&

QUARTUS"II

Quartus Il Handhook Version 9.1

[ANO[SRYA\,
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Qll5v1-9.1.1

Volume 1: Design and Synthesis

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

L5. EN IS0 5001

iAil |:| 'E D)/A) Contents

ChapterRevisionDatesccoiiiiinnnreennnncconnnnsonnnnsonnnnsnnnns XXi

Section I. Design Flows

Chapter 1. Design Planning with the Quartus Il Software

Introductiono 1-1
Creating Design Specifications 1-2
Intellectual Property Selection i 1-2
Device Selection 1-3
Device Migration Planning 1-4
Planning for Device Programming or Configuration 1-4
Early Power Estimation 1-5
Creating Powerplay EPE Spreadsheets i i i 1-6
Early Pin Planning and I/O Analysis i i i 1-6
Creating a Top-Level Design File for /O Analysis, 1-8
Simultaneous Switching Noise Analysis i 1-8
Selecting Third-Party EDA Tool Flows 19
Synthesis TOOIs o 1-9
Simulation ToOls 1-9
Formal Verification Tools i 1-10
Planning for On-Chip Debugging Options i ... 1-10
Design Practices and HDL Coding Styles 1-12
Design Recommendations 1-12
Recommended HDL Coding Styles 1-13
Managing Metastability 1-14
Planning for Hierarchical and Team-Based Design oo, 1-14
Flat Compilation Flow with No Design Partitions i, 1-14
Incremental Compilation with Design Partitions i 1-15
Single-Project Versus Multiple-Project Incremental Flows 1-16
Planning Design Partitions 1-17
Creating a Design Floorplan 1-18
Fast Synthesis and Early Timing Estimation 1-18
ConCIUSIONo i 1-19
Referenced Documents 1-19
Document Revision History 1-21

Chapter 2. Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Introduction 2-1
Deciding Whether to Use an Incremental Compilation Flow 2-2
Flat Compilation Flow with No Design Partitions ... 2-2
Incremental Capabilities Available When Your Design Has No Partitions 2-2
Incremental Compilation Flow with Design Partitions 2-3
Incremental and Team-Based Design Flows 2-6
Quick Start Guide—Summary of Incremental Compilation 2-7
Preparing a Design for Incremental Compilation 2-8
Compiling a Design Using Incremental Compilation 2-8
Deciding which Design Blocks Should Be Design Partitions 2-9
Impact of Design Partitions on Design Optimization 2-10

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

iv Contents
Partition Statistics Reports 2-11
Partition Timing Reports 2-13
Incremental Compilation Advisor 2-13
Using Partitions with Third-Party Synthesis Tools 2-14

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus 2-14
Other Synthesis Tools 2-15
Design Partition Assignments Compared to Physical Placement Assignments 2-15
Creating Design Partition Assignments i 2-15
Creating Design Partitions with the Design Partition Planner 2-16
Creating Design Partitions In the Design Partitions Window 2-17
Creating Design Partitions in the Project Navigator 2-18
Creating Design Partitions with Tcl Scripting, 2-19
Partition Name 2-19
Automatically-generated Partitions 2-19
Setting the Netlist Type for Design Partitions, 2-20
Fitter Preservation Level 2-21
Empty Partitions 2-22
Where Are the Netlist Databases Saved? 2-23
What Changes Initiate a Partition’s Automatic Resynthesis? 2-23
Resynthesis Due to Source Code Changes 2-24
Forcing Use of the Post-Fitting Netlist When a Partition has Changed 2-25
Creating a Design Floorplan with LogicLock Location Assignments 2-26
Taking Advantage of the Early Timing Estimator................. 2-28
What LogicLock Changes Initiate Refitting?, 2-29
Exporting and Importing Partitions 2-29
Team-Based Incremental Compilation Summary 2-30
Preparing a Design to Import Partitions oo 2-31
Creating and Compiling Lower-Level Projects 2-32
Exporting Lower-Level Projects 2-32
Including or Importing Lower-Level Projects into the Top-Level Project 2-32
Performing an Incremental Compilation in the Top-Level Project 2-33
Netlist Types for Imported Partitions 2-34
Creating a Lower-Level Project 2-34
Exporting a Lower-Level Partition to be Used in a Top-Level Project 2-35
Exporting a Lower-Level Block withina Project 2-36
Using a .qxp File as a Source File in the Top-Level Project 2-37
Importing a Lower-Level Partition Into the Top-Level Project 2-37
Importing Assignments and Advanced Import Settings 2-39
Design Partition Properties after Importing 2-39
Importing Design Partition Assignments Within the Subdesign 2-39
Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer 2-39
Importing LogicLock Assignments 2-39
Importing Other Instance Assignments 2-40
Importing Global Assignments 2-40
Advanced Import Settings 2-40
Generating Design Partition Scripts for Project Management 2-41
Project Creation i 2-42
Excluded Partitions 2-42
Assignments from the Top-Level Design i i 2-42
Virtual Pin Assignments o i 2-43
LogicLock Region Assignments 2-44
Global Signal Promotion Assignments i 2-44
Makefile Generation 2-45
Recommended Design Flows and Compilation Application Examples 2-46

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents v

Reducing Compilation Time When Changing a Source File for One Partition 2-46
Optimizing a Timing-Critical Partition to Achieve Timing Closure 2-47
Preserving Results for Some Partitions Before Adding Other Partitions 2-48
Debugging Incrementally with the SignalTap II Logic Analyzer.......................... 2-49
Implementing a Team-Based Design Flow With Imported Partitions 2-50
Performing Design Iteration With Lower-Level Partitions 2-53
Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse 2-54
Using an Exported Partition to Send a Design without Including Source Files 2-56
Incremental Compilation Restrictions 2-58
Preserving Exact Timing Performance 2-58
When Placement and Routing May Not Be Preserved Exactly 2-58
Using Incremental Compilation with Quartus II Archive Files 2-59
Formal Verification Support 2-59
SignalProbe Pins and Engineering Change Management with the Chip Planner 2-59
Linked Partitions Due to SignalProbe Pins or ECOChanges 2-60
Exported Partitions 2-61
SignalTap II Embedded Logic Analyzer in Exported Partitions 2-61
Logic Analyzer Interface in Exported Partitions, 2-61
Importing Encrypted IP Cores 2-62
Assignments Made in HDL Source Code in Exported Partitions 2-62
Bottom-Up Design Partition Script Limitations 2-62
Warnings About Extra Clocks Due to Bottom-Up Design Partition Scripts 2-62
Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Bottom-Up Design
Partition Scripts 2-62
Wildcard Support in Bottom-Up Design Partition Scripts 2-63
Derived Clocks and PLLs in Bottom-Up Design Partition Scripts 2-63
Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition Scripts 2-63
Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts 2-63
Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts 2-64
HardCopy Compilation and Migration Flows, 2-64
HardCopy ASIC Migration Flows 2-64
HardCopy ASIC Stand-Alone Compilations 2-65
Restrictions on Megafunction Partitions L 2-65
Register Packing and Partition Boundaries L 2-65
I/ORegister Packing 2-65
Scripting SUpPPOrt ... 2-66
Preparing a Design for Incremental Compilation, 2-66
Creating Design Partitions 2-67
Setting Properties of Design Partitions o i 2-67
Creating Floorplan Location Assignments—Excluding or Filtering Certain Device Elements (Such as
RAM or DSP BIOCKS) ..ottt e e e 2-68
Generating Bottom-Up Design Partition Scripts 2-69
Command Line Support 2-69
Exporting a Partition to be Used in a Top-Level Project 2-70
Importing a Lower-Level Partition into the Top-Level Project 2-71
Makefiles 2-72
Recommended Design Flows and Compilation Application Examples—Scripting and
Command-Line Operation 2-72
Reducing Compilation Time When Changing a Source File for One Partition—Command-Line
Example oo 2-72
Optimizing the Placement for a Timing-Critical Partition 2-73
ConCIUSION o i 2-73
Referenced Documents 2-74
Document Revision History 2-74

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

vi Contents

Chapter 3. Quartus Il Design Flow for MAX+PLUS Il Users

INtrodUction o e e 3-1
Chapter OVerview 3-1
MAXHPLUSIISUpporto 3-1
Typical Design Flow 3-2
Device Support 3-2
Quartus I GUI OVervVieWottt e e e e ettt e e ettt et et et et 3-3
Task WINAOW ... 3-3
Project Navigator 3-3
Node FInder e 3-3
Tl ConS0Le ..ot e 3-3
MESSagES . oo 3-3
At ..t e 3-4
Change Manager i 3-4
Setting Up MAX+PLUS II Look and Feel in the Quartus I Software 3-4
MAX+PLUSII Look and Feel e e e e 3-5
Compiler Toolo o 3-6
Analysisand Synthesis 3-7
Incremental Compilation and Partition Merge L 3-7
Fatter e 3-7
ASSEIMDIOr . .. e 3-7
Timing Analyzer 3-8
EDA Netlist WIItero e e e e e e 3-8
Design Assistant 3-8
Reducing Compilation Time 3-8
Quartus II Software Smart Compilation........... i 3-8
Power Analyzer 3-9
MAX+PLUS IT Design CONVEISIONttt ittt 3-9
Converting an Existing MAX+PLUSII Design i, 3-9
Converting MAX+PLUS II Graphic Design Files 3-10
Importing MAX+PLUSII Assignments i, 3-10
Quartus II Design Flow 3-12
Creating a New Project 3-12
Design Entry 3-12
Making Assignments 3-14
Assignment Editor 3-14
Timing Assignments 3-15
Synthesis 3-17
Functional SImulation 3-17
Place and RoUteot 3-18
Timing Analysis 3-19
Viewing Chip Resources i 3-20
Chip Planner 3-20
Timing Closure Floorplan i 3-20
Timing Simulation 3-21
Quartus II SImulator TOOLo e 3-21

EDA Timing Simulation 3-22
Power Estimation e 3-22
Programming 3-23
CONCIUSION . .ttt e e e e 3-23
Quartus II Command Reference for MAX+PLUSIIUSErScoviiinei it 3-23
Referenced DOCUMENTSottt e e e et e e e 3-31
Document Revision History 3-31

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents vii

Chapter 4. Quartus Il Support for HardCopy Series Devices

Introduction 4-1
HardCopy Series Design Benefits 4-1
Quartus II Features for HardCopy Planning 4-2

HardCopy Development Flow 4-2
Designing the FPGA First 4-3
Designing the HardCopy Device First i i il 4-5

HardCopy Utilities Menu 4-6
Companion Revisions 4-8
Compiling the HardCopy Companion Revision oo o o L. 4-9
Comparing HardCopy and FPGA Companion Revisions 4-9
Generating a HardCopy Handoff Report 49
Archiving HardCopy Handoff Files 4-10
HardCopy AdVIsor i 4-10

HardCopy Companion Device Selection i, 4-12

HardCopy Device Resource Guide 4-13

HardCopy Recommended Settings in the Quartus Il Software 4-16
Limit DSP and RAM to HardCopy Device Resources 4-16
Enabling Design Assistant to Run During Compile 4-17
Timing Settings 4-18

TimeQuest Timing Analyzer 4-18
Setting Up the TimeQuest Timing Analyzer 4-19
Constraints for Clock Effect Characteristics i i 4-19
Quartus II Software Features Supported for HardCopy Designs 4-21
Physical Synthesis Optimization 4-21
LogicLock Regions 4-21
PowerPlay Power Analyzer 4-21
Incremental Compilation 4-22

HardCopy Design Readiness Check i, 4-22
Execution of the HardCopy Design Readiness Check 4-23
Stratix IILSUpporto 4-23
Setting Check 4-24

Summary ... 4-24
Global Setting 4-24
Instance Setting 4-24
Operating Setting 4-24
T/O ChecK .ot e 4-25
Input Pin Placement for Global and Regional Clock 4-26
PLL Usage Check o i e 4-26
PLL Real-Time Reconfigurable Check i 4-26
PLL Clock Outputs Driving Multiple Clock Network Types Check 4-26
PLL with No Compensation Mode Check i 4-27
PLL with Normal or Source Synchronous Mode Feeding Output Pin Check 4-27
RAM Usage Check 4-27
Initialized Memory Dependency Testing i 4-27

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner 4-28
Migrating One-to-One Changes e 4-29
Migrating Changes that Must be Implemented Differently 4-30
Changes that Cannotbe Migrated 4-30
Overall Migration Flow 4-30

Preparing the Revisions 4-30
Applying ECOChanges i e 4-31

Formal Verification of FPGA and HardCopy Revisions 4-32

HardCopy Floorplan View i 4-33

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

viii Contents

Referenced DOCUMENTS oottt e e e e 4-34
Document Revision History 4-34

Section Il. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Introductiono 5-1
Synchronous FPGA Design Practices 5-2
Fundamentals of Synchronous Design i i 5-2
Hazards of Asynchronous Design i i 5-3
Design Guidelines i 5-4
Combinational Logic Structures i 5-4
Combinational LoOps 5-4
Latches o 5-5
Delay Chainso 5-5
Pulse Generators and Multivibrators i 5-6
Clocking Schemes 5-7
Internally Generated Clocks i 5-8
Divided Clockso 5-8
RippleCounters 5-8
Multiplexed Clocks 5-9
Gated Clocks oo 5-10
Synchronous Clock Enables i 5-11
Recommended Clock-Gating Methods 5-11
Design Techniques to Save POWer o i 5-12
Checking Design Violations Using the Design Assistant 5-13
Quartus II Design Flow with the Design Assistant, 5-13
The Design Assistant SettingsPage i 5-15
Message Severity Levels 5-15
Design Assistant Rules 5-16
Summary of Rulesand IDs 5-16
Design Should Not Contain Combinational Loops 5-17
Register Output Should Not Drive Its Own Control Signal Directly or through Combinational
LOgiC . 5-17
Design Should Not Contain Delay Chains 5-18
Design Should Not Contain Ripple Clock Structures, 5-18
Pulses Should Not Be Implemented Asynchronously 5-18
Multiple Pulses Should Not Be Generated in the Design 5-19
Design Should Not Contain SR Latches 5-19
Design Should Not Contain Latches 5-19
Gated Clocks Should Be Implemented According to Altera Standard Scheme 5-20
Logic Cell Should Not Be Used to Generate Inverted Clock 5-20
Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save
PoWer: <> L 5-20
Clock Signal Source Should Drive Only Input Clock Ports 5-21
Clock Signal Should Be a Global Signal 5-21
Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges ...
5-22
Combinational Logic Used as a Reset Signal Should Be Synchronized 5-22
External Reset Should Be Synchronized Using Two Cascaded Registers 5-22
External Reset Should Be Synchronized Correctly, 5-23
Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains
Should Be Synchronized Correctly 5-24

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents ix

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains

Should Be Synchronized 5-24
Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the Same Signal
SOUICE . 5-25
Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by the Same
SIignal SOUICE 5-25
More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by the
Same SOUICe i 5-25
Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the Same
SIignal SOUICE 5-25
Nodes with More Than Specified Number of Fan-outs: <n> 5-26
Top Nodes with Highest Fan-out: <n>.............o 5-26

Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains . 5-26
Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Not

All Bits May Be Aligned in the Receiving Clock Domain 5-27
Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock
Domains 5-27
Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous Clock
Domains 5-27
No Reset Signal Defined to Initialize the State Machine 5-28
State Machine Should Not Contain Unreachable State 5-28
State Machine Should Not Contain a Deadlock State 5-28
State Machine Should Not Contain a Dead Transition 5-28
Enabling and Disabling Design Assistant Rules .. 5-28
Using the Assignment Editor 5-29
Using Verilog HDL 5-29
Using VHDL 5-30
Using TCL Commands e 5-30
Viewing Design Assistant Results 5-31
Summary Report 5-31
Settings Report 5-31
Detailed Results Report 5-32
Messages Report 5-33
Rule Suppression Assignments Report 5-33
Ignored Design Assistant Assignments Report 5-33
Custom Rules Report 5-33
Custom Rules 5-33
XML File Format for Custom Rules 5-34
Specifying the Path to the Custom Rules File 5-35
Custom Rules Coding Examples 5-36
Targeting Clock and Register-Control Architectural Features 5-39
Clock Network Resources 5-40
Reset Resources 5-40
Register Control Signals 5-41
Targeting Embedded RAM Architectural Features 5-41
ConclUSION 5-42
Referenced Documents 5-42
Document Revision History 5-43

Chapter 6. Recommended HDL Coding Styles

INtrodUction 6-1
Quartus Il Language Templates i 6-2
Using Altera Megafunctions i i i 6-2
Instantiating Altera Megafunctionsin HDL Code 6-3

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

X Contents

Instantiating Megafunctions Using the MegaWizard Plug-In Manager 6-4
Creating a Netlist File for Other Synthesis Tools 6-5
Instantiating Megafunctions Using the Port and Parameter Definition........................ 6-5
Inferring Multiplier and DSP Functions from HDL Code 6-6
Multipliers—Inferring the LPM_MULT Megafunction from HDL Code 6-6
Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and
ALTMULT_ADD Megafunctions from HDLCodeo L. 6-8
Inferring Memory Functions from HDL Code 6-12
RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code . 6-13
Use Synchronous Memory Blocks 6-13
Avoid Unsupported Reset and Control Conditions 6-14
Check Read-During-Write Behavior 6-16
Controlling Inference and Implementation in Device RAM Blocks 6-17
Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior.............. 6-17
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior 6-19
Simple Dual-Port, Dual-Clock Synchronous RAM 6-21
True Dual-Port Synchronous RAM 6-23
Specifying Initial Memory Contents at Power-Up 6-26
ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code .. 6-28
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code 6-32
Simple Shift Register 6-33
Shift Register with Evenly Spaced Taps 6-34
Coding Guidelines for Registers and Latches 6-36
Register Power-Up Values in Altera Devices, 6-36
Secondary Register Control Signals Such as Clear and Clock Enable 6-38
Latches 6-42
Unintentional Latch Generation 6-42
Inferring Latches Correctly 6-43
General Coding Guidelines 6-46
Tri-State Signals 6-46
Clock Multiplexing 6-47
Adder Trees 6-51
Architectures with 4-Input LUTs in Logic Elements 6-51
Architectures with 6-Input LUTs in Adaptive LogicModules 6-52
State Machines 6-53
Verilog HDL State Machines e 6-54
VHDL State Machines 6-58
MULtIplexXers 6-60
Quartus II Software Option for Multiplexer Restructuring 6-61
Multiplexer Types o 6-61
Default or Others Case Assignment 6-63
Implicit Defaults 6-63
Degenerate Multiplexers 6-65
Buses of Multiplexers 6-67
Cyclic Redundancy Check Functions i 6-68
If Performance is Important, Optimize forSpeed 6-68
Use Separate CRC Blocks Instead of Cascaded Stages 6-68
Use Separate CRC Blocks Instead of Allowing Blocks to Merge 6-68
Take Advantage of Latency if Available 6-69
Save Power by Disabling CRC Blocks When NotinUse 6-69
Use the Device Synchronous Load (sload) Signal to Initialize 6-69
Comparators 6-69
COUNLEIS . . oo 6-71
Designing with Low-Level Primitives 6-71

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents Xi

CONCIUSION . .ottt e e e 6-72
Referenced DOCUMENTES oottt e e e e 6-72
Document Revision History 6-73

Chapter 7. Managing Metastability with the Quartus Il Software

Introduction 7-1
Metastability Analysis in the Quartus Il Software oo oL 7-2
Synchronization Register Chains 7-3
Identifying Synchronizers for Metastability Analysis 7-4
Using the Global Synchronizer Identification Setting 7-4
Refining Synchronizer Identification Using the Instance-Specific Assignment 7-5
How Timing Constraints Affect Synchronizer Identification and Metastability Analysis 7-5
Metastability and MTBE Reporting 7-6
Metastability Report 7-6
MTBF Summary Report 7-7
Synchronizer SUummary 7-8
Synchronizer Chain Statistics Report in the TimeQuest Timing Analyzer 7-8
Synchronizer Data Toggle Rate in MTBF Calculation 7-8
MTBF Optimization 7-9
Synchronization Register Chain Length 7-10
Reducing Metastability Effects 7-10
Apply Complete System-Centric Timing Constraints for the TimeQuest Timing Analyzer 7-11
Force the Identification of Synchronization Registers 7-11
Set the Synchronizer Data Toggle Rate 7-11
Optimize Metastability During Fitting 7-11
Increase the Length of Synchronizers to Protect and Optimize 7-11
Set Fitter Effort to Standard Fitinstead of Auto Fit..........., 7-12

If Possible, Increase the Number of Stages Used in Synchronizers 7-12

If Possible, Select a Faster Speed Grade Device 7-12
Scripting SUPPOIt ..o 7-12
Identifying Synchronizers for Metastability Analysis 7-13
Synchronizer Data Toggle Rate in MTBF Calculation 7-13
report_metastability TimeQuestand TclCommand 7-13
MTBF Optimization 7-13
Synchronization Register Chain Length 7-14
ConClUSION 7-14
Referenced Documents 7-15
Document Revision History 7-15

Chapter 8. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Introduction 8-1
Overview: Incremental Compilation 8-2
Incremental and Team-Based Design Flows L. 8-2
Recommendations for the Netlist Type and Fitter Preservation Level 8-3
Project Management in Team-Based Designs i, 8-4
Why Plan Partitions and Floorplan Assignments for Incremental Compilation? 8-5
Partition Boundaries and Optimization L 8-5
Creating Design Partitions: General Partitioning Guidelines 8-6
Plan Design Hierarchy and Source Design Files, 8-6
Using Partitions with Third-Party Synthesis Tools 8-7
Partition Design by Functionality and Block Size 8-7
Partition Design by Clock Domain and Timing Criticality 8-8
Consider WhatIsChanging 8-8

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

Xii Contents

Creating Design Partitions: Design Guidelines 8-8
Register Partition Inputsand Outputs il 8-9
Minimize Cross-Partition-Boundary I/O oo oo oo 8-9
Avoid the Need for Logic Optimization Across Partitions 8-11

Keep Logic in the Same Partition for Optimization and Merging 8-12
Keep Constants in the Same Partitionas Logic 8-13
Avoid Unconnected Partition I/ O ot 8-14
Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together 8-15
Invert Clocks in Destination Partitions 8-16
Connect I/O Directly to I/O Register for Packing Across Partition Boundaries 8-16
Do Not Use Internal Tri-States 8-20
Include All Tri-State and Enable Logic in the Same Partition............................. 8-20
Include Bidirectional I/O Registers in the Same Partition 8-21
Summary of Guidelines Related to Logic Optimization Across Partitions.................. 8-22

Creating Design Partitions: Consider Additional Design Suggestions 8-23
Balance Logic Resources 8-23
Balance Global Routing Signals and Clock Networks if Required 8-24
Assign Virtual Pins in Team-Based Flows, 8-25
Perform Timing Budgeting if Requiredl 8-26
Consider a Cascaded Reset Structure 8-26
Drive Clocks Directly in Team-Based Flows, 8-27
Recreate PLLs for Lower-Level Partitions if Required in Team_Based Flows 8-28

Checking Partition Quality 8-29
Incremental Compilation Advisor 8-29
Design Partition Planner 8-29
Floorplan Partition Coloring 8-31
Viewing Design Partition Planner and Floorplan Side-by-Side 8-32
Partition Statistics Report 8-33
Report Partition Timing in the TimeQuest Timing Analyzer 8-34
Ensure Partition Assignments Do Not Impact the Quality of Results 8-34

Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs 8-35

Creating an .sdc with Project-Wide Constraints 8-36
Creating an .sdc with Partition-Specific Constraints 8-37
Consolidating the .sdc in the Top-Level Design 8-38

Introduction to Design Floorplans 8-39
The Difference between Logical Partitions and Physical Regions 8-39
Why Create a Floorplan? 8-39
When to Create a Floorplan 8-41

Early Floorplan 8-41
Late Floorplan 8-41

Creating a Design Floorplan: Placement Guidelines, 8-42
Assigning Partitions to LogicLock Regions i 8-42
How to Size and Place Regions 8-43
Modifying Region Sizeand Origin 8-43

I/O ConneCtioNSottt e e 8-44
LogicLock Resource Exclusions i 8-45
Creating Non-Rectangular Regions 8-46

Checking Floorplan Quality 8-47
Incremental Compilation Advisor 8-47
LogicLock Region Resource Estimates, 8-47
LogicLock Region Properties Statistics Report 8-47
Critical Path Settings for Chip Planner, 8-47
Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner 8-47
Inter-Region Connection Bundles i 8-48

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents Xiii

Routing Utilization 8-48
Ensure Floorplan Assignments Do Not Impact Quality of Results 8-48
Recommended Design Flows and Application Examples 8-48
Create a Floorplan for the Entire Design 8-49
Create a Floorplan as the Project Lead in a Team-Based Flow 8-49
Create a Floorplan Assignment for One Design Block with Difficult Timing 8-50
Potential Issues with Creating Partitions and Floorplan Assignments 8-51
Logic and Resource Utilization Effects 8-51
Routing Utilization Effects 8-52
ConclUusSion 8-52
Referenced Documents 8-53
Revision History 8-53

Section lll. Synthesis

Chapter 9. Quartus Il Integrated Synthesis

Introductiono 9-1
Design Flowo o 9-2
Language SUPPOTt 9-4
Verilog HDL SUPPOrto 9-4
Verilog-2001 Support ... 9-5
SystemVerilog Support 9-5
Initial Constructs and Memory System Tasks L. 9-6
Verilog HDL MacCros i 9-7
VHDL SUPPOTt ..o 9-8
VHDL Standard Libraries and Packages L. 9-9
VHDL wait Constructs 9-10
VHDL-2008 SUPPOIt ..ottt 9-10
AHDL SUPPOTt ... 9-11
Schematic Design Entry Support i 9-11
State Machine Editor 9-11
Design Libraries 9-12
Specifying a Destination Library Name in the Settings Dialog Box 9-12
Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl 9-13
Specifying a Destination Library Nameina VHDL File, 9-13
Mapping a VHDL Instance to an Entity in a Specific Library, 9-14
Using Parameters/Genericsoooiiiiiiiiiiiiiii i 9-15
Setting Default Parameter Values and BDF Instance Parameter Values 9-16
Passing Parameters Between Two Design Languages 9-17
Incremental Compilation 9-19
Partitions for Preserving Hierarchical Boundaries 9-19
Parallel Synthesis 9-20
Quartus II Exported Partition File as Source i 9-21
Quartus II Synthesis Options 9-22
Setting Synthesis Options 9-24
Analysis & Synthesis Settings Page of the Settings Dialog Box 9-24
Quartus I Logic Options 9-24
Synthesis Attributes 9-24
Synthesis Directives 9-26
Optimization Technique 9-27
Auto Gated Clock Conversion i i 9-28
Timing-Driven Synthesis 9-29
SDC Constraint Protection 9-30

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

xiv Contents
PowerPlay Power Optimization 9-30
Limiting DSP and RAM Block Usage in Partitions 9-31
Restructure Multiplexers 9-32
Synthesis Effort 9-34
State Machine Processing 9-35
Manually Specifying State Assignments Using the syn_encoding Attribute 9-36
Manually Specifying Enumerated Types Using the enum_encoding Attribute 9-38
Safe State Machines 9-39
Power-Up Level 9-41

Inferred Power-Up Levels 9-41
Power-Up Don't Care 9-42
Remove Duplicate Registers 9-42
Preserve Registers 9-42
Disable Register Merging /Don’t Merge Register ... 9-43
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node 9-44
Keep Combinational Node/Implement as Output of Logic Cell 9-45
Disabling Synthesis Netlist Optimizations with dont_retime Attribute 9-46
Disabling Synthesis Netlist Optimizations with dont_replicate Attribute 9-46
Maximum Fan-Out 9-47
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable 9-48
Megafunction Inference Control 9-49

Multiply-Accumulators and Multiply-Adders 9-49

Shift Registers 9-49

RAMand ROM ... 9-50

Resource Aware RAM, ROM, and Shift-Register Inference 9-51

RAM to Logic Cell Conversion i 9-51
RAM Style and ROM Style—for Inferred Memory, 9-52
Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute 9-53
RAM Initialization File—for Inferred Memory 9-56
Multiplier Style—for Inferred Multipliers 9-57
Full Case 9-59
Parallel Case 9-60
Translate Off and On / Synthesis Offand On i 9-61
Ignore translate_off and synthesis_off Directives 9-62
Read Commentsas HDL 9-62
Use I/OFLPLlopso 9-63
Specifying Pin Locations with chip_pin 9-65
Using altera_attribute to Set Quartus II Logic Options 9-66

Verilog HDLo 9-67

VH DL . 9-67

Analyzing Synthesis Results 9-68
Analysis and Synthesis Section of the Compilation Report 9-69
Project Navigator o 9-69
Analyzing and Controlling Synthesis Messagesooiiiiiiiiiiiiiiiiiiinnnn. 9-69
Quartus ITMessagest 9-69
VHDL and Verilog HDL Messages ... 9-70
Setting the HDL Message Level i 9-71
Enabling or Disabling Specific HDL Messages by Module/Entity 9-73
Node-Naming Conventions in Quartus II Integrated Synthesis 9-73
Hierarchical Node-Naming Conventions, 9-74
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) 9-74
Register Changes During Synthesis 9-75
Synthesis and Fitting Optimizations 9-76
State Machines 9-77

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents Xv

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions 9-77
Packed Input and Output Registers of RAM and DSP Blocks 9-77
Preserving Register Names 9-77
Node-Naming Conventions for Combinational LogicCells 9-78
Preserving Combinational Logic Names 9-79
Scripting SUPPOIt ... o 9-79
Adding an HDL File to a Project and Setting the HDL Version 9-80
Quartus II Synthesis Options 9-81
AssigningaPin 9-83
Creating Design Partitions for Incremental Compilation.................... 9-83
ConClUSION 9-84
Referenced Documents 9-84
Document Revision History 9-85

Chapter 10. Synopsys Synplify Support

Introduction 10-1
Altera Device Family Support 10-1
Design Flow o 10-2
Output Netlist File Name and Result Format 10-5
Synplify Optimization Strategies 10-6
Using Synplify Premier to Optimize Your Design 10-7
Implementations in Synplify Pro or Premier L 10-7
Timing-Driven Synthesis Settings 10-7
Clock Frequencies i 10-8
Multiple Clock Domains 10-8
Inputand Output Delays 10-8
Multicycle Paths 10-9
False Paths i 10-9

FSM Compilero 10-9
FSM Explorer in Synplify Proand Premier o L 10-10
Optimization Attributes and Options 10-10
Retiming in Synplify Proand Premier 10-10
Maximum Fan-Out ... 10-10
Preserving Nets 10-11
Register Packing 10-11
Resource Sharing 10-11
Preserving Hierarchy 10-11
Register Input and Output Delays 10-11
syn_direct_enable 10-12
I/OStandard 10-12
Altera-Specific Attributes 10-13
altera_chip_pin_lc 10-13
altera_implement_in_esb or altera_implement in eabl 10-13
altera_10_POWETUPo i 10-13
altera_io_opendrain 10-13
Exporting Designs to the Quartus II Software Using NativeLink Integration 10-14
Running the Quartus II Software from within the Synplify Software 10-14
Using the Quartus II Software to Run the Synplify Software 10-15
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 10-16
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 10-16
Individual Clocks and Frequencies 10-17
Inputand Output Delay 10-17
Multicycle Patho 10-17
False Path o 10-17

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

xvi Contents

Passing Constraints to the Quartus II Software using Tcl Commands 10-17
Global Signals 10-18
Default or Global Clock Frequency 10-18
Individual Clocks and Frequencies i i 10-18
Virtual Clockso 10-19
Route Delay Option 10-19
Multiple Clocks in Different Clock Groupso o oo 10-19
Multiple Clocks with Different Frequencies in the Same Clock Group 10-20
Inter-Clock Relationships—Delays and False Paths between Clocks 10-21
False Paths 10-21
Multicycle Paths 10-22
Maximum Path Delays 10-23

Guidelines for Altera Megafunctions and Architecture-Specific Features 10-25

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10-26
Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
10-27
Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
10-27
Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions 10-27
Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench . . .
10-28
Using Generated Verilog HDL Files for Black Box IP Function Instantiation 10-28
Using Generated VHDL Files for Black Box IP Function Instantiation 10-29
Other Synplify Software Attributes for Creating Black Boxes 10-29

Including Files for Quartus II Placement and RoutingOnly 10-30

Inferring Altera Megafunctions from HDL Code 10-31
Inferring Multipliers 10-31
Inferring RAM ... 10-33
RAM Initialization 10-35
Inferring ROM L 10-36
Inferring Shift Registers 10-36

Incremental Compilation and Block-Based Design 10-37

Creating a Design with Separate Netlist Files for Incremental Compilation 10-38

Using MultiPoint Synthesis with Incremental Compilation 10-39
Set Compile Points and Create Constraint Files 10-39
Additional Considerations for Compile Points 10-41
Creating a Quartus II Project for Compile Points and Multiple .vqm Files 10-41

Creating Multiple .vqm Files for Incremental Compilation Using Separate Synplify Projects .. 10-43
Manually Creating Multiple .vqm Files Using Black Boxes 10-43
Creating a Quartus II Project for Multiple .vgm Files 10-47

Performing Incremental Compilation in the Quartus II Software 10-48

ConClUSIONo 10-49
Referenced Documents 10-49
Document Revision History 10-50

Chapter 11. Mentor Graphics Precision Synthesis Support

Introduction 11-1
Device Family Support 11-1
Design Flowo 11-2
Creating and Compiling a Project in the Precision Synthesis Software 11-5
Creating a Project 11-5
Compiling the Design 11-5
Mapping the Precision Synthesis Design 11-5
Setting Timing Constraints 11-6

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents xvii

Setting Mapping Constraints 11-7
Assigning Pin Numbersand I/OSettings i 11-7
Assigning I/O Registers 11-8
Disabling I/O Pad Insertion 11-9
Preventing the Precision Synthesis Software from AddingI/OPads 11-9
Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin . 11-9
Controlling Fan-Outon DataNets 11-9
Synthesizing the Design and Evaluating the Results, 11-10
Obtaining Accurate Logic Utilization and Timing Analysis Reports 11-10
Exporting Designs to the Quartus II Software Using NativeLink Integration 11-10
Running the Quartus II Software from within the Precision Synthesis Software.............. 11-11
Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl Script
11-12
Using Quartus II Software to Launch the Precision Synthesis Software 11-13
Passing Constraints to the Quartus Il Software 11-13
create _CloCK . ..o 11-13
set_input_delay 11-14
set_output_delay 11-15
set_max_delay 11-15
set_min_delay 11-16
set_false_path 11-16
set_multicycle_path 11-17
Guidelines for Altera Megafunctions and Architecture-Specific Features 11-18
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 11-18
Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
11-19
Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
11-19
Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench . . .
11-19
Using Generated Verilog HDL Files for Black Box IP Function Instantiation 11-20
Using Generated VHDL Files for Black Box IP Function Instantiation 11-21
Inferring Altera Megafunctions from HDL Code 11-21
Multipliers 11-22
Usingthe GUL 11-22
Using Attributes 11-22
Multiplier-Accumulators and Multiplier-Addersl 11-24
Controlling DSP Block Inference 11-24
RAMand ROM ... 11-26
Incremental Compilation and Block-Based Design 11-27
Creating a Design with Precision RTL Plus Incremental Synthesis 11-27
Creating Partitions with the incr_partition Attribute 11-28
Creating Multiple EDIF Netlist Files Using Separate Precision Projects or Implementations ... 11-29
Creating Black Boxesin Verilog HDL i 11-31
Creating Black Boxesin VHDL 11-32
Creating Quartus II Projects for Multiple EDIF Files 11-33
Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow 11-34
Creating Multiple Quartus II Projects for a Bottom-Up Flow 11-35
Hierarchy and Design Considerations i, 11-35
ConClUSION o 11-36
Referenced Documents 11-36
Document Revision History 11-37

Chapter 12. Mentor Graphics LeonardoSpectrum Support

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

xviii Contents

Introduction 12-1
Altera Device Family Support 12-1
Design FLow 12-2
Optimization Strategies 12-4
Timing-Driven Synthesis 12-5
Global Power Tab 12-5
Clock Power Tab 12-5
Inputand Output Power Tabs 12-5
Other Constraints 12-6
Encoding Style 12-6
Resource Sharing 12-6
Mapping I/O Registers 12-7
Timing Analysis with the LeonardoSpectrum Software 12-7
Exporting Designs Using NativeLink Integration 12-7
Generating Netlist Files 12-8
Including Design Files for Black Boxed Modules 12-8
Passing Constraints with Scripts 12-8
Integration with the Quartus Il Software 12-8
Guidelines for Altera Megafunctions and LPM Functions 129
Instantiating Altera Megafunctions 12-9
Inferring Altera Memory Elements 12-9
Inferring Multipliers and DSP Functions 12-10
Simple Multipliers 12-11
Multiplier Accumulators 12-11
Multiplier Adders 12-11
Controlling DSP Block Inference 12-11
Global Attribute 12-13
Module Level Attributes 12-13
Signal Level Attributes 12-14
Guidelines for Using DSP Blocks 12-16
Block-Based Design with the Quartus Il Software 12-17
Hierarchy and Design Considerations 12-17
Creating a Design with Multiple .edif Files 12-18
Generating Multiple .edif Files Using the LogicLock Option 12-18
Creating a Quartus II Project for Multiple .edif Files Including LogicLock Regions 12-20
Generating Multiple .edif Files Using Black Boxes, 12-21
Black Box Methodology in Verilog HDL o i ot 12-23
Black Boxing in VHDL 12-23
Creating a Quartus II Project for Multiple .edif Files 12-25
Incremental Synthesis Flow 12-26
Modifications Required for the LogicLock_Incremental.tcl Script File 12-26
Running the Tcl Script File in LeonardoSpectrum 12-27
ConClUuSIONo 12-28
Referenced Documents 12-28
Document Revision History 12-28

Chapter 13. Analyzing Designs with Quartus Il Netlist Viewers

Introduction 13-1
When to Use Viewers: Analyzing Design Problems 13-2
Quartus II Design Flow with Netlist Viewers o .. 13-3
RTL Viewer OVerview i 13-4
State Machine Viewer Overview 13-5
Technology Map Viewer OVeIVIEWttt 13-5
Introduction to the User Interface 13-6

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Contents Xix

Schematic View 13-7
Schematic Symbols 13-7
Selecting an Item in the Schematic Viewl 13-12
Moving and Panning in the Schematic View L 13-13

Hierarchy List 13-13
Selecting an Item in the Hierarchy List 13-14

Enable or Disable the Auto Hierarchy List, 13-14

State Machine Viewer 13-15
State Diagram View 13-15
State Transition Table 13-16
State Encoding Table 13-16
Selecting an Item in the State Machine Viewer 13-16
Switching Between State Machines 13-17

Navigating the Schematic View 13-17

Traversing and Viewing the Design Hierarchy 13-17
Flattening the Design Hierarchy 13-17
Viewing the Contents of a Design Hierarchy within the Current Schematic 13-18

Viewing Contents of Atom Primitivesl 13-18

Viewing the Properties of Instances and Primitives 13-19

Viewing LUT Representations in the Technology Map Viewer 13-20

Grouping Combinational Logic into LogicClouds 13-21
Logic Clouds inthe RTL Viewer 13-22
Logic Clouds in the Technology Map Viewer 13-22
Manually Group and Ungroup LogicClouds 13-23

Changing the Constant Signal Value Formatting .. 13-23

Zooming and Magnification 13-23
Schematic Debugging and Tracing Using the Bird’s Eye View 13-25
Full Screen View 13-25

Partitioning the SchematicintoPages L 13-25
Moving Between SchematicPages 13-26
Moving Back and Forward Through SchematicPages 13-26
Following Nets Across SchematicPages 13-26
GotoNetDriver 13-27

Customizing the Schematic Display in the RTL Viewer 13-28
Filtering in the Schematic View 13-28
Filter Sources Command 13-29
Filter Destinations Command 13-29
Filter Sources and Destinations Command 13-30
Filter Between Selected Nodes Command 13-30
Filter Selected Nodes and Nets Command, 13-30
Filter BusIndex Command 13-31
Filter Command Processing 13-31
Filtering Across Hierarchies 13-32
Expanding a Filtered Netlist 13-33
Reducing a Filtered Netlist 13-34
Probing to Source Design File and Other Quartus IWindows 13-34

Moving Selected Nodes to Other Quartus I Windows 13-35
Probing to the Viewers from Other Quartus I Windows 13-36
Viewinga Timing Path o 13-37
Other Features in the Schematic Viewer 13-39

ToOltpS . .o o 13-39

Radial Menu 13-41
Enabling and Disabling the Radial Menu 13-42
Customizing the Shortcut Commands L 13-42

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

XX Contents
ChangingtheDelay 13-43
RoIlOVer ... 13-43
Displaying Net Names in the Schematic............... 13-44
Displaying Node Names in the Schematic 13-44
Opening the Hierarchy Dialog Box i, 13-44
Exporting and Copying a SchematicImage, 13-46
Printing 13-46
Debugging HDL Code with the State Machine Viewer 13-47
Simulation of State Machine Gives Unexpected Results 13-47
Conclusion 13-50
Document Revision History 13-50

Additional Information

About this Handbook Info-1
How to Contact Altera Info-1
Third-Party Software Product Informationl Info-1
Typographic Conventions i Info-2

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter Revision Dates
AITERA ’

The chapters in this book, Quartus II Handbook Version 9.1 Volume 1: Design and
Synthesis, were revised on the following dates. Where chapters or groups of chapters
are available separately, part numbers are listed.

Chapter 1 Design Planning with the Quartus II Software
Revised: November 2009
Part Number: QII51016-9.1.0

Chapter 2 Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: November 2009
Part Number: QII51015-9.1.0

Chapter 3 Quartus II Design Flow for MAX+PLUS II Users
Revised: November 2009
Part Number: QII51002-9.1.0

Chapter 4 Quartus II Support for HardCopy Series Devices
Revised: November 2009
Part Number: QII51004-9.1.0

Chapter 5 Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: November 2009
Part Number: QI151006-9.1.0

Chapter 6 Recommended HDL Coding Styles
Revised: November 2009
Part Number: QI151007-9.1.0

Chapter 7 Managing Metastability with the Quartus II Software
Revised: November 2009
Part Number: QI151018-9.1.0

Chapter 8 Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: November 2009
Part Number: QI151017-9.1.0

Chapter 9 Quartus II Integrated Synthesis
Revised: December 2009
Part Number: QII51008-9.1.1

Chapter 10 Synopsys Synplify Support
Revised: November 2009
Part Number: QII151009-9.1.0
Chapter 11 Mentor Graphics Precision Synthesis Support
Revised: November 2009
Part Number: QII51011-9.1.0

Chapter 12 Mentor Graphics LeonardoSpectrum Support

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

XXii Chapter Revision Dates

Revised: November 2009
Part Number: QII51010-9.1.0

Chapter 13 Analyzing Designs with Quartus II Netlist Viewers

Revised: November 2009
Part Number: QII51013-9.1.0

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Section I. Design Flows

The Altera® Quartus® II design software provides a complete design environment that
easily adapts to your specific design requirements. This handbook is arranged in
chapters, sections, and volumes that correspond to the major stages in the overall
design flow. For a general introduction to features and the standard design flow in the
software, refer to the Introduction to the Quartus 1I Software manual.

This section is an introduction to design planning, contains a collection of various
specialized design flows in the Quartus II software, and includes the following
chapters:

Chapter 1, Design Planning with the Quartus II Software

This chapter discusses important FPGA design planning issues, such as device
selection, early power estimation, I/O pin planning, and design planning. To help
you improve design productivity, it provides recommendations and describes
various tools available for Altera FPGAs .

Use this chapter for an overview of various planning considerations when you
start your design.

Chapter 2, Quartus II Incremental Compilation for Hierarchical and Team-Based
Design

This chapter documents Altera’s incremental design and compilation flow, which
allows you to preserve the results and performance for unchanged logic in your
design as you make changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular hierarchical and
team-based design flows using top-down or bottom-up methodologies

This chapter contains information about using the incremental compilation flow,
and recommends incremental design flows with Quartus II features.

Chapter , Introduction

There are many features in the Quartus II software to help users of the legacy
MAX+PLUS® II software easily transition to the Quartus II software design
environment. This chapter describes how to convert MAX+PLUS II designs to
Quartus II projects, and highlights the similarities and differences between the
MAX+PLUS II and Quartus II design flows.

This chapter is for users of the legacy MAX+PLUS II software.
Chapter 4, Quartus II Support for HardCopy Series Devices

With the Quartus II software, you can leverage an FPGA device as a prototype and
seamlessly migrate your design to a HardCopy ASIC to reduce cost for volume
production. This chapter describes the Quartus II support for HardCopy design
flows.

Use this chapter if you want to migrate your design to a HardCopy ASIC.

For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

1-2 Section I: Design Flows

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

fAN IERA 1. Design Planning with the
— ® Quartus Il Software

Ql151016-9.1.0

Introduction

This chapter discusses important FPGA design planning considerations, provides
recommendations, and describes various tools available for Altera® FPGAs to
improve design productivity.

The inherent flexibility of advanced FPGAs means that the pin layout, power
consumption, area utilization, and timing performance for each design block are all
dependent on the final design implementation. Because of the significant increase in
FPGA device densities over the last few years, designs are increasingly complex and
might involve multiple designers. System architects must resolve these design issues
when integrating design blocks, often leading to problems that affect the overall time
to market and thereby increase cost. Many potential problems can be solved earlier in
the design cycle by performing good design planning.

This chapter contains the following sections:

m “Creating Design Specifications” on page 1-2

m “Intellectual Property Selection” on page 1-2

m “Device Selection” on page 1-3

m “Planning for Device Programming or Configuration” on page 1-4
m “Early Power Estimation” on page 1-5

m “Early Pin Planning and I/O Analysis” on page 1-6

m “Selecting Third-Party EDA Tool Flows” on page 1-9

m “Planning for On-Chip Debugging Options” on page 1-10

m “Design Practices and HDL Coding Styles” on page 1-12

m “Planning for Hierarchical and Team-Based Design” on page 1-14
m “Fast Synthesis and Early Timing Estimation” on page 1-18

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. You should know what are the most important factors for your
design. More device features, density, or performance can increase system cost. Signal
integrity and board issues might impact I/O pin locations. Power, timing
performance, and area utilization affect each other, and compilation time is affected
by optimizations for these factors.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

1-2 Chapter 1: Design Planning with the Quartus Il Software
Creating Design Specifications

The Quartus® II software optimizes designs for the best average results, but you can
change the settings to focus on one aspect of the design results and trade off other
aspects. Certain tools or debugging options can lead to restrictions in your design
flow. If you know what is important in a particular design, this knowledge helps you
choose the tools, features, and methodologies that you should use with the design.
This chapter cannot cover every possible consideration for planning a complex FPGA
design, but once you understand your design priorities, you can use the design
planning considerations described here as a guide to help ensure a productive and
successful FPGA design flow.

«o This chapter provides an introduction to various design and planning features in the
Quartus II software. For a general overview of the Quartus II design flow and
features, refer to the Introduction to the Quartus II Software manual. For more details
about specific Quartus II features and methodologies, this chapter provides references
to other appropriate chapters in the Quartus II Handbook.

-o After you have selected a device family, to check if additional guidelines are available,
refer to the Design Guideline section of the device on the Altera Literature and
Technical Documentation page.

Creating Design Specifications

Before you create your logic design or complete your system design, create detailed
design specifications that define the system, specify the I/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions. Taking the time to create these specifications helps improve design
efficiency.

Creating a test plan at this phase also helps you to design for testability and
manufacturability. For example, if you want to perform any built-in self-test functions
to drive interfaces, you can use a UART interface with a Nios® II processor inside the
FPGA device. You might require the ability to validate all the design interfaces. For
guidelines related to analyzing and debugging the device after it is in the system, refer
to “Planning for On-Chip Debugging Options” on page 1-10.

If your design includes multiple designers, it is also useful to consider a common
design directory structure at this point. This eases the design integration stages. For
more suggestions on team-based designs, refer to “Planning for Hierarchical and
Team-Based Design” on page 1-14.

