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Models of the Small World
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It is believed that almost any pair of people in the world can be connected to
one another by a short chain of intermediate acquaintances, of typical length
about six. This phenomenon, colloquially referred to as the “six degrees of
separation,” has been the subject of considerable recent interest within the
physics community. This paper provides a short review of the topic.
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1. INTRODUCTION

The United Nations Department of Economic and Social Affairs estimates
that the population of the world exceeded six billion people for the first
time on October 12, 1999. There is no doubt that the world of human society
has become quite large in recent times. Nonetheless, people routinely claim
that, global statistics notwithstanding, it’s still a small world. And in a cer-
tain sense they are right. Despite the enormous number of people on the
planet, the structure of social networks—the map of who knows whom—is
such that we are all very closely connected to one another (Kochen, 1989;
Watts, 1999).

One of the first quantitative studies of the structure of social networks
was performed in the late 1960s by Stanley Milgram, then at Harvard
University (Milgram, 1967). He performed a simple experiment as follows.
He took a number of letters addressed to a stockbroker acquaintance of his
in Boston, Massachusetts, and distributed them to a random selection of
people in Nebraska. (Evidently, he considered Nebraska to be about as far
as you could get from Boston, in social terms, without falling off the end
of the world.) His instructions were that the letters were to be sent to their
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addressee (the stockbroker) by passing them from person to person, and
that, in addition, they could be passed only to someone whom the passer
new on a first-name basis. Since it was not likely that the initial recipients
of the letters were on a first-name basis with a Boston stockbroker, their
best strategy was to pass their letter to someone whom they felt was nearer
to the stockbroker in some social sense: perhaps someone they knew in the
financial industry, or a friend in Massachusetts.

A reasonable number of Milgram’s letters did eventually reach their
destination, and Milgram found that it had only taken an average of six
steps for a letter to get from Nebraska to Boston. He concluded, with a
somewhat cavalier disregard for experimental niceties, that six was there-
fore the average number of acquaintances separating the pairs of people
involved, and conjectured that a similar separation might characterize the
relationship of any two people in the entire world. This situation has been
labeled “six degrees of separation” (Guare, 1990), a phrase which has since
passed into popular folklore.

Given the form of Milgram’s experiment, one could be forgiven for
supposing that the figure six is probably not a very accurate one. The
experiment certainly contained many possible sources of error. However,
the general result that two randomly chosen human beings can be con-
nected by only a short chain of intermediate acquaintances has been subse-
quently verified, and is now widely accepted (Korte and Milgram, 1970).
In the jargon of the field this result is referred to as the small-world effect.

The small-world effect applies to networks other than networks of
friends. Brett Tjaden’s parlor game “The Six Degrees of Kevin Bacon” con-
nects any pair of film actors via a chain of at most eight co-stars (Tjaden
and Wasson, 1997). Tom Remes has done the same for baseball players
who have played on the same team (Remes, 1997). With tongue very firmly
in cheek, the New York Times played a similar game with the the names
of those who had tangled with Monica Lewinsky (Kirby and Sabre, 1998).

All of this however, seems somewhat frivolous. Why should a serious
scientist care about the structure of social networks? The reason is that
such networks are crucially important for communications. Most human
communication—where the word is used in its broadest sense—takes place
directly between individuals. The spread of news, rumors, jokes, and
fashions all take place by contact between individuals. And a rumor can
spread from coast to coast far faster over a social network in which the
average degree of separation is six, than it can over one in which
the average degree is a hundred, or a million. More importantly still, the
spread of disease also occurs by person-to-person contact, and the structure
of networks of such contacts has a huge impact on the nature of epidemics.
In a highly connected network, this year’s flu—or the HIV virus—can



Models of the Small World 821

spread far faster than in a network where the paths between individuals are
relatively long (Valente, 1995; Wasserman and Faust, 1997).

In addition, many of the issues which arise in the study of networks
of human beings affect other networks too. It has been suggested that the
internet (Albert et al., 1999; Broder et al., 2000), the power grid (Watts and
Strogatz, 1998), airline traffic (Amaral et al., 2000), the structure and con-
formation space of polymers (Jespersen et al, 2000a; Scala et al., 2000),
and even metabolic pathways (Wagner and Fell, 2000) show the small-
world effect. It is possible therefore that the development of effective models
of social networks will improve our understanding of many other fields as
well.

In this paper we outline some recent developments in the theory of
social networks, particularly in the characterization and modeling of
networks, in how networks change over time, and in the modeling of the
spread of information or disease over networks.

2. RANDOM GRAPHS

The simplest model of a small world is the random graph. Suppose
there is some number N of people in the world, and on average they each
have z acquaintances. This means that there are 1Nz connections between
people in the entire population. The number z is called the coordination
number of the network.

