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Why robustness testing?

� Testing software to ensure that the functional 
requirements were met …

… is necessary but not enough

� How does the system behave in presence of 

� erroneous or unexpected user inputs?

� internal or external failures?

� stressful environmental conditions?

Conformance 

testing

Robustness 

testing
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Robustness

� Definition 

“the degree to which a software system or 

component can function correctly in the 

presence of invalid inputs or stressful 

environmental conditions.”

IEEE Std 610.12-1990 - Glossary of Software Engineering Terminology
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Robustness testing

� Definition [CW03] :

“aimed to determine whether a system or 

component can have an acceptable

behavior in the presence of faults or 

stressful environmental conditions”
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Robustness testing approaches

� Ad-hoc approaches

�Hard to automate

� Based on models

� Based on fault injection
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Model-based approaches

� Formalization of robustness testing is 
inspired on that of conformance testing 

�Conformance testing:

� Goal: determining whether an implementation 
conforms to its specification

�The specification is represented by a 
(behavior) model from which:

� Test cases can be derived 

� Observed results can be analyzed
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Robustness test cases generation
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Illustrative example
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Illustrative example
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Illustrative example
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Difficulties with the model-based 

approaches

� Model size is too big for use

� Need to carefully define test objectives

� Tester has limited control of faults

� Faults to consider may depend on the application domain and on 
the system architecture

� Environmental (context) faults (memory, processor, 
communication channel, device drivers) are not considered

� System behavior in the presence of faults cannot always 
be completely specified
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Fault injection

� Definition

Deliberate introduction of faults into a system 
to observe its behavior

� Applicability  

� To verify whether the error detection and recovery 
mechanisms behave as expected.

� To evaluate dependability measures such as 
reliability for a giving mission time, availability, 
performance degradation due to fault handling.

� To understand the effects of real faults.
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Fault injection approaches

� Faults can be injected:

� Into a model 

� Into a prototype or final system:

� Hardware level

� Software level

Simulation-based fault injection

Hw-implemented fault injection (HWIFI)

Sw-implemented fault injection (SWIFI)Sw-implemented fault injection (SWIFI)
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Robustness testing and fault 

injection

� Interface fault injection:

�affects functions input/output parameters or 

protocol messages fields

� Invalid values produced according to 

input/output domains or formats

� Some approaches and tools:

�Ballista/Piranha, Mafalda, Fuzz, Riddle, 

PROTOS, Jaca
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Limitations of interface fault 

injection approaches

� Oracle is generally not based on the specification

� “golden run” or reference implementation

� Crash or not crash

� Knowledge about the system structure or 
behavior is not frequent

� Exceptions: Avresky et al 1992; Echtle &Chen 1991; 
Sinha &Suri 1998; Loki 2000
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Proposed approach

� Hybrid approach combining

�Fault injection

�Passive testing
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Passive testing approaches

� Based on trace acceptation

�determines whether the observed trace 

satisfies the specification model

� Based on invariants
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Abstract test architecture

Tester

PO

PO: Point of Observation

SAP: Service Access Point

Inconclusive

verdictPass Fail

execution trace Implementation 

under test 

(IUT)

Test context

SAP

Robustness

properties 

Specification

Fault 

Injector

Fault set

Invariants



27

Invariants analysis approach
Behavior model

I1 = RcvInvoke(TID = N)/?, *, TR-Invoke.res/{Ack (TID = N)}

I2= RcvInvoke(TID = N) / TR.Invoke.ind, *, TR-Invoke.res / {Ack (TID = N) }

Invariants in the form of regular expressions

cr
ea
te

verify

Invariants = properties of interest

create

create
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Test configuration
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Fault Injector
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Client Terminal
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An experiment that failed

Experiments Runs Result seen by
Nokia browser

Observ.

E1- Test packet
corruption.

R1- Ack (0x3)

→Invoke (0x1)

Requested page

Change PDU
Type

R2- Ack (0x3)

→Invalid (0x00)

Requested page

R3- Ack (0x3)

→Result (0x2)

Error message:
“Server aborted
connection”

R4- Ack (0x3)

→Invalid (0xff)
 Browser blocked
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Example of observed trace with 

failure (1)
2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: LISTEN ; NEXT STATE:
INVOKE_RESP_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WDP: Event Name: RcvInvoke(TID=78, class=2,
Uack=1, TIDNew=0, RID=0)
2007-10-11 01:21:50 [6] INFO: TO WSP: Primitive Name: TR-Invoke.ind(class=2)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: INVOKE_RESP_WAIT ; NEXT STATE:
RESULT_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WSP: Primitive Name: TR-Invoke.res
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: RESULT_WAIT ; NEXT STATE:
RESULT_RESP_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WSP: Primitive Name: TR-Result.req
2007-10-11 01:21:50 [6] INFO: TO WDP: PDU Name: Result(TID=78, RID=0)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [0] ERROR: pdu unpacking returned NULL
2007-10-11 01:21:50 [6] INFO: TO WDP: PDU Name: Abort(TID=78, abort-type=0,
abort-reason=1)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: TO WSP: Primitive Name: TR-Abort.ind(abort-
reason=1)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:24:32 [0] ERROR: SIGINT received, let's die.

01:21:50

01:24:32

Abort PDU

TR-Abort

Run aborted by the user

Wapbox hangs
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2007-10-11 01:21:50 [6] DEBUG: WTP: Destroying WTPRespMachine 

0x820def0 (23)

2007-10-11 01:21:50 [6] DEBUG: WTP: Created WTPRespMachine 

0x8209c90 (24)

2007-10-11 01:21:50 [6] DEBUG: WTP: resp_machine 24, state 

LISTEN, event RcvInvoke.

