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Degree-dependent intervertex separation in complex networks
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(Dated:)

We find the mean length ℓ(k) of the shortest paths between a vertex of degree k and other vertices
in growing networks. In scale-free networks, we obtain a power-law correction to a logarithmic
dependence, ℓ(k) = A ln[N/k(γ−1)/2] − Ckγ−1/N + . . .. Here N is the number of vertices in the
network, γ is the degree distribution exponent, and the coefficients A and C depend on a network.
We obtain this result for a number of growing deterministic graphs but believe that it holds for a
wide class of evolving scale-free networks. In contrast, in stochastic and deterministic growing trees
with an exponential degree distribution, we find a linear dependence on degree, ℓ(k) ∼= A ln N −Ck.
We compare our results for growing networks with those for uncorrelated graphs.

PACS numbers: 05.50.+q, 05.10.-a, 05.40.-a, 87.18.Sn

I. INTRODUCTION

The main objects of interest of the physics of complex
networks [1, 2, 3, 4, 5, 6] are extremely compact, infi-
nite dimensional nets—so called small worlds. The basic
measure of the compactness of a network is the mean
intervertex distance or the mean intervertex separation,
that is, the mean length of the shortest path between
a pair of vertices, ℓ. (The path runs along edges, each
edge has the unit length.) Physicists often use another
term for this characteristic—the diameter of a network,
although in graph theory the term network diameter is
reserved for the maximal separation of a pair of vertices
in a net.

A network shows the small-world effect if its mean in-
tervertex distance slowly increases with the network size
(the total number of vertices in a network, N), slower
than any power-law function of N . This is in contrast
to finite dimensional objects, where the mean interver-
tex distance grows as N1/d, d being the dimension of an
object. (We discuss sparse networks.) By definition, a
small world is a network with the small-world effect. Note
that this definition is not related to the presence of loops
in a network. Small worlds may be loopy or clustered
networks, or they may be without loops—trees.

The mean intervertex distances in networks were ex-
tensively studied both in the framework of empirical re-
search [7] and analytically [8, 9, 10, 11]. The typical size
dependence of the mean intervertex separation is loga-
rithmic, ℓ(N) ∝ lnN . However, the mean intervertex
distance is an integrated, coarse characteristic. One may
be interested in a more delicate issue—the position of
an individual vertex in a network. One should note that
recently Holyst et al. [12], have considered the ques-
tion: how far are vertices of specific degrees from each
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other? In the present paper we present results for another
(though related) characteristic of a complex network—
the mean length of the shortest paths from a vertex of
a given degree k to the remaining vertices of the net-
work, ℓ(k). In simple terms, we reveal the smallness of a
network from the point of view of its vertex of a given de-
gree. We obtain nontrivial dependences ℓ(k) for networks
with power-law and exponential degree distributions. We
mostly consider growing networks, where correlations be-
tween the degrees of vertices are important, but for com-
parison, also discuss uncorrelated networks. In our study
we use convenient deterministic growing graphs and com-
pare some of our results with simulations of a stochastic
model of a growing network.

In Sec. II we list our results. Section III contains a
discussion of the ℓ(k) dependence in uncorrelated net-
works. Section IV explains in detail how the results were
obtained.

II. RESULTS

Our results were obtained by using simple determin-
istic graphs which allow exact solution of the problem.
Deterministic small worlds were considered in a number
of recent papers [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
and have turned out to be a useful tool. (We called these
networks pseudofractals. Indeed, at first sight, they look
as fractals. However, they are infinite dimensional ob-
jects, so that they are not fractals.) These graphs cor-
rectly reproduce practically all known network charac-
teristics. We use a set of deterministic scale-free models
with various values of the degree distribution exponent
γ, P (k) ∝ k−γ (see Fig. 1). We consider deterministic
graphs with γ in the range between 2 and ∞, where a
graph with γ = ∞ has an exponentially decreasing (dis-
crete) spectrum of degrees.