We can make a very simple model of a social network by taking N
dots (“nodes” or “vertices”) and drawing 3Nz lines (“edges”) between ran-
domly chosen pairs to represent these connections. Such a network is called
a random graph (Bollobas 1985). Random graphs have been studied exten-
sively in the mathematics community, particularly by Erdos and Rényi
(1959). It is easy to see that a random graph shows the small-world effect.
If a person A on such a graph has z neighbors, and each of A’s neighbors
also has z neighbors, then A has about z? second neighbors. Extending this
argument A also has z3 third neighbors, z* fourth neighbors and so on.
Most people have between a hundred and a thousand acquaintances, so z*
is already between about 10® and 10'2 which is comparable with the
population of the world. In general the number D of degrees of separation
which we need to consider in order to reach all N people in the network
(also called the diameter of the graph) is given by setting z? = N, which
implies that D =log N/log z. This logarithmic increase in the number of
degrees of separation with the size of the network is typical of the small-
world effect. Since log N increases only slowly with N, it allows the number
of degrees to be quite small even in very large systems.
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Random graphs have been used extensively as models of social structure
in, for example, epidemiology. The widely studied class of disease spreading
models known as susceptible/infectious/recovered (or SIR) models (Anderson
and May, 1995) is mostly based on random-graph representations of con-
tagion patterns. (Epidemiologists refer to this representation as the fully
mixed approximation.)

There is a significant problem with the random graph as a model of
social networks however. The problem is that people’s circles of acquain-
tance tend to overlap to a great extent. Your friend’s friends are likely also
to be your friends, or to put it another way, two of your friends are likely
also to be friends with one another. This means that in a real social
network it is not true to say that person A has z? second neighbors, since
many of those friends of friends are also themselves friends of person A.
This property is called clustering of networks.

A random graph does not show clustering. In a random graph the
probability that two of person A’s friends will be friends of one another is
no greater than the probability that two randomly chosen people will be.
On the other hand, clustering /as been shown to exist in a number of real-
world networks. One can define a clustering coefficient C, which is the
average fraction of pairs of neighbors of a node which are also neighbors
of each other (Watts and Strogatz, 1998; Keeling, 1999). In a fully connected
network, in which everyone knows everyone else, C = 1; in a random graph
C=z/N, which is very small for a large network. In real-world networks it
has been found that, while C is significantly less than 1, it is much greater
than O(N ~!'). In Table I, we show some values of C calculated by Watts
and Strogatz (1998) for three different networks: the network of collabora-
tions between movie actors discussed previously, the neural network of the
worm C. Elegans, and the Western Power Grid of the United States. We
also give the value C,,4 which the clustering coefficient would have on
random graphs of the same size and coordination number, and in each case

Table I. The Number of Nodes N, Average Degree of Separation /, and
Clustering Coefficient C, for Three Real-World Networks. The Last
Column Is the Value Which C Would Take in a Random Graph
with the Same Size and Coordination Number

Network N / C Crand
movie actors 225226 3.65 0.79 0.00027
neural network 282 2.65 0.28 0.05

power grid 4941 18.7 0.08 0.0005
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the measured value is significantly higher than for the random graph,
indicating that indeed the graph is clustered.

In the same table we also show the average distance / between pairs
of nodes in each of these networks. This is not the same as the diameter D
of the network discussed above, which is the maximum distance between
nodes, but it also scales at most logarithmically with number of nodes on
random graphs. This is easy to see, since the average distance is strictly less
than or equal to the maximum distance, and so / cannot increase any
faster than D. As the table shows, the value of / in each of the networks
considered is small, indicating that the small-world effect is at work. (The
precise definition of “small-world effect” is still a matter of debate, but in
the present case a reasonable definition would be that /7 should be com-
parable with the value it would have on the random graph, which for the
systems discussed here it is.)

There is also another problem with random graphs as models of social
networks. In a random graph, since each edge is present or not with a
probability independent of all other edges, the number of edges around any
given vertex—also called the degree of the vertex—is Poisson distributed;
it is for this reason that the properties of the random graph can be com-
pletely specified by the average coordination number z, since a Poisson
distribution is completely specified by its mean. In some graphs, however,
the distribution of vertex degrees is very far from Poissonian. This trend is
most striking in data from the internet (Albert ez al., 1999; Faloutsos et al.,
1999). If one plots the distribution of the number of edges (or “hyperlinks™)
emerging from web-sites, the resulting histogram has a clear power-law tail
(see Fig. 1), whereas a Poisson distribution has an exponential tail. Some
other networks, such as the network of movie actors, show similar
behavior, but with an exponential cutoff in the power law, while others
still, such as true social networks and neural networks, appear to have
exponential or Gaussian degree distributions (Amaral et al, 2000).

So, if random graphs do not match well the properties of real-world
networks, are there alternative models which do? A number of possible
models been proposed, which variously address one or more of the issues
above. We discuss a selection of these models in the next few sections.

