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Abstract

The small world phenomenon, the principle that we are all linked by a short chain of
intermediate acquaintances, has been investigated in mathematics and social sciences.
It has been shown to be pervasive in both nature and engineering systems, like the
World Wide Web. Recent work of Jon Kleinberg has pointed out that people, using
only local information, are very effective at finding short paths in a network of social
contacts.

In this paper, we argue that the underlying key to finding short paths is scale
invariance. In order to appreciate scale invariance, we suggest a continuum setting,
since true scale invariance happens at all scales, something which cannot be observed in
a discrete model. We introduce a random connection model that is related to continuum
percolation, and we show the existence of a unique scale-free model, among a large class
of models, that allows construction, with high probability, of short paths between pair
of points separated by any distance scale.

Keywords: small world networks, scale invariance, random connection model, Poisson
proces.

∗This work was partially supported by DARPA grant number F33615-01-C-1895 at Berkeley, and by

the center for mathematical research Ennio De Giorgi of the Scuola Normale Superiore of Pisa, where the

authors were hosted in July 2003.

1



1 The small world phenomenon

1.1 Introduction

It often happens to meet a stranger and discover that we are linked through a short chain
of intermediate acquaintances. As early as 1929, the Hungarian writer Frigyes Karinthy [4]
speculated that anyone in the world could be connected to anyone else through a chain
consisting of no more than five intermediaries. This was long a matter of anecdotal evi-
dence, until the famous experiment of Milgram [8]. In this experiment letters were given
to subjects in one of the United States, with instructions to deliver them to a single target
person in another state, by mailing the letter to an acquaintance who the subject deemed
closer to the target. The acquaintance then got the same set of instructions, thus setting up
a chain of intermediaries. Milgram found that the average length of the chains that com-
pleted was about six—quite remarkably close to Karinthys prediction 40 years earlier. This
striking result continues today to be an object of fascination and amusement, and has been
popularized in the nineties by John Guare’s succesful play “six degrees of separation” [3].

Naturally, the experimental discovery quickly led to analytical work aimed at explaining
the phenomenon. For many years the typical explanation has been that random graphs have
low diameter. When pairs of vertices are joined uniformly at random, with some probability,
then any two vertices are connected by a short chain with high probability. This simple
model, however, fails to capture the local structure of a social network. A refinement has
been proposed in a paper by Watts and Strogatz [11]. These authors noted that many
real world networks, like the social contacts networks investigated by Milgram, but also
biological networks, and artificial networks (power grid, world wide web), tend to be highly
clustered, like lattices, but have small diameters, like random graphs. In these networks
it is possible to find short chains connecting any two vertices, but many of the neighbors
of a node are also neighbors of each other. To capture both of these properties, Watts
and Strogatz proposed a model that is a superposition of a structured subgraph of “local
contacts” and a random subgraph of “long range contacts”. They noted that by adding
uniformly at random few edges to a structured subgraph like a ring or a mesh, it is possible
to drastically reduce its diameter. Similar kind of networks have also been investigated
in the field of probabilistic combinatorics [1]. For example, Bollóbas and Chung [2] gave
bounds on the diameter of the random graph obtained by adding a random matching to
the nodes of a cycle.

There is another, more surprising conclusion to be drawn from Milgram’s experiment.
As pointed out by Kleinberg [5] [6], Milgram’s result demonstrates not only the existence of
short paths in the network, but also the ability of people at finding them. Milgram’s simple
instructions of forwarding a letter to the “closest” acquaintance to the target were sufficient
to identify such paths. Note that there is a fundamental difference between the existential
discovery and the algorithmic discovery. It is quite possible that short paths exist, but
that these cannot be found by any algorithm using only local knowledge of the network. In
Milgram’s experiment, the subjects had only knowledge of the their local contacts and of
the final target. Nevertheless, they were able to find a short path to the target.

