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Abstract. Distributed hash tables have been around for a long time [1,
2]. A number of recent projects propose peer-to-peer DHTs, based on
multi-hop lookup optimizations. Some of these systems also require data
permanence. This paper presents an analysis of when these optimizations
are useful. We conclude that the multi-hop optimizations make sense
only for truly vast and very dynamic peer networks. We also observe
that resource trends indicate this scale is on the rise.

1 Introduction

Distributed hash tables (DHTs) propose a logically centralized, physically dis-
tributed, hash table abstraction that can be shared simultaneously by many
applications [1, 2].

Recently, DHTs have been proposed as a basic interface for building peer-
to-peer systems [3, 4, 5, 6]. These peer-to-peer DHTs share, in their design, the
fact that they are divided into a lookup layer, which locates nodes responsible for
objects in the system, and a storage layer that provides the DHT abstraction.

Most work on peer-to-peer DHTs takes the necessity of routing in a flat
address space as a given. In particular, peer-to-peer DHTs (with a single excep-
tion [7]) employ small lookup state optimizations that lead to multiple routing
hops, typically O(log N). While often not explicit, we can speculate that the
designers of these DHTs fear that the bandwidth or memory requirements of an
approach where every node maintains complete system membership information
are overwhelming for a “large scale” membership.

Since levels of routing indirection complicate several aspects of the system
(e.g., security, server selection, operation latency) we believe it is useful to quan-
tify what “large scale” means. Our thesis is that, in realistic deployment scenarios
for peer-to-peer DHTs, maintaining complete membership information is both
possible and beneficial.

The main contribution of this paper is to present an analytic model that
allows us to determine when indirection is desirable. To answer this question
we need to take into account several variables of the system. The most obvious
ones are the membership durations and the size of the system, since these affect
the size of the membership state and the bandwidth needed to maintain up-
to-date membership information. Other variables are also important, though
more implicitly, such as the total amount of data stored in the DHT (assuming
that the DHT provides a reliable mapping — other assumptions, along with



applications other than DHTs, are discussed in section 6). This will influence
how large and dynamic the membership can be — if the membership is too
dynamic, the bandwidth required to maintain data redundancy will overwhelm
the peers’ capacity [8].

Our analysis allows us to conclude that routing only matters for peer net-
works in excess of a few tens of millions of nodes. For smaller networks, the
feasibility of maintaining data requires membership to be stable enough that
maintaining full membership is cheap. With such stable membership, lookup in-
direction is an unnecessary complexity that can even hurt overall performance
(e.g., by increasing lookup latency or impeding server selection).

The remainder of the paper is organized as follows. Section 2 presents the
model for redundancy maintenance in a peer-to-peer DHT. Section 3 presents
the model for the bandwidth cost of maintaining full membership information.
Section 4 analyzes when routing needs optimizing, and this analysis is gener-
alized to produce a result independent of churn in Section 5. In Section 6 we
discuss possible applications of multi-hop routing schemes (other than peer-to-
peer DHTs), and we conclude in Section 7.

2 DHT Data Maintenance

In this section we consider the bandwidth necessary for maintaining data in a
peer-to-peer DHT. As mentioned, the bandwidth constrains are going to limit
the amount of data in the system, the membership dynamics, and the number of
nodes in the system, hence it will also influence the need for a routing substrate.
We present a simple analytic model for bandwidth usage that attempts to provide
broad intuition and still applies in some approximation to currently proposed
systems. A more detailed version of this analysis is presented in a previous
publication [8].

2.1 Assumptions

We assume a simple redundancy maintenance algorithm: whenever a node leaves
or joins the system, the data that node either held or will hold must be down-
loaded from somewhere. Note that by join and leave we mean really joining the
system for the first time or leaving forever. We do not refer to transient failures,
but rather the intentional or accidental loss of the contributed data. Transient
failures are masked by the use of appropriate redundancy techniques. We also
assume there is a static data placement strategy (i.e., a function from the current
membership to the set of replicas of each block).