In the scale-free deterministic graphs, the result for
the mean separation of a vertex of degree k from the

mailto:sdorogov@fis.ua.pt
mailto:jfmendes@fis.ua.pt
mailto:joaogo@fis.ua.pt


2

...

...

...

...

(d)

(c)

(b)

(a) ...

(e)

0 1 2 3 ...

FIG. 1: The set of deterministic graphs that is used in this paper. (a) A scale-free graph with the exponent of the degree
distribution γ = 1+ln 3/ ln 2 = 2.585 . . . [2, 14]. At each step, each edge of the graph transforms into a triangle. (b) A scale-free
tree graph with γ = 1 + ln 3/ ln 2 = 2.585 . . . [15]. At each step, a pair of new vertices is attached to the ends of each edge of
the graph. (c) A scale-free tree graph with γ = 3. At each step, a pair of new vertices is attached to the ends of each edge plus
a new vertex is attached to each vertex of the graph. (d) A scale-free tree graph with γ = 1 + ln 5/ ln 2 = 3.322 . . .. At each
step, a pair of new vertices is attached to the ends of each edge plus two new vertices are attached to each vertex of the graph.
(e) A deterministic graph with an exponentially decreasing spectrum of degrees [15]. At each step, a new vertex is attached to
each vertex of the graph. In all these graphs, a mean intervertex distance grows with the number N of vertices as ln N .

remaining vertices of the network looks as follows:

ℓ(k) = A ln

[

N

k(γ−1)/2

]

− C
kγ−1

N
+ . . . . (1)

The constants A and C (and the sign of C) depend on a
particular network. This asymptotic formula is true for
large enough k. We believe that this dependence is valid
for a wide class of random, growing, scale-free networks.
One should note that in all of the growing networks con-
sidered in this paper, new connections cannot emerge be-
tween already existing vertices. These networks are of-
ten called “citation graphs”. For more general scale-free
graphs, one may suggest the main contribution of the
form ℓ(k) ∼= A lnN + B ln k.

In the specific point γ = 3, correlations between the de-
grees of the nearest neighbors in these graphs are anoma-
lously low. In this situation, the main contribution to
ℓ(k) reduces to ℓ(k) ∝ ln(N/k), which coincides with the
result for equilibrium uncorrelated networks (see the next
section).

Formula (1) fails at γ → ∞. E.g., it cannot be applied
for networks with an exponential degree distribution. For
growing trees with this distribution, the resulting depen-
dence turned out to be

ℓ(k) ∼= A lnN − Ck , (2)

where the constants A and C depend on a network. We
obtained this dependence analytically for deterministic
graphs (trees) with an exponential degree distribution
[e.g., graph (e) in Fig. 1]. We observed the same de-
pendence in a stochastically growing tree with random
attachment. In this tree (with an exponential degree dis-
tribution), at each time step, a new vertex is attached to
a randomly selected vertex of the net. The result of the
simulation of this network is shown in Fig. 2(a). In both
the networks—graph (e) in Fig. 1 and the correspond-
ing stochastic net with random attachment—the slope of
the degree dependence equals −1/2. More generally, if
in a growing tree of this kind, at each step, n new ver-
tices become attached to a vertex, the slope of the degree
dependence equals −1/(n + 1) [see Fig. 2(b)].
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FIG. 2: Degree-dependent mean intervertex separation of
stochastic networks (trees) growing under the mechanism of
random attachment. These networks have exponential degree
distributions. (a) At each time step, a vertex is attached to
a randomly chosen vertex of the network. The dependence
is the result of the simulation of the network of 105 vertices,
50 runs. For comparison, a line with a slope −1/2 is shown.
(b) At each time step, 3 vertices are attached to a randomly
chosen vertex of the network. The dependence is presented
for the network of 9998 vertices, 50 runs. For comparison, a
line with a slope −1/4 is shown.

All networks that we studied, had the generic property:

max
k

ℓ(k) = 2 min
k

ℓ(k) , (3)

in the large network limit. As is natural, the maximum
value of ℓ(k) is realized at the minimal degree of a vertex
in a network, and vise versa, the minimum value of ℓ(k)
is attained at the maximum degree.