Intellectual Property Selection

Altera and its third-party intellectual property (IP) partners offer a large selection of
off-the-shelf IP cores optimized for Altera devices. The IP selection often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/0 interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html

Chapter 1: Design Planning with the Quartus Il Software 1-3

Device Selection

The OpenCore Plus feature, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports an untethered mode, in which the design runs for a
limited time, or a tethered mode. The tethered mode requires an Altera serial JTAG
cable connected between the JTAG port on your board and a host computer running
the Quartus II Programmer for the duration of the hardware evaluation period.

For descriptions of available IP cores, refer to the Intellectual Property page on the
Altera website.

Device Selection

The first stage in design planning is choosing the best device for your application. The
device selection affects the rest of your design cycle, including board specification and
layout. Most of this planning is performed outside of the Quartus II software, but this
section provides a few suggestions to aid in the planning process.

Choose the device family that best suits your design requirements. Different families
offer different trade-offs, including cost, performance, logic and memory density, I/O
density, power utilization, and packaging. You should also consider feature
requirements, such as I/O standards support, high-speed transceivers, global or
regional clock networks, and the number of phase-locked loops (PLLs) available in
the device.

You can review important features of each device family in the Selector Guides page.
Each device family also has a device handbook or set of data sheets that documents
the device features in detail.

Determining the required device density can be a challenging part of the design
planning process. Devices with more logic resources and higher I/O counts can
implement larger and potentially more complex designs, but may have a higher cost.
Smaller devices have lower static power utilization. Select a device that meets your
design requirements with some safety margin, in case you want to add more logic
later in the design cycle to upgrade or expand your design, or reserve logic and
memory for on-chip debugging (refer to “Planning for On-Chip Debugging Options”
on page 1-10). Consider requirements for specific types of dedicated logic blocks,
such as memory blocks of different sizes, or digital signal processing (DSP) blocks to
implement certain arithmetic functions.

Many next-generation designs use a current design as a starting point. If you have
other designs that target an Altera device, you can use their resource utilization as an
estimate for your new design. Compile existing designs in the Quartus II software
with the Auto device selected by the Fitter option in the Settings dialog box. Review
the resource utilization to find out which device density fits the design. Consider that
coding style, device architecture, and the optimization options used in the Quartus II
software can significantly affect the resource utilization and timing performance of
your design.

To obtain resource utilization estimates for certain configurations of Altera’s IP
designs, refer to the user guides for Altera megafunctions and IP MegaCores on
Literature: IP and Megafunctions section of the Altera website.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/products/ip/ipm-index.html

1-4

Chapter 1: Design Planning with the Quartus Il Software
Planning for Device Programming or Configuration

Device Migration Planning

Determine whether you want the option of migrating your design to another device
density to allow flexibility when your design nears completion, or whether you want
to migrate to a HardCopy® ASIC when your design reaches volume production. In
some cases, designers may target a smaller (and less expensive) device and then move
to a larger device if necessary to meet their design requirements. Other designers may
prototype their design in a larger device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a smaller device after prototyping.
Similarly, many designers compile and optimize their design for an FPGA device and
then migrate to a HardCopy ASIC when the design is complete and ready for
higher-volume production. If you want the flexibility to migrate your design, you
should specify these migration options in the Quartus II software at the beginning of
your design cycle.

To specify the target migration devices, perform the following;:
1. Inthe Assignments menu, select Settings. The Settings dialog box appears.

2. On the Device page, click on the Migration Devices button. The Migration
Devices dialog box appears.

3. In the Migration Devices dialog box, select your target device in the Compatible
migration devices section.

Selecting a migration device has an impact on pin placement because some pins may
serve different functions in different device densities or package sizes. If you are
making pin assignments in the Quartus II software, the Pin Migration View in the Pin
Planner highlights pins that change function between your migration devices. (For
more information, refer to “Early Pin Planning and I/O Analysis” on page 1-6.)
Selecting a companion device might restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration or
companion devices later in the design cycle is possible, but requires extra effort to
check pin assignments, and might require design changes to fit into the new target
device. Altera recommends that you consider these issues early in the design cycle
than at the end, when the design is near completion and ready for migration.

In addition, if you are using a HardCopy ASIC, review HardCopy guidelines early in
the design cycle for any Quartus II settings that should be used or other restrictions
you should consider. You must use complete timing constraints if you want to migrate
to a HardCopy device because of the rigorous verification requirements for ASICs.

For more information about timing requirements and analysis for HardCopy designs,
refer to the HardCopy Series Handbook, and the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Planning for Device Programming or Configuration

Another important part of the device planning is determining how you want to
program or configure the device in your system. Choosing your programming or
configuration method early allows system and board designers to determine what
companion devices, if any, are required for your system. Your board layout also
depends on the type of programming or configuration method you plan to use for
programmable devices. Many programming options require a JTAG interface to
connect to the devices, so you might have to set up a JTAG chain on the board. In

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-5

Early Power Estimation

addition, the Quartus II software uses the settings for the configuration scheme,
configuration device, and configuration device voltage to enable the appropriate dual
purpose pins as regular I/O pins after configuration is complete. The Quartus II
software performs voltage compatibility checks of those pins during I/O assignment
analysis and compilation of your design. Click the Configuration tab of the Device
and Pin Options dialog box and select your configuration scheme.

The device family handbooks describe the configuration options available for a given
device family. For more details about configuration options, refer to the Configuration
Handbook. For information about programming CPLD devices, refer to your device
data sheet or handbook.

Early Power Estimation

You can use the Quartus II power estimation and analysis tools to provide
information to PCB board and system designers. You can perform early power
estimation before you create any source code, or when you have a preliminary version
of the design source code, and then perform the most accurate analysis with the
PowerPlay Power Analyzer when the design is complete.

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

m Thermal planning—You must ensure that the cooling solution is sufficient to
dissipate the heat generated by the device. The computed junction temperature
must fall within normal device specifications.

m Power supply planning—You must ensure that the power supplies provide
adequate current to support device operation.

Power consumption in FPGA devices is dependent on the logic design. This
dependence can make power estimation challenging during the early board
specification and layout stages. Altera’s PowerPlay Early Power Estimator (EPE)
spreadsheet allows you to estimate power utilization before the design is complete. To
use the EPE, you must provide information about the device resources that are used
in the design, as well as the operating frequency, toggle rates, and environmental
considerations.

If you have an existing design or a partially-completed design, the Quartus II
software power estimator file can provide input to the EPE spreadsheet to specify
information about your current design (refer to “Creating Powerplay EPE
Spreadsheets™).

The PowerPlay EPE spreadsheets for each supported device family are available on
the PowerPlay Early Power Estimator and Power Analyzer page.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results for designers developing the PCB.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp

1-6 Chapter 1: Design Planning with the Quartus Il Software
Early Pin Planning and 1/0 Analysis

When the design is complete, perform a complete power analysis to check the power
consumption more accurately. The PowerPlay Power Analyzer tool in the Quartus II
software provides an accurate estimation of power, ensuring that thermal and supply
budgets are not violated. For the most accurate power estimation, use gate-level
simulation results from a Verilog Value Change Dump File (.vcd) with the PowerPlay
Power Analyzer.

<o For more information about power estimation and analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Creating Powerplay EPE Spreadsheets

You can use PowerPlay EPE spreadsheets to perform a preliminary thermal analysis
and power consumption estimate for your design. You can enter the data manually, or
you can use the tools in the Quartus II software to assist you in generating the device
resources usage information for your design.

If you manually enter data into the EPE spreadsheet, you can enter the device
resources, operating frequency, toggle rates, and other parameters for your design. If
you do not have an existing design, you can estimate the number of device resources
used in your design and enter them manually.

If you have an existing design or a partially completed design, you can use the
Quartus Il software to generate the PowerPlay EPE file to assist you in completing the
PowerPlay EPE spreadsheet.

To generate the power estimation file, you must first compile your design in the
Quartus II software. After compilation is complete, on the Project menu, click
Generate PowerPlay Early Power Estimator File. The PowerPlay EPE file is a
Comma-Separated Value File (.csv) named <project>_early_power.csv. If your design
targets a Cyclone, Stratix, or Stratix GX device, the PowerPlay EPE file is in a Tab-
Separated Value File (.txt) named <project>_early_power.txt.

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the power estimation file and transfers it into the spreadsheet. If you
do not want to use the macro, you can manually transfer the data into the EPE
spreadsheet. For example, after importing the PowerPlay EPE file information into
the PowerPlay EPE spreadsheet, you can add additional devices resource information
at any time. If the existing Quartus II project represents only a portion of your full
design, you can manually enter the additional device resources used in the final
design.

Early Pin Planning and 1/0 Analysis

In many design environments, FPGA designers want to plan top-level FPGA I/O pins
early to help board designers to start developing the PCB design and layout. The
FPGA device’s 1/0O capabilities and board layout guidelines influence pin locations
and other types of assignments. If the board design team specifies an FPGA pin-out, it
is crucial that the pin locations are verified in the FPGA placement and routing
software to avoid board design changes.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-7
Early Pin Planning and 1/0 Analysis

In the past, designers and system architects could not check the validity of FPGA pin
assignments until the design was completed. You can now create a preliminary
pin-out for an Altera FPGA with the Quartus II Pin Planner before the source code is
developed, based on standard 1/O interfaces (such as memory and bus interfaces)
and any other I/O-related assignments defined by system requirements. For more
information, refer to “Creating a Top-Level Design File for I/O Analysis” on page 1-8.
The Quartus I I/O Assignment Analysis checks that the pin locations and
assignments are supported in the target FPGA architecture. You can use I/O
Assignment Analysis to validate I/O-related assignments that you create or modify
throughout the design process. When you compile your design in the Quartus II
software, the I/O Assignment Analysis in the Fitter validates that the assignments
meet all the device requirements and generates messages if there are any problems.

The Pin Planner enables easy I/O pin assignment planning, assignment, and
validation. You can use the View menu in the Pin Planner to create pin location and
other assignments using a device package view instead of pin numbers.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups,
and differential pin pairings to help you through the I/O planning process. If
migration devices are selected (including HardCopy devices) as described in “Device
Migration Planning” on page 1-4, the Pin Migration View highlights pins have
changed functions in the migration device when compared to the currently selected
device. Selecting pins in the Device Migration view cross-probes to the rest of the Pin
Planner, so you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins for use in
“board-aware” signal integrity reports generated with the Enable Advanced I/O
Timing option. This option ensures you get very accurate I/O timing analysis. You
have the option to use a Microsoft Excel spreadsheet to start the I/O planning process
if you normally use a spreadsheet in your design flow, and you can export a .csv
containing your I/0O assignments for spreadsheet use when all pins are assigned.

When planning is complete, the pin location information can be passed to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools,
and can read pin location changes from these tools to check the suggested changes.
Your pin assignments must match between the Quartus II software and your
schematic and board layout tools to ensure the design works correctly on the board on
which it is placed, especially if changes to the pin-out must be made. The system
architect can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they compile their
design. When the design is complete, the Quartus II Fitter reports are used for the
final sign-off of pin assignments. After compilation, the Quartus II software generates
the Pin-Out File (.pin). You can use this file to verify that each pin is correctly
connected in board schematics.

Starting FPGA pin planning early—before the HDL design is complete—improves the
confidence in early board layouts, reduces the chance of error, and improves the
design’s overall time to market.

For more information about I/O assignment and analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook. For more information about passing
I/0 information between the Quartus II software and third-party EDA tools, refer to
the Mentor Graphics PCB Design Tools Support and Cadence PCB Design Tools Support
chapters in the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_02.pdf

Chapter 1: Design Planning with the Quartus Il Software
Early Pin Planning and 1/0 Analysis

Creating a Top-Level Design File for 1/0 Analysis

Early in the design process, before the source code is created, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores that are used in the design, and any other I/O-related assignments
defined by system requirements. You can use this information with the Create/Import
Megafunction feature in the Pin Planner to specify details about the design I/O
interfaces. Specifying these details allows you to create a top-level design file that
includes all your I/O information, so you can analyze the I/O assignments in the
Quartus II software.

The Pin Planner interfaces with the MegaWizard™ Plug-In Manager, and allows you to
create or import custom megafunctions and IP cores that use I/O interfaces. You can
configure how they are connected to each other by specifying matching node names
for selected ports in the Set Up Top-Level Design File dialog box. Create any other
I/O-related assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much I/O-related information as possible, generate a
top-level design file using the Create Top-Level Design File command. The Pin
Planner creates virtual pin assignments for internal nodes, so internal nodes are not
assigned to device pins during compilation. After analysis and synthesis of the newly
generated top-level wrapper file, use the generated netlist to perform I/O Analysis
with the Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP parameters, and
repeat the checking process until the I/O interface meets your design requirements
and passes the pin checks in the Quartus II software. When this initial pin planning is
complete, you can create a Quartus II Revision based on the Quartus II-generated
netlist. You then have a choice on how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated netlist and
use the generated Quartus II Settings File (.qsf) with the actual design.

Simultaneous Switching Noise Analysis

Simultaneous switching noise (SSN) is defined as a noise voltage inducted onto a
victim I/O pin of a device due to the switching behavior of other aggressor I/0 pins
in the device. SSN noise often leads to the degradation of signal integrity by causing
signal distortion, thereby reducing the noise margin of a system. It is best approach to
address SSN with estimation early in your system design, to reduce the chance of any
later board design changes. When the design is complete, tape out your PCB with
complete SSN analysis of your FPGA in the Quartus II software.

Altera provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) tool, and the SSN Analyzer in the Quartus II
software.

The ESE tool is a good starting point to estimate SSN in your FPGA design, and it is
available for various device families.

For more information and device support for the ESE spreadsheet tool, refer to
Altera’s Signal Integrity Center on the Altera website. For more information about the
SSN Analyzer, refer to the Simultaneous Switching Noise (SSN) Analysis and
Optimizations chapter in volume 2 of the Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/technology/signal/sgl-index.html

Chapter 1: Design Planning with the Quartus Il Software 1-9
Selecting Third-Party EDA Tool Flows

Selecting Third-Party EDA Tool Flows

Your complete FPGA design flow may include third-party EDA tools in addition to
the Quartus II software. Determine which tools you want to use with the Quartus II
software to ensure that they are supported and set up correctly, and that you are
aware of any useful features or undesired limitations.

Synthesis Tools

The Quartus II software includes advanced and easy-to-use integrated synthesis that
supports Verilog HDL and VHDL, as well as the Altera hardware description
language (AHDL) and schematic design entry. You can also use supported standard
third-party EDA synthesis tools to synthesize your Verilog HDL or VHDL design, and
then compile the resulting output netlist file in the Quartus II software. Different
synthesis tools may give different results for each design. To assess the
best-performing tool for your application, you can experiment by synthesizing typical
designs for your specific application and coding style. Perform placement and routing
in the Quartus II software to get accurate timing analysis and logic utilization results.

Because tool vendors frequently add new features, fix tool issues, and enhance
performance for Altera devices, Altera recommends using the most recent version of
third-party synthesis tools. The Quartus II Software Release Notes lists the version of
each synthesis tool that is officially supported by that version of the Quartus II
software.

To use the correct Library Mapping File (.Imf) for your synthesis netlist, specify your
synthesis tool in the New Project Wizard or the EDA Tools Settings page of the
Settings dialog box.

Your synthesis tool may offer the capability to create a Quartus II project and pass
constraints, such as the EDA tool setting, device selection, and timing requirements
that you specified in your synthesis project. You can use this capability to save time
when setting up your Quartus II project for placement and routing.

If you want to take advantage of an incremental compilation methodology, you
should partition your design for synthesis and generate multiple output netlist files.
For more information, refer to “Incremental Compilation with Design Partitions” on
page 1-15.

<o For more information about synthesis tool flows, refer to the appropriate chapter in
the Synthesis section in volume 1 of the Quartus Il Handbook.

Simulation Tools

Altera provides the ModelSim Starter Edition with the Quartus II software. You can
also purchase the ModelSim-Altera Edition to support large designs and achieve
faster simulation performance. The Quartus II software can generate both functional
and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that is supported with your Quartus II version for best
results. You should also use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist. The Quartus II Software Release Notes list the
version of each simulation tool that is officially supported with that particular version
of the Quartus II software.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

1-10

Chapter 1: Design Planning with the Quartus Il Software
Planning for On-Chip Debugging Options

Specify your simulation tool in the EDA Tools Settings page of the Settings dialog
box to generate the appropriate output simulation netlist.

For more information about simulation tool flows, refer to the appropriate chapter in
the Simulation section in volume 3 of the Quartus II Handbook.

Formal Verification Tools

The Quartus II software supports some formal verification flows. Consider whether
your desired formal verification flow impacts the design and compilation stages of
your design.

For more information about formal verification flows and supported tools, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the Quartus II
Handbook.

Using a formal verification flow can impact performance results because it requires
that certain logic optimizations be turned off, such as register retiming, and forces
hierarchy blocks to be preserved, which can restrict optimization. Formal verification
treats memory blocks as black boxes. Therefore, it is best to keep memory in a
separate hierarchy block so other logic does not get incorporated into the black box
for verification. There are other restrictions that may also limit your design, so consult
the documentation for details. If formal verification is important to your design, it is
easier to plan for limitations and restrictions in the beginning than to make changes
later in the design flow.

Specify your formal verification tool in the EDA Tools Settings page of the Settings
dialog box to generate the appropriate output netlist.

Planning for On-Chip Debugging Options

Altera’s in-system debugging tools offer different advantages and trade-offs, so a
particular debugging tool may work better for different systems and designers. It is
beneficial to evaluate on-chip debugging options early in your design process, to
ensure that your system board, Quartus II project, and design are all set up to support
the appropriate options. Planning can reduce time spent during debugging and
eliminates having to make changes later to accommodate your preferred debugging
methodologies.

The Quartus II portfolio of verification tools includes the following in-system
debugging features:

m SignalProbe incremental routing—Quickly routing internal signals to I/O pins
without affecting the design. Starting with a fully routed design, you can select
and route signals for debugging to either previously reserved or currently unused
I/0 pins.

m SignalTap® Il Embedded Logic Analyzer—Probes the state of the internal signals
in the design without the use of external equipment or extra I/O pins, while the
design is running at full speed in an FPGA device. Defining custom trigger-
condition logic provides greater accuracy and improves the ability to isolate
problems. The SignalTap II Embedded Logic Analyzer does not require external
probes or changes to the design files to capture the state of the internal nodes or

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-1
Planning for On-Chip Debugging Options

I/0 pins in the design; all captured signal data is conveniently stored in device
memory until you are ready to read and analyze the data. The SignalTap II
Embedded Logic Analyzer works best for synchronous interfaces. For debugging
asynchronous interfaces, consider using SignalProbe or an external logic analyzer
to view the signals most accurately.

m Logic Analyzer Interface (LAI)—Enables you to connect and transmit internal
FPGA signals to an external logic analyzer for analysis. You can use this feature to
connect a large set of internal device signals to a small number of output pins for
debugging purposes, and allows you to take advantage of advanced features in
your external logic analyzer or mixed signal oscilloscope.

B In-System Memory Content Editor—Provides read and write access to in-system
FPGA memories and constants through the JTAG interface, making it easy to test
changes to memory contents and constant values in the FPGA while the device is
functioning in a system.

m In-System Sources and Probes—Sets up customized register chains to drive or
sample the instrumented nodes in your logic design, providing an easy way to
input simple virtual stimuli and capture the current value of instrumented nodes.
You can force trigger conditions set up using the SignalTap II Logic Analyzer,
create simple test vectors to exercise your design without the use of external test
equipment, and dynamically control run-time control signals with the JTAG chain.

m Virtual JTAG Megafunction—Enables you to build your own system-level
debugging infrastructure, including both processor-based debugging solutions
and debugging tools in software for system-level debugging. The
SLD_VIRTUAL_JTAG megafunction can be instantiated directly in your HDL
code to provide one or more transparent communication channels to access parts
of your FPGA design using the JTAG interface of the device.

<o For more information about debugging tools, refer to the appropriate “Referenced
Documents” on page 1-19. For an overview of debugging options that can help you
decide which option to use, refer to the Introduction section in Section V. In-System
Design Debugging in volume 3 of the Quartus II Handbook.

If you intend to use any of these features, you may have to plan for the features when
developing your system board, Quartus II project, and design. The following
paragraphs describe various factors to consider during your design planning stages.

The SignalTap I Embedded Logic Analyzer, Logic Analyzer Interface, In-System
Memory Content Editor, In-System Sources and Probes, and Virtual JTAG
megafunction require JTAG connections to perform in-system debugging. Plan your
system and board with JTAG ports that are available for debugging.

The JTAG debugging features also require a small amount of additional logic
resources to implement the JTAG hub logic. If you set up the appropriate feature early
in your design cycle, you can include these device resources in your early resource
estimations to ensure you do not overfill the device with logic.

The SignalTap II Embedded Logic Analyzer uses device memory to capture data
during system operation. To ensure that you have enough memory resources to take
advantage of this debugging technique, consider reserving device memory to be used
during debugging.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

1-12

Chapter 1: Design Planning with the Quartus Il Software
Design Practices and HDL Coding Styles

To use incremental debugging with the SignalTap Il Embedded Logic Analyzer, the
Full incremental compilation option must be turned on. This option is on by default
for projects created in the Quartus II software version 6.1 or later, but is not turned on
automatically for existing projects. If incremental compilation is not enabled, you
must recompile the entire design when you want to add debugging functions, or
when you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap Il Embedded Logic Analyzer greatly reduces the
compilation time required for debugging.

The SignalProbe and the Logic Analyzer Interface require I/O pins for debugging.
Consider reserving I/O pins for debugging so that you do not have to change the
design or board to accommodate debugging signals later. Keep in mind that the Logic
Analyzer Interface can multiplex signals with design I/O pins if required. Ensure that
your board supports some kind of debugging mode, where debugging signals do not
affect system operation.

If you want to use the Virtual JTAG megafunction for custom debugging applications,
you must instantiate and incorporate it as part of the design process.

The In-System Sources and Probes feature requires that you instantiate a
megafunction in your HDL code. In addition, you have the option to instantiate the
SignalTap II Embedded Logic Analyzer as a megafunction, so you can manually
connect it to nodes in your design and ensure that the tapped node names do not
change during synthesis. You can add the debugging block as a separate design
partition for incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or the
LPM_CONSTANT megafunction, turn on the Allow In-System Memory Content
Editor to capture and independently update content of the system clock option when
you create the memory block in the MegaWizard Plug-In Manager.

Design Practices and HDL Coding Styles

In the development of complex FPGA designs, design practices and coding styles
have an enormous impact on your device’s timing performance, logic utilization, and
system reliability. Follow Altera’s recommendations to achieve the best synthesis and
fitting results.

Design Recommendations

You can use synchronous design practices to consistently meet your design goals.
Problems with other design techniques include reliance on propagation delays in a
device, incomplete timing analysis, and possible glitches. In a synchronous design, a
clock signal triggers all events. As long as all the registers’ timing requirements are
met, a synchronous design behaves in a predictable and reliable manner for all
process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 1: Design Planning with the Quartus Il Software 1-13
Design Practices and HDL Coding Styles

Pay particular attention to clock signals, because they have a large effect on your
design’s timing accuracy, performance, and reliability. Problems with clock signals
can cause functional and timing problems in your design. You can use dedicated clock
pins and clock routing for best results, and if PLLs are available in your target device,
use the PLLs for clock inversion, multiplication, and division. For clock multiplexing
and gating, use the dedicated clock control block or PLL clock switchover feature
instead of combinational logic if these features are available in your device. If you
must use internally-generated clock signals, register the output of any combinational
logic used as a clock signal to reduce glitches.

The Design Assistant in the Quartus II software is a design-rule checking tool that
enables you to check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design guidelines or design
rules. To run the Design Assistant, on the Processing menu, point to Start and click
Start Design Assistant. To set the Design Assistant to run automatically during
compilation, turn on Run Design Assistant during compilation in the Settings
dialog box. You can also use third-party “lint” tools to check your coding style.

You should also understand the target architecture of your device to target your
design to take advantage of those features. For example, the control signals should
use the dedicated control signals in the device architecture, so in some cases you
might be required to limit the number of different control signals used in your design
to achieve the best results.

«o For more information about design recommendations and using the Design Assistant,
refer to the Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook. You can also refer to industry
papers for more information about multiple clock design. For a good analysis, refer to
Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs under
Papers (www.sunburst-design.com).

Recommended HDL Coding Styles

HDL coding styles can have a significant effect on the quality of results for
programmable logic designs. You can use Altera’s recommended coding styles to
achieve optimal synthesis results. If you are designing memory and DSP functions,
you should understand your device’s target architecture so you can take advantage of
the dedicated logic block sizes and configurations. Follow the coding guidelines for
inferring megafunctions and targeting dedicated device hardware, such as memory
and DSP blocks.

«o For specific HDL coding examples and recommendations, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For any additional
tool-specific guidelines, refer to your synthesis tool’s documentation. In the Quartus II
software, you can use the HDL examples in the Language Templates available from
the right-click menu in the text editor.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.sunburst-design.com

1-14

Chapter 1: Design Planning with the Quartus Il Software
Planning for Hierarchical and Team-Based Design

Managing Metastability

Metastability problems can occur in digital design when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the designer
cannot guarantee that the signal meets the setup and hold time requirements during
the signal transfer. Designers commonly use a synchronization chain to minimize the
occurrence of metastable events.

You can use the Quartus II software to analyze the average mean time between
failures (MTBF) due to metastability when a design synchronizes asynchronous
signals, and optimize the design to improve the metastability MTBF. The MTBF due to
metastability is an estimate of the average time between instances when metastability
could cause a design failure. A high MTBF (such as hundreds or thousands of years
between metastability failures) indicates a more robust design. Determine an
acceptable target MTBEF given the context of your entire system and the fact that
MTBF calculations are statistical estimates.

The Quartus II software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your
clock and data frequencies.

For information about the industry-leading metastability analysis, reporting, and
optimization features in the Quartus II software, refer to the Managing Metastability
with the Quartus II Software chapter in volume 1 of the Quartus II Handbook.

Planning for Hierarchical and Team-Based Design

If you want to create a hierarchical design that can take advantage of the
compilation-time savings and performance preservation of the Quartus II software
incremental compilation, plan for an incremental compilation flow from the
beginning of your design cycle. The following subsections describe the flat
compilation flow, in which the design hierarchy is flattened without design partitions,
and then the incremental compilation flows that use design partitions. Incremental
compilation flows offer several advantages but require more design planning to
ensure good quality of results. The last subsections discuss factors to consider when
planning an incremental compilation flow: planning design partitions and creating a
design floorplan.

For information about using the incremental compilation flows in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions

In this compilation flow in the Quartus II software, the entire design is compiled
together in a “flat” netlist. This flow is used if you do not create any design partitions.
Your source code can have hierarchy, but the design is flattened during compilation
and all the design source code is synthesized and fit in the target device whenever the
design is recompiled after any change in the design. By processing the entire design,
the software performs all available logic and placement optimizations on the entire
design to improve area and performance. You can use debugging tools in an
incremental design flow, such as the SignalTap II Logic Analyzer, but you do not
specify any design partitions to preserve design hierarchy during compilation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-15
Planning for Hierarchical and Team-Based Design

The flat compilation flow is easy to use; you do not have to plan any design partitions.
However, because the entire design is recompiled whenever there are any changes to
the design, compilation times can be relatively long for large devices. In addition, you
may find that the results for one part of the design change when you change a
different part of your design.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large design into
partitions which can be designed separately. Team members can work on partitions
independently, which can simplify the design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the device
floorplan, you can speed up your design compilation time while maintaining or even
improving the quality of results.

You may want to use incremental compilation later in the design cycle when you are
not interested in improving the majority of the design any further, and want to make
changes to, or optimize, one specific block. In this case, you may want to preserve the
performance of modules that are unmodified and reduce compilation time on
subsequent iterations.

Incremental compilation may also be useful for both reducing compilation time and
achieving timing closure. For example, you may want to specify which partitions
should be preserved in subsequent incremental compilations and then recompile the
other partitions with advanced optimizations turned on.

If a part of your design is not yet complete, you can create an empty partition for the
incomplete part of the design while compiling the completed partitions. Then, save
the results for the complete partitions while you work on the new part of the design.

Alternately, different designers or IP providers may be working on different blocks of
the design using a team-based methodology, and you may want to combine these
blocks in a bottom-up compilation flow.

If you are planning your design code and hierarchy, ensure that each design entity is
created in a separate file so the entities remain independent when you make source
code changes in the file. If you use a third-party synthesis tool, create separate Verilog
Quartus Mapping (VQM) or EDIF netlists for each design partition in your synthesis
tool. You may have to create separate projects within your synthesis tool, so the tool
synthesizes each partition separately and generates separate output netlist files. Refer
to your synthesis tool documentation for information about support for Quartus II
incremental compilation. The netlists are then considered the source files for
incremental compilation.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

1-16 Chapter 1: Design Planning with the Quartus Il Software
Planning for Hierarchical and Team-Based Design

Single-Project Versus Multiple-Project Incremental Flows

The Quartus II incremental compilation feature supports various design
methodologies.

The easiest compilation methodology is having one designer or project lead who
compiles the entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can add design
entities to the project as they are completed. You can also target optimizations on one
part of the design while designating the rest of the design as “empty.” Regardless of
the source for all the design logic, the project lead compiles and optimizes the
top-level project as a whole.

Incremental compilation preserves the compilation results and performance of
unchanged partitions in your design, greatly reducing design iteration time by
focusing new compilations on changed design partitions only. New compilation
results are then merged with the previous compilation results from unchanged design
partitions. Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions untouched. You
can also use this flow with empty partitions if parts of your design are incomplete or
missing.

If individual designers or IP providers want to complete the optimization of their
design in separate projects, they can integrate each lower-level project into one
top-level project.

Incremental compilation provides export and import features to enable this type of
design methodology. Designers of lower-level blocks can export the optimized netlist
for their design, along with a set of assignments, such as LogicLock™ regions. The
system architect then imports each design block as a design partition in a top-level
project.

With imported partitions, it is very important that the system architect provide
guidance to designers of lower-level blocks to ensure that each partition uses the
appropriate device resources. Because the designs are developed independently, each
lower-level designer has no information about the overall design or how their
partition connects with other partitions. This lack of information can lead to problems
during system integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, is communicated to the designers of
lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use Quartus II
incremental compilation to communicate information to lower-level designers
through automatically-generated scripts. The Generate bottom-up design partition
scripts option automates the process of transferring top-level project information to
lower-level modules. The software provides a project manager interface for managing
project information in the top-level design.

The scripts can create Quartus II projects for all the lower-level design blocks and pass
all the relevant project assignments. Using these scripts makes it easier for designers
of lower-level modules to implement the instructions from the project lead, and avoid
conflicts between projects when importing and incorporating the projects into the
top-level design. You can use this methodology to help reduce the need to further
optimize the designs after integration and improve overall designer productivity and
team collaboration.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 1: Design Planning with the Quartus Il Software 1-17
Planning for Hierarchical and Team-Based Design

You can combine compilation flows to take advantage of a single Quartus II project
for part of your design, while importing parts of the design that are developed
independently.

The single-project flow is generally simpler to perform. For example, having to export
and import lower-level designs is eliminated, and having a single project provides the
design software with information about the entire design, so it can perform global
placement optimizations when no part of the design is locked down to a specific
location.

Planning Design Partitions

Partitioning a design for an FPGA requires planning to ensure optimal results when
the partitions are integrated, and ensure that each partition is placed well relative to
other partitions in the device. Following Altera’s recommendations for creating
design partitions improves the overall quality of results. For example, registering
partition I/O boundaries keeps critical timing paths inside one partition that can be
optimized independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual blocks
reduces the chance of timing problems during system integration. If you optimize
lower-level partitions separately, any unregistered paths that cross between partitions
are not optimized as an entire path. To ensure that the software correctly optimizes
the input and output logic in each partition, you can perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, Altera
recommends creating timing assignments on the corresponding I/O path in each
partition to constrain both ends of the path to the budgeted timing delay. Assigning a
timing budget for each part of the connection ensures that the software optimizes
paths appropriately so they meet the top-level design requirements.

You can also plan and balance your resource utilization. If you are performing
incremental compilation, the software synthesizes each partition separately, with no
data about the resources used in other partitions. Therefore, device resources can be
overused in the individual partitions during synthesis, and the design may not fit in
the target device when the partitions are merged.

In a design flow in which designers optimize their lower-level designs and export
them to a top-level design, the software also places and routes each partition
separately. In some cases, partitions can use conflicting resources when combined at
the top level. Balancing resource utilization between the design partitions avoids any
problems with conflicting resources when all the partitions are integrated.

For guidelines on creating design partitions and organizing your source code, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan chapter in
volume 1 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

1-18

Chapter 1: Design Planning with the Quartus Il Software
Fast Synthesis and Early Timing Estimation

Creating a Design Floorplan

To take full advantage of incremental compilation, creating a design floorplan
prevents conflicts between design partitions, and ensures that each partition is placed
well relative to other partitions. Creating location assignments for each partition
ensures that no conflicts occur for locations between different partitions. In addition, a
design floorplan helps to avoid a situation in which the Fitter is directed to place or
replace a portion of the design in an area of the device in which most resources are
claimed. Without floorplan assignments, this situation can lead to increased
compilation time and reduced quality of results.

You can use the Quartus II Chip Planner to create a design floorplan using LogicLock
region assignments for each design partition. With a basic design framework for the
top-level design, these floorplan editors allow you to view connections between
regions, estimate physical timing delays on the chip, and move regions around the
device floorplan. When you have compiled the full design, you can also view logic
placement and locate areas of routing congestion to improve the floorplan
assignments.

Good partition and floorplan design helps lower-level designs meet top-level design
requirements when integrated with the rest of the design, reducing the time spent
integrating and verifying the timing of the top-level design.

For information about creating placement assignments in the design floorplan, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus 11 Handbook. For guidelines on creating a design floorplan for incremental
compilation, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Fast Synthesis and Early Timing Estimation

It is more cost-effective to find design issues early in the design cycle than to find
problems in the final timing closure stages. When the first version of the design source
code is complete, you may want to perform a quick compilation to create a kind of
silicon virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Quartus II software, you can choose to perform a Fast
synthesis, which reduces the compilation time but may give reduced quality of
results. On the Assignments menu, click Settings. On the Analysis & Synthesis
Settings tab, click More Settings and set the Synthesis Effort.

Regardless of your compilation flow, you can use the an Early Timing Estimate to
perform a quick placement and routing, and a timing analysis of your design. On the
Processing menu, point to Start, and click Start Early Timing Estimate. The software
chooses a device automatically if required, places any LogicLock regions used to
create a floorplan, finds a quick initial placement for all the design logic, and provides
a useful estimate of the final design performance. If you have entered timing
constraints, timing analysis reports on these constraints.

If you are designing individual blocks separately, you can use these features as you
develop the design. Any issues highlighted in the lower-level design blocks are
communicated to the system architect. Resolving these issues might require allocating
additional device resources to the individual block or changing its timing budget.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 1: Design Planning with the Quartus Il Software

Conclusion

1-19

Conclusion

If you are a top-level designer, you can also use fast synthesis and early timing

estimation to prototype the entire design. Incomplete partitions are marked as empty
in an incremental compilation flow, while the rest of the design is compiled to get an

early timing estimate and detect any problems with design integration.

A system architect can use early timing estimation along with design partition scripts
(as described in “Planning for Hierarchical and Team-Based Design” on page 1-14) to
pass additional constraints to lower-level designers, and provide more information

about the other partitions in the design. This information is especially useful to

optimize cross-partition paths. Running early timing estimations helps you to find

and resolve design problems during the early design stages.

Modern FPGAs support large, complex designs with fast timing performance. By

planning several aspects of your design early in the process, you can reduce

unnecessary time spent handling issues in later stages of the process. You can use

various features of the Quartus II software to quickly plan your design and achieve

the best possible results. Following the guidelines presented in this chapter can

improve productivity, which reduces the design cost and improves the final product’s

time to market.

Referenced Documents

© November 2009 Altera Corporation

This chapter references the following documents:

m Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus I1

Handbook
m AN 386: Using the MAX II Parallel Flash Loader with the Quartus II Software

m Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

m Cadence PCB Design Tools chapter in volume 2 of the Quartus II Handbook
m Configuration Handbook

m Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus Il Handbook

m Design Debugging Using In-System Sources and Probes chapter in volume 3 of the

Quartus I Handbook

m Design Recommendations for Altera Devices and the Quartus 1I Design Assistant
chapter in volume 1 of the Quartus II Handbook

m Formal Verification section in volume 3 of the Quartus 1I Handbook

m [/O Management chapter in volume 2 of the Quartus II Handbook

m [n-System Debugging Using External Logic Analyzers chapter in volume 3 of the

Quartus II Handbook

B [n-System Updating of Memory and Constants chapter in volume 3 of the Quartus II

Handbook

m [ntroduction to the Quartus II Software

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/an/an386.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

1-20 Chapter 1: Design Planning with the Quartus Il Software
Referenced Documents

m Mentor Graphics PCB Design Tools Support chapter in volume 2 of the Quartus II
Handbook

m PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

m Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus Il Handbook

m Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook

m Simulation section in volume 3 of the Quartus Il Handbook
B sld_virtual_jtag Megafunction User Guide

B Synthesis section in volume 1 of the Quartus II Handbook

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-21
Document Revision History

Document Revision History

Table 1-1 shows the revision history for this chapter.

Tahle 1-1. Document Revision History

Date and Document

Version Changes Made Summary of Changes
November 2009 m Added details to “Creating Design Specifications” on Updated for the Quartus 11 9.1
v9.1.0 page 1-2 software release.

m Added details to “Intellectual Property Selection” on
page 1-2

m Updated information on “Device Selection” on page 1-3
m Added reference to “Device Migration Planning” on page 1-4

m Removed information from “Planning for Device
Programming or Configuration” on page 1-4

m Added details to “Early Power Estimation” on page 1-5

m Updated information on “Early Pin Planning and 1/0
Analysis” on page 1-6

m Updated information on “Creating a Top-Level Design File for
I/0 Analysis” on page 1-8

Added new “Simultaneous Switching Noise Analysis” section
Updated information on “Synthesis Tools” on page 1-9
Updated information on “Simulation Tools” on page 1-9

Updated information on “Planning for On-Chip Debugging
Options” on page 1-10

Added new “Managing Metastability” section

m Changed heading title “Top-Down Versus Bottom-Up
Incremental Flows” to “Single-Project Versus Multiple-
Project Incremental Flows”

m Updated information on “Creating a Design Floorplan” on
page 1-18

m Removed information from “Fast Synthesis and Early Timing
Estimation” on page 1-18

March 2009 m No change to content Updated for the Quartus 11 9.0
v.9.0.0 software release.
November 2008 m Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus Il 8.1
v8.1.0 software release.
May 2008 m Organization changes Updated for the Quartus 11 8.0
v8.0.0 = Added “Creating Design Specifications” section software release and related
o) documentation; expanded and
m Added reference to new details in the In-System Design improved organization of topic
Debugging section of volume 3 coverage.

m Added more details to the “Design Practices and HDL Coding
Styles” section

m Added references to the new Best Practices for Incremental
Compilation and Floorplan Assignments chapter

m Added reference to the Quartus Il Language Templates

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

1-22 Chapter 1: Design Planning with the Quartus Il Software
Document Revision History

“®.e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook

Archive.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

ZAEI iERA 2. Quartus Il Incremental Compilation for

Ql151015-9.1.0

® Hierarchical and Team-Based Design

Introduction

This chapter describes the Quartus II incremental compilation feature, which allows
you to preserve satisfactory compilation results and performance of unchanged
partitions in your design. This feature dramatically reduces design iteration time by
focusing subsequent compilations on parts of the design that change, and improves
your design productivity.

The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus® II software introduced the FPGA industry’s first true incremental
design and compilation flow, with the following benefits:

m Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere

B Reduces design iteration time by 70% for small design changes, so you can
perform more design iterations per day and achieve timing closure efficiently

m Facilitates modular hierarchical and team-based design flows

“Deciding Whether to Use an Incremental Compilation Flow” on page 2-2 provides
an overview of the Quartus II design flow with and without incremental compilation
to help you decide if you should take advantage of optional incremental flows for
your project. The remainder of the chapter includes the following sections:

B “Quick Start Guide—Summary of Incremental Compilation” on page 2-7

m “Deciding which Design Blocks Should Be Design Partitions” on page 2-9,
including integration with third-party synthesis tools

m “Creating Design Partition Assignments” on page 2-15, including using the
Design Partition Planner

m “Setting the Netlist Type for Design Partitions” on page 220

m “Creating a Design Floorplan with LogicLock Location Assignments” on
page 2-26

m “Exporting and Importing Partitions” on page 229

B “Recommended Design Flows and Compilation Application Examples” on
page 2—46, including the steps required to carry out the following tasks:

m “Reducing Compilation Time When Changing a Source File for One Partition”
m “Optimizing a Timing-Critical Partition to Achieve Timing Closure”

m “Preserving Results for Some Partitions Before Adding Other Partitions”

m “Debugging Incrementally with the SignalTap II Logic Analyzer”

m “Implementing a Team-Based Design Flow With Imported Partitions”

m “Performing Design Iteration With Lower-Level Partitions”

m “Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse”

m “Using an Exported Partition to Send a Design without Including Source Files”

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-2

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

m “Incremental Compilation Restrictions” on page 2-58
m “Scripting Support” on page 2-66

Quartus Il incremental compilation supports the Arria® GX, Stratix®, and Cyclone®
series of devices, with limited support for HardCopy® ASICs (for details, refer to
“HardCopy Compilation and Migration Flows” on page 2-64).

Deciding Whether to Use an Incremental Compilation Flow

Quartus Il incremental compilation enhances the standard Quartus II design flow by
allowing you to preserve the satisfactory compilation results and performance of
unchanged blocks of your design. This section outlines the flat compilation flow with
no design partitions and the incremental flow when you divide the design into
partitions, and explains the differences. The section also explains when a flat
compilation flow is satisfactory, and highlights some of the reasons you might want to
create design partitions and use the incremental flow.

Flat Compilation Flow with No Design Partitions

In the flat compilation flow with no design partitions, all the source code is processed
with the Analysis & Synthesis module, and all the logic is placed and routed by the
Fitter module whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal quality of results. By
processing the entire design, the compiler can perform global optimizations to
improve area and performance. Refer to “Incremental Capabilities Available When
Your Design Has No Partitions” on page 2-2 for ways to reduce compilation time
even in flat compilations.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

Incremental Capabilities Available When Your Design Has No Partitions

The Quartus II software has incremental capabilities available even when you do not
partition your design, including, Smart Compilation, incremental debugging, and
Rapid Recompile. These features work with design partitions as well, if you do follow
an incremental design flow.

The Quartus II software includes a feature called Smart Compilation. In any

Quartus II compilation flow, you can use Smart Compilation to allow the compiler to
determine which compiler stages are required, based on the changes made to the
design since the last smart compilation, and then skip any stages that are not required.
For example, when Smart Compilation is on, the compiler skips the Analysis &
Synthesis module if all the design source files are unchanged. Smart Compilation
skips only entire compiler stages. It cannot make incremental changes within a given
stage of the compilation flow. To turn on Smart Compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process Settings and
click Use Smart Compilation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-3
Deciding Whether to Use an Incremental Compilation Flow

During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, set the netlist type to post-fit for the automatically-created "Top" partition.
Refer to “Debugging Incrementally with the SignalTap II Logic Analyzer” on

page 2—49 for more information.

The Quartus II software also includes a Rapid Recompile feature that instructs the
compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of design are
recompiled using this option; the compiler determines which parts of the design must
be recompiled. You can turn on this option on the Incremental Compilation page
under Compilation Process Settings in the Settings dialog box. Set the option to
Compatible placement (moderate preservation) or Compatible placement and
routing (highest preservation) to specify the type of result preservation you want.

Incremental Compilation Flow with Design Partitions

Using design partitions allows you to preserve the results and performance for
unchanged blocks of logic in your design as you make changes elsewhere, and reduce
compilation time. Incremental compilation is recommended for large designs and
high resource densities when preserving results is important to achieve timing
closure. The feature also facilitates team-based design environments, allowing
designers to create and optimize design blocks independently when necessary.

Incremental compilation supports design flows where one designer manages a single
project for the entire design, as well as design flows where each design block is
developed and optimized independently. See “Incremental and Team-Based Design
Flows” on page 2-6 for more details. To take advantage of the incremental
compilation flow, start by splitting the design along any of its hierarchical boundaries
into blocks called design partitions. Refer to “Deciding which Design Blocks Should
Be Design Partitions” on page 2-9 and “Creating Design Partition Assignments” on
page 2-15 for more details. The Quartus II software synthesizes each individual
hierarchical design partition separately, then merges the partitions into a complete
netlist for subsequent stages of the compilation flow. When recompiling the design,
you can use source code, post-synthesis results, or post-fitting results for each
partition. If you want to preserve the Fitter results, you can keep just the placement
results, or keep both the placement and routing results.

You can use incremental compilation toward the end of your design cycle when you
do not have to improve the majority of the design any further and want to make
changes to or optimize one specific block. In this case, you can preserve the
performance of modules that meet their requirements to make timing closure easier
and reduce compilation time on subsequent iterations. You can also recompile the
other partitions with advanced optimizations turned on to improve their performance
without affecting the preserved partitions.

Part of your design may be incomplete or developed by a different designer or IP
provider. You can add the completed partitions to the design incrementally.
Alternatively, different designers or IP providers can develop and optimize different
blocks of the design independently, and then you can import these blocks into the top-
level project.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-4

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

For more detailed examples that describe recommended design flows to take
advantage of the incremental compilation features, refer to “Recommended Design
Flows and Compilation Application Examples” on page 2—46.

Table 2-1 shows a summary of the impact of incremental compilation on your
compilation results.

Table 2-1. Impact Summary of Using Incremental Compilation

Characteristic

Impact of Incremental Compilation with Design Partitions

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; there are savings in
both Quartus Il Integrated Synthesis and the Fitter.

Performance Excellent when critical paths are contained within a partition, because you can preserve post-fitting
Preservation information for unchanged partitions.

Node Name Preserves post-fitting node names for unchanged partitions.

Preservation

Area Changes

The area (logic resource utilization) might increase because cross-boundary optimizations are no
longer possible, and placement and register packing are restricted.

fu Changes

The design’s maximum frequency might be reduced because cross-boundary optimizations are no
longer possible. If the design is partitioned and the floorplan location assignments are created
appropriately, there is no negative impact on fy.

If you use the incremental compilation feature at any point in your design flow, you
should start planning for incremental compilation from the start of your design
development. It is easier to accommodate the guidelines for partitioning and creating
a floorplan if you start planning at the beginning of your design cycle.

Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus 1I Handbook for more information and
recommendations.

Figure 2-1 shows a block diagram of the Quartus II design flow using incremental
compilation with design partitions.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-5
Deciding Whether to Use an Incremental Compilation Flow

Figure 2-1. Quartus Il Design Flow Using Incremental Compilation

System

Verilog VHDL AHDL Block. EDIF VOM | 4
HDL (.vhd) (.tdf) Design File Netlist Netlist
(.sv) (-bdf) (.edf) (.vgm)

v

Partition Top

e

Design Partition

»
Assignments =
Analysis & Synthesis @ -
; o Settings &
Synthesize Changed Partitions, < Assi 9]
ssignments
Preserve Others
One Post-Synthesis
Netlist per Partition
> Partition Merge

Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

One Post-Fit
Netlist per Single Netlist for
Partition Complete Design
Floorplan

Fitter -
" —| Location <
Place-and-Route Changed Partitions, Assignments

Preserve Others

Create Individual Netlists and

Complete Netlists ¢ Settings & |
Assignments

Single Post-Fit
Netlist for
Complete Design

| Assembler |

v

| Timing Analyzer |

Make Design &
Assignment Modifications

C Program/Configure Device)

Note to Figure 2-1:

(1) When you use EDIF or VOM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the
design database, but logic synthesis and technology mapping are performed only for black boxes.

The diagram in Figure 2-1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each
partition.

The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from other Quartus II
projects, depending on the netlist type you specify for each partition.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-6

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

The Fitter then processes the merged netlist, preserving the placement or placement
and routing of unchanged partitions, refitting only those partitions that have
changed. The Fitter generates the complete netlist for use in further stages of the
compilation flow, including timing analysis and programming file generation. It also
generates individual netlists for each partition so the Partition Merge stage can use the
post-fit netlist to preserve the placement and routing of a partition if you specify to do
so in future compilations. The Quartus II software does not resynthesize or refit
unchanged partitions that have a netlist type assignment that specifies the use of a
post-synthesis or post-fit netlist, respectively.

