version
of the classic Space Invaders game (Copyright ©1978 Taito Corporation, http://
en.wikipedia.org/wiki/Space_Invaders). The following is a list of the main
components that we will work on in this chapter:

•	 Atlas: A Kivy package that allows us to load images efficiently
•	 Sound: Classes that allow sound management
•	 Animations: Transitions, time control, events, and operations that can be

applied to animate widgets
•	 Clock: A class that allows us to schedule events
•	 Multi-touch: A strategy that allows us to control different actions according

to touches
•	 Keyboard: The Kivy strategy of capturing keyboard events

The first section presents an overview of the project, the GUI, and the rules of
the game. After that, we will follow a bottom-up approach. The simple classes that
refer to individual components of the game will be explained, and additional topics
of the chapter will then be introduced one after another. We will finish with the
classes that have the main control over the game. By the end of this chapter, you
should be able to start any game application you have always wanted to implement
for your mobile device.

http://en.wikipedia.org/wiki/Space_Invaders
http://en.wikipedia.org/wiki/Space_Invaders
http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[116]

Invaders Revenge – an animated multi-
touch game
Invaders Revenge is the name of our Kivy version of Space Invaders©. The following
screenshot shows you the game we will build in this chapter:

There are several tags in yellow and cyan in the screenshot (or gray dashed lines
in the printed version). They help identify the structure of our game; the game will
consist of one shooter (the player), who shoots (shots) at 32 (8x4) invaders who are
trying to destroy the shooter with their missiles. The invaders are organized in a fleet
(which moves horizontally) and sometimes an individual invader can break out of
the grid formation and fly around the screen before going back to its corresponding
position (dock) in the fleet.

The cyan (gray in the printed version) line across the screen indicates an internal
division of the screen into the enemy area and shooter area. This division is used to
distinguish between actions that should occur according to touches that happen in
different sections of the screen.

http://www.it-ebooks.info/

Chapter 5

[117]

The skeleton of the game is presented in the invasion.kv file:

1. # File name: invasion.kv
2. <Invasion>:
3. id: _invasion
4. shooter: _shooter
5. fleet: _fleet
6. AnchorLayout:
7. anchor_y: 'top'
8. anchor_x: 'center'
9. FloatLayout:
10. id: _enemy_area
11. size_hint: 1, .7
12. Fleet:
13. id: _fleet
14. invasion: _invasion
15. shooter: _shooter
16. cols: 8
17. spacing: 40
18. size_hint: .5, .4
19. pos_hint: {'top': .9}
20. x: root.width/2-root.width/4
21. AnchorLayout:
22. anchor_y: 'bottom'
23. anchor_x: 'center'
24. FloatLayout:
25. size_hint: 1, .3
26. Shooter:
27. id: _shooter
28. invasion: _invasion
29. enemy_area: _enemy_area

There are two AnchorLayout instances. The top one is the enemy area that contains
the fleet and the bottom one is the shooter area that contains the shooter.

The enemy area and shooter area are very important for the
logic of the game in order to distinguish between the types of
touches on the screen.

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[118]

We also created some IDs and references that will allow the interaction
between different instances of the interface. The following diagram summarizes
these relations:

Atlas – An efficient management of
images
When it comes to applications that use many images, it is important to reduce their
loading time, especially when they are requested from a remote server.

One strategy to reduce the loading time is to use an Atlas (also
known as sprite). An Atlas groups all the application images into
one big image, so it reduces the number of necessary requests to the
operating system, or online requests.

Here is the image of the Atlas we use for invaders revenge:

Instead of requesting five images for the invaders revenge, we will just request
the Atlas image. We will also need an associated json file that tells us the exact
coordinates of each unit in the image. The good news is that we don't need to do this
manually. Kivy provides a simple command to create both the Atlas image and the
json file. Assuming that all the images are in a directory called img, we just need to
open a terminal, go to the img directory (that contains the individual images), and
run the following command in the terminal:

python -m kivy.atlas invasion 100 *.png

http://www.it-ebooks.info/

Chapter 5

[119]

In order to execute the previous command, will you need to install
the Pillow library (http://python-pillow.github.io/).

The command contains three parameters, namely basename, size, and images
list. The basename parameter is the prefix of the json file (img/invasion.json)
and the Atlas image or images (img/invasion-0.png). It could happen that several
Atlas images are generated, in which case we would have several images with
basename as a prefix followed by a numerical identifier, for example, invasion-0.
png and invasion-1.png. The size parameter indicates the size in pixels of the
resulting Atlas image. Be sure to specify a size that is larger than the biggest of the
images. The image list parameter is the list of all the images that will be added
to the Atlas, and we can use the * wildcard. In our case, we will use it to indicate all
files with the .png extension.

In order to use the Atlas in the Kivy language, we have to use the following format:
atlas://path/to/atlas/atlas_name/id. The id file refers to the image filename
without the extension. For example, normally we would have referenced the shooter
image as a source: 'img/shooter.png'. After generating the Atlas, it becomes
source: 'atlas://images/invasion/shooter'. The following image.kv file
presents the code for all the images of Invaders Revenge:

30. # File name: images.kv
31. <Invader>:
32. source: 'atlas://img/invasion/invader'
33. size_hint: None,None
34. size: 40,40
35. <Shooter>:
36. source: 'atlas://img/invasion/shooter'
37. size_hint: None,None
38. size: 40,40
39. pos: self.parent.width/2, 0
40. <Boom>:
41. source: 'atlas://img/invasion/boom'
42. size_hint: None,None
43. size: 26,30
44. <Shot>:
45. source: 'atlas://img/invasion/shot'
46. size_hint: None,None
47. size: 12,15
48. <Missile>:
49. source: 'atlas://img/invasion/missile'
50. size_hint: None,None
51. size: 12,27

http://python-pillow.github.io/
http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[120]

All the classes in this file inherit, directly or indirectly, from the Image class. The
Missile and Shot inherit first from the class called Ammo, which also inherits from
Image. There is also the Boom class that will create the effect of an explosion when
any Ammo is triggered. Apart from the Boom image (a star in the Atlas), the Boom class
will be associated with a sound that we will add in the next section.

Boom – simple sound effects
Adding sound effects in Kivy is very simple. A Boom instance will produce a sound
when it is created, and this will happen every time a shot or missile is fired. Here is
the code for boom.py:

52. # File name: boom.py
53. from kivy.uix.image import Image
54. from kivy.core.audio import SoundLoader
55.
56. class Boom(Image):
57. sound = SoundLoader.load('boom.wav')
58. def boom(self, **kwargs):
59. self.__class__.sound.play()
60. super(Boom, self).__init__(**kwargs)

Reproducing a sound involves the use of two classes, Sound and SoundLoader
(line 54). SoundLoader loads an audio file (.wav) and returns a Sound instance (line
57) that we keep in the sound reference (a static attribute of the Boom class). We play
a sound every time a new Boom instance is created.

Ammo – simple animation
This section explains how to animate shots and missiles, which show very
similar behavior. They move from their original position to a destination,
constantly checking whether a target has been hit. The following is the code
for the ammo.py class:

61. # File name: ammo.py
62. from kivy.animation import Animation
63. from kivy.uix.image import Image
64. from boom import Boom
65.
66. class Ammo(Image):
67. def shoot(self, tx, ty, target):
68. self.target = target

http://www.it-ebooks.info/

Chapter 5

[121]

69. self.animation = Animation(x=tx, top=ty)
70. self.animation.bind(on_start = self.on_start)
71. self.animation.bind(on_progress = self.on_progress)
72. self.animation.bind(on_complete = self.on_stop)
73. self.animation.start(self)
74.
75. def on_start(self, instance, value):
76. self.boom = Boom()
77. self.boom.center=self.center
78. self.parent.add_widget(self.boom)
79.
80. def on_progress(self, instance, value, progression):
81. if progression >= .1:
82. self.parent.remove_widget(self.boom)
83. if self.target.collide_ammo(self):
84. self.animation.stop(self)
85.
86. def on_stop(self, instance,value):
87. self.parent.remove_widget(self)
88.
89. class Shot(Ammo):
90. pass
91. class Missile(Ammo):
92. pass

For the Ammo animation, we require a simple Animation (line 69). We send x
and top as parameters.

The parameters of an Animation instance can be any properties
of the widget to which we are applying the animation.

In this case, the x and top properties belong to Ammo itself. This is enough to set
Animation of Ammo from its original position to tx, ty.

By default, the execution period of Animation is one second.

We need Ammo to do a few more things in its trajectory.

The Animation class includes three events, which are triggered
when the animations starts (on_start), during its progress
(on_progress), and when it stops (on_stop).

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[122]

We bind these events (lines 70 to 72) to our own methods. The on_start method
(line 75) displays a Boom instance (line 76) when the animation starts. The on_
progress (lines 80 to 84) method removes Boom after 10 percent of progression
(lines 81 and 82). Also, it is constantly checking target (line 83). When target is hit,
the animation is stopped (line 84). Once the animation ends (or is stopped), Ammo is
removed from the parent (line 82).

Lines 89 to 92 define two classes, Shot and Missile. The Shot and Missile classes
inherit from Ammo and their only difference right now is the image that is used in
images.kv. Eventually, we will use Shot instances for the shooter, and Missile
instances for the invaders. Before this, let's give the invaders some freedom, so they
can leave their fleet and perform an individual attack.

Invader – transitions for animations
The previous section uses the default Animation transition. This is a Linear
transition, which means that the Widget instance moves from one point to
another in a straight line. Invaders trajectories can be more interesting. For example,
there could be accelerations, or changes of direction, as shown by the line in the
following screenshot:

http://www.it-ebooks.info/

Chapter 5

[123]

The following is the code of invader.py:

93. # File name: invader.py
94. from kivy.core.window import Window
95. from kivy.uix.image import Image
96. from kivy.animation import Animation
97. from random import choice, randint
98. from ammo import Missile
99.
100. class Invader(Image):
101. pre_fix = ['in_','out_','in_out_']
102. functions = ['back','bounce','circ','cubic',
103. 'elastic','expo','quad','quart','quint','sine']
104. formation = True
105.
106. def solo_attack(self):
107. if self.formation:
108. self.parent.unbind_invader()
109. animation = self.trajectory()
110. animation.bind(on_complete = self.to_dock)
111. animation.start(self)
112.
113. def trajectory(self):
114. fleet = self.parent.parent
115. area = fleet.parent
116. x = choice((-self.width,area.width+self.width))
117. y = randint(round(area.y), round(fleet.y))
118. t = choice(self.pre_fix) + choice(self.functions)
119. return Animation(x=x, y=y,d=randint(2,7),t=t)
120.
121. def to_dock(self, instance, value):
122. self.y = Window.height
123. self.center_x = Window.width/2
124. animation = Animation(pos=self.parent.pos, d=2)
125. animation.bind(on_complete =
 self.parent.bind_invader)
126. animation.start(self)
127.
128. def drop_missile(self):
129. missile = Missile()

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[124]

130. missile.center = (self.center_x, self.y)
131. fleet = self.parent.parent
132. fleet.invasion.add_widget(missile)
133. missile.shoot(self.center_x,0,fleet.shooter)

The idea behind this code is to let an invader break the formation from the fleet and
proceed into a solo_attack (lines 106 to 111) method. The invader's Animation is
created in the trajectory method (lines 113 and 119) by randomizing the final point
of the invader's trajectory (lines 116 and 117). This randomization will pick up two
coordinates on the left or right borders of the enemy area. Also, we randomize the
type of transition (line 118), and duration (line 119) to create more diverse and
unpredictable trajectories.

Kivy currently includes 31 transitions. They are represented by a
string such as 'in_out_cubic', where in_out is a prefix that
describes the way in which the function (cubic) is used. There are
three possible prefixes (in, out, and in_out), and 10 functions
(line 102), such as cubic, exponential, sin, quadratic.
Please visit the Kivy API for a description of all of them
(http://kivy.org/docs/api-kivy.animation.html).

Line 118 selects one of the transitions randomly. The transition is applied to the
progress, and therefore to x and y at the same time, which produces an interesting
acceleration effect on the trajectories.

When the Animation class ends its trajectory (line 110), the to_dock method (lines
121 to 126) brings the invader back to its original position starting from the top-center
part of Window. We use the Window class to get height and width. Sometimes this is
easier than traversing the chain of parents, to find the root widget. When the invader
reaches the dock, it is bound back to it (line 125).