III. ℓ(k) OF AN UNCORRELATED NETWORK

The configuration model [24, 25, 26, 27] is a standard
model of an uncorrelated (equilibrium) random network.

In simple terms, these are maximally random graphs with
a given degree distribution. In the large network limit,
they have relatively few loops and almost surely are trees
in any local environment of a given vertex. The mean
intervertex distance ℓ in these networks is estimated in
the following way, Ref. [8] (see also Refs. [9, 11]). The
mean number of m-th nearest neighbors of a vertex is

zm = z1(z2/z1)
m−1 , (4)

where z1 = 〈k〉 is the mean number of the nearest neigh-
bors of a vertex, i.e., the mean degree. z2 = 〈k2〉 − 〈k〉
is the mean number of the second nearest neighbors of
a vertex. z2/z1 is actually the branching coefficient. By
using formula (4), one can get ℓ: zℓ ∼ N , so ℓ(N) ≈
lnN/ ln(z2/z1).

Similarly, for the mean number of m-th nearest neigh-
bors of a vertex of degree k, we have

zm(k) = k(z2/z1)
m−1 . (5)

So, the estimate is k(z2/z1)
ℓ(k)−1 ∼ N and thus

ℓ(k) ≈
ln(N/k)

ln(z2/z1)
. (6)

The relation (5) is evident. It also may be obtained
strictly by using the Z-transformation technique:

zm(k) =

[

x
d

dx
φk

1(φ1(. . . φ1(x)))

]

x=1

. (7)

φ1(x) = φ(x)/z1 is the Z-transformation of the dis-
tribution of the number of edges of an end vertex of
an edge with excluded edge itself. φ(x) is the Z-
transformation of the degree distribution of the network:
φ(x) ≡

∑

k P (k)xk. Formula (7) is a direct consequence
of the following features of the configuration model: (i)
the network has a locally tree-like structure, (ii) vertices
of the network are statistically equivalent, (iii) correla-
tions between degrees of the nearest neighbor vertices
are absent. Relation (7) together with φ1(1) = φ(1) = 1
readily leads to relation (6).

One point should be emphasized. In the configuration
model, the logarithmic size dependence of the mean in-
tervertex distance ℓ(N) ∼ lnN is valid only for degree
distributions with a finite second moment 〈k2〉. If 〈k2〉 di-
verges as N → ∞, ℓ(N) grows slower than lnN . One can
see that the result (6) may be generalized to any given
form ℓ(N) of the size-dependence of the mean interver-
tex distance. In this general case, the degree-dependent
separation is expressed in terms of the function ℓ(N),
namely, ℓ(k, N) ∼ ℓ(N/k).

IV. DERIVATIONS

In this section we obtain a degree-dependent inter-
vertex separation for the deterministic graphs of Fig. 1.
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Graphs (a) – (d) have a discrete spectrum of vertex de-
grees with a power-law envelope. Graph (e) has a discrete
spectrum of vertex degrees with an exponential envelope.
We also list some basic characteristics of these graphs.
We stress that the main structural characteristics (clus-
tering, degree–degree correlations [28, 29, 30, 31, 32, 33],
etc.) of these deterministic networks are quite close to
those of their stochastic analogs (see [14]).

(A) Graph (a) in Fig. 1.—This graph was proposed in
Ref. [2] and extensively studied in Ref. [14]. The growth
starts from a single edge (t = 0). At each time step, each
edge of the graph transforms into a triangle. Actually,
we have a deterministic version of a stochastic growing
network with attachment of a new vertex to a randomly
chosen edge, see Ref. [34]. The number of vertices of the
graph is Nt = 1+(3t+1)/2. (t = 0, 1, 2, . . . is the number
of the generation.) In the large network limit, the mean
degree of the graph is 〈k〉 → 4.

