
IC-Unicamp – Set/2008

Passive Approach for

Robustness Testing of

Communication Protocols

Eliane Martins, Anderson Morais

IC- Unicamp

Ana Cavalli

Institut Telecom & Management Sud-Paris

2

Topics

� Robustness Testing

�Why

�What

� Proposed Approaches

� An Hybrid Approach

� Results

3

Why robustness testing?

� Testing software to ensure that the functional
requirements were met …

… is necessary but not enough

� How does the system behave in presence of

� erroneous or unexpected user inputs?

� internal or external failures?

� stressful environmental conditions?

Conformance

testing

Robustness

testing

4

Robustness

� Definition

“the degree to which a software system or

component can function correctly in the

presence of invalid inputs or stressful

environmental conditions.”

IEEE Std 610.12-1990 - Glossary of Software Engineering Terminology

5

Robustness testing

� Definition [CW03] :

“aimed to determine whether a system or

component can have an acceptable

behavior in the presence of faults or

stressful environmental conditions”

6

Robustness testing approaches

� Ad-hoc approaches

�Hard to automate

� Based on models

� Based on fault injection

7

Model-based approaches

� Formalization of robustness testing is
inspired on that of conformance testing

�Conformance testing:

� Goal: determining whether an implementation
conforms to its specification

�The specification is represented by a
(behavior) model from which:

� Test cases can be derived

� Observed results can be analyzed

9

Robustness test cases generation

Specification

(nominal)

Specification

(modified)

Robustness

test

cases

Test case generation

Faults

+

Extra outputs

10

Illustrative example

1

2
3

4

a

b

a

x

Nominal model

11

Illustrative example

1

2
3

4

a

b

a

x

1

2
3

4

a

b

a
x’ err

d1

x

a

x’

a’

Nominal model
Augmented model

Handled invalid

input

Degraded

state

Exceptional

end state

Unhandled

invalid input

12

Illustrative example

1

2
3

4

a

b

a

x

1

2
3

4

a

b

a
x’ err

d1

x

a

x’b, x

b, x

a, b, x

a
b, x

a’

a, b, x

Nominal model
Augmented model

inopportune

inputs

13

Difficulties with the model-based

approaches

� Model size is too big for use

� Need to carefully define test objectives

� Tester has limited control of faults

� Faults to consider may depend on the application domain and on
the system architecture

� Environmental (context) faults (memory, processor,
communication channel, device drivers) are not considered

� System behavior in the presence of faults cannot always
be completely specified

14

Fault injection

� Definition

Deliberate introduction of faults into a system
to observe its behavior

� Applicability

� To verify whether the error detection and recovery
mechanisms behave as expected.

� To evaluate dependability measures such as
reliability for a giving mission time, availability,
performance degradation due to fault handling.

� To understand the effects of real faults.

15

Fault injection approaches

� Faults can be injected:

� Into a model

� Into a prototype or final system:

� Hardware level

� Software level

Simulation-based fault injection

Hw-implemented fault injection (HWIFI)

Sw-implemented fault injection (SWIFI)Sw-implemented fault injection (SWIFI)

16

Robustness testing and fault

injection

� Interface fault injection:

�affects functions input/output parameters or

protocol messages fields

� Invalid values produced according to

input/output domains or formats

� Some approaches and tools:

�Ballista/Piranha, Mafalda, Fuzz, Riddle,

PROTOS, Jaca

17

23

Limitations of interface fault

injection approaches

� Oracle is generally not based on the specification

� “golden run” or reference implementation

� Crash or not crash

� Knowledge about the system structure or
behavior is not frequent

� Exceptions: Avresky et al 1992; Echtle &Chen 1991;
Sinha &Suri 1998; Loki 2000

24

Proposed approach

� Hybrid approach combining

�Fault injection

�Passive testing

25

Passive testing approaches

� Based on trace acceptation

�determines whether the observed trace

satisfies the specification model

� Based on invariants

26

Abstract test architecture

Tester

PO

PO: Point of Observation

SAP: Service Access Point

Inconclusive

verdictPass Fail

execution trace Implementation

under test

(IUT)