3. THE SMALL-WORLD MODEL OF WATTS AND STROGATZ

One of the most widely-studied models of social networks, after the
random graph, is a model proposed by Watts and Strogatz (1998) which
shows both the clustering and small-world properties described in the last
section. It has roughly constant vertex degree, making it a reasonable
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Fig. 1. Cumulative distributions of the degrees of vertices in the world-wide web (circles)
and the database of movie actors (squares) on logarithmic scales. Inset: cumulative distribu-
tion of degrees for a real social network on semilogarithmic scales. The web data are well fit
by a power law in their tail, the actor data follow a power law over part of their range but
have an exponential cutoff around 1000, and the true social network has a Gaussian distribu-
tion (solid lines). After Albert et al. (1999) and Amaral et al. (2000).

model of true social networks, but probably not a good model of, for
instance, the world-wide web.

As we have argued, random graphs show the small-world effect, possess-
ing average vertex-to-vertex distances which increase only logarithmically
with the total number N of vertices, but they do not show clustering—the
property that two neighbors of a vertex will often also be neighbors of one
another. The opposite of a random graph, in some sense, is a completely
ordered lattice, the simplest example of which is a one-dimensional lattice—
a set of vertices arranged in a straight line. If we take such a lattice and
connect each vertex to the z vertices closest to it, as in Fig. 2a, then it is
easy to see that most of the immediate neighbors of any site are also
neighbors of one another, i.e., it shows the clustering property. Normally,
we apply periodic boundary conditions to the lattice, so that it wraps
around on itself in a ring (Fig. 2b), although this is just for convenience



Models of the Small World 825

Fig. 2. (a) A one-dimensional lattice with each site connected to its z nearest neighbors,
where in this case z=6. (b) The same lattice with periodic boundary conditions, so that the
system becomes a ring. (¢) The Watts—Strogatz model is created by rewiring a small fraction
of the links (in this case five of them) to new sites chosen at random.

and not strictly necessary. For such a lattice we can calculate the clustering
coefficient C exactly. As long as z <3N, which it will be for almost all
graphs, we find that

3(z—2)
C=—-— 1
4(z—1) (1)
which tends to 3 in the limit of large z. We can also build networks out of
higher-dimensional lattices, such as square or cubic lattices, and these also
show the clustering property. The value of the clustering coefficient in
general dimension d is

_ 3iz 2d) 2)
(z—d)
which also tends to 3 for z>>2d.

Low-dimensional regular lattices however do not show the small-
world effect of typical vertex—vertex distances which increase only slowly
with system size. It is straightforward to show that for a regular lattice in
d dimensions which has the shape of a square or (hyper)cube of side L, and
therefore has N = L vertices, the average vertex—vertex distance increases
as L, or equivalently as N'“ For small values of d this does not give us
small-world behavior. In one dimension for example, it means that the
average distance increases linearly with system size. If we allow the dimen-
sion d of the lattice to become large, then N ' becomes a slowly increasing
function of N, and so the lattice does show the small-world effect. Could
this be the explanation for what we see in real networks? Perhaps real
networks are roughly regular lattices of very high dimension. This explana-
tion is in fact not unreasonable, although it has not been widely discussed.
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It works quite well, provided the mean coordination number z of the ver-
tices is much higher than twice the dimension d of the lattice. (If we allow
z to approach 2d, then the clustering coefficient, Eq. (2), tends to zero,
implying that the lattice loses its clustering properties.)

Watts and Strogatz (1998) however have proposed an alternative
model for the small world, which perhaps fits better with our everyday
intuitions about the nature of social networks. Their suggestion was to
build a model which is, in essence, a low-dimensional regular lattice—say
a one-dimensional lattice—but which has some degree of randomness in it,
like a random graph, to produce the small-world effect. They suggested a
specific scheme for doing this as follows. We take the one-dimensional
lattice of Fig. 2b, and we go through each of the links on the lattice in turn
and, with some probability p, we randomly “rewire” that link, meaning
that we move one of its ends to a new position chosen at random from the
rest of the lattice. For small p this produces a graph with is still mostly
regular but has a few connections which stretch long distances across the
lattice as in Fig. 2c. The coordination number of the lattice is still z on
average as it was before, although the number of neighbors of any par-
ticular vertex can be greater or smaller than z.

In social terms, we can justify this model by saying that, while most
people are friends with their immediate neighbors—neighbors on the same
street, people that they work with, people that their friends introduce them
to—some people are also friends with one or two people who are a long
way away, in some social sense—people in other countries, people from
other walks of life, acquaintances from previous eras of their lives, and so
forth. These long-distance acquaintances are represented by the long-range
links in the model of Watts and Strogatz.