The last method (drop_missile in lines 128 to 133) shoots one missile that follows a
vertical line starting from the invader's bottom-center position (line 130) to the bottom
of the screen (line 133). Remember that the Missile class inherits from the Ammo class
we created in the previous section.

Our invaders can now move freely around the enemy area. However, we would
also like to have some sort of group movement. In the next section, we will create
a dock for each corresponding invader. In this way, the invader has a corresponding
placeholder in the fleet formation. After this, we will create the fleet, which constantly
moves all the docks.

http://kivy.org/docs/api-kivy.animation.html
http://www.it-ebooks.info/

Chapter 5

[125]

Dock – automatic binding in the Kivy
language
You might realize from previous chapters that the Kivy language does more than
simply transform its rules to Python instructions. For instance, you might see that
when it creates properties, it also binds them.

When we do something common such as pos: self.parent.pos
inside a layout, then the property of the parent is bound to its child.
The child always moves to the parent position when the parent moves.

This is usually desirable but not all the time. Think about solo_attack of the invader.
We need it to break formation and follow a free trajectory on the screen. While this
happens, the whole formation of invaders continues moving from right to left and
vice versa. This means that the invader will receive two orders at the same time; one
from the moving parent and another from the trajectory's Animation.

This means that we need a placeholder (the dock) for each invader. This will secure
the space for the invader when it comes back from executing a solo attack. If we don't
have a placeholder, the layout (GridLayout, as we will see in the next section) of the
fleet will automatically reconfigure the formation, reallocating the rest of the invaders
to fill the empty space. Also, the invader needs to free itself from the parent (the dock)
so it can float to any location on the screen. The following code (dock.py) binds
(lines 145 to 147) and unbinds (lines 149 to 151) the invader using Python, and not the
Kivy language:

134. # File name: dock.py
135. from kivy.uix.widget import Widget
136. from invader import Invader
137.
138. class Dock(Widget):
139. def __init__(self, **kwargs):
140. super(Dock, self).__init__(**kwargs)
141. self.invader = Invader()
142. self.add_widget(self.invader)
143. self.bind_invader()
144.
145. def bind_invader(self, instance=None, value=None):
146. self.invader.formation = True

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[126]

147. self.bind(pos = self.on_pos)
148.
149. def unbind_invader(self):
150. self.invader.formation = False
151. self.unbind(pos = self.on_pos)
152.
153. def on_pos(self, instance, value):
154. self.invader.pos = self.pos

We use the knowledge from Chapter 3, Widget Events – Binding
Actions, for this code, but the important part is the strategy that
we apply.

There will be situations in which we will want to avoid using the Kivy language
because it is preferable to have complete control.

This doesn't mean that it is impossible to solve this using the Kivy language. For
example, one common approach is to switch the invader's parent (dock) to, let's say,
the root Widget instance of the application; this unbinds the position of the invader
from its current parent. It doesn't really matter which approach we follow. As long as
we understand the mechanisms, we will be able to find elegant solutions.

Now that each invader has a dock securing its place in the invaders formation, we are
ready to introduce some movement to the fleet.

Fleet – infinite concatenation of
animations
In this section, we will animate the fleet so that it has perpetual movement from right
to left and vice versa, as shown by the arrows in the following screenshot:

http://www.it-ebooks.info/

Chapter 5

[127]

In order to do this, we will learn how to concatenate one animation just after another
one is completed. Indeed, we will create an infinite loop of animations so that the
fleet is in perpetual movement.

We can concatenate two animations with the on_complete event.

The following code, fragment 1 (of 2), of fleet.py shows how to concatenate
these events:

155. # File name: fleet.py (Fragment 1)
156. from kivy.uix.gridlayout import GridLayout
157. from kivy.properties import ListProperty
158. from kivy.animation import Animation
159. from kivy.clock import Clock
160. from kivy.core.window import Window
161. from random import randint, random
162. from dock import Dock
163.
164. class Fleet(GridLayout):
165. survivors = ListProperty(())
166.
167. def __init__(self, **kwargs):
168. super(Fleet, self).__init__(**kwargs)
169. for x in range(0, 32):
170. dock = Dock()
171. self.add_widget(dock)
172. self.survivors.append(dock)
173. self.center_x= Window.width/4
174.
175. def start_attack(self, instance, value):
176. self.invasion.remove_widget(value)
177. self.go_left(instance, value)
178. self.schedule_events()
179.
180. def go_left(self, instance, value):
181. animation = Animation(x = 0)
182. animation.bind(on_complete = self.go_right)
183. animation.start(self)
184.
185. def go_right(self, instance, value):
186. animation = Animation(right=self.parent.width)
187. animation.bind(on_complete = self.go_left)
188. animation.start(self)

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[128]

The go_left method (lines 180 to 183) binds the on_complete (line 182) event of
an Animation instance to the go_right method (lines 185 to 188). Similarly, the
go_right method binds the on_complete (line 187) event of another Animation
instance to the go_left method. With this strategy, we create an infinite loop of two
animations.

The fleet.py class also overloads the constructor to add 32 invaders (lines
169 to 173) to the children of Fleet. These invaders are added to the survivors
ListProperty that we use to keep track of the invaders that haven't been shot
down. The start_attack method (lines 175 to 178) starts the Fleet animation
calling the go_left method (line 177) and the schedule_events method (line 178).
The latter makes use of Clock, which will be explained in the next section.

Scheduling events with the clock
We saw that Animation has a duration parameter that establishes the time in which
an animation should take place. A different time-related topic is the scheduling of a
particular task at a certain time or during intervals of n seconds. In these cases, we
use the Clock class. Let's analyze the following code, fragment 2 (of 2), of fleet.py:

189. # File name: fleet.py (Fragment 2)
190. def schedule_events(self):
191. Clock.schedule_interval(self.solo_attack, 2)
192. Clock.schedule_once(self.shoot,random())
193.
194. def solo_attack(self, dt):
195. if len(self.survivors):
196. rint = randint(0, len(self.survivors) - 1)
197. child = self.survivors[rint]
198. child.invader.solo_attack()
199.
200. def shoot(self, dt):
201. if len(self.survivors):
202. rint = randint(0,len(self.survivors) - 1)
203. child = self.survivors[rint]
204. child.invader.drop_missile()
205. Clock.schedule_once(self.shoot,random())
206.
207. def collide_ammo(self, ammo):
208. for child in self.survivors:

http://www.it-ebooks.info/

Chapter 5

[129]

209. if child.invader.collide_widget(ammo):
210. child.canvas.clear()
211. self.survivors.remove(child)
212. return True
213. return False
214.
215. def on_survivors(self, instance, value):
216. if len(self.survivors) == 0:
217. Clock.unschedule(self.solo_attack)
218. Clock.unschedule(self.shoot)
219. self.invasion.end_game("You Win!")

The schedule_events method (lines 190 to 192) schedules actions for a particular
time. Line 191 schedules the solo_attack method every two seconds. Line 192
schedules shoot just once at random (between 0 and 1) seconds.

The schedule_interval method schedules actions periodically,
whereas the schedule_once method schedules an action just once.

The solo_attack method (lines 194 to 198) randomly selects one of the survivors to
perform the solo attack that we studied for the invaders (lines 106 to 111 of invader.
py). The shoot method (lines 200 to 205) randomly selects one survivor to fire a
missile at the shooter (lines 201 to 204). After this, the method schedules another shoot
(line 205).

In the Ammo class, we used the collide_ammo method to verify that an Ammo instance
hits any of the invaders (line 83 of ammo.py). Now, in fleet.py, we implemented
such a method (lines 207 or 213) that hides and removes the invader from the
survivors list. The on_survivors event is triggered every time we modify the
survivors ListProperty. When there are no survivors left, we unschedule the events
with the unscheduled method (lines 217 and 218) and end the game by displaying
the You Win! message.

We finished creating the shooter enemies. Now it is time to provide the shooter with
movement to dodge the missiles and shots to hit the invaders.

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[130]

Shooter – multi-touch control
Kivy supports multi-touch interactions. This feature is always present but we
haven't paid too much attention to it except when we used the Scatter widget
in Chapter 4, Improving the User Experience. Additionally, we didn't clarify that the
entire screen and GUI components are already capable of multi-touch, and that Kivy
handles the events accordingly.

Kivy handles multi-touch actions internally. This means that all the
Kivy widgets and components support multi-touch interaction; we
don't have to worry about it. Kivy solves all the possible conflicts of
ambiguous situations that are common in multi-touch control, for
example, touching two buttons at the same time.

That said, it is up to us to control particular implementations. Multi-touch
programming introduces logic problems that we need to solve as developers.
Nevertheless, Kivy provides the data related to each particular touch so we can work
on the logic. The main problem is that we need to constantly distinguish one touch
from another, and then take the respective actions.

With Invaders Revenge, we need to distinguish between two actions that are
triggered by the same type of touch. The first action is the shooter's horizontal
movement in order to avoid the invaders' missiles. The second is touching the screen
to fire at the invaders. The following screenshot illustrates these two actions with the
wide thick arrows (sliding touch) and the dotted thin arrow (shot action):

The following code, fragment 1 (of 2), of shooter.py controls these two actions by
using the enemy area and shooter area:

220. # File name: shooter.py (Fragment 1)
221. from kivy.clock import Clock
222. from kivy.uix.image import Image

http://www.it-ebooks.info/

Chapter 5

[131]

223. from ammo import Shot
224.
225. class Shooter(Image):
226. reloaded = True
227. alife = False
228.
229. def on_touch_down(self, touch):
230. if self.parent.collide_point(*touch.pos):
231. self.center_x = touch.x
232. touch.ud['move'] = True
233. elif self.enemy_area.collide_point(*touch.pos):
234. self.shoot(touch.x,touch.y)
235. touch.ud['shoot'] = True
236.
237. def on_touch_move(self, touch):
238. if self.parent.collide_point(*touch.pos):
239. self.center_x = touch.x
240. elif self.enemy_area.collide_point(*touch.pos):
241. self.shoot(touch.x,touch.y)
242.
243. def on_touch_up(self, touch):
244. if 'shoot' in touch.ud and touch.ud['shoot']:
245. self.reloaded = True

The on_touch_down (lines 229 to 235) and on_touch_move (lines 237 to 241) methods
distinguish between the two actions, movement or shoot, by using the shooter area
(lines 230 and 238) and the enemy area (lines 233 and 240) widgets, respectively, in
order to collide the coordinates of the event.

The touch coordinates are the most common strategy to identify
specific touches. However, touches have many other attributes
that could help to distinguish between them, for example, timing,
a double (or triple) tap, or the input device. You can check
the MotionEvent class to review all the attributes of a touch
(http://kivy.org/docs/api-kivy.input.motionevent.
html#kivy.input.motionevent.MotionEvent).

http://kivy.org/docs/api-kivy.input.motionevent.html#kivy.input.motionevent.MotionEvent
http://kivy.org/docs/api-kivy.input.motionevent.html#kivy.input.motionevent.MotionEvent
http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[132]

In contrast, the on_touch_up method (line 243) follows a different approach.
It uses the ud attribute (user data dictionary to store personalized data on the touch)
of a MotionEvent instance (touch) to determine whether the touchdown that started
the event was a movement (in the shooter area) or a shoot (in the enemy area). We set
touch.ud (lines 232 and 235) previously on on_touch_down.

Kivy keeps the touch event associated with the three basic touch
events (down, move, and up), so the touch references we get for
on_touch_down, on_touch_move, and on_touch_up are the
same, and we can distinguish between touches.