We make a number of simplifying assumptions. Each one is conservative — in-
creased realism would increase the bandwidth required. The fact that we perform
an average case analysis also makes it conservative, since it does not consider
the worst-case accidents of data distribution and other variations.

We assume identical per-node space and bandwidth contributions. In prac-
tice, nodes may store different amounts of data and have different bandwidth



capabilities. Maintaining redundancy may require in certain cases more band-
width than the average bandwidth. Creating more capable nodes from a set of
less capable nodes might take more time. Average space and bandwidth therefore
conservatively bound the worst case – the relevant bound for a guarantee.

We assume a constant rate of joining and leaving. Here also, the worst case
is the appropriate figure to use for any probabilistic bound. The average rate
is therefore conservative. We also assume independence of leave events. Since
failures of networks and machines are not truly independent, more redundancy
would be required in practice to provide better guarantees.

We assume a constant steady-state number of nodes and total data size. A
decreasing population requires more bandwidth while an increasing one cannot
be sustained indefinitely. It would also be more realistic to assume data increases
with time or changes which would again require more bandwidth.

2.2 Data Maintenance Model

Consider a set of N identical hosts which cooperatively provide guaranteed stor-
age over the network. Nodes are added to the set at rate α and leave at rate λ,
but the average system size is constant, i.e. α = λ. On average, a node stays a
member for T = N/λ.

Our data model is that the system reliably stores a total of D bytes of unique
data stored with a redundancy expansion factor k, for a total of S = kD bytes
of contributed storage. One may think of k as either the replication factor or the
expansion due to coding. The desired value of k depends on both the storage
guarantees and redundant encoding scheme [8].

We now consider the data maintenance bandwidth required to maintain this
redundancy in the presence of a dynamic membership. Note that the model does
not consider the bandwidth consumed by queries.

Each node joining the overlay must download all the data which it must later
serve, however that subset of data might be mapped to it. The average size of
this transfer is S/N . Join events happen every 1/α time units. So the aggregate
bandwidth to deal with nodes joining the overlay is αS

N
, or S/T .

When a node leaves the overlay, all the data it housed must be copied over to
new nodes, otherwise redundancy would be lost. Thus, each leave event also leads
to the transfer of S/N bytes of data. Leaves therefore also require an aggregate
bandwidth of λS

N
, or S/T . The total bandwidth usage for all data maintenance

is then 2S

T
, or a per node average of:

B/N = 2
S/N

T
, or BW/node = 2

space/node

lifetime
(1)

Figure 1 plots some example “threshold curves” in the lifetime-membership
plane. These assume a cable modem connection (limited by its 200 kbps up-
stream connection) and that 25% of the upstream bandwidth is used for data
redundancy maintenance. They assume the redundancy factor is k = 8. This
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Fig. 1. Log-Log plots for the participation requirements of a cable modem network.
Plotted are regions below which various amounts of unique data will incur over 25%
link saturation just to maintain the data. These use a redundancy k = 8.

is an appropriate encoding rate if availability is over about 75% and we use
replication [8].

This figure shows that for a million nodes to cooperatively store a petabyte
of data in a DHT, nodes must remain in the system for about one month on
average (albeit with possible temporary disconnections [8]).

3 Full Information Lookup

Now we turn to the cost of maintaining complete membership information at
each node. The storage cost of maintaining these data structures is negligible.
For instance, 10 million IPv4 addresses occupy only 57 MB. What is important
are the bandwidth costs which we now analyze.

3.1 Trivial Join Protocol

To bound bandwidth needs, we present a simple protocol for the cost of main-
taining full membership information in a peer-to-peer system. The point of this
protocol is not to constitute a “complete” system implementation. Instead, we
use it for its ostensible simplicity of description, implementation, and analysis.
Such analysis will afford us a rough estimate for the main bandwidth costs of
membership maintenance, neglecting less costly details such as TCP-layer re-
transmits.