Test context

SAP

Robustness

properties

Specification

Fault

Injector

Fault set

Invariants

27

Invariants analysis approach
Behavior model

I1 = RcvInvoke(TID = N)/?, *, TR-Invoke.res/{Ack (TID = N)}

I2= RcvInvoke(TID = N) / TR.Invoke.ind, *, TR-Invoke.res / {Ack (TID = N) }

Invariants in the form of regular expressions

cr
ea
te

verify

Invariants = properties of interest

create

create

28

Test configuration

TESTINV

Pre-processing

module

TESTINV

Invariant

Checking

module

TESTINV

Invariant

Correctness

module

Verdict Log

(True, False)

Correction

Verdict

(True, False)

WAE_Layer_PO.lo

g WSP_Layer_PO.lo

g WTP_Layer_PO.lo

g WDP_Layer_PO.lo

Formatted trace

race

Invariant

Specification

Ethernet

Upper

layers

IUTPO
tr
ac
e

Internet Protocol

(IPv4 or IPv6)

FIRMAMENT

29

Fault Injector

WAE

WSP

WTP - Responder

WDP/UDP

IP

WAP Gateway

The WAP stack

FaultletsFaultlets

WAE

WSP

WTP - Initiator

WDP/UDP

IP

WAP Terminal
User

defined

inputs

PDU
PO HTTP

server

31

Client Terminal

(simulator)

Gateway

(Kannel)

WSP

WTP

(Initiator)

WTP

(Responder) WSP

Fault

Injector

Tr-Invoke.req
Invoke

Invoke Tr-Invoke.ind

Tr-Result.req
Result

Result

Tr-Result.ind

Tr-Result.res
Ack

Ack

Tr-Result.cnf
…

No faults injected

32

Client Terminal

(simulator)

Gateway

(Kannel)

WSP

WTP

(Initiator)

WTP

(Responder) WSP

Fault

Injector

Tr-Invoke.req
Invoke

Invoke Tr-Invoke.ind

Tr-Result.req
Result

Result

Tr-Result.ind

Tr-Result.res
Ack

ErrorPDU

Abort
Abort

…

Tr-Abort.ind

Fault injected

34

An experiment that failed

Experiments Runs Result seen by
Nokia browser

Observ.

E1- Test packet
corruption.

R1- Ack (0x3)

→Invoke (0x1)

Requested page

Change PDU
Type

R2- Ack (0x3)

→Invalid (0x00)

Requested page

R3- Ack (0x3)

→Result (0x2)

Error message:
“Server aborted
connection”

R4- Ack (0x3)

→Invalid (0xff)
 Browser blocked

35

Example of observed trace with

failure (1)
2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: LISTEN ; NEXT STATE:
INVOKE_RESP_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WDP: Event Name: RcvInvoke(TID=78, class=2,
Uack=1, TIDNew=0, RID=0)
2007-10-11 01:21:50 [6] INFO: TO WSP: Primitive Name: TR-Invoke.ind(class=2)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: INVOKE_RESP_WAIT ; NEXT STATE:
RESULT_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WSP: Primitive Name: TR-Invoke.res
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: (ORIGINATE STATE: RESULT_WAIT ; NEXT STATE:
RESULT_RESP_WAIT)
2007-10-11 01:21:50 [6] INFO: FROM WSP: Primitive Name: TR-Result.req
2007-10-11 01:21:50 [6] INFO: TO WDP: PDU Name: Result(TID=78, RID=0)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [0] ERROR: pdu unpacking returned NULL
2007-10-11 01:21:50 [6] INFO: TO WDP: PDU Name: Abort(TID=78, abort-type=0,
abort-reason=1)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:21:50 [6] INFO: TO WSP: Primitive Name: TR-Abort.ind(abort-
reason=1)
2007-10-11 01:21:50 [6] INFO:

2007-10-11 01:24:32 [0] ERROR: SIGINT received, let's die.

01:21:50

01:24:32

Abort PDU

TR-Abort

Run aborted by the user

Wapbox hangs

36

2007-10-11 01:21:50 [6] DEBUG: WTP: Destroying WTPRespMachine

0x820def0 (23)

2007-10-11 01:21:50 [6] DEBUG: WTP: Created WTPRespMachine

0x8209c90 (24)

2007-10-11 01:21:50 [6] DEBUG: WTP: resp_machine 24, state

LISTEN, event RcvInvoke.