Let's now analyze the details of the methods that are called on by these events.
The following is the code, fragment 2 (of 2), of shooter.py:

246. # File name: shooter.py (Fragment 2)
247. def start(self, instance, value):
248. self.alife=True
249.
250. def shoot(self, fx, fy):
251. if self.reloaded and self.alife:
252. self.reloaded = False
253. Clock.schedule_once(self.reload_gun, .5)
254. shot = Shot()
255. shot.center = (self.center_x, self.top)
256. self.invasion.add_widget(shot)
257. (fx,fy) =
 self.project(self.center_x,self.top,fx,fy)
258. shot.shoot(fx,fy,self.invasion.fleet)
259.
260. def reload_gun(self, dt):
261. self.reloaded = True
262.
263. def collide_ammo(self, ammo):
264. if self.collide_widget(ammo) and self.alife:
265. self.alife = False
266. self.color = (0,0,0,0)
267. self.invasion.end_game("Game Over")
268. return True

http://www.it-ebooks.info/

Chapter 5

[133]

269. return False
270.
271. def project(self,ix,iy,fx,fy):
272. (w,h) = self.invasion.size
273. if ix == fx: return (ix, h)
274. m = (fy-iy) / (fx-ix)
275. b = iy - m*ix
276. x = (h-b)/m
277. if x < 0: return (0, b)
278. elif x > w: return (w, m*w+b)
279. return (x, h)

We first created a method to start the shooter by bringing it to life (line 247 and
248), which we will use when we start the game. Then, we implement an interesting
behavior for the on_touch_move method with the shoot method (lines 250 to 258).
Instead of shooting as fast as possible, we delay the next shoot by 0.5 seconds.
This delay simulates a time lapse in which the gun needs to be reloaded (line 253).
Otherwise, it would be unfair to the invaders to shoot as fast as the computer allows.
Conversely, when we use the on_touch_up method, the gun is reloaded immediately
so, in this case, it would be the skill of the player who could fire faster with a
touchdown and touch-up sequence.

The collide_ammo method (lines 263 to 269) is almost equivalent to the
collide_ammo method of the Fleet (lines 207 to 213). The only difference is
that there is just one shooter instead of a set of invaders. If the shooter is hit, then the
game is over and the message Game Over is displayed. Notice that we don't remove
the shooter, we simply set its alife flag to False (line 265), and hide it by setting the
color to black (line 266). With this, we avoid inconsistencies in references that point
to an instance that no longer exists in the interface context.

The project method (lines 271 to 278) extends (project) the touch coordinates to the
border of the screen, so the shot will continue its trajectory until it reaches the end of
the screen and not stop exactly at the touch coordinate. The mathematical details are
beyond the scope of this book but it is a simple linear projection.

The application is almost ready. There is just one minor problem. If you don't have
a multi-touch screen, you would actually not be able to play this game. The next
section introduces how to handle keyboard events in order to have a more classic
gaming approach, which combines the keyboard and mouse.

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[134]

Invasion – moving the shooter with the
keyboard
This section offers a second possibility of how to move the shooter. If you don't have a
multi-touch device, you will need to use something else to control the position of the
shooter easily while you use the mouse to shoot. The following is the code, fragment
1, (of 2) of main.py:

280. # File name: main.py (Fragment 1)
281. from kivy.app import App
282. from kivy.lang import Builder
283. from kivy.core.window import Window
284. from kivy.uix.floatlayout import FloatLayout
285. from kivy.uix.label import Label
286. from kivy.animation import Animation
287. from kivy.clock import Clock
288. from fleet import Fleet
289. from shooter import Shooter
290.
291. Builder.load_file('images.kv')
292.
293. class Invasion(FloatLayout):
294.
295. def __init__(self, **kwargs):
296. super(Invasion, self).__init__(**kwargs)
297. self._keyboard = Window.request_keyboard(self.close,
 self)
298. self._keyboard.bind(on_key_down=self.press)
399. self.start_game()
300.
301. def close(self):
302. self._keyboard.unbind(on_key_down=self.press)
303. self._keyboard = None
304.
305. def press(self, keyboard, keycode, text, modifiers):
306. if keycode[1] == 'left':
307. self.shooter.center_x -= 30
308. elif keycode[1] == 'right':
309. self.shooter.center_x += 30

http://www.it-ebooks.info/

Chapter 5

[135]

310. return True
311.
312. def start_game(self):
313. label = Label(text='Ready!')
314. animation = Animation (font_size = 72, d=2)
315. animation.bind(on_complete=self.fleet.start_attack)
316. animation.bind(on_complete=self.shooter.start)
317. self.add_widget(label)
318. animation.start(label)

The preceding code illustrates the keyboard event control. The __init__ constructor
(lines 295 to 299) will request keyboard (line 297) to the Window and bind (line 298)
the on_keyboard_down event to the press method. One important parameter
of the Window._request_keyboard method is the method that is called when
keyboard is closed (lines 301 to 303). There are many reasons why the keyboard can
become closed, including when another widget requests it. The press method (lines
305 to 310) is the one in charge of handling the keyboard input, the pressed key. The
pressed key is kept in the keycode parameter and it is used in lines 306 and 308 to
decide whether the shooter should move left or right.

The keyboard binding in the game is for testing purposes on devices
that have no multi-touch functionality. If you want to try it on
your mobile device, you should comment out lines 297 and 298 to
deactivate the keyboard binding.

Line 299 calls the start_game method (lines 312 to 318). The method displays Label
with the text Ready! Notice that we applied an Animation instance to font_size in
line 314. So far, we have been using the animations to move widgets around with the
x, y, or pos properties. However, animations work with any property (that supports
arithmetic operators; as a counter example, String doesn't support such operations).
For example, we could use them to animate the rotation or scaling of Scatter. When
the animation is complete, it will start both the fleet and the shooter (lines 315 and
316). Notice how we just bound two methods to the same event.

There is no limit to the number of methods that we can bind to
an event.

In the next section, we will discuss how to animate multiple properties in a sequence
or simultaneously.

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[136]

Combining animations with '+' and '&'
You already learned that you can add several properties to the same animation so
that they are modified together (line 69 of ammo.py).

We can combine animations by using the + and & operators. The +
operator is used to create sequenced animations (one after another).
The & operator lets us execute two animations at the same time.

The following code is fragment 2 of main.py, and illustrates the use of these
two operators:

319. # File name: main.py (Fragment 2)
320. def end_game(self, message):
321. label = Label(markup=True, size_hint = (.2, .1),
322. pos=(0,self.parent.height/2), text = message)
323. self.add_widget(label)
324. self.composed_animation().start(label)
325.
326. def composed_animation(self):
327. animation = Animation (center=self.parent.center)
328. animation &= Animation (font_size = 72, d=3)
329. animation += Animation(font_size = 24,y=0,d=2)
330. return animation
331.
332. class InvasionApp(App):
333. def build(self):
334. return Invasion()
335.
336. if __name__=="__main__":
337. InvasionApp().run()

The end_game method (lines 320 to 324) displays a final message to indicate how
the game ended (You Win on line 219 of fleet.py or Game Over on line 267 of
shooter.py). This method uses the composed_animation method (lines 326 to 330)
to create a composed Animation, in which we use all the possibilities to combine
animations. Line 327 is a simple Animation that is joined (with the '&' operator) to
execute at the same time with another simple Animation of a different duration
(line 328). In line 329, an Animation containing two properties (font_size and y) is
attached to the previous one with the '+' operator.

http://www.it-ebooks.info/

Chapter 5

[137]

The resulting animation does the following: it takes one second to move the message
from the left to the middle, while the font size increases in size. When it gets to
the middle, the increase in the font size continues for two more seconds. Once the
font reaches its full size (72 points), the message moves to the bottom and keeps
decreasing in size at the same time. The following diagram illustrates the whole
animation sequence:

The '+' operator is similar to what we did when we bound the Animation
on_complete event to a method that creates another Animation in the invader:
animation.bind(on_complete = self.to_dock) (line 110 of invader.py). The
difference is that when we use the '+' operator, there is no chance to create an infinite
loop as we did with the fleet, or change the Widget properties before starting another
animation. For example, in the invader case, we relocated the invader to the top-center
(lines 122 and 123) of the screen before the animation that carries it back to the dock
(lines 124 to 126):

121. def to_dock(self, instance, value):
122. self.y = Window.height
123. self.center_x = Window.width/2
124. animation = Animation(pos=self.parent.pos, d=2)
125. animation.bind(on_complete =
 self.parent.bind_invader)
126. animation.start(self)

The & operator is similar to sending two properties as parameters of the Animation,
as we did in line 69: self.animation = Animation(x=tx, top=ty). The difference
in sending two properties as parameters is that they share the same duration and
transition, whereas in line 328, we change the duration of the second property.

http://www.it-ebooks.info/

Invaders Revenge – an Interactive Multi-touch Game

[138]

Here is one last screenshot that shows how the invaders have finally taken
their revenge:

Summary
This chapter covered the whole construction process of an interactive and animated
application. You learned how to integrate various Kivy components and you should
now be able to comfortably build a 2D animated game.

Let's review all the new classes and components we used in this chapter:

•	 Atlas

•	 Image: The source property
•	 SoundLoader and Sound: The load and play methods, respectively
•	 Window: The height and width properties, and the request_keyboard,

remove_widget, and add_widget methods

http://www.it-ebooks.info/

Chapter 5

[139]

•	 Animation: The properties as parameters; d and t parameters; start, stop,
and bind methods; on_start, on_progress, and on_complete events;
and '+' and '&' operators

•	 Touch: ud attribute
•	 Clock: schedule_interval and schedule_once methods
•	 Keyboard: bind and unbind methods, on_key_down event

The information contained in this chapter presents tools and strategies you can
use to develop highly interactive applications. By combining the previous chapters
information with this chapter's insights into the use of properties, binding events,
and further understanding of the Kivy language, you should be able to quickly
start using all the other components of the Kivy API (http://kivy.org/docs/api-
kivy.html).

The last chapter, Chapter 6, Kivy Player – a TED Video Streamer, of this book will teach
you how to control multimedia components, in particular video and audio. It will
present another example in order to present a few more Kivy components, but more
importantly, it will teach you how to build a more professional looking interface. It
will also introduce some Kivy tools to debug our applications.

http://kivy.org/docs/api-kivy.html
http://kivy.org/docs/api-kivy.html
http://www.it-ebooks.info/

http://www.it-ebooks.info/

[141]

Kivy Player – a TED Video
Streamer

In this chapter, we will learn how to search, display, and control videos.
We will integrate knowledge from previous chapters to build a responsive
application with the ability to adjust to different screens and maximize the use
of space. We will produce an enhanced video widget with controls and subtitle
support, and learn how to display a search result query from the TED API services
(developer.ted.com). Here are the main topics that we will cover in this chapter:

•	 Control the progression of a streamed video
•	 Use the progression of a video to display subtitles at the right moment
•	 Apply strategies and components to make our application responsive
•	 Display and navigate a local file directory tree
•	 Use the Kivy inspector to debug our applications
•	 Add scroll functionality to a list of results obtained from an Internet query

This chapter wraps up a lot of knowledge acquired so far. We will be reviewing and
combining the use of properties, events, animations, touches, behaviors, layouts,
and even graphics. At the same time, we will introduce new widgets that will
complement your knowledge, and serve as good examples of new programming
situations. We will also review the Kivy inspector that will help us detect GUI bugs.
At the end of this chapter, we will finish with a professional looking interface.

developer.ted.com
http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[142]

Video – play, pause, and stop
We will start with simple code in this section, and then gradually include
functionality until we get a complete video player. In this section, we will
discuss how to use the Video widget in order to stream a video from the Internet.
Let's start with the code in the video.kv file:

1. # File name: video.kv
2. #:set _default_video
 "http://video.ted.com/talk/stream/2004/None/
 DanGilbert_2004-180k.mp4"
3.
4. <Video>:
5. allow_stretch: True
6. color: 0,0,0,0
7. source: _default_video

In this code, we initially create a constant value with the set directive (line 2).
This directive allows us to have global values that we can use inside the Kivy
language scope. For example, we set the source property of the Video class
with the value of the _default_video constant (line 7).

We set up three properties for the Video class. The allow_stretch property
(line 5) allows the video to stretch according to the screen size available. The color
property (line 6) will tint the video black, to serve as a foreground when the video is
not playing (and a background for the cover image). The source property (line 7)
contains the URL (or filename) of the video we want to play. These three properties
actually belong to the Image widget, which is the base class for Video. This makes
sense if we think of a video as a sequence of images (accompanied by a sound).

For test purposes, if you want to avoid constantly downloading the
video from the Internet (or if the URL is not available anymore), you
can replace the URL in default_video with a sample file that is
included with the code: samples/BigBuckBunny.ogg.