Our join algorithm is simply this: the joining node downloads the entire mem-
ber list from anyone and then notifies everyone he is a member. Join notifications
are sent continuously until acknowledged from each node. To avoid exorbitant
retransmits, the retry time scale is exponentially backed off to some upper limit
related to the session time distribution.

This protocol is intentionally simple to ease analysis. A more sophisticated
multicast protocol might lower the cost of distributing membership information.
The bound we generate is hence quite conservative, since a larger point of this
paper is that good system design introduces such fancier protocols and complex-
ity only when required, not proactively for systems of scales which are unlikely
to be relevant any time soon.

Assuming that a fraction u of the nodes is unreachable during each notifica-
tion attempt, this generates the following per-join bandwidth consumption.

– outbound:
N × 48 × (1 + u + u2 + ...) = 48N

1−u
,

where 48 = 20 byte node id +28 byte UDP header.
– inbound:

acks: N× 28 bytes. (neglecting IP packet loss)
member list: N× 26 bytes,
where 26 = 20 byte id +6 byte IPv4 address/port.

The average per-node upload or download bandwidth to handle node joins
is given by:

(outbound + inbound)
λ

N
= (54 +

48

1 − u
)N

λ

N
= (54 +

48

1 − u
)N/T (2)

3.2 Trivial Leave Protocol

As protocols go, doing nothing at all is fairly simple. All that matters is all
remaining nodes to individually notice when a host has been persistently down.
This is most naturally done by some staggered or random probing of hosts
stretched out over a period of time, τ . Taking partial availability into account,
suppose a host must be non-responsive m times – say 4 times to yield a false
eviction rate of about 1/256 for unavailability u = 1/4. The expected fraction
of stale entries is then Pstale = 1 − T/(T + mτ). E.g., Pstale = 1/3 and m = 4
implies that τ = T/8.

A plausible timescale of true membership dynamics in data sharing peer-to-
peer systems, T , is one-to-several weeks [9]. So, τ = 1 day is a plausible target.
The bandwidth costs of such a staggered, retrying host eviction is modest. E.g.,
for N = 8, 640, 000 a refresh time of 1 day only costs 100 probes/s or roughly
20 kbps with 28 byte probe packets.

If N is a bit smaller and queries are randomly distributed then query traffic
itself can act as a passive probe at no cost of additional bandwidth. E.g. if the
system size is N = 100, 000 nodes and 64 kbps are used for uploading 8 kB
blocks then τ ≈ 1 day.



3.3 Stale Membership Issues

The principal consequence of the existence of a small fraction of stale membership
data is in slightly longer timeouts on synchronous “store” operations. When
storing data on new nodes the system must timeout store requests that fail,
creating a higher operation latency, perhaps ten times the worst case network
round-trip – a few seconds of real time. In replica-oriented redundancy, the first
few replicas are likely to be stored very quickly yielding some immediate data
reliability and availability. Synchronously waiting for the slowest few peers to
store provides diminishing returns on the reliability of a data block.

Additionally, reads dominate writes in most applications. It is often a very
desirable tradeoff for writes to be a highly concurrent background operation if
reads can be made faster. Engineering an entire system around an optimized
write latency with no particular application in mind seems off track. E.g., writes
to a backup system which occur at off hours to maximize the “user-level” data
coherency can take almost as long as one likes while having the particular
backup recovery block one wants as soon as possible is more important. Since
full-information lookups can surely do at least somewhat better dynamic server
selection for “get” operations, the end to end performance of user-relevant op-
erations could be faster.

4 When Indirection Helps

Now we move on to the main question of this paper: When do DHTs profit from
multi-hop lookup?