Degrees of the vertices in the graph take values k(s) =
2s, s = 1, 2, . . . , t. The spectrum of degrees has a power-
law envelope. This spectrum corresponds to a contin-
uum scale-free spectrum P (k) ∝ k−γ with exponent
γ = 1 + ln 3/ ln 2 = 2.585 . . .. Note that this network
has numerous triangles, which suggests high clustering.
In more detail, by definition, the average clustering coef-
ficient of a vertex of degree k is

C(k) =

〈

c(k)

k(k − 1)/2

〉

k

=
〈c(k)〉k

k(k − 1)/2
. (8)

Here, c(k) is the number of triangles attached to a vertex
of degree k, and 〈 〉k means the averaging over all vertices
of degree k. One can see that in this graph (as well as in
its stochastic version)

C(k) =
2

k
. (9)

This gives, for the mean clustering,

C =
∑

k

P (k)C(k) =
4

5
, (10)

while the standard clustering coefficient (transitivity),
i.e., the density of loops of length 3 in a network,

C =

∑

k P (k)C(k)k(k − 1)
∑

k P (k)k(k − 1)
, (11)

approaches zero in the infinite network limit, C = 0.
Note the difference between the finite mean clustering of
the network and its zero clustering coefficient.

One can derive an exact analytical expression for the
degree-dependent separation by using recursion relations
and the Z-transformation technique. However, here we
demonstrate a more rapid way which turns out to be
useful in many situations:

(i) Find the mean separation values ℓt(s) for all kinds
of vertices in each of several first generations of the
deterministic graph [t is the number of generation,
and k = 2s, s = 1, 2, . . . , t];

(ii) by using this array of numbers, guess the form of
ℓt(s);

(iii) check this result by computing directly ℓt(s) for
several extra generations of the graph.

There are few computations in stage (i): we have to find
only t values of ℓt(s) in a t generation of a graph. For suf-
ficiently small networks, these values can be found even
without a computer. Step (ii) also turns out to be rather
easy since we already know the structure of the analyt-
ical expressions for a mean intervertex distance in these
networks (see Ref. [14]). In this way, we get

ℓt(s) =
1

2(Nt − 1)
[2(2t− s + 5)3t−2 − 3s−1 + 1] . (12)

This exact result is valid for t ≥ 1. An asymptotic form
of this expression is

ℓ(k, N) =
4

9 ln 3
lnN−

2

9 ln2
ln k−

kγ−1

6N
+

4

9

ln 2

ln 3
+

10

9
+. . .

(13)
at large k [k ≫ (lnN)1/(γ−1), N is the total number of
vertices in the graph]. This leads to result (1).

One can see that the minimum value of ℓ(k) is ℓmin =
ℓ(k = 2t) ∼= 2t/9, where t ∼= lnN/ ln 3. The maximum
number of ℓ(k) is ℓmax = ℓ(k = 2) ∼= 4t/9. So, we arrive
at relation (3): ℓmax = 2ℓmin.

(B) Graph (b) in Fig. 1.—This graph was proposed
in Ref. [15]. At each time step, each edge of the graph
transforms in the following way: each end vertex of the
edge gets a new vertex attached [see Fig. 1, graph (b),
instant 0 → instant 1]. This graph is very similar to graph
(a). In particular, the exponent of its degree distribution
is the same, γ = 1 + ln 3/ ln 2 = 2.585 . . .. The difference
is that the graph is a tree, so the mean degree 〈k〉 → 2
as N → ∞.

The total number of vertices in the graph is Nt =
3t + 1. The vertices have degrees k(s) = 2s, where
s = 0, 1, 2, . . . , t. In the same way as for graph (a), we
find the exact expression

ℓt(s) =
1

2(Nt − 1)
[(4t − 2s + 9)3t−1 − 3s] , (14)

which is valid starting with t = 0. This leads to the
asymptotic relation

ℓ(k, N) =
2

3 ln 3
lnN −

1

3 ln 2
ln k−

kγ−1

2N
+

3

2
+ . . . , (15)

that is, to result (1).
The minimum value of ℓ(k) is ℓmin = ℓ(k = 2t) ∼= t/3,

where t ∼= lnN/ ln 3. The maximum value is ℓmax =
ℓ(k = 1) ∼= 2t/3, i.e., again, we confirm the validity of
relation (3).