We will use the Factory class to use the technique that we learned about in
Chapter 4, Improving the User Experience. Back then, we used the Factory class
to replace the Line vertex instruction with our personalized implementation,
a ticker Line.

http://www.it-ebooks.info/

Chapter 6

[143]

The Factory class follows an oriented-object software design pattern
called a factory pattern. A factory pattern returns default new objects
(instances) of a subset of classes according to the called identifier,
usually a method, but in the case of the Kivy languate we just use a
name. (http://en.wikipedia.org/wiki/Factory_%28object-
oriented_programming%29).

We will do something similar now, but this time we will personalize our
Video widget:

8. # File name: video.py
9. from kivy.uix.video import Video as KivyVideo
10.
11. from kivy.factory import Factory
12. from kivy.lang import Builder
13.
14. Builder.load_file('video.kv')
15.
16. class Video(KivyVideo):
17.
18. def on_state(self, instance, value):
19. if self.state == 'stop':
20. self.seek(0)
21. return super(self.__class__, self).on_state(instance,
 value)
22.
23. def on_eos(self, instance, value):
24. if value:
25. self.state = 'stop'
26.
27. def _on_load(self, *largs):
28. super(self.__class__, self)._on_load(largs)
29. self.color = (1,1,1,1)
30.
31. def on_source(self, instance, value):
32. self.color = (0, 0, 0, 0)
33.
34. Factory.unregister('Video')
35. Factory.register('Video', cls=Video)

http://en.wikipedia.org/wiki/Factory_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Factory_%28object-oriented_programming%29
http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[144]

The video.py file will import the Kivy Video widget with an alias name KivyVideo
(line 9). We will now be able to create our personalized widget (lines 16 to 32) using
the Video class name and not a less attractive alternative name such as MyVideo. At
the end of the file, we replace the default Video widget with our personalized Video
to the Factory (lines 34 and 35). From now on, the referenced Video class in the Kivy
language will correspond to our implementation in this file.

We created four methods (on_state, on_eos, _on_load, and on_source) in the
Video class. All of them correspond to events:

•	 The on_state method (line 18) is called when the state of the video changes
among its three possible states: playing ('play'), paused ('pause'), or
stopped ('stop'). We make sure that when the video is stopped, it is re-
positioned at the beginning with the seek method (line 20).

•	 The on_eos method (line 23) will be called when the end of stream (EOS)
has been reached. We will make sure that the state is set to stop when this
occurs (line 19).

•	 We also need to remember that we tinted the video with black color using
the color property in the Kivy language (line 6). Therefore, we need to put
light (1,1,1,1) on the video in order to be able to see it (line 29). The method
_on_load (line 27) is called when the video is loaded into memory and
ready to play. We use this method in order to set the proper (and original
Kivy default) color property.

Remember in Chapter 2, Graphics – the Canvas that the color
property of an Image widget (base class of the Video class)
acts as a tint or light over the display. The same effect occurs
for the Video widget.

•	 Finally, the on_source method, also inherited from the Image class,
will restore the black tint on top of the video when the source of the
video is changed.

Let's proceed to create a kivyplayer.py file to execute our application, and also
play, pause, and stop our video:

36. # File name: kivyplayer.py
37. from kivy.app import App
38.
39. from video import Video
40.

http://www.it-ebooks.info/

Chapter 6

[145]

41. class KivyPlayerApp(App):
42.
43. def build(self):
44. self.video = Video()
45. self.video.bind(on_touch_down=self.touch_down)
46. return self.video
47.
48. def touch_down(self, instance, touch):
49. if self.video.state == 'play':
50. self.video.state = 'pause'
51. else:
52. self.video.state = 'play'
53. if touch.is_double_tap:
54. self.video.state = 'stop'
55.
56. if __name__ == "__main__":
57. KivyPlayerApp().run()

For now, we will control the video with touches. In the build method (line 43),
we have bound the on_touch_down event (line 45) of the video to the touch_down
method (lines 48 to 54). One touch will play or pause the video according to its
current state property (lines 49 and 52). The state property controls whether the
video is in one of three possible states. If it is playing, it will pause it; otherwise
(paused or stopped), it will play it. We will use the double_tap key that indicates
a double touch (double tap or double click) in order to stop the video. Next time we
touch the screen, the video will start from the beginning. Now, run the application
(Python kivyplayer.py), and see how, as soon as you click on the screen, Kivy
starts streaming Dan Gilbert's video, The Surprising Science of Happiness, from TED
(http://www.ted.com/):

http://www.ted.com/
http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[146]

AsyncImage – creating a cover for the
video
In this section, we will learn how to put up a cover that will be displayed when the
video is not playing. This image will serve as a decoration when the video hasn't
started, and in the case of the TED video, it is usually an image that involves the
speaker. Let's start introducing a few changes in the code of video.kv:

58. # File name: video.kv
59. ...
60. #:set _default_image
 "http://images.ted.com/images/ted/
 016a827cc0757092a0439ab2a63feca8655b6c29_1600x1200.jpg"
61.
62. <Video>:
63. cover: _cover
64. image: _default_image
65. ...
66. AsyncImage:
67. id: _cover
68. source: root.image
69. size: root.width,root.height

In this code, we created another constant (_default_image) with the set directive
(line 60), and a related property (image) for the Video class that references the
constant (line 64). We also created the cover property (line 63) to reference
AsyncImage that we added to the Video class (line 66), and that will serve as the
cover for the video.

The main difference between Image and AsyncImage is that the
AsyncImage widget allows us to continue using the program while
the image is loading, instead of blocking the application until the
image is completely downloaded.

http://www.it-ebooks.info/

Chapter 6

[147]

This is important, since we download the image from the Internet and it could be
a big file. When you run the code, you will notice that a waiting image will appear
while the image is loading:

We also set some of the AsyncImage properties. We initialized the source property
(line 68) with the new property (root.image) that we created in the Video widget
to reference the cover image (line 64). Remember that this will internally bind the
properties, meaning that each time that we change the image property, the source
property will be updated to the same value. Line 69 repeats the same idea in order to
keep the cover's size property equal to the dimensions of the video.

For test purposes, you can replace the URL in default_image with
the following sample file included with the code:
samples/BigBuckBunny.png.

We will introduce some changes to our Video widget in order to make sure that the
cover is removed (hidden) when the video is being played:

70. # File name: video.py
71. ...
72. from kivy.properties import ObjectProperty
73. ...
74. class Video(KivyVideo):
75. image = ObjectProperty(None)
76.
77. def on_state(self, instance, value):
78. if self.state == 'play':
79. self.cover.opacity = 0

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[148]

80. elif self.state == 'stop':
81. self.seek(0)
82. self.cover.opacity = 1
83. return super(self.__class__, self).on_state(instance,
 value)
84.
85. def on_image(self, instance, value):
86. self.cover.opacity = 1
87. ...

We changed the on_state method to uncover the video when it is playing (line 79),
and cover it again when the video is stopped (line 82) using the opacity property.

Avoid removing widgets that are declared in the .kv file. Most of
the time, these widgets have internal bounds with other widgets
(for example, property bounds), and can cause unexpected runtime errors
related to missing internal references and inconsistent bound properties.

Instead of removing widgets, there are several alternatives; for example, firstly,
use the opacity property to make a widget invisible, secondly, make the widget
area equal to zero using the size property (size = (0,0)), and thirdly, use the
pos property to place the widget in a location that will never be displayed (pos=
(99999,999999)). We chose the first approach; in this case, it is the most elegant.
We set the opacity property of AsyncImage to make it visible (opacity = 1) or
invisible (opacity = 0).

Even though controlling the cover with the opacity to make it invisible
may be the most elegant solution here, you have to be careful because
the widget is still there, occupying space on the screen. Depending on
the situation, you might have to extend the strategy. For example, if the
widget captures some touch events, you can combine the opacity and
disabled properties to hide and disable the widget.

We also created the image property (line 75), and used its on_image associated event
(line 85) to make sure that the opacity is restored (line 86) if the image is changed.
Now, an image of Dan Gilbert will appear when you run the application (python
kivyplayer.py).

http://www.it-ebooks.info/

Chapter 6

[149]

Subtitles – tracking the video
progression
Let's add subtitles to our application. We will do this in four simple steps:

1.	 Create a Subtitle widget (subtitle.kv) derived from the Label class
that will display the subtitles

2.	 Place a Subtitle instance (video.kv) on top of the video widget
3.	 Create a Subtitles class (subtitles.py) that will read and parse a

subtitle file
4.	 Track the Video progression (video.py) to display the corresponding

subtitle

The Step 1 involves the creation of a new widget in the subtitle.kv file:

88. # File name: subtitle.kv
89. <Subtitle@Label>:
90. halign: 'center'
91. font_size: '20px'
92. size: self.texture_size[0] + 20, self.texture_size[1] + 20
93. y: 50
94. bcolor: .1, .1, .1, 0
95. canvas.before:
96. Color:
97. rgba: self.bcolor
98. Rectangle:
99. pos: self.pos
100. size: self.size

There are two interesting elements in this code. The first one is the definition of the
size property (line 92). We define it as 20 pixels bigger than the texture_size
width and height. The texture_size property indicates the size of the text
determined by the font size and text, and we use it to adjust the Subtitles widget
size to its content.

The texture_size is a read-only property because its value is
calculated and dependent on other parameters, such as font size
and height for text display. This means that we will read from this
property but not write on it.

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[150]

The second element is the creation of the bcolor property (line 94) to store a
background color, and how the rgba color of the rectangle has been bound to it
(line 97). The Label widget (like many other widgets) doesn't have a background
color, and creating a rectangle is the usual way to create such features. We add
the bcolor property in order to change the color of the rectangle from outside
the instance.

We cannot directly modify parameters of the vertex
instructions; however, we can create properties that control
parameters inside the vertex instructions.

Let's move on to Step 2 mentioned earlier. We need to add a Subtitle instance to
our current Video widget in the video.kv file:

101. # File name: video.kv
102. ...
103. #:set _default_surl
 "http://www.ted.com/talks/subtitles/id/97/lang/en"
104.
105. <Video>:
106. surl: _default_surl
107. slabel: _slabel
108. ...
109.
110. Subtitle:
111. id: _slabel
112. x: (root.width - self.width)/2

We added another constant variable called _default_surl (line 103), which contains
the link to the URL with the corresponding subtitle TED video file. We set this value
to the surl property (line 106), which we just created to store the subtitles' URL. We
added the slabel property (line 107), that references the Subtitle instance through
its ID (line 111). Then we made sure that the subtitle is centered (line 112).

In order to start Step 3 (parse the subtitle file), we need to take a look at the format of
the TED subtitles:

113. {
114. "captions": [{
115. "duration":1976,
116. "content": "When you have 21 minutes to speak,",
117. "startOfParagraph":true,
118. "startTime":0,
119. }, ...

http://www.it-ebooks.info/

Chapter 6

[151]

TED uses a very simple JSON format (https://en.wikipedia.org/wiki/JSON)
with a list of captions. Each caption contains four keys but we will only use
duration, content, and startTime. We need to parse this file, and luckily Kivy
provides a UrlRequest class (line 121) that will do most of the work for us. Here is
the code for subtitles.py that creates the Subtitles class:

120. # File name: subtitles.py
121. from kivy.network.urlrequest import UrlRequest
122.
123. class Subtitles:
124.
125. def __init__(self, url):
126. self.subtitles = []
127. req = UrlRequest(url, self.got_subtitles)
128.
129. def got_subtitles(self, req, results):
130 self.subtitles = results['captions']
131.
132. def next(self, secs):
133. for sub in self.subtitles:
134. ms = secs*1000 - 12000
135. st = 'startTime'
136. d = 'duration'
137. if ms >= sub[st] and ms <= sub[st] + sub[d]:
138. return sub
139. return None

The constructor of the Subtitles class will receive a URL (line 125) as a parameter.
Then, it will make the petition to instantiate the UrlRequest class (line 127). The
first parameter of the class instantiation is the URL of the petition, and the second is
the method that is called when the result of the petition is returned (downloaded).
Once the request returns the result, the method got_subtitles is called(line 129).
The UrlRequest extracts the JSON and places it in the second parameter of got_
subtitles. All we had to do is put the captions in a class attribute, which we called
subtitles (line 130).