Clearly the values of the clustering coefficient C for the Watts—
Strogatz model with small values of p will be close to those for the perfectly
ordered lattice given above, which tend to 3 for fixed small d and large z.
Watts and Strogatz also showed by numerical simulation that the average
vertex—vertex distance / is comparable with that for a true random graph,
even for quite small values of p. For example, for a random graph with
N=1000 and z=10, they found that the average distance was about /=
3.2 between two vertices chosen at random. For their rewiring model, the
average distance was only slightly greater, at /=3.6, when the rewiring
probability p = %, compared with # = 50 for the graph with no rewired links
at all. And even for p= 2 =0.0156, they found /=74, a little over twice
the value for the random graph. Thus the model appears to show both the
clustering and small-world properties simultaneously. This result has since
been confirmed by further simulation as well as analytic work on small-
world models, which is described in the next section.
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4. ANALYTIC AND NUMERICAL RESULTS FOR
SMALL-WORLD MODELS

Most of the recent work on models of the small world has been per-
formed using a variation of the Watts—Strogatz model suggested by Newman
and Watts (1999a). In this version of the model, instead of rewiring links
between sites as in Fig. 2c, extra links, often called shortcuts, are added
between pairs of sites chosen at random, but no links are removed from the
underlying lattice. This model is somewhat easier to analyze than the
original Watts—Strogatz model, because it is not possible for any region of
the graph to become disconnected from the rest, whereas this can happen
in the original model. Mathematically a disjoint section of the graph can be
represented by saying that the distance from any vertex in that section to
a vertex somewhere on the rest of the graph is infinite. However, this
means that, when averaged over all possible realizations of the graph, the
average vertex—vertex distance / in the model is also infinite for any finite
value of p. (A similar problem in the theory of random graphs is commonly
dealt with by averaging the reciprocal of vertex—vertex distance, rather
than the distance itself, but this approach does not seem to have been tried
for the Watts—Strogatz model.) In fact, it is possible to show that the series
expansion of //L in powers of p about p =0 is well-behaved up to order
p?~ 1, but that the expansion coefficients are infinite for all higher orders.
For the version of the model where no links are ever removed, the expan-
sion coefficients take the same values up to order p?~!, but are finite for
all higher orders as well. Generically, both versions of the model have
become known as small-world models, or sometimes small-world graphs.

Many results have been derived for small-world models, and many of
their other properties have been explored numerically. Here we give only a
brief summary of the most important results. Barthélémy and Amaral
(1999) conjectured that the average vertex—vertex distance ¢/ obeys the
scaling form ¢ =¢G(L/E), where G(x) is a universal scaling function of its
argument x and & is a characteristic length-scale for the model which is
assumed to diverge in the limit of small p according to &~ p~"°. On the
basis of numerical results, Barthélémy and Amaral further conjectured that
t=2. Barrat (1999) gave a simple physical argument which showed that in
fact 7 cannot be less than 1, and suggested on the basis of more extensive
numerical results that it was exactly 1. Newman and Watts (1999b) showed
that the small-world model has only one non-trivial length-scale other than
the lattice spacing, which we can equate with the variable & above, and
which is given by

{=— (3)
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for the one-dimensional model, or

1
5=W (4)

in the general case. Thus t must indeed be 1 for d =1, or 7= 1/d for general
d and, since there are no other length-scales present, / must be of the form

L d
=5 F(pzL?) (5)

where F(x) is another universal scaling function. (The initial factor of
(2d)~! before the scaling function is arbitrary. It is chosen thus to give F
a simple limit for small values of its argument—see Eq. (6).) This scaling
form is equivalent to that of Barthélémy and Amaral by the substitution
G(x) =xF(x) if = 1. It has been extensively confirmed by numerical simula-
tion (Newman and Watts, 1999a; de Menezes et al., 2000) and by series
expansions (Newman and Watts 1999b) (see Fig. 3). The divergence of & as
p — 0 gives something akin to a critical point in this limit. (De Menezes
et al. (2000) have argued that, for technical reasons, we should refer to this
point as a “first order critical point” (Fisher and Berker, 1982).) This
allowed Newman and Watts (1999a) to apply a real-space renormalization
group transformation to the model in the vicinity of this point and prove
that the scaling form above is exactly obeyed in the limit of small p and
large L.

Equation (5) tells us that although the average vertex—vertex distance
on a small-world graph appears at first glance to be a function of three
parameters—p, z, and L—it is in fact entirely determined by a single scalar
function of a single scalar variable. If we know the form of this one func-
tion, then we know everything. Actually, this statement is strictly only true
if £>>1, when it is safe to ignore the other length-scale in the problem,
the lattice parameter of the underlying lattice. Thus, the scaling form is
expected to hold only when p is small, i.e., in the regime where the majority
of a person’s contacts are local and only a small fraction long-range. (The
fourth parameter d also enters the equation, but is not on an equal footing
with the others, since the functional form of F changes with d, and thus
Eq. (5) does not tell us how / varies with dimension.)