4.1 Combining Our Bounds

To answer this question we combine the results of the two previous sections, first
graphically and then algebraically. Figure 2 shows, in the lifetime-membership
plane, the intersection between Figure 1 and the region bounded by equation 2.
In other words, it shows, on the one hand, when is a peer-to-peer DHT feasible in
terms of redundancy maintenance bandwidth (i.e., the region above the dashed
lines of Figure 1). On the other hand, it also shows when it is not feasible
to maintain complete membership information (i.e., the region below the lines
defined by equation 2). For the latter region, we plotted two curves. The solid
curve assumes that the average membership maintenance bandwidth for node
joins saturated 25% of a cable modem uplink speed (50 Kbps), and fixed u = 0.25
in equation 2. We may argue that in some scenarios we would like to start
optimizing this cost even earlier, so we plotted another curve (marked “<< 1
Kbps”) corresponding to an average membership maintenance bandwidth of 1
Kbps. This ignores the costs of handling node departures, as we have shown that
this cost is small.

The intersection of these two lines delineates the interesting region where
small lookup state DHTs may be an adequate solution, since it is required to
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Fig. 2. Putting it all together. The dashed lines from Figure 1 border the feasibility of
a peer-to-peer DHT. The lines marked “<< 1 Kbps” and “<< 50 Kbps” border the
need for multi-hop lookup. The shaded region corresponds to the deployment scenarios
where peer-to-peer DHTs are feasible and multi-hop optimizations may be required.

avoid the large bandwidth consumption of maintaining full membership informa-
tion (the shaded quadrant marked “multi-hop matters”). The quadrant above
the dashed lines and also above the solid line defines when a peer-to-peer DHT
is feasible, but multi-hop lookup is not required (marked “lookup easy”).

4.2 Data, Pointers, and All That

Figure 2 shows that, for a petabyte of data, DHT feasibility needing multi-hop
lookup requires over 10 million participants. Further, for 10 million hosts to store
1 petabyte of unique data, each node will only contribute merely 100 megabytes
of unique data, or 800 megabytes of total data (recall we used k = 8). This
seems like a modest contribution, only 1% of a small disk in a standard PC sold
today. More meaningful contributions would require a more stable membership,
and thus lessen the need for multi-hop routing.

For a smaller DHT (50 TB), multi-hop DHTs may be interesting if we have
to employ a few million nodes to serve the data. To store only pointers to a few
petabytes of data might require only 1 TB to be stored in the DHT. While storing
only pointers does lower the membership scale at which multi-hop optimizations
matter, as Figure 2 shows, it only does so for extremely volatile memberships.
This then raises the question about how the data itself is being maintained
(see Figure 1). If the data is being maintained then a fairly reliable pool of
peers is available and could also be used for the lookup service without multi-
hop schemes. (The lookup service adds negligible load since looking up a block



uses much less bandwidth than serving a block.) If the data is not reliable, then
it seems strange to have an indexing service that is much more reliable and
available. For the scenario of unreliable data or distributed caching, one of the
approaches in Section 6 is more appropriate.

4.3 Hardware Trends

The discussion so far suggests that for systems with the many millions of nodes
needed for multi-hop lookup to be a relevant optimization, data maintenance
bandwidth constraints prevent using more than a few hundred MB/node. A
quick reflection of hardware trends, recapped by Table 1, suggest that multi-hop
optimizations will be even less interesting in the future. This table shows how
long it would take to upload your hard disk through your network connection
for a “typical” user, and how this figure has evolved.

Home access Academic access
Year Disk Speed Days Speed Time

(Kbps) to send (Mbps) to send

1990 60 MB 9.6 0.6 10 48 sec
1995 1 GB 33.6 3 43 3 min
2000 80 GB 128 60 155 1 hour
2005 0.5 TB 384 120 622 2 hour

Table 1. Disk increased by 8000-fold while bandwidth increased only 50-fold.

Table 1 suggests that disk upload time is getting larger quickly. This implies
that if peers are to contribute substantial fractions of their disks then their
participation must become more and more stable. This additional stability makes
a multi-hop indirection infrastructure even less necessary. This supports the
point that multi-hop lookups will not be necessary if one wishes to build a DHT
from a large peer population: the more you move “up” on the graph in Figure 2,
the less likely it is that multi-hop will matter.