…

2007-10-11 01:21:50 [6] DEBUG: WTP: Destroying WTPRespMachine

0x8209c90 (24)

...

2007-10-11 01:21:50 [1] DEBUG: WSP: machine 0x81e90e8, state

CONNECTING_2, event TR-Abort.ind

2007-10-11 01:21:50 [1] DEBUG: ----------1)handle_session_event

2007-10-11 01:21:50 [1] DEBUG: WSP 2: New state NULL_SESSION

2007-10-11 01:21:50 [1] DEBUG: Destroying WSPMachine 0x81e90e8

2007-10-11 01:24:32 [0] ERROR: SIGINT received, let's die.

Wapbox log:

37

Another experiment that failed
� Experiment 5: wrong packet size.

� Run 2: change PDU size to small value (=2)

� Failure: no Abort message generated as was expected!

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: LISTEN ; NEXT STATE:
INVOKE_RESP_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WDP: Event Name: RcvInvoke(TID=306,
class=2, Uack=1, TIDNew=0, RID=0)
2007-10-11 03:53:21 [6] INFO: TO WSP: Primitive Name: TR-Invoke.ind(class=2)
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: INVOKE_RESP_WAIT ; NEXT STATE:
RESULT_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WSP: Primitive Name: TR-Invoke.res
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [6] INFO: (ORIGINATE STATE: RESULT_WAIT ; NEXT STATE:
RESULT_RESP_WAIT)
2007-10-11 03:53:21 [6] INFO: FROM WSP: Primitive Name: TR-Result.req
2007-10-11 03:53:21 [6] INFO: TO WDP: PDU Name: Result(TID=306, RID=0)
2007-10-11 03:53:21 [6] INFO:

2007-10-11 03:53:21 [0] PANIC: wap/wap_events.c:161: wap_event_assert:
Assertion `event != NULL' failed.

PANIC

Crash of

the wapbox

38

2007-10-11 03:53:21 [6] DEBUG: WTP 1: New state RESULT_RESP_WAIT

...

2007-10-11 03:53:21 [0] DEBUG: A too short PDU received

2007-10-11 03:53:21 [0] DEBUG: Dumping WAPEvent 0x820bad0

2007-10-11 03:53:21 [0] DEBUG: type = T-DUnitdata.ind

2007-10-11 03:53:21 [0] DEBUG: WAPAddrTuple 0x820bb40 =

<127.0.1.1:32787> - <0.0.0.0:9201>

2007-10-11 03:53:21 [0] DEBUG: user_data =

2007-10-11 03:53:21 [0] DEBUG: Octet string at 0x820bd38:

2007-10-11 03:53:21 [0] DEBUG: len: 1

2007-10-11 03:53:21 [0] DEBUG: size: 2

2007-10-11 03:53:21 [0] DEBUG: immutable: 0

2007-10-11 03:53:21 [0] DEBUG: data: 18 .

2007-10-11 03:53:21 [0] DEBUG: Octet string dump ends.

2007-10-11 03:53:21 [0] DEBUG: WAPEvent dump ends.

2007-10-11 03:53:21 [0] PANIC: wap/wap_events.c:161: wap_event_assert:

Assertion `event != NULL' failed.

Wapbox log:

39

Simple invariants used
S1. RcvInvoke/TR-Invoke.ind,*,TR-Result.req/{Result}

S2. RcvInvoke/TR-Invoke.ind,*,RcvAck/{TR-Result.cnf, NULL}

S3. RcvErrorPDU/{Abort, TR-Abort.ind}

S4. ?/?, *, RcvAbort/{TR-Abort.ind}

S5. ?/?, *, TimerTO_R/{Result,TR-Abort.ind}

S6. ?/?, *, TimerTO_A/{Ack,TR-Abort.ind, NULL}

S7. ?/?, *, TR-Abort.req/{Abort}

S8. RcvInvoke/Ack, *, RcvAck/{TR.Invoke.ind}

S9. RcvInvoke/Ack, *, RcvInvoke/{Ack, NULL}

S10. ?/?, *, NULL/{CRASH, HANG}

Alphabet of the

machine: ≈ 20 WTP

events + Hang +

Crash + NULL

40

Discussion about observed

results
� Only control flow was considered in the invariant
analysis

� Observed anomalous behavior:

� Lack of resources created new sources of failures:

� IUT did not tolerate some OS exceptions

� Lack of information in the specification

� Ex.: Initiator continues to send requests for new transactions
even when the Responder keeps retransmitting the same
results

41

Conclusions

� Hybrid approach for robustness testing,
combining formal and fault injection techniques:

� Fault injection:

� Allows better coverage of environment faults than in
traditional testing

� Passive testing:

� Allows more precise result analysis than simply observing
crash or hangs, as is usual in FI

� Possibility to test an IUT in its context � useful in
later stages of system testing or even in the field

42

Current work
� Approach is in use for testing robustness against
attacks:

� Cryptographic protocol testing

� Instead of communication faults, attacks are injected

� Attack scenarios derived from real successful attacks reported in
the literature

� Attacker is implemented by a fault injector

� Goal: reveal vulnerabilities in the protocol implementation

� Invariants used to represent security properties

43

Future works

� Algorithm for the transformation of attack

scenarios into executable scenarios for the fault

injector (Attacker)

� Application of the approach to a case study

� Use of sequence alignment algorithms for

results analysis

Thanks!

Email: eliane@ic.unicamp.br

anderson.morais@ic.unicamp.br

45

References (1)
Report about model-based robustness testing:

Castanet R., Waeselynk H., “Techniques avancées de test de systèmes complexes: test de
robustesse“, report CNRS-AS23, 2003.

Ballista

Koopman, P., Siewiorek, D, DeVale, K., DeVale, J., Fernsler, K., Guttendorf, D., Kropp, N., Pan, J.,
Shelton, C., Shi, Y.: “Ballista Project : COTS Software Robustness Testing.” Carnegie Mellon
University.

Piranha

J.L.Griffin. “Testing protocol implementation robustness”, Proc. 29th. Annual International Symposium
on Fault-Tolerant Computing (FTCS), 15-18 June 1999, Madison, Wisconsin

Mafalda

J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles, “Dependability of COTS Microkernel-Based
Systems”, IEEE Trans on Computers, 51 (2), pp.138-163, February 2002.

Fuzz

Miller B. P., et. al. (1995) Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services. Networked Computer Science Technical Reports Library CS-TR-95-1268, UW Madison
Computer Sciences Department, April 1995

PROTOS

R. Kaksonen, M.Laakso, A.Takanen. Vulnerability Analysis of Software through Syntax Testing.
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-robustness/

46

References (2)
RIDDLE

A. Ghosh, V. Shah, and M. Schmid. An approach for analyzing the Robustness of Windows NT
Software. In Proceedings of the 21st National Information Systems Security Conference, pages
383–391, Crystal City, VA, 1998.

Jaca

Naaliel Mendes, Regina Moraes, Eliane Martins, Henrique Madeira. “Jaca Tool Improvements for
Speeding Up Fault Injection Campaigns”. 13ª. Tools Session. 20º. Brazilian Symposium on
Software Engineering (SBES), Florianópolis, Oct./2006

About invariant testing:

E. Bayse, A. Cavalli, M. Nunez and F. Zaidi, “A Passive Testing Approach based on Invariants:
Application to the WAP”, Computer Networks, 48, pp247-266, 2005

Introduction to fault injection:

Hsueh, Mei-Chen; Tsai, Timothy; Iyer, Ravishankar. “Fault Injection Techniques and Tools”. IEEE
Computer, Abril/1997

Hybrid approaches for active testing:

K. Echtle and Y. Chen, “Evaluation of deterministic fault injection for fault-tolerant protocol testing,” in
Proc. 21st Int. Symp. Fault-Tolerant Computing (FTCS-21), IEEE, Montréal, Québec, Canada,
June 1991, pp. 418-425.

D. Avresky, J. Arlat, J.-C. Laprie, and Y. Crouzet, “Fault injection for the formal testing of fault
tolerance,” in Proc. 22nd Int. Symp. Fault-Tolerant Computing (FTCS-22), IEEE, Boston, MA, July
1992, pp. 345-354.

N.Suri; P.Sinha. “On the Use of Formal Techniques for Validation”. Proc. of FTCS-28, pp. 390--399,
1998.