Both the scaling function F(x) and the scaling variable x = pzL? have
simple physical interpretations. The variable x is two times the average
number of shortcuts on the graph for the given value of p, and F(x) is the
average fraction by which the vertex—vertex distance on the graph is
reduced for the given value of x. From the results shown in Fig. 3, we can



Models of the Small World 829

Illlll T ||||HII T ||||ll|| T TV T I71T T T T T TT1T7T

l7/L

0.0 lllll[ 1 Illlllll 1 1 |ll|||| L llllllll
0.1 1 10 100 1000

pzL

Fig. 3. Scaling collapse of average vertex—vertex distances on d=1 small-world graphs
according to Eq. (5). Points are numerical data for z=2 (circles) and z= 10 (squares), for a
variety of values of p and L. The solid line is a Padé approximant derived from series expan-
sions of the scaling function, while the dotted line is the mean-field solution, Eq. (8). Inset: the
number of people infected as a function of time by a disease which starts with a single person
and spreads through a community with the topology of a small-world graph. After Newman
and Watts (1999b) and Newman et al. (2000).

see that it takes about 10 shortcuts to reduce the average vertex—vertex
distance by a factor of two, and 100 to reduce it by a factor of ten.

In the limit of large p the small-world model becomes a random graph
or nearly so. Hence, we expect that the value of / should scale logarithmi-
cally with system size L when p is large, and also, as the scaling form
shows, when L is large. On the other hand, when p or L is small we expect
¢ to scale linearly with L. This implies that F(x) has the limiting forms

1 for x<1
(log x)/x for x>1

Flx) ={ (6)

In theory there should be a leading constant in front of the large-x form
here, but, as discussed shortly, it turns out that this constant is equal to
unity. The cross-over between the small- and large-x regimes must happen
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in the vicinity of L =¢, since ¢ is the only length-scale available to dictate
this point.

Neither the actual distribution of path lengths in the small-world
model nor the average path length # has been calculated exactly yet; exact
analytical calculations have proven very difficult for the model. Some exact
results have been given by Kulkarni ez al. (1999a) who show, for example,
that the value of / is simply related to the mean {s) and mean square
{s?> of the shortest distance s between two points on diametrically
opposite sides of the graph, according to

RO
L L—1 L(L-1)

(7)

Unfortunately, calculating the shortest distance between opposite points is
just as difficult as calculating / directly, either analytically or numerically.

Newman et al. (2000) have calculated the form of the scaling function
F(x) for d=1 small-world graphs using a mean-field-like approximation,
which is exact for small or large values of x, but not in the regime where
x ~ 1. Their result is

4
F(x)=——— tanh~' ——~

x*+4x X% +4x

This form is also plotted on Fig. 3 (dotted line). Since this is exact for large x,
it can be expanded about 1/x =0 to show that the leading constant in the
large-x form of F(x), Eq.(6), is 1 as stated above.

Newman et al. also solved for the complete distribution of lengths
between vertices in the model within their mean-field approximation. This
distribution can be used to give a simple model of the spread of a disease
in a small world. If a disease starts with a single person somewhere in the
world, and spreads first to all the neighbors of that person, and then to all
second neighbors, and so on, then the number of people n who have the
disease after ¢ time-steps is simply the number of people who are separated
from the initial carrier by a distance of ¢ or less. Newman and Waltts
(1999b) previously gave an approximate differential equation for n(¢) on an
infinite small-world graph, which they solved for the one-dimensional case;
Moukarzel (1999) later solved it for the case of general d. The mean-field
treatment generalizes the solution for d =1 to finite lattice sizes. (A similar
mean-field result has been given for a slightly different disease-spreading
model by Kleczkowski and Grenfell (1999).) The resulting form for n(z) is
shown in the inset of Fig. 3, and clearly has the right general sigmoidal

(8)
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shape for the spread of an epidemic. In fact, this form of n is typical also
of the standard logistic growth models of disease spread, which are mostly
based on random graphs (Sattenspiel and Simon, 1988; Anderson and May
1995; Kretschmar and Morris, 1996). In the next section we consider some
(slightly) more sophisticated models of disease spreading on small-world
graphs.

5. OTHER MODELS BASED ON SMALL-WORLD GRAPHS

A variety of authors have looked at dynamical systems defined on
small-world graphs built using either the Watts—Strogatz rewiring method
or the alternative method described in Section 4. We briefly describe a
number of these studies in this section.

Watts and Strogatz (1998) and Watts (1999) looked at cellular
automata, simple games, and networks of coupled oscillators on small-
world networks. For example, they found that it was much easier for a
cellular automaton to perform the task known as density classification
(Das et al.,, 1994) on a small-world graph than on a regular lattice; they
found that in an iterated multi-player game of Prisoner’s Dilemma,
cooperation arose less frequently on a small-world graph than on a regular
lattice; and they found that the small-world topology helped oscillator
networks to synchronize much more easily than in the regular lattice case.

