Lectures for 2nd Edition

Note: these lectures are often supplemented with other
materials and also problems from the text worked
out on the blackboard. You’ll want to customize
these lectures for your class. The student audience
for these lectures have had assembly language
programming and exposure to logic design

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-1

Chapter 1

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-2

Introduction

« Rapidly changing field:
— vacuum tube -> transistor -> IC -> VLSI (see section 1.4)

— doubling every 1.5 years:
memory capacity
processor speed (Due to advances in technology and organization)

 Things you’ll be learning:

— how computers work, a basic foundation

— how to analyze their performance (or how not to!)

— issues affecting modern processors (caches, pipelines)
 Why learn this stuff?

— you want to call yourself a “computer scientist”

— you want to build software people use (need performance)

— you need to make a purchasing decision or offer “expert” advice

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-3

What is a computer?

« Components:
— input (mouse, keyboard)
— output (display, printer)
— memory (disk drives, DRAM, SRAM, CD)
— network
« Our primary focus: the processor (datapath and control)
— implemented using millions of transistors
— Impossible to understand by looking at each transistor
— We need...

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-4

Abstraction

swap(int v[], int k)i
{int temp;!

 Delving into the depths T vt
reveals more information y e
 An abstraction omits unneeded detail,
helps us cope with complexity
swap:l
muli $2, $5,41
add $2, $4,%2i
lw $15, 0($2)1
w $16, 4($2)1

sw $16, 0($2)1
sw $15, 4($2)1
jr $31

What are some of the details that
appear in these familiar abstractions?

000000001010000100000000000110001
000000001000111000011000001000011
100011000110001000000000000000001
100011001111001000000000000001001
101011001111001000000000000000001
101011000110001000000000000001001
00000011111000000000000000001000

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-5

Instruction Set Architecture

« A very important abstraction
— interface between hardware and low-level software
— standardizes instructions, machine language bit patterns, etc.
— advantage: different implementations of the same architecture

— disadvantage: sometimes prevents using new innovations
True or False: Binary compatibility is extraordinarily important?

« Modern instruction set architectures:
— 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-6

Where we are headed

 Performance issues (Chapter 2) vocabulary and motivation

* A specific instruction set architecture (Chapter 3)

* Arithmetic and how to build an ALU (Chapter 4)

« Constructing a processor to execute our instructions (Chapter 5)
* Pipelining to improve performance (Chapter 6)

« Memory: caches and virtual memory (Chapter 7)

* 1/O (Chapter 8)

Key to a good grade: reading the book!

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-7

Evolucao capacidade de memoria

100,000
16M 64M
10,000
4M
=
§ 1M
s 1000
S 256K
¥
100 64K
16K
10 I I I I I I | I I |
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996

Year of introduction

Mario Cortes - MO401 - IC/Unicamp- 2002s1

©1998 Morgan Kaufmann Publishers

Ch1/2-8

Evolucao do desempenho

1200

DEC Alpha 21264/600

1100

1000

900

800

700

600

Performance

500

400

DEC Alpha 5/500

300

DEC Alpha 5/300

200 |

100 SUN-4/IMIPS 1 MIPS 1 IBM

DEC Alpha 4/266

[BM POWER 100

260 M/120 M2000 RS6000
0 | | |

DEC AXP/500
| HP 9009/750

| | | |

1987 1988 1989 1990 1991 1992
Year

Mario Cortes - MO401 - IC/Unicamp- 2002s1

1994 1995 1996 1997

©1998 Morgan Kaufmann Publishers Ch‘l /2_9

Chapter 2

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-10

Performance

« Measure, Report, and Summarize

« Make intelligent choices

« See through the marketing hype

 Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-11

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)
Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

OHow much faster is the Concorde compared to the 747?

JHow much bigger is the 747 than the Douglas DC-8?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-12

Computer Performance: TIME, TIME, TIME

« Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must | wait for the database query?

 Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

o Ifwe upgrade a machine with a new processor what do we increase?

If we add a new machine to the lab what do we increase?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-13

Execution Time

« Elapsed Time

— counts everything (disk and memory accesses, I/0, etc.)

— a useful number, but often not good for comparison purposes
« CPU time

— doesn't count I/O or time spent running other programs

— can be broken up into system time, and user time

 Ourfocus: user CPU time
— time spent executing the lines of code that are "in" our program

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-14

Book's Definition of Performance

 For some program running on machine X,

Performance, = 1 / Execution time,

« "Xis ntimes faster than Y"

Performance, / Performance, =n

 Problem:
— machine A runs a program in 20 seconds
— machine B runs the same program in 25 seconds
— quanto mais rapida é a maquina A com relacao a B?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-15

Clock Cycles

Instead of reporting execution time in seconds, we often use cycles

seconds cycles " seconds

program program cycle

Clock “ticks” indicate when to start activities (one abstraction):

| | | | | | | | >

time
cycle time = time between ticks = seconds per cycle
clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec)

A 200 Mhz. clock has a x10” = 5 nanoseconds cycle time

200 x 10°

clock rate = freqliéncia
cycle time = periodo

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-16

How to Improve Performance

seconds cycles " seconds

program program cycle

So, to improve performance (everything else being equal) you can either

the # of required cycles for a program, or

the clock cycle time or, said another way,

the clock rate.

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-17

Formulas

tcpu = tek ¥ (N° de periodos) = (N° de periodos) / f«

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-18

How many cycles are required for a program?

« Could assume that # of cycles = # of instructions

1st instruction
2nd instruction
3rd instruction

4th
oth
6th

time

This assumption is incorrect,
different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-19

Different numbers of cycles for different instructions

I time

0 Multiplication takes more time than addition
[0 Floating point operations take longer than integer ones

[1 Accessing memory takes more time than accessing registers

(1 Important point: changing the cycle time often changes the number of
cycles required for various instructions (more later)

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-20

Example (2.3, pag 60)

* Our favorite program runs in 10 seconds on computer A, which has a
400 Mhz. clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer can use
new (or perhaps more expensive) technology to substantially increase the
clock rate, but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many clock cycles as
machine A for the same program. What clock rate should we tell the
designer to target?"

 Don't Panic, can easily work this out from basic principles

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-21

Now that we understand cycles

A given program will require
— some number of instructions (machine instructions)
— some number of cycles
— some number of seconds
We have a vocubulary that relates these quantities:
— cycle time (seconds per cycle)
— clock rate (cycles per second)

— CPI (cycles per instruction)

a floating point intensive application might have a higher CPI

— MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Cht/2-22

Performance

 Performance is determined by execution time
Do any of the other variables equal performance?

of cycles to execute program?

of instructions in program?

of cycles per second?

average # of cycles per instruction?
average # of instructions per second?

« Common pitfall: thinking one of the variables is indicative of
performance when it really isn’t.

Mario Cortes - MO401 - IC/Unicamp— 2002s1 ©1998 Morgan Kaufmann Publishers

Ch1/2-23

CPI Example (2.3, pag 62)

« Suppose we have two implementations of the same instruction set
architecture (ISA).

For some program,

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

What machine is faster for this program, and by how much?

e Iftwo machines have the same ISA which of our quantities (e.g., clock rate,
CPI, execution time, # of instructions, MIPS) will always be identical?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-24

Formulas

* tepy = tek ¥ (N° de periodos) = (N° de periodos) / f«
* IC =Instruction Count = N° total de instrucoes
* tepy = (N° de periodos) / f = (IC * CPI) / f«

 N° de periodos = Z(CPL‘ x Ci)
i=1

Z(CP[:‘ x Ci)
* CPloggio= =
IC
. 1=) (C)
i=1

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-25

of Instructions Example (pag 64)

A compiler designer is trying to decide between two code sequences
for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles
(respectively).

The first code sequence has 5 instructions: 2 of A,10of B,and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-26

MIPS example

 Two different compilers are being tested for a 100 MHz. machine with
three different classes of instructions: Class A, Class B, and Class
C, which require one, two, and three cycles (respectively). Both
compilers are used to produce code for a large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

Which sequence will be faster according to MIPS?
Which sequence will be faster according to execution time?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1t/2-27

MIPS example (cont'd)

Tipo
ABC
Compil1 |IC (E+06) 511
Compil 2 |IC (E+06) 1011
123

f=100 MHz = T =10 ns

* tepys = (5"1+1*2+1%3) * 1E6 * 10 ns = 100 E-03 = 100 ms <« mais rapido
* tepyp = (10%1+1%2+1*3) * 1E6 * 10 ns = 150 E-03 = 150 ms

« MIPS1 = (5+1+1) /0.1 =70 MIPS
« MIPS2 =(10+1+1)/0.15=12/0.15 = 80 MIPS < mais rapido

 resultados conflitantes para um mesmo programa, em um mesmo

computador

Mario Cortes - MO401 - IC/Unicamp- 2002s1

©1998 Morgan Kaufmann Publishers Ch‘l /2_28

MIPS

 MIPS nao é medida confiavel de desempenho
 Tentativas:

— MIPS de pico (pior ainda)

— MIPS relativo

Tepu ref
Tcpu

MIPSrel = * MIPSref

— Maquina de referéncia mais usada é o VAX 780 (1 MIPS)
VUP (VAX Unit of Performance)

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-29

MFLOPS

« Milhoes de operacoes de ponto flutuante por segundo (+-*/ eX)
 Problemas:

— depende do programa

— programa sem ponto flutuante = 0 MFLOPS

— depende do conjunto de instrugdes (ex: divisao é uma instrucao
ou é uma sequencia de passos)

 Alternativas:

— MFLOPS normalizado: peso diferenciado nas instrugoes na
linguagem em alto nivel (multiplicacdo mais complexo do que
soma)

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-30

Benchmarks

 Performance best determined by running a real application
— Use programs typical of expected workload

— Or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics, etc.

« Small benchmarks
— nice for architects and designers
— easy to standardize
— can be abused (opc¢cdes especiais de compilacao)
« SPEC (System Performance Evaluation Cooperative)
— http:/lIwww.specbench.org/
— companies have agreed on a set of real program and inputs

— can still be abused (Intel’s “other” bug) (programa “otimizado”
por compilador “especial” era errado !!!)

— valuable indicator of performance (and compiler technology)

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-31

SPEC ‘89

« Compiler “enhancements” and performance

800

700

600

500

400

300

SPEC performance ratio

200

100

M .| .l | .l l I|

gcc espresso spice doduc nasa7 li eqntott matrix300 fpppp tomcatv

Benchmark
Compiler

. Enhanced compiler

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-32

SPEC ‘95

Benchmark

Description

go

Artificial intelligence; plays the game of Go

m88ksim

Motorola 88k chip simulator; runs test program

gcc

The Gnu C compiler generating SPARC code

compress

Compresses and decompresses file in memory

Lisp interpreter

iipeg

Graphic compression and decompression

perl

Manipulates strings and prime numbers in the special-purpose programming language Perl

vortex

A database program

tomcatv

A mesh generation program

swim

Shallow water model with 513 x 513 grid

su2cor

quantum physics; Monte Carlo simulation

hydro2d

Astrophysics:; Hydrodynamic Naiver Stokes equations

marid

Multigrid solver in 3-D potential field

applu

Parabolic/elliptic partial differential equations

trub3d

Simulates isotropic, homogeneous turbulence in a cube

apsi

Solves problems regarding temperature, wind velocity, and distribution of pollutant

foppp

Quantum chemistry

waveb

Plasma physics; electromagnetic particle simulation

Mario Cértes - MO401 - IG/Unicamp- 2002sf ©1998 Morgan Kaufmann Publishers

Ch1/2-33

2.5 Comparando benchmarks

Norm./A | Norm./B
Ta Tb
A B A B
Prog. 1 1 10 1 10 0.1 1
Prog. 2| 1000 100 1 0.1 10 1
Med Arit T Norm. | 500.5 55 1 5.05] 5.05 1
Med Geom T Norm.| 31.6 | 31.6 1 1 1 1

« Para eliminar “peso” de programas mais longos = normalizagao
1 T

MG =TT
1 T;fef

« Atencao: MG nao representa o tempo de execucao (depende da
distribuicao estatistica)

« Quando os tempos de execucao sao
normalizados deve-se usar a média geomeétrica

MG(X) v
MG(Y:) MG(/Yi)

* Propriedade de MG

©1998 Morgan Kaufmann Publishers

Mario Cértes - MO401 - IC/Unicamp- 2002s1 Ch1/2-34

SPECint

SPEC ‘95

Does doubling the clock rate double the performance?

Can a machine with a slower clock rate have better performance?

250

10 10
9L 9L
8 8
7+ 7L
6 ° 6
i
5L / w5
%)
4 / 4
3 ~ 3 B ./.
2 2
1+ 1r
0 | | | | | 0 1 | 1 1 |
50 100 150 200 250 50 100 150 200
Clock rate (MHz) . Pentium Clock rate (MHz) . Pentium
Pentium Pro Pentium Pro

» Aumento de desempenho para o mesmo clock
*tepy == (IC * CPI) / f«
« Taxa de ganho é menor do que a taxa de aumento do clock

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-35

Exemplos de medidas

 mostrar transparéncias SPEC

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-36

Amdahl's Law

Execution Time After Improvement =

Execution Time Unaffected +(Execution Time Affected / Amount of Improvement)
« Example (2.7, pag 75):
"Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time. How much do we have to

improve the speed of multiplication if we want the program to run 4 times
faster?"

How about making it 5 times faster?

e Principle: Make the common case fast

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-37

Example

* Suppose we enhance a machine making all floating-point instructions run
five times faster. If the execution time of some benchmark before the
floating-point enhancement is 10 seconds, what will the speedup be if half of
the 10 seconds is spent executing floating-point instructions?

 We are looking for a benchmark to show off the new floating-point unit
described above, and want the overall benchmark to show a speedup of 3.
One benchmark we are considering runs for 100 seconds with the old
floating-point hardware. How much of the execution time would floating-
point instructions have to account for in this program in order to yield our
desired speedup on this benchmark?

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-38

Remember

Performance is specific to a particular program/s
— Total execution time is a consistent summary of performance

For a given architecture performance increases come from:
— increases in clock rate (without adverse CPI affects)
— improvements in processor organization that lower CPI
— compiler enhancements that lower CPI and/or instruction count

Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

You should not always believe everything you read! Read carefully!

(see newspaper articles, e.g., Exercise 2.37)

Mario Cértes - MO401 - IC/Unicamp- 2002s1 ©1998 Morgan Kaufmann Publishers Ch1/2-39