The next method (line 132) receives the seconds (secs) as a parameter and will
traverse the loaded JSON dictionary in order to search for the corresponding
subtitle that belongs to that time. As soon as it finds one, the method returns it. We
subtracted 12000 microseconds (line 134, ms = secs*1000 - 12000) because the
TED videos have an introduction of approximately 12 seconds before the talk starts.

https://en.wikipedia.org/wiki/JSON
http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[152]

Everything is ready for Step 4, in which we put the pieces together in order to see the
subtitles working. Here are the modifications to the header of the video.py file:

140. # File name: video.py
141. ...
142. from kivy.properties import StringProperty
143. ...
144. from kivy.lang import Builder
145.
146. Builder.load_file('subtitle.kv')
147.
148. class Video(KivyVideo):
149. image = ObjectProperty(None)
150. surl = StringProperty(None)

We imported StringProperty and added the corresponding property (line 142).
We will use this property by the end of this chapter when we we can switch TED
talks from the GUI. For now, we will just use _default_surl defined in video.kv
(line 150). We also loaded the subtitle.kv file (line 146). Now, let's analyze the rest
of the changes to the video.py file:

151. ...
152. def on_source(self, instance, value):
153. self.color = (0,0,0,0)
154. self.subs = Subtitles(name, self.surl)
155. self.sub = None
156.
157. def on_position(self, instance, value):
158. next = self.subs.next(value)
159. if next is None:
160. self.clear_subtitle()
161. else:
162. sub = self.sub
163. st = 'startTime'
164. if sub is None or sub[st] != next[st]:
165. self.display_subtitle(next)
166.
167. def clear_subtitle(self):
168. if self.slabel.text != "":
169. self.sub = None
170. self.slabel.text = ""
171. self.slabel.bcolor = (0.1, 0.1, 0.1, 0)
172.

http://www.it-ebooks.info/

Chapter 6

[153]

173. def display_subtitle(self, sub):
174. self.sub = sub
175. self.slabel.text = sub['content']
176. self.slabel.bcolor = (0.1, 0.1, 0.1, .8)
177. (...)

We introduced a few code lines to the on_source method in order to initialize the
subtitles attribute with a Subtitles instance (line 154) using the surl property and
initialize the sub attribute that contains the currently displayed subtitle (line 155),
if any.

Now, let's study how we keep track of the progression to display the corresponding
subtitle. When the video plays inside the Video widget, the on_position event is
triggered every second. Therefore, we implemented the logic to display the subtitles
in the on_position method (lines 157 to 165). Each time the on_position method is
called (each second), we ask the Subtitles instance (line 158) for the next subtitle.
If nothing is returned, we clear the subtitle with the clear_subtitle method (line
160). If there is already a subtitle in the current second (line 161), then we make sure
that there is no subtitle being displayed, or that the returned subtitle is not the one
that we already display (line 164). If the conditions are met, we display the subtitle
using the display_subtitle method (line 165).

Notice that the clear_subtitle (lines 167 to 171) and display_subtitle (lines 173
to 176) methods use the bcolor property in order to hide the subtitle. This is another
trick to make a widget invisible without removing it from its parent. Let's take a look
at the current result of our videos and subtitles in the following screenshot:

Control bar – adding buttons to control
the video
In this section, we will work on user interaction with the application. Right now, we
control the video with touches on the screen that play, pause, and stop the video.
However, this is not very intuitive for a new user of our application. So, let's add
some buttons to improve the usability of our application.

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[154]

We will use Image widgets enhanced with ToggleButtonBehaviour and
ToggleBehaviour classes in order to create buttons for a play/pause button and
a stop button, respectively. Here is a cropped screenshot of the simple control bar
that we will be implementing in this section:

Let's start defining our two widgets for controlbar.kv. We will cover each widget
one by one. Let's start with the header of the file and the ControlBar class definition:

178. # File name: controlbar.kv
179. <ControlBar@GridLayout>:
180. rows: 1
181. size_hint: None, None
182. pos_hint: {'right': 1}
183. padding: [10,0,0,0]
184. play_pause: _play_pause
185. progress: 0

We derived the ControlBar class from the GridLayout class and set some familiar
properties. We also created a reference to the play/pause button, and one new
property (progress) that will track the percentage (from 0 to 1) of the progress
of the video. Let's continue with the first embedded widget, VideoPlayPause:

186. VideoPlayPause:
187. id: _play_pause
188. start: 'atlas://data/images/defaulttheme/
 media-playback-start'
189. pause: 'atlas://data/images/defaulttheme/
 media-playback-pause'
190. size_hint: [None, None]
191. width: 44
192. source: self.start if self.state == 'normal'
 else self.pause

As we will see in controlbar.py, VideoPlayPause is a combination of Image and
ToggleButtonBehavior. We implemented the source property (line 192) in a way
that changes the image of the widget according to the changes in the state property,
normal and down. Let's now see the code for VideoStop:

193. VideoStop:
194. size_hint: [None, None]

http://www.it-ebooks.info/

Chapter 6

[155]

195. width: 44
196. source: 'atlas://data/images/defaulttheme/
 media-playback-stop'
197. on_press: self.stop(root.parent.video, _play_pause)

Apart from defining some familiar properties, we have bound the event on_press to
the stop method (line 197), which will be shown in the corresponding controlbar.
py file. Notice that we are assuming that the parent of the root contains a reference to
the video (root.parent.video). We will continue working under this assumption in
controlbar.py:

198. # File name: controlbar.py
199. from kivy.uix.behaviors import ButtonBehavior,
 ToggleButtonBehavior
200. from kivy.uix.image import Image
201. from kivy.lang import Builder
202.
203. Builder.load_file('controlbar.kv')
204.
205. class VideoPlayPause(ToggleButtonBehavior, Image):
206. pass
207.
208. class VideoStop(ButtonBehavior, Image):
209.
210. def stop(self, video, play_pause):
211. play_pause.state = 'normal'
212. video.state = 'stop'

This code imports the necessary classes as well as 'controlbar.kv' (lines 198
to 203). Then, using multiple inheritance, it defines the VideoPlayPause and
VideoStop classes as a combination of the Image class and the appropriate behavior
(lines 205 and 208). The VideoStop class contains the stop method, which is called
when the button is pressed (line 208). This will set the play/pause button state to
normal and stop the video (line 212).

We will also define a video controller, which will be the parent of the control bar and
video, in the videocontroller.kv file:

213. # File name: videocontroller.kv
214. <VideoController >:
215. video: _video
216. control_bar: _control_bar
217. play_pause: _control_bar.play_pause

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[156]

218. control_bar_width: self.width
219. playing: _video.state == 'play'
220.
221. Video:
222. id: _video
223. state: 'pause' if _control_bar.play_pause.state ==
 'normal' else 'play'
224.
225. ControlBar:
226. id: _control_bar
227. width: root.control_bar_width
228. progress: _video.position / _video.duration

First, we defined five properties for VideoContoller (lines 215 to 219): video,
control_bar, play_pause, control_bar_width, and playing. The first three
properties reference components of the interface, control_bar_width will be used
to externally control the width of the control bar, and the playing property will
indicate whether the video is playing or not (line 219).

We then added a Video instance (line 221), whose state will depend on the state of
the play/pause button (line 223), and a ControlBar instance. The width property of
the control bar will be controlled by control_bar_width (line 227) that we previously
created (line 218), and the progress property will be expressed as a percentage of
the duration (line 228).

Now, we need to create the VideoController class in its respective
videocontroller.py file:

229. # File name: videocontroller.py
230. from kivy.uix.floatlayout import FloatLayout
231. from kivy.lang import Builder
232.
233. import video
234. import controlbar
235.
236. Builder.load_file('videocontroller.kv')
237.
238. class VideoController(FloatLayout):
239. pass

http://www.it-ebooks.info/

Chapter 6

[157]

We just included the necessary imports, and defined VideoController as a derived
class of FloatLayout. The kivyplayer.py file also has to be updated in order to
display a VideoController instance instead of Video:

240. # File name: kivyplayer.py
241. from kivy.app import App
242. from videocontroller import VideoController
243.
244. class KivyPlayerApp(App):
245. def build(self):
246. return VideoController()
247.
248. if __name__=="__main__":
249. KivyPlayerApp().run()

Feel free to run an application again to test the play/pause and stop buttons. The next
section will introduce a progression bar to our application.

Slider – including a progression bar
In this section, we will introduce a new widget called Slider. This widget will serve
as a progression bar, but at the same time it will allow the user to forward and reverse
the video. We will integrate the progression bar into the control bar, as shown in the
following cropped screenshot:

As you can see, Slider appears to the left of the play/pause and stop buttons.
Let's change controlbar.kv to add Slider to reflect this order. Let's start with the
header of the file and the ControlBar class definition:

250. # File name: controlbar.kv
251. <ControlBar@GridLayout>:
252. ...
253. VideoSlider:
254. value: root.progress
255. max: 1
256. VideoPlayPause:
257. ...

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[158]

VideoSlider will keep the value property updated with the progression of the
video. The value property indicates the location of the slider on the bar, and the
max property is the maximum value that it can take. In this case, 1 is appropriate
because we express the progression as a percentage (from 0 to 1) of the duration
(line 255).

Let's now add the definition of VideoSlider in the controlbar.py file:

258. # File name: controlbar.py
259. ...
260. class VideoSlider(Slider):
261.
262. def on_touch_down(self, touch):
263. video = self.parent.parent.video
264. if self.collide_point(*touch.pos):
265. self.prev_state = video.state
266. self.prev_touch = touch
267. video.state = 'pause'
268. return super(self.__class__,
 self).on_touch_down(touch)
269.
270. def on_touch_up(self, touch):
271. if self.collide_point(*touch.pos) and \
272. hasattr(self, 'prev_touch') and \
273. touch is self.prev_touch:
274. video = self.parent.parent.video
275. video.seek(self.value)
276. if prev_state != 'stop':
277. video.state = self.prev_state
278. return super(self.__class__, self).on_touch_up(touch)

Controlling the progression of the video with a slider is tricky because the video
and the slider need to constantly update each other. The video updates the slider
to indicate its progress, and the slider updates the video when the user wants to
forward or reverse the video. This creates an entangled logic, in which we have to
take into account the following considerations:

1.	 We need to use touch events because we want to make sure it is the user who
is moving the slider and not the video progression.

2.	 There seems to be an infinite loop; we update the slider, the slider uploads
the video, and the video updates the slider.

3.	 The user might not necessarily just click on the slider, he could potentially
drag it, and during the dragging time, the video updates the slider again.

http://www.it-ebooks.info/

Chapter 6

[159]

For these reasons, we need to execute the following steps:

1.	 Pause the video before updating the progression (line 267).
2.	 Not update the slider directly with the value property, but instead update

the video progression with the seek method (line 275).
3.	 Use the two events on_touch_down (line 262) and on_touch_up (line 270),

in order to safely change the progression percentage of the video.

In the on_touch_down method (lines 262 to 268), we have stored the current state of
the video (line 265), and a reference to the touch (line 266), and then we have paused
the video (line 267). If we don't pause the video, the progression of the video could
affect the slider (remember that the value of slider is bound to the progression
property in line 254) before we update the video to the progression of the slider. In
the on_touch_up event, we made sure that the touch instance corresponds to the one
that we stored in the on_touch_down method (lines 272 and 273). Then, we set the
video to the right place according to the position of the slider, with the seek method
(line 275). Finally, we re-established the previous state of the video if it was different
from stop (lines 276 and 277).

Feel free to run the application again. You can also experiment with the slider and
different options to update the video. Try, for example, a real-time update while you
drag the slider through the on_touch_move event.

Animation – hiding a widget
In this section, we will make the control bar disappear when the video starts playing
in order to watch the video without visual distractions. We need to change the
videocontroller.py file in order to animate the ControlBar instance:

279. # File name: videocontroller.py
280. from kivy.animation import Animation
281. from kivy.properties import ObjectProperty
282. ...
283. class VideoController(FloatLayout):
284. playing = ObjectProperty(None)
285.
286. def on_playing(self, instance, value):
287. if value:
288. self.animationVB = Animation(top=0)
289. self.control_bar.disabled = True
290. self.animationVB.start(self.control_bar)
291. else:

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[160]

292. self.play_pause.state = 'normal'
293. self.control_bar.disabled = False
294. self.control_bar.y = 0
295.
296. def on_touch_down(self, touch):
297. if self.collide_point(*touch.pos):
298. if hasattr(self, 'animationVB'):
299. self.animationVB.cancel(self.control_bar)
300. self.play_pause.state = 'normal'
301. return super(self.__class__,
 self).on_touch_down(touch)

Along with the necessary imports at the beginning of the file (lines 280 and 281),
we introduced the playing property (line 284) and two methods associated with
the on_playing event and the on_touch_down event. The playing property was
already defined in the Kivy language (line 219), but remember that, due to the file
parsing order, we also need to define it in the Python language if we want to use the
property in the same class.