Monasson (1999) investigated the ecigenspectrum of the Laplacian
operator on small-world graphs using a transfer matrix method. This spec-
trum tells us for example what the normal modes would be of a system of
masses and springs built with the topology of a small-world graph. Or,
perhaps more usefully, it can tell us how diffusive dynamics would occur on
a small world graph; any initial state of a diffusive field can be decomposed
into eigenvectors which each decay independently and exponentially with a
decay constant related to the corresponding eigenvalue. Diffusive motion
might provide a simple model for the spread of information of some kind
in a social network. Diffusion has also been investigated by Jespersen et al.
(2000b) and Pandit and Amritkar (2000), who performed extensive
numerical studies of the properties of random walks on small-world graphs.

Barrat and Weigt (2000) have given a solution of the ferromagnetic
Ising model on a d=1 small-world network using a replica method. Since
the Ising model has a lower critical dimension of two, we would expect it
not to show a phase transition when p=0 and the graph is truly one-
dimensional. On the other hand, as soon as p is greater than zero, the effec-
tive dimension of the graph becomes greater than one, and increases with
system size (Newman and Watts, 1999b). Thus for any finite p we would
expect to see a phase transition at some finite temperature in the large
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system limit. Barrat and Weigt confirmed both analytically and numerically
that indeed this is the case. The Ising model is of course a highly idealized
model, and its solution in this context is, to a large extent, just an interest-
ing exercise. However, the similar problem of a Potts antiferromagnet on
a general graph has real practical applications, e.g., in the solution of
scheduling problems. Although this problem has not been solved on the
small-world graph, Walsh (1999) has found results which indicate that it
may be interesting from a computational complexity point of view; finding
a ground state for a Potts antiferromagnet on a small-world graph may be
significantly harder than finding one on either a regular lattice or a random
graph.

Newman and Watts (1999b) looked at the problem of disease spread
on small-world graphs. As a first step away from the very simple models of
disease described in the last section, they considered a disease to which
only a certain fraction ¢ of the population is susceptible; the disease
spreads neighbor to neighbor on a small-world graph, except that it only
affects, and can be transmitted by, the susceptible individuals. In such a
model, the disease can only spread within the connected cluster of suscep-
tible individuals in which it first starts, which is small if ¢ is small, but
becomes larger, and eventually infinite, as ¢ increases. The point at which
it becomes infinite—the point at which an epidemic takes place—is precisely
the percolation point for site percolation with probability ¢ on the small-
world graph. Newman and Watts gave an approximate calculation of this
epidemic point, which compares reasonably favorably with their numerical
simulations. Moore and Newman (2000a, 2000b) later gave an exact solution.

Lago-Fernandez et al. (2000) investigated the behavior of a neural
network of Hodgkin—Huxley neurons on a variety of graphs, including
regular lattices, random graphs, and small-world graphs. They found that
the presence of a high degree of clustering in the network allowed the
network to establish coherent oscillation, while short average vertex—vertex
distances allowed the network to produce fast responses to changes in
external stimuli. The small-world graph, which simultaneously possesses
both of these properties, was the only graph they investigated which
showed both coherence and fast response.

Kulkarni et al. (1999) studied numerically the behavior of the Bak—
Sneppen model of species coevolution (Bak and Sneppen, 1993) on small-
world graphs. This is a model which mimics the evolutionary effects of
interactions between large numbers of species. The behavior of the model
is known to depend on the topology of the lattice on which it is situated,
and Kulkarni and co-workers suggested that the topology of the small-
world graph might be closer to that of interactions in real ecosystems than
the low-dimensional regular lattices on which the Bak—Sneppen model is
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usually studied. The principal result of the simulations was that on a small-
world graph the amount of evolutionary activity taking place at any given
vertex varies with the coordination number of the vertex, with the most
connected nodes showing the greatest activity and the least connected ones
showing the smallest.

6. GROWTH MODELS OF THE SMALL WORLD

The model of Watts and Strogatz leaves one important question
unanswered. How does a social network come to have a particular struc-
ture in the first place? To address this question, a number of authors have
proposed growth models of social networks in which the network itself
possesses a dynamics, changing its structure as time goes by.

One can certainly imagine a growth model which would give rise to
something akin to the Watts—Strogatz regular-lattice-plus-shortcuts struc-
ture. Suppose, as suggested in Section 3, that everyone in the world makes
friends with some of the people who are close to them, either in a geographi-
cal sense—they live on the same street, say—or in a social sense—they work
at the same place, or have the same hobbies or interests. This could
produce a pattern of interconnection similar to the low-dimensional under-
lying lattice of the small-world models. Then suppose that people move
around occasionally, either moving to new towns, or simply changing jobs
or interests. When they move they make a new set of friends, but still keep
some small fraction of the old ones from before. This mechanism, as one
can imagine, introduces a small number of random links between widely
separated places. Thus we end up with a graph very similar to the model
of Watts and Strogatz. To our knowledge, this mechanism has not been
discussed previously, although Mathias and Gopal (2000) have shown that
structures similar to the Watts—Strogatz model can be generated by
simulated annealing of networks under appropriately chosen constraints.
A number of other growth models have also appeared in the literature.