(C) Graph (c) in Fig. 1.—At each step, (i) a new vertex
becomes attached to each end vertex of each edge of this
graph and, simultaneously, (ii) a new vertex becomes at-
tached to each vertex of the graph. This produces a grow-
ing deterministic scale-free tree with exponent γ = 3,
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which is a deterministic analog of the Barabási-Albert
model [35, 36] (for exact solution of the stochastic model,
see Refs. [28, 37, 38]).

The number of vertices in the graph is Nt = 1 +
(4t+1 − 1)/3. Their degrees take values k(s) = 2s − 1,
s = 1, 2, 3, ..., t+1. The resulting formula for the degree-
dependent separation is

ℓt(s ≥ 2) =
1

9(Nt − 1)
[2(6t− 3s + 10)4t − 4s − 1] . (16)

Asymptotically, this is

ℓ(k, N) =
1

ln 4
lnN −

1

2 ln 2
ln k−

kγ−1

9N
+

ln 3

2 ln 2
+

2

3
+ . . .

(17)
for k3 ≫ N (note that the maximum degree of a vertex
in this graph is kmax ∼ N1/2). This leads to expression
(1) with γ = 3, which coincides with result (6) for uncor-
related networks. This is an understandable coincidence.
Indeed, correlations between degrees of the nearest neigh-
bor vertices in this deterministic graph, as well as in the
Barabási-Albert model are anomalously week. So, the
result must be close to that for an uncorrelated network.

The minimum value of ℓ(k) in this graph is ℓmin =
ℓ(k = 2t+1 − 1) ∼= t/2, where t ∼ lnN/ ln 4. The maxi-
mum value is ℓmax = ℓ(k = 1) ∼= t, and so the relation
(3) is fulfilled.

(D) Graph (d) in Fig. 1.—At each step, (i) a pair of
new vertices is attached to ends of each edge of the graph
plus (ii) two new vertices are attached to each vertex of
the graph. This results in the value of the γ exponent
greater than 3, γ = 1 + ln 5/ ln 2 = 3.322 . . ..

The number of vertices in the graph is Nt = (3 · 5t +
1)/2. Degrees of the vertices are k(s) = 3 · 2s−1 − 2,
s = 1, 2, 3, ..., t + 1. The exact expression for the degree-
dependent separation is

ℓt(s) =
1

8(Nt − 1)
[(72t−36s+71+53−s)5t−1+2 5s−1−6] .

(18)
The corresponding asymptotic expression is of the fol-
lowing form:

ℓ(k, N) =
6 lnN

5 ln 5
−

3 ln k

5 ln 2
−

5− ln 3/ ln 2

4N
kγ−1 +1.232+ . . . ,

(19)
where the contribution 1.232 . . . = (6 ln(2/3))/(5 ln 5) +
(3 ln 3)/(5 ln 2)+7/12. Again, now with the graph where
γ > 3, we arrive at formula (1).

In this graph, we have ℓmin = ℓ(k = 3 · 2t − 2) ∼= 3t/5
and ℓmax = ℓ(k = 1) ∼= 6t/5, where t ∼= lnN/ ln 5.

(E) Graph (e) in Fig. 1.—At each time step, a new ver-
tex becomes attached to each vertex of the graph. The
growth starts with a single vertex (t = −1). The total
number of vertices in the graph is Nt = 2t+1. The degree
distribution is exponential. One can check that the num-
ber of vertices of degree k at time t is Nt(k ≤ t) = 2t+1−k,
Nt(k = t + 1) = 2 (t is assumed to be greater than −1).