When the playing property changes, the on_playing event is triggered (line 286).
This method starts an animation (line 290) and disables the control bar when the
video is playing (line 289). The animation will hide the control bar at the bottom of
the screen. The on_playing method will also restore the control bar (lines 292 to 294),
when the video is not playing so it will be visible again.

Since the control bar will be hidden when the video is playing, we need an alternate
way to stop the video (different from the Stop button). This is the reason we
included the on_touch_down event (line 296). As soon as we touch the screen, the
animation, if it exists, is cancelled (line 298), and the play/pause button is set to
'normal' (line 300). This will pause the video and therefore, trigger the on_playing
event (in this case, because it stopped playing) that we just defined.

You can now run the application again and appreciate how the control bar
slowly disappears down the bottom of the screen as soon as we press the
Play/Pause button.

http://www.it-ebooks.info/

Chapter 6

[161]

Kivy inspector – debugging interfaces
Sometimes, we encounter problems when we implement our interfaces, and it can be
difficult to understand what went wrong, especially when many of the widgets don't
have a graphic display. In this section, we will use the application that we created
in this chapter to introduce the Kivy inspector, a simple tool to debug interfaces. In
order to start the inspector, you run the following command: python kivyplayer.
py –m inspector. You won't notice any difference at the beginning but if you press
Ctrl + E, a bar will appear at the bottom of the screen, just like the one in the left
screenshot of the following image:

If we press the button Move to Top (the first from left to right in the bar), the bar
will move to the top of the screen as you can see in the right screenshot, a more
convenient position for our particular application. The second button Inspect
activates or deactivates the inspector behavior. We can now highlight components by
clicking on them.

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[162]

For example, if you click on the play/pause button, the video won't play; instead,
the button will be highlighted with a red tone as you can see in the following
left screenshot:

Moreover, if we want to visualize the widget that is currently highlighted, we just
have to press the button Parent (third left to right on the bar). In the right screenshot,
you can see how the control bar (parent of the play/pause button) is highlighted
instead. You should also notice how the long button (fourth left to right on the
bar) shows the class that the highlighted instance belongs to. If we click on this
button, the entire list of properties for that widget will be displayed, as shown in the
following left screenshot:

Finally, when we select one of the properties, we are able to modify it. For example,
in the right screenshot, we modified the width property of the control bar, and we can
see how the control bar immediately adjusts to the changes.

http://www.it-ebooks.info/

Chapter 6

[163]

Remember that since the Kivy widgets are kept as simple as possible, it means
that a lot of the times they are invisible because a more complex graphic to display
means an unnecessary overload. However, this behavior makes it difficult for us to
find errors in the GUI. So when our interface does not display what we expect, the
inspector becomes very handy to help us understand the underlying tree structure
of the GUI.

ActionBar – a responsive bar
A new set of widgets were introduced in Kivy 1.8.0, all of them related to the
ActionBar widget. This widget resembles the Android's action bar. This will not
only give your applications a modern and professional look, but it also includes
more subtle properties such as responsiveness to small screens. Depending on the
ActionBar widget hierarchy and components, the different widgets will collapse in
order to adapt to the screen space available in the device. First, let's take a look at the
final result of our planned ActionBar:

We add the Kivy language code to produce the previous bar in a new file
kivyplayer.kv, as presented here:

302. # File name: kivyplayer.kv
303.
304. <KivyPlayer>:
305. list_button: _list_button
306. action_bar: _action_bar
307. video_controller: _video_controller
308.
309. VideoController:
310. id: _video_controller
311. on_playing: root.hide_bars(*args)
312.
313. ActionBar:
314. id: _action_bar
315. top: root.height
316. ActionView:
317. use_separator: True
318. ActionListButton:

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[164]

319. id: _list_button
320. root: root
321. title: 'KPlayer'
322. ActionToggleButton:
323. text: 'Mute'
324. on_state: root.toggle_mute(*args)
325. ActionGroup:
326. text: 'More Options...'
327. ActionButton:
328. text: 'Open List'
329. on_release: root.show_load_list()
330. ActionTextInput:
331. on_text_validate: root.search(self.text)

The hierarchy of the previous code is complicated, so it is also presented in the
following diagram:

As you can see in the preceding diagram, the KivyPlayer contains two main
components, the VideoController that we created two sections ago, and
the ActionBar. If you remember, we created the property playing for the
VideoController (line 219), so we bound the associated event on_playing to the
method hide_bars (line 311) that later on will basically hide the action bar. Right
now, let's focus our attention to the hierarchy of ActionBar.

An ActionBar will always contain one ActionView. In this case, we just add an
ActionView with three widgets: ActionListButton, ActionToggleButton, and
ActionGroup. All of them inherit from ActionItem.

http://www.it-ebooks.info/

Chapter 6

[165]

An ActionView should contain only widgets that inherit from
ActionItem. We can create our own action items by inheriting
from ActionItem.

The ActionGroup groups ActionItem instances in order to organize the
responsive display. In this case, it contains one ActionButton instance and
one ActionTextInput instance. ActionListButton and ActionTextInput are
personalized widgets that we have to create. ActionListButton will inherit from
ActionPrevious and ToggleButtonBehaviour, whereas ActionTextInput
inherits from TextInput and ActionItem.

Before continuing, there are a few new properties in the code that deserve an
explanation. The use_separator property of ActionView (line 317) indicates
whether a separator will be used before every ActionGroup. The title property
(line 321), which displays a title in the component of ActionListButton, is inherited
from ActionPrevious. ActionPrevious is just a button with some extra GUI
features (such as the title, but also the Kivy icon that could be modified with
app_icon), but, more importantly, its parent (ActionView) will keep a reference
to it with the action_previous property.

Let's now see the definition of ActionTextInput in the actiontextinput.kv file:

332. # File name: actiontextinput.kv
333. <ActionTextInput@TextInput+ActionItem>
334. background_color: 0.2,0.2,0.2,1
335. foreground_color: 1,1,1,1
336. cursor_color: 1,1,1,1
337. hint_text: 'search'
338. multiline: False
339. padding: 14
340. size_hint: None, 1

As we said before, ActionTextInput inherits from TextInput and ActionItem,
The TextInput widget is a simple widget that displays a text input field in
which the user can write. It inherits directly from the Widget class and the
FocusBehaviour class, which was introduced in Kivy 1.9.0. The multiple
inheritance notations that we used (line 333) are new to us.

In order to use multiple inheritance in the Kivy language, we use the
notation <DerivedClass@BaseClass1+BaseClass2>.

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[166]

The TextInput widget is one of the most flexible widgets in Kivy and contains a
lot of properties that can be used to configure it. We used the background_color,
foreground_color, and cursor_color properties (lines 334 to 336) to set the
background, foreground, and cursor color, respectively. The hint_text property
will display a hint background text, which will disappear when TextInput gains
focus (for example, when we click or touch it). The multiline property will indicate
whether TextInput will accept multiple lines, and will also activate the on_text_
validate event when we hit the Enter key, and that we use in the kivyplayer.kv
file (line 331).

Notice that we also added a few references in KivyPlayer (lines 305 to 307). We use
those references on the Python side of KivyPlayer, which is kivyplayer.py. We
will cover this code in three fragments:

341. # File name: kivyplayer.py (Fragment 1 of 3)
342. from kivy.app import App
343. from kivy.uix.floatlayout import FloatLayout
344. from kivy.animation import Animation
345. from kivy.uix.behaviors import ToggleButtonBehavior
346. from kivy.uix.actionbar import ActionPrevious
347.
348. from kivy.lang import Builder
349.
350. import videocontroller
351.
352. Builder.load_file('actiontextinput.kv')
353.
354.
355. class ActionListButton(ToggleButtonBehavior, ActionPrevious):
356. pass

In this fragment, we added all the necessary imports of the code. We also loaded the
actiontextinput.kv file, and defined the ActionListButton class inherited from
ToggleButtonBehaviour and ActionPrevious, as we indicated before.

In fragment 2 of kivyplayer.py, we added all the necessary methods that are called
on by ActionItems:

357. # File name: kivyplayer.py (Fragment 2 of 3)
358. class KivyPlayer(FloatLayout):
359.
360. def hide_bars(self, instance, playing):

http://www.it-ebooks.info/

Chapter 6

[167]

361. if playing:
362. self.list_button.state = 'normal'
363. self.animationAB = Animation(y=self.height)
364. self.action_bar.disabled = True
365. self.animationAB.start(self.action_bar)
366. else:
367. self.action_bar.disabled = False
368. self.action_bar.top = self.height
369. if hasattr(self, 'animationAB'):
370. self.animationAB.cancel(self.action_bar)
371.
372. def toggle_mute(self, instance, state):
373. if state == 'down':
374. self.video_controller.video.volume = 0
375. else:
376. self.video_controller.video.volume = 1
377.
378. def show_load_list(self):
379. pass
380.
381. def search(self, text):
382. pass

For this section, we just implemented the hide_bars and toggle_mute methods. The
hide_bars method (lines 360 to 371) hides the action bar when the video is playing in
a similar way as we hid the control bar before. The toggle_button method (lines 372
to 382) uses the volume property to toggle between the full volume and mute state.
The fragment 3 of the code just contains the final commands to run the code:

383. # File name: kivyplayer.py (Fragment 3 of 3)
384. class KivyPlayerApp(App):
385. def build(self):
386. return KivyPlayer()
387.
388. if __name__=="__main__":
389. KivyPlayerApp().run()

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[168]

You can now run the application again. You might want to resize the window to see
how the action bar reorganizes the components according to the screen size. Here are
two examples for medium (left) and small (right) size:

LoadDialog – displaying a directory of
files
In this section, we will discuss how to display a directory tree in Kivy in order to
select a file. First, we will define the interface in loaddialog.kv:

390. # File name: loaddialog.kv
391. <LoadDialog>:
392. BoxLayout:
393. size: root.size
394. pos: root.pos
395. orientation: "vertical"
396. FileChooserListView:
397. id: filechooser
398. path: './'
399. BoxLayout:
400. size_hint_y: None
401. height: 30
402. Button:
403. text: "Cancel"
404. on_release: root.cancel()
405. Button:
406. text: "Load"
407. on_release: root.load(filechooser.path,
 filechooser.selection)

http://www.it-ebooks.info/

Chapter 6

[169]

There is nothing new in this code except for the use of the FileChooserListView
widget. It will display the directory tree of files. The path property (line 398) will
indicate the base path of where to start displaying the files. Apart from this, we add
the Cancel (line 402)and Load buttons (line 405), and they call respective functions in
the LoadDialog class that is defined in the loaddialog.py file:

408. # File name: loaddialog.py
409.
410. from kivy.uix.floatlayout import FloatLayout
411. from kivy.properties import ObjectProperty
412. from kivy.lang import Builder
413.
414. Builder.load_file('loaddialog.kv')
415.
416. class LoadDialog(FloatLayout):
417. load = ObjectProperty(None)
418. cancel = ObjectProperty(None)

There are actually no explicitly defined parameters in this class definition, just a
couple of properties. We will assign methods to these properties in the kivyplayer.
py file, and Kivy/Python will call them respectively:

419. def show_load_list(self):
420. content = LoadDialog(load=self.load_list,
 cancel=self.dismiss_popup)
421. self._popup = Popup(title="Load a file list",
 content=content, size_hint=(1, 1))
422. self._popup.open()
423.
424. def load_list(self, path, filename):
425. pass
426.
427. def dismiss_popup(self):
428. self._popup.dismiss()

If you remember, the Open List button of the ActionBar instance calls the show_
load_list method (line 329). This method will create an instance of LoadDialog
(line 420), and will send, as parameters of the constructor, two others methods:
load_list (line 424) and dismiss_popup (line 427). These methods will be assigned
to the load and cancel properties. Once the instance is created, we display it in a
Popup (instance line 421 and 422).