One of the first growth models for social networks was the a-model
proposed by Watts (1999). This model is directly based on the idea that
social networks form primarily by people introducing pairs of their friends
to one another. In the a-model we take a number of vertices (people), with
no edges (friendships) between them. Initially, friendships are added at ran-
dom between pairs of people. As the number of these friendships increases,
some people will have two or more friends, or conversely their two friends
will have a common acquaintance. We then impose a heightened proba-
bility that a new friendship will spring up between those two people, to
represent the effect of the introduction process. And, in general, the more
common acquaintances that two people have, the more likely they are to
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become friends within the model. The model runs until the average number
of friendships between people reaches some predefined limit and then stops.
The resulting networks show clustering and clear “communities”—subsets
of nodes with a high degree of interconnectedness between them and few
connections elsewhere. In fact, for some values of the parameters in the
model, it is found that the propensity to form communities is so high that
the communities become completely disconnected, the network consisting
of isolated islands of connectedness in a generally unconnected world.
Clearly this is not a realistic result, although for other parameter values the
model produces something closer to the structures seen in real social
networks.

Another class of growth models focus on mechanisms which might
produce the unusual power-law degree distributions seen in, for example,
internet data. Barabasi and Albert (1999) have proposed a simple model
for internet growth which generates power-laws via a random multiplica-
tive process—a kind of “rich get richer” phenomenon in which the vertices
with most edges are the ones that gain new edges at the fastest rate. In the
model of Barabasi and Albert we start off with a certain initial number m,,
of vertices, each with at least one edge connected to it. At each step in the
model a new vertex is added with an initial number m of edges. These edges
are connected to other extant vertices in proportion to the number of edges
which those vertices already have. Thus the rate at which the degree of a
given vertex increases at any time is proportional—on average—to its
present degree. Such processes, which correspond to random walks in the
logarithm of the degree, are known to generate power laws (Montroll and
Shlesinger, 1982; Redner, 1990; Sornette and Cont, 1997), and indeed both
numerical simulations (Barabasi et al., 1999) and exact analytic results
(Dorogovtsev et al., 2000; Krapivsky et al., 2000) show power-law degree
distributions for the model in the limit of long times. The exponent of the
power law is found to be —3, which is in reasonable agreement with the
empirically observed exponent of —2.45.

A number of generalizations of the model of Barabasi and Albert have
also been proposed. Albert and Barabasi (2000) themselves have extended
their model to include the obviously important processes of addition and
rewiring of links between already existing sites, finding that the power-law
behavior is robust to these processes. Dorogovtsev et al. (2000) considered
a similar generalization in which both vertices and links are added to the
network, but there is no requirement that the added links be attached to
the added vertices. In the model of Krapivsky ez al. (2000), links are added
to vertices in proportion to some power of their current degree. By tuning
the exponent of this power, one can alter the exponent of the resulting
degree distribution, bringing the model into closer agreement with the
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internet data. (Krapivsky et al. were in fact motivated not by internet data
but by an earlier study of the network of citations of scientific papers (Redner,
1998), which also seems to show a power-law degree distribution.)

These models, although simple and elegant, do not tell the whole story
however. Adamic and Huberman (2000) have pointed out that in the
model of Barabasi and Albert older web-sites have more links than newer
ones. Plotting the age of real web-sites against number of links, they find
that the two quantities have a correlation coefficient of only 0.03, strongly
indicating that there is no such relation between age and degree. They
propose an alternative to the Albert-Barabasi model in which the rate at
which web-sites acquire new links is proportional to their current degree,
but multiplied by a intrinsic “growth rate” for that site. The growth rates
have randomly distributed constant values. This model does not predict a
correlation between age and degree, but does preserve the power-law
degree distribution. Discussion of this issue continues in the literature
(Barabasi et al., 2000).

7. OTHER MODELS OF THE SMALL WORLD

Although most of the work reviewed in this article centers around the
Watts—Strogatz small-world model and growth models of the web and
other networks, a number of other models have been proposed. In Section 2
we mentioned the simple random-graph model and in Section 3 we discussed
a model based on a regular lattice of high dimension. In this section we
describe briefly two others which have been suggested.