By using the procedure that was described above, we
find the exact expression:

ℓt(k) =
2t

2t+1 − 1
(2t + 2 − k) . (20)

This formula shows that the linear dependence on degree
is valid for any k. For the large graphs we have

ℓ(k, N) ∼=
lnN

ln 2
−

k

2
, (21)

which confirms formula (2).
In this graph, ℓmin

∼= lnN/(2 ln 2) ∼= ℓmax/2 which
coincides with relation (1).

Graph (e) has a close stochastic analog—a tree, where
at each step, a new vertex is attached to a randomly
chosen vertex. In principle, this is a solvable model.
However, for comparison, we present here the result of
the simulation of this stochastic network. Figure 2(a)
demonstrates that the dependence ℓ(k) in the stochasti-
cally growing network is a linear function with the same
slope −1/2 as in deterministic small world (e) in Fig. 1.

We also considered more general deterministic graphs
of this type, where n new vertices become attached to
each vertex of a network at each time step. The result-
ing dependence ℓ(k) is a linear function but with slope
−1/(n + 1). Figure 2(b) shows that ℓ(k) of the corre-
sponding stochastically growing networks has the same
form.

V. DISCUSSION AND SUMMARY

Several points should be emphasized:
(i) One of the aims of this paper is to demonstrate,

how one can study characteristics of growing networks by
using simple deterministic graphs. We have found exact
expressions for a degree-dependent vertex separation ℓ(k)
for a number of deterministic graphs and have suggested
that ℓ(k) of the close stochastic analogs of these graphs
behaves similarly. This suggestion is based on already
known parallels for other characteristics, however, it is
only a suggestion. We have checked it in some situations
(see Fig. 2), but cannot prove it.

(ii) We used a set of deterministic graphs, which cov-
ers a wide range of typical situations in growing net-
works. In the scale-free graphs that we used the γ expo-
nent varied in the range (2,∞). We considered clustered
graphs and trees. Furthermore, as is natural, these grow-
ing graphs have degree–degree correlations. We observed
that the dependence ℓ(k) of a deterministic graph with
weak degree–degree correlations has a form typical for
the configuration model, i.e., uncorrelated network. We
indicate that the growing networks that are discussed
in this paper grow only due to connection of new ver-
tices to existing ones. New connections cannot emerge
between already existing vertices. That is, these net-
works are “citation graphs”. This is a serious restriction.
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Note, however, that this class of network is a topic of
an overwhelming number of the studies of growing net-
works. We expect that in more general scale-free net-
works, instead of ℓ(k) ∼= A ln[N/k(γ−1)/2], one will find
ℓ(k) ∼= A lnN − B ln k, where A and B are some con-
stants.

(iii) We believe that the correction term in formula (1)
can be hardly observed due to its smallness. It is the
form of the main contributions in formulas (1) and (2),
that is important. We found that these expressions differ
from that for the configuration model, formula (6).

(iv) One should indicate that result (2), i.e., a linear de-
pendence ℓ(k), was obtained only for growing trees with
an exponential degree distribution. In non-tree growing
networks with random attachment (at each time step, a
new vertex becomes attached to several randomly chosen
vertices), we observed a non-linear dependence.

(v) The relative width of the distribution of the inter-
vertex distance in infinite small worlds approaches zero
[9, 14]. In other words, vertices of an infinite small world
are almost surely mutually equidistant. This circum-
stance does not allow one to measure ℓ(k) in an infinite
network with the small-world effect. However, even in
very large real-world networks (e.g., in the Internet [30]),
the distribution of the intervertex distance is still broad
enough. So, in real networks, ℓ(k) is a measurable char-

acteristic.

In conclusion, we have found the mean length of the
shortest paths between a vertex of degree k and other
vertices in a number of networks with power-law and ex-
ponential degree distributions. We have obtained these
dependences by using a representative set of determinis-
tic graphs. We have checked that these laws are also
realized at least in several stochastically growing net-
works. We have observed the dependences ℓ(k) which
strongly differ from those for uncorrelated networks. We
believe that our results hold for a wide class of random
networks. Our results characterize the compactness of a
network from the point of view of a vertex with a given
number of connections.
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