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[170]

Now, the load_list method will be called, when we click on the Load button of
LoadDialog (line 420), and the dismiss_popup method when the Cancel button is
pressed. Don't forget to add the corresponding imports in kivyplayer.py:

429. from kivy.uix.popup import Popup
430. from loaddialog import LoadDialog
431. from sidebar import ListItem

Here is the resulting screenshot, where we can appreciate the tree directory:

http://www.it-ebooks.info/

Chapter 6

[171]

ScrollView – displaying a list of videos
In this section, we will display the results of a search performed on the
TED video site in a side bar that we can scroll up and down, as shown in the
following screenshot:

Let's start defining the components of the side bar in the sidebar.kv file:

432. # File name: sidebar.kv
433. <ListItem>:
434. size_hint: [1,None]
435. height: 70
436. group: 'listitem'
437. text_size: [self.width-20, None]
438.
439.
440. <Sidebar@ScrollView>:
441. playlist: _playlist
442. size_hint: [None, None]

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[172]

443. canvas.before:
444. Color:
445. rgba: 0,0,0,.9
446. Rectangle:
447. pos: 0,0,
448. size: self.width,self.height
449.
450. GridLayout:
451. id: _playlist
452. size_hint_y: None
453. cols: 1

The ListItem class inherits from ToggleButton. The text_size property will
establish a boundary for the text. If the titles of the videos are too long, two lines
will be used instead. The Sidebar class inherits from ScrollView, which will
allow scrolling down the list of videos, similar to the way we scrolled the files in
LoadDialog of the last section. The GridLayout instance inside Sidebar is the
actual widget that will contain and organize the ListItem instances. This is
referenced by Sidebar in the playlist property (line 442)

The contained element inside ScrollView has to be allowed to be
bigger than ScrollView in order to scroll. Set size_hint_y to
None if you want to add vertical scrolling or size_hint_x to None if
you want to add horizontal scrolling.

Let's continue with the definition of the sidebar on the Python file (sidebar.py):

454. # File name: sidebar.py
455.
456. import json
457.
458. from kivy.uix.togglebutton import ToggleButton
459. from kivy.properties import ObjectProperty
460. from kivy.lang import Builder
461.
462. Builder.load_file('sidebar.kv')
463.
464. class ListItem(ToggleButton):
465. video = ObjectProperty(None)
466.
467. def __init__(self, video, meta, surl, **kwargs):

http://www.it-ebooks.info/

Chapter 6

[173]

468. super(self.__class__, self).__init__(**kwargs)
469. self.video = video
470. self.meta = meta
471. self.surl = surl
472.
473. def on_state(self, instance, value):
474. if self.state == 'down':
475. data = json.load(open(self.meta))['talk']
476. self.video.surl = self.surl
477. self.video.source =
 data['media']['internal']['950k']['uri']
478. self.video.image = data['images'][-
 1]['image']['url']

This file provides the implementation of the ListItem class. There are three
parameters in the constructor (line 473): an instance of the video widget, the meta
filename that contains metadata of the video as provided by TED videos, and surl
that contains the subtitle URL. When the state property of the ListItem widget
changes, the on_state method (line 474) is called. This method will open the file
provided by TED in a JSON format and extract the necessary information to update
the video widget properties. We included in the code of this section, a collection of
TED metadata files in the results folder, in order to test the code before you include
your own API. For example, results/97.json contains the metadata for the video
of Dan Gilbert we have been using so far. You can verify the JSON structure of the
lines 477 and 478 in this subtitle file.

Now, we need to add a Sidebar instance to KivyPlayer in the kivyplayer.kv file:

479. # File name: kivyplayer.kv
480. <KivyPlayer>:
481. list_button: _list_button
482. action_bar: _action_bar
483. video_controller: _video_controller
484. side_bar: _side_bar
485. playlist: _side_bar.playlist
486.
487. VideoController:
488. id: _video_controller
489. control_bar_width: root.width - _side_bar.right
490.
491. (...)
492.
493. Sidebar:

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[174]

494. id: _side_bar
495. width: min(_list_button.width,350)
496. height: root.height - _action_bar.height
497. top: root.height - _action_bar.height
498. x: 0 - self.width if _list_button.state ==
 'normal' else 0

We have added the Sidebar instance and defined some position properties based
on the other elements of the screen (lines 495 to 498). We also adjusted width of
the control bar to side_bar (line 480). When Sidebar is displayed, then the control
bar will adjust automatically to the available space. We control the display of the
sidebar with the ActionListButton class (line 512), which we are going to define in
kivyplayer.py:

499. # File name: kivyplayer.py
500. import json
501. import os
502.
503. (...)
504.
505. from sidebar import ListItem
506.
507. Builder.load_file('actiontextinput.kv')
508.
509. _surl = 'http://www.ted.com/talks/subtitles/id/%s/lang/en'
510. _meta = 'results/%s.json'
511.
512. class ActionListButton(ToggleButtonBehavior, ActionPrevious):
513. def on_state(self, instance, value):
514. if self.state == 'normal':
515. self.animationSB = Animation(right=0)
516. self.animationSB.start(self.root.side_bar)
517. else:
518. self.root.side_bar.x=0
519.
520. class KivyPlayer(FloatLayout):
521.
522. def __init__(self, **kwargs):
523. super(self.__class__, self).__init__(**kwargs)
524. self.playlist.bind(minimum_height=
 self.playlist.setter('height'))

http://www.it-ebooks.info/

Chapter 6

[175]

The animation of the sidebar is similar to the others we have seen in this chapter. We
also included two global variables: _surl and _meta (lines 509 and 510). These are
strings that will serve as templates for the subtitles and metadata files. Notice that %s
inside the strings will be replaced. We also introduced a constructor (__init__) to
the KivyPlayer class definition (line 522 and 524). Line 524 is necessary to guarantee
that the GridLayout instance (inside ScrollView) adapts to its height and therefore,
allows scrolling.

We now need to add the ListItem instances to the Sidebar widget. In order to
do this, we will define the load_list method (line 525) and the load_from_json
method (line 532) in kivyplayer.py:

525. def load_list(self, path, filename):
526. json_data=open(os.path.join(path, filename[0]))
527. data = json.load(json_data)
528. json_data.close()
529. self.load_from_json(data)
530. self.dismiss_popup()
531.
532. def load_from_json(self, data):
533. self.playlist.clear_widgets()
534. for val in data['results']:
535. t = val['talk']
536. video = self.video_controller.video
537. meta = _meta % t['id']
538. surl = _surl % t['id']
539. item = ListItem(video, meta, surl,
 text=t['name'])
540. self.playlist.add_widget(item)
541. self.list_button.state = 'down'

We included a results.json file that contains an example search result list obtained
from the TED site. This result is in the JSON format, which you can check in the file.
We need to open this file and display its content in the side bar. In order to do this, we
select the result.json file with the LoadDialog display using the Open List button.
Once selected, the load_list method is called. The method opens the data and loads
the JSON data (line 527). Once loaded, it calls the load_from_json method (line 528).
In this method, we create a ListItem instance (line 539) per result obtained from the
search on the TED site, and add the instances to the playlist (that is, the GridLayout
instance inside the side bar (line 451)). The lines 537 and 538 are a common way of
concatenating strings in Python. It replaces %s which are present in strings (lines 509
and 510) with the corresponding parameters after %. Now, we will see the results as a
side bar list in our application when we open the results.json file as was shown in
the screenshot at the beginning of this section.

http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[176]

Search – query the TED Developer API
This final section will introduce a few changes to the code so that we can search
the TED site.

The first thing you need to do is to get an API key from the TED site
using the following link:
http://developer.ted.com/member/register.

A TED API key is an alphanumeric number (something like '1a3bc2') that allows
you to query the TED website directly, and get requests in the JSON format we have
been using throughout the last section. Once you receive your API key in your e-mail
account, you can modify kivyplayer.py and put it in an _api global variable. For
now, we can use a placeholder like this in the kivyplayer.py file:

_api = 'YOUR_API_KEY_GOES_HERE'

Also, in kivyplayer.py, we need to introduce a global variable that contains the
search template (_search), and replace the content of the _meta global variable:

_search = 'https://api.ted.com/v1/search.
json?q=%s&categories=talks&api-key=%s'
_meta = 'https://api.ted.com/v1/talks/%s.json?api-key=%s'

Notice that the _meta variable now has two %. Therefore, we will need to replace the
meta = meta % t['id'] code line with meta = _meta % (t['id'], _api) inside
the load_from_json method (line 533). Also, since we are not opening a file, we
also need to replace the way we load the JSON in the ListItem class since we don't
have a file anymore, but a URL. First, we need to import the URLRequest class (from
kivy.network.urlrequest import UrlRequest) at the beginning of the sidebar.
py file, and then modify the on_state method to use the URLRequest class as we
learned with the subtitles:

542. def on_state(self, instance, value):
543. if self.state == 'down':
544. req = UrlRequest(self.meta, self.got_meta)
545.
546. def got_meta(self, req, results):
547. data = results['talk']
548. self.video.surl = self.surl
549. self.video.source =
 data['media']['internal']['950k']['uri']
550. self.video.image = data['images'][-1]['image']['url']

http://developer.ted.com/member/register
http://www.it-ebooks.info/

Chapter 6

[177]

We also need to import the URLRequest class in kivyplayer.py, in order to
implement the search method in the KivyPlayer class definition:

551. def search(self, text):
552. url = _search % (text, _api)
553. req = UrlRequest(url, self.got_search)
554.
555. def got_search(self, req, results):
556. self.load_from_json(results)

Now, you can go and check whether you received your TED API key. Once you have
replaced the _api variable, you will be able to use the search box in the action bar to
query the TED API. You can now use the search on ActionTextInput:

Keep in mind that the API key you just created can identify you
and your application as a user of the TED site. All the activity
registered with that API is your responsibility. You shouldn't
give this API Key to anyone.

Controlling the use of your API Key involves setting up your own server, where the
API key is safely stored. This server will act as a proxy (https://en.wikipedia.
org/wiki/Proxy_server) of your application, and it should limit the queries. For
example, it should avoid abusive behavior such as a massive number of queries.

Summary
In this chapter, we created an application that integrates many Kivy components.
We discussed how to control a video and how to associate different elements of the
screen with it. We explored different Kivy widgets and implemented a complex
interaction to display a scrollable list of elements. Here is the list of new classes and
components that we used in this chapter:

•	 Video: The allow_stretch and source properties inherited from Image;
the state and progress properties; the _on_load, on_eos, on_source and
on_state, on_position, seek methods

•	 AsyncImage: The source property inherited from Image; the opacity
(inherited from Widget) property

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Proxy_server
http://www.it-ebooks.info/

Kivy Player – a TED Video Streamer

[178]

•	 Label: The texture_size property
•	 Slider: The value and max properties
•	 Touch: The double_tap key
•	 The Kivy Inspector class
•	 The ActionBar, ActionView, ActionItem ActionPrevious,

ActionToggleButton ActionGroup, and ActionButton classes, with
use_separator of ActionView and title of ActionPrevious properties

•	 Textinput: The background_color, foreground_color, cursor_color
and multiLine properties

•	 FileChooserListView: The path property
•	 The ScrollView class

As a side result of the way this chapter, we have obtained an organized is an
enhanced Video widget that we can use in other applications. This Video widget
incorporates synchronization of subtitles that we receive in a JSON format file with
the progression of the video and a responsive control bar.

We have mastered the use of the Video widget. We learned how to control
its progression and add subtitles to it. We also covered how to query the TED
Developer API in order to get a result lists, and we have practiced our skills
manipulating the JSON format. We also learned how to use the Kivy debugger in
order to detect errors in our interfaces.

We also made an effort to make our KivyPlayer application look professional.
We optimized the use of the screen by introducing animations that hide the GUI
components when unnecessary. As part of this process, we used many Kivy elements
to make our widget consistent, and we reviewed interesting topics such as behaviors,
the factory, animations, touch events, and the use of properties in order to create
versatile components.