One alternative to the view put forward by Watts and Strogatz is that
the small-world phenomenon arises not because there are a few “long-
range” connections in the otherwise short-range structure of a social
network, but because there are a few nodes in the network which have
unusually high coordination numbers (Kasturirangan, 1999) or which are
linked to a widely distributed set of neighbors. Perhaps the “six degrees of
separation” effect is due to a few people who are particularly well con-
nected. (Gladwell (1998) has written a lengthy and amusing article arguing
that a septuagenarian salon proprietor in Chicago named Lois Weisberg is
an example of precisely such a person.) A simple model of this kind of
network is depicted in Fig. 4, in which we start again with a one-dimen-
sional lattice, but instead of adding extra links between pairs of sites, we
add a number of extra vertices in the middle which are connected to a large
number of sites on the main lattice, chosen at random. (Lois Weisberg
would be one of these extra sites.) This model is similar to the Watts—
Strogatz model in that the addition of the extra sites effectively introduces
shortcuts between randomly chosen positions on the lattice, so it should
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Fig. 4. An alternative model of a small world, in which there are a small number of
individuals who are connected to many widely-distributed acquaintances.

not be surprising to learn that this model does display the small-world
effect. In fact, even in the case where only one extra site is added, the model
shows the small-world effect if that site is sufficiently highly connected. This
case has been solved exactly by Dorogovtsev and Mendes (2000).
Another suggestion has been put forward by Kleinberg (2000), who
argues that a model such as that of Watts and Strogatz, in which shortcuts
connect vertices arbitrarily far apart with uniform probability, is a poor
representation of at least some real-world situations. (Kasturirangan (1999)
has made a similar point.) Kleinberg notes that in the real world, people
are surprisingly good at finding short paths between pairs of individuals
(Milgram’s letter experiment, and the Kevin Bacon game are good examples)
given only local information about the structure of the network. Conversely,
he has shown that no algorithm exists which is capable of finding such
paths on networks of the Watts—Strogatz type, again given only local infor-
mation. Thus there must be some additional properties of real-world
networks which make it possible to find short paths with ease. To investi-
gate this question further, Kleinberg has proposed a generalization of the
Watts—Strogatz model in which the typical distance traversed by the
shortcuts can be tuned. Kleinberg’s model is based on a two-dimensional
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square lattice (although it could be generalized to other dimensions d in a
straightforward fashion) and has shortcuts added between pairs of vertices
i, j with probability which falls off as a power law d " of the distance
between them. (In this work, d;; is the “Manhattan distance” |x;—x;| +
|y;— y;|, where (x;, y;) and (x;, y;) are the lattice coordinates of the ver-
tices i and j. This makes good sense, since this is also the distance in terms
of links on the underlying lattice that separates those two points before the
shortcuts are added. However, one could in principle generate networks
using a different definition of distance, such as the Euclidean distance

\/(x,-—xj)z—i—(y,-—yj)z, for example.) It is then shown that for the par-
ticular value r =2 of the exponent of the power law (or r =d for underlying
lattices of d dimensions), there exists a simple algorithm for finding a short
path between two given vertices, making use only of local information. For
any other value of r the problem of finding a short path is provably much
harder. This result demonstrates that there is more to the small world effect
than simply the existence of short paths.

8. CONCLUSIONS

In this article we have given an overview of recent theoretical work
on the “small-world” phenomenon. We have described in some detail the
considerable body of recent results dealing with the Watts—Strogatz small-
world model and its variants, including analytic and numerical results
about network structure and studies of dynamical systems on small-world
graphs, and we have discussed models of the dynamics of the networks
themselves, in which the networks grow or change in some fashion over
time.

What have we learned from these efforts and where is this line of
research going now? The most important result is that small-world graphs
show behaviors very different from either regular lattices or random
graphs. Some of the more interesting such behaviors are the following:

1. These graphs show a transition with increasing number of vertices
from a “large-world” regime in which the average distance between two
people increases linearly with system size, to a “small-world” one in which
it increases logarithmically.

2. This implies that information or disease spreading on a small-
world graph reaches a number of people which increases initially as a
power of time, then changes to an exponential increase, and then flattens
off as the graph becomes saturated.
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3. Disease models which incorporate a measure of susceptibility to
infection have a percolation transition at which an epidemic sets in, whose
position is influenced strongly by the small-world nature of the network.

4. Dynamical systems such as games or cellular automata show
quantitatively different behavior on small-world graphs and regular lattices.
Some problems, such as density classification, appear to be easier to solve
on small-world graphs, while others, such as scheduling problems, appear
to be harder.

5. Some real-world graphs show characteristics in addition to the
small-world effect which may be important to their function. An example
is the World Wide Web, which appears to have a scale-free distribution of
the coordination numbers of vertices. Growth models of networks provide
a possible explanation for this phenomenon.

Research in this field is continuing in a variety of directions. Empirical
work to determine the exact structure of real networks is underway in a
number of groups, as well as theoretical work to determine the properties
of proposed models. And studies to determine the effects of the small-world
topology on dynamical processes, although in their infancy, promise an
intriguing new perspective on the way the world works.
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