…

2007-10-11 01:21:50 [6] DEBUG: WTP: Destroying WTPRespMachine 

0x8209c90 (24)

...

2007-10-11 01:21:50 [1] DEBUG: WSP: machine 0x81e90e8, state 

CONNECTING_2, event TR-Abort.ind

2007-10-11 01:21:50 [1] DEBUG: ----------1)handle_session_event

2007-10-11 01:21:50 [1] DEBUG: WSP 2: New state NULL_SESSION

2007-10-11 01:21:50 [1] DEBUG: Destroying WSPMachine 0x81e90e8

2007-10-11 01:24:32 [0] ERROR: SIGINT received, let's die.

Wapbox log:
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Another experiment that failed
� Experiment 5: wrong packet size.

� Run 2: change PDU size to small value (=2)

� Failure: no Abort message generated as was expected!

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: LISTEN ; NEXT STATE:
INVOKE_RESP_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WDP: Event Name: RcvInvoke(TID=306,
class=2, Uack=1, TIDNew=0, RID=0)
2007-10-11 03:53:21 [6] INFO: TO WSP: Primitive Name: TR-Invoke.ind(class=2)
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: INVOKE_RESP_WAIT ; NEXT STATE:
RESULT_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WSP: Primitive Name: TR-Invoke.res
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: RESULT_WAIT ; NEXT STATE:
RESULT_RESP_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WSP: Primitive Name: TR-Result.req
2007-10-11 03:53:21 [6] INFO: TO WDP: PDU Name: Result(TID=306, RID=0)
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [0] PANIC: wap/wap_events.c:161: wap_event_assert:
Assertion `event != NULL' failed.

PANIC

Crash of 

the wapbox
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2007-10-11 03:53:21 [6] DEBUG: WTP 1: New state RESULT_RESP_WAIT

...

2007-10-11 03:53:21 [0] DEBUG: A too short PDU received

2007-10-11 03:53:21 [0] DEBUG: Dumping WAPEvent 0x820bad0

2007-10-11 03:53:21 [0] DEBUG:   type = T-DUnitdata.ind

2007-10-11 03:53:21 [0] DEBUG: WAPAddrTuple 0x820bb40 = 

<127.0.1.1:32787> - <0.0.0.0:9201>

2007-10-11 03:53:21 [0] DEBUG: user_data =

2007-10-11 03:53:21 [0] DEBUG:  Octet string at 0x820bd38:

2007-10-11 03:53:21 [0] DEBUG:    len:  1

2007-10-11 03:53:21 [0] DEBUG:    size: 2

2007-10-11 03:53:21 [0] DEBUG:    immutable: 0

2007-10-11 03:53:21 [0] DEBUG:    data: 18                        .

2007-10-11 03:53:21 [0] DEBUG:  Octet string dump ends.

2007-10-11 03:53:21 [0] DEBUG: WAPEvent dump ends.

2007-10-11 03:53:21 [0] PANIC: wap/wap_events.c:161: wap_event_assert: 

Assertion `event != NULL' failed.

Wapbox log:
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Simple invariants used
S1. RcvInvoke/TR-Invoke.ind,*,TR-Result.req/{Result}

S2. RcvInvoke/TR-Invoke.ind,*,RcvAck/{TR-Result.cnf, NULL}

S3. RcvErrorPDU/{Abort, TR-Abort.ind}

S4. ?/?, *, RcvAbort/{TR-Abort.ind}

S5. ?/?, *, TimerTO_R/{Result,TR-Abort.ind}

S6. ?/?, *, TimerTO_A/{Ack,TR-Abort.ind, NULL}

S7. ?/?, *, TR-Abort.req/{Abort}

S8. RcvInvoke/Ack, *, RcvAck/{TR.Invoke.ind}

S9. RcvInvoke/Ack, *, RcvInvoke/{Ack, NULL} 

S10. ?/?, *, NULL/{CRASH, HANG}

Alphabet of the 

machine: ≈ 20 WTP 

events + Hang +

Crash + NULL
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Discussion about observed 

results
� Only control flow was considered in the invariant 
analysis

� Observed anomalous behavior:

� Lack of resources created new sources of failures: 

� IUT did not tolerate some OS exceptions

� Lack of information in the specification 

� Ex.: Initiator continues to send requests for new transactions 
even when the Responder keeps retransmitting the same 
results
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Conclusions

� Hybrid approach for robustness testing, 
combining formal and fault injection techniques:

� Fault injection:

� Allows better coverage of environment faults than in 
traditional testing

� Passive testing:

� Allows more precise result analysis than simply observing 
crash or hangs, as is usual in FI

� Possibility to test an IUT in its context � useful in 
later stages of system testing or even in the field
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Current work
� Approach is in use for testing robustness against 
attacks:

� Cryptographic protocol testing 

� Instead of communication faults, attacks are injected

� Attack scenarios derived from real successful attacks reported in 
the literature

� Attacker is implemented by a fault injector

� Goal: reveal vulnerabilities in the protocol implementation

� Invariants used to represent security properties



43

Future works

� Algorithm for the transformation of attack 

scenarios into executable scenarios for the fault 

injector (Attacker)

� Application of the approach to a case study

� Use of sequence alignment algorithms for 

results analysis
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