The beginning is at the end, so it is now your turn to start your own applications. I
really hope that what you have learned from this book will help you to implement
your ideas and start your own application.

http://www.it-ebooks.info/

[179]

Index
Symbols
_on_load method 144
& operator 136
+ operator 136

A
ActionBar widget

about 163
defining 163-168

ActionGroup groups 165
ActionItem 165
ActionPrevious 165
action_previous property 165
ActionView 164
add_gesture 102
add method 62
add_stroke method 100
add_widget method 68
AliasProperty property 83
Ammo animation

using 120-122
AnchorLayout 18, 22
anchor_x property 18
anchor_y property 18
Animation 121
App class 4
app_icon 165
app keyword 58
AsyncImage widget 146-148

Atlas
about 118
using 118-120

attributes 56-58, 78
automatic binding, in Kivy language

defining 125, 126

B
background_color property 44
background_down property 110
background_normal property 110
backgrounds

adding 41, 42
basename parameter 119
basic shapes

drawing 33-40
behaviors

defining 107, 108
behavior types

ButtonBehavior 107
DragBehavior 107
ToggleButtonBehavior 107

Bezier 38
bind/unbind 71
bold property 110
border property 21
BoundedNumericProperty property 83
BoxLayout 22
Builder class 91
Button 8
ButtonBehavior 107

http://www.it-ebooks.info/

[180]

C
canvas

defining 32, 33
using 21

canvas instances
canvas.after 42
canvas.before 42

Canvas object 31, 32
circle 40
classes

about 2
URL 2

clearcolor property 109
clear_widgets method 76
Clock class 128
close property 40
collide_point method 60
color_picker.color 92
ColorPicker widget 86
color property 9, 89
colors

adding 41, 42
cols property 18
Comic Creator 33
components, game

Atlas 115
clock 115
keyboard 115
multi-touch 115
sound 115

ContextInstruction base class 34
context instructions 31
control bar

used, for controlling video 153-157
coordinates

localizing 65-67
coordinate space

about 31
rotating 44-47
scaling 44-47
translating 44-47

current property 88

D
dash_length property 38
dash_offset property 38
DictProperty 77
directives 6
disabled property 106, 148
double_tap key 145
duration 124

E
Ellipse

angle_end 36
angle_start 36
segments 36
working 36

end of stream (EOS) 144
events

binding 69-73
binding, in Kivy language 74-77
creating 77-79
scheduling, with clock 128, 129
unbinding 69-73

events, Animation class
on_progress 121
on_start 121
on_stop 121

F
Factory class

about 112, 143
URL 143
used, for replacing vertex

instruction 111, 112
FileChooserListView widget 169
find method 105
fixed coordinates 9
fixed coordinates (pixels) 12
fleet

animating 126-128
FloatLayout example 10
FocusBehaviour class 165
font_size property 9

http://www.it-ebooks.info/

[181]

G
Gesture class 100
GestureDatabase class 100
gestures

recognizing 101-106
recording 99, 100

gestures ToggleButton 106
gesture_to_str string 100
Graphical User Interface (GUI) 3, 55
graphic instructions

structuring 42-44
GridLayout 17
group property 26
GUI building process 15

H
height property 10
Hello World program 3-6

I
ID 56-58
image list parameter 119
images

adding 41, 42
Image widget 142
import directive 59
indexes property 39
inheritance

about 2, 5
URL 2

instances
about 2
URL 2

instruction set
canvas 42
canvas.after 42
canvas.before 42

instruction types
context instructions 34
vertex instructions 34

Invaders Revenge game
Ammo animation, using 120-122
animations, combining with &

operator 136, 137
animations, combining with +

operator 136, 137
Atlas, using 118-120
automatic binding, in Kivy

language 125, 126
Boom instance, defining 120
defining 116, 117
events, scheduling with clock 128, 129
fleet, animating 126-128
Linear transition, defining 122-124
multi-touch actions, handling 130-133
shooter, moving with keyboard 134, 135
sound effects, adding 120

J
JSON format

URL 151

K
keyboard 135
Kivy

about 1, 130
defining 2, 80-83
properties 80-83
URL 2
using 3

Kivy 1.9.0
URL 86

Kivy API
URL 15

Kivy Canvas 31
Kivy id 25
Kivy inspector

about 161
used, for debugging interfaces 161-163

Kivy language
events, binding in 74-77

Kivy markup 28
KivyPlayer 164
kivy.uix

URL 7

http://www.it-ebooks.info/

[182]

L
Label widget 5
Label class 107
Layouts

about 10-15
BoxLayout 14
embedding 16-19
FloatLayout 14
GridLayout 14
PageLayout 15
RelativeLayout 14
ScatterLayout 15
StackLayout 14

Linear transition
defining 122-124

Line instructions 40
Line (shape F) 37
ListProperty 77, 128
LoadDialog class

used, for displaying directory of
files 168-170

load_file method 91
load_string method 91

M
manager attribute 88
Mathieu Virbel

URL 1
max property 158
Mesh instructions 38
methods, DrawingSpace class

__init__ 102
activate 102
add_circle 104
add_Line 104
add_stickman 104
deactivate 102
discriminate 104
down 103

gesturize 103
min_and_max 104
move 103
on_children 105
ups 103

minscore parameter 105
mode property 38
MotionEvent class

URL 131
multi-touch actions, game

handling 130-133

N
name property 88
normalize 100
NumericProperty 77

O
Object-Oriented Programming (OOP)

about 2
URL 2

ObjectProperty 77
on_eos method 144
on_keyboard_down event 135
on_press event 75
on_press method 108
on_progress method 122
on_release event 75
on_source method 144
on_start method 122
on_state event 75
on_state method 144, 148
on_touch_down event 59
on_touch_move event 59
on_touch_up event 59
opacity property 148
orientation property 19
origin property 46

http://www.it-ebooks.info/

[183]

P
padding property 19
PageLayout

about 19-21
pages, swiping 19-21

page property 21
parent widget 61, 63
Pillow library

URL 119
pointsize property 37
points property 37, 38
PopMatrix

about 48, 49
defining 47-52

Popup 107
pos_hint 11
positioning and sizing properties

height 13
pos 14
pos_hint 13
size 13
size_hint 13
size_hint_x 13
size_hint_y 13
width 13
x, right or center_x 14
y, top or center_y 14

pos property 35
press method 135
progression 122
project, Comic Creator

defining 22-28
property 6, 78
proportional coordinates 11, 12
proxy server

URL 177
PushMatrix

about 48, 49
defining 47-52

Q
Quad (shape E) 37

R
rectangle 40
register method 112
RelativeLayout 17, 51
relative=True parameter 72
remove method 64
remove_widget method 76
rgba property 42
rgb property 46
right key 12
root

about 56-58
using 58

root keyword 58
root variable 10
Rotate 44
rotate method 105
rows property 17
rule 7

S
Scale 44, 47
Scatter class

defining 95-99
used, for multi-touching to drag 95-99
used, for multi-touching to rotate 95-99
used, for multi-touching to scale 95-99

ScatterLayout 98
schedule_interval method 129
schedule_once method 129
ScreenManager class

about 87
defining 86-89
used, for selecting colors 86-89

http://www.it-ebooks.info/

[184]

Screen widget 87
ScrollView

about 172
used, for displaying list of videos 171-175

search method
using 176, 177

segments property 36
selected color

used, for coloring figures 89-93
using 89-93

self keyword 58
self variable 10
set directive 146
size_hint 11
size parameter 119
size property 35
Slider widget

defining 157-159
Sound 120
SoundLoader 120
source property 42
Space Invaders game

URL 115
state property 145
StatusBar 107
StencilView

defining 93-95
used, for limiting drawing space 93-95

stickman
adding 65-67
dragging 58-65
drawing 22

StringProperty 77
str_to_gesture 102
Style

used, for decorating interface 109, 110
subtitles

defining 149-153
swipe_threshold 21

T
TED

URL 145
TED API services

URL 141

TED site
URL 176

TextInput widget 165, 166
texture_size property 149
ToggleButton class 26
ToolFigure class

create_figure method 71
create_widget method 71
draw method 70
end_figure method 70
update_figure method 70
widgetize method 71

to_parent() method 63, 65
top key 12
transitions 89, 124
transitions, Kivy

FadeTransition 89
SlideTransition 89
SwapTransition 89
WipeTransition 89

Translate 44
Triangle (shape D) 37

U
unregister method 112
unscheduled method 129
UrlRequest class 151
use_separator property 165

V
value property 158
VertexInstruction base class 34
vertex instructions

about 31, 111
replacing 111, 112

vertices property 39
Video class

about 142
allow_stretch property 142
color property 142
source property 142

VideoController 164

http://www.it-ebooks.info/

[185]

Video widget
about 142-145
used, for pause 142-145
used, for play 142-145
used, for stop 142-145

volume property 167

W
Widget class

about 8
to_local() method 66
to_parent() method 66
to_widget() method 66
to_window() method 66

widget events
about 58-65
on_touch_down 58
on_touch_move 58
on_touch_up 58

Widget object 32
widget representation

drawing 31
manipulating 31

widgets
about 5, 32
buttons 7-10
hiding 159, 160
labels 7-10

widgets, ActionView
ActionGroup 165
ActionListButton 164
ActionToggleButton 164

width property 10
Window class 109, 124

X
x property 10

Y
y property 10

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Thank you for buying
Kivy – Interactive Applications and Games in Python

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com
http://www.it-ebooks.info/

Kivy Blueprints
ISBN: 978-1-78398-784-9 Paperback: 282 pages

Build your very own app-store-ready,
multi-touch games and applications with Kivy!

1.	 Learn how to create simple to complex
functional apps quickly and easily with
the Kivy framework.

2.	 Bend Kivy according to your needs
by customizing, overriding, and bypassing
the built-in functions when necessary.

Python Network
Programming Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1.	 Demonstrates how to write various besopke
client/server networking applications using
standard and popular third-party
Python libraries.

2.	 Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1.	 Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and
good documentation.

2.	 Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

Python Data
Visualization Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how
to create attractive visualizations using Python's
most popular libraries

1.	 Learn how to set up an optimal Python
environment for data visualization.

2.	 Understand the topics such as importing
data for visualization and formatting data
for visualization.

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: GUI Basics – Building an Interface
	Basic interface – Hello World!
	Basic widgets – labels and buttons
	Layouts
	Embedding layouts
	PageLayout – swiping pages
	Our project – Comic Creator
	Summary

	Chapter 2: Graphics – The Canvas
	Understanding the canvas
	Drawing basic shapes
	Adding images, colors, and backgrounds
	Structuring graphic instructions
	Rotating, translating, and scaling the coordinate space
	Comic Creator: PushMatrix and PopMatrix
	Summary

	Chapter 3: Widget Events – Binding Actions
	Attributes, ID, and root
	Basic widget events – dragging the stickman
	Localizing coordinates – adding stickmen
	Binding and unbinding events – sizing limbs and heads
	Binding events in the Kivy language
	Creating your own events – the magical properties
	Kivy and its properties
	Summary

	Chapter 4: Improving the User Experience
	ScreenManager – selecting colors for the figures
	Color control on the canvas – coloring figures
	StencilView – limiting the drawing space
	Scatter – multi-touching to drag, rotate, and scale
	Recording gestures – line, circle, and cross
	Recognizing gestures – drawing with the finger
	Behaviors – enhancing widgets functionality
	Style – decorating the interface
	Factory – replacing a vertex instruction
	Summary

	Chapter 5: Invaders Revenge – an Interactive Multi-touch Game
	Invaders Revenge – an animated multi-touch game
	Atlas – An efficient management of images
	Boom – simple sound effects
	Ammo – simple animation
	Invader – transitions for animations
	Dock – automatic binding in the Kivy language
	Fleet – infinite concatenation of animations
	Scheduling events with the clock
	Shooter – multi-touch control
	Invasion – moving the shooter with the keyboard
	Combining animations with '+' and '&'
	Summary

	Chapter 6: Kivy Player – A TED Video Streamer
	Video – play, pause, and stop
	AsyncImage – creating a cover for the video
	Subtitles – tracking the video progression
	Control bar – adding buttons to control the video
	Slider – including a progression bar
	Animation – hiding a widget
	Kivy inspector – debugging interfaces
	ActionBar – a responsive bar
	LoadDialog – displaying a directory of files
	ScrollView – displaying a list of videos
	Search – query the TED Developer API
	Summary

	Index