5 Factoring Out Churn

The idea of Section 4 can be generalized to a simple algebraic result independent

of membership turnover. Equation 1 and Equation 2 can be equated to discover
when membership maintenance overhead is about as large as data maintenance
overhead:

2S/N

T
=

(54 + 48

1−u
)N

T
≈

118N

T
⇒ N ≈

S/N

60 bytes



This gives the rough scale at which small-state (i.e., multi-hop) lookup op-
timizations matter. Per node contributions in the gigabytes implies multi-hop
importance scales in the tens of millions. E.g., if S/N = 3 GB, then one only
needs multi-hop lookup when N > 50 million.

While it is hard to know for sure, the current Internet is very unlikely to
have more than 50 million hosts simultaneously running the distributed ser-
vice 75% of the time. At the same time it seems very likely that many if not
most computers in the current Internet have 3 GB of disk space to contribute.
The hardware trends mentioned in Section 4 are therefore quite indicative. As
the disk-bandwidth disparity grows, multi-hop lookup systems will become less
relevant.

Even if our model is imprecise, estimating only the order of magnitude of
membership maintenance, it still seems unavoidable to conclude that current
multi-hop DHTs seem relevant, forward-looking designs only when one has ei-
ther an enormous system scale supporting a small amount of data or draconian
membership freshness guarantees.

6 Whither Peer-to-Peer Routing?

The analysis of the paper seems to imply that peer-to-peer routing is only useful
in a limited number of situations with very high membership, moderate peer
dynamics, and small total data state. However, our analysis is limited to robust

peer-to-peer DHTs, i.e., DHTs that provide a consistent and reliable mapping
from keys to values. Peer-to-peer routing may be extremely useful for other
classes of applications. In this section we highlight some relevant examples.

One example are DHTs that do not try to provide a consistent and reliable
mapping or do not place replicas randomly. An example of a DHT that falls into
this category is Coral [10]. This DHT only stores soft-state — thus it does not
require lookups to always retrieve the latest data that was stored under that
key — and it uses clustering techniques to create nearby copies of the data.
For both reasons, Coral does not incur in the DHT data maintenance costs of
Section 2, as the model in question does not apply to it.

The second example is the class of applications, other than DHTs, that take
advantage of the peer-to-peer routing topology. An example of such an applica-
tion is implementing a cooperative multicast infrastructure [11, 12, 13], but other
applications exist. These applications do not necessarily store data, and there-
fore do not incur in the costs of Section 2. Furthermore these applications may
find peer-to-peer routing useful for reasons other than saving bandwidth, since
they take advantage of the topology that is automatically formed by the routing
layer. Therefore the analysis in Section 4 does not apply here, and multi-hop
routing can be useful independently of system churn.

Some peer-to-peer storage systems exploit indirection to perform dynamic
volatile replica creation along the lookup path. Such caching spreads the load
for popular content at the cost of substantial additional bandwidth usage. Ef-
fectively, the curves in Figure 1 are shifted away from the origin. While this is a



possibly interesting application of multi-hop lookups, only one level of indirection
(i.e., two total routing hops) seems necessary to support this.

7 Conclusion

This paper argues that the feasibility of a peer-to-peer DHT may imply either
a relatively stable membership, or an extremely large participation in the sys-
tem. If the membership is somewhat stable, then the utility of multi-hop lookup
optimizations must be questioned.

Our analysis tries to quantitatively bound when multi-hop lookups may be
needed. The main conclusion is that this optimization is required only if the
system is comprised of more than tens of millions of nodes (under conservative
assumptions).

Further, hardware trends indicate that, if peers are to donate significant
fractions of the their free storage space to the DHT, then multi-hop lookup
optimizations are even less likely to be required in the future.
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