For more information about using the incremental compilation feature, refer to the
“Quick Start Guide—Summary of Incremental Compilation” on page 2-7.

Incremental and Team-Based Design Flows

Incremental compilation supports various design methodologies. In the standard
incremental compilation design flow, the top-level design is divided into partitions,
which can be compiled and optimized together in the top-level Quartus II project. If
source code is not yet complete for some partitions, you can create a placeholder for
the partition until the code is added to the project.

You can preserve fitting results and performance for completed blocks while other
parts of the design are changing, which also reduces the compilation times for each
design iteration. Different designers or IP providers in a team-based design
environment can create and verify HDL code separately, and then one person
(generally the project lead or system architect) incorporates all code blocks developed
separately into the a single top-level Quartus II project.

To enable team-based design optimization and third-party IP delivery, you can design
and optimize each partition in isolation, and later integrate the results into the top-
level design with the Quartus II software export and import features. Designers of
lower-level blocks can export the optimized placed and routed netlist for their design,
along with a set of assignments such as LogicLock™ regions. The project lead then
imports each design block as a design partition in a top-level project.

Optimizing design partitions independently and importing the results into a top-level
design can have the following potential drawbacks that require careful planning;:

m Achieving timing closure for the full design may be more difficult if you compile
lower-level blocks independently without any information about each other. This
problem may be avoided by careful timing budgeting and special design rules,
such as always registering the ports at the module boundaries.

m For the same reason, resource budgeting and allocation may be required to avoid
resource conflicts and overuse. Floorplan creation with LogicLock regions is
typically very important when design partitions are developed independently.

When you import partitions from separate Quartus II projects, the top-level project
lead can perform most of the design planning, and then passes constraints to the
designers of lower-level blocks by providing a copy of the Quartus II project with the
top-level design framework, or using Quartus II-generated design partition scripts.

With Quartus II incremental compilation, users who traditionally relied on a
“bottom-up” design approach with separate projects for each design block for the sole
reason of performance preservation can now use a standard Quartus II project to
achieve the same goal. This ability is important for the following two reasons:

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-7
Quick Start Guide—Summary of Incremental Compilation

I =

m Having the entire design in our Quartus II project makes project management
simpler. For example, having to export and import lower-level designs is
eliminated.

m A single Quartus II project approach provides the design software with
information about the entire design so it can perform some global placement and
routing optimizations. Therefore, it is often easier to ensure good quality of results
than when design blocks are developed independently.

If the top-level design includes one or more design blocks that are optimized by
different designers or IP providers, you can import those blocks into a project that also
includes partitions for a standard incremental methodology. In addition, as you
perform timing closure for a design, you can create a subproject for one block of the
design to be optimized by another designer in a separate Quartus II project, and pass
information about the rest of the design to the subproject to obtain the best results.

Importing partitions is not supported in HardCopy or FPGA companion device
compilations when there is a migration device setting. For details, refer to “HardCopy
Compilation and Migration Flows” on page 2-64.

The following Quick Start Guide describes the more commonly used and easy-to-use
incremental compilation flow. For more information about exporting design
partitions from separate Quartus II projects and importing them to the top-level
design, refer to “Exporting and Importing Partitions” on page 2-29.

Quick Start Guide—Summary of Incremental Compilation

This section provides a summary of the steps required to perform a simple
incremental compilation flow. Detailed descriptions for many of these steps are
included in later sections of this chapter. For specific examples of design flows that
take advantage of the incremental compilation features, refer to “Recommended
Design Flows and Compilation Application Examples” on page 2—46.

For a step-by-step introduction to implementing an incremental compilation flow in
the Quartus II software, on the Help menu, click Tutorial. After the introduction,
choose Module 7: Incremental Compilation to view design flows for incremental
compilation.

The flow chart in Figure 2-2 illustrates the incremental compilation flow when all
partitions are contained in one top-level project. The following subsections describe
the steps in the flow.

First, prepare the design for incremental compilation and perform a full compilation.
Then proceed to verify or debug your design and make design changes as required.
When you perform additional design iterations, choose which netlists to reuse and
perform incremental compilations.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-8

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Quick Start Guide—Summary of Incremental Compilation

Figure 2-2. Summary of Incremental Compilation Flow

| Perform Analysis & Elaboration |

|Create Project(s) for Lower-Level Designs |

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

v

| Make Changes to Design |<—
* Repeat as Needed

| Set Netlist Type for Each Partition | During Design, Verification
* & Debugging Stages

Perform Incremental Compilation
(Partitions are Compiled if Required)

Preparing a Design for Incremental Compilation

To set up your design for incremental compilation, perform the following steps:

1.

Elaborate the design. On the Processing menu, point to Start and click Start
Analysis & Elaboration, or run any compilation flow (such as a full compilation)
that includes this step. Elaboration is the part of the synthesis process that
identifies your design’s hierarchy.

Create partitions in your design by designating specific instances as design
partitions. In the user interface, you can right-click an instance in the Project
Navigator, point to Design Partition, and click Set as Design Partition.
Alternatively, on the Tools menu you can open the Design Partition Planner and
right-click on a design block to use the Auto-Partition feature that creates
partitions based on the size and connectivity of the hierarchical design blocks.
Refer to “Creating Design Partition Assignments” on page 2-15 for details.

Refer to “Deciding which Design Blocks Should Be Design Partitions” on page 2-9
for an explanation of design partitions and what part of your design can be
specified as a design partition.

If required for your design flow, use LogicLock regions to make location
assignments for each partition to create a design floorplan. If timing-critical design
blocks change with future compilations, assigning the partition to a physical
region on the device can improve results. Refer to the section “Creating a Design
Floorplan with LogicLock Location Assignments” on page 2-26 for details about
these assignments.

Compile the design. The first compilation after making partition assignments is a
complete compilation that prepares the design for subsequent incremental
compilations.

Compiling a Design Using Incremental Compilation

After compiling the design once and then making changes, take advantage of
incremental compilation to recompile only the changed parts of the design. To do this,
perform the following general steps:

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-9
Deciding which Design Blocks Should Be Design Partitions

1. Choose which of the following compilation results you intend to reuse for each
partition in the Design Partitions window.

m To preserve previous placement and routing results for a partition, set the
Netlist Type assignment for that partition to Post-Fit.

m To preserve just placement information and allow the software to find the
best routing for the changed design, set the Fitter Preservation Level to
Placement.

m To save only the synthesis results, set the Netlist Type assignment for that
partition to Post-Synthesis.

Partitions with design changes are recompiled automatically with these Netlist
Type settings. You can also direct the software to recompile from the source code
by choosing the Source File netlist type.

If you do not want to compile a specific partition at all, set its Netlist Type to
Empty.

For details about setting these partition properties, refer to “Setting the Netlist
Type for Design Partitions” on page 2-20.

2. Compile the design. The Quartus II software preserves the results you specified in
step 1.

Deciding which Design Blocks Should Be Design Partitions

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not consider each
design entity or instance to be a design partition for incremental compilation
automatically; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions prevents the compiler from
performing optimizations across partition boundaries, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2-10. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design.When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 2-3, a complete design is made up of instances A, B, C, D, E, and F. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called Top, automatically contains the top-level
entity in the design, and contains any logic not defined as part of another partition.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-10 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

The design file for the top level may be just a wrapper for the hierarchical instances
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Instance F is identified as a separate partition. The partition
for the top-level entity A called Top includes the logic in one of its lower-level
instances, C, because C was not defined as part of any other partition.

Figure 2-3. Partitions in a Hierarchical Design

Representation i
Partition Top
A
B C
—— —
|
D E F
Partition B Partition G
Representation ii
A
B C
D = F G

You can make partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VOM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Impact of Design Partitions on Design Optimization

The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions prevents the compiler from performing logic optimizations across
partition boundaries, which allows the software to synthesize and place each partition
separately in an incremental flow. Therefore, consider partitioning guidelines to help
reduce the effect of partition boundaries.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-1
Deciding which Design Blocks Should Be Design Partitions

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged. In
addition, avoid constant partition inputs and outputs, because to maintain
incremental behavior, the software cannot use the constants to optimize logic on
either side of the partition boundary.

The Design Partition Planner can help you make good assignments, as described in
“Creating Design Partition Assignments” on page 2-15. The following sections
describe tools you can use after compilation to analyze the partition assignments.You
can view “Partition Statistics Reports”, including information about the number of
I/0 connections and how many are unregistered or driven by a constant value, in the
partition statistics reports. You can also create “Partition Timing Reports” and refer to
the “Incremental Compilation Advisor”for analysis and guidelines.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform some resource balancing
to ensure that each partition uses an appropriate number of device resources. If
design partitions are compiled separately, there may be conflicts related to global
routing resources for clock signals when the design is imported into the top. You can
use logic options to specify which clocks should use global routing, use the
ALTCLK_CTRL megafunction to instantiate a clock control block and connect it
appropriately in both the bottom and top-level projects, or find the compiler-
generated clock control node in your design and make clock control location
assignments in the Assignment Editor.

For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource balancing, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Partition Statistics Reports

After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the Compilation
Report lists statistics about each partition. The statistics for each partition (each row in
the table) include the number of logic cells it contains, as well as the number of input
and output pins it contains and how many are registered or unconnected. This report
is useful when optimizing your design partitions, ensuring that the partitions meet
the guidelines presented in the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook. Figure 2—4
shows the report window.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-12

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

Figure 2-4. Partition Merge Partition Statistics Report

<

&E Legal Notice Tatal combinational arithmetic | Total Registered Input

&HE Flow Summary

<SHER Flow Settings

5B Flow Non-Default Global S

SHEA Flow Elapsed Time

&hB Flow Log

+1-¢55] Analysis & Synthesis

—I-¢&4 3 Partition Merge

EPE summary

SHER Metlist Types Used

BB Partition Statistics

@E Resource Usage Surmm
i} Messages

+1-¢5(] Fitter

functions mode registers Ports
Top 16 4 12 26 12] 1
mulk:inzts 42 24 18 i} " i i]
tapzinzt 8 8 0 32 13 8 1|
hvaluesingt2) 3 3 a 1} 2 3 1]

[=[ele]=

You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. On the
Assignments menu, click Design Partitions Window. Right-click on a partition and
click Properties to open the dialog box. Click Show All Partitions to view all the
partitions in the same report (Figure 2-5).

Figure 2-5. Statistics Tab in the Design Partitions Properties Dialog Box

Design Partition Properties -- hvalues:inst2

General] Compilation ~ Statistics]

Displays the post-compilation statistics for the design partitions selected in the Design Partitions window.

Skatiztic | Top | hvaluesinst? | it inste | taps:inst
=l Resources

- 40 15 1] 1]]

- Combinational cell 22 3 42 12

- Regizter cell 26 0 0 32

- Clock cantral black 3 0 0 a

El Connections

- |put Connections 11 2 48 112
- Registered Input Connections |0 0 0 96
- Dutput Connechions 114 24 11 24
- Regiztered Output Connectiong| 0 0 0 0
=l Internal Cangestion
+-Total Connections 254 2B 106 204
i Fegigtered Connections B2 0 0 152
=l Inter-partition connections
- Top 1] 2 1 112
i hvalugs:inst2 2 0 24 0
el insts 11 24 0 24
- tapainst 112 0 24 1]
Ok | Cancel | |

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Deciding which Design Blocks Should Be Design Partitions

2-13

Partition Timing Reports

You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer or using the r eport _partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to partition paths to provide a more detailed
breakdown of where the critical paths in the design are with respect to design

partitions.

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations presented for creating design partitions and floorplan
location assignments. On the Tools menu, point to Advisors and click Incremental
Compilation Advisor.

As shown in Figure 2-6, recommendations are split into General Recommendations
that apply to all compilation flows and Bottom-Up Design Recommendations that
apply to design methodologies in which all partitions are compiled independently at
the "bottom" level before being combined, which means floorplan assignments to
isolate each partition are important. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action required to make
the suggested change. In some cases, there is a link to the appropriate Quartus II
settings page where you can make a suggested change to assignments or settings. The
relevant timing-independent recommendations for the design are also listed in the
Design Partitions Window and the LogicLock Regions Window.

Figure 2-6. Incremental Compilation Advisor

® Incremental Compilation Advisor

remental Compilation Advisor
“&) How o use the Incremental Compilation Advisor

'é.) More Information on Incremental Compilation
/¥ Check Timing Independent Recommendations
) Classic Timing Analyzer - Check Timing Dependent Recammr
A TimeQuest Timing Analyzer - Check Timing Dependent Reo

=1/ General Recommendations
BRYRegister All Non-Global Parts
wd Connect All Ports

wd Do Mok Connect Parks Eo WCC ar GHD

wd fwvoid LogicLock Reqgions With Poaor Utilization Levels

wf Place Connected Regions Close Together

wi Partition Ports Should Have Unique Drivers

wd Do Mok Directly Connect Ports On A Module

wj Constrain the number of DSPs to be used by each part
+ ﬁ Tirming R.ecommendations
+ ﬁ Bottom-LUp Design Recommendations

Recommendation | Ensure that all non-global inputs and outputs that drive inter-partition connections are

Description

Surmmary

Achion

reqgistered,

Since inter-partition optimizations are not allowed, it is best to register all partition ports in
an effart to keep critical paths within a single partition. By registering the parts, the
letath of the inter-partition reqister-to-register paths are kept to a minimun, Global
zignals may be left unregisterad if appropriate.

The following areas will be affected by the recommended changes:
+ Dielay may decrease [fmax may increase)
- Logic element uzage may increase

The modules with unregistered ports should be changed so that their ports are
registered. To see a list of &l unregistered ports, click the "Check Recommendations”
buttan an the ""Check Timing Independent’ panel.

Partition Hame | Urnregistered Port Mame | Fart Type |N0de Driven By Port A
1 tapsinst taps:inst|zel[0] Ihput taps:inatlan_1[0]
2 taps:inst taps:inst|zel[0] Input tapsinztlan_2[1]
|3 | tapsinst taps:inst|zel[0] Input tapingthen_3[1]
4 taps:inst taps:instlzel[0] Input tapsiinstlan_1[2] .

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-14

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

To check whether the design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and click Check Recommendations. For large designs, these operations can
take a few minutes. After you perform a check operation, symbols appear next to each
recommendation, as shown in Figure 2-8, to indicate whether the design or project
setting follows the recommendations, or if some or all of the design or project settings
do not follow the recommendations. Refer to the Legend on the How to use the
Incremental Compilation Advisor page in the advisor for more information.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Ports recommendation, the advisor displays a list of unregistered ports with the
partition name and the node name associated with for the port.

When the advisor provides a list of nodes, you can right-click on a node and click
Locate to cross-probe to other Quartus II features such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Using Partitions with Third-Party Synthesis Tools

If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus

The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the appropriate chapter in volume 1 of the Quartus 11
Handbook: Synopsys Synplify Support or Mentor Graphics Precision Synthesis Support.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-15
Creating Design Partition Assignments

Other Synthesis Tools

You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VOM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Design Partition Assignments Compared to Physical Placement Assignments

Design partitions for incremental compilation are logical partitions, different from
physical placement assignments in the device floorplan. A logical design partition
does not refer to a physical area of the device and does not directly control the
placement of instances. A logical design partition sets up a virtual boundary between
design hierarchies so each is compiled separately, preventing logical optimizations
from occurring between them. When the software compiles the design source code,
the logic in each partition can be placed anywhere in the device unless you make
additional placement assignments. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse the synthesis
results or reuse the fitting results (including placement and routing information) in
subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and assignment back-annotation features
in the same Quartus II project. The incremental compilation feature does not use
placement “assignments” to preserve placement results; it simply reuses the netlist
database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock assignments. In the Quartus II software, LogicLock regions are used to
constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions to improve the quality of results and avoid placement
conflicts in some cases when performing incremental compilation. Creating floorplan
location assignments for design partitions using LogicLock regions is discussed in
“Creating a Design Floorplan with LogicLock Location Assignments” on page 2-26.

«® For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Creating Design Partition Assignments

There are several ways to designate a design instance as a design partition, as
described in the following subsections. If the full incremental compilation option is
not turned on when you specify your first design partition, a dialog box appears that
asks whether you want to enable incremental compilation.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-16

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating Design Partition Assignments

The incremental compilation option is turned on by default for new Quartus II
projects. If you need to turn on the option, on the Assignments menu, click Settings.
In the Category list, select Compilation Process Settings. Under Compilation
Process Settings, select Incremental Compilation. On the Incremental Compilation
page, turn on Full incremental compilation. Turning off the Full incremental
compilation option does not remove any partition assignments. Partition assignments
have no effect on the design if incremental compilation is turned off.

Creating Design Partitions with the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

To view a design and create design partitions, first compile the design, or perform at
least Analysis and Synthesis. On the Tools menu, click Design Partition Planner. The
design is displayed as a single top-level design block, containing its lower-level
instances as boxes.

To show connectivity between blocks, extract instances from the top-level design
block. Click on a design block and drag it into the surrounding white space, or
right-click an entity and click Extract from Parent on the Shortcut menu. When you
extract entities, connection bundles are drawn between entities, showing the number
of connections existing between pairs of entities. When you have extracted a design
block that you want to set as a design partition, right-click on that design block and
choose Create Design Partition.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. Right-click on the
design block you want to partition (such as the top-level design hierarchy), and
choose Auto-Partition. You can then analyze and adjust the partition assignments as
required.

Figure 2-7 shows the Design Partition Planner after making a design partition
assignment to one instance (in the pale red shaded box), and dragging another
instance away from the top-level block within the same partition (two design blocks
in the pale blue shaded box). The figure shows the number of connections between
each partition and information about the size of each design instance.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-17
Creating Design Partition Assignments

Figure 2-7. Design Partition Planner

<6 Design Partition Planner,

~
@ 10 Bank2
O :
[fittret i
@ E 3% of total design, 32..
:EC 36% of total design, 37 1 Mo Children
3 Children
o I e [T |
/
\ /
o .
W ffitrefimutingts g
‘_:_‘ 32% of total design, 33.. =
1 Chilel: [o}
Ipm_mult_component
a3
Top
Fi v
< b3

To switch between connectivity display mode and hierarchical display mode, click
Hierarchy Display on the View menu. Alternately, to switch temporarily to a
view-only hierarchy display, click and hold the hierarchy icon in the top-left corner of
any entity.

To control the way the connection bundles are displayed, right-click in the white
space and choose Bundle Configuration. For example, you can remove the
connection lines between partitions and I/O banks by turning off Display
connections to I/O banks. You can also use the settings on the Connection Counting
tab to adjust how the connections are counted in the bundles.

«o For more details about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in the Quartus II Help.

Creating Design Partitions In the Design Partitions Window

The Design Partitions Window allows you to create, delete, and merge partitions, and
is the main window for setting the Netlist Type and Fitter Preservation Level
described in “Setting the Netlist Type for Design Partitions” on page 2-20. First,
perform Analysis and Elaboration, or any compilation flow that includes this step.
Elaboration is the part of the synthesis process that identifies your design’s hierarchy.
On the Assignments menu, click Design Partitions Window (Figure 2-8). In this
window, you can create your partitions in one of the following ways:

m Create new partitions for one or more instances by dragging and dropping them
from the Hierarchy tab of the Project Navigator into the Design Partitions
Window. Using this method, you can create multiple partitions at once.

m Create new partitions by double-clicking the <<new>> cell in the Partition Name
column. In the Create New Partitions dialog box, select the design instance and
click OK.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-18

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating Design Partition Assignments

To delete partitions in the Design Partitions Window, right-click a partition and click
Delete, or select the partition and press the Delete key.

Figure 2-8. Design Partitions Window

x

Fartition Mame | Cormpilation Hierarchy Path | Metlizt Type Fitter Preservation Level | Color |
E@ [Drezign Partitions
51 <<news:
By Top filtref Source File [
2 tapxingt tapinist Post-Synthesis [
g 2 hvalues:inst2 hrvalues:ingt2 Post-Synthesis [
= 2 mulkingth rilt:ingth Post-Fit Placement [
]
a £
5
E @& |F|ecommendat|on: Taf4 for | &)l Design Partitions ﬂ N - |Ensure that no partition ports are driven by VCC or GND. Par

Far Help, press F1

To create a partition that contains more than one design instance, first create separate
partitions for each instance. Highlight each of the partitions in the Design Partition
window, using the Ctrl key to select more than one partition. Right-click, and then
choose Merge. The two partitions are combined into one row in the window with a
new name.

The Design Partitions Window lists recommendations at the bottom of the window, as
well as a link to the Incremental Compilation Advisor, where you can view additional
recommendations about the partitions.

The Color column indicates the color of each partition in the Partition Planner view of
the Chip Planner floorplan. The Source File Status column lists the date that the
source code was changed and bold font indicates that it has changed since the last
compilation. The other status columns indicate which post-compilation netlists are
available.

Creating Design Partitions in the Project Navigator

You can use the list of instances under the Hierarchy tab in the Project Navigator to
create and delete design partitions. First, elaborate the design or run any compilation
flow that includes this step. Right-click an instance in the Project Navigator, point to
Design Partition, and click Set as Design Partition. A design partition icon appears
next to each instance that is set as a partition (Figure 2-9).

To remove an existing partition assignment, click Set as Design Partition again. (This
process turns off the option.)

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-19
Creating Design Partition Assignments

Figure 2-9. Project Navigator Showing Design Partitions

Project MNavigataor ==l
E rtity |
Cuvclone |l EP2C5F25ECE

El 2 filtref
- tapsinst £ < Design Partition icon

zhate_m:inzt]

hrvalues:ingt2

acciingtd
”{\ multinst ,55@

i
.
{=n
(w1

_HierarchyJ Files | gf Diesign Units

Creating Design Partitions with Tcl Scripting

You can also create partitions with Tcl scripting commands. For details about the
command line and scripting flow, refer to “Scripting Support” on page 2-66.

Partition Name

When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. To change the name, double-click on
the partition name in the Design Partitions window, or right-click the partition and
click Rename. Alternatively, right-click the partition in the Design Partitions window
and click Properties to open the Design Partition Properties dialog box. On the
General tab, enter the new name in the Name field.

By renaming your partitions, you can avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially important when using command-line
commands or assignments. In addition, you might also want to change the partition
name when you merge partitions. Partition names can be from 1 to 1024 characters in
length and must be unique. The name can only contain alphanumeric characters and
the pipe (|), colon (:), and underscore (_) characters.

Automatically-generated Partitions

The compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sld_hub partition is
created for tools that use JTAG hub connections such as the SignalTap II Logic
Analyzer. The hard_block partition is created to contain certain "hard"or dedicated
logic blocks in the device that are implemented in a separate partition so they can be
shared throughout the design.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-20

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

Setting the Netlist Type for Design Partitions

The Netlist Type is a property of each design partition that allows you to specify the
type of netlist or source file that the compiler should use as the input for each
partition. The Netlist Type property controls the incremental compilation process, as
described in “Compiling a Design Using Incremental Compilation” on page 2-8. This
property determines which netlist the Partition Merge stage uses in the next
compilation.

To view and modify the Netlist Type, on the Assignments menu, click Design
Partitions Window. Double-click the Netlist Type for an entry. Alternatively,
right-click on an entry, click Design Partition Properties, then modify the Netlist Type
on the Compilation tab.

Table 2-2 describes the standard settings for the Netlist Type property, explains the
behavior of the Quartus II software for each setting, and provides guidance on when
to use each setting.

Table 2-2. Standard Netlist Type Settings

PartitionNetlist
Type Quartus Il Behavior for Partition During Compilation
Source File Always compiles the partition using the associated design source file(s).(7)

Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.

Post-Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist as long as the
following conditions are true:

m A post-synthesis netlist is available from a previous synthesis

m No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2-23.

Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available.(7)

Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.

Post-Fit

Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following
conditions are true:

m A post-fit netlist is available from a previous fitting

m No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2-23.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Gompiles the partition from the source files if resynthesis is
initiated.(7)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Creating Design Partitions In the Design Partitions Window” on page 2—-17.

Use this netlist type to preserve the Fitter results unless you make design changes. You can also use this
netlist type to apply global optimizations, such as Physical Synthesis optimizations that occur in the
Fitter, to certain partitions while preserving the fitting results for other partitions.

Notes to Table 2-2:

(1) Ifyou turn on the Rapid Recompile option, the Quartus Il software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results as specified in the global setting if there have been only small changes to the logic in the partition.
Refer to “Incremental Capabilities Available When Your Design Has No Partitions” on page 2—2 for more information.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-21
Setting the Netlist Type for Design Partitions

describes the advanced settings for the Netlist Type property, explains the behavior of
the Quartus II software for each setting, and provides guidance on when to use each
setting.

Table 2-3. Advanced Netlist Type Settings

PartitionNetlist
Type Quartus Il Behavior for Partition During Compilation

Post-Fit (Strict) | Preserves post-fit results for the partition even if changes have been made to the associated source files
since the previous fitting.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of a functionally incorrect netlist
when source design files change. Use caution when applying this assignment. For more information,
refer to “Forcing Use of the Post-Fitting Netlist When a Partition has Changed” on page 2-25.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files.(7)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level” on page 2-21.

Empty Uses an empty placeholder netlist for the partition and automatically adds virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a partition. For more details on the Empty setting,
refer to “Empty Partitions” on page 2-22.

Notes to Table 2-3:

(1) Ifyou turn on the Rapid Recompile option, the Quartus Il software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results as specified in the global setting if there have been only small changes to the logic in the partition.
Refer to “Incremental Capabilities Available When Your Design Has No Partitions” on page 2—2 for more information.

'~ For examples that describe how to use these settings to accomplish various design
goals, refer to “Recommended Design Flows and Compilation Application Examples”
on page 2-46.

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the compiler uses
from a post-fit netlist.

On the Assignments menu, click Design Partitions Window. To view and modify the
Fitter Preservation Level, double-click an entry. Alternatively, right-click and click
Properties, then edit the Fitter Preservation Level on the Compilation tab.

Table 2—4 describes the Fitter Preservation Level settings. The default Fitter
Preservation Level for partitions with a Post-Fit netlist type is the highest level of
preservation available for the target device family.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-22

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

Table 2-4. Fitter Preservation Level Settings

Fitter Preservation
Level

Quartus Il Behavior for Partition During Compilation

Placement

Preserves the netlist atoms and their placement in the design partition. Re-routes the design
partition.

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing. The minimum
preservation level required to preserve Engineering Change Order (ECO) changes made to the
post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only, but provides less flexibility to
the router to make changes if there are changes in other parts of the design.

Placement, Routing,
and High-Speed Tiles

Preserves the design partition’s netlist atoms and their placement and routing in the design
partition, as well as the high-speed power tile settings. This setting maximizes performance
preservation for timing-critical paths, while allowing low-power tiles to be switched to high-speed
if required as the rest of the design is changed.

This setting is available only for devices with configurable power tiles.

Netlist Only

Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.
A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:
m Preserve Fitter optimizations but allow the software to perform placement and routing again

m Reapply certain Fitter optimizations (such as Fitter, physical synthesis) that would otherwise be
impossible when the placement is locked down

m Resolve resource conflicts between two imported partitions.

Empty Partitions

You can use the Empty setting to skip the compilation of a partition that is incomplete
or missing from the top-level design. You can also use it if you want to compile only
some partitions in the design, such as during optimization or if the compilation time
is large for one partition and you want to exclude it. This is useful if you want to
optimize the placement of a timing-critical block such as an IP core, and then lock its
placement before adding the rest of your custom logic.

To set the Netlist Type to Empty, on the Assignments menu, click Design Partitions
Window, double-click an entry, or right-click an entry and click Design Partition
Properties and select Empty. This setting specifies that the Quartus II Compiler
should use an empty placeholder netlist for the partition.

When a partition Netlist Type is defined as Empty, virtual pins are automatically
created at the boundary of the partition. This means that the software temporarily
maps I/O pins in the lower-level design entity to internal cells instead of pins during
compilation.

You can use a design flow in which some partitions are set to Empty to develop pieces
of the design separately and then combine them at the top level at a later time.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-23
Setting the Netlist Type for Design Partitions

When you implement part of the design without information about the rest of the
project, it is impossible for the Compiler to perform global placement optimizations.
To reduce this effect, follow good partitioning guidelines by ensuring the input and
output ports of the partitions are registered whenever possible, and minimizing
cross-partition I/0.

When you set a design partition to Empty, a design file is required in Analysis and
Synthesis to specify the port interface information so it can connect the partition
correctly to other logic and partitions in the design. If a partition is imported from
another project, the Quartus II Exported Partition (.qxp) file contains this information.
For more information about these files, refer to “Team-Based Incremental Compilation
Summary” on page 2-30. If there is no .qxp file or design file to represent the design
entity, you must create a wrapper file (called a black box, stub, or hollow-body file)
that defines the design block and specifies the input, output, and bidirectional ports.
For example, in Verilog HDL, you should include a module declaration, and in
VHDL, you should include an entity and architecture declaration.

If the project database includes a previously generated post-synthesis or post-fit
netlist for an unchanged Empty partition, you can set the Netlist Type from Empty
directly to Post-Synthesis or Post-Fit. In this case, the software reuses the previous
netlist information and does not have to recompile from the source code.

Where Are the Netlist Databases Saved?

The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the compilation database to preserve post-synthesis or
post-fit compilation results. For details, refer to “Using Incremental Compilation with
Quartus II Archive Files” on page 2-59.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a .qxp file for each partition in the design that can be
imported into the project to import the compilation results. Refer to “Exporting a
Lower-Level Block within a Project” on page 2-36 for more details about how to
create a .qxp file for a partition within your design.

What Changes Initiate a Partition’s Automatic Resynthesis?

A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the Netlist Type is set to Source File. In
addition, certain changes to a design partition initiate an automatic resynthesis of the
partition when the Netlist Type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you don’t want this resynthesis to
occur automatically, set the Netlist Type to Post-Fit (Strict). Refer to “Forcing Use of
the Post-Fitting Netlist When a Partition has Changed” on page 2-25.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the Netlist Type is set to Post-Synthesis or Post-Fit:

m The device family setting has changed.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-24

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

® Any dependent source design file has changed. Refer to “Resynthesis Due to
Source Code Changes” on page 2-24 for details.

m The partition boundary was changed by an addition, removal, or change to the
port boundaries of a lower-level partition (that is, a partition defined for a
lower-level instance within this partition).

B A dependent source file was compiled into a different library (so it has a different
-1 i brary argument).

B A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

m The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

m The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. For details about how you can
affect placement with LogicLock regions, refer to “What LogicLock Changes Initiate
Refitting?” on page 2-29. To recompile a partition with new assignments, change the
Netlist Type assignment for that partition to one of the following:

m Source File to recompile with all new settings

m Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

m Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

Resynthesis Due to Source Code Changes

The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design files used to
create the design, and consist of VHDL files, Verilog HDL files, AHDL files, Block
Design Files (.bdf), EDIF netlists, VOM netlists, memory initialization files, as well as
.qxp files from exported partitions. Changes in other files, such as vector waveform
files for simulation, do not trigger recompilation. When design files in a partition have
dependencies on other files, changing one file may initiate an automatic
recompilation of another file. The Partition Dependent Files table in the Analysis and
Synthesis report lists the design files that contribute to each design partition. You can
use this table to determine which partitions are recompiled when a specific file is
changed.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-25
Setting the Netlist Type for Design Partitions

S

For example, if a design has file A.v that contains entity a, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

If you turn on the Rapid Recompile option, the Quartus II software may not
recompile the entire partition from the source code as described in this section; it will
reuse compatible results as specified in the global setting if there have been only small
changes to the logic in the partition. Refer to “Incremental Capabilities Available
When Your Design Has No Partitions” on page 2-2 for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘ i ncl ude i ncl udes. v, all partitions are dependent on this
file. A change to includes.v causes the entire design to be recompiled. The VHDL
statement use wor k. al | also typically results in unnecessary recompilations,
because it makes all entities in the work library visible in the current entity, which
results in the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use wor k. al | statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Partition has Changed

Forcing the use of the post-fitting netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition. To force the Fitter to use a previously generated
post-fit netlist even when there are changes to the source files, you can use the
Post-Fit (Strict) Netlist Type assignment.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of a
functionally incorrect netlist when source design files change. Use caution when
applying this assignment.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-26 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan with LogicLock Location Assignments

Creating a Design Floorplan with LogicLock Location Assignments

A floorplan represents the layout of the physical resources on the device. The
expressions “creating a design floorplan” and “floorplanning” describe the process of
mapping the logical design hierarchy onto physical regions in the device floorplan.
After you have partitioned the design, you can create floorplan location assignments
for the design as discussed in this section to improve the quality of results when using
the full incremental compilation flow. Creating a design floorplan is not a requirement
to use an incremental compilation flow, but it is highly recommended in certain cases.
Floorplan location planning can be important for a design that uses incremental
compilation for the following reasons:

m To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

m To ensure a good quality of results when recompiling individual partitions

A design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). Initially, you can
leave each region with the default settings of Auto size and Floating location to allow
the Quartus II software to determine the optimal size and location for the regions.
Then, after compilation, use the Fitter-determined size and origin location as a
starting point for your design floorplan. Check the quality of results obtained for your
floorplan location assignments and make changes to the regions as needed.
Alternatively, you can perform synthesis, and then set the regions to the required size
based on resource estimates. In this case, use your knowledge of the connections
between partitions to place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging regions or nesting child LogicLock regions.

<o For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, described in “Incremental Compilation Advisor” on
page 2-13.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-27
Creating a Design Floorplan with LogicLock Location Assignments

To create a LogicLock region for each design partition, use the following general
methodology:

1. On the Assignments menu, click Design Partitions Window and ensure that all
partitions have their Netlist Type set to Source File or Post-Synthesis. If the
Netlist Type is set to Post-Fit, floorplan location assignments are not used when
recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is automatically considered a partition) using one of the following methods:

m On the Tools menu, click Design Partition Planner. Right-click within the
colored box that represents a partition and click Create LogicLock Region. In
the Design Partitions Window, right-click on a partition and click Create New
LogicLock Region.

m Under Compilation Hierarchy in the Project Navigator, right-click each
instance that is denoted as a partition and click Create New LogicLock Region.
In the Design Partitions Window, right click on the row for a partition and
choose Create New LogicLock Region.

With any of these methods, you can highlight multiple (or all) partitions by holding
down the Ctrl key and clicking each partition. Then you can choose the option to
create a separate LogicLock region for each highlighted partition.

I~ A LogicLock icon appears in the Project Navigator next to each instance
that is set as a LogicLock region (Figure 2-10).

Figure 2-10. Project Navigator Showing LogicLock Regions

Project Mavigator *
E ntity |'é"|
Stratix [I: EF2515F484C3

Ee- 2 et 53 !
b B9 bapingt S S X
------ gbc state_miinst] 5
------ abd hwaluestingt? E@ 8 |3
----jbc acoinstd 1
F-, multingts S S &
¢ 3

_Hierarc:h_l,ll Filesl gF Design Urits J

3. To place auto-sized, floating-location LogicLock regions, on the Processing menu,
point to Start and click Start Early Timing Estimate.

I'=" You must perform Analysis and Synthesis and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-28

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan with LogicLock Location Assignments

4. On the Assignments menu, click LogicLock Regions Window, and while holding

the Ctrl key, click each LogicLock region to select all regions (including the
top-level region).

5. Right-click the last selected LogicLock region, and click Set Size and Origin to
Previous Fitter Results.

"=~ Use the Fitter-chosen locations only as a starting point to make the regions
of a fixed size and location. Generally, regions with fixed size and location
yield better fy;.x than auto-sized regions.

Do not back-annotate the contents of the region, just save the size and origin.
Placement is preserved using the post-fit netlist, not back-annotated content
assignments.

6. If required, modify the size and location via the LogicLock Regions Window or
the Chip Planner. For example, make the regions bigger to fill up the device and
allow for future logic changes.

7. To estimate the timing performance of your design with these LogicLock regions,
on the Processing menu, point to Start and click Start Early Timing Estimate.

8. Repeat steps 6 and 7 until you are satisfied with the quality of results for your
design floorplan.

9. On the Processing menu, click Start Compilation to run a full compilation.

If you do not use auto-sized and floating-location regions, you can estimate the size of
the regions after synthesis in steps 3-5. On the Processing menu, point to Start and
click Start Analysis & Synthesis. Right-click a region in the LogicLock Regions
dialog box, and choose Set to Estimated Size. Then continue with step 6 to modify the
size and origin of each region as appropriate.

Taking Advantage of the Early Timing Estimator

The methodology for creating a floorplan takes advantage of the Early Timing
Estimator to enable quick compilations of the design while creating assignments. The
Early Timing Estimator feature provides a timing estimate for a design as much as 45
times faster than running a full compilation, yet estimates are, on average, within 11%
of final design timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing analyzer
reports, and, if necessary, add or modify floorplan constraints. You can then rerun the
Early Timing Estimator to quickly assess the impact of any floorplan location
assignments or logic changes, enabling rapid iterations on design variants to help you
find the best solution. This faster placement has an impact on the quality of results. If
getting the best quality of results is important in a given design iteration, perform a
full compilation with the Fitter instead of using the Early Timing Estimate feature.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-29
Exporting and Importing Partitions

What LogicLock Changes Initiate Refitting?

As described in “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2-23, most assignment changes do not initiate a recompilation of a partition if
the Netlist Type and Fitter Preservation Level settings specify that Fitter results
should be preserved. For example, changing a pin assignment does not initiate a
recompilation; therefore, the design does not use the new pin assignment unless you
change the Netlist Type to Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit Netlist Type
setting or with an imported partition that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

m When you set a new region Origin, the Fitter uses the new origin and re-places the
logic, preserving the relative placement of the member logic.

m When you set the region Origin to Floating, the following conditions apply:

m If the region’s member placement is preserved with an Imported partition: The
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

m If the region’s member placement is preserved with a Post-Fit Netlist Type: The
Fitter does not change the Origin location, and reuses the previous placement
results.

Exporting and Importing Partitions

You can use the export and import features to separate out smaller design blocks that
are implemented as separate projects, potentially by different designers. The
compilation results of these lower-level projects are then exported and given to the
designer (or the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design. This type of design flow is required only if
lower-level designers want to optimize their placement and routing independently,
and pass their design to the project lead to reuse placement and routing results.
Otherwise, a project lead can integrate source HDL from several designers in a single
Quartus II project, and use the standard incremental compilation flow described
previously.

When partitions are imported from separate projects, the top-level project lead can
perform most of the design planning, and then pass constraints to the designers of
lower-level blocks. The design partition scripts generated by the Quartus II software
can make it easier to plan a design, and limit the difficulties that can arise when
integrating separate designs. Refer to “Generating Design Partition Scripts for Project
Management” on page 2—41 for details.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-30

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

For examples using team-based design and imported partitions to achieve design
goals, refer to “Recommended Design Flows and Compilation Application Examples”
on page 2-46. There are some additional restrictions related to these flows in the
Quartus II software, described in “Incremental Compilation Restrictions” on

page 2-58.

A Quartus II Exported Partition (.qxp) file is used to represent exported design
partitions. A .qxp file is a binary file that contains compilation results describing the
exported design partition and includes a post-fit or post-synthesis netlist, and a set of
assignments, often including LogicLock placement constraints. The .qxp file does not
contain the original source design files from the lower-level design.

The following sections provide an overview of the team-based design flow using
separate Quartus II projects, and describe how to generate a .qxp file for a lower-level
design partition, and how to import the .qxp file into the top-level project:

The section covers the following topics:

m “Team-Based Incremental Compilation Summary” on page 2-30

m “Netlist Types for Imported Partitions” on page 2-34

m “Creating a Lower-Level Project ” on page 2-34

m “Exporting a Lower-Level Block within a Project” on page 2-36

m “Using a .qxp File as a Source File in the Top-Level Project” on page 2-37

m “Importing a Lower-Level Partition Into the Top-Level Project” on page 2-37
m “Importing Assignments and Advanced Import Settings” on page 2-39

B “Generating Design Partition Scripts for Project Management” on page 2—41

Team-Based Incremental Compilation Summary

The flow chart in Figure 2-11 illustrates the incremental compilation flow using a
methodology in which lower-level partitions are compiled separately before being
imported into the top-level project. This flow can be used in a team-based design
environment, or when partitions are developed by an outside partner or IP developer.

First, prepare the top-level design for incremental compilation. Then design,
optimize, verify, and debug the lower-level projects. Export the design hierarchy of
each lower-level project as a Quartus II .qxp, and import the .qxp files into the
top-level design. Finally, compile the entire top-level design.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-31
Exporting and Importing Partitions

Figure 2-11. Summary of Team-Based Incremental Compilation Flow

Prepare Top-Level Project for
Incremental Compilation

v

Create Lower-Level Project(s) |

v

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

v

Import Lower-Level Project(s) Repeat as Needed
into Top-Level Project During Design, Verification
* & Debugging Stages

Perform Incremental Compilation
in Top-Level Project

Preparing a Design to Import Partitions

To prepare the design to import partitions from separate Quartus II projects, the
project lead or top-level designer should perform the following steps:

1. Create the top-level Quartus II project, and apply project-wide settings and global
assignments.

a. Create source code for a “skeleton” of the entire design that includes the
hierarchy and the port interfaces for the lower-level designs. The top-level
design file instantiates the lower-level blocks you plan to compile in separate
Quartus II projects. If you want to compile the design with the lower-level
blocks missing, create empty black box wrapper files for each design block to
define the design entity and ports.

b. Create all global assignments, including the device assignment, pin location
assignments, and timing assignments, so the final design meets its
requirements. Lower-level project designers can add their own constraints for
their partitions as needed, and later provide them to the top-level designer, but
the project-wide constraints that affect more than one lower-level project
constraint should be provided by the top-level designer or project lead to avoid
any conflicts and ensure that lower-level projects use the correct assignments.

2. For each lower-level design block to be imported to the top-level project, designate
the instance as a design partition with an Empty Netlist Type. Refer to “Creating
Design Partition Assignments” on page 2-15 and “Setting the Netlist Type for
Design Partitions” on page 2-20 for details.

3. If the project lead plans to import placement information from the lower-level
projects, create LogicLock regions for each of the lower-level partitions to create a
design floorplan. Refer to “Creating a Design Floorplan with LogicLock Location
Assignments” on page 2-26.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-32

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

4. Optional: If a separate Quartus II project is used for independent design blocks
(such as when a designer or third-party IP provider does not have access to the
entire design framework), perform a full compilation of the skeleton design. On
the Project menu, click Generate Bottom-Up Design Partition Scripts. Provide
each lower-level designer with the generated Tcl file to create their project with the
appropriate constraints. If you use makefiles in your design environment, provide
the makefile for each partition. Refer to “Generating Design Partition Scripts for
Project Management” on page 2—41 for details.

Creating and Compiling Lower-Level Projects

The project lead can provide a copy of the top-level project framework for all team
members. Doing so ensures that all design developers have all the settings and
constraints needed for the design, which makes design integration easier. In this case,
you develop your design as a lower-level design partition within your copy of the
top-level project.

If you create an independent lower-level project manually, create a new Quartus II
project for the subdesign with all of the required settings. Create with LogicLock
region assignments and global assignments (including clock settings) as specified by
the project lead, as well as virtual pin assignments for ports which represent
connections to core logic instead of external device pins in the top-level module.

If you have a design partition script from the top-level designer, source the Tcl script
to create the Quartus II project with all the required settings and assignments from the
top-level design.

If you use makefiles, use the make command and the makefile provided by the
project lead to create a Quartus II project with all of the required settings and
assignments, and compile the project. Specify the dependencies in the makefile to
indicate which source file should be associated with which partition.

Compile and optimize each lower-level design in a separate Quartus II project.

Exporting Lower-Level Projects

When you achieve the design requirements for the lower-level design, export each
design as a partition for the top-level design.

If you are not using makefiles, or you want to only a portion of the design in the
lower-level project, on the Project menu, use the Export Design Partition dialog box
to export each lower-level design. If you want to export only a portion of the design in
the lower-level project, refer to “Exporting a Lower-Level Block within a Project” on
page 2-36 for instructions. Each lower-level designer must provide the .qxp file to the
project lead.

If your design team uses makefiles, the project lead can use the make command with
the master_makefile to export the lower-level partitions and create .qxp files, and
then import them into the top-level design.

Including or Importing Lower-Level Projects into the Top-Level Project

After exporting lower-level projects, the project lead then incorporates the .qxp files
sent in by the designers of each lower-level subdesign partition.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-33
Exporting and Importing Partitions

If you want to use the exported .qxp file information as a design file in the top-level
design, simply add the .qxp file as a source file in the project. In this case, the instance
in the .qxp file does not have to be a partition in the top-level design. Refer to “Using
a .qxp File as a Source File in the Top-Level Project” on page 2-37 for details.

If you want to import any placement information, on the Project menu, click Import
Design Partition and specify the partition in the top-level project that is represented
by the subdesign .qxp file. Refer to “Importing a Lower-Level Partition Into the
Top-Level Project” on page 2-37 for details. Repeat the process for each partition in
the design that you want to import.

You can automate the import process by using makefiles: the master_makefile
command imports each partition into the top-level design. Be sure to specify which
source files should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported and how to avoid conflicts, refer to
“Importing Assignments and Advanced Import Settings” on page 2-39.

Performing an Incremental Compilation in the Top-Level Project

After you have imported the design partitions that make up the top-level project, you
can perform a full compilation. The software compiles imported partitions in the
same way as partitions defined in the top-level project. The software recompiles an
imported partition only if it has been imported since the last compilation.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-34

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Netlist Types for Imported Partitions

Partitions that are imported from another project use two additional netlist types and
the top-level project uses the Empty Netlist Type to create a placeholder for partitions
until the associated .qxp files from other designers have been imported. These Netlist
Types are described in Table 2-5.

Tahle 2-5. Netlist Types for Imported Partitions

Partition Netlist
Type

Quartus Il Behavior for Partition During Compilation

Imported

Compiles the partition using a netlist imported from a .qxp file.

The software does not modify or overwrite the original imported netlist during compilation. To preserve
changes made to the imported netlist (such as movement of an imported LogicLock region), use the
Post-Fit (Import-based) setting following a successful compilation with the imported netlist. For
additional details, refer to “Exporting and Importing Partitions” on page 2—-29. To remove the imported
netlist and recompile from the source code, set the Netlist Type to Source File.

The Fitter Preservation Level specifies what level of information is preserved from the imported netlist.
Refer to “Fitter Preservation Level” on page 2—-21 for details.

If you have not imported a netlist for this partition using the Import Design Partition command, this
setting is not available.

Post-Fit
(Import-based)

Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following
conditions are true:

m A post-fit netlist is available from a previous fitting
m No change has been made to the associated imported netlist since the previous fitting

Compiles the partition from the imported netlist if the imported netlist changes (which means it has been
reimported) or if a post-fit netlist is not available. Changes to assignments do not cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist.
Refer to “Fitter Preservation Level” on page 2-21 for details.

You can use this netlist type to preserve changes to the placement and routing of an imported netlist.

If you have not imported a netlist for this partition using the Import Design Partition command, this
setting is not available.

Empty

Uses an empty placeholder netlist for the partition and automatically adds virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition to be imported later. For
more details on the Empty setting, refer to “Empty Partitions” on page 2—-22.

Creating a Lower-Level Project

Each lower-level subdesign can be compiled as a separate Quartus II project if
required in a team-based environment or for third-party IP developers.

If designers of lower-level blocks have access to the top-level design framework, the
project will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize lower-level designs. The top-level project lead should provide a
copy of the top-level project to be used by the lower-level designer.

If designers of lower-level blocks have a design partition script from the top level,
they should source the Tcl script to create the project and all the assignments from the
top-level design. Doing so may create many of the assignments described below.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-35
Exporting and Importing Partitions

In any independent project, use the following guidelines to improve the exporting
and importing process:

m Ensure that a LogicLock region contains the lower-level partition and uses only
the resources allocated by the top-level project lead.

m Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

m Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

m Toavoid other signals being placed on global routing lines, on the Assignments
menu, click Settings and turn off Auto Global Clock and Auto Global
Register Controls under More Settings on the Fitter page of the Settings
dialog box.

m Alternatively, you can set the Global Signal assignment to Off for signals that
should not be placed on global routing lines. Placement for LABs depends on
whether the inputs to the logic cells within the LAB use a global clock. You may
encounter problems if signals do not use global lines in the lower-level design,
but use global routing in the top level.

m Use the Virtual Pin assignment to indicate pins of a subdesign that do not drive
pins in the top-level design. This is critical when a subdesign has more output
ports than the number of pins available in the target device. Using virtual pins also
helps optimize cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as location and timing
assignments.

m Because subdesigns are compiled independently without any information about
each other, you should provide more information about the timing paths that may
be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
subdesign to perform timing budgeting.