Motivated by this observation, Kleinberg [5] [6] proposed a model that is a variant of
the small-world model of Watts and Strogatz. He considers a regular lattice, and rather
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than adding long range contacts uniformly at random, he adds them in a biased way,
having connections more likely to exist between lattice sites that are close together in the
Euclidean space defined by the lattice. He shows that the fewest number of sites visited to
reach the target using a routing algorithm with only local information, is achieved when the
probability of having a connection between two sites decays with the square of their distance.
This is the only case when it is possible for an algorithm using only local information to
reach the target in a logarithmic number of steps. Any power law exponent other than 2
leads to a polynomial number of steps. For this reason, Kleinberg concludes, many random
networks differ from social networks and do not allow fast routing with local information:
their connection probability scales wrongly.

1.2 Scale invariance and a continuum setting

Although it represents a seminal contribution, we claim that Kleinberg’s model is slightly
unnatural to describe the small world phenomenon. For one thing, it is a discrete model
that assumes all nodes to be located on a lattice, and this is often not the case in the real
world. More importantly, the number of local and long range contacts that he considers
are uniformly bounded in the system size. Namely, the local contacts are deterministically
formed by connecting each site to a constant number of p-nearest neighbors on the square
lattice, and the long range contacts that are randomly added are also a constant number
q. For example, the case p = 1, q = 2, corresponds to a social network where people live
on a square grid, each one having exactly 4 neighbors as their local acquaintances, and
exactly 2 long range acquaintances that live somewhere at random grid points. A uniform
(independent of the system size) upper bound on the number of acquaintances is somewhat
unnatural.

In this paper, we present a random connection model that is related to continuum
percolation [7], and that more naturally describes the phenomenon. We will argue that the
key to fast delivery is scale invariance, and true scale invariance can only be described in a
continuum setting that accounts for all distance scales.

When one tries to model the small world phenomenon with a continuum percolation
approach, probably the first idea that comes to mind is to represent people by points of a
Poisson point process on the plane, and connect them according to a so called connection
function g(·), that is, two people at Euclidean distance x are connected to each other (i.e.,
are acquainted) with probability g(x). Although this can certainly be done, a model along
these lines fails to capture problems in delivering messages that may arise at all scales,
including very small scales. Indeed, a connection function g(x), acting on a fixed density
of points, does not allow proper scaling of the entire model on all scales. In order to
appreciate the full scaling (which is, as we will see, closely related to fast delivery) we
suggest the following variation.

We start with an individual located at s, the source, which has a message which he
wants to delver to an individual at location t, the target. The message holder has a random
number of acquaintances, randomly located in the plane according to a non-homogeneous
Poisson process with density function g(x) = λ|x|−α, where α, λ > 0. Note that there is
no uniform upper bound on the number of acquaintances of each individual. Moreover,
it is the density of acquaintances of each node that scales with a power of the distance
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to that node. Any acquaintance at position z, say, has itself a random number of further
acquaintances, which can be described by a non-homogeneous Poisson process with density
function h(x) = λ|x − z|−α, independent of previous Poisson processes, etcetera. For any
ε > 0, we say that an ε-delivery has taken place if the message has been forwarded to an
individual within distance ε of the target.

We will show that for α < 2, any routing algorithm using only local information (that
is, the current message holder in a given step of the algorithm knows only the location
of its acquaintances and the destination) does not perform well near the target, as the
number of steps required to deliver a message in a small ε-neighborhood of the target grows
polynomially in 1/ε. On the other hand, for α > 2, the performance bottleneck is at large
distances, as the number of steps in this case grows polynomially in the distance d between
the source and the target. Finally, for α = 2, the simple greedy algorithm that forwards
the message to the acquaintance that is closest to the target, performs well at all scales,
leading to a bound on the expectation of the ε-delivery time that is logarithmic in both 1/ε
and d.

1.3 Comparison with Kleinberg’s result

Kleinberg’s result that α < 2, (giving higher probability to longer links) increases the
delivery time, is more an artefact of his model that uniformly bounds the number of contacts
enjoyed by each node, rather than a true effect of scaling. To see this, let us consider a
modified (and more natural) version of his model that does not bound the number of contacts
enjoyed by each node. Accordingly, let us consider a model where long range contacts are
added between each pair of nodes of a square grid, with probability proportional to d−α,
where d is the distance in terms of grid edges that need to be traversed to connect the two
nodes. Note that in this case the number of long range contacts departing from each node
is not bounded, because each pair has some probability, independent of all other pairs, of
being joined by an edge. The scaling of the probability distribution simply makes it less
likely that two nodes that are far away are joined by an edge. This is more natural than
assuming each node to have a fixed number of long distance acquaintances. Clearly, the
minimum delivery time of a message routed between two randomly selected nodes must be
non-decreasing in α, because there are on average fewer long range edges departing from
each node as α increases. Hence, it appears as there is nothing special about a scaling
distribution with exponent α = 2. What makes Kleinberg’s model behave differently is that
in his formulation the number q of long range contacts enjoyed by each node is uniformly
bounded in the system size, and for this reason α = 2 turns out to be the best possible
scaling exponent for the obtained random graph. Our continuum formulation shows that
having a scale-free distribution is important even if we do not bound the number of long
range connections per node. We show that different scaling laws affect the delivery time at
different distance scales, and that there is only one scale free distribution that allows fast
delivery across all distances in the considered random connection model.
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2 Precise results and proofs

Consider the full plane R
2 as our model of the real world. Let g(x) = 1/xα, for some

scaling exponent α > 0 and x ∈ R. For any given point located at position z ∈ R
2, let

its acquaintances be given by an non-homogeneous Poisson point process X with density
function h(y) = λg(|z − y|), for some λ > 0. Let d be the Euclidian distance between a
source point s ∈ R

2 and a target point t ∈ R
2. We define a decentralized algorithm as a

mechanism whereby a message is sent from s to t, being sequentially passed along a chain
of intermediate acquaintances. That is, the current message holder u in a given step knows
only the location of its acquaintances in R

2 and the location t of the target. Based on this
information, u forwards the message to one of its acquaintances. For some ε > 0, define
the ε-delivery time of a decentralized algorithm A as the number of steps required for the
message originating at s to reach an ε-neighborhood of t, making at each step the forwarding
decision based on the rules of A. Finally, let A be the decentralized algorithm that at each
steps forwards the message to the local acquaintance that is closest in Euclidian distance
to the target. We state our results in the following theorem.

Theorem 2.1 The scaling exponent α of the model influences the ε-delivery time (over a
distance d) of a decentralized algorithm as follows:

• Case 1. For α = 2, there is a constant c > 0 such that for any ε > 0 and d > ε, the
expected ε-delivery time of the decentralized algorithm A is at most c(log d + log 1/ε).

• Case 2. For α < 2, there exists a constant c(α) > 0 such that for any ε > 0, the
expected ε-delivery time of any decentralized algorithm A is at least c(α)(1/ε)2−α.

• Case 3. For α > 2 and any ε > 0 and d > 1, the expected ε-delivery time of
any decentralized algorithm A is at least cdβ, for any β < α−2

α−1 and some constant
c = c(α, β) > 0.

Essentially, the theorem says that for α = 2 it is possible to approach the target at any
distance scale in a logarithmic number of steps, steadily improving at each step. On the
other hand, when α < 2 a decentralized algorithm starts off quickly, but then slows down as
it approaches the target, having trouble to make the last small steps. Finally, for α > 2, the
situation is reversed, as the performance bottleneck is not near the target, but is at large
distances d � ε. Our Case 3 corresponds to Kleinberg’s [6] Theorem 3(b). It is interesting
that he obtains the same exponent. On the other hand, our Case 1, that corresponds to his
Theorem 2, presents a slightly better bound compared to his square of logarithm bound.

Proof of Case 1. We first compute the probability that at any step of the algorithm an
intermediate node has a neighbor that is at less than half of the distance to the target and
show that this is positive and independent of distance. We refer to Figure 1. Let OT = r
be the distance to the target. The (random) number of neighbors that are closer than r/2
to the target T has a Poisson distribution with mean

µ = λ

∫ π/6

−π/6

∫ Br(θ)

Ar(θ)
g(x)xdxdθ. (1)
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Figure 1: Decreasing the distance to the target by a factor 1/2.

By scaling we have that Br(θ) = rB1(θ), Ar(θ) = rA1(θ); and by substituting g(r) = 1/r2

into (1) we have,

µ = λ

∫ π/6

−π/6

∫ rB1(θ)

rA1(θ)

1

x2
xdxdθ = λ

∫ π/6

−π/6
log

B1(θ)

A1(θ)
dθ, (2)

which is independent of r. It follows that there is always a positive probability τ = 1− e−µ,
independent of r, that point O has a neighbor inside the line disc depicted in Figure 1, i.e.,
at least half times nearer to the target T . Hence, algorithm A, forwarding the message to
the node closest to the target, can reduce the distance to the target by a factor of at least
1/2 with uniform positive probability at each step. Whenever this occurs we say that the
algorithm has taken a successful step. We have seen that a successful step has uniform
positive probability, we now show that a step that simply decreases the distance to the
target has probability one. The number of points that are closer than r to the target is
again Poisson distributed, with mean given by the integral of λg over the disc of radius r
centered at T . It is easy to see that this integral diverges, and hence this number is infinite
with probability one. It follows that the probability of decreasing the distance to the target
has probability one. Hence, even when a step of the algorithm is not successful, it won’t
increase the distance to the target. It follows that at most a total number of n successful
steps are needed to reach an ε-neighborhood of T , starting at a distance d > ε, where

(

1

2

)n

d < ε ⇔ n <
log d + log 1/ε

log 2
. (3)

The expected waiting time for the n-th successful step is n/τ , and therefore our bound on
the expected ε-delivery time is

E(ε-delivery time) <
log d + log 1/ε

τ log 2
, (4)

which concludes the proof in this case. 2

Proof of Case 2. We consider a generic step of an algorithm, where the message is at
point O, at distance r ≥ ε from the target. We refer to Figure 2 and start by computing
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Figure 2: Getting closer to the target.

the number of acquaintances of point O that are closer to the target. This has a Poisson
distribution, and since α < 2 it has a finite mean

µ(r, α) = λ

∫ π/2

−π/2

∫ Br(θ)

0
g(r)rdrdθ

= λ

∫ π/2

−π/2

∫ rB1(θ)

0

1

rα−1
drdθ =

λ

2 − α
r2−α

∫ π/2

−π/2
B1(θ)2−αdθ = c(α)r2−α. (5)

Let an improving step of any decentralized algorithm be one that forwards the message
to a neighbor that is closer to the target. The above computation shows that when the
message is at distance ε from the source, the probability for an improving step is bounded
above by c(α)ε2−α. When the distance to the target is larger than ε, the probability to
enter the ε-neighborhood is easily seen to be smaller than this probability, since the density
of the Poisson processes decrease in the distance. Hence, at any step in the algorithm the
probability of an ε-delivery is at most c(α)ε2−α. It follows that the expected number of
steps required to enter an ε-neighborhood of the target is at least

E(ε-delivery time) ≥
1

c(α)ε2−α
. (6)

2

Proof of Case 3. Consider the collection of acquaintances of a given individual, and
denote by D the distance to the acquaintance farthest away. We compute

P (D > r) = 2πλ

∫

∞

r
x−αxdx

=
c

α − 2
r2−α,

for some constant c. This quantity tends to zero as r → ∞, since α > 2.
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We next estimate the probability that starting at distance d, an ε-delivery can take
place in at most dβ steps, for some β > 0. Delivery in at most dβ steps implies that in one
of the first dβ steps of the algorithm, there must be at least one stepsize of size at least
d1−β . According to the computation above, the probability that this happens is at most
dβd(1−β)(2−α) = d2−α−β+αβ . Writing Xd for the delivery time starting at distance d, we
have shown that

P (Xd ≥ dβ) ≥ 1 − d2−α−β+αβ

and therefore
E(Xd) ≥ dβ(1 − d2−α−β+αβ).

Whenever 2 − α − β + αβ < 0, that is, whenever

β <
α − 2

α − 1
,

this expression is at least cdβ (recall that d > 1). The result now follows. 2
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