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Pseudofractal Scale-free Web
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We find that scale-free random networks are excellently modeled by a deterministic graph. This
graph has a discrete degree distribution (degree is the number of connections of a vertex) which is
characterized by a power-law with exponent γ = 1 + ln 3/ ln 2. Properties of this simple structure
are surprisingly close to those of growing random scale-free networks with γ in the most interesting
region, between 2 and 3. We succeed to find exactly and numerically with high precision all main
characteristics of the graph. In particular, we obtain the exact shortest-path-length distribution.
For the large network (lnN ≫ 1) the distribution tends to a Gaussian of width ∼

√
ln N centered

at ℓ ∼ ln N . We show that the eigenvalue spectrum of the adjacency matrix of the graph has a
power-law tail with exponent 2 + γ.
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The essence of the modern situation in network sci-
ence is the change-over from study of classical random
graphs with Poisson degree distributions [1,2] to explo-
ration of complex networks with fat-tailed degree distri-
butions [3–8]. The prominent particular case of such nets
are networks with power-law degree distributions (scale-
free networks) [3]. While growing, such nets actually self-
organize into scale-free structures. These networks play
a great role in Nature [4–6]. The Internet, the WWW,
and many basic biological networks belong to this class.
Fat tails of the degree distributions produce a number of
intriguing effects [9–14].

Such networks are widespread, but very little is still
known even about their basic properties [15,16]. Most
of real growing scale-free networks have γ exponent of
the degree distribution P (k) ∼ k−γ in the range (2, 3),
but this case turned to be the most difficult and unex-
plored. In particular, no exact results for the average
shortest-path length ℓ are known in this situation. The
only known exact shortest-path length distributions were
obtained for the simplest equilibrium networks [17,18].
Notice that if γ ≤ 3, standard estimates of ℓ [19] are
inapplicable to equilibrium networks with uncorrelated
vertices. Correlations in growing networks are inevitable,
and the results are even less encouraging. The generic
property of these networks, which makes their analytical
study so hard, is a complex structure of their adjacency
matrices.

Scale-free random networks naturally have a contin-
uous degree distribution spectrum, but it has recently
been shown that discrete degree distributions of some de-
terministic graphs also have a power-law decay [20]. The
leading idea of the present work is the following. If it is so
hard to get exact or precise results for scale-free random
networks, especially, with 2 < γ < 3, let us (i) construct
a simple deterministic scale-free graph with such γ, (ii)
obtain exact (analytical) and precise (numerical) answers
for main structural and topological characteristics of the
graph, (iii) compare its properties with known charac-

teristics of corresponding scale-free growing random net-
works, and (iv) if these properties coincide, make new
predictions for scale-free growing random networks. We
actually model scale-free networks with 2 < γ < 3 by the
deterministic graph, whose structure can be described
completely.

Here we present results of this program. We succeed
to find a number of exact characteristics of the scale-free
deterministic graph, which are still unknown for random
scale-free networks. The structural properties of deter-
ministic and random scale-free growing networks proved
to be surprisingly close to each other, so that our results
can be reasonably applied to random growing nets.

Pseudofractal graph.—The growth starts from a single
edge connecting two vertices at t = −1 (see Fig. 1). At
each time step, to every edge of the graph, a new vertex
is added, which is attached to both the end vertices of
the edge. Then, at t = 0, we have a triangle of edges
connecting a triple of vertices, at t = 1, the graph con-
sists of 6 vertices connected by 9 edges, and so on. The
total number of vertices at “time” t is Nt = 3(3t + 1)/2,
and the total number of edges is Lt = 3t+1, so that the
average degree is kt = 2Lt/Nt = 4/(1 + 3−t).

This simple rule produces a complex growing network
which is certainly not a fractal [21]. Indeed, at any step,
the entire graph can be set inside of a unit triangle.
This means that the structure has no any fixed finite
fractal dimension. On the other hand, one can depict
the graph in another way, namely, like in Fig. 1 where
the graph is surrounded by a long chain of edges. The
length of this “perimeter” is Pt = 3 · 2t edges, whence

Nt ∼ Lt ∼ P
ln 3/ ln 2
t . We can, however, fold the graph

into a more compact structure with a different border,
so that ln 3/ ln 2 is not a fractal dimension of the struc-
ture but only some characteristic value. We failed to
introduce a well defined spectrum of fractal dimensions
(between ln 3/ ln 2 and ∞), hence the network cannot be
called a multifractal. Thus, this graph is not a fractal
but only parody of it, and we call it, for brevity, pseud-
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ofractal. Notice that the graph contains numerous loops
and hence is very far from tree-like.

Adjacency matrix.—By definition, an element aij of an
adjacency matrix is equal to 1 or 0 depending on whether
an edge between vertices i and j is present or not. The
adjacency matrix Ât structure is schematically shown in
Fig. 2. At t = −1, this is the 2 × 2 matrix with zeros
on the diagonal and two unit elements. At timestep t,
we add rows and columns i, j = Nt−1 + 1, . . . , Nt (new
vertices) to the matrix. Matrix is symmetric, and each

unit element aij above the diagonal of the matrix Ât−1

generates, in addition, two unit elements ais and ajs of

Ât. Here Nt−1 + 1 ≤ s ≤ Nt. Other elements are zeros.
This produces the sparse block matrix shown in Fig. 2.

Degree distribution.—The degree spectrum of the
graph is discrete: at time t, the number m(k, t) of ver-
tices of degree k = 2, 22, 23, . . . , 2t−1, 2t, 2t+1 is equal to
3t, 3t−1, 3t−2, . . . , 32, 3, 3, respectively. Other values of
degree are absent in the spectrum. Clearly, for the large
network, m(k, t) decreases as a power of k, so the net-
work can be called “scale-free”. Spaces between degrees
of the spectrum grow with increasing k. Therefore, to
relate the exponent of this discrete degree distribution to
standard γ exponent of a continuous degree distribution
for random scale-free networks, we use a cumulative dis-
tribution Pcum(k) ≡ ∑

k′≥k m(k′, t)/Nt ∼ k1−γ . Here k

and k′ are points of the discrete degree spectrum. Thus
we obtain

γ = 1 +
ln 3

ln 2
, (1)

so that 2 < γ = 2.585 . . . < 3. Compare γ with
the characteristic exponent in the relation between the
“mass” and the “perimeter” of the graph. Also, no-
tice that the maximal degree of a vertex is equal to

2t+1 ∼ N
ln 2/ ln 3
t = N

1/(γ−1)
t , which coincides with a

standard relation for the cutoff of degree distribution in
growing scale-free networks [6].

Distribution of clustering.—By definition, the cluster
coefficient C of a vertex is the ratio of the total number
of existing connections between all k its nearest neigh-
bors and the number k(k − 1)/2 of all possible connec-
tions between them. Usually, only the average value of
the clustering coefficient is considered. In our case, it is
possible to obtain a more rich characteristic, namely, the
distribution of the clustering coefficient in the graph.

One can see that, in this graph, there is a one-
to-one correspondence between clustering coefficient of
a vertex and its degree: C = 2/k. Thus, the
number mc(C, t) of vertices with clustering coeffi-
cient C = 1, 2−1, 2−2, . . . , 22−t, 21−t, 2−t is equal to
3t, 3t−1, 3t−2, . . . , 32, 3, 3, respectively. In this case, it is
natural to introduce the cumulative distribution of the
clustering coefficient Wcum(C) ≡ ∑

C′≤C mc(C
′, t)/Nt ∼

C ln 3/ ln 2 = Cγ−1, where C and C′ are points of the dis-
crete spectrum. This corresponds to power-law behavior

of the corresponding continuous distribution of clustering
W (C) ∼ C γ−2 for random scale-free network at small C.

The average clustering coefficient can be easily ob-
tained for arbitrary t,

Ct =
4

5

6t + 3/2

2t(3t + 1)
. (2)

For the infinite graph, C = 4/5, so the clustering is high.
Degree correlations.—The number m(k, k′, t) of edges,

which connect vertices of degree k and k′, characterizes
short-range degree-degree correlations in the graph. It
is convenient to write k ≡ 2p+1 and use the notation
m(k, k′, t) ≡ c(p, p′, t). Then one can find directly:

c(t, t, t) = 3 ,

c(t, p′ ≤ t − 1, t) = 3 · 2t−1−p′

,

c(p ≤ t − 1, p′ ≤ p − 1, t) = 3t−p 2p−p′−1 . (3)

This yields the cumulative distribution ∼ k2−γk′ −1 (we
assume that k ≫ k′), which, in turn, corresponds to the
effective continuous distribution

P (k, k′) ∼ k1−γk′ −2 . (4)

This expression coincides with the corresponding asymp-
totic formula for an arbitrary random scale-free citation
graph [6] (by definition, a citation graph is a growing net-
work, in which new edges do not emerge between pairs
of old vertices). Originally, Eq. (4) was obtained exactly
for a specific model in Ref. [22].

Shortest-path length distribution.— Here we briefly
outline our exact results for the distribution P(ℓ, t) ≡
n(ℓ, t)/[Nt(Nt−1)/2], where n(ℓ, t) is the number of pairs
of vertices with minimal separation ℓ. Details of the solu-
tion and general expressions for n(ℓ, t) will be published
elsewhere.

For calculation of n(ℓ, t) one may use the following
property. The length ℓij of the shortest path between
vertices i and j is equal to the minimal power of the ad-
jacency matrix with nonzero {ij} element: {Âℓ−1}ij =

0, {Âℓ}ij 6= 0. This property allows us to obtain n(ℓ, t)
by counting the total numbers of nonzero elements in
sequential powers of the adjacency matrix. This yields
n(ℓ, t) for several first steps:

3
9 6
27 57 21
81 351 369 60
243 1806 3582 1716 156
. . .

(5)

where t labels lines (t = 0, 1, 2, 3, 4, . . .) and ℓ =
1, 2, 3, 4, 5, . . . is the index of columns.

The exact analytical form of the distribution P(ℓ, t)
was obtained by solution of recursion relations for
n(ℓ, t). In particular, an exact expression for the aver-
age shortest-path length is of the form
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ℓ(t ≥ 0) =
(4t + 11)32t + 10 · 3t + 3

3(3t + 1)(3 · 3t + 1)
. (6)

One may check this expression using Eq. (5). The distri-
bution quickly approaches an asymptotic regime, where

ℓ(t ≫ 1) =
4

9
t +

11

9
+ O(t 3−t) ∼= 4

9
lnNt +

5

3
ln

3

2
. (7)

Thus, the average shortest-path length logarithmically
grows with increasing size of the graph. Expression
(7) may be compared with the standard estimate [19]:
ℓ ∼ lnN/ ln k = lnN/ ln 4. The relative difference is sur-
prisingly small, (4/9)/(ln 4)−1 = 0.616 . . .. Notice that
according to standard arguments [5,6], the classical for-
mula is not applicable for γ ≤ 3. Nevertheless, Eq. (7)
demonstrates that the classical estimate is unexpectedly
good in this case where degree-degree correlations are
strong.

At large t, the distribution takes the Gaussian form

P(ℓ, t) ∼= 1
√

2π(22/33)t
exp

[

− (ℓ − ℓ(t))2

2(22/33)t

]

, (8)

which is violated only in narrow regions of width ∼ t1/3

near the points ℓ = 1 and ℓ = t + 1. One sees that the
width of the distribution is of the order of

√
t ∼

√
lnNt ≪

ℓ(t). Notice that the simulations of the Barabási-Albert
growing random network also yield a Gaussian-like P(ℓ)
[8].

Eigenvalue spectrum of the adjacency matrix.—The
spectrum G(λ) contains Nt eigenvalues. For t ≥ 2,
Nt−1−3 of them are equal to zero and, for t ≥ 3, there are
Nt−2 − 3 eigenvalues equal to

√
2 and the same number

of those equal to −
√

2. Here we do not derive analytical
results for the entire eigenvalue spectrum but only study
its tail using a simple numerical analysis.

It is convenient to consider a cumulative distribution of
eigenvalues Gcum(λ) ≡

∑

λ′≥λ G(λ′). The results of nu-
merical diagonalization of the adjacency matrix for sev-
eral timesteps are shown in Fig. 3. One sees that, in the
large graph limit, the resulting cumulative distribution
approaches a staircase-like form for λ ≫ 1.

We found network-size-independent points of
the spectrum. Using the coordinates of these
points, we calculated the series of slops of
lines connecting these points in Fig. 3:
1.49847, 2.38192, 3.03023, 3.40683, 3.53135, 3.557
(the last value is actually a very good estimate ob-
tained for t = 8). Interpolation of these values yields
the exponent δ − 1 = 3.575 ± 0.015 of the cumula-
tive distribution Gcum(λ) ∼ λ−(δ−1). This value is
2 + ln 3/ ln 2 = 1 + γ = 3.585 . . . to within a precision of
our numerics. The height of steps in Fig. 3 is log10 3,
their width approaches [(2/ log10 3) + (1/ log10 2)]−1 for
λ ≫ 1.

Thus, one can suggest that exponent δ of the corre-
sponding continuous eigenvalue spectrum G(λ ≫ 1) ∼
λ−δ is δ = 2 + γ. One should mention that the direct

study of the eigenvalue spectrum for a growing random
network with γ = 3 (the Barabási-Albert model) showed
power-law dependence in a too narrow range of λ to make
precise conclusions [23] (see also Ref. [24]). An estimate
for the exponent in this situation was δ ≈ 5 [23], which
supports our conjecture.

Percolation properties.—Let us delete at random ver-
tices or edges of the pseudofractal. One may check that,
in the infinite network limit, the giant connected compo-
nent of the graph disappears only if “almost all” vertices
or edges are removed. In the language of mathemat-
ical graph theory this means that the fraction of ver-
tices (edges), which we have to delete, approaches one
as Nt → ∞. This is a standard property of scale-free
networks with γ ≤ 3 [10].

Discussion.—The network that we study in this Letter
is a citation graph. Each new edge connects a new vertex
and an old one. This is actually a deterministic variation
of the scale-free growing network [25] in which one vertex
is created per unit time and connects to both the ends of
a randomly chosen edge. Therefore, it is not so strange
that the properties of the pseudofractal network resem-
bles those of scale-free random citation graphs. However,
it is really surprising how close they appear to each other.
Hardly one can propose more simple deterministic scale-
free growing network. Therefore, we have found a very
convenient tool for exploration of complex scale-free net-
works.

The extreme simplicity of the pseudofractal graph has
allowed us to obtain a number of new results for grow-
ing networks. In particular, for this network with strong
correlations, we have obtained the exact shortest-path-
length distribution and the eigenvalue spectrum of the
complex adjacency matrix. From the latter, we have
made a conjecture that exponent of eigenvalue spectra
of scale-free citation graphs is 2 + γ. Actually, we have
shown that randomness of scale-free growing networks is
of secondary importance for their structure.
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FIG. 1. Scheme of the growth of the scale-free pseudofrac-
tal graph. The growth starts from a single edge connecting
two vertices at t = −1. At each time step, every edge gen-
erates an additional vertex, which is attached to both end
vertices of the edge. Notice that the graph at timestep t + 1
can be made by connecting together the three t-graphs.

FIG. 2. Structure of the adjacency matrix of the graph
(t = 2, Nt = 15). Black regions are unit elements of the
matrix. In white regions, all matrix elements are zeros. In
grey regions, nonzero (unit) elements are present. The ma-
trix is symmetric, and each column in grey blocks above the
diagonal contains only two nonzero elements.
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FIG. 3. Log-log plot of the cumulative distribution of
eigenvalues of the adjacency matrix, Gcum(λ) ≡

∑

λ′≥λ
G(λ′).

The curves show the spectra for t = 5, 6, 7, 8. The dashed
line depicts the t → ∞ limit. The t-independent points are
marked.
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