<o For more information about resource balancing and timing budgeting between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Exporting a Lower-Level Partition to be Used in a Top-Level Project

When a subdesign partition has been compiled, and is ready to be incorporated into
the top-level design, use the following steps:

1. In the subdesign project, use one of the following methods to open the Export
Design Partition dialog box.

m In the Design Partition Planner (available from the Tools menu), right-click
within the colored box that represents a partition and click Export Design
Partition.

m On the Project menu, click Export Design Partition.

2. In the Export file box, type the name of the .qxp file. By default, the directory path
and file name are the same as the current project.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-36

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

3. You can also select the Partition hierarchy to export. By default, the Top partition
(the entire project) is exported, but you can choose to export the compilation result
of any partition hierarchy in the project, as described in “Exporting a Lower-Level
Block within a Project” on page 2-36. Choose the partition hierarchy from the
pull-down list.

4. Under Netlist to export, select either Post-fit netlist or Post-synthesis netlist. The
default is Post-fit netlist. For post-fit netlists, turn on or off the Export routing
option as required.

5. Click OK. The Quartus II software creates the .qxp file in the specified directory.

Alternatively, you can set up your project so that the export process is performed
every time you compile the design:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings, select the
Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the Export Design
Partition Settings button.

5. In the Export Design Partition Settings dialog box, change the settings, if
required, as in steps 2-4 in the preceding export procedure. Click OK.

6. Click OK to close the Settings dialog box. During the next full compilation, the
software creates the .qxp file in the specified directory.

Exporting a Lower-Level Block within a Project

Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2-35 enables you to create a .qxp file for a lower-level block within a Quartus II
project. When you do this, the command exports the entire hierarchy under the
specified partition into the .qxp file.

Use this feature if you are working with a copy of the top-level design framework,
and your design block is a lower-level partition in the Quartus II project. You can also
use this feature to add test logic around a lower-level block to be exported as a design
partition. You can instantiate additional design components in a lower-level project so
it matches the top-level design environment. For example, you can include a top-level
PLL in your lower-level project so that you can optimize the design with information
about the frequency multipliers, phase shifts, compensation delays, and any other
PLL parameters. The software then captures timing and resource requirements more
accurately while ensuring that the timing analysis in the lower-level project is
complete and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature to create .qxp files for specific design partitions
that are complete. You can then import the .qxp file back into the project and use the
Imported netlist type, as described in the following section. In this usage, the .qxp file
acts as an archive for the partition, including the netlist and placement and routing
information in one file. If you change the source code for the partition, you must
change the netlist type back to Source File to use the source instead of the imported
information.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-37
Exporting and Importing Partitions

Using a .qxp File as a Source File in the Top-Level Project

To include the design netlist from a .qxp file, you can simply use the .qxp file as a
source file in your design (just like a Verilog or VHDL source file).

The .qxp file contains the design block exported from the subdesign project and has
the same name as the partition. When you instantiate the design block in a top-level
design and include the .qxp file as a source file in the project, the software adds the
exported netlist to the database for the top-level project. The .qxp port names are case
sensitive if the original HDL of the lower-level partition were case sensitive.

The software also filters the assignments from the subdesign to bring the appropriate
assignments into the top-level project. Refer to the sections in “Importing
Assignments and Advanced Import Settings” on page 2-39 that describe which
assignments are included in the top-level project. The assignments in the .qxp file are
treated like assignments made in an HDL source file, and can be overridden by
assignments in the top-level project.

When you use a .qxp file as a source file in this way, you cannot currently import any
post-fit database information into your project. If you want to import post-fit
information from the exported netlist, refer to the following section, “Importing a
Lower-Level Partition Into the Top-Level Project”.

When you use a .qxp file as a source file, you can choose whether you want the file to
be a partition in the top-level project. If you do not designate the .qxp instance as a
partition, the software removes unconnected ports and unused logic just like a regular
source file. If you do assign the instance as a design partition, the partition boundary
is always preserved, as discussed in “Impact of Design Partitions on Design
Optimization” on page 2-10.

If you use the Locate command into the .qxp file or try to open the .qxp file in the
Quartus II software, you cannot view the design netlist because the .qxp file is a
binary file.

Importing a Lower-Level Partition Into the Top-Level Project

The import process imports the design netlist from the .qxp file into a particular
design partition and adds the netlist to the database for the top-level project.
Importing allows you to re-use the post-fitting results from the exported partition.
Importing also filters the assignments from the subdesign to create the appropriate
assignments in the top-level project. Before you can import a partition, you must have
performed an elaboration of the design hierarchy and assigned the design partitions.
If you elaborate the design with Empty partitions and have not created a black box
wrapper file to define the port connections, Analysis and Elaboration generates error
messages about undefined ports but you can still proceed with the import process.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-38 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

To import a subdesign partition into a top-level design, perform the following steps:

1. In the top-level project, use one of the following methods to open the Import
Design Partition dialog box:

m In the Design Partition Planner right-click within the colored box that
represents a partition and click Import Design Partition.

m In the Design Partitions window, right-click on the partition that you want to
import and click Import Design Partition.

m On the Project menu, click Import Design Partition.

2. In the Partition(s) box, browse to the desired partition if required. To choose a
partition, highlight the partition name in the Select Partition(s) dialog box and use
the appropriate buttons to select or deselect the desired partitions.

=" You can select multiple partitions if your top-level design has multiple
instances of the subdesign partition and you want to use the same imported
netlist.

3. Under Import file, type the name of the .qxp file or browse for the file that you
want to import into the selected partition. This file is required only during
importation, and is not used during subsequent compilations unless you reimport
the partition.

I'=~ If you have already imported the .qxp file for this partition at least once,
you can use the same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the latest import
files at previous locations. This option is especially useful when you
import the new .qxp files for several partitions that you have already
imported at least once. You can select all the partitions to be imported in the
Partition(s) box and then use the Reimport using latest import files at
previous locations option to import all partitions using their previous
locations, without specifying individual file names.

4. Optional: To view the contents of the selected .qxp file, click Load Properties. The
properties displayed include the Netlist Type, Entity name, Device, and statistics
about the partition size and ports.

5. Optional: Click Advanced Import Settings and make selections, as appropriate, to
control how assignments and regions are integrated from a subdesign into a
top-level design partition. During importation, some regions may be resized or
slightly moved. Click OK to apply the settings.

For more information about the advanced settings, refer to “Importing
Assignments and Advanced Import Settings” on page 2-39.

6. To start importation, in the Import Design Partition dialog box, click OK. The
specified .qxp file is imported into the database for the current top-level project.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-39
Exporting and Importing Partitions

Importing Assignments and Advanced Import Settings

When you import a subdesign partition into a top-level design, the software sets
certain assignments by default and also imports relevant assignments from the
subdesign into the top-level design.

Design Partition Properties after Importing

When you import a subdesign partition, the import process sets the partition’s Netlist
Type to Imported.

If you compile the design and make changes to the place-and-route results, use the
Post-Fit (Import-based) Netlist Type on the subsequent compilation. To discard an
imported netlist and recompile from source code, compile the partition with netlist
type set to Source File and be sure to include the relevant source code with the
top-level project.

The import process sets the partition’s Fitter Preservation Level to the setting with the
highest degree of preservation supported by the imported netlist. For example, if a
post-fit netlist is imported with placement information, the level is set to Placement,
but you can change it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2-20 for details about
the Netlist Type and Fitter Preservation Level setting.

Importing Design Partition Assignments Within the Subdesign

Design partition assignments defined within the subdesign project are not imported
into the top-level project. All logic in the subdesign is imported as one partition in the
.qxp file.

Synopsys Design Constraint Files for the Quartus Il TimeQuest Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing Analyzer in a
Synopsys Design Constraint (.sdc) file are not imported into the top-level project.
Ensure that the top-level project includes all of the timing requirements for the entire
project.

Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus 1l Handbook for recommendations
about managing the SDC constraints for the top-level and lower-level projects.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. To preserve changes made to
a partition after compilation, use the Netlist Type Post-Fit (Import-Based).

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-40

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

LogicLock back-annotation and node location data is not imported because the .qxp
file contains all of the relevant placement information. Altera strongly recommends
that you do not add to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design partition
assignments, SDC constraints, and LogicLock assignments, as described previously.

Importing Global Assignments

Global assignments are not imported. The project lead should make global
assignments in the top-level design. Note that clock settings for the Quartus II Classic
Timing Analyzer are global assignments, and are not imported. When it is possible for
a particular constraint, the global assignment is converted to an instance-specific
assignment for the target design partition.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to specify the options that
control how assignments and regions are integrated and how to resolve assignment
conflicts when importing a subdesign partition into a top-level design. The following
subsections describe each of these options.

Allow Creation of New Assignments

Allows the import command to add new assignments from the imported project to
the top-level project.

When this option is turned off, it imports updates to existing assignments, but no new
assignments are allowed.

Promote Assignments to all Instances of the Imported Entity

Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions

Choose one of the following options to determine how to handle conflicting
LogicLock assignments (that is, subdesign assignments that do not match the
top-level assignments):

m Always replace regions in the current project (default)—Deletes existing regions
and replaces them with the new subdesign region. Any changes made to the
LogicLock region after the assignments were imported are also deleted.

m Always update regions in the current projects—Overwrites existing region
assignments to reflect any new subdesign assignments with the exception of the
LogicLock Origin, in case the project lead has made floorplan location assignments
in the top-level design.

m Skip conflicting regions—Ignores and does not import subdesign assignments
that conflict with any assignments that exist in the top-level design.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-41
Exporting and Importing Partitions

Assignment Conflict Resolution: Other Assignments

Choose one of the following options to determine how to handle conflicts with other
types of assignments (that is, the subdesign assignments do not match the top-level
assignments):

m Always replace assignments in the current project (default)—Overwrites or
updates existing instance assignments with the new subdesign assignments.

m Skip conflicting assignments—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the top-level design.

Generating Design Partition Scripts for Project Management

The design partition scripts automate the process of transferring top-level project
information to lower-level design blocks in a "bottom-up" flow where each design
block is developed independently before being combined at the top level. If the
project lead cannot provide each designer with a copy of the top-level design
framework, the Quartus Il software provides an interface for managing resources and
timing budgets in the top-level design. This makes it easier for designers of lower-
level modules to implement the instructions from the project lead, and avoid conflicts
between projects when importing and incorporating the projects into the top-level
design. This helps reduce the need to further optimize the designs after integration,
and improves overall designer productivity and team collaboration.

For example design scenarios using these scripts, refer to “Implementing a
Team-Based Design Flow With Imported Partitions” on page 2-50. In a typical team-
based design flow, the project lead must perform some or all of the following tasks to
ensure successful integration of the subprojects:

m Manually determine which assignments should be propagated from the top level
to the lower levels. This requires detailed knowledge of which Quartus II
assignments are required to set up low-level projects.

B Manually communicate the top-level assignments to the lower-level projects. This
requires detailed knowledge of Tcl or other scripting languages to efficiently
communicate project constraints.

® Manually determine appropriate timing and location assignments that help
overcome the limitations of bottom-up design. This requires examination of the
logic in the lower levels to determine appropriate timing constraints.

m Perform final timing closure and resource conflict avoidance at the top level.
Because the lower-level projects have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the lower-level implementation may not be
available.

Using the Quartus II software to generate bottom-up design partition scripts from the
top level of the design makes these tasks much easier and eliminates the chance of
error when communicating between the project lead and lower-level designers.
Partition scripts pass on assignments made in the top-level design, and create some
new assignments that guide the placement and help the lower-level designers see
how their design connects to other partitions. If necessary, you can exclude specific
design partitions.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-42

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Generate design partition scripts after a successful compilation of the top-level
design. On the Project menu, click Generate Bottom-Up Design Partition Scripts.
The design can have empty partitions as placeholders for lower-level blocks, and you
can perform an Early Timing Estimation instead of a full compilation to reduce
compilation time.

The following subsections describe the information that can be included in the
bottom-up design partition Tcl scripts. Use the options in the Generate Bottom-Up
Design Partition Scripts dialog box to choose which types of assignments you want
to pass down and create in the lower-level partition projects. Each time you rerun the
script generation process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition scripts, refer to
“Register Packing and Partition Boundaries” on page 2-65.

Project Creation

You can use the Create lower-level project if one does not exist option for the
partition scripts to create lower-level projects if they are required. The Quartus II
Project File for each lower-level project has the same name as the entity name of its
corresponding design partition.

With this project creation feature, the scripts work by themselves to create a new
project, or can be sourced to make assignments in an existing project.

Excluded Partitions

Use the Excluded partition(s) option at the bottom of the dialog box to exclude
specific partitions from the Tcl script generation process. Use the browse button, then
highlight the partition name in the Select Partition(s) dialog box and use the
appropriate buttons to select or deselect the desired partitions.

Assignments from the Top-Level Design

By default, any assignments made at the top level (not including default assignments
or project information assignments) are passed down to the appropriate lower-level
projects in the scripts. The software uses the assignment variables and determines the
logical partition(s) to which the assignment pertains. This includes global
assignments, instance assignments, and entity-level assignments. The software then
changes the assignments so that they are syntactically valid in a project with its target
partition’s logic as the top-level entity.

The names of the design files that apply to the specific partition are added to each
lower-level project.

The script uses the file name(s) specified in the top-level project. If the top-level
project used a placeholder wrapper file with a different name than the design file in
the lower-level project, be sure to add the appropriate file to the lower-level project.

The scripts process wildcard assignments correctly, provided there is only one
wildcard. Assignments with more than one wildcard are ignored and warning
messages are issued.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-43
Exporting and Importing Partitions

Use the following options to specify which types of assignments to pass down to the
lower-level projects:

m Timing assignments—When this option is turned on, after you have compiled a
design using TimeQuest constraints, a separate Tcl script is generated to create an
.sdc file for each lower-level project that provides the clock constraints and any
minimum or maximum delays. This option may also include timing constraints on
internal partition connections. In addition, when this option is turned on, all
Classic Timing Analyzer global timing assignments for the lower-level projects are
included in the script, including tco, tsy, and fyax constraints.

m Design partition assignments—When this option is turned on, script assignments
related to design partitions in the lower-level projects are included, as well as
assignments associated with LogicLock regions.

m Pin location assignments—When this option is turned on, all pin location
assignments for lower-level project ports that connect to pins in the top-level
design are included in the script, controlling the overuse of I/Os at the top-level
during the integration phase and preserving placement.

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design units is
turned on, the Quartus II software searches partition netlists and identifies all ports
that have cross-partition dependencies. For each lower-level project pin associated
with an internal port in another partition or in the top-level project, the script
generates a virtual pin assignment, ensuring more accurate placement, because
virtual pins are not directly connected to I/O ports in the top-level project. These pins
are removed from a lower-level netlist when it is imported into the top-level design.

Virtual Pin Timing and Location Assignments

One of the main issues in bottom-up design methodologies is that each individual
design block includes no information about how it is connected to other design
blocks. If you turn on the option to write virtual pin assignments, you can also turn on
options to constrain these virtual pins to achieve better timing performance after the
lower-level partitions are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is turned on, the
script includes location constraints for each virtual pin created. Virtual output pins are
assigned to the location of the connection’s destination in the top-level project, and
virtual input pins are assigned to the location of the connection’s source in the
top-level project. If the top-level design uses Empty partitions, the final location of the
connection is not known, but the pin is still assigned to the LogicLock region that
contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock region of the
lower-level project, but at their location in the top-level design, eliminating resource
consumption in the lower-level project and providing more information about
lower-level projects and their port dependencies. These location constraints are not
imported into the top-level project.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-44

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

When Add maximum delay to created virtual input pins, Add maximum delay from
created virtual output pins, or both are turned on, the script includes timing
constraints for each virtual pin created. The value you enter in the dialog box is the
maximum delay allowed to or from all paths between virtual pins to help meet the
timing requirements for the complete design. The software uses the

| NPUT_MAX_DELAY assignment or OUTPUT_MAX_DELAY assignment to apply the
constraint.

This option allows the project lead to specify a general timing budget for all
lower-level internal pin connections. The lower-level designer can override these
constraints by applying individual node-level assignments on any specific pin as
needed.

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on, the script
includes assignments identifying the LogicLock assignment for the partition.

The script can also pass assignments to create the LogicLock regions for all other
partitions. When Include all LogicLock regions in lower-level projects is turned on,
the script for each partition includes all LogicLock region assignments for the
top-level project and each lower-level partition, revealing the floorplan for the
complete design in each partition. Regions that do not belong to other partitions
contain virtual pins representing the source and destination ports for cross-partition
connections. This allows each designer to view the connectivity between their
partition and other partitions in the top-level design more easily, and helps ensure
that resource conflicts at the top level are minimized.

When Remove existing LogicLock regions from lower-level projects is turned on,
the script includes commands to remove LogicLock regions defined in the lower-level
project prior to running the script. This ensures that LogicLock regions not part of the
top-level project do not become part of the complete design, and avoids any location
conflicts by ensuring lower-level designs use the LogicLock regions specified at the
top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects into the
top-level design, you can choose to write assignments that control how signals are
promoted to global routing resources in the lower-level partitions. These options can
help resource balancing of global routing resources.

When Promote top-level global signals in lower-level projects is turned on, the
Quartus II software searches partition netlists and identifies global resources,
including clock signals. For the relevant partitions, the script then includes a global
signal promotion assignment, providing information to the lower-level projects about
global resource allocation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-45
Exporting and Importing Partitions

When Disable automatic global promotion in lower-level projects is turned on, the
script includes assignments that turn off all automatic global promotion settings in the
lower-level projects. These settings include the Auto Global Memory Control Signals
logic option, output enable logic options, and clock and register control promotions. If
you select the Disable automatic global promotion in lower-level projects option in
conjunction with the Promote top-level global signals in lower-level projects option,
you can ensure that only signals promoted to global resources in the top-level are
promoted in the lower-level projects.

Makefile Generation

Makefiles allow you to use make commands to ensure that a bottom-up project is
up-to-date if you have a make utility installed on your computer. The Generate
makefiles to maintain lower-level and top-level projects option creates a makefile
for each design partition in the top-level design, as well as a master makefile that can
run the lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their corresponding
lower-level project directories.

You must specify the dependencies in the makefiles to indicate which source file
should be associated with which partition. The makefiles use the directory locations
generated using the Create lower-level project if one does not exist option. If you
created your lower-level projects without using this option, you must modify the
variables at the top of the makefile to specify the directory location for each
lower-level project.

To run the makefiles, use a command such as mreke -f mnaster_nakefil e. mak
from the script output directory. The master makefile first runs each lower-level
makefile, which sources its Tcl script and then generates a .qxp file to export the
project as a design partition. Next, run the top-level makefile that specifies these
newly generated .qxp files as the import files for their respective partitions in the
top-level project. The top-level makefile then imports the lower-level results and
performs a full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the EXCLUDE_FLAGS section
of master_makefile.mak according to the instructions in the file, and specify the
appropriate options. You can also exclude some partitions from being built, exported,
or imported using make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the following example:

gnumake -f master_makefil e. mak exclude_<partition directory>=1 «

This command instructs that the partition whose output files are in <partition
directory> are not built. Multiple directories can be excluded by adding multiple
excl ude_<partition directory> commands. Command-line options override any
options in the makefile.

Another feature of makefiles is the ability to have the master makefile invoke the
low-level makefiles in parallel on systems with multiple processors. This option can
help designers working with multiple CPUs greatly improve their compilation time.
For the GNU make utility, add the - j <N> flag to the make command. The value <N>
is the number of processors that can be used to run the build.

['=~ The makefile does not include a make clean option, so the design may recompile
when make is run again and a .qxp file already exists.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-46 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Recommended Design Flows and Compilation Application Examples

This section provides design flows for solving common timing closure and
team-based design issues using incremental compilation. Each flow describes the
situation in which it should be used, and gives a step-by-step description of the
commands required to implement the flow.

The following incremental design flow examples reduce compilation time while
making incremental changes to the design. The examples also allow you to achieve
timing closure more quickly by optimizing or preserving the results for some of your
design partitions:

m “Reducing Compilation Time When Changing a Source File for One Partition”
m “Optimizing a Timing-Critical Partition to Achieve Timing Closure” on page 2—47

m “Preserving Results for Some Partitions Before Adding Other Partitions” on
page 248
m “Debugging Incrementally with the SignalTap II Logic Analyzer” on page 2—49

All examples assume you have set up the project to use the full incremental
compilation flow, using the steps described in “Quick Start Guide—Summary of
Incremental Compilation” on page 2-7.

The following design flow examples illustrate team-based design methodologies and
design reuse:

m “Implementing a Team-Based Design Flow With Imported Partitions” on
page 2-50

m “Performing Design Iteration With Lower-Level Partitions” on page 2-53

m “Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse” on
page 2-54

m “Using an Exported Partition to Send a Design without Including Source Files” on
page 2-56

Reducing Compilation Time When Changing a Source File for One Partition

Use this flow to update the source file in one partition without having to recompile
the other parts of the design. To reduce the compilation time, keep the post-fit netlists
for the unchanged partitions. This also preserves the performance for these blocks,
which reduces additional timing closure efforts.

Example background: You have just performed a lengthy, complete compilation of a
design that consists of multiple partitions. An error is found in the HDL source file for
one partition and it is being fixed. Because the design is currently meeting timing
requirements and the fix is not expected to affect timing performance, it makes sense
to compile only the affected partition and preserve the rest of the design.

Perform the following steps to update the single source file:
1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, click Design Partitions Window.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-47
Recommended Design Flows and Compilation Application Examples

3. For the partitions that should be preserved, change the Netlist Type to Post-Fit.
You can set the Fitter Preservation Level to either Placement or Placement and
Routing. For the partition that contains the fix, you can change the netlist type to
Source File. (Making the Source File setting is optional because the Quartus II
software recompiles partitions by default if changes are detected in a source file.)

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Run simulation again to ensure that the error is fixed, and use the Timing
Analyzer report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition to Achieve Timing Closure

Use this flow to optimize the results of one partition when the other partitions in the
design already meet their requirements. You can use this flow iteratively to lock down
the performance of one partition and then move on to optimization of another
partition.

Example background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met and you have to optimize one particular partition. You want to
try optimization techniques such as raising the Placement Effort Multiplier, enabling
Physical Synthesis, and running the Design Space Explorer. Because these techniques
all involve significant compilation time, it makes sense to apply them to only the
partition in question.

Perform the following steps to preserve the results for partitions that meet their
timing requirements, and recompile a timing-critical partition with new optimization
settings:

1. On the Assignments menu, click Design Partitions Window.

2. For the partition in question, set the Netlist Type to Post-Synthesis if you are
changing a Fitter setting, such as raising the Placement Effort Multiplier. This
causes the partition to be placed and routed with the new Fitter settings (but not
resynthesized) during the next compilation. Set the Netlist Type to Source File if
you are changing an optimization setting that affects synthesis, such as certain
Physical Synthesis optimizations.

3. For the remaining partitions (including the top-level entity), set the Netlist Type to
Post-Fit. Set the Fitter Preservation Level to Placement to allow for the most
flexibility during routing. These partitions are preserved during the next
compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s netlist with the post-fit netlists of the remaining
partitions. The Fitter then refits only the required partition. Because the effort is
reduced as compared to the initial full compilation, the compilation time is also
reduced.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-48

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

To use the Design Space Explorer, perform the following steps:
1. Repeat steps 1-3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Preserving Results for Some Partitions Before Adding Other Partitions

Use this flow to compile one set of partitions in isolation and lock the placement to
preserve the results while you complete the rest of your design.

Example background: To reduce compilation time and help achieve timing closure,
you decide to use one of the following compilation flows:

In the first variation, a timing-critical partition is placed and routed by itself, with
extra optimizations turned on (manually or with the Design Space Explorer). After
timing closure is achieved for this partition, its content and placement are preserved
and the remaining partitions are fit with normal or reduced optimization levels so
that the compilation time can be reduced. For example, you can compile an IP block
that comes with instructions to perform optimization before you incorporate the rest
of your custom logic.

In the second variation, only the quick-compiling partitions are placed and routed
initially with normal or reduced optimization levels, using floorplan location
assignments to reserve space in the floorplan for the partitions to be added in the
future. These quick-compiling partitions are then preserved so they do not have to be
compiled again when the last partitions are introduced, with extra optimizations
turned on (manually or with the Design Space Explorer).

To implement this design flow, perform the following steps:
1. Partition the design and create floorplan location assignments.

2. For the partitions to be compiled first, on the Assignments menu, click Design
Partitions Window and set Netlist Type to Source File.

3. For the remaining partitions (other than any direct or indirect parents of partitions
in step 2), set the Netlist Type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check Timing Analyzer reports to ensure that timing requirements are met. If so,
proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit for the first
partitions. Set the Fitter Preservation Level to Placement and Routing only if
necessary to preserve results of the timing-critical blocks; otherwise, use
Placement to allow for the most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the remaining partitions.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its Netlist Type set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements are met. If not,
make design or option changes and repeat step 8 and step 9 until the requirements
are met.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-49
Recommended Design Flows and Compilation Application Examples

L= This flow is similar to a design flows in which a module is implemented
separately and is merged into the rest of the design afterwards. Generally,
optimization in this flow works only if each critical path is contained within
a single partition. This is one reason why both the inputs and outputs of
each partition should be registered. Ensure that if there are any partitions
representing a design file that is missing from the project, you create a
placeholder wrapper file that defines the port interface. Refer to “Empty
Partitions” on page 2—22 for more information.

Debugging Incrementally with the SignalTap Il Logic Analyzer

Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Logic Analyzer to your design without
recompiling your original source code.

Use this flow to reduce compilation times when adding the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II file
without modifying your logic design or its placement.

It is not necessary to create any design partitions to use the SignalTap II Incremental
Compilation feature. When your project has the default Full incremental compilation
option turned on, the SignalTap II Logic Analyzer acts as its own separate design
partition.

Perform the following steps to use the SignalTap II Embedded Logic Analyzer in an
incremental compilation flow:

1. On the Assignments menu, click Design Partitions Window.

2. Set the Netlist Type to Post-fit for all partitions to preserve their placement.

[l= The netlist type for the top-level partition defaults to Source File, so be sure
to change this Top partition in addition to any design partitions that you
created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II file using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis. This allows the Fitter to add the
SignalTap II logic to the post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s Netlist Type to
Source File and use the SignalTap II: pre-synthesis filter in the Node Finder. This
allows the software to resynthesize the partition and tap directly to the
pre-synthesis node names that you choose. In this case, the partition is refit, so the
placement is typically different from previous fitting results.

"=~ Do not use the netlist type Post-Synthesis with the SignalTap II Logic
Analyzer.
“®.e For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

2-50

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Implementing a Team-Based Design Flow With Imported Partitions

This example describes how to use incremental compilation in a team-based design
flow where each designer or IP developer wants to fully optimize their design in a
separate Quartus II project before sending the design to the top-level project lead.

Example background: A project consists of several lower-level subdesigns that are
implemented separately by different designers. The top-level project instantiates each
of these subdesigns exactly once. The subdesign designers want to optimize their
designs independently to ensure timing closure.

As the project lead in this scenario, perform the following steps to prepare the design:

1.

Create a new Quartus II project to ultimately contain the full implementation of
the entire design.

To prepare for the bottom-up methodology, create a “skeleton” or framework of
the design that defines the hierarchy for the subdesigns implemented by separate
designers. The top-level design implements the top-level entity in the design and
instantiates wrapper files that represent each subdesign by defining only the port
interfaces but not the implementation.

Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

Make design partition assignments for each subdesign and set the Netlist Type for
each design partition to be imported to Empty in the Design Partitions window.

Create LogicLock regions for each of the lower-level partitions to create a design
floorplan. This floorplan should consider the connectivity between partitions and
estimates of the size of each partition based on any initial implementation
numbers and knowledge of the design specifications.

Provide the constraints from the top-level project to lower-level designers using
one of the following procedures:

a. Provide a copy of the top-level Quartus II project framework. Use the Copy
Project command on the Project menu or create a project archive. Provide each
lower-level designer with the project.

b. Use scripts to pass constraints and generate separate Quartus II projects. On
the Project menu, click Generate Bottom-Up Design Partition Scripts, or run
the script generator from a Tcl or command prompt. Make changes to the
default script options as required for your project. Altera recommends that you
pass all the default constraints, including LogicLock regions, for all partitions
and virtual pin location assignments. Altera further recommends that you add
a maximum delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If lower-
level projects have not already been created by the other designers, use the
partition script to set up the projects so that you can easily take advantage of
makefiles. Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles, provide the
makefile for each partition.

c. Use documentation or scripts to manually pass all constraints and assignments
to each lower-level designer.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-51
Recommended Design Flows and Compilation Application Examples

As the designer of a lower-level subdesign in this example, perform the appropriate
set of steps to successfully export your design, whether your design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles, perform the following steps:

1.

Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the

mast er _makef i | e command to export this lower-level partition and create a
.qxp file, and then import it into the top-level design.

If you are not using makefiles, perform the following steps:

1.

6.

Use your copy of the top-level design, or create a new Quartus II project for the
subdesign.

If you do not have a copy of the top-level project, apply the following settings and
constraints to ensure successful integration:

a. Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

b. Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level module.

c. Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level module. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

Proceed to compile and optimize the design as needed.

When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition. The Export Design Partition dialog box appears.

Under Netlist to export, select the netlist type Post-fit netlist to preserve the
placement and performance of the subdesign, and turn on Export routing to
include the routing information if required. You can export Post-synthesis netlist
instead if placement or performance preservation is not required.

Provide the .qxp file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of steps to
import the files sent in by the designers of each lower-level subdesign partition.

If you are using makefiles, perform the following steps:

1.

Use the mast er _nmakef i | e command to export each lower-level partition and
create .qxp files, and then import them into the top-level design.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-52

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the .qxp file for each subdesign from the other designers on the
team, on the Project menu, click Import Design Partition and specify the partition
in the top-level project that is represented by the subdesign .qxp file.

2. Repeat the import process described in step 1 for each partition in the design. After
you have imported each partition once, select all the design partitions and use the
Reimport using latest import files at previous locations option to import all of
the files from their previous locations at one time.

Resolving Assignment Conflicts During Import

When importing the subdesigns, the project lead may notice some assignment
conflicts. This can occur, for example, if the subdesign designers changed their
LogicLock regions to account for additional logic or placement constraints, or if the
designers applied I/O port timing constraints that differ from constraints added to
the top-level project by the project lead. To address these conflicts, the project lead can
take one or both of the following actions:

m Allow new assignments to be imported.
m Allow existing assignments to be replaced or updated.

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

m Allow the imported region to replace the existing region.
m Allow the imported region to update the existing region.
m Skip assignment import for regions with conflicts.

The project lead can address all of these situations using Advanced Import Settings
as described in “Importing Assignments and Advanced Import Settings” on
page 2-39.

If the placement of different subdesigns conflict, the project lead can also set the set
the partition’s Fitter Preservation Level to Netlist Only, which allows the software to
re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the scenario, one of the subdesigns is instantiated more than once
in the top-level design. The designer of the subdesign may want to compile and
optimize the entity once under a lower-level project, and then import the results as
multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving Assignment
Conlflicts During Import” on page 2-52 is mandatory because the top-level partitions
share the same imported post-fit netlist. If you import multiple instances of a
subdesign in the top-level design, the imported LogicLock regions are automatically
set to Floating status.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-53
Recommended Design Flows and Compilation Application Examples

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

Performing Design Iteration With Lower-Level Partitions

Use this flow if you re-optimize lower-level partitions in separate Quartus II projects
by incorporating additional constraints from the integrated top-level design. This
procedure allows you to create a separate individual project for a partition that
requires additional optimization.

Example background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each individual lower-
level project, but critical inter-partition paths in the top level are causing timing
requirements to fail.

After trying various optimizations at the top level, the project lead determines that the
design cannot meet the timing requirements given the current lower-level partition
placements that were imported. The project lead decides to pass additional
information to the lower-level projects to improve the placement.

One way to provide top-level design information to designers of lower-level blocks is
to provide a copy of the top-level Quartus II project with the following steps:

1. For all partitions other than the one being optimized by a lower-level designer, set
the netlist type to Post-Fit.

2. Copy the entire top-level project directory (including database files), or create a
project archive including the post-compilation database.

3. Provide each lower-level designer with their project.

4. In the top-level design, on the Project menu, click Generate Bottom-Up Design
Partition Scripts, or launch the script generator from Tcl or the command line.

5. Because lower-level projects have already been created for each partition, you can
turn off Create lower-level project if one does not exist.

6. Make any additional changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-54

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

7. The Quartus Il software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

m Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

m Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top level, leading to a greater
chance of timing closure during integration at the top level.

m | NPUT_MAX_DELAY and QUTPUT_MAX_DELAY timing constraints on the paths
to and from the I/O pins of the partition. These constrain the pins to optimize
the timing paths to and from the pins.

8. The lower-level designers source the file provided by the project lead.

m To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command:

source <filename> +«

m To source the Tcl script at the system command prompt, type the following
command:

quartus_cdb -t <filenane>.tcl +

9. The lower-level designers recompile their designs with the new project
information or assignments and optimize as needed to ensure that the internal
timing requirements are met, and then e-export their results.

10. The top-level designer re-imports the results.

11. You can now analyze the design to determine whether the timing requirements
have been achieved. Because the lower-level partitions were compiled with more
information about connectivity at the top level, it is more likely that the
inter-partition paths have improved placement which helps to meet the timing
requirements.

Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse

Use this design flow to create a hard-wired macro or precompiled IP block that can be
instantiated in a top-level design. This flow provides the ability to export a design
block with post-synthesis or placement (and, optionally, routing) information and to
import any number of copies of this pre-compiled macro into another design.

Example background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-55
Recommended Design Flows and Compilation Application Examples

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

L=~ Altera recommends creating a floorplan using LogicLock regions, although
it is not required for the generation and use of .qxp files. Using a LogicLock
region for the IP core allows the customer to create an empty placeholder
region to reserve space for the IP in the design floorplan. This ensures there
are no conflicts with the top-level design logic, and that the IP core does not
affect the timing performance of other logic in the top-level design.

LogicLock regions can be effective to reduce resource utilization conflicts
and to enable performance preservation. In addition, without LogicLock
regions, placement can be preserved only in an absolute manner. With
LogicLock regions, you can preserve placement absolutely or relative to the
origin of the associated regions. This is important when a .qxp file is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level project does
not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block within a Project”
on page 2-36.

5. Optimize the design and close timing to meet the design specifications.

6. Export the appropriate level of hierarchy into a single .qxp file. Following a

successful compilation of the project, you can generate a .qxp file from the GUI,
the command-line, or with Tcl commands:

m If you are using the Quartus II GUI, use the Export Design Partition
command.

m If you are using command-line executables, run quartus_cdb with the
--increnmental _conpil ati on_export option.

m If you are using Tcl commands, use the following command:
execute_flow -incremental conpil ati on_export.

7. Provide the .qxp file to the customer. Note that you do not have to send any of
your design source code to the customer; the design netlist and placement and
routing information is contained within this single file.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-56 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

2. On the Processing menu, point to Start and click Perform Analysis & Elaboration
to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 2—67) with the Netlist Type set to Empty (refer to “Setting the
Netlist Type for Design Partitions” on page 2-20).

4. You can now continue work on your part of the design and accept the IP core from
the IP provider whenever it is ready.

5. Import the .qxp file from the IP provider for the appropriate partition hierarchy.
You can import a .qxp file from the GUI, the command-line, or with Tcl
commands.

m If you are using the Quartus II GUI, use the Import Design Partition
command.

m If you are using command-line executables, run quartus_cdb with the
--increnental _conpil ation_i nport option.

m If you are using Tcl commands, use the following command:
execute flow -increnmental conpilation_inport.

6. You can set the imported LogicLock regions to floating or move them to a new
location, with the relative locations of the region contents preserved. Routing
information is preserved whenever possible.

['=~ The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp file.

7. You can control whether to preserve the imported netlist only, placement, or
placement and routing (if the placement or placement and routing information
was exported in the .qxp file) with the Fitter Preservation Level.

By default, the software preserves the absolute placement and routing of all nodes in
the imported netlist if you choose to preserve placement and routing. However, if you
use the same .qxp files for multiple partitions in the same project, the software
preserves the relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

& 1If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Using an Exported Partition to Send a Design without Including Source Files

Use this flow to package a full design as a single file to send to an end customer or
another design location.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-57
Recommended Design Flows and Compilation Application Examples

Example background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient.

As the sender in this example, perform the following steps to export a design block:

1. Provide the device family name to the sender. If you send placement information
with the synthesized netlist, also provide the exact device selection so they can set
up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the appropriate level of hierarchy into a single .qxp file. If you use the
Quartus II GUI, use the Export Design Partition command (refer to “Exporting a
Lower-Level Block within a Project” on page 2-36").

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.

6. Provide the .qxp file to the recipient. Note that you do not have to send any of
your design source code.

As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp file does not include placement information), as specified by
the IP provider sending the design block. Instantiate the design block using the port
information provided. Then incorporate the design block into a top-level design by
performing one of the following procedures.

To use the .qxp file as a design file in your design, simply add the .qxp file from the IP
provider as a source file in your Quartus II project. When you use a .qxp file as a
source file in this way, you cannot import any post-fit netlist information. You can
choose whether you want the file to be a partition in the top-level project.

To import the design instance from the .qxp file as a design partition and optionally
include the post-fit netlist information, perform the following steps:

1. On the Processing menu, point to Start and click Perform Analysis & Elaboration
to identify the design hierarchy.

2. Create a design partition for the design instance from the .qxp file (refer to
“Creating Design Partition Assignments” on page 2-15) with the Netlist Type set
to Empty (refer to “Setting the Netlist Type for Design Partitions” on page 2-20).

3. Import the .qxp file from the IP provider for the appropriate partition hierarchy. If
you are using the Quartus II GUI, use the Import Design Partition command and
browse to the .qxp file provided (refer to “Using a .qxp File as a Source File in the
Top-Level Project” on page 2-37).

4. 1If the sender provides Fitter information, you can control whether to preserve the
imported netlist only, placement, or placement and routing, with the Fitter
Preservation Level.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-58 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Incremental Compilation Restrictions

This section documents the restrictions and limitations that you may encounter when
using incremental compilation, including interactions with other Quartus II features.
Some additional restrictions apply only to exported partitions.

The following restrictions and limitations are covered:

m “Preserving Exact Timing Performance” on page 2-58

m “When Placement and Routing May Not Be Preserved Exactly” on page 2-58
m “Using Incremental Compilation with Quartus II Archive Files” on page 2-59
m “Formal Verification Support” on page 2-59

m “SignalProbe Pins and Engineering Change Management with the Chip Planner”
on page 2-59

m “SignalTap Il Embedded Logic Analyzer in Exported Partitions” on page 2-61

m “Logic Analyzer Interface in Exported Partitions” on page 2-61

“Importing Encrypted IP Cores” on page 2-62

“Assignments Made in HDL Source Code in Exported Partitions” on page 2-62
“Bottom-Up Design Partition Script Limitations” on page 2—-62

“HardCopy Compilation and Migration Flows” on page 2-64

“Restrictions on Megafunction Partitions” on page 2-65

“Register Packing and Partition Boundaries” on page 2-65

“1/0 Register Packing” on page 2-65

Preserving Exact Timing Performance

Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly

The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-59
Incremental Compilation Restrictions

assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.

Using Incremental Compilation with Quartus Il Archive Files

The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp file. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp file in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use_file_set full _db [-revision <revision
nane>] <project nane>

Formal Verification Support

You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Management with the Chip Planner

When you create SignalProbe pins or use the Resource Property Editor to make
changes due to engineering change orders (ECOs) after performing a full compilation,
recompiling the entire design is not necessary. These changes are made directly to the
netlist without performing a new placement and routing. You can preserve these
changes using a post-fit netlist with placement and routing. When a partition is
recompiled, SignalProbe pins and ECO changes in unaffected partitions are
preserved.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-60 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

“ . e For more information about using the SignalProbe feature to debug your design, refer

to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus 11
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

To preserve SignalProbe pins or ECO changes, the partition netlist type should be set
to Post-Fit with the Fitter Preservation Level set to Placement and Routing. If any
partitions with SignalProbe pins or ECO changes are set to Post-Fit without Routing
or to Netlist Only, the software issues a warning and internally uses the Post-fit
netlist with Placement and Routing. If the partitions are set to use the source code or
a post-synthesis netlist, the software issues a warning and the post-fit SignalProbe
pins or ECO changes are not included in the new compilation. However, partitions
can become linked due to the SignalProbe pins or ECO changes, as described below,
in which case all linked partitions inherit the netlist type from the linked partition
with the highest level of preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes

If ECO changes affect more than one partition or the connection between any
partitions, the partitions become linked. All of the higher-level “parent” partitions up
to their nearest common parent are also linked. In this case, the connection between
the partitions is actually defined outside of the two partitions immediately affected, so
all the partitions must be compiled together. All linked partitions use the same netlist
type, and they inherit the netlist type from the linked partition with the highest level
of preservation.

When a SignalProbe pin is created, it affects the partition that contains the node being
probed. In addition, any pipeline registers are created in the same partition as the
node being probed. The SignalProbe output pin is assigned to the top-level partition.
Therefore, there is a new connection formed between the top-level partition and the
lower-level partition that is being probed. Because of this connection, the lower-level
partition being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and they inherit
the netlist type from the linked partition with the highest level of preservation.

When partitions are linked, they can change which netlists are preserved when you
recompile the design, as follows:

m If all the linked partitions are set to use the source code or a post-synthesis netlist,
the partitions are refit as normal. In this case, the SignalProbe pins or ECO changes
are not included in the new netlists, so you must reapply the changes in the
Change Manager.

m If any of the linked partitions are set to the Post-Fit netlist type, and there are no
source code changes, the software issues a warning and internally uses the post-fit
netlist with placement and routing for all linked partitions. By preserving the
appropriate post-fit netlists, the software can preserve the SignalProbe pins or
ECO changes.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-61
Incremental Compilation Restrictions

m If any of the linked partitions are set to the Post-Fit (Strict) netlist type, the
software issues a warning and internally uses the post-fit netlist with placement
and routing for all linked partitions, regardless of any source code changes. By
preserving the appropriate post-fit netlists, the software can preserve the
SignalProbe pins or ECO changes. Note that in this case, source code changes in
any of the linked partitions are not included in the new netlist.

m If any of the linked partitions are recompiled due to a change in source code, the
software issues a warning and recompiles the other linked partitions as well.
When this occurs, the SignalProbe pins or ECO changes are not included in the
new netlist, so you must reapply the changes in the Change Manager.

Exported Partitions

When you export a partition, the exported netlist includes all currently saved
SignalProbe pins and ECO changes. This might require flattening and combining
lower-level partitions in the child project to avoid partition boundary violations at the
top level. After importing this netlist, changes made in the lower-level partition do
not appear in the Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level partition, the
software issues a warning message during the export process that this netlist does not
work in the top-level design without modifying the top-level HDL code to reflect the
lower-level change.

SignalTap Il Embedded Logic Analyzer in Exported Partitions

You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

You cannot export a lower-level project that uses a SignalTap II File (.stp) for the
SignalTap II Logic Analyzer. You must disable the SignalTap II feature and recompile
the design before you export the design as a partition.

You can instantiate the SignalTap II megafunction directly in your lower-level design
(instead of using an .stp file) and export the entire design to the top level.

You can tap any nodes in a Quartus II project, including nodes imported from other
projects. Use the appropriate filter in the Node Finder to find your node names. Use
SignalTap II: post-fitting if the Netlist Type is Post-Fit to incrementally tap node
names in the post-fit netlist database. Use SignalTap II: pre-synthesis if the Netlist
Type is Source File to make connections to the source file (pre-synthesis) node names
when you synthesize the partition from the source code.

For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap Il Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

Logic Analyzer Interface in Exported Partitions

You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a lower-level project that uses the
Logic Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

2-62

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Importing Encrypted IP Cores

Proper license information is required to compile encrypted IP cores. If an IP core is
imported as a .qxp file from another Quartus II project, the top-level designer must
have the correct license. That is, you require a full license to generate an unrestricted
programming file. If you do not have a license, but the IP in the .qxp file was
compiled with OpenCore Plus hardware evaluation support, you can generate an
evaluation programming file without a license. If the IP supports OpenCore
simulation only, you can fully compile the design and generate a simulation netlist,
but you cannot create programming files unless you have a full license.

Assignments Made in HDL Source Code in Exported Partitions

Assignments made with I/O primitives or the al t era_at t ri but e HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level QSF file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Bottom-Up Design Partition Script Limitations

The Quartus II software has some limitations related to design partition scripts.

Warnings About Extra Clocks Due to Bottom-Up Design Partition Scripts

The generated scripts include applicable clock information for all clock signals in the
top-level project. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Bottom-Up
Design Partition Scripts

As described in “Generating Design Partition Scripts for Project Management” on
page 2—41, design partition scripts include only clock constraints and minimum and
maximum delay settings for the TimeQuest Timing Analyzer.

PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for suggestions on
managing SDC constraints between top-level and lower-level projects.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-63
Incremental Compilation Restrictions

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top| A:i nst| B: i nst| *, where Aand B are lower-level partitions, and
hierarchy Bis a child of A, that is B is instantiated in hierarchy A. This assignment is
applied to modules A, B, and all children instances of B. However, the assignment
Top| Al inst| B:inst* isapplied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B: i nst * is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top| A:i nst| *| B: i nst| * are not
supported. The Quartus II software issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses a copy of the project framework from the project lead,
they will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic with the feature described in “Exporting a Lower-Level Block within a Project”
on page 2-36.

Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not

written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

Design partition scripts use | NPUT_MAX_DELAY and OUTPUT_NMAX_DELAY
assignments to specify inter-partition delays associated with input and output pins,
which would not otherwise be visible to the project. These assignments require that

the software specify the clock domain for the assignment and set this clock domain to
Y

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-64

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.

;op-LeveI Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition
cripts

When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

HardCopy Compilation and Migration Flows

HardCopy ASIC Migration Flows

Incremental compilation within a single Quartus II project is supported for the base
family in HardCopy migration flows for both the FPGA first and HardCopy first
flows. Design partition assignments are migrated to the companion device. However,
you can not make changes to the design after migration because the design would not
match the compilation results for the base family. Therefore, you can perform
incremental compilation on one device family, but cannot perform any incremental
compilations after migration.

The Netlist Only preservation level is not supported for Post-fit netlists for FPGA or
HardCopy ASIC device compilations when a migration device is specified (that is, for
HardCopy ASIC device compilations with a FPGA migration device, or FPGA device
compilations with a HardCopy ASIC migration device).

Exporting and importing partitions is not supported in HardCopy ASIC or FPGA
device compilations when there is a migration device setting. The Revision Compare
feature requires that the HardCopy ASIC and FPGA netlists are the same. Therefore,
all operations performed on one revision must also occur on the other revision. This is
accomplished by logging all operations and replaying them on the other revision.
Importing partitions does not support this requirement. You can often use Empty
partitions to implement behavior similar to an exported partition flow, as long as you
do not change any global assignments between compilations. All global assignments
must be the same for all compiled partitions, so the assignments can be reproduced in
the companion device after migration.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-65
Incremental Compilation Restrictions

HardCopy ASIC Stand-Alone Compilations

You can use all incremental compilation flows for stand-alone HardCopy ASIC
compilations.

Routing preservation is not supported for HardCopy ASICs. Therefore, the Placement
and Routing preservation level is not available, and routing cannot be exported in the
bottom-up flow.

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard™ Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.

The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries

The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries prevent cross-boundary
optimization. This restriction applies to all types of register packing, including I/O
cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic from two
partitions cannot be packed into the same ALM.

1/0 Register Packing

Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding 1/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

m The input pin feeds exactly one register.

m The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing;:

m The register feeds exactly one output pin.
m The output pin is fed by only one signal.

m The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-66

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.

Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for more information and
examples of cross-partition boundary I/0 packing.

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --ghelp ¢

The Quartus II Scripting Reference Manual includes the same information in PDF form.

For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus Il Handbook. Refer to the Quartus 11 Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the following
command:

set _gl obal _assi gnment - name | NCREMENTAL_COWPI LATI ON <val ue> ¢
The incremental compilation <value> setting must be one of the following values:

m FULL_I| NCREMENTAL_COWPI LATI ON—Full incremental compilation (this is the
default)

m OFF—No incremental compilation is performed

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-67
Scripting Support

Creating Design Partitions
To create a partition, use the following command:

set _i nstance_assi gnnent -nane PARTI Tl ON_H ERARCHY \
<file name> -to <destination> -section_id <partition nane>

The <destination> should be the entity’s short hierarchy path. A short hierarchy path is
the full hierarchy path without the top-level name (including quotation marks), for
example:

"ramram.unit|al tsyncram al t syncram conmponent "

For the top-level partition, you can use the pipe (|) symbol to represent the top-level
entity.

«o For more information about hierarchical naming conventions, refer to the
Node-Naming Conventions in Quartus II Integrated Synthesis section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

The <partition name> is the user-designated partition name, which must be unique
and less than 1024 characters. The name can consist only of alphanumeric characters,
and the pipe (|), colon (:), and underscore (_) characters. Altera recommends
enclosing the name in double quotation marks (" ").

The <file name> is the name used for internally generated netlists files during
incremental compilation. Netlists are named automatically by the Quartus II software
based on the instance name if you create the partition in the user interface. If you are
using Tcl to create your partitions, you must assign a custom file name that is unique
across all partitions. For the top-level partition, the specified file name is ignored; you
can use any dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition uses the file
name ny_fi | e, no other partition can use the file name MY_FI LE. For simplicity,
Altera recommends that you base each file name on the corresponding instance name
for the partition.

The software stores all netlists in the \incremental_db compilation database
directory.

Setting Properties of Design Partitions
After a partition is created, set its Netlist Type with the following command:

set _gl obal _assi gnment - name PARTI TI ON_NETLI ST_TYPE <val ue> \
-section_id <partition nane>

The netlist type <value> setting is one of the following values:
m SOURCE—Source File

m POST_SYNTH—Post-Synthesis

m POST_FI T—Post-Fit

m STRI CT_POST_FI T—Post-Fit (Strict)

m | MPORTED—Imported

m | MPORT_BASED POST_FI T—Post-Fit (Import-based)

m EMPTY—Empty

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

2-68 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Set the Fitter Preservation Level for a post-fit or imported netlist using the following
command:

set gl obal _assi gnment - name PARTI TI ON_FI TTER_PRESERVATI ON_LEVEL \
<val ue> -section_id <partition name>

The Fitter Preservation Level <value> setting is one of the following values:
m NETLI ST_ONLY—Netlist only

m PLACEMENT—Placement

m PLACEMENT_AND_ ROUTI NG—Placement and routing

m PLACEMENT_AND_ ROUTI NG_AND_TI LE—Placement and routing, as well as the
high-speed power tile settings

For details about these partition properties, refer to “Setting the Netlist Type for
Design Partitions” on page 2-20.

Creating Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM or DSP Blocks)

Resource filtering uses the optional Tcl argument - excl ude_r esour ces in the
set | ogi cl ock_cont ent s function of the i ncr enent al _conpi | ati on Tcl
package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is a
colon-delimited string of the keywords in Table 2—6.

Table 2-6. Resources-to-be-Excluded Keywords

Keyword Resource
REGQ STER Any registers in the logic cells
COVBI NATI ONAL Any combinational elements in the logic cells
SMALL_MVEM The small TriMatrix memory blocks (M512 or MLAB)
MEDI UM_MVEM The medium TriMatrix memory blocks (M4K or MIK)
LARGE_MVEM The large TriMatrix memory blocks (M-RAM or M144K)
DSP Any DSP blocks
VI RTUAL_PI N Any virtual pins

For example, the following command assigns everything under alu:alu_unit to the
ALU region, excluding all the DSP and M512 blocks:

set _logiclock_contents -region ALU -to alu:alu_unit -exceptions \

" DSP: SMALL_MEM'

In the .gsf file, resource filtering uses an extra LogicLock membership assignment
called LL_MEMBER RESOURCE_EXCLUDE. For example, the following line in the .qsf
file is used to specify a resource filter for the al u: al u_uni t entity assigned to the
ALU region. The value of the assignment takes the same format as the resource listing
string taken by the previous Tcl command.

set _i nstance_assi gnnent -nane LL_MEMBER RESOURCE_EXCLUDE \
"DSP: SMALL_MVEM' -to "alu:alu_ unit" -section_id ALU

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Scripting Support

2-69

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:

gener ate_bottom up_scri pts <options> ¢

The command is part of the dat abase_nanager package, which must be loaded
using the following command before the command can be used:

| oad_package dat abase_nmnager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact format of each

option is specified in Table 2-7.

Table 2-7. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default
-incl ude_makefil es <on|off> On
-include_project_creation <on|off> On
-incl ude_virtual _pins <on|of> On
-include_virtual _pin_timng <on|off> On
-include_virtual _pin_|l ocations <on|off> On
-incl ude_l ogi cl ock_r egi ons <on|off> On
-include_all _l ogi cl ock_regi ons <on|off> On
-include_gl obal _si gnal _pronotion <on|off> Off
-incl ude_pi n_| ocati ons <on|off> On
-include_timng_assignnents <on|off> On
-include_desi gn_partitions <on|off> On
-renove_exi sting_regions <on|off> On
- di sabl e_aut o_gl obal _pronoti on <on|off> Off
-bottom up_scripts_out put _directory <outputdirectory> Current project directory
-virtual _pin_del ay <delayinns> (1)

Note to Table 2-7:

(1) No default.

The following example shows how to use the Tcl command:

| oad_package dat abase_manager

set project test_proj

proj ect _open $proj ect

generate_bottom up_scripts -bottomup_scripts_output_directory test \
-include_virtual _pin_timng on -virtual _pin_delay 1.2

proj ect _cl ose

Command Line Support
To generate scripts at the command prompt, type the following command:
quartus_cdb <project nane> --generate_bottom up_scripts=on <options> ¢

Once again, the options map to the same as those in the GUIL To add an option,
append “- - <option_name>=<val>" to the command line call.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-70 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Scripting Support

The command prompt options are the same as those available in the GUI They are

listed in Table 2-8.

Table 2-8. Options for Generating Bottom-Up Partition Scripts

Option Default
--include_makefiles_wi th_bottom up_scri pts=<onfoffs On
--include_project_creation_in_bottomup_scri pts=<onfoff> On
--include_virtual _pins_in_bottomup_scri pts=<onfof> On
--include_virtual _pin_timng_in_bottomup_scripts=<onfofs On
--bottom up_scripts_virtual _pin_del ay=<delay in ns> (1)
--include_virtual _pin_l ocations_in_bottom up_scri pt s=<onfoff> On
--include_l ogi cl ock_regi ons_i n_bottom up_scri pt s=<on|oft- On
--include_all _l ogi cl ock_regions_i n_bottom up_scri pt s=<on|off> On
--include_gl obal _signal _pronotion_in_bottom up_scri pt s=<on|off> Off
--include_pin_|locations_in_bottom up_scri pts=<on|off> On
--include_timng_assignments_in_bottom up_scri pts=<on|of On
--include_design_partitions_in_bottomup_scripts=<on|off On
--renove_exi sting_regi ons_in_bottom up_scri pt s=<on|of On
- - di sabl e_aut o_gl obal _promoti on_i n_bottom up_scri pt s=<on|off> Off
--bottom up_scri pts_out put _direct ory=<output directory> Current project
directory

Note to Table 2-8:
(1) No default. You must provide this option if you are including virtual pin timing.

Exporting a Partition to be Used in a Top-Level Project

Use the quar t us_cdb executable to export a file for a bottom-up incremental

compilation flow with the following command:

quartus_cdb --1 NCREMENTAL_COWPI LATI ON_EXPORT=<fi | e> \

[--increnental _conpil ation_export_netlist_type=<POST_SYNTH

POST_FI T>]\

[--incremental _conpilation_export_partition_name=<partition name>] \

[--increnmental _conpil ati on_export_routing=<on| of f >]

The <file> argument is the file path to the exported file. The <partition name> is the
name of the partition, not its hierarchical path. If you do not specify the options, the
executable uses any settings in the .qsf file, or it uses default values. The default
partition is the top-level partition in the project, the default netlist type is post-fit, and
the default for routing is on (for all device families that support exported routing).

The command reads the assignment

| NCREMENTAL _COVPI LATI ON_EXPORT_NETLI ST_TYPE to determine which netlist

type to export; the default is post-fit.

You can also use the flow | NCREMENTAL__COVPI LATI ON_EXPORT in the

execut e_f | owTcl command contained in the f | owIcl package.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-1
Scripting Support

Use the following commands to export a .qxp file for a given partition, choose the
netlist type, and specify whether to export routing;:

| oad_package fl ow

set _gl obal _assi gnment —name | NCREMENTAL_COVPI LATI ON_EXPORT_FI LE \

<fil enane>

set _gl obal _assi gnment —nane

| NCREMENTAL_COVPI LATI ON_EXPORT_NETLI ST_TYPE \

<POST_FI T| POST_SYNTH>

set _gl obal _assi gnment -nane \

| NCREMENTAL_COVPI LATI ON_EXPORT_PARTI TI ON_NAME <partition name>

set _gl obal _assi gnment -nanme | NCREMENTAL_COWPI LATI ON_EXPORT_ROUTI NG \
<on| of f >

execut e_f | ow —I NCREVMENTAL_COWPI LATI ON_EXPORT

The default partition is the top-level partition in the project, the default netlist type is
post-fit, and the default for routing is on (for all device families that support exported

routing).

To turn on the option to always perform exportation following compilation, use the
following Tcl command:

set gl obal _assi gnment - name AUTO_EXPORT_| NCREMENTAL_COWPI LATI ON ON

Importing a Lower-Level Partition into the Top-Level Project

Use the quar t us_cdb executable to import a lower-level partition with the following
command:

quartus_cdb -- | NCREMENTAL_COWPI LATI ON_| MPORT +

You can also use the flow called | NCREMENTAL_COWPI LATI ON_| MPORT in the
execut e_f | owTcl command contained in the f | owTcl package.

The following example script shows how to import a partition using a Tcl script:

| oad_package fl ow
commands to set the inport-related assignnments for each partition
execut e_fl ow --1 NCREMENTAL_COWPI LATI ON_| MPORT

Specify the location for the imported file with the PARTI TI ON_| MPORT_FI LE
assignment. Note that the file specified by this assignment is read only during
importation. For example, the project is completely independent from any files from
the lower-level projects after importing. In the command-line and Tcl flow, any
partition that has this assignment set to a non-empty value is imported.

The following assignments specify how the partition should be imported:

PARTI TI ON_I MPORT_PROMOTE_ASSI GNVENTS = <on|of f >

PARTI TI ON_| MPORT_NEW ASSI GNVENTS = <on|of f >

PARTI TI ON_| MPORT_EXI STI NG_ASSI GNMENTS = \
replace_conflicting | skip_conflicting

PARTI TI ON_| MPORT_EXI STI NG LOd CLOCK_REG ONS = \
replace_conflicting | update_conflicting | skip_conflicting

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-72

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Makefiles

For an example of how to use incremental compilation with a makef i | e as part of
the bottom-up design flow, refer to the read_me.txt file that accompanies the

i ncr _conp example located in the /qdesigns/incr_comp_makefile subdirectory.
When using a bottom-up incremental compilation flow, the Generate Bottom-Up
Design Partition Scripts feature can write makefiles that automatically export
lower-level design partitions and import them into the top-level project whenever
design files change.

Recommended Design Flows and Compilation Application Examples—Scripting and
Command-Line Operation

This section provides scripting examples that cover some of the topics discussed in
the main section of the chapter.

The script shown in Example 2-1 opens a project called AB_pr oj ect, sets up two
partitions, entities A and B, for the first time, and performs an initial complete
compilation.

Example 2-1. AB_project

set project AB project

package require ::quartus::flow
proj ect _open $proj ect

Ensure that increnental conpilation is turned on
set _gl obal _assi gnment -nanme | NCREMENTAL_COWPI LATI ON \
FULL_| NCREMENTAL_COWPI LATI ON

Set up the partitions

set _i nstance_assi gnnent -nane PARTI Tl ON_H ERARCHY \
incremental _db/A inst -to A —section_id "Partition_A"

set _instance_assi gnnent -nane PARTI Tl ON_H ERARCHY \
incremental _db/B_inst -to B —section_id "Partition_B"

Set the netlist types to post-fit for subsequent

conpilations (all partitions are conpiled during the

initial conpilation since there are no post-fit

netlists)

set _gl obal _assi gnnment —nane PARTI TI ON_NETLI ST_TYPE \
PCST FIT —section_id "Partition_ A"

set _gl obal _assi gnment —nane PARTI TI ON_NETLI ST_TYPE \
POST_FIT —section_id "Partition_B"

Run initial conpilation:
export_assi gnnents
execute_flow -full _conpile

proj ect _cl ose

Reducing Compilation Time When Changing a Source File for One Partition—
Command-Line Example

Example background: You have run the initial compilation shown in the example
script in the previous section. You have modified the HDL source file for partition A
and want to recompile it.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-73

Conclusion
Run the standard flow compilation command in your Tcl script:
execute_flow -full _conpile
Or, type the following command at a system command prompt:
quartus_sh --fl ow conpile AB project+
Assuming the source files for partition B do not depend on A, only A is recompiled.
The placement of B and its timing performance is preserved, which also saves
significant compilation time.
Optimizing the Placement for a Timing-Critical Partition
Example background: You have run the initial compilation shown in the example
script under “Recommended Design Flows and Compilation Application Examples—
Scripting and Command-Line Operation” on page 2-72. You would like to apply
Fitter optimizations, such as physical synthesis, only to partition A. No changes have
been made to the HDL files.
To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in
Example 2-2:
Example 2-2. AB_project (2)
set project AB_proj ect
package require ::quartus::flow
proj ect _open $proj ect
Turn on Physical Synthesis Optim zation
set _gl obal _assi gnment -nane \
PHYSI CAL_SYNTHESI S_REG STER _RETI M NG ON
For A, set the netlist type to post-synthesis
set _gl obal _assi gnment —nanme PARTI TI ON_NETLI ST_TYPE POST_SYNTH \
—section_id "Partition_A"
For B, set the netlist type to post-fit
set _gl obal _assi gnment —name PARTI TI ON_NETLI ST_TYPE POST_FI T \
—section_id "Partition_B"
Run incremental conpilation:
export _assi gnnents
execute_flow -full_conpile
proj ect _cl ose

Conclusion

With the Quartus Il incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-74

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Referenced Documents

Referenced Documents

This chapter references the following documents:

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus Il Handbook

Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus 11 Handbook

In-System Debugging Using External Logic Analyzers chapter in volume 3 of the
Quartus 11 Handbook

Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook
Quartus 11 Settings File Reference Manual

Quick Design Debugging Using the SignalProbe chapter in volume 3 of the Quartus I1
Handbook

Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History

Table 2-9 shows the revision history for this chapter.

Tahle 2-9. Document Revision History (Part 1 of 3)

Date and Document
Version

Changes Made Summary of Changes

October 2009
v9.1

Redefined the bottom-up design flow as team-based and reorganized | Updated for Quartus Il
previous design flow examples to include steps on how to pass top- | software version 9.1.
level design information to lower-level designers.

Moved SDC Constraints from Lower-Level Partitions section to the
Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus I/
Handbook.

Reorganized the “Recommended Design Flows and Compilation
Application Examples” on page 2—46 section.

Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009
v9.0.0

Split up Netlist Types table Updated for Quartus I

Moved “Team-Based Incremental Compilation Summary” and software version 9.0.
“Team-Based Incremental Compilation Summary” into the
“Exporting and Importing Partitions” section.

Added new section “Preparing a Design to Import Partitions” on
page 2-31

Removed “Exporting a Lower-Level Partition that Uses a JTAG
Feature” restriction

Other edits throughout chapter

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-75
Document Revision History

Table 2-9. Document Revision History (Part 2 of 3)

Date and Document

Version Changes Made Summary of Changes
November 2008 m Added new section “Importing SDC Constraints from Lower-Level Updated for Quartus I
v8.1.0 Partitions” on page 2—-44 software version 8.1.

m Removed the Incremental Synthesis Only option

m Removed section “OpenCore Plus Feature for MegaCore Functions in
Bottom-Up Flows”

m Removed section “Compilation Time with Physical Synthesis
Optimizations”

m Added information about using a .qxp file as a source design file
without importing

m Reorganized several sections
m Updated Figure 2-10

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

2-76 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History

Table 2-9. Document Revision History (Part 3 of 3)

Date and Document

Version Changes Made Summary of Changes
May 2008 m Added several references to the Best Practices for Incremental Updated for Quartus I
v8.0.0 Compilation Partitions and Floorplan Assignments chapter software version 8.0.

m Simplified “Choosing a Quartus 11 Compilation Flow” section

m Clarified material in “Quartus Il software versions before version 8.1
included an “incremental synthesis only” option that did not preserve
placement results. This option has been removed beginning with
version 8.1. You can use a post-synthesis netlist to preserve
synthesis results with full incremental compilation.” section, added
information about “mixed” design flows, and added a note about
HardCopy ASIC flows

m Removed “When Design is Resynthesized” and “When Design is
Refit” from Table 2—1.

m Reorganized “Choosing Design Partitions” section
m Added instructions for using the Design Partition Planner

m Added information about design changes to Table 2-2 in “Setting the
Netlist Type for Design Partitions”

m Removed requirement for HDL wrapper file for Empty partitions that
are Imported

m Added details to “What Changes Trigger a Partition’s Automatic
Resynthesis?” section

m Added “What LogicLock Changes Trigger Refitting?” section

m Removed existing section “Guidelines for Creating Good Design
Partitions and LogicLock Regions” because it is covered in the Best
Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter and moved some of the material to other
sections of the document

m Renamed and reorganized Application Examples

m Removed example Placing All but One Critical Partition in a Multiple-
Partition Design in a Top-Down Compilation Flow and combined it
with previous example

= Added recommendation to use a version-compatible database when
archiving

m Clarified HardCopy ASIC restrictions for bottom-up flows
m Clarified export and import of SDC constraints in bottom-up flows

m Added “Optimizing the Placement for a Timing-Critical Partition”
section

m Added “Using an Exported Partition to Send a Design without
Including Source Files” section

«o For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QA | |:| =)y 3. Quartus Il Design Flow for
= ® MAX+PLUS Il Users

Q1151002-9.1.0
This chapter describes how to convert MAX+PLUS® II designs to Quartus II projects,
as well as the similarities and differences between the MAX+PLUS II and Quartus II
design flows. This discussion includes supported device families, GUI comparisons,
and the advantages of the Quartus II software.
Introduction

The feature-rich Quartus®Il software helps you shorten your design cycles and reduce
time-to-market. With support for MAX® device families, as well as all of Altera’s
newest devices, the Quartus II software is the most widely accepted Altera® design
software tool today.

=
il

The Quartus®Il software versions 9.0 or earlier also support FLEX®and ACEX® device
families.

Chapter Overview
This chapter covers the following topics:
m “MAX+PLUS II Support” on page 3-1
m “Typical Design Flow” on page 3-2
m “Device Support” on page 3-2
m “Quartus II GUI Overview” on page 3-3
“Setting Up MAX+PLUS II Look and Feel in the Quartus II Software” on page 3—4

m “Compiler Tool” on page 3-6
m “MAX+PLUS II Design Conversion” on page 3-9
m “Quartus II Design Flow” on page 3-12

MAX+PLUS Il Support

The Quartus II software retains a MAX+PLUS II GUI to help users transition to the
Quartus II software design environment.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-2 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Typical Design Flow

Typical Design Flow

Figure 3—-1 shows a common design flow with the Quartus II software.

Figure 3-1. Quartus Il Software Design Flow

(Design Files)

\4

Analysis and Elaboration

\ 4
Functional Integrated Analysis and Synthesis«¢ Constraints |
Simulation and Settings
Functional
Netlist
\ 4
Gate-Level ;
s Fitter < Constraints | g
Timing - and Settings |
Simulation
Post Place-and-Route
Simulation Files
(.vol.vho, .sdo) Timing
and Area No
Requirements
Satisfied?
Configuration/
Programming
Files (.sof/.pof)
(Program/Configure Device)

The Quartus II software supports many of the devices supported in the MAX+PLUS II
software, but it does not support obsolete devices or packages. The devices supported
by these two software packages are shown in Table 3-1.

Table 3—-1. Device Support Comparison (Part 1 of 2)

Device Supported Quartus Il Software MAX+PLUS Il Software
Arria® GX
Stratix® Series
Cyclone® Series
HardCopy® Series
MAXe ||
MAX 3000A
MAX 7000S/AE/B
MAX 7000E —
MAX 9000 —

NEAYAR AR
|

ST S

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-3
Quartus Il GUI Overview

Table 3—-1. Device Support Comparison (Part 2 of 2)

Device Supported Quartus Il Software MAX+PLUS Il Software
FLEX 8000 — v
Classic™ — v

Note to Table 3-1:
(1) Some packages are supported in the Quartus Il software 9.0 and earlier.

Quartus Il GUI Overview

The Quartus II software provides utility windows to assist in the development of your
designs, as described in the following paragraphs.

Task Window

The Task window feature in the Quartus II software provides a guided design
compilation flow. This type of feature is not available in the MAX+PLUS II software.

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the MAX+PLUS I
Hierarchy Display and provides additional information such as logic cell, register,
and memory bit resource utilization. The Files and Design Units tabs of the Project
Navigator window provide a list of project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the MAX+PLUS I
Search Node Database dialog box and allows you to find and use any node name
stored in the project database.

Tcl Console

The Tcl Console window allows access to the Quartus II Tcl shell from within the GUI.
You can use the Tcl Console window to enter Tcl commands and source Tcl scripts to
make assignments, perform customized timing analysis, view information about
devices, or fully automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the MAX+PLUS II
software.

«® For more information about using Tcl with the Quartus II software, refer to the Tcl
Scripting chapter in volume 2 of the Quartus II Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS 1I software, providing detailed information, warnings, and error
messages.You also can use it to locate a node from a message to various windows in
the Quartus II software.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Setting Up MAX+PLUS Il Look and Feel in the Quartus Il Software

Status

The Status window displays information similar to the MAX+PLUS II Compiler
window. Progress and elapsed time are shown for each stage of the compilation.

Change Manager

Figure 3-2. Quartus Il

The Change Manager provides detailed tracking information about all design changes
made with the Chip Planner. This feature is not available in the MAX+PLUS II
software.

For more information about the Engineering Change Manager and the Chip Planner,
refer to the Engineering Change Management with the Chip Planner chapter in volume 2

of the Quartus Il Handbook.

Figure 3-2 shows the typical Quartus II software GUL

Look and Feel

¥, Quartus Il - C:/altera/chiptrip/chiptrip - chiptrip

Fle Edt View Project Assignments Processing Tools Window Help

DEH & "'5@.‘-"}? chiptrip v_:§{=4@@®.fz}.l LA @@&
Project Navigator 22l [= # chiptrip.bdf | € Compistion Repot - Flow Sumny |
Eriiy | || %

=) ;}; chiptip
BB auto_max:1

----- 8 spesd_ch2
853 tims_ont:4

558 tick_cnt:10

éor

< |

Cyclone Il: EP2C2F256CE

Iél----?n"f Beount:counter
2 flcourt:sub

VNl & chiptrip.bdf

- at -altera - -

- get tick:

o
(]
=
-
7l
=

” iyHierarchy [B Files | @ Design Units

Status

9 A

Module

Full Compiation
 Andlysis & Synthesss|
Fatition Merge |
Fitier
i~ Assembler
I~ Timing Analyzsr
-~ Design Assistart

get ticket1 - -
get ticket2 - - - -

uartus Il
Infermation

20O =as

@ Documentation

|

JQuartus II Tcl Console
=

<

&) Info: Quartus | Full Compilation was successful. 0 emors,

f —write_settings_files=off chiptrip < chiptip
/modelsim/™ for EDA simulatior
v

i

ages

|
System i Processing /i Extralnio & Info A Waming B Crtical\waming j Enor J,_Suppressed

& [Messsge: Dof 287
=

For Help, press F1

Tel Consale

| [K

NUM |

[GeE | de I

Setting Up MAX+PLUS Il Look and Feel in the Quartus Il Software

5

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

You can choose the MAX+PLUS II look and feel by selecting MAX+PLUS II in the
Look & Feel box of the General tab of the Customize dialog box on the Tools menu.

Any changes to the look and feel do not become effective until you restart the
Quartus II software.

© November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-5
MAX+PLUS Il Look and Feel

By default, when you select the MAX+PLUS II look and feel, the MAX+PLUS II quick
menu appears on the left side of the menu bar. You can turn the Quartus II and
MAX+PLUS II quick menus on or off. You also can change the preferred positions of
the two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box appears.
2. Click the General tab.

3. Under Quick menus, select your preferred options.

MAX+PLUS Il Look and Feel

The MAX+PLUS II look and feel in the Quartus II software closely resembles the
MAX+PLUS II software. Figure 3-3 and Figure 3—4 compare the MAX+PLUS I
software appearance with the Quartus Il MAX+PLUS II look and feel.

Figure 3-3. MAX+PLUS Il Software GUI

MAX+plus Il - c:\altera\chiptrip\chiptrip
MAX+plus I File Processing Interfaces Assign Options Window Help

jn] SR BRE DB

bbd Ebd bbd el Gbd
rpt log hst sof Fit
[grl Bbd Bbd bbd
SYH acf pin jan

at_altera

get ticket1

B e 'altera’ in state machine '|auto_max:1|street_map' is never exited
Info: Design Doctor has given the project a clean bill of health based on the EPLD Rules set

4 Message p[0of2 ™ Locate in Floorplan Editor Help on Message
4 lgeate ¥|oof0 Lotate A

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-6 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Compiler Tool

Figure 3-4. Quartus Il Software with MAX+PLUS II Look and Feel

4, Quartus Il - C:/altera/chiptrip/chiptrip - chiptrip

Fle Edit View Project Assignments Processng Tools Window Help

D@ |%] % B o o |2 [dxe@e® o ror b & 8|2
T chiptip.be | & Compiler Tool]

Project Havigator

G
& Cyclone II: EP2C8F256C6

By speed on2

i s - at altera
- E— ‘ s | e ey e get_ticket1

~ fisHierarchy [B Fils | &8 Desion Units

—Analysis & Synthesis — [~ Partiion Mergs—— | Fitter [Assambler ~Timing Analyzer— — Design Assistant — ~EDA Netist witer— | -
00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

wlolmlal| | wle] e | molale || mloalel| elvialel| Nelalel | grialel |

Full Compilation
00000

Epepot | | -

Info: Smart i i is not required
Info: Smart fon g8 it Is not required
not required
s min, uartus Il
System), Processing /i Extralni o b, Waring i, Citialwarig , Enor i, Guppressed Information

(=== 2| ®|[Ge [Documentation)

For Help, press F1 [a»E 7 [Idle UM

&2 Info: Quartus |1 Full Compil s successful. [emor

The standard MAX+PLUS II toolbar is also available in the Quartus II software with
the MAX+PLUS II look and feel in the Quartus II software (Figure 3-5).

Figure 3-5. Standard MAX+PLUS Il Toolbar
N LORBEEEL HaAE HER

D=EeE&

Compiler Tool

The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style interface. You
can edit the settings and view result files for the modules described in the following
paragraphs.

To start a compilation using the Compiler Tool, click Compiler Tool from either the
MAX+PLUS II menu or the Tools menu and click Start in the Compiler Tool. The
Compiler Tool, shown in Figure 3-6, displays all modules, including optional
modules such as Partition Merge, Assembler, EDA Netlist Writer, and the Design
Assistant.
“®. e Forinformation about using the Quartus II software modules at the command line,
refer to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-7
Compiler Tool

Figure 3-6. Running a Full Compilation with the Compiler Tool

i» Compiler Tool

Analysiz & Sunthesis Partition Merge Fitter Azzembler T Timing Analyzer Design Assistant EDA Netlist Writer
00:00:34 00 00:06 00:00:42 00:00:03 00:00:05 00:00:04 00:00:05
vlslelal | e o | ElAR® | BB | »[rielel| a8l | grielel

Full Compilation
00:01:45

P Start T @ Report

Analysis and Synthesis

The Quartus II Analysis and Synthesis module analyzes your design, builds the
design database, optimizes the design for the targeted architecture, and maps the
technology to the design logic.

In MAX+PLUS II software, these functions are performed by the Compiler Netlist
Extractor, Database Builder, and Logic Synthesizer. There is no module in the
Quartus II software similar to the MAX+PLUS II Partitioner module.

Incremental Compilation and Partition Merge

The optional Quartus II Partition Merge module merges design partitions Jfor
incremental compilation to create a flattened netlist for further stages of the Quartus II
compilation flow. The Partition Merge module is not similar to the MAX+PLUS 11
Partitioner.

«o For more information, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Fitter
The Quartus II Fitter module is used to fit your design into the available resources of
the targeted device. The Fitter places and routes the design. The Fitter module is
similar to the Fitter stage of the MAX+PLUS II software.

Assembler

The Quartus II Assembler module creates a device programming image of your
design so that you can configure your device. You can select from the following types
of programming images:

m Programmer Object File (.pof)

m SRAM Object File (.sof)

m Hexadecimal (Intel-Format) Output File (.hexout)
m Tabular Text File (.ttf)

m Raw Binary File (.rbf)

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

3-8

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Compiler Tool

Timing Analyzer

m Jam™ STAPL Byte Code 2.0 File (.jbc)
m JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off Run
assembler in the Compilation Process Settings page in the Settings dialog box. You
can also turn off the Assembler by right-clicking in the Compiler Tool window. The
Assembler module is similar to the Assembler stage of the MAX+PLUS II software.

The Quartus II Timing Analyzer allows you to analyze more complex clocking
schemes than is possible with the MAX+PLUS II Timing Analyzer. The Quartus II
Timing Analyzer analyzes all clock domains in your design, including paths that cross
clock domains, and also reports both fyaxand slack. Slack is the margin by which the
timing requirement is met or is not met. For more information on the Timing
Analyzer, refer to “Timing Analysis” on page 3-19.

EDA Netlist Writer

Design Assistant

The optional Quartus II EDA Netlist Writer module generates a netlist for simulation
with an EDA simulation tool. The EDA Netlist Writer module is comparable to the
VHDL and Verilog Netlist Writer in the MAX+PLUS II software.

The optional Quartus II Design Assistant module checks the reliability of your design
based on a set of design rules. The Design Assistant analyzes and generates messages
for a design targeting any Altera device and is especially useful for checking the
reliability of a design to be converted to HardCopy series devices. The Design
Assistant is similar to the Design Doctor in the MAX+PLUS II software.

Reducing Compilation Time

In the Quartus II software you can reduce compilation time for your design with
either the incremental compilation flow or parallel processing capabilities. Neither of
these capabilities are available with the MAX+PLUS II software.

You can also reduce compilation time with the Quartus II software as described in the
following section.

Quartus Il Software Smart Compilation

In the Quartus II software, you turn on Use smart compilation on before compiling
your design. a smartrecompilation skips any compilation stages that are not required
and that may use more disk space. This Quartus Il smart compilation option is similar
to the MAX+PLUS II Smart Recompile command. To turn on the Use smart
compilation option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on Use smart compilation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-9
MAX+PLUS Il Design Conversion

Power Analyzer

The Quartus II software provides power analysis tools that the MAX+PLUS software
does not. The PowerPlay suite of power analysis and optimization tools allows you to
estimate device power consumption and heat dissipation from early design concepts
through design implementation. Because the quality of the resulting power
estimation depends on the quality of input data provided, you must provide the most
accurate data possible.

The PowerPlay suite of tools supports most of the new devices introduced in the

Quartus II software.

For more information, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus I1 Handbook.

MAX+PLUS Il Design Conversion

With the Quartus II software, you can open MAX+PLUS II designs and convert
MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design (HDL input,
simulation vectors, assignments, and other relevant files) are associated with a project
file. For more information about creating a new project, refer to “Creating a New
Project” on page 3-12.

Converting an Existing MAX+PLUS Il Design

You can easily convert an existing MAX+PLUS II design for use with the Quartus II
software with the Convert MAX+PLUS II Project command in the Quartus II
software or the Open Project command. You can find these commands on the File
menu.

If you use the Convert MAX+PLUS II Project command, browse to the

MAX+PLUS II Assignments and Configuration File (.acf) or top-level design file
(Figure 3-7) and click Open. The Convert MAX+PLUS II Project command generates
a Quartus II Project File (.qpf) and a Quartus II Settings File (.qsf). The Quartus II
software stores project and design assignments in the .qsf file, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You can open and convert a MAX+PLUS II design with the Open Project command.
In the Open Project dialog box, browse to the Assignments and Configuration File or
the top-level design file. Click Open to display the Convert MAX+PLUS II Project
dialog box.

The Quartus II software can import all MAX+PLUS Il-generated files, but it cannot
save files in the MAX+PLUS II format. You cannot open a Quartus II project in the
MAX+PLUS 1II software, nor can you convert a Quartus II project to a MAX+PLUS II
project.

The Quartus II software does not support the machine alias AHDL feature. To use the
Quartus II software, you must change the AHDL code to avoid use of this feature. The
following error message may occur when you convert a project from the legacy
MAX+PLUS® II software to the Quartus® II software if you use the machine alias
AHDL feature:

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

3-10 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
MAX+PLUS Il Design Conversion

Error: AHDL feature (Machine alias) not currently supported.

erforms the following

. Ec;nvert I\ﬁ%PLUS [l Project Dialog Box

Convert MAX+PLUS Il Project 3

Allows pou to convert existing MAX+PLUS || projects and assignments into a
new Quartusz || project.

Max+PLUS I file name:
|EI:.-"tools.-"maxplu32.-"max2work.-"c:hiptrip.-"chiptrip.ac:f

Quartusz || project name:

(] 8 | Cancel |

m Converts the MAX+PLUS II Assignments and Configuration File into a .qsf file
(equivalent to importing all MAX+PLUS II assignments)

m Creates a .qpf file
m Displays all errors and warnings in the Quartus II message window

The Quartus II software can read MAX+PLUS II generated Graphic Design Files
(.gdf) and Simulation Channel Files (.scf) without converting them. These files are not
modified during a MAX+PLUS II design conversion.

A .gdf created or modified in the Quartus II software cannot be opened in the
MAX+PLUS II software. The Quartus II software can read a .gdf created in the
MAX+PLUS 11 software. However, when you save a .gdf in the Quartus II software
that was generated in the MAX+PLUS Il software, the file is overwritten with the
Quartus II software format.

Converting MAX+PLUS Il Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor) saves files
as Block Design Files (.bdf). You can convert your MAX+PLUS II Graphic Design File
into a Quartus II Block Design File using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
2. In the Save as type list, select Block Diagram/Schematic File (*.bdf).

3. Run the quartus_g2b.exe command line executable located in the \<Quartus II
installation>\bin directory. For example, to convert the chiptrip.gdf file to a Block
Design File, type the following at a command prompt:

quartus_g2b. exe chip_trip.gdf «

Importing MAX+PLUS Il Assignments

You can import MAX+PLUS II assignments into an existing Quartus II project. Open
the project, and on the Assignments menu, click Import Assignments. Browse to the
Assignments and Configuration File (Figure 3-8). You can also import .qsf files and
Entity Setting Files (.esf).

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-1
MAX+PLUS Il Design Conversion

Figure 3-8. Import Assignments Dialog Box

Import Assignments @

Specify the source and categories of assignments to import. Click LogicLock Import File Assignments
to zelect LogicLock Impart File(s).

Categories...
* File name: |EI:.-"tools.-"maxplus2.-"max2w0rk.-"c:hiptrip&.-"c:hiptrip.ac:f
" Use LogicLock Import File Assignments 4

Azzighment source

[Copy existing azzignments inta chiptrip.gsf.bak before importing

Ok | Cancel |

The Quartus II software accepts most MAX+PLUS II assignments. However, some
assignments can be imported incorrectly from the MAX+ PLUS II software into the
Quartus II software due to differences in node naming conventions and the advanced
Quartus Il integrated synthesis algorithms.

The differing node naming conventions in the Quartus I and MAX+PLUS II software
can cause improper mapping when importing your design from MAX+PLUS II
software into the Quartus II software. Improper node names can interfere with the
design logic if you are unaware of these node name differences and do not take
appropriate steps to prevent improper node name mapping. Table 3-2 compares the
differences between the naming conventions used by the Quartus II software and the
MAX+PLUS II software.

Table 3-2. Quartus Il and MAX+PLUS Il Node and Pin Naming Conventions

Feature Quartus Il Format MAX+PLUS Il Format
Node name aut o_max: aut o| q0 | aut o_nax: aut o| q0
Pin name d[0], d[1], d[2] do, di, d2

When you import MAX+PLUS II assignments containing node names that use
numbers, such as si gnal 0 or si gnal 1, the Quartus II software imports the original
assignment and creates an additional copy of the assignment. The additional
assignment has square brackets inserted around the number, resulting in si gnal [0]
or si gnal [1] . The square bracket format is legal for signals that are part of a bus,
but creates illegal signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in a number
and are not part of a bus, you can edit the .qsf file to remove the square brackets from
the node names after importing them.

'~ You can remove obsolete assignments in the Remove Assignments dialog box. Open
this dialog box on the Assignments menu by clicking Remove Assignments.

The Quartus II software might not recognize valid MAX+PLUS II node names, or
might split MAX+PLUS II nodes into two different nodes. As a result, any

assignments made to synthesized nodes are not recognized during compilation.

«® For more information about Quartus II node naming conventions, refer to the
Quartus 11 Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

312

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

Quartus Il Design Flow

The following sections include information to help you get started using the

Quartus II software. They describe the similarities and differences between the
Quartus II software and the MAX+PLUS II software. The following sections highlight
improvements and benefits in the Quartus II software:

“Creating a New Project” on page 3-12
“Design Entry” on page 3-12

“Making Assignments” on page 3-14
“Synthesis” on page 3-17

“Functional Simulation” on page 3-17
“Place and Route” on page 3-18
“Timing Analysis” on page 3-19
“Viewing Chip Resources” on page 3-20
“Timing Simulation” on page 3-21
“Power Estimation” on page 3-22

“Programming” on page 3-23

«o For an overview of the Quartus II software features and design flow, refer to the

Introduction to the Quartus 11 Software manual.

Creating a New Project

The Quartus Il software provides a wizard to help you create new projects. On the File
menu, click New Project Wizard to create a new project. The New Project Wizard
generates the .qpf file and .qsf file for your project.

Design Entry

The Quartus II software supports the following design entry methods:

Altera HDL (AHDL) Text Design File (.tdf)
Block Diagram File (.bdf)

EDIF Netlist File (.edf)

VHDL (.vhd)

Verilog HDL (.v) and System Verilog (.sv)

The Quartus II software has an advanced integrated synthesis engine that fully
supports the Verilog HDL and VHDL languages and provides options to control the
synthesis process.

<o For more information, refer to the Quartus II Integrated Synthesis chapter in volume 1

of the Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-13
Quartus Il Design Flow

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.
2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK.

Il You can create other files from the New dialog box on the File menu.

To analyze a netlist file created by an EDA tool, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Design Entry & Synthesis. The Design Entry &
Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the netlist.

The Symbol Editor allows you to change the positions of the ports in a symbol (refer
to Figure 3-9). You can reduce wire congestion around a symbol by changing the
positions of the ports.

Figure 3-9. Various Port Positions for a Symbol

time cnt

ﬁ%emleﬁ time[7. . O
H 4]

: |nst |

To make changes to a symbol in a Block Design File, right-click a symbol in the Block
Editor and click Properties to display the Symbol Properties dialog box. The Symbol
Properties dialog box allows you to change the instance name, add parameters, and
specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block Editor. Conduits
contain signals for the connected objects (see Figure 3-10). You can determine the
connections between various blocks in the Conduit Properties dialog box by
right-clicking a conduit and clicking Properties.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-14 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

Figure 3-10. Blocks and Pins Connected with Conduits

....................... Col itEps

clk —— 0| Type
: . clk [IMPUT
Sl . reset [INPUT
{rezet o sel[1..0] [INPUT

‘ - newt [IMPUT
et s dl7.0] IWPUT
....................... . [7.0] [QUTPUT
....................... 1 . 1

hvalues

1o | Type
=el[1.0] [INPUT
h[2.0] [ouUTPUT

1

istate_m
10| Type
clk IMPLIT
reset [INFUT
et [INFUT

=el[1.0] [OUTPUT
mext [OUTPUT
first [OUTPUT

Making Assignments

The Quartus II software stores all project and design assignments in a .qsf file, which
is a collection of assignments stored as Tcl commands and organized by the
compilation stage and assignment type. The .qsf file stores all assignments, regardless
of how they are made (except for SDC constraints for the TimeQuest Timing
Analyzer) from the Floorplan Editor, the Pin Planner, the Assignment Editor, with Tcl,
or any other method.

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to allow you to
make, change, and manage a large number of assignments easily. With the
Assignment Editor, you can list all available pin numbers and design pin names for
efficiently creating pin assignments. You also can filter all assignments based on
assignment categories and node names for viewing and creating assignments.

The Assignment Editor is composed of the Category bar, Node Filter bar,
Information bar, Edit bar, and spreadsheet.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-15
Quartus Il Design Flow

To make an assignment, perform the following steps:

1. On the Assignments menu, click Assignment Editor. The Assignment Editor
window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter into the
Node Filter bar. (This step is optional; it excludes all assignments unrelated to the
node name.)

4. Type the required values into the spreadsheet.
5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the cell and
read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the Edit box.

Other advantages of the Assignment Editor include clipboard support in the
spreadsheet and automatic font coloring to identify the status of assignments.

<o For more information, refer to the Assignment Editor chapter in volume 2 of the
Quartus I Handbook.

Timing Assignments

The Quartus II timing analyzers provide a method of analyzing, debugging, and
validating the performance of a design. Timing analysis measures the delay along the
various timing paths and verifies the performance and operation of the design. You
can specify constraints and assignments that help the design meet timing
requirements. If you specify constraints or assignments, the Fitter optimizes the
placement of logic in the device to meet those constraints.

The Quartus II software provides two independent timing analyzers: the Classic
Timing Analyzer and the TimeQuest Timing Analyzer. You can choose between these
two timing analysis tools prior to running a compilation or timing analysis. The
timing analysis tool you choose determines the available user interface, constraint
entry, reporting, and debugging options. The TimeQuest Timing Analyzer is more
powerful than the Classic Timing Analyzer, conforms to the latest industry standards,
and supports newer Altera device families.

Classic Timing Analyzer

You can use the timing wizard to help set your timing requirements. On the
Assignments menu, click Timing Wizard to create global clock and timing settings.
The settings include fy.x, setup times, hold times, clock to output delay times, and
individual absolute or derived clocks.

You can also set timing settings manually by performing the following steps:
1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Timing Requirements & Options. The Timing
Requirements & Options page appears.

3. Set your timing settings.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

3-16

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

—
-
=
[\g’f

You can make more complex timing assignments with the Quartus II software than
allowed by the MAX+PLUS II software, including multicycle and point-to-point
assignments using wildcards and time groups.

A time group is a collection of design nodes grouped together and represented as a
single unit for the purpose of making timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register paths in the
design where you expect a delayed latch edge. This assignment enables accurate
timing analysis of your design.

Point-to-point timing assignments allow you to specify the required delay between
two pins, two registers, or a pin and a register. This assignment helps you optimize
and verify your design timing requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a large number
of nodes with just a few assignments. For example, Figure 3-11 shows a 4 ns tq
requirement assignment to all paths from any node to the “d” bus in the Assignment
Editor.

Figure 3—-11. Single tgy Timing Assignment Applied to All Nodes of a Bus

€ Assignment Editor EI[EW__Q

|

H g Category: |,'.\|| j| @ Al Pin| (b T|ming| # Logic Opﬁons|

Edit: | [= |
(5] :
| From To Assignment Mame Value Enabled
1 & d[7] tsu Requirement 4ns ‘fes
Al 2 <<new>> <<new>> <<new>>

TimeQuest Timing Analyzer

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in the design using industry standard
constraint, analysis, and reporting methodologies. You can use the TimeQuest Timing
Analyzer's graphical user interface (GUI) or command-line interface to constrain, run,
and view results for all timing paths in the design.

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and external
signal arrival and required times. You can specify all timing constraints in the
Synopsys Design Constraints (SDC) format using the GUI, the Quartus II Text Editor,
or the command-line interface. The Quartus II Fitter optimizes the placement of logic
in the device to meet your specified constraints.

Early in the design process, before final device fitting is completed, you can check
preliminary timing data by running an early timing estimate with the Start Early
Timing Estimate command. When your design is complete, you can run a full timing
analysis following compilation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

design.chm::/ted/ted_view_edit.htm
javascript:BSSCPopup('../tan/tan_com_start_early.htm',400,300);
sta_pro_run_analysis.htm

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-17

Quartus Il Design Flow

Synthesis

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
console. If the TimeQuest Timing Analyzer reports any timing violations, you can
customize the reports to view precise timing information about specific paths. You
can then determine whether the design requires additional timing constraints or
exceptions, or if the design requires logic changes or place-and-route constraints.

For more information, refer to the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

The Quartus II advanced integrated synthesis software fully supports the industry
standard hardware description languages and provides a complete, easy-to-use,
stand-alone solution for today’s designs.

You can specify synthesis options in the Analysis & Synthesis Settings page of the
Settings dialog box. Similar to MAX+PLUS II synthesis options, you select one of
these optimization techniques: Speed, Area, or Balanced.

To achieve higher design performance, you can turn on synthesis netlist optimizations
that are available when targeting certain devices. You can unmap a netlist created by
an EDA tool and remap the components in the netlist back to Altera primitives by
turning on Perform WYSIWYG primitive resynthesis.

For more information, refer to the Quartus II Integrated Synthesis chapter in volume 1
of the Quartus 11 Handbook.

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool performs both
functional and timing simulations. The Quartus II Simulator Tool does not, however,
support the latest device families.

Altera recommends that you perform a functional and or a timing simulation of a
Quartus II-generated design, or both, with the Mentor Graphics software that was
provided with the Quartus II software, or the PE or SE software from Mentor
Graphics . The software is a dual-language simulator; you can simulate designs
containing either Verilog HDL, VHDL, or both. You can use designs in which a
Verilog HDL module instantiates VHDL entities or a VHDL module instantiates
Verilog HDL entities.

To open the Simulator Tool, on the MAX+PLUS II menu, click Simulator, or on the
Tools menu, click Simulator Tool. Before you perform a functional simulation, an
internal functional simulation netlist is required. Click Generate Functional
Simulation Netlist in the Simulator Tool dialog box, or on the Processing menu, click
Generate Functional Simulation Netlist.

Generating a functional simulation netlist creates a separate database that improves
the performance of the simulation significantly.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
javascript:BSSCPopup('sta_com_report.htm',400,300);
javascript:BSSCPopup('sta_com_console.htm',400,300);
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

3-18 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

You can view and modify the simulator options on the Simulator Settings page of the
Settings dialog box or in the Simulator Tool dialog box. You can set the simulation
period and turn on or off the Check outputs option. You can choose to display the
simulation outputs in the simulation report or in the Vector Waveform File (.vwf). To
display the simulation results in the simulation input .vfw, which is the MAX+PLUS
II behavior, turn on Overwrite simulation input file with simulation results.

When using either the MAX+PLUS II or Quartus II software, you may need to
compile additional behavioral models to perform a simulation with an EDA
simulation tool. In the Quartus II software, behavioral models for library of
parameterized modules (LPM) functions and Altera-specific megafunctions are
available in the altera_mf and 220model library files, respectively. The 220model and
altera_mf files can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File (.bdf) are not compatible
with EDA simulation tools. To perform a register transfer level (RTL) functional
simulation of a Block Design File using an EDA tool, convert your schematic designs
to a VHDL or Verilog HDL design file. Open the schematic design file and on the File
menu, point to Create/Update and then click Create HDL Design File for Current
File to create an HDL design file that corresponds to your Block Design File.

Il =~ Altera offers a ModelSim starter edition.

You can export a .vwf file or Simulator Channel File (.scf) as a Verilog HDL or VHDL
testbench file for simulation with an EDA tool. Open your Vector Waveform File or
.scf file and on the File menu, click Export. Select Verilog or VHDL Test Bench File
(*.vt) from the Save as type list. Turn on Add self-checking code to file to add
additional self-checking code to the testbench.

<o For more information, refer to the Quartus Il Simulator and the Mentor Graphics
ModelSim Support chapters in volume 3 of the Quartus II Handbook.

Place and Route

The Quartus II Fitter performs place-and-route to fit your design into the targeted
device. You can control the Fitter behavior with options in the Fitter Settings page of
the Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such as the Stratix
series, sometimes require significant fitter effort to achieve an optimal fit. The
Quartus II software offers several options to reduce the time required to fit a design.
You can control the effort the Quartus II Fitter expends to achieve your timing
requirements with options. If minimizing compilation time is more important than
achieving specific timing results, you can turn off the optimization options.

You can decrease the processing time and effort the Fitter expends to fit your design
when you select options in the Fitter Settings page of the Settings dialog box on the
Assignments menu. Altera recommends the Auto setting, which is available for select
device families

To further reduce compilation times, turn on Limit to one fitting attempt in the Fitter
Settings page in the Settings dialog box on the Assignments menu.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-19
Quartus Il Design Flow

If your design is very close to meeting your timing requirements, you can control the
seed number used in the fitting algorithm by changing the value in the Seed box of
the Fitter Settings page of the Settings dialog box on the Assignments menu. The
default seed value is 1. You can specify any non-negative integer value. Changing the
value of the seed only repositions the starting location of the Fitter, and does not affect
compilation time or the Fitter effort level. However, if your design is difficult to fit
optimally or takes a long time to fit, sometimes you can improve results or processing
time by changing the seed value.

«o For more information, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook. This chapter provides Altera recommendations for selecting
Fitter options and further instructions for reducing compilation time.

Timing Analysis

Timing analysis measures the delay along the various timing paths and verifies the
performance and operation of the design. You can specify constraints and
assignments that help the design meet timing requirements. If you specify constraints
or assignments, the Fitter optimizes the placement of logic in the device to meet those
constraints.

The TimeQuest Timing Analyzer uses the industry-standard Synopsys Design
Constraint (SDC) methodology for constraining designs and reporting results.

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in the design with industry standard
constraint, analysis, and reporting methodologies. You can use the TimeQuest Timing
Analyzer’s graphical user interface (GUI) or command-line interface to constrain, run,
and view results for all timing paths in the design.

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and external
signal arrival and required times. You can specify all timing constraints in the
Synopsys Design Constraints (SDC) format using the GUI, the Quartus II Text Editor,
or the command-line interface. The Quartus II Fitter optimizes the placement of logic
in the device to meet your specified constraints.

Early in the design process, before final device fitting is completed, you can check
preliminary timing data by running an early timing estimate with the Start Early
Timing Estimate command. When your design is complete, you can run a full timing
analysis following compilation.

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
console. If the TimeQuest Timing Analyzer reports any timing violations, you can
customize the reports to view precise timing information about specific paths. You
can then determine whether the design requires additional timing constraints or
exceptions, or if the design requires logic changes or place-and-route constraints.

<o For more information, refer to the Quartus Il TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
design.chm::/ted/ted_view_edit.htm
javascript:BSSCPopup('../tan/tan_com_start_early.htm',400,300);
sta_pro_run_analysis.htm
javascript:BSSCPopup('sta_com_report.htm',400,300);
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
javascript:BSSCPopup('sta_com_console.htm',400,300);

3-20

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

Viewing Chip Resources

1=

The Quartus II software provides two tools for viewing chip resources, Chip Planner
and Timing Closure Floorplan, as decribed in the following sections:

Chip Planner

The Chip Planner provides a visual display of chip resources. It can show logic
placement, LogicLock regions, relative resource usage, detailed routing information,
fan-ins and fan-outs, paths between registers, and timing delay estimates for paths.
You can view critical path information, physical timing estimates, routing congestion,
and clock regions. The Chip Planner supports the most recent device families
introduced in the Quartus II software. Also, the Chip Planner has more features than
the Timing Closure Floorplan found in the MAX+PLUS II software.

The Chip Planner can perform assignment changes, such as creating and deleting
resource assignments, as well as post-compilation changes, such as creating, moving,
and deleting logic cells and I/O atoms. You can use the Chip Planner in conjunction
with the Resource Property Editor to change connections between resources and
make post-compilation changes to the properties of logic cells, I/O elements, and
PLLs.

For more information, refer to the Analyzing and Optimizing the Design Floorplan
chapter and the Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II Floorplan
Editor but has many improvements to help you more effectively view and debug your
design. With its ability to display logic cell usage, routing congestion, critical paths,
and LogicLock™ regions, the Timing Closure Floorplan also makes the task of
improving your design performance much easier.

The Timing Closure Floorplan supports the MAX 3000 and MAX 7000 device families.

To view the Timing Closure Floorplan, on the MAX+PLUS II menu, click Floorplan
Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views equivalent to the
MAX+PLUS II logic array block (LAB) views. In addition to these views, available
from the View menu, you can also select from the Interior MegalLABs (where
applicable), Interior LABs, and Field views.

The Pin Planner is equivalent to the MAX+PLUS II Device view. The Pin Planner can
be launched from the View menu or on the Assignments menu by clicking Pin

The Interior LABs view hides cell details for logic cells, Adaptive Logic Modules
(ALM), and macrocells, and shows LAB information (see Figure 3-12). You can
display the number of cells used in each LAB on the View menu by clicking Show
Usage Numbers.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users 3-21

Quartus Il Design Flow

Figure 3—-12. Interior LAB View of the Timing Closure Floorplan

B B B 8 B B B B B @
I I I I)
The Field view is a color-coded, high-level view of your device resources that hides

both cell and LAB details. In the Field view, you can see critical paths and routing
congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in your
floorplan. You can turn on this feature on the View menu by clicking Show Critical
Paths. You can control the number of critical paths shown by modifying the settings
in the Critical Paths Settings dialog box on the View menu.

The View Congestion feature displays routing congestion by coloring and shading
logic resources. Darker shading shows greater resource utilization. This feature assists
in identifying locations where there is a lack of routing resources.

To show lower-level details in any view, right-click on a resource and click Show
Details.

Timing Simulation

=i
[
\

Timing simulation is an important part of the verification process. The Quartus II
software supports native timing simulation and exports simulation netlists to
third-party software for design verification.

Altera recommends that you use ModelSim-Altera, rather than the Quartus II
Simulator tool. The Quartus II Simulator tool should be used for designs supported
by MAX+PLUS II, but not for designs targeting the lastest Altera device families.

Quartus Il Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that uses the
Compiler database to simulate the logical and timing performance of your design.
When performing timing simulation, the Simulator uses place-and-route timing
information.

Altera recommends that you use ModelSim-Altera, rather than the Quartus II
Simulator tool. The Quartus II Simulator tool should be used for designs supported
by MAX+PLUS II, but not for designs targeting the lastest Altera device families.

You can use Vector Table Output Files (.tbl), Vector Waveform Files (.vwf), Vector Files
(.vec), or an existing .scf file as the vector stimuli for your simulation.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-22 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Design Flow

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation and the type of
checks performed by the Simulator. When the MAX+PLUS II look and feel is selected,
the Overwrite simulation input file with simulation results option is on by default.
If you turn it off, the simulation results are written to the report file. To view the report
file, click Report in the Simulator Tool window.

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA simulation
software. Performing timing simulation with other EDA simulation software requires
a Quartus II generated timing netlist file in the form of a Verilog Output File (.vo) or
VHDL Output File (.vho), a Standard Delay Format Output File (.sdo), and a
device-specific atom file (or files), shown in Table 3-3.

Tahle 3-3. Altera Timing Simulation Library Files

Verilog VHDL
<device_family>_atoms.v <device_family>_atoms_87.vhd
<device_family>_atoms.vhd
<device_family>_components.vhd

To specify your EDA simulation tool, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page appears.
3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by running a full
compilation or on the Processing menu, by pointing to Start and clicking Start EDA
Netlist Writer. The generated netlist and SDF file are placed into the \<project
directory>\simulation\<EDA simulator tool> directory. The device-specific atom files
are located in the \<Quartus II Install>\eda\sim_lib directory.

Power Estimation

To develop an appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system, you need an accurate estimate of the power
that your design consumes. You can estimate power by using the PowerPlay Early
Power Estimation spreadsheet available on the Altera website at www.altera.com, or
with the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power Estimation
spreadsheet by entering device resource and performance information. The Quartus II
PowerPlay Analyzer tool performs vector-based power analysis by reading either a
Signal Activity File (.saf) generated from a Quartus II simulation, or a Verilog Value
Change Dump File (.ved) generated from a third-party simulation.

«® For more information about how to use the PowerPlay Power Analyzer tool, refer to
the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users

Conclusion

3-23

Programming

The Quartus II Programmer has the same functionality as the MAX+PLUS 11
Programmer, including programming, verifying, examining, and blank checking
operations. Additionally, the Quartus II Programmer now supports the erase
capability for CPLDs. To improve usability, the Quartus II Programmer displays all
programming-related information in one window (Figure 3-13).

Click Add File or Add Device in the Programmer window to add a file or device,
respectively.

Figure 3-13. Programmer Window

I chiptrip.cdf

éa Hardware Setup Mo Hardware

™ Enable realtime ISP to allow background programming [for A 11 devices]

¥ Delete
s 4 File...
iz Change File...
b Ca
2 tdd Device..
|
$ooen |

Mode: [4T4G v| Progess

0%

Program#
Configure_|

Seg::nty Eraze

Exaring

e “FFFEFFEF

—
=
=
[\)‘J

Conclusion

Figure 3-13 shows that the Programmer window now supports Erase capability.

You can save the programmer settings as a Chain Description File (.cdf). The .cdf file
is an ASCII text file that stores device name, device order, and programming file name
information.

The Quartus II software is the most comprehensive design environment available for
programmable logic designs. Features such as the Convert MAX+PLUS II Project
command help you make the transition from Altera’s MAX+PLUS II design software
and become more productive with the Quartus II software. The Quartus II software
has all the capabilities and features of the MAX+PLUS II software and many more to
speed up your design cycle and obtain optimal device performance.

Quartus 1l Command Reference for MAX+PLUS Il Users

© November 2009 Altera Corporation

Table 34 lists the commands in the MAX+PLUS II software and gives their
equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not listed, the
command is the same in both tools.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-24

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus I Command Reference for MAX+PLUS Il Users

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 1 of 8)

MAX+PLUS 1l Software

Quartus Il Software

MAX+PLUS Il Menu

Hierarchy Display

View menu, Utility Windows, Project Navigator

Graphic Editor

E““ﬂ Block Editor

E Symbol Editor

Block Symbol Editor

Text Editor

Text Editor

Waveform Editor

@ Waveform Editor

jicy| Floorplan Editor

Assignments menu, Timing Closure Floorplan

E Compiler

Tools menu, Compiler Tool

5] Simulator

Tools menu, Simulator Tool

1] Timing Analyzer

Tools menu, Timing Analyzer Tool

(8] Programmer

Tools menu, Programmer

Message Processor

IEJ View menu, Utility Windows, Messages

File Menu

File menu, Project, Name (Ctrl+J)

File menu, Open Project (Ctrl+J)

@ File menu, Project, Set Project to Current File
(Ctrl+Shift+d)

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or

B [l

File menu, New Project Wizard

=) File menu, Project, Save & Check (Ctrl+K)

&

Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)
or

Processing menu, Start, Start Analysis & Elaboration

File menu, Project, Save & Compile (Ctrl+L)

Processing menu, Start Compilation (Ctrl+L)

File menu, Project, Save & Simulate
(Ctrl+Shift+L)

BN

Processing menu, Start Simulation (Ctrl+])

File menu, Project, Compile & Simulate (Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive

Project menu, Archive Project

File menu, Project, <Recent Projects>

File menu, <Recent Projects>

File menu, Delete File

NA

File menu, Retrieve

NA

File menu, Info (Ctrl+1)

File menu, File Properties

File menu, Create Default Symbol

File menu, Create/Update, Create Symbol Files for Current File

File menu, Edit Symbol

(Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File

File menu, Create/Update, Greate AHDL Include Files for Current
File

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Command Reference for MAX+PLUS Il Users

3-25

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 2 of 8)

MAX+PLUS 1l Software

Quartus Il Software

File menu, Hierarchy Project Top (Ctrl+T)

@ Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U)

Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D)

Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top

NA

File menu, Hierarchy, Project Top (Ctrl+T)

@ Project menu, Hierarchy, Project Top (Ctri+T)

File menu, MegaWizard Plug-In Manager

Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size

NA

(Waveform Editor) File menu, End Time

(Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare

(Waveform Editor) View menu, Compare to
g Waveforms in File

(Waveform Editor) File menu, Import Vector File

File menu, Open (Ctrl+0)

(Waveform Editor) File menu, Create Table File File menu, Save As

(Hierarchy Display) File menu, Select Hierarchy NA

(Hierarchy Display) File menu, Open Editor (Project Navigator) Double-click

(Hierarchy Display) File menu, Close Editor NA

(Hierarchy Display) File menu, Change File Type (Project Navigator) Select file in Files tab and select Properties on

right click menu

(Hierarchy Display) File menu, Print Selected Files

NA

(Programmer) File menu, Select Programming File

File menu, Open

(Programmer) File menu, Save Programming Data As

File menu, Save

Files

(Programmer) File menu, Inputs/Outputs NA
(Programmer) File menu, Convert SRAM Object Files | File menu, Convert Programming Files
(Programmer) File menu, Archive JTAG Programming | NA

Programmer) File menu, Greate Jam or SVF File

File menu, Create/Update, Create JAM, SVF, or ISC File

NA

Message Processor) Save Messages As

(Messages) Save Messages on right click menu

(
(Message Processor) Select Messages
(
(

Timing Analyzer) Save Analysis As

Processing menu, Gompilation Report - Save Current Report on
right click menu in Timing Analyzer sections

(Simulator) Create Table File

(Waveform Editor) File menu, Save As

(Simulator) Execute Command File

NA

(Simulator) Inputs/Outputs

NA

Edit Menu

Waveform Editor) Edit menu, Overwrite

(Waveform Editor) Edit menu, Value

Waveform Editor) Edit menu, Insert

(Waveform Editor) Edit menu, Insert Waveform Interval

NA

Waveform Editor) Edit menu, Repeat

(Waveform Editor) Edit menu, Repeat Paste

()
()
(Waveform Editor) Edit menu, Align to Grid (Ctrl+Y)
()
()

Waveform Editor) Edit menu, Grow or Shrink

Edit menu, Grow or Shrink (Ctrl+Alt+G)

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users

Quartus I Command Reference for MAX+PLUS Il Users

Table 3—-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 3 of 8)

MAX+PLUS 1l Software

Quartus Il Software

(Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent (F2)

(Text Editor) Edit menu, Increase Indent

&mm

(Text Editor) Edit menu, Decrease Indent (F3)

(Text Editor) Edit menu, Decrease Indent

Graph|c Editor) Edit menu, Toggle Connection
Dot (Double-Click)

=f

—_

Block Editor) Edit menu, Toggle Connection Dot

Eﬂ (Graphic Editor) Edit menu, Flip Horizontal m (Block Editor) Edit menu, Flip Horizontal
E (Graphic Editor) Edit menu, Flip Vertical Ii‘l (Block Editor) Edit menu, Flip Vertical
(Graphic Editor) Edit menu, Rotate E (Block Editor) Edit menu, Rotate by Degrees
View Menu

E! View menu, Fit in Window (Ctrl+W) @ View menu, Fit in Window (Ctrl+W)

ﬂ View menu, Zoom In (Ctrl+Space) View menu, Zoom In (Ctrl+Space)

g! View menu, Zoom Qut (Ctrl+Shift+Space) g View menu, Zoom Qut (Ctrl+Shift+Space)
View menu, Normal Size (Ctrl+1) NA

View menu, Maximum Size (Ctrl+2) NA

(Hierarchy Display) View menu, Auto Fit in Window NA

(Waveform Editor) View menu, Time Range

View menu, Zoom

Assign menu, Device

Assignments menu, Device

Iz, Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip

Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements

Assignments menu, Assignment Editor - Timing category

Assign menu, Clique

Assignments menu, Assignment Editor - Cliques category

Assign menu, Logic Options

Assignments menu, Assignment Editor - Logic Options

category

Assign menu, Probe NA

Assign menu, Connected Pins Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing Assignments menu, Assignment Editor - Local Routing
category

Assign menu, Global Project Device Options

Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters

Iz, Assignments menu, Settings - Analysis and Synthesis -
Default Parameters

Assign menu, Global Project Timing Requirements

lzl Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis

Assignments menu, Settings - Analysis and Synthesis

Assign menu, Ignore Project Assignments

Izl Assignments menu, Assignment Editor - disable

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Command Reference for MAX+PLUS Il Users

3-27

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 4 of 8)

MAX+PLUS 1l Software

Quartus Il Software

Assign menu, Clear Project Assignments

Assignments menu, Remove Assignments

Assign menu, Back-Annotate Project

Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment Format

NA

Utilities Menu

Utilities menu, Find Text (Ctrl+F)

Edit menu, Find (Ctrl+F)

@ Utilities menu, Find Node in Design File (Ctrl+B)

Project menu, Locate, Locate in Design File

iu Utilities menu, Find Node in Floorplan

Project menu, Locate, Locate in Timing Closure Floorplan

Utilities menu, Find Clique in Floorplan

NA

Utilities menu, Find Node Source (Ctrl+Shift+S) NA

Utilities menu, Find Node Destination (Ctrl+Shift+D) NA

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)
Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

A Utilities menu, Search and Replace (Ctrl+R) Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source (Ctrl+Alt+S) NA

Utilities menu, Timing Analysis Destination NA

(Ctrl+Alt+D)

Utilities menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Utilities menu, Analyze Timing NA

Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G)

Edit menu, Go To (Ctrl+G)

Text Editor) Utilities menu, Find Matching Delimiter
Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(
(
(Waveform Editor) Utilities menu, Find Next Transition
(Right Arrow)

(Waveform Editor) View menu, Next Transition (Right Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left Arrow)

Options Menu

Options menu, User Libraries

@ Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User Llbraries

Options menu, Color Palette

Tools menu, Options

Options menu, License Setup

Tools menu, License Setup

Options menu, Preferences

Tools menu, Options

(Hierarchy Display) Options menu, Orientation

NA

(Hierarchy Display) Options menu, Compact Display

NA

(Hierarchy Display) Options menu, Show All Hierarchy
Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All Hierarchy
Branches

NA

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-28 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus I Command Reference for MAX+PLUS Il Users

Table 3—-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 5 of 8)

MAX+PLUS Il Software Quartus Il Software
(Editors) Options menu, Font Tools menu, Options
(Editors) Options menu, Text Size Tools menu, Options
(Graphic Editor) Options menu, Line Style Edit menu, Line
(Graphic Editor) Options menu, Rubberbanding E Tools menu, Options
(Graphic Editor) Options menu, Show Parameters View menu, Show Parameter Assignments
(Graphic Editor) Options menu, Show Probes NA
(Graphic Editor) Options menu, Show El View menu, Show Pin and Location Assignments

Pins/Locations/Chips

(Graphic Editor) Options menu, Show Clique, Timing & | NA
Local Routing Assignments

(Graphic Editor) Options menu, Show Logic Options NA

(Graphic. Editor) Options menu, Show All NA

(Ctrl+Shift+M)
(Graphic Editor) Options menu, Show Guidelines Tools menu, Options - Block/Symbol Editor page
(Ctrl+Shift+G)
(Graphic Editor) Options menu, Guideline Spacing Tools menu, Options - Block/Symbol Editor page
(Symbol Editors) Options menu, Snap to Grid Tools menu, Options - Block/Symbol Editor page
(Text Editor) Options menu, Tab Stops Tools menu, Options - Text Editor page
(Text Editor) Options menu, Auto-Indent Tools menu, Options - Text Editor page
(Text Editor) Options menu, Syntax Coloring NA
(Waveform Editor) Options menu, Snap to Grid View menu, Snap to Grid
(Waveform Editor) Options menu, Show Grid Tools menu, Options - Waveform Editor page
(Ctrl+Shift+G)
(Waveform Editor) Options menu, Grid Size Edit menu, Grid Size - Waveform Editor page
(

Floorplan Editor) Options menu, Routing Statistics NA
BH1 (Floorplan Editor) Options menu, Show Node Fan- View menu, Routing, Show Fan-In

I

In
E (Floorplan Editor) Options menu, Show Node Fan- View menu, Routing, Show Fan-Qut

Out :
ﬂ;] (Floorplan Editor) Options menu, Show Path View menu, Routing, Show Paths between Nodes
(Floorplan Editor) Options menu, Show Moved Nodes | NA
in Gray
(Simulator) Options menu, Breakpoint Processing menu, Simulation Debug, Breakpoints
(Simulator) Options menu, Hardware Setup NA

(Timing Analyzer) Options menu, Time Restrictions Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Auto-Recalculate NA

(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off I/0 Pin Assignments menu, Timing Settings
Feedback

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus Il Command Reference for MAX+PLUS Il Users

3-29

Table 3—-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 6 of 8)

MAX+PLUS 1l Software

Quartus Il Software

(Timing Analyzer) Options menu, Cut Off Clear & Reset
Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read During
Write Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only Longest NA
Path
(Programmer) Options menu, Sound NA

Tools menu, Options - Programmer page

)
(Programmer) Options menu, Programming Options
(Programmer) Options menu, Select Device

(Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup

(Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click)

E’ (Block Editor) Edit menu, Insert Symbol (Double-Click)

Symbol menu, Update Symbol

Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters

Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub Double-click on edge of symbol

Element menu, Enter Parameters NA

Templates (Text Editor)

Templates @ (Text Editor) Edit menu, Insert Template
Node (Waveform Editor)

Node menu, Insert Node (Double-Click)

Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF

Edit menu, Insert Node - click on Node Finder...

Node menu, Edit Node

Double-click on the Node

Node menu, Enter Group

Edit menu, Group

Node menu, Ungroup

Edit menu, Ungroup

Node menu, Sort Names

Edit menu, Sort

Node menu, Enter Separator

NA

Layout (Floorplan Editor)

Layout menu, Full Screen

View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer

EI View menu, Equations

Layout menu, Device View (Double-Click)

m=| View menu, Package Top
or
View menu, Package Bottom

Layout menu, LAB View (Double-Click)

In_—l View menu, Interior Labs

Layout menu, Current Assignments Floorplan

View menu, Assignments, Show User Assignments

=] Layout menu, Last Compilation Floorplan

View menu, Assignments, Show Fitter Assignments

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

3-30

Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Quartus I Command Reference for MAX+PLUS Il Users

Table 3—-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 7 of 8)

MAX+PLUS 1l Software

Quartus Il Software

Processing (Compiler)

Processing menu, Design Doctor

@ Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings

@ Assignments menu, Settings - Design Assistant

Processing menu, Functional SNF Extractor

Processing menu, Generate Functional Simulation Netlist

Processing menu, Timing SNF Extractor

Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF

NA

Processing menu, Linked SNF Extractor

NA

Processing menu, Fitter Settings

@ Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings

Assignments menu, Settings

Processing menu, Generate AHDL TDO File

NA

Processing menu, Smart Recompile

Izl Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile

lzl Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name Synonyms

Iz, Assignments menu, Settings - Compilation Process

Interfaces (Compiler)

Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA
Initialize menu, Initialize Memory NA
Initialize menu, Save Initialization As NA
Initialize menu, Restore Initialization NA
Initialize menu, Reset to Initial SNF Values NA
Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) NA
Node menu, Timing Analysis Destination (Ctrl+Alt+D) | NA
Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix

(Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix

NA

Analysis menu, Registered Performance

(Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain

(Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup

(Programmer) Window

JTAG menu, Save JCF

File menu, Save

JTAG menu, Restore JCF

File menu, Open

JTAG menu, Initiate Configuration from Configuration
Device

Tools menu, Options - Programmer page

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 3: Quartus

Il Design Flow for MAX+PLUS Il Users 3-31

Referenced Documents

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 8 of 8)

MAX+PLUS Il Software Quartus Il Software
FLEX (Programmer)
FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial
FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window
FLEX menu, Save FCF File menu, Save
FLEX menu, Restore FCF File menu, Open

Referenced Documents

Document

This chapter references the following documents:

m Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

m Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook
m Command Line Scripting chapter in volume 2 of the Quartus II Handbook

m Engineering Change Management with the Chip Planner chapter in volume 3 of the
Quartus I Handbook

m [ntroduction to the Quartus II Software manual

m PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

m Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook
m Quartus II Integrated Synthesis chapter in volume 1 of the Quartus 1I Handbook

m Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

m Tcl Scripting chapter in volume 2 of the Quartus II Handbook
® Quartus Il Handbook Version 9.1

Revision History

Table 3-5 show the revision history of this chapter.

Table 3-5. Document Revision History

Date and

Document

Version Changes Made Summary of Changes
November 2009 | Addedreview edits. Removed APEX references. Updated for the Quartus 11 9.1 software
v9.1.0 release
March 2009 Removed “Quick Menu Reference” Updated for the Quartus 11 9.0 software
v9.0.0 release
November 2008 | Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus Il 8.1 software
v8.1.0 release
May 2008 Updated date and part number, added hypertext links. —
v8.0.0

© November 2009

“.e For previous versions of the Quartus IT Handbook, refer to the Quartus Il Handbook Archive.

Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

3-32 Chapter 3: Quartus Il Design Flow for MAX+PLUS Il Users
Document Revision History

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

QA | I:l =5/, 4. Quartus Il Support for HardCopy Series

n Devices

Ql151004-9.1.0

Introduction

This chapter describes Quartus® II support for HardCopy® series devices.

Altera® HardCopy ASICs are the lowest risk, lowest total cost ASICs. The HardCopy
system development methodology offers fast time-to-market, low risk, and with the
Quartus II software, you can design with one set of RTL code and one IP set for both
FPGA and ASIC implementations. This flow enables you to conduct true
hardware/software co-design and completely prepare your system for production
prior to ASIC design hand-off. Altera provides a turn-key process to convert your
design to a HardCopy ASIC for production.

In this chapter, the term FPGA refers to a Stratix® I, Stratix III, or Stratix IV device,
which is the prototype device for a HardCopy II, HardCopy 111, or HardCopy IV
device, respectively.

This chapter discusses the following topics:

m “HardCopy Development Flow” on page 4-2

m “HardCopy Utilities Menu” on page 4-6

m “HardCopy Companion Device Selection” on page 4-12

m “HardCopy Device Resource Guide” on page 4-13

m “HardCopy Recommended Settings in the Quartus II Software” on page 4-16
m “HardCopy Design Readiness Check” on page 4-22

m “Performing ECOs with Quartus II Engineering Change Management with the
Chip Planner” on page 4-28

m “Formal Verification of FPGA and HardCopy Revisions” on page 4-32

For more information about HardCopy series devices, refer to the respective
HardCopy device handbook on the Altera website at www.altera.com.

HardCopy Series Design Benefits

Designing with HardCopy ASICs offers substantial benefits over other ASIC
offerings:

m Seamless prototyping using an FPGA for at-speed system verification and system
development reduces total project development time and cost

m Dependable conversion from an FPGA prototype to a HardCopy ASIC expands
product planning options

m Unified design methodology for FPGA design and HardCopy design reduces the
need for ASIC development software, two sets of intellectual property, and project
risk

m System development methodology delivers lowest total cost

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/

4-2

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Development Flow

Quartus Il Features for HardCopy Planning

With the Quartus II software, you can design a HardCopy ASIC using seamless FPGA
prototyping. The Quartus II software provides the following expanded features for
HardCopy series device planning;:

HardCopy Companion Device Assignment—Identifies compatible HardCopy
series devices for use with the FPGA prototyping device currently selected.

This feature constrains the pins of your FPGA prototype, making it compatible
with your HardCopy device. The feature also constrains the correct resources
available for the HardCopy device, ensuring the compatibility of your FPGA
design. You must compile the design targeting the HardCopy device to ensure that
the design fits, routes, and meets timing requirements.

HardCopy Utilities—The HardCopy Utilities menu provides a variety of
functions to create or overwrite HardCopy companion revisions, set current
revisions, and compare revisions for equivalency.

HardCopy Advisor—The HardCopy Advisor helps you follow the necessary
steps to successfully submit a HardCopy design to the Altera HardCopy Design
Center.

The HardCopy Advisor is structured similarly to other advisors in the Quartus II
software; Quartus II Advisors provide guidelines that you can follow during
development, reporting completed and uncompleted tasks.

HardCopy Floorplan—The Quartus II Chip Planner can show a preliminary
floorplan view of your HardCopy design’s Fitter placement results.

HardCopy Device Preliminary Timing—The TimeQuest Timing Analyzer
performs a timing analysis of HardCopy devices based on preliminary timing
models and Fitter placements. Final timing results for HardCopy devices are
provided by the Altera HardCopy Design Center.

HardCopy Design Readiness Check—The Quartus II software checks the project
settings to ensure compliance with the HardCopy device settings, I/O, PLL, and
RAM usage checks.

HardCopy Handoff Report—The Quartus II software generates a handoff report
containing information about the HardCopy design used by the Altera HardCopy
Design Center in the design review process.

HardCopy Design Archiving—The Quartus II software archives the HardCopy
design project’s files required to hand off the design to the Altera HardCopy
Design Center.

Formal Verification—Cadence Encounter Conformal software performs formal
verification between the source RTL design files and post-compilation gate-level
netlist from a HardCopy design.

HardCopy Development Flow

In the Quartus II software, you design your FPGA and HardCopy companion device
together in one Quartus II project using one of the following methods:

Design the FPGA first for in-system verification and then create a HardCopy
companion device second

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices

4-3

HardCopy Development Flow

[ge=}
&
&

m Design the HardCopy device first and then create the FPGA companion device
second for in-system verification

Both of these flows are illustrated at a high level in Figure 4-1. The added features in
the HardCopy Utilities menu help you complete your HardCopy design for
submission to the Altera HardCopy Design Center for back-end implementation.

Figure 4-1. HardCopy Flow in Quartus Il Software

Prepare Design HDL

Design FPGA First

Select FPGA Device
& HardCopy
Companion Device

v

Complete FPGA
Device First Flow (7)

Design FPGA Second

Select HardCopy
Device & FPGA
Companion Device

v

Complete HardCopy
Device First Flow (2)

Design
FPGA
First?

In-System Verification
| - . d
' of FPGA Design -

v

Compare FPGA
& HardCopy
Design Revisions

v

Generate the HardCopy
Handoff Files and
Archive the Design

Handoff Design Archive for
HardCopy ASIC Back-End

Notes to Figure 4-1:
(1) Refer to Figure 4-2 on page 4-4 for an expanded description of this process.
(2) Referto Figure 4-3 on page 46 for an expanded description of this process.

The FPGA first flow is the default flow and the rest of this chapter is based on this
flow.

Designing the FPGA First

© November 2009 Altera Corporation

The HardCopy FPGA first flow development flow begins with seamless FPGA
prototyping and is identical to the traditional FPGA design flow; plus a few
additional tasks necessary to convert the design to the HardCopy companion device
within the same project. To design your HardCopy device when selecting the FPGA
companion device first, complete the following tasks:

m Specify an FPGA device and a HardCopy companion device
m Compile the FPGA design
m Create and compile the HardCopy companion revision

m Compare the HardCopy companion revision compilation to the FPGA device
compilation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Development Flow

Figure 4-2 provides an overview of the development process for designing with an
FPGA first and creating a HardCopy companion device second.

Figure 4-2. Designing FPGA Device First Flow

HardCopy Device Development with the FPGA Device First Flow

C Prepare FPGA Design)

I

| Select HardCopy Companion Device |

¥

| Review HardCopy Advisor |

¥

| Apply Design Constraints |

¥

In-System Verification Compile FPGA Design

Any
Violations?

Fix Violations

A

Create or Overwrite HardCopy
Companion Revision

y

Compile HardCopy Companion Revision

Select a Larger No
HardCopy Companion
Device

Fitsin
HardCopy Device?

Compare FPGA and HardCopy Revisions

Any
Violations?

No

Design Submission & Back-End Implementation Phase

y

| Generate Handoff Report |

:

(Archive Project for Handoff)

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-5
HardCopy Development Flow

You must select a target FPGA device and a companion HardCopy device when
compiling an FPGA design that you will migrate to a HardCopy device.

During the early stages of the design process, selecting the right HardCopy device
may be difficult. The HardCopy Device Resource Guide can assist you in the selection
process. After you have selected an FPGA and a HardCopy device, compile the FPGA
and review the HardCopy Device Resource Guide to see if all resources are available
in the targeted HardCopy device. If there are not enough resources available in the
target HardCopy device, you must select a larger HardCopy device and restart the
FPGA compilation.

Once the FPGA and the HardCopy device selections have been finalized, perform the
following tasks:

m Review the HardCopy Advisor for required and recommended tasks

m Enable the Design Assistant to run during compilation

m Add timing and location assignments

m Compile your FPGA design

m Create your HardCopy companion revision

m Compile your design for the HardCopy companion device

m Compare the HardCopy companion device compilation with the FPGA revision

m Generate a HardCopy Handoff Report

m Generate a HardCopy Handoff Archive

B Arrange for submission of your HardCopy Handoff Archive to the Altera
HardCopy Design Center for back-end implementation

For more information about the overall design flow using the Quartus II software,
refer to the Introduction to the Quartus 1I Software manual.

Designing the HardCopy Device First

After you select an initial HardCopy ASIC device, you can design your HardCopy
device first and then create your FPGA prototype second. This approach is preferred
when using the HardCopy device to achieve higher performance than the FPGA
prototype, because you can see your potential maximum performance in the
HardCopy device immediately during development, and you can create a slower
performing FPGA prototype of the design for in-system verification. This design
process is similar to the HardCopy FPGA first flow development flow, but instead,
you begin the design with a different initial device family. The remaining tasks to
complete your design for both the FPGA and HardCopy devices roughly follow the
same process (Figure 4-3). The HardCopy Advisor adjusts its list of tasks based on
which device family you start with, FPGA or HardCopy, to help you complete the
process seamlessly.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

4-6

Chapter 4: Quartus Il Support for HardCopy Series Devices

HardCopy Utilities Menu

Figure 4-3. Designing HardCopy Device First Flow

HardCopy Device Development with the HardCopy Device First Flow
(Prepare HardCopy Design]

| Select FPGA Companion Device |

¥

| Review HardCopy Advisor |

¥

| Apply Design Constraints |

¥

| Compile HardCopy Design

Any
Violations?

Create or Overwrite FPGA
Companion Revision

Y

Compile FPGA Companion Revision |

In-System Verification |<—|

| Compare FPGA and HardCopy Revisions |

Any
Violations?

No

|.7

Fix Violations

A

Design Submission & Back-End Implementation Phase

Y

| Generate Handoff Report |

l
¢

Archive Project for Handoff)

HardCopy Utilities Menu

The HardCopy Utilities menu contains the main functions you use to develop your
HardCopy design and FPGA prototype companion revision. To access this menu, on
the Project menu, click HardCopy Utilities. From the HardCopy Utilities menu, you

can perform the following tasks:

m Create or update HardCopy companion revisions

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices

HardCopy Utilities Menu

4-7

Specify the current HardCopy companion revision

Compare the companion revisions for functional equivalence

Generate a HardCopy Handoff Report for design reviews

Archive HardCopy handoff files for submission to the Altera HardCopy Design

Center

Turn on the HardCopy Design Readiness Check feature (on by default)

Track your design progress using the HardCopy Advisor

Tahle 4-1. HardCopy Utilities Menu Options

Each HardCopy Utilities feature is summarized in Table 4-1. The process for using
each of these features is explained in the following sections.

Description

Applicable Design
Revision

Restrictions

Create/Overwrite
HardCopy Companion
Revision

Creates a new companion
revision or updates an existing
companion revision for your
FPGA and HardCopy design.

FPGA prototype design
and HardCopy companion
revision

m Must turn off Auto Device
selection

m Must set an FPGA device and a
HardCopy companion device

Set Current HardCopy
Companion Revision

Specifies which companion
revision to associate with the
current design revision.

FPGA prototype design
and HardCopy companion
revision

Companion revision must already
exist

Compare HardCopy
Companion Revisions

Compares the FPGA design
revision with the HardCopy
companion design revision and
generates a report.

FPGA prototype design
and HardCopy companion
revision

Both revisions must be compiled

Handoff Files

File (.qar) specifically for
submitting the design to the
Altera HardCopy Design Center.

revision

Generate HardCopy Generates a report containing FPGA prototype design m Both revisions must be
Handoff Report important design information and HardCopy companion compiled
files and messages generated by | revision = Compare HardCopy
the Quartus Il Compiler. Companion Revisions
command must be
successfully run
Archive HardCopy Generates a Quartus Il Archive HardCopy companion m Both revisions must be

compiled

m Compare HardCopy
Companion Revisions
command must be run

m Generate HardCopy Handoff
Report command must be
successfully run

Design Readiness
Check

design’s settings, 1/0 check, PLL,
and RAM usage checks.

and HardCopy companion
revision.

HardCopy Advisor Opens the HardCopy Advisor, FPGA prototype design None
which helps you through the and HardCopy companion
steps of creating a HardCopy revision
project.

Start HardCopy Generates a reports with the FPGA prototype design None

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-8 Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Utilities Menu

Companion Revisions

You can create multiple design revisions for both the FPGA and the HardCopy device.
For example, if your initial FPGA revision is named top and the corresponding
HardCopy revision is top_hc, you could create another FPGA revision, top_fpga, and
the corresponding HardCopy revision would be top_fpga_hc. The Quartus II software
creates specific HardCopy design revisions of the project in conjunction with the
primary project revisions. These parallel design revisions for HardCopy devices are
called companion revisions.

L=~ Although you can create multiple design revisions, Altera recommends that you
maintain only one FPGA revision once you have created the HardCopy companion
revision.

Once you have successfully compiled your FPGA prototype, you can create a
HardCopy companion revision of your design and proceed with compiling the
HardCopy companion revision. To create a companion revision, on the Project menu,
point to HardCopy Utilities and click Create/Overwrite HardCopy Companion
Revision. Use the Create/Overwrite HardCopy Companion Revision dialog box to
create a new companion revision or overwrite an existing companion revision
(Figure 4-4).

Figure 4-4. Create or Overwrite HardCopy Companion Revision

Create/Overwrite HardCopy Companion Revision

Create a companion HardCopy revision to an existing FPGA design. The companion revision
st have the same azzignments and settings as the curent revision. Submit bath revisions to
the HardCopy Diesign Center.
Current resizion: dema_design
Current companion rewvigion: demo_design_hc

Create/overwite companion revisions

& Oyenarite curent companion revision with assignments from the curent revision

" Create new companion revision with assignments from the curent revision

Qg | Cancel |

You can associate only one FPGA revision to one HardCopy companion revision. If
you create more than one revision or companion revision, set the current companion
for the revision you are working on. On the Project menu, point to HardCopy
Utilities and click Set Current HardCopy Companion Revision (Figure 4-5).

Figure 4-5. Set Current HardCopy Companion Revision

Set Current HardCopy Companion Revision

Allaws pou to change the companion revizion aszociated with the current revision.

Current revision: demo_design

Current campanion revision: |demo_design_hc: -

demo desiEn he_try

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-9

HardCopy Utilities Menu

Compiling the HardCopy Companion Revision

The Quartus II software allows you to compile your HardCopy design with
preliminary timing information. The timing constraints for the HardCopy companion
revision can be the same as the FPGA design used to create the revision. The
Quartus II software contains preliminary timing models for HardCopy devices and
you can gauge the degree of performance improvement you can achieve in the
HardCopy device compared to the FPGA. Altera verifies that the HardCopy
companion device timing requirements are met in the Altera HardCopy Design
Center.

After you create your HardCopy companion revision from your compiled FPGA
design, select the companion revision in the Quartus II software design revision
pull-down list (Figure 4-6) or from the Revisions list. Compile the HardCopy
companion revision. After the Quartus II software compiles your design, you can
perform a comparison check of the HardCopy companion revision to the FPGA
prototype revision.

Figure 4-6. Changing Current Revision

File Edit Wiew Project Assignments Processing Tools Window Help

=" ﬁ demo_design_hc j

demo_design

Comparing HardCopy and FPGA Companion Revisions

Altera uses the companion revisions in a single Quartus II project to maintain
compatibility between the FPGA and HardCopy ASIC. This methodology allows you
to design with one set of RTL code that is used in both the FPGA and HardCopy
ASIC, guaranteeing functional equivalency.

When making changes to companion revisions, use the Compare HardCopy
Companion Revisions command to ensure that your design matches your HardCopy
design functionality and compilation settings. To compare companion revisions, on
the Project menu, point to HardCopy Utilities and click Compare HardCopy
Companion Revisions.

You must perform this comparison after both the FPGA and HardCopy designs are
compiled to hand off the design to the Altera HardCopy Design Center.

The Comparison Revision Summary is found in the Compilation Report and
identifies where assignments were changed between revisions or if there is a change
in the logic resource count due to different compilation settings.

Generating a HardCopy Handoff Report

To submit a design to the Altera HardCopy Design Center, you must generate a
HardCopy Handoff Report, which provides important information about the design
that you want the Altera HardCopy Design Center to review. To generate the
HardCopy Handoff Report, you must:

m Successfully compile both FPGA and HardCopy revisions of your design

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-10

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Utilities Menu

m Successfully run the Compare HardCopy Companion Revisions command

After you generate the HardCopy Handoff Report, you can archive the design using
the Archive HardCopy Handoff Files command described in “Archiving HardCopy
Handoff Files” on page 4-10.

Archiving HardCopy Handoff Files

The last step in the HardCopy design methodology is to archive the HardCopy project
for submission to the Altera HardCopy Design Center for the HardCopy back-end.
The Archive HardCopy Handoff command creates a unique .qar file, which is
different than the standard Quartus II project archive utility generates. This archive
contains only the necessary data from the Quartus II project required to implement
the design in the Altera HardCopy Design Center.

To use the Archive HardCopy Handoff Files command, you must successfully
complete the following actions:

m Compile both the FPGA and HardCopy revisions of your design
® Run the Compare HardCopy Companion Revisions command
m Generate the HardCopy Handoff Report

To run this command, on the Project menu, point to HardCopy Utilities and click
Archive HardCopy Handoff Files.

HardCopy Advisor

The HardCopy Advisor provides the list of tasks to help guide you through the
development of your FPGA prototype and your HardCopy design. To open the
HardCopy Advisor, on the Project menu, point to HardCopy Utilities and click
HardCopy Advisor. The following tasks highlight the checkpoints that the HardCopy
Advisor reviews. These tasks include the major checkpoints in the design process, but
they do not include show every step in the process for completing your FPGA and
HardCopy designs:

Select an FPGA device.

Select a HardCopy device.

Turn on the Design Assistant.

Set up timing constraints.

Check for incompatible assignments.
Compile and check the FPGA design.
Create or overwrite the companion revision.

Compile and check the HardCopy companion results.

© ® N o G »w b=

Compare companion revisions.
10. Generate a Handoff Report.
11. Archive handoff files and send to Altera.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-11

HardCopy Utilities Menu

The HardCopy Advisor shows the necessary steps related to your currently selected
device. The HardCopy Advisor shows a slightly different view for a design with an
FPGA selected as compared to a design with HardCopy device selected.

In the Quartus II software, you can start designing with the HardCopy device selected
first, and build an FPGA companion revision second. When you use this approach,
the HardCopy Advisor task list adjusts automatically to guide you from HardCopy
development through FPGA prototyping, then completes the comparison archiving
and handoff to Altera.

When your design uses the FPGA as your starting point, Altera recommends
following the HardCopy Advisor guidelines for your FPGA until you complete the
prototype revision.

When the FPGA design is complete, create and switch to your HardCopy companion
revision. Then follow the HardCopy Advisor steps shown in that revision until you
are finished with the HardCopy revision and are ready to submit the design to Altera
for the HardCopy back-end process.

Each category in the HardCopy Advisor list has an explanation of the recommended
settings and constraints, as well as quick links to the features in the Quartus II
software that are required for each section. The HardCopy Advisor displays:

m A green check mark for steps you have successfully completed

m A yellow caution sign for steps that must be completed before submitting your
design to Altera for HardCopy development

B An information callout for items you must verify
Selecting an item within the HardCopy flow menu provides a description of the task
and recommended action. The view in the HardCopy Advisor can vary depending on

the device you select.

Figure 4-7 shows the HardCopy Advisor with an FPGA device selected.

Figure 4-7. HardCopy Advisor with FPGA Selected

® HardCopy Advisor
. '§| HatdZopy Advisar

’jlj Getting mare information
fér'J HardiCopy Maming Guidelines

wf Use TimeQuest Timing Analyzer Dezcription |Far a praject ta be considered for HardCopy conversion it
wd Choose a FPGA device muzt have both a FPGA and HardCopy revision. These
ind Choose a HardCopy companion device revision: are linked together and are called "'Cornpanion

=l Sekup FPGA revision
i Turn on the Design Assistant companion revision.
+-f Sek up timing constraints
+-f Check for Incompatible Assignments
wd Compile FPGA revision
Ay Check FPGA revision
BAY reate a HardCopy
+ ‘L\, werify HardCopy revision
_l\, Confirm ITAG user code and "delay entry to user mode” sektings
‘L\, Compile HardCopy companion revision
_l\, Check HardCopy companion revision
‘L\, Campare companion revisions
_l\, Generate Handoff Report
0 archive Handoff Files and Send to Altera

¢ COMPpanion revision

Recommendation | Create a HardCopy compation revision

Revizions". If you make changes to your source revision,
you must avenwrite the changes from that revision to yaur

Action | Fun the Create/Ovemwrite HardEbpy Carpanion Revision
command [Froject menu). After that you will need to open
the companion revision to continue.

Create/0verwrite HardCopy Companion Bevision command |
| Dpen Companion Revision

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-12

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Companion Device Selection

Figure 4-8 shows the HardCopy Advisor with an HardCopy device selected.

Figure 4-8. HardCopy Advisor with HardCopy Device Selected

® HardCopy Advisor

E| HardCopy Advisar
“A, Getting more information
¢|) HardCopy Maming Guidelines
wd Use TimeQuest Timing Analyzer
4 Choose a HardCopy device
wd Choose a FPA companion device
—l-id Set up HardCopy revision
wd Turn on the Design Assiskant
+-+ Set up timing constraints
+l-nd Check For Incompatible Assignments

',‘y Canfirm ITAG user code and "delay entry ko user mode” settings

wd Compile HardCopy revision

_l“] Check HardCopy revision

ﬁ Create a FPGA companion revision
+-By Verify FPGA revision

ﬁ Compile FPGA companion revision

ﬁ Check FPGA companion revision

ﬁ Compate companion revisions

P Generabe Handoff Report

1 Archive Handoff Files and Send ko Altera

in

Check HardCopy revision

Recommendation | Check HardCopy revision

Description

Action

[Werify the specified companion HardCopy device is

| Press the buttan belaw ta verify the compilation was

compatible with the design, Design Assiztant passes with o
errarg, the timing requirements were successfully met and all
paths were timing constrained, and 1/0 types are fully
defined for all the 10 pins.

successful for HardCopy development.

Check Compilation Results

Open Device Resource Guide [Compilation B eport]
Open Design Assiztant Surmmary [Compilation Bepart]
Open TimeQuest Timing Analyzer

Open HardCopy Design Feadiness Check Feport
Compilation Bepart

HardCopy Companion Device Selection

In the Quartus II software, you can select a HardCopy companion device to ensure
compatibility between the FPGA design and the HardCopy device’s resources. To
select your HardCopy companion device, on the Assignments menu, click Device
(Figure 4-9) and select your companion device from the Companion device list.

Selecting a HardCopy companion device for your FPGA prototype constrains the
memory blocks, DSP blocks, and pin assignments, so that your design fits into the
HardCopy device resources. Pin assignments are constrained in the FPGA design
revision, so that the HardCopy device selected is pin-compatible. The Quartus II
software also constrains the FPGA design revision so that identical device resources
are targeted in both the FPGA and the HardCopy ASIC.

Quartus 1l Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Device Resource Guide

4-13

Figure 4-9. Quartus Il Settings Dialog Box

Settings - demo_design

Category:

General
Files
Libwasies
Device
= Operating Settings and Conditions
Voltage
Temperature
= Compilation Process Settings
Early Timing E stmate
Incremental Compilation
4+ EDA Tool Settings
= Analyss & Synthesis Settings
WHDL Input
Verilog HOL Input
Default Parameters
Synthesis Methist Optimizations
= Fitter Seltings

= Timing Analysis Setlings
TimeQuest Timing Analzer
+| Classic Tming Analyzes Settings
Aszsembles
+ Design Assistant
SignalT ap || Logic Analyzer
Logic Anabszer Interface
+ Simdator Sellings
PowerPlay Powes Analyzer Settings

Physical Syrthesis Optimizations

Select the family and device you want to target for compdation.

Device famiy

Show in ‘Avaiable devices s
Family [Stratec 1 =] || Packsge [Any <]
I]] e [ay =]
Speedgiade: [ary v

Target device

" Auto device selected by the Fitter

& Specific device selected in ‘Avalable devices' fist
r

[~ Show advanced devices
W HadCopy compatible only

Device and Fin Options.. |
Avalable devices:
Name | Coev. | ALUTs | Usetll. | Memor. | DSP PLL
EPISE110F1152C2 1.V 85200 744 8248320 112 [
EP3SE110F1152C3 1.1Y £5200 744 H248320 112]
EP3SE110F1152C4 7 8248320 112 8
EP3SE110F1152C4L 0%or. 85200 744 8248320 112 []
< >
Migration compatibdity Companion device
Migration Devices. . HardCopy . |HCI32FF1152 [Advanced] B
2 migeation devices selected ¥ Limat DSP & RAM to HardCopy device resources
co_|

You can also specify your HardCopy companion device using the following tool

command language (Tcl) command:

set _gl obal _assi gnnent - nane\

DEVI CE_TECHNOLOGY_M GRATI ON_LI ST <Har dCopy Devi ce Part Nunber>

For example, to select the HC230F1020 device as your HardCopy companion device
for the EP25130F1020C4 FPGA, the Tcl command is:

set _gl obal _assi gnnent - name\

DEVI CE_TECHNOLOGY_M GRATI ON_LI ST HC230F1020C

HardCopy Device Resource Guide

The HardCopy Device Resource Guide compares the resources required to
successfully compile a design with the resources available in the various HardCopy
devices. The report rates each HardCopy device and each device resource on how
well it fits the design. The Quartus II software generates the HardCopy Device
Resource Guide for all designs successfully compiled for FPGA devices. This guide is
found in the Fitter folder of the Compilation Report. Figure 4-10 shows an example of
the HardCopy Device Resource Guide. Refer to Table 4-2 for an explanation of the

color codes in Figure 4-10.

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-14 Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Device Resource Guide

Figure 4-10. HardCopy Device Resource Guide

HardCopy Device Resource Guide

Color Legend: A~
- Green:
-- Package Resource: The HardCopy device package can be migrated from the selected FPGA device package, and the design has been fitted
with the target device migration enabled.

Resource Stratix ||
EF25130

1 Migration Compatibility
2 Primary Migration Conztraint Package Package Package Package Package Package Package
3 | Package FBG& -1020 |FEGA - 484 |FBGA - 484 |FBGA - 672 |FEGA - 780 FBG& - 1020 |FEGA - 1508
4= Logic - 19% 19% 10% 10% =4 4% 4%
5 | - Logic cell: JEE72ALUTs
5 | - D5P elements 1]
7| Pins
5 | - Total 515 5157302 |515/335 |515/493 |515/49% | 515/699 515 /743 515 /952
ED - Differential nput a 0/EE 0/70 0/40 0790 0/128 07224 0/272
0] - Differential Output a 0744 0/50 /70 0470 0/112 0/ 200 0/ 256
11| - PCl/ PClx a 0/153 0/167 07245 07247 0/359 0/ 367 0/472
2| - D0 a 0/20 0/20 0/50 07580 0/ 204 0/ 204 0/204
3] - DS a 0/8 0/8 0/18 0418 0/7z2 0/7z2 0/7z2
W = Memary
5] - M-Rak g E/0 E/0 E/2 E/2 E/6 E/9 E/9
18] - M4K blocks & M512 blocks™ |44
17| = PLLs
8] - Enhanced 2 272 242 2/2 242 274 274 274
9] - Fast a 0/2 0/2 0/2 0/2 0/4 0/8 0/8
20| DLLs a 041 041 041 041 0/2 0/2 0/2
21| & SERDES
2| - AR a 0417 0/21 0/3 0431 0/ 46 0/9z2 0/118
= - TR a 0/18 0/14 0/29 0429 0/44 0/8s 0/118
E = Configuration
25| - CRC a 0/0 0/0 o/0 0/0 0/0 0/0 0/0
3 - A5 a 0/0 0/0 o/0 0/0 0/0 0/0 0/0
I - Remote Update a 0/0 0/0 o/0 0/0 0/0 0/0 0/0
E - JTAG a 041 041 041 041 041 041 041

* Device iz preliminary. Overall performance is expected to be degraded.
* Desigh contains one or more M512 blocks, which cannot be migrated to HardCopy devices.

Use this report to determine which HardCopy device is a potential candidate for your
design. The HardCopy device package must be compatible with the FPGA device
package. A logic resource usage greater than 100% or a ratio greater than 1:1 in any
category indicates that the design probably will not fit in that particular HardCopy
device.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Device Resource Guide

4-15

Table 4-2. HardCopy Device Resource Guide Golor Legend

Color Package Resource (7) Device Resources
The design can map to the HardCopy package and The resource quantity is within the range of the
has been fitted with target device migration enabled | HardCopy device and the design can likely map if all

Green in the HardCopy Companion Device dialog box. other resources also fit.

(High) You are still required to compile the HardCopy
revision to ensure the design is able to route and
close timing.

The design can map to the HardCopy package. The resource quantity is within the range of the
However, the design has not been fitted with the HardCopy device. However, the resource is at risk of
target device migration enabled in the HardCopy exceeding the range for the HardCopy package.

Orange Companion Device dialog box. If your target HardCopy device falls in this category,

(Medium) compile your design targeting the HardCopy device
as soon as possible to check if the design fits and is
able to route and migrate all other resources. You
might have to select a larger device.

Red The design cannot map to the HardCopy package. The resource quantity exceeds the range of the

(None) HardCopy device. The design cannot migrate to this

HardCopy device.

Note to Table 4-2:

(1) The package resource is constrained by the FPGA for which the design was compiled. Only vertical migration devices within the same package
are able to migrate to HardCopy devices.

The HardCopy architecture consists of an array of fine-grained HCells, which are
used to build logic equivalent to FPGA adaptive logic modules (ALMs) and digital

signal processing (DSP) blocks. The DSP blocks in HardCopy devices match the
functionality of the FPGA DSP blocks, though timing of these blocks is different than
the FPGA DSP blocks because they are constructed of HCell macros. The memory
blocks in HardCopy devices are equivalent to the FPGA memory blocks. Preliminary
timing reports of the HardCopy device are available in the Quartus II software. Final
timing results of the HardCopy device are provided by the Altera HardCopy Design
Center after the HardCopy back-end process is complete.

For more information about the HardCopy device resources, refer to the respective
HardCopy series device handbook on the Altera website.

The report example in Figure 4-10 shows the resource comparisons for a design
compiled for an EP25130F1020 device. Based on the report, the HC230F1020 device in
the 1,020-pin FineLine BGA package is an appropriate HardCopy device. If the
HC230F1020 device is not specified as a migration target during the compilation, its
package and migration compatibility is rated orange, or Medium. The migration
compatibilities of the other HardCopy devices are rated red, or None, because the
package types are incompatible with the FPGA device. The 1,020-pin FBGA HC240
device is rated red because it is only compatible with the EP25180F1020 device.

Figure 4-11 shows the report after the (unchanged) design was recompiled with the
HardCopy HC230F1020 device specified as a migration target. Now the HC230F1020
device package and migration compatibility is rated green, or High.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-16 Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus I Software

Figure 4-11. HardCopy Device Resource Guide with Target Migration Enabled

HardCopy Device Resource Guide

Color Legend:
- Green:
- Package Resource: The HardCopy device package can be migrated from the selected FPGA device package, and the design has been fitted
with the target device migration enabled.

Resource Stratix ||
EFP25130
1 Iigration Corpatibility
2_ Frimary kigration Conztraint Package Package Package Package Package Package
3| Package FBGA-1020 |FEGA - 484 |FEGA - 484 |FBGA-B72 |FBGA - 780 |FBGA- 1020 |FBGA-1020 |FBGA - 1508

HardCopy Recommended Settings in the Quartus Il Software

The HardCopy development flow involves additional planning and preparation in
the Quartus II software compared to a standard FPGA design. Additional planning
and preparation is required because you are developing your design for
implementation in two devices: a prototype of your design/system in an FPGA and a
companion revision in a HardCopy device for production. Additional settings and
constraints are required to make the FPGA design compatible with the HardCopy
device, and in some cases, you must remove certain settings in the design. This
section explains the additional settings and constraints necessary for your design to
be successful in both FPGA and HardCopy ASIC devices.

Figure 4-12 shows the Recommendations dialog box with the recommended settings.

Figure 4-12. Quartus |l Recommended Settings

For optimal design performance, Altera recommends you use the following settings.
These recommendations are based on settings changes pou made in the Settings
dialog box. Turn off any settings you do not want to change.

Accept | Sefting | Walue

Use TimeQuest Timing Snalyzer On

Fiun Design Assistant during compilation On

Dizable Assembler during compilation | QU

|Enable HardCopy Design Readiness Check |On

| Optimize: Hold Tiring Al paths

| Dptimize: Fast-Comer Timing |On

Reserve all unused pins As input tri-stated with weak pull-up

I Always accept Altera's recommendations

[Mate: Turning on thiz option permanently suppresses this dialog box. You can
change thiz getting in the Options dialog box)

Limit DSP and RAM to HardCopy Device Resources

The Limit DSP & RAM to HardCopy device resources option maintains
compatibility between the FPGA and HardCopy devices by ensuring your design
does not use resources in the FPGA device that are not available in the selected
HardCopy device or vice versa. You can access the Limit DSP & RAM to HardCopy
device resources option by clicking Device on the Assignments menu. On the Device
page, select an FPGA or HardCopy device family in the Family list. For example, if
the prototype device is a Stratix II FPGA, in the Family list, select Stratix II. Under
Companion device, Limit DSP & RAM to HardCopy device resources is turned on
by default (Figure 4-13).

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-17
HardCopy Recommended Settings in the Quartus Il Software

L=~ 1If you require additional memory blocks or DSP blocks for debugging purposes using
the SignalTap® II Embedded Logic Analyzer, you can temporarily turn the Limit DSP
& RAM to HardCopy device resources option off to compile and verify your design
in your test environment. However, your final FPGA and HardCopy designs
submitted to Altera for the HardCopy back-end must be compiled with this setting
turned on.

Figure 4-13. Limit DSP & RAM to HardCopy Device Resources Check Box

Campanion device
HardCopy: |HC210F484C |

[v Limit DSP & Bak to HardCopy device resources

Enabling Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy designs for
design rule violations before submitting the designs to the Altera HardCopy Design
Center. Additionally, you must fix all critical and high-level errors.

['=" Altera recommends turning on the Design Assistant to run automatically during each
compilation so that you can see the violations you must fix or waive after reviewing
each violation.

<o For more information about the Design Assistant and its rules, refer to the respective
HardCopy series device handbook on the Altera website.

To enable the Design Assistant to run during compilation, on the Assignments menu,
click Settings. In the Category list, select Design Assistant and turn on Run Design
Assistant during compilation (Figure 4-14) or enter the following Tcl command in
the Tcl Console:

set _gl obal _assi gnment -name ENABLE_DRC _SETTI NGS ON «

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-18

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus I Software

Figure 4-14. Enabling Design Assistant

Settings - demo_design_hc

Categary

¥

-

)

General

Files

Libraries

Device

Operating Settings and Conditions
Compilation Process Settings
EDA Taol Settings

- Analysis & Synthesis Settings

Fitter Settings

Timing Analysis Seltings
Assembler

Design Assistant
SignalTap Il Logic Analyzer
Logic Analyzer Interface

|- Simulator Settings

PowerPlay Power Analyzer Setlings
SSM Analyzer

¥ Run Design Assistant during compilation

Select the rules pou want the Design Assistant to apply to the project:

Specify the potential design problems that you want the Design Assistant to check. You can choose to check the design for individual
prablemns, ar & categony of design problems.

B Design Assistant configuration mle names
F Clock

Resat

iming closure

oh-synchronous design structure
e Signal race

- Asynchronous clock domains
w-[__| Finite state machine

Report Settings... Custam Rules...
(]S Cancel

Timing Settings

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

Beginning with Quartus II software version 7.1, the TimeQuest Timing Analyzer is the
required timing analysis tool for all designs. The Classic Timing Analyzer is no longer
supported and the Altera HardCopy Design Center does not accept any designs that

use the Classic Timing Analyzer for timing closure.

If you are using the Classic Timing Analyzer, Altera strongly recommends that you
switch to the TimeQuest Timing Analyzer.

For more information about switching to the TimeQuest Timing Analyzer, refer to the
Switching to the Quartus Il TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus I1 Handbook.

When you specify the TimeQuest Timing Analyzer as the timing analysis tool, the
TimeQuest Timing Analyzer guides the Fitter and analyzes timing results after
compilation.

TimeQuest Timing Analyzer

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates timing in your design by using an industry-standard constraint, analysis,
and reporting methodology. You can use the TimeQuest Timing Analyzer’s GUI or
command-line interface to constrain, analyze, and report results for all timing paths in
your design.

© November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-19
HardCopy Recommended Settings in the Quartus Il Software

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and signal
transition arrival and required times. You can specify timing constraints in the
Synopsys Design Constraints (.sdc) file format using the GUI or command-line
interface. The Quartus II Fitter optimizes the placement of logic to meet your
constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
Console pane. If the TimeQuest Timing Analyzer reports any timing violations, you
can customize the reporting to view precise timing information about specific paths,
and then constrain those paths to correct the violations. When your design is free of
timing violations, you can be confident that the logic will operate as intended in the
target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool that you use
as a sign-off tool for Altera FPGAs and HardCopy ASICs.

Setting Up the TimeQuest Timing Analyzer

To specify the TimeQuest Timing Analyzer as the timing analysis tool, on the
Assignments menu, click Timing Analysis Settings, and on the Timing Analysis
Settings page, select Use TimeQuest Timing Analyzer during compilation.

Use the following Tcl command to use the TimeQuest Timing Analyzer as your timing
analysis engine:

set _gl obal _assi gnment -name USE_TI MEQUEST_TI M NG_ANALYZER ON

You can launch the TimeQuest Timing Analyzer in one of the following modes:
m Directly from the Quartus II software

m Stand-alone mode

m Command-line mode

To perform a thorough Static Timing Analysis, you must specify all the timing
requirements. The most important timing requirements are clocks and generated
clocks, input and output delays, false paths and multi-cycle paths, and minimum and
maximum delays.

In the TimeQuest Timing Analyzer, clock latency, and recovery and removal analysis
are enabled by default.

For more information about the TimeQuest Timing Analyzer, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Constraints for Glock Effect Characteristics

The create_cl ock, create_generated cl ock commands create ideal clocks
and do not account for board effects. In order to account for clock effect
characteristics, you can use the following commands:

m set_clock_|atency

m set_clock _uncertainty

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

4-20 Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus I Software

For more information about how to use these commands, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Beginning in the Quartus II software version 7.1, you can use the command
derive_cl ock_uncertai nty to automatically derive the clock uncertainties in
your .sdc file. This command is useful when you are unsure of the clock uncertainties.
The calculated clock uncertainty values are based on I/O buffer, static phase errors
(SPE) and jitter in the PLLs, clock networks, and core noise.

The deri ve_cl ock_uncert ai nt y command applies inter-clock, intra-clock, and
I/0 interface uncertainties. This command automatically calculates and applies setup
and hold clock uncertainties for each clock-to-clock transfer found in your design.

To determine I/O interface uncertainty, you must create a virtual clock, then assign
delays to the input/output ports by using the set _i nput _del ay and
set _out put _del ay commands for that virtual clock.

L=~ These uncertainties are applied in addition to those you specified using the
set _cl ock_uncert ai nt y command. However, if a clock uncertainty assignment
for a source and destination pair was already defined, the new one is ignored. In this
case, you can use either the - over wr i t e command to overwrite the previous clock
uncertainty command, or manually remove them by using the
renove_cl ock_uncert ai nty command.

The syntax for the deri ve_cl ock_uncert ai nt y command is as follows:

derive_cl ock_uncertainty [-h | -help] [-long_help] \
[-overwite]

where the arguments are listed in Table 4-3:

Table 4-3. Arguments for derive_clock_uncertainty

Option Description
-h | -help Short help
-1 ong_hel p Long help with examples and possible return values
-overwite Overwrites previously performed clock uncertainty assignments

When the deri ve_cl ock_uncert ai nty constraint is used, a
PLLJ_PLLSPE_INFO.txt file is automatically generated in the project directory. This
file lists the names of the PLLs, as well as their jitter and SPE values in the design. This
text file can be used by the HCII_DTW_CU_Calculator.

<o For more information about the deri ve_cl ock_uncert ai nt y command, refer to
the TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

L=~ Altera strongly recommends that you use the der i ve_cl ock_uncertai nty
command in the HardCopy revision. The Altera HardCopy Design Center does not
accept designs that do not have clock uncertainty constraints by either using the
derive_cl ock_uncertai nt y command or the HardCopy II Clock Uncertainty
Calculator, and then using the set _cl ock_uncert ai nt y command.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-21
HardCopy Recommended Settings in the Quartus Il Software

“*.e For more information about how to use the HardCopy II Clock Uncertainty

Calculator, refer to the HardCopy 11 Clock Uncertainty Calculator User Guide.

Quartus Il Software Features Supported for HardCopy Designs

The Quartus II software supports optimization features for HardCopy prototype
development, including:

m Physical Synthesis Optimization
m LogicLock™ Regions
m PowerPlay Power Analyzer

m Incremental Compilation (Synthesis and Fitter)

Physical Synthesis Optimization

To set physical synthesis optimizations for the FPGA revision of the design, on the
Assignments menu, click Settings. In the Category list, expand Compilation Process
Settings, and then click Physical Synthesis Optimizations. You can turn on Perform
physical synthesis for combination logic or Perform register retiming under
Optimize for performance (physical synthesis). The Effort level for HardCopy III
and HardCopy IV devices is limited to Fast only because the performance gain
achieved compared to the compile time is very limited.

The physical synthesis optimizations performed in the FPGA device are passed to the
HardCopy companion revision for placement and timing closure. When designing
with a HardCopy device first, physical synthesis optimizations can be enabled for the
HardCopy device, and these post-fit optimizations are passed to the FPGA revision.

LogicLock Regions

The use of LogicLock regions in the FPGA is supported for designs targeted to
HardCopy devices. However, LogicLock regions are not passed into the HardCopy
companion revision. You can use LogicLock regions in the HardCopy design, but you
must create new LogicLock regions in the HardCopy companion revision. In addition,
LogicLock regions in HardCopy devices cannot have their properties set to Auto Size.
However, floating LogicLock regions are supported. HardCopy LogicLock regions
must be manually sized and placed in the floorplan. When LogicLock regions are
created in a HardCopy device, they start with width and height dimensions set to
(1,1), and the origin coordinates for placement are at X1_Y1 in the lower left corner of
the floorplan. You must adjust the size and location of the LogicLock regions you
created in the HardCopy device before compiling the design.

- For information about using LogicLock regions, refer to the Analyzing and Optimizing
the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy and FPGA devices
using the PowerPlay Early Power Estimator. Use the PowerPlay Power Analyzer for
more accurate estimation of your device’s power consumption.

«o For more information about using the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_hc2_cuc.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

4-22

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Design Readiness Check

Incremental Compilation

Quartus II incremental compilation using the top-down flow in the FPGA is
supported in both the FPGA first design flow and the HardCopy first design flow.

To take advantage of Quartus II incremental compilation, organize your design into
logical and physical partitions for synthesis and fitting (or place and route).
Incremental compilation preserves the compilation results and performance of
unchanged partitions in your design. This feature dramatically reduces your design
iteration time by focusing new compilations only on changed design partitions. New
compilation results are then merged with the previous compilation results from
unchanged design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions untouched.

Be aware of the following guidelines when using Quartus II incremental compilation:
m User partitions and synthesis results are passed to a companion device.

m LogicLock regions are suggested for user partitions, but are not migrated
automatically.

m The compilation after migration to a companion device requires a full compilation
(all partitions are compiled).

m The entire design must be migrated between the FPGA and HardCopy companion
devices. The Quartus II software does not support migration of partitions between
companion devices.

m Bottom-up Quartus II incremental compilation is not supported for designs
targeting HardCopy devices.

m Physical synthesis can be run on individual partitions within the originating
device only. The resulting optimizations are preserved in the migration to the
companion device.

For information about using Quartus II incremental compilation, refer to the
Quartus 11 Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

HardCopy Design Readiness Check

Beginning in the Quartus II software version 7.2, the HardCopy Design Readiness
Check (HCDRC) is available as one of the processing steps in the default compilation
of either the FPGA first or the HardCopy first flow. This feature checks issues that
must be addressed prior to handing off the HardCopy design to the Altera HardCopy
Design Center for the HardCopy back-end process. This is different from the user-
driven approach in HardCopy Advisor, in which you must manually open the
Adpvisor to check for any violations.

The implemented checking in the HCDRC for the Quartus II software version 7.2 is
only I/O-related. Beginning in the Quartus II software version 8.0, the checks have
been extended to include other logic checks such as PLL, RAM, and settings checks
(Global Setting, Instance Setting, and Operating Setting).

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices

HardCopy Design Readiness Check

4-23

Execution of the HardCopy Design Readiness Check

The HardCopy Design Readiness Check can be turned on through the .qsf file, as

follows:

set gl obal _assi gnnent -nane \
FLOW HARDCOPY_DESI GN_READI NESS_CHECK ON

set gl obal _assi gnnent -nane \
FLOW HARDCOPY_DESI GN_READI NESS_CHECK OFF

The tool can also be turned on through the GUI, as shown in Figure 4-15.

'~ The HardCopy Design Readiness Check is turned On by default.

Figure 4-15. HardCopy Design Readiness Check on the More Compilation Process Settings page

More Compilation Process Settings

Specify compilation process options.

X

Option

- " Reset
Name: |Enable HardCopy Design Readiness Check. j
Seing (=]

Drescription:

Allowes wou to turn on or turn off the HardCopy Design Readiness Check
during compilation.

Ewisting option settings:

Mame: Sefting:
Dizable OpenCore Plus hardware evaluation QFf
Dizplay entity name for node name On
Enable HardCopy Design Readiness Check On
Enable reduced memary mode [l

Feading or wiiting Hexadecimal.hex) File in byte addressabl.. Use global settings

=]

Cancel

Stratix Il Support

Beginning in the Quartus II software version 8.0, the HCDRC enables support for
Stratix III devices. This includes automated execution of HCDRC in the Stratix III

design flow. However, users must select a HardCopy III companion first for HCDRC
to run during the compilation. Refer to Figure 4-16.

© November 2009 Altera Corporation

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-24

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Design Readiness Check

Setting Check

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 4-16. Stratix I/l Support in HardCopy Design Readiness Check

Projed: Navigtor =% &b /0 Check Missing Termination assign___ }

Eniity &3 Compllation Report
= &EE Legal Notice . . Default
[& s epsemrrme | | RIS, G Ll
atr dump SHER Flow Settings input] | input o
SR Flow Hon-Default Global Settings inputd | input o
SHER Flow Elapsed Time input2 |input ng
EB Fiow Log | Series 50 Dhm without Callbration|
gg :::‘r’"s & Synthesis | Series 50 Ohm without Calibration|
=123 HardCopy Design Readiness Check.
B summary
= & 1o Check
SHER summary
SHER Missing [/O Standard assignment
&HER Missing Output Pin Load assignment:
SHEH Missing Pin Location assignment
SHER Missing Termination assignment
&SHER Uncornected Pin
&1 Logic Check

&) Messages

1/0 Check Missing Termination assignment

output] | output

[orfefofm]

output2 | output

All checks are the same as for other families. If the check is specific to Stratix III
devices only, HCDRC dynamically runs the check exclusive to the Stratix III revision.

Beginning in the Quartus II software version 8.0, HCDRC provides the Setting Check
report section. The report panels in this category list the results of the setting checks
from the Handoff Report. The Setting Check report consists of the following three
sections.

Summary

The Summary section displays the number of settings that do not meet
recommendations. One of the following messages is displayed:

<nunber >gl obal setting(s) do not neet recomrendation. Pl ease
review the reconmendati on and do appropriate correction as it
may affect the result of the migration to HardCopy.

or

<nunber >instance setting(s) do not neet reconmendation. Pl ease
revi ew the recomendati on and do appropriate correction as it
may affect the result of the migration to HardCopy.

Global Setting

This section displays recommendations for global settings only. Global settings that
currently have a different value than the recommended value are highlighted in red.

Instance Setting

This section is identical to the Global Setting section, but checks only for instances
assignments.

Operating Setting

In this section, checks related to the recommended operating settings for the FPGA
and the HardCopy device are reported.

© November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-25
HardCopy Design Readiness Check

The Operating Setting check is primarily applicable to Stratix III devices used as
prototype FPGAs because HardCopy III devices only support 0.9-V core voltage,
whereas the Stratix III devices support both 1.1 V and 0.9 V core voltage.

Figure 4-17 shows the Setting Check category for HCDRC in the Quartus II software

version 8.0.

Figure 4-17. Setting Check

@ Compilation Report - Setting Check._. l

@a Compilation Report Setting Check Global Setting
& B Legal Notice O Actual Recommended
@E Flows Summary [Setting Setting
@% Flow Settings 1} Enable Design Assistant] iyl
g% Flow Mon-Default Global Settings 2| Dizable &zsembler OFF OFF
&8 Flow Elapsed Time B . 45 INPUT TRISTATED A5 INPUT TRISTATED
S Flowlog [E] feserve all unused pins WITH WEAK PULLIP WITH WEAK PULL-UP
+ g% Q-ZSIYSIS & Synthesis 4| Optimize Hold Timing [l'DPEAPT:TSHéND FAIMIR LR ALL PATHS
+ tker -
= %a HardCopy Design Readiness Check i Optimize Fast-Carmer Timing aFF oM
Sumnmar erform Multicorner Analyzis
v |E| Perfarm Mulki Analysi oM oM
+ @D 1/0 Check 7 Enable HardCopy Design Feadiness M N
+ @D Lagic Check || Check E—
= @,a Setting Check 5 H;idﬂg:sg:;ad Fattern as Uninitialized an aFF
EHEE summary —
EHE Global 5etting
EHEE Instance Setting
5&; Messages

1/0 Check

Setting Check also includes checking for illegal assignments in the HardCopy design
flow. The illegal assignments checks are shown in Example 4-1.

Example 4-1. lllegal Assignment Checks
USE_CHECKERED_PATTERN_AS_UNI NI TI ALI ZED_RAM CONTENT ON (1)
S| GNAL_PROBE_ENABLE ON| OFF

S| GNAL_PROBE_SOURCE ON| OFF (2)

Notes to Example 4-1:

(1) Refer to the section “RAM Usage Check” on page 4-27.
(2) SignalProbe is not supported in HardCopy ASICs.

The HCDRC I/0O Check ensures that you have assigned location assignments for the
pins, I/O Standard, current strength assignment, output pin load assignment,
termination assignments, and also checks for any unconnected pins. The tool issues a
warning if you have not specified the assignment for the I/O check.

For example, for missing I/O Standard assignments, the HCDRC issues the following
warning:

5 pin(s) have no explicit 1/0O Standard assi gnments provided in
the setting file and default val ues are bei ng used. Pl ease add a
specific 1/0O Standard assi gnment for these pins.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-26

Chapter 4: Quartus Il Support for HardCopy Series Devices
HardCopy Design Readiness Check

Input Pin Placement for Global and Regional Clock

Due to the difference in the interconnect delays between the FPGA and HardCopy
device, the use of non-primary clock inputs as clock inputs in a design can cause
timing closure to be a problem when migrating the FPGA to the HardCopy device.
The Input Pin Placement for Global and Regional Clock check informs you of the
problem before finalizing the pin location, so that any clock inputs can be moved to
the primary clock input.

This check lists all the pins that drive the global or regional clock but are not placed in
a dedicated clock pad. All pins are required to have manual location assignments.
This is highlighted prior to this check. See Figure 4-18.

Figure 4-18. 1/0 Check in the HardCopy Design Readiness Check

- HardCopy Design Readiness Check
&HEE Summary

—-&H 10 Chedk
BB Summary
E&HEE Missing I/ Standard assignment
%@ Missing ubput Pin Load assignment
%g Missing Pin Location assignment
%@ Missing Termination assignment
EHEE Unconnected Pin

The following message appears in the message panel during compilation and also
appears in the I/O Check Summary:

<nunber> pin(s) drives global or regional clock, but is not
pl aced in a dedicated clock pin position. Cock insertion delay
will be different between FPGA and Har dCopy conpani on revi sions
because of differences in local routing interconnect del ays.

PLL Usage Check

The PLL Usage Check Report lists PLL usage requirements and violations checks.

PLL Real-Time Reconfigurable Check
This check highlights the PLLs that do not have PLL reconfiguration. PLL
reconfiguration allows fine tuning of the PLLs in the design after manufacturing.

The following message appears in the message panel during compilation and also
appears in the Logic Check Summary:

<nunber> PLL(s) don't have real time reconfiguration. It is
hi ghly recommended that each PLL to have PLL reconfiguration
for designs mgrating to HardCopy.

PLL elements that do not have PLL reconfiguration are listed in a table.

PLL Clock Outputs Driving Multiple Clock Network Types Check

This check is derived from the Design Assistant rule check for HardCopy (H102). It
lists all PLL instances in the current design that have clock outputs driving multiple
clock network types. The following message is displayed if the tool detects violations
of this type:

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-27
HardCopy Design Readiness Check

Found <nunber> PLL(s) with clock outputs that drives multiple
cl ock network types.

PLL with No Compensation Mode Check

This check list all PLLs that are in No compensation operating mode. This setting is
not recommended for a design migrating to a HardCopy device because of differences
in the clock networks and the clock delays between FPGA and HardCopy devices.

The following warning message appears during compilation when a PLL is in a No
compensation mode:

<nunber> PLL(sS) is operating in a "No conpensation" node.

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check

When a PLL is directly feeding an output pin, it must be set to Zero Delay Buffer
operating mode. However, if a PLL mode is set either in normal compensation mode
or source synchronous mode, a warning message is printed during compilation.

During the runtime of HC Ready, the following warning message appears:

<nunber> PLL(s) is in normal or source synchronous node that is
not fully conpensated because it feeds an output pin -- only
PLLs in zero del ay buffer node can fully conmpensate output pins.

RAM Usage Check

HardCopy series devices do not support initialized RAM blocks upon power-up.
However, you can use the ALTMEM_INIT megafunction to initialize the RAMs in
your design.

The ALTMEM_INIT megafunction initializes the RAM of a HardCopy series device
with the content of a ROM.

For more information about the ALTMEM_INIT megafunction, refer to the RAM
Initializer (ALTMEM_INIT) Megafunction User Guide.

In HardCopy series devices, RAM blocks power up uninitialized. During the RAM
Usage Check, the HCDRC tool checks for RAMs that are initialized using a Memory
Initialization File (.mif). Any RAM with a .mif file is listed in a table with the
following compilation warning message:

<nunber> RAM's) have Menory Initialization File (MF). HardCopy
devices do not allowinitialized RAM Pl ease ensure that no RAM
isinitialized by a MF file.

Initialized Memory Dependency Testing

Beginning in the Quartus II software version 7.2, the Assembler allows you to write
an FPGA programming file with an initialized checkerboard pattern for memory
contents of M4K memory blocks for the FPGA revision. You should not use this
option in a Stratix Il revision used to migrate to the HardCopy II revision, because it
creates irreconcilable revision differences between the Stratix II and HardCopy 11
designs since the HardCopy handoff cannot physically have any initialized memory
content. Use this option only on a parallel copy of your compiled Stratix II design that
you wish to test on your board.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_altmem_init.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

4-28

Chapter 4: Quartus Il Support for HardCopy Series Devices
Performing ECOs with Quartus Il Engineering Change Management with the

To create a programming file with an initialized checkerboard pattern, perform the
following steps:

1. Compile your completed Stratix II design revision to use for prototype testing.
This is the revision you should eventually use to create your HardCopy 11
companion revision. On the Project menu, point to HardCopy Utilities and click
Create/Overwrite HardCopy Companion Revision.

2. Complete the HardCopy II companion revision creation, and then compile,
compare, and hand off archive generation for your design.

3. After completing the HardCopy Il handoff archive generation, switch back to your
Stratix II revision, and on the Quartus II Project menu, click Revisions, and then
click Create in the Revisions dialog box.

4. In the Create Revision dialog box, type a a revision name in the Revision name
box and turn on Copy database and Set as current revision. This step copies your
Stratix II revision and sets the new revision as the current open revision in the
Quartus II software.

5. On the Assignments menu, point to Settings, and then click Assembler under
Category. Turn on Use checkered pattern as uninitialized RAM content on the
Assembler page, or edit the revision .qsf file and add the following line:

set gl obal _assi gnnent -nane
USE_CHECKERED PATTERN_AS UNI NI TI ALI ZED_RAM CONTENT ON

6. Run the Assembler in the Stratix II revision to generate a new programming file
for your FPGA.

7. Test the new programming file in your prototype environment to determine if
your design has a dependency for initial FPGA RAM contents being initialized
with zeros after power-up and configuration.

Because the checkerboard pattern is used for testing, the patterns written into the
RAM blocks for the new programming file may not detect all cases of zero-initialized
RAM content dependencies. Some designs may detect only one bit as zero (for
example, the LSB of a memory word), so this method may not detect all cases. This
checkerboard pattern test will detect when a full RAM word line is expected as zeros
at startup.

Performing ECOs with Quartus Il Engineering Change Management with
the Chip Planner

As designs grow larger in density, analyzing designs for performance, routing
congestion, logic placement, and executing Engineering Change Orders (ECOs)
becomes critical. In addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This process may become
difficult to manage, because ECOs are often implemented as last minute changes to
your design.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-29
Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

With the Altera Chip Planner tool, you can shorten the design cycle time significantly.
When changes are made to your design as ECOs, you do not have to perform a full
compilation in the Quartus II software. Instead, you make changes directly to the post
place-and-route netlist, generate a new programming file, test the revised design by
performing a gate-level simulation and timing analysis, and proceed to verify the fix
on the system. When the fix has been verified on the FPGA, switch to the HardCopy
revision, apply the same ECOs, run the timing analyzer and assembler, perform a
revision compare, and then run the HardCopy Netlist Writer for design submission.

There are three types of migration scenarios:

B One-to-one changes, which are changes that can be implemented on each
architecture—FPGA and HardCopy.

m Changes that must be implemented differently on the two architectures to achieve
the same result.

m Changes that cannot be implemented on both architectures.

The following sections outline the methods for migrating each of these types of
changes.

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both architectures.
In general, such changes include those that affect only I/O cells or PLL cells. Some
examples of one-to-one changes are changes such as creating, deleting, or moving
pins, changing pin or PLL properties, or changing pin connectivity (provided the
source and destination of the connectivity changes are I/Os or PLLs). These can be
implemented identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated Tcl script
(with a minor text edit) on the companion revision should implement the appropriate
changes as follows:

1. Export the changes from the Change Manager to Tcl.

2. Open the generated Tcl script, change the line pr oj ect _open <pr oj ect > -
revisi on <revisi on> to refer to the appropriate companion revision.

3. Apply the Tcl script to the companion revision.
The following is a partial list of examples of this type:
m I/O creation, deletion, and moves

m I/O property changes (for example, I/O standards, delay chain settings, and so
forth)

m PLL property changes

m Connectivity changes between non-LCELL_COMB atoms (for example, PLL to
1/0, DSP to I/0, and so forth)

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-30 Chapter 4: Quartus Il Support for HardCopy Series Devices
Performing ECOs with Quartus Il Engineering Change Management with the

Migrating Changes that Must be Implemented Differently

Some changes must be implemented differently on the two architectures. Changes
affecting the logic of the design can fall into this category. Examples are LUTMASK
changes, LC_COVB/HSADDER creation and deletion, and connectivity changes not
covered in the previous section.

Another example of changes that must be implemented differently, would be different
PLL settings for the FPGA and the HardCopy revisions.

- For more information about how to use different PLL settings for the FPGA and
HardCopy Devices, refer to AN 432: Using Different PLL Settings Between Stratix II and
HardCopy 1I Devices.

Table 4-4 summarizes suggested implementation for various changes.

Table 4-4. Implementation Suggestions for Various Changes

Change Type Suggested Implementation

LUTMASK changes Because a single FPGA atom can require multiple HardCopy atoms to
implement, it might be necessary to change multiple HardCopy atoms
to implement the change, including adding or modifying connectivity

Make/Delete LC_COMB If you are using an FPGA LC_COMB in extended mode (7-LUT) or are
using a SHARE chain, you must create multiple atoms to implement the
same logic functions in the HardCopy device. Additionally, the
placement of the LC_CQOMB cell has no meaning in the companion
revision as the underlying resources are different.

Make/Delete LC_FF The basic creation and deletion is the same on both architectures.
However, as with LC_CQOMB creation and deletion, the location of an
LC _FF in a HardCopy revision has no meaning in the FPGA revision,
and vice versa.

Editing Logic Connectivity | Because a LCELL_COMB atom might have to be broken up into
several HardCopy LCELL_CQOVB atoms, the source or destination
ports for connectivity changes might have to be analyzed to properly
implement the change in the companion revision.

Changes that Cannot be Migrated

A small set of changes cannot be implemented in both architectures because they are
not compatible in the both architectures. The best example of this occurs when
moving logic in a design; because the logic fabric is different between the two
architectures, locations in the FPGA are not compatible in HardCopy, and vice versa.

Overall Migration Flow

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful revision comparison
such that the design can be submitted to the Altera HardCopy Design Center.

Preparing the Revisions

The general procedure for migrating changes between devices is the same, whether
migrating from the FPGA to HardCopy device or vice versa. The major steps are
described below:

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/an/AN432.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-31
Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the companion
revision.

3. Compile the companion revision.

4. Run the Compare HardCopy Companion Revisions command. Both revisions
should pass the revision comparison.

If testing identifies problems requiring ECO changes, equivalent changes can be
applied to both FPGA and HardCopy revisions, as described in the following section.

Applying ECO Changes

The general flow for applying equivalent changes in companion revisions is described
below:

1. Make changes in one revision using the Chip Planner tools (Chip Planner,
Resource Property Editor, and Change Manager), and then verify and export these
changes by following these steps:

a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist Changes
command.

c. Verify correctness using timing analysis, simulation, and prototyping (FPGA
only). If more changes are required, repeat steps a and b.

d. Export change records from the Change Manager to Tcl scripts, or .csv or .txt
file formats.

This exported file is used to assist in making the equivalent changes in the
companion revision.

2. Open the companion revision in the Quartus II software.
3. Using the exported file, manually reapply the changes using the Chip Planner tool.

As stated previously, some changes can be reapplied directly to the companion
revision (either manually or by applying the Tcl commands), while others require
some modifications.

4. Run the Compare HardCopy Revisions command. The revisions should match.
5. Verify the correctness of all changes (you might have to run timing analysis).

6. Run the HardCopy Assembler command and the HardCopy Netlist Writer
command for design submission along with handoff files.

The Tcl command for running the HardCopy Assembler is as follows:
execute_nodul e -tool asm-args "--read_settings_fil es=off --
wite_settings_files=off"

The Tcl command for the HardCopy Netlist Writer is as follows:

execute _nodul e -tool cdb \
-args "--generate_hardcopy_fil es"\

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-32

Chapter 4: Quartus Il Support for HardCopy Series Devices
Formal Verification of FPGA and HardCopy Revisions

For more information about using Chip Planner, refer to the Quartus II Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Formal Verification of FPGA and HardCopy Revisions

Third-party formal verification software, Cadence Encounter Conformal verification
software, is used for FPGA and HardCopy families, as well as several other Altera
device families.

The formal verification flow for HardCopy ASIC designs is a two-step process. First,
you run formal verification on the FPGA netlist to ensure that the FPGA netlist
matches the RTL. Second, within the Quartus II software, use the Compare HardCopy
Revisions command to ensure that the HardCopy implementation matches the
FPGA.

While this flow is enabled, performing formal verification is not necessary due to the
one-to-one mapping of logic between the Stratix series FPGA prototype and the
HardCopy series ASIC.

To use the Conformal software with the Quartus II software project for your FPGA
design revision, you must enable the EDA Netlist Writer. You must turn on the EDA
Netlist Writer so it can generate the necessary netlist and command files required to
run the Conformal software. To automatically run the EDA Netlist Writer during the
compilation of your FPGA revision, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, under EDA Tool Settings, select Formal Verification, and
then in the Tool name list, select Conformal LEC.

3. Compile your FPGA and HardCopy design revisions.

The Quartus II EDA Netlist Writer produces the netlist for the FPGA when run on that
revision. You can compare your FPGA post-compilation netlist to your RTL source
code using the scripts generated by the EDA Netlist Writer.

After both the FPGA and HardCopy revisions have been compiled, you can run the
Compare HardCopy Revisions command to ensure that the HardCopy
implementation matches the FPGA.

For more information about using the Cadence Encounter Conformal verification
software, refer to the Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-33
Formal Verification of FPGA and HardCopy Revisions

HardCopy Floorplan View

The Quartus II software displays the floorplan and placement of your HardCopy
companion revision. This floorplan shows the preliminary placement and
connectivity of all I/O pins, PLLs, memory blocks, HCell macros, and DSP HCell
macros. Congestion mapping of routing connections can be viewed using the Layers
Setting dialog box (in the View menu) settings. This is useful in analyzing densely
packed areas of your floorplan that can reduce the peak performance of your design.
The Altera HardCopy Design Center verifies final HCell macro timing and placement
to guarantee timing closure is achieved.

Figure 4-19 shows an example of the HC230F1020 device floorplan.

Figure 4-19. HC230F1020 Device Floorplan

ﬂ
=

.

In this small example design, the logic is placed near the bottom edge. You can see the
placement of a DSP block constructed of HCell Macros, various logic HCell Macros,
and an M4K memory block. A labeled close-up view of this region is shown in
Figure 4-20.

Figure 4-20. Close-Up View of Floorplan

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

4-34

Chapter 4: Quartus Il Support for HardCopy Series Devices
Referenced Documents

The Altera HardCopy Design Center performs final placement and timing closure on
your HardCopy design based on the timing constraints provided in the FPGA design.

For more information about the Altera HardCopy Design Center process, refer to the
respective HardCopy series device handbook on the Altera website.

Referenced Documents

This chapter references the following documents:

AN 432: Using Different PLL Settings Between Stratix Il and HardCopy II Devices

Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus I1
Handbook

Cadence Encounter Conformal Support chapter in volume 3 of the Quartus I1
Handbook

HardCopy 1I Clock Uncertainty Calculator User Guide
Introduction to the Quartus II Software manual

Quartus 11 Engineering Change Management with the Chip Planner chapter in volume
2 of the Quartus II Handbook

Quartus 11 Handbook

Quartus 11 Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus Il Handbook

PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook
RAM Initializer (ALTMEM_INIT) Megafunction User Guide

Switching to the Quartus Il TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus 11 Handbook

Document Revision History

Table 4-5 shows the revision history for this chapter.

Table 4-5. Document Revision History (Part 1 of 2)

Date and
Document
Version Changes Made Summary of Changes
November 2009 m Removed HardCopy Stratix legacy support information Updated for Quartus I
v9.1.0 m Updated “Physical Synthesis Optimization” on page 4-21 software version 9.1
m Updated “Quartus Il Software Features Supported for HardCopy
Designs” on page 4-21
m Updated “Referenced Documents”
m Updated the tables and figures for HardCopy Series devices
March 2009 m Updated “RAM Usage Check” on page 4-27 Updated for Quartus I
v9.0.0 m Updated “Referenced Documents” software version 9.0

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/ug/ug_hc2_cuc.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

Chapter 4: Quartus Il Support for HardCopy Series Devices 4-35
Document Revision History

Table 4-5. Document Revision History (Part 2 of 2)

Date and
Document
Version Changes Made Summary of Changes
November 2008 m Added HardCopy IV E support information Updated for Quartus I
v8.1.0 m Added notes for Initialized Memory Dependency testing software version 8.1
m Changed page size t0 8.5” x 11”

May 2008 m Added new section “HardCopy Design Readiness Check” Updated for Quartus I
v8.0.0 = Updated the tables and figures for HardCopy Series devices software version 8.0

. For previous versions of the Quartus Il Handbook, refer to the Quartus 11 Handbook
Archive.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

4-36 Chapter 4: Quartus Il Support for HardCopy Series Devices
Document Revision History

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Section Il. Design Guidelines
/ANO 2 RYA g

When designing large and complex FPGAs, your design and coding styles can impact
your quality of results significantly. Designs following synchronous design practices
behave in a predictable and reliable manner, even when re-targeted to different device
families or speed grades. Using recommended HDL coding styles ensures that
synthesis tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic provides the
most flexibility when partitioning the design for incremental compilation, and leads
to the best results. If you create floorplan location assignments to control the
placement of different design blocks (useful in team-based designs so each designer
can target a different area of the device floorplan), following best practices is
important to maintaining good design performance.

This section presents design and coding style recommendations for your Altera®
design, and includes the following chapters:

m Chapter 5, Design Recommendations for Altera Devices and the Quartus II Design
Assistant

This chapter describes synchronous design practices, and provides guidelines for
combinational logic structures and clocking schemes. It also explains how to check
design “rules” using the Quartus® II Design Assistant. Finally, it discusses
targeting your design to use the clock and register-control features in the device
architecture.

Use this chapter at the start of your design process to guide the design.
m Chapter 6, Recommended HDL Coding Styles

This chapter discusses Altera megafunctions and provides specific Verilog HDL
and VHDL coding examples for inferring Altera dedicated logic such as memory
and DSP blocks. It also provides device-specific coding recommendations for
registers and certain logic functions such as tri-state signals, multiplexers, and
cyclic redundancy check (CRC) functions, and includes references to other Altera
documentation for low-level logic design.

Use this chapter when you code specific design blocks to ensure you create HDL
code that infers the optimal Altera device architecture.

m Chapter 8, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and partition your
design to take advantage of the compilation time savings, performance
preservation, and hierarchical design features offered by Quartus II incremental
compilation, and to help you create a design floorplan (using LogicLock™regions)
to support the flow when required.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

-2 Section II: Design Guidelines

Use this chapter when setting up your design hierarchy and determining the
interfaces between logic blocks in your design, as well as if /when you create a
design floorplan. You can also use this chapter to make changes to a design that
was not originally set up to take advantage of incremental compilation, because it
provides tips on changing a design to work better with an incremental design
flow.

For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

QA | I:l =)/ 5. Design Recommendations for Altera

QI151006-9.1.0

® Devices and the Quartus Il Design
Assistant

Introduction

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of such complex system designs, good
design practices have an enormous impact on your device’s timing performance, logic
utilization, and system reliability. Well-coded designs behave in a predictable and
reliable manner even when re-targeted to different families or speed grades. Good
design practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera® devices, adhere to the following guidelines:

m Understand the impact of synchronous design practices

m Follow recommended design techniques including hierarchical design
partitioning

m Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas and describes the
Quartus® II Design Assistant that can help you check your design for violations of
design recommendations.

This chapter contains the following sections:

m “Synchronous FPGA Design Practices” on page 5-2

m “Design Guidelines” on page 54

m “Checking Design Violations Using the Design Assistant” on page 5-13

m “Targeting Clock and Register-Control Architectural Features” on page 5-39
m “Targeting Embedded RAM Architectural Features” on page 541

For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital

signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

For information about migrating designs to HardCopy devices, refer to the Design
Guidelines for HardCopy Series Devices chapter in volume 1 of the HardCopy Series
Handbook.

For guidelines on partitioning a hierarchical design for incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

5-2

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Synchronous FPGA Design Practices

Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines some of the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all the registers’
timing requirements are met, a synchronous design behaves in a predictable and
reliable manner for all process, voltage, and temperature (PVT) conditions. You can
easily target synchronous designs to different device families or speed grades. In
addition, synchronous design practices help ensure successful migration if you plan
to migrate your design to a high-volume solution such as an Altera HardCopy device
or if you are prototyping an ASIC.

Fundamentals of Synchronous Design

=

In a synchronous design, everything is related to the clock signal. On every active
edge of the clock (usually the rising edge), the data inputs of registers are sampled
and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change
triggers a period of instability due to propagation delays through the logic as the
signals go through a number of transitions and finally settle to new values. Changes
happening on data inputs of registers do not affect the values of their outputs until the
next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as the
following timing requirements are met:

m Before an active clock edge, the data input has been stable for at least the setup
time of the register

m After an active clock edge, the data input remains stable for at least the hold time
of the register

When you specify all of your clock frequencies and other timing requirements, the
Quartus II Classic Timing Analyzer reports actual hardware requirements for the
setup times (ts;) and hold times (ty) for every pin of your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers within the Altera device.

To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feeds a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
input of the Altera device to help prevent a violation of the required setup and hold
times.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-3
Synchronous FPGA Design Practices

When the setup or hold time of a register is violated, the output can be set to an
intermediate voltage level between the high and low levels, called a metastable state.
In this unstable state, small perturbations such as noise in power rails can cause the
register to assume either the high or low voltage level, resulting in an unpredictable
valid state. Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

o For details about timing requirements and analysis in the Quartus II software, refer to
the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
chapters in volume 3 of the Quartus II Handbook.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
result in incomplete timing constraints and possible glitches and spikes. Because
current FPGAs provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more important to focus
on design practices that help you meet design goals consistently than to save device
resources using problematic asynchronous techniques.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster
because of device process improvements, the delays in an asynchronous design may
decrease, resulting in a design that does not function as expected. Specific examples
are provided in “Design Guidelines” on page 5-4. Relying on a particular delay also
makes asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit a number of glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Design Guidelines

Design Guidelines

When designing with HDL code, it is important to understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes some basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your combinational logic
carefully to avoid potential problems and pay attention to your clocking schemes so
you can maintain synchronous functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) of the device’s architecture, using either logic elements (LEs) or
adaptive logic modules (ALMs). For some cases in which combinational logic feeds
registers, the register control signals can also be used to implement part of the logic
function to save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. They should be avoided whenever possible. In a
synchronous design, feedback loops should include registers. Combinational loops
generally violate synchronous design principles by establishing a direct feedback loop
that contains no registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic, as shown in
Figure 5-1.

Figure 5-1. Combinational Loop through Asynchronous Control Pin

b Q

Coe D
CLRN

Use recovery and removal analysis to perform timing analysis on asynchronous ports
such as cl ear orreset in the Quartus II software.

m If you are using the Classic Timing Analyzer, on the Assignments menu, click
Settings. In the Settings dialog box, under Timing Analysis Settings, select
Classic Timing Analyzer Settings. On the Classic Timing Analyzer Settings
page, click More Settings and turn on the Enable Recovery/Removal Analysis
option.

m If you are using the TimeQuest Timing Analyzer, refer to the “Recovery and
Removal” section in the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook for details about how the TimeQuest
Timing Analyzer performs recovery and removal analysis.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-5
Design Guidelines

Combinational loops are inherently high-risk design structures for the following
reasons:

m Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

m Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches

A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. Latches can be implemented directly with primitives, using

LPM _LATCH, or inferred from HDL code. It is common for mistakes in HDL code to
cause unintended latch inference. Quartus II Synthesis issues a warning message if
this occurs.

Unlike other technologies, a latch in an FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis is generally not able to
identify these safe applications.

The Quartus II software setting Analyze latches as Synchronous Elements allows
you to treat latches as having nontransparent start and end points. Bear in mind that
even an instantaneous transition through transparent mode can lead to glitch
propagation. The Quartus II software does not perform cycle-borrowing analysis,
such as that performed by third-party timing analysis tools (such as the Synopsys
PrimeTime software).

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, it is very important that you do not use latches when
using formal verification.

Altera recommends you avoid using latches to ensure that you can completely
analyze the timing performance and reliability of your design.

Delay Chains

Delay chains occur when two or more consecutive nodes with a single fan-in and a
single fan-out are used to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-6

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Design Guidelines

Delays in PLD designs can change with each place-and-route cycle. Effects such as
rise and fall time differences and on-chip variation mean that delay chains, especially
those placed on clock paths, can cause significant problems in your design. Refer to
“Hazards of Asynchronous Design” on page 5-3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to prevent these kind
of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse generators) or a
series of pulses (multivibrators). There are two common methods for pulse
generation, as shown in Figure 5-2. These techniques are purely asynchronous and
need to be avoided.

Figure 5-2. Asynchronous Pulse Generators

Using an AND Gate

Tri

igger

Using a Register

Trigger b o Pulse
Clock Q o{>o0>o{>0—
CLRN
?

In “Using an AND Gate” (Figure 5-2), a trigger signal feeds both inputs of a 2-input
AND gate, but the design inverts or adds a delay chain to one of the inputs. The width
of the pulse depends on the relative delays of the path that feeds the gate directly and
the one that goes through the delay. This is the same mechanism responsible for the
generation of glitches in combinational logic following a change of input values. This
technique artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5-2), a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse width can only
be determined after placement and routing, when routing and propagation delays are
known. You cannot reliably determine the width of the pulse when creating HDL
code and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. In addition, static timing analysis cannot be used to verify the pulse
width, so verification is very difficult.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-7

Design Guidelines

Multivibrators use a glitch generator to create pulses, together with a combinational

loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. In addition, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be analyzed by
the design tools.

When you must use a pulse generator, use synchronous techniques, as shown in

Figure 5-3.

Figure 5-3. Recommended Pulse-Generation Technique

Trigger Signal —— D Q D Q

_]

Clock

In this design, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your design’s
performance and reliability. Avoid using internally generated clocks wherever
possible because they can cause functional and timing problems in the design. Clocks
generated with combinational logic can introduce glitches that create functional
problems and the delay inherent in combinational logic can lead to timing problems.

Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

Altera recommends using global device-wide, low-skew dedicated routing for all
internally-generated clocks, instead of routing clocks on regular routing lines. For a
detailed explanation, refer to “Clock Network Resources” on page 5-40.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a Clock Setup Uncertainty and Clock Hold
Uncertainty value of 10% to 15% of the clock delay.

The following sections provide some specific examples and recommendations for
avoiding these problems.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-8

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Design Guidelines

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, expect to see glitches in your design. In a synchronous design, glitches on
data inputs of registers are normal events that have no consequences. However, a
glitch or a spike on the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s minimum pulse
width requirements. Setup and hold times may also be violated if the data input of the
register is changing when a glitch reaches the clock input. Even if the design does not
violate timing requirements, the register output can change value unexpectedly and
cause functional hazards elsewhere in the design.

Because of these problems, Altera recommends that you always register the output of
combinational logic before you use it as a clock signal (Figure 5-4).

Figure 5-4. Recommended Clock-Generation Technique

—|Db Q— —|D Q—
Clock [[
D Q Generation D Q e 2
Logic Internally Generated Clock

J’ ” Routed on Global Clock Resource
—-e

Registering the output of combinational logic ensures that the glitches generated by
the combinational logic are blocked at the data input of the register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most Altera FPGAs
provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. In addition, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks” on
page 5-8, and route the clock on global clock resources. To avoid glitches, do not
decode the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, Altera recommends avoiding ripple counters in your design.
In the past, FPGA designers implemented ripple counters to divide clocks by a power
of two because the counters are easy to design and may use fewer gates than their
synchronous counterparts. Ripple counters use cascaded registers, in which the
output pin of each register feeds the clock pin of the register in the next stage. This
cascading can cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis, which can be
difficult and may require you to make complicated timing assignments in your
synthesis and place-and-route tools.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-9
Design Guidelines

Ripple clock structures are often used to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. Altera recommends that you avoid using ripple
counters under any circumstances.

Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as in Figure 5-5. For example,
telecommunications applications that deal with multiple frequency standards often
use multiplexed clocks.

Figure 5-5. Multiplexing Logic and Clock Sources

Multiplexed Clock Routed —Ip iy -
Clock 1 on Global Clock Resource
Clock 2
Select Signal 1D Q[
—p al—

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

m The clock multiplexing logic does not change after initial configuration
m The design uses multiplexing logic to select a clock for testing purposes
m Registers are always reset when the clock switches

m A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-register paths are analyzed
using that clock.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-10

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Design Guidelines

Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or Clock Control Block available in certain Altera devices. These
dedicated hardware blocks ensure that you use global low-skew routing lines and
avoid any possible hold time problems on the device due to logic delay on the clock
line.

Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls some
sort of gating circuitry, as shown in Figure 5-6. When a clock is turned off, the
corresponding clock domain is shut down and becomes functionally inactive.

Figure 5-6. Gated Clock

—1D Q— —1D Qr—

Clock
— 4|_/\
Gating Signal Gated Clock

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock gating rather
than using an AND or OR gate. For example, you can use the clock control block in
newer Altera devices to shut down an entire clock network. Dedicated hardware
blocks ensure that you use global routing with low skew and avoid any possible hold
time problems on the device due to logic delay on the clock line.

Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 5-11.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-11
Design Guidelines

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, but it performs the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input of every
register to either load new data or copy the output of the register (Figure 5-7).

Figure 5-7. Synchronous Clock Enable

Data

Enable

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 5-8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so you can shut down
the entire clock network instead of gating it further along the clock network at the
registers.

Figure 5-8. Recommended Clock-Gating Technique

—D Qr— —D Q—

Gating Signal D Q Gated Clock Routed on

Enable

In the technique shown in Figure 5-8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated (use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 5-8). Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the falling edge, use
an OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Global Clock Resources

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-12

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Design Guidelines

When using this technique, pay attention to the duty cycle of the clock and the delay
through the logic that generates the enable signal because the enable command must
be generated in one-half the clock cycle. This situation might cause problems if the
logic that generates the enable command is particularly complex, or if the duty cycle
of the clock is severely unbalanced. However, careful management of the duty cycle
and logic delay may be an acceptable solution when compared with problems created
by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the Quartus II software. As
shown in Figure 5-8 on page 5-11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer may analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help to reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. This
option is only available for devices that are supported by the TimeQuest Timing
Analyzer, except for Stratix® and Cyclone® devices.

For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Design Techniques to Save Power

The total FPGA power consumption is comprised of I/O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven place-and-route.

For information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook.

For information about power optimization techniques available for Stratix III devices,
refer to AN 437: Power Optimization in Stratix IIl FPGAs. For information about power
optimization techniques available for Stratix IV devices, refer to AN 514: Power
Optimization in Stratix IV FPGAs.

In addition, you can use the Quartus II PowerPlay Power Analyzer to aid you during
the design process by delivering fast and accurate estimations of power consumption.
For information about the PowerPlay Power Analyzer, refer to the PowerPlay Power
Analyzer chapter in volume 3 of the Quartus II Handbook.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-13
Checking Design Violations Using the Design Assistant

Checking Design Violations Using the Design Assistant

To improve the reliability, timing performance, and logic utilization of your design,
practicing good design methodology and understanding how to avoid design rule
violations are important. The Quartus II software provides a tool that automatically
checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical, so you can allow these rule violations.
The Design Assistant generates design violation reports with clear details about each
violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II design flow
with Design Assistant, message severity levels, and an explanation about how to set
up the Design Assistant. The last parts of the section describe the design rules and the
reports generated by the Design Assistant.

Quartus Il Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. To run the Design Assistant, on the Processing
menu, point to Start, and click Start Design Assistant.

To set the Design Assistant to run automatically during compilation, on the
Assignments menu, click Settings. In the Category list, select Design Assistant. Turn
on Run Design Assistant during compilation. This enables the Design Assistant to
perform a post-fitting netlist analysis of your design. The default is to apply all of the
rules to your project. But if there are some rules that are unimportant to your design,
you can turn off the rules that you do not want the Design Assistant to use. Refer to
“The Design Assistant Settings Page” on page 5-15.

Figure 5-9 shows the Quartus II software design flow with the Design Assistant.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-14 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Figure 5-9. Quartus Il Design Flow with the Design Assistant

Design Files

Pre-Synthesis Design Assistant
Netlist Golden Rules (1)

Analysis & Elaboration

L0

Post-Synthesis Rule Violation
Netlist Report

Synthesis
(Logic Synthesis &

Technology Mapping) L—J

Design Assistant

Fitter
Post-Fitting Custom
Netlist Rules (2)

Timing Analysis

Notes to Figure 5-9:
(1) Database of the default rules for the Design Assistant.

(2) Afile that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create
this file, refer to “Custom Rules” on page 5-33.

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
may be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

m When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

m When you start the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

m When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the - rt | option with the quar t us_dr ¢ executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on ¢

The Design Assistant generates warning messages when your design violates design
rules and generates information messages to provide information regarding the rules.
The Design Assistant supports all Altera devices supported by the Quartus II
software.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-15
Checking Design Violations Using the Design Assistant

The Design Assistant Settings Page

To apply design rules in the Design Assistant, follow these steps:
1. On the Assignments menu, click Settings.
2. In the Settings dialog box, in the Category list, select Design Assistant.

3. Inthe Design Assistant page, turn on the rules that you want the Design Assistant
to apply during analysis. By default, all of the rules except the finite state machine
rules are turned on.

To specify the file path to the custom rule file of the user-defined rules, refer to
“Specifying the Path to the Custom Rules File” on page 5-35.

In the Timing Closure category, if Nodes with more than specified number of
fan-outs or Top nodes with highest fan-out are turned on, you can use the High
Fan-Out Net Settings dialog box to specify the number of fan-out a node must have
to be reported by the Design Assistant. To open the High Fan-Out Net Settings dialog
box, in the Design Assistant page, in the Timing Closure category, select Nodes with
more than specified number of fan-outs or Top nodes with highest fan-out. Click
High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global signal, you can
use the Global Clock Threshold Settings dialog box to specify the number of nodes
with the highest fan-out that you want the Design Assistant to report. To open the
Global Clock Threshold Settings dialog box, on the Design Assistant page, in the
Clock category, select Clock signal should be a global signal. Click Global Clock
Threshold Settings.

To specify the maximum number of messages reported by the Design Assistant, on
the Design Assistant page, click Report Settings and enter the maximum number of
violation messages and detail messages to be reported.

Message Severity Levels

The Design Assistant classifies messages and rules using the four severity levels
described in Table 5-1. Following Altera guidelines is very important for designs that
are migrated to the HardCopy series of devices; therefore, the table highlights the
impact of a rule violation on a HardCopy migration. Designs that adhere to
Altera-recommended design guidelines do not produce any messages with critical-,
high-, or medium-level severity.

Table 5-1. Design Assistant Message Severity Levels

Severity Level Explanation
Critical A violation of the rule critically affects the reliability of the design. Altera may not be able to
implement the design successfully without closely reviewing the violations with the designer
for HardCopy device conversions.
High A violation of the rule affects the reliability of the design. Altera must review the violation
before implementing the design for HardCopy device conversions.
Medium The rule violation may result in implementation complexity that may have an impact for

HardCopy device conversions.

Information Only

The rule provides information regarding the design.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-16

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Design Assistant Rules

This section describes the Design Assistant rules and details some of the reasons that
Altera recommends following certain guidelines. Many of the Design Assistant rules
enforce the design guidelines described in previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The rule ID is
normally used in Tcl commands for rule suppression. The letter in each rule ID
corresponds to the group of rules based on the following scheme:

B A—Asynchronous design structure rules
C—Clock rules

R—Reset rules

S—Signal race rules

T—Timing closure rules

D—Asynchronous clock domain rules

H—HardCopy rules
®m M-—Finite state machine rules

For example, the rule “Design Should Not Contain Combinational Loops” is the first
rule in the asynchronous design structure rules; therefore, it is represented by rule ID
A101.

"= Finite state machine rules are applicable only to register transfer level (RTL) check.

Summary of Rules and IDs

Table 5-2 lists the rules, their rule IDs, and their severity level.

Table 5-2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level
A101 | Design Should Not Contain Combinational Loops Critical
A102 | Register Qutput Should Not Drive Its Own Control Signal Directly or through Combinational Critical

Logic
A103 | Design Should Not Contain Delay Chains High
A104 | Design Should Not Contain Ripple Clock Structures Medium
A105 | Pulses Should Not Be Implemented Asynchronously Critical
A106 | Multiple Pulses Should Not Be Generated in the Design Critical
A107 | Design Should Not Contain SR Latches High
A108 | Design Should Not Contain Latches High
C101 | Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical
(G102 | Logic Cell Should Not Be Used to Generate Inverted Clock High
C103 | Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save Medium

Power: <n>
G104 | Clock Signal Source Should Drive Only Input Clock Ports Medium
C105 | Clock Signal Should Be a Global Signal High
G106 | Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges Medium

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

5-17

Table 5-2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level
R101 | Combinational Logic Used as a Reset Signal Should Be Synchronized High
R102 | External Reset Should Be Synchronized Using Two Cascaded Registers Medium
R103 | External Reset Should Be Synchronized Correctly High
R104 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock High
Domains Should Be Synchronized Correctly

R105 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Medium
Domains Should Be Synchronized

S101 | Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the Same High
Signal Source

S$102 | Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by High
the Same Signal Source

S103 | More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by High
the Same Source

S104 | Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the High

Same Signal Source

T101 | Nodes with More Than Specified Number of Fan-outs: <n> Information Only
T102 | Top Nodes with Highest Fan-out: <n> Information Only
D101 | Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains High
D102 | Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Medium
Not All Bits May Be Aligned in the Receiving Clock Domain
D103 | Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock High
Domains
M101 | Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous High
Clock Domains
M102 | No Reset Signal Defined to Initialize the State Machine Medium
M103 | State Machine Should Not Contain Unreachable State Medium
M104 | State Machine Should Not Contain a Deadlock State Medium
M105 | State Machine Should Not Contain a Dead Transition Medium

© November 2009 Altera Corporation

Design Should Not Contain Combinational Loops

Severity Level: Critical
Rule ID: A101

A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A combinational loop also
occurs when the output of a register is fed back to an asynchronous pin of the same
register through combinational logic. Combinational loops are among the most
common causes of instability and reliability in your designs and should be avoided
whenever possible. Refer to “Combinational Loops” on page 54 for examples of the

kinds of problems that combinational loops can cause.

Register Qutput Should Not Drive Its Own Control Signal Directly or through

Combinational Logic

Severity Level: Critical
Rule ID: A102

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-18

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

A combinational loop occurs when you feed back the output of a register to an
asynchronous pin of the same register (for example, the register’s preset or
asynchronous load signal), or the register drives combinational logic that drives one
of the control signals on the same register. Combinational loops are among the most
common causes of instability and reliability in your designs and should be avoided
whenever possible. Refer to “Combinational Loops” on page 5-4 for examples of the
kinds of problems that combinational loops can cause.

Design Should Not Contain Delay Chains

Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a single fan-in and
a single fan-out are used to cause delay. Delay chains are sometimes used to create
intentional delay to resolve race conditions. Delay chains may cause significant
problems because they affect the rise and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells and is limited to the
clock and reset path of your design. This rule does not apply to delay chains in the
data path. Altera recommends that you do not instantiate a cell that does not benefit
the design and is used only to delay the signal. Refer to “Delay Chains” on page 5-5
for examples of the kinds of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures

Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use two or more
cascaded registers in which the output of each register feeds the clock pin of the
register in the next stage. Cascading structures cause large skew in the output signal
because each stage of the structure causes a new clock domain to be defined. The
additional clock domains from each stage of the ripple clock are difficult for static
timing analysis tools to analyze. Refer to “Ripple Counters” on page 5-8 for examples
of the kinds of problems that ripple clock structures can cause.

Pulses Should Not Be Implemented Asynchronously

Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

m Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR gate,
where the source for the two gate inputs are the same, but one of the gate inputs is
inverted

m Using a register where the register output drives the register’s own asynchronous
reset signal through a delay chain (refer to “Delay Chains” on page 5-5 for more
details).

These techniques are purely asynchronous and therefore need to be avoided. Refer to
“Pulse Generators and Multivibrators” on page 5-6 for recommended pulse
generation guidelines.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-19
Checking Design Violations Using the Design Assistant

i

Multiple Pulses Should Not Be Generated in the Design

Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists of a
combinational logic gate in which the inverted output feeds back to one of the inputs
of the same gate. This feedback path causes a combinational loop that forces the
output to change state and therefore, oscillate. Sometimes multiple pulse generators
or multivibrator circuits are built out of a series of cascaded inverters in a structure
called a “ring oscillator.” Oscillation creates a new artificial clock in your design that
is difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse generators
because of the number of pulses involved. In addition, multiple pulse generators
increase the frequency of the design. Refer to “Pulse Generators and Multivibrators”
on page 5-6 for recommended pulse generation guidelines.

Design Should Not Contain SR Latches

Severity Level: High
Rule ID: A107

A latch is a combinational loop that holds the value of a signal until a new value is
assigned. Combinational loops are hazardous to your design and are the most
common causes of instability and unreliability. Refer to “Combinational Loops” on
page 5—4 for examples of the kinds of problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR latch can cause
glitches and ambiguous timing, which complicates the timing analysis of your design.
Refer to “Latches” on page 5-5 for details about latches and for more examples of the
kinds of problems that latches can cause.

Design Should Not Contain Latches
Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more structures as
latches.

Refer to “Latches” on page 5-5 for details about latches and for examples of the kinds
of problems that latches can cause.

The difference between A107 (“Design Should Not Contain SR Latches”) and A108 is
that A107 triggers only when an SR latch is detected. A108 triggers when an
unidentified latch exists in your design.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-20

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Gated Clocks Should Be Implemented According to Altera Standard Scheme

Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to reduce the total
power consumption of a device. Clock gating is implemented using an enable signal
that controls some sort of gating circuitry. The gated clock signal prevents any of the
logic driven by it from switching so the logic does not consume any power. For
example, when a clock is turned off, the corresponding clock domain is shut down
and becomes functionally inactive. However, the disadvantage of using this type of
circuit is that it can lead to unexpected glitches on the resultant gated clock signal if
certain rules are not followed.

Refer to “Gated Clocks” on page 5-10 for examples of the kinds of problems gated
clocks can cause. Refer to “Recommended Clock-Gating Methods” on page 5-11 for a
recommended clock gating technique. However, when following the recommended
clock gating techniques, your design must have a minimum number of fan-outs to
meet rule C103, “Gated Clock Is Not Feeding At Least A Pre-Defined Number Of
Clock Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock

Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to operate.
However, do not implement an inverter to drive the clock input of a register in your
design with a logic cell. Implementing the inverter with a logic cell can lead to clock
insertion delay and skew, which is hazardous to your design and can cause problems
with the timing closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary. Use the
programmable clock inversion featured in the register to generate the inverted clock
signal. Refer to “Clocking Schemes” on page 5-7 for details about different types of
clocking methods.

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to
Effectively Save Power: <n>

Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one gated clock.
However, to effectively reduce power consumption, Altera recommends that the
gated clock feed at least a pre-defined number of clock ports (n ports). The default
value for 1 is 30. You can set the number of clock ports (1) by performing the
following steps:

1. Click Settings on the Assignments menu.
2. In the Category list, select Design Assistant.

3. On the Design Assistant page, expand the Clock category and turn on Gated
clock is not feeding at least a pre-defined number of clock port to effectively
save power: <n>.

4. Click on the Gated Clock Settings button, and in the Gated Clock Settings dialog
box, set the number of clock ports a gated clock should feed.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-21
Checking Design Violations Using the Design Assistant

Refer to “Clocking Schemes” on page 5-7, and “Recommended Clock-Gating
Methods” on page 5-11 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports

Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of registers. Rule
C104 triggers when a design contains a clock signal source of a register that connects
to the port rather than the clock port of another register. Note that if the clock signal
source and ports are of the same register, rule 5104 “Clock Port and Any Other Signal
Port of the Same Register Should Not Be Driven by the Same Signal Source” is
triggered instead. Such a design is considered asynchronous and should be avoided.
Asynchronous design structures can be hazardous to your design because some of
them rely on the relative propagation delays of signals to function correctly, which can
result in incomplete timing constraints and possible glitches and spikes.

Refer to “Hazards of Asynchronous Design” on page 5-3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to “Clocking
Schemes” on page 5-7 for proper clocking techniques.

This rule does not apply in the following conditions:

m When the clock signal source drives combinational logic that is used as a clock
signal and the combinational logic is implemented according to the Altera
standard scheme

m When the clock signal source drives only a clock multiplexer that selects one clock
source from a number of different clock sources

['=~ This type of multiplexer adds complexity to the timing analysis of a design.
Avoid using the multiplexer in the design.

m Using a clock multiplexer causes the “Gated Clocks Should Be Implemented
According to Altera Standard Scheme” rule (C101) to be applied; refer to
“Multiplexed Clocks” on page 5-9 for recommended clock multiplexing
techniques

Clock Signal Should Be a Global Signal

Severity Level: High
Rule ID: C105

Ensure that all clock signals in your design use the global clock networks that exist in
the target FPGA. Mapping clock signals to use non-dedicated clock networks can
negatively affect the performance of your design. A non-global signal can be slower
and have larger skew than a global signal because the clock must be distributed using
regular FPGA routing resources.

To specify the number of minimum fan-outs that you want the Design Assistant to
report, on the Design Assistant page, in the Clock category, select Clock signal
should be a global signal. Click Global Clock Threshold Settings and enter the
number in the dialog box.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-22

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

r =
| &

If a design contains more clock signals than are available in the target device, consider
reducing the number of clock signals in the design, such that only dedicated clock
resources are used for clock distribution. However, if the design must use more clock
signals than you can specify as global signals, implement the clock signals with the
lowest fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on page 5-40 for
detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by Different
Clock Edges

Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal source that
drives the clock inputs of both positive and negative edge-sensitive registers. This
error also triggers if your design contains an inverted clock signal that drives the clock
inputs of either positive or negative edge-sensitive registers.

These two scenarios can cause an increase in timing requirement complexity and
difficulties in design optimization. Also, synchronous resetting may not be possible
because registers are not clocked on the same edge in the design. Refer to “Clocking
Schemes” on page 5-7 for some specific examples and recommended clocking
methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized

Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design needs to be
synchronized. This means that a register is required between the combinational logic
that drives the reset signal and input reset pin. Unsynchronized combinational logic
can cause glitches and spikes that lead to unintentional reset signals. Synchronizing
the combinational logic that drives the reset signal delays the resulting reset signal by
an extra clock cycle and avoids unintentional reset. You must consider the extra clock
cycle delay when using this method in your design.

Rule R101 does not trigger if the combinational logic used is either a 2-input AND or
NOR that feeds active low reset port, or either a 2-input OR or NAND that feeds
active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers

Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock signal is to
use an asynchronous reset or external reset. However, an asynchronous reset can
affect the recovery time of a register, cause design stability problems, and
unintentionally reset the state machines in your design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a double-buffer
circuit, which consists of two cascaded registers triggered on the same clock edge and
on the same clock domain as the targeted registers.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-23
Checking Design Violations Using the Design Assistant

This rule does not apply in the following two conditions:

m When the targeted registers use active-high reset ports and the external reset
signal drives the PRE ports on the cascaded registers with the input port of the first
cascaded registers is fed to GND. Refer to Figure 5-10.

Figure 5-10. Active-High Reset Ports

Clock >

Reset DJ—

“\’Targeted

PRE PRE Registers
0—D Q D Q ;
inst9 K
ENA ENA | PRE Y
D Q
CLR CLR
t6 & inst5
insf E r insf T
CLR

Cascaded Registers

m When the targeted registers use active-low reset ports and the external reset signal
drives the CLR ports on the cascaded registers with the input port of the first
cascaded registers is fed to V.. Refer to Figure 5-11.

Figure 5-11. Active-Low Reset Ports

Clock >
ENA
CLR
inst3 inst2 Targeted
PRE PRE Registers
1—D Q D Q -
inst
ENA ENA AR
—b o[-
CLR CLR
nd
T T ENA
Reset > — CLR
Cascaded Registers

External Reset Should Be Synchronized Correctly

Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock signal is to
use an asynchronous reset or external reset. However, asynchronous reset can affect
the recovery time of a register, cause design stability problems, and unintentionally
reset the state machines in your design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two cascaded
registers. The registers need to be triggered on the same clock edge and should be in
the same clock domain as the targeted registers.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-24

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

This rule applies when an asynchronous reset or external reset signal is synchronized
but fails to follow the recommended guidelines, as described in rule R102 (“External
Reset Should Be Synchronized Using Two Cascaded Registers”). This violation
happens when the external reset is synchronized with only one register or the
cascaded synchronization registers are triggered on different clock edges.

R102 triggers when you don’t use two cascaded registers to synchronize the external
reset. R103 triggers when the external reset is synchronized but fails to follow the
recommended guidelines.

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized Correctly

Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one clock domain
and used in one or more other asynchronous clock domains, the reset signal needs to
be synchronized. An unsynchronized reset signal can cause metastability issues. To
synchronize reset signals across clock domains, use the following guidelines:

m The reset signal needs to be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

m The cascading registers needs to be triggered on the same clock edge.

m There must be no logic between the output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain. The
synchronization registers may sample unintended data due to the glitches caused
by the logic.

This rule applies when the internal reset signal is synchronized but fails to follow the
recommended guidelines. This happens when the external reset is only synchronized
with one register, when the cascaded synchronization registers are triggered on
different clock edges, or when there is logic between the output of the transmitting
clock domain and the cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle. Consider this
delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized

Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated in one clock
domain and used in one or more other asynchronous clock domain, the reset signal
needs to be synchronized. An unsynchronized reset signal can cause metastability
issues. To synchronize reset signals across clock domains, follow the guidelines
described in Rule R104 (“Reset Signal Generated in One Clock Domain and Used in
Other Asynchronous Clock Domains Should Be Synchronized Correctly”).

This rule applies when the internally generated reset signal is not being synchronized.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-25
Checking Design Violations Using the Design Assistant

Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the
Same Signal Source

Severity Level: High
Rule ID: 5101

This rule applies when your design contains a tri-state node in which the input and
output enable are driven by the same signal source. Signal race occurs between the
input and output enable signals of the tri-state when they are propagated
simultaneously. Race conditions lead to incorrect design function and unpredictable
results. To avoid violation of this rule, the input and output enable of the tri-state
should be driven by separate signal sources.

Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven
by the Same Signal Source

Severity Level: High
Rule ID: 5102

A purely synchronous design is free of signal race conditions as long as the clock
signal is properly distributed and the timing requirements of the registers are met.
However, race conditions can occur typically when the synchronous and
asynchronous input pins of the register are driven by the same signal source. Race
conditions can cause incorrect design function and unpredictable results. Rule S102
triggers when the synchronous and asynchronous pins of a register are driven by the
same signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock and if the source register is directly
feeding the reset port, provided there is no combinational logic in-between the signal
and register.

More Than One Asynchronous Signal Source of the Same Register Should Not Be
Driven by the Same Source

Severity Level: High
Rule ID: 5103

To avoid race conditions in your design, Altera recommends that you avoid using the
same signal source to drive more than one port on a register. The following ports are
affected: ALOAD, ADATA, Pr eset ,and Cl ear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven hy
the Same Signal Source

Severity Level: High
Rule ID: 5104

Any clock signal source in your design needs to drive only input clock ports of
registers. Rule 5104 triggers only when your design contains clock signal sources that
connect to ports other than the clock ports of the same register. Rule S104 is a subset of
C104, “Clock Signal Source Should Drive Only Input Clock Ports” on page 5-21. Such
a design is considered asynchronous and should be avoided.

Refer to “Hazards of Asynchronous Design” for examples of the kinds of problems
that asynchronous design structures can cause. Refer to “Clocking Schemes” for
proper clocking techniques.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-26

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Nodes with More Than Specified Number of Fan-outs: <n>

Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of fan-outs, which can
create timing challenges for your design.

To specify the number of fan-outs, follow these steps:
1. On the Assignments menu, click Settings.
2. In the Category list, select Design Assistant.

3. On the Design Assistant page, expand the Timing closure category by clicking
the « icon next to Timing closure.

4. Turn on Nodes with more than specified number of fan-outs.

5. Click High Fan-Out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of fan-outs a node must have to be reported by the Design
Assistant.

Top Nodes with Highest Fan-out: <n>

Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out, which can
create timing challenges for your design.

To specify the number of fan-outs, follow these steps:
1. On the Assignments menu, click Settings.
2. In the Category list, select Design Assistant.

3. On the Design Assistant page, click the # icon next to Timing closure to expand
the folder.

4. Select Nodes with more than specified number of fan-outs.
5. Click High Fan-Out Net Settings.

6. In the High Fan-Out Net Settings dialog box, enter the number of nodes with the
highest fan-out to be reported by the Design Assistant.

gata Bits Are Not Synchronized When Transferred between Asynchronous Clock
omains

Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a design need to be
synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit needs to be synchronized with
two cascading registers in the receiving asynchronous clock domain, in which the
cascaded registers are triggered on the same clock edge. Do not put any logic between
the output of the transmitting clock domain and the cascaded registers in the
receiving asynchronous clock domain.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-27
Checking Design Violations Using the Design Assistant

If the data bits belong to multiple-bit data, use a handshake protocol to guarantee that
all bits of the data bus are stable when the receiving clock domain samples the data. If
you use a handshake protocol, only the data bits that act as REQ(request) and ACK
(acknowledge) signals must be synchronized. The data bits that belong to multiple-bit
data do not need to be synchronized. Ignore the violation on the data bits that use a
handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain

Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are transferred between
asynchronous clock domains are synchronized. However, not all data bits may be
aligned in the receiving clock domain. Propagation delays may cause skew when the
data reaches the receiving clock domain.

If the data bits belong to multiple-bit data and you use a handshake protocol, only the
data bits that act as REQ ACK, or both signals for the transfer need to be synchronized
with two or more cascading registers in the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the data bits does
not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous
Clock Domains

Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in a design
need to be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit needs to be synchronized with
two cascading registers in the receiving asynchronous clock domain. In this case, the
cascaded registers are triggered on the same clock edge. Do not put any logic between
the output of the transmitting clock domain and the cascaded registers in the
receiving asynchronous clock domain.

This rule only applies when the data bits across asynchronous clock domains are
synchronized but fail to follow the guidelines.

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

Severity Level: High
Rule ID: M101

Data bits that are transferred between asynchronous clock domains in your design
need to be synchronized to avoid metastability problems. Rule M101 is a
state-machine-specific rule that triggers when input signals of a state machine across
asynchronous clock domains are not synchronized or improperly synchronized. Rule
M101 applies to state machines only, while the “Data Bits Are Not Synchronized
When Transferred between Asynchronous Clock Domains” rule (D101) and the “Data
Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock
Domains” rule (D103) apply only to data synchronization between registers.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-28

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

No Reset Signal Defined to Initialize the State Machine

Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) needs to have a reset signal that initializes the state
machine to its initial state. A finite state machine without a proper initialization state
is susceptible to functional problems and can introduce extra difficulty in analysis,
verification, and maintenance.

State Machine Should Not Contain Unreachable State

Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial state. Having
an unreachable state in your design causes logic redundancy and affects your design
functionality. Rule M103 triggers when the initial state cannot traverse to a state
through any of the reachable states and transitions.

State Machine Should Not Contain a Deadlock State

Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another state except to
loop to itself. When the state machine enters a deadlock state, it stays in that state
until the state machine is reset. Your design may have a single state, or a few states
forming a deadlock structure. Having a deadlock state in your design leads to design
functionality problems, and theoretically may consume more power.

You can change the maximum number of states to be detected as a deadlock structure
by clicking Settings on the Assignments menu, and in the Settings dialog box, in the
Category list, select Design Assistant. In the Design Assistant page, click Finite State
Machine Deadlock Settings. In the Finite State Machine Deadlock Settings dialog
box, specify the maximum number of states to be reported as a deadlock structure.
The default setting is 2.

State Machine Should Not Contain a Dead Transition

Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless of the event
sequence input to the state machine. A dead transition indicates logic redundancy in
your design, although it may not affect your design functionality. Rule M105 triggers
when the condition required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules

You can selectively enable or disable Design Assistant rules on individual nodes by
making an assignment in the Assignment Editor or by using the

al tera_attri but e synthesis attribute in Verilog HDL or VHDL, or using a Tcl
command.

For a list of the types of nodes that allow Design Assistant rule suppression, refer to
Node Types Eligible for Rule Suppression in the Quartus II Help.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-29
Checking Design Violations Using the Design Assistant

Assignments made with Assignment Editor, the Quartus Settings File (.qsf), and Tcl
scripts and commands, take precedence over assignments made with the

al tera_attribut e synthesis attribute. Assignments made to nodes, entities, or
instances, take precedence over global assignments.

Using the Assignment Editor

You can enable or disable a Design Assistant rule on selected nodes in your design by
using the Assignments Editor. You must first compile your design if you have not
already done so.

To enable or disable a Design Assistant rule, follow these steps:
1. On the Assignments menu, click Assignment Editor.

2. In the spreadsheet, for the desired node, entity, or instance, double-click the cell in
the Assignment Name column and select Enable Design Assistant Rule or
Disable Design Assistant Rule in the pull-down menu.

3. Double-click the Value cell and type in the Rule ID.
or

Click Browse to open the Design Assistant Rules dialog box. In the Design
Assistant Rules dialog box, select the rule you want to enable or disable for that
particular node.

You can enable or disable multiple rules by typing more than one Rule ID in the cell
and separating each Rule ID with a comma.

Using Verilog HDL

You can use the al t er a_at t ri but es synthesis attribute in your Verilog HDL code
to enable or disable a Design Assistant rule on the selected nodes in your design.

To enable the rule on the selected node, the syntax is shown in the following example:

<entity class> <object> /* synthesis altera_attribute="enabl e_da_rul e=<rul el D>" */

You can enable more than one rule on a selected node as shown in the following
example:

<entity class> <object> /* synthesis altera_attribute="enabl e_da_rul e=\"<rul el D>,
<rulel D> <rulelD>\""*/

To disable the rule on the selected node, the syntax is shown in the following example:
<entity class> <object> /* synthesis altera_attribute="di sabl e_da_rul e=<rul el D>" */

You can disable more than one rule on a selected node as shown in the following
example:

<entity class> <object> /* synthesis altera_attribute="di sabl e_da_rul e=\"<rul el D>,
<rulel D> <rulelD>\""*/

(= When enabling or disabling multiple rules in Verilog HDL, you must separate the

Rule ID strings with commas and spaces only and they must be enclosed within the
\" and\" characters.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-30 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Using VHDL

You can use the al t er a_at t ri but es synthesis attribute in your VHDL code to
enable or disable a Design Assistant rule on the selected nodes in your design.

To enable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute altera_attribute of <object> <entity
class> i s "enabl e_da_rul e=<rul el D>"

You can enable more than one rule on a selected node as shown in the following
example:

attribute altera_attribute : string;attribute altera_attribute of <object> <entity
class> is "enable_da_rule=""<rulel D>, <rulelD> <rulelD>"""

To disable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute altera_attribute of <object> <entity
class> is "disabl e_da_rul e=<rul el B>"

You can disable more than one rule on a selected node as shown in the following
example:
attribute altera_attribute : string;attribute altera_attribute of <object> <entity
class> is "disable_da_rule=""<rulel D>, <rulelD> <rulelD>"""

L=~ When enabling or disabling multiple rules in VHDL, you must separate the Rule ID
strings with commas and spaces only and they must be enclosed with double
quotation mark (" ") characters.

Using TCL Commands

To enable a Design Assistant rule on the selected node in your design using Tcl in a
script or at a Tcl prompt, use the following Tcl command:

set _instance_assi gnment -nane enable_da_rule "<rule ID>" -to <design elenent> ¢
To enable more than one rule on a selected node, use the following Tcl command:

set _instance_assi gnment -nane enable_da_rule "<rule ID> <rule | D>"
-to <design el ement> ¢

To disable a Design Assistant rule on a selected node in your design using Tcl in a
script, or at a command or Tcl prompt, use the following Tcl command:

set _instance_assi gnment -nane disable _da rule "<rule ID>" -to <design el ement> ¢
To disable more than one rule on a selected node, use the following Tcl command:

set _instance_assi gnment -nane disable_da_rule "<rule ID> <rule |ID>"
-to <design el enment> «

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-31
Checking Design Violations Using the Design Assistant

Viewing Design Assistant Results

L&

If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated design rule. The Design
Assistant displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name> subdirectory
of the project directory.

The Design Assistant generates the following reports based on the settings specified
in the Design Assistant page:

® Summary Report

m Settings Report

m Detailed Results Report

m Messages Report

m Rule Suppression Assignments Report

m Ignored Design Assistant Assignments Report

m Custom Rules Report

Summary Report

The Design Assistant Summary report contains a summary of the Design Assistant
process on a particular project. The Design Assistant Summary report provides the
following information:

m Design Assistant Status—the status, end date, and end time of the Design
Assistant operation

m Revision Name—the revision name specified in the Revisions dialog box
m Top-level Entity Name—the top-level entity of your design

m Family—the device family name specified in the Device page of the Settings
dialog box

m Total Critical Violations, Total High Violations, Total Medium Violations, and
Total Information Only Violations—the total violations of the rules organized by
level, some of which might affect the reliability of the design

Review the violations closely before converting your design for HardCopy devices to
achieve a successful conversion.

Settings Report

The Design Assistant Settings report contains a list of enabled Design Assistant rules
and options that you specified in the Design Assistant Settings page, as shown in
Figure 5-12.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-32 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant

Checking Design Violations Using the Design Assistant

Figure 5-12. The Design Assistant Settings Report

% Compilation Report - Design Assistant Settings

% Compilation Report Design Assistant Settings
B Legal Notice ; ;
Opt Seth T e’
S Flow Summary 2 |0.n " s |n9 _ .
S Flow Settings 1 | Design Assistant mode Post-Fitting
&5 Flow Non-Default Global 5 [2_| Threshold value for clock net not mapped ta clack spines rule 25
5B Flow Elapsed Time |3 | Minimum number of node fan-out 30
@ Flow Log 4_ b4 aximum number of nodes to report a0
il @D Analysis & Synthesis 5_ Fule C101: Gated clock should be implemented according to Altera standard scheme On
* @D Fitter B_ Fule C102: Logic cell should not be used to generate inverted clock On
* gg iss.emlier | 7 | Rule C103: Input clock pin should fan out to only one zet of clock gating logic On
+ imiry nalyzer =1 N - N
=-&3 DES:ig?1 Assi:tant |8 | Rule C104: Clock signal source should drive anly input clock ports On
@E 5 Fule C105: Clock signal should be a global signal [Rule applies duing post-fitting analysis.
um!'nary 9 | Thiz rule applies during both post-fitting analysis and post-synthesis analyzis if the design On
é% Settings || targets & b4Asd 3000 or MAs 7000 device. For maore information, see the Help for the rle.]
&HER Medium Violations 4| Fule C106: Clock signal saurce should not drive registers that are iggered by different clack | o
&SR Information only Violat || edaes
55'5; Messages l Fiule R101: Combinational logic used as reset sighal should be synchronized On
+ @D EDA Metlist Writer E Fule R102: External rezet should be synchronized using two cascaded registers On
E Fule R103: External rezet should be corectly synchronized On
14 Fiule R104: Reset signal that iz generated in one clock domain and used in other, On
|| asynchronous clock domains should be comectly synchronized
15 Fiule R105: Reset signal that iz generated in one clock domain and used in other, On
| " | asynchronous clock domains should be synchronized
16| Rule T101: Modes with more than specified number of fan-outs On
F Oaile TAN T inmdmm bl lnimlemsb Foim ok M b
< 2% ¥

Detailed Results Report

The Detailed Results report contains detailed information of every rule violation
including the rule name, node name, and fan-out. This report appears only if you
specify settings in the Design Assistant Settings page. For more information about
how to specify the settings, refer to “The Design Assistant Settings Page” on

page 5-15.

Separate Detailed Results reports are generated for critical, high, medium, and
information only results. Figure 5-13 shows the Information Only Violations report.

Figure 5-13. The Design Detailed Results Report, Information Only

€ Compilation Report - Information only Violations

% Compilation Report

Information only Violations

B Legal Notice Rule A
S Flow Summary hame Name
&SHER Flow Settings 1 | Rule T102: Top nodes with highest fancout | clock
&SEE Flow Non-Default Global Settings 12 | Pule T102: Top nodes with highest fan-out | clken
g :::E: fl:gDSEd Time 3_ Fule T102: Top nodes with highest fan-out | ach
. @D Analysis & Synthesis 4_ Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
T @D Fitter 5_ Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
] @D Assembler B_ Fule T102: Top nodes with highest fan-out | my_dividerinstllpm_divide: lpm_divide_componentllpm_divide_Bis: aul
+ @D Timing Analyzer ?_ Fiule T102: Top nodes with highest fan-out | denam(0]
= @a Design Assistant 8_ Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
@E Summary 9_ Fule T102: Top nodes with highest fan-out | denom(1]
@% Seth:ngs o 10| Fule T102 Top nodes with highest farcout | my_divider:instlipm_divide:lpm_divide_componentlipm_divide_Bis: aul
gg ;?‘g:'ﬁ';:oonla;;:s\ﬁolaﬁons E Fule T102: Top nodes with highest fan-out | denom[3]
55‘) Messages E Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
T @D EDA Netlist Writer E Fule T102: Top nodes with highest fan-out | denom[Z2]
14| Fule T102 Top nodes with highest farcout | my_divider:instlipm_divide:lpm_divide_componentlipm_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_dividerinstllpm_divide: lpm_divide_componentllpm_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
i Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
E Fule T102: Top nodes with highest fan-out | my_dividerinstlipm_divide:lpm_divide_componentlipm_divide_Bis:aul
19| Fule T102 Top nodes with highest farcout | my_divider:instlipm_divide:|pm_divide_componentlipm_divide_Bis: aul »
£ >

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

© November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-33
Checking Design Violations Using the Design Assistant

Custom Rules

Messages Report

The Messages report contains current information, warning, and error messages
generated during the Design Assistant process. You can right-click a message in the
Messages report and click Help to display the Quartus II software Help with details
about the selected message, or click Locate to trace or cross-probe the selected node
and locate the source of the violation.

Rule Suppression Assignments Report

The Rule Suppression Assignments report contains detailed information about which
Design Assistant rules are enabled or disabled, as explained in the “Enabling and
Disabling Design Assistant Rules” on page 5-28. The report shows the following
information:

B Assignment—shows the name of the assignment
m Value—identifies the rule

B To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report

The Ignored Design Assistant Assignments report lists detailed information about the
invalid and conflicting rule assighments reported by the Design Assistant. This report
is generated only if you specify an invalid rule ID in the rule suppression or a
conflicting rule assignment. The following information appears in the report:

m Assignment—shows the name of the assignment
m Value—identifies the rule
m To—shows the name of the node where the rule is being applied

m Comment—shows why the assignment is being ignored

Custom Rules Report

The Design Assistant Custom Rules report contains the names of the custom rules
used in the design checking, the path to the custom rules files from which the custom
rules are read, and the list of ignored custom rules.

In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) using the XML format. You then specify the path to that file in the

Design Assistant settings page and run the Design Assistant for violations checking.

The file that contains the default rules for the Design Assistant is located at
<Quartus 11 install path>\quartus\libraries\design-assistant\da_golden_rule.xml.

For details about how to set the file path to your custom rules, refer to “Specifying the
Path to the Custom Rules File” on page 5-35.

This section explains the basics of writing a custom rule, the Design Assistant settings,
and provides coding examples on how to check for clock relationship and node
relationship in a design.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-34 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

XML File Format for Custom Rules

All XML commands in custom rules file must be written within the <ROOT> and
</ ROOT> tags. Every user-defined rule consists of three main sections:

® Rule Attribute
® Rule Definition
B Reporting

The Rule Definition and Reporting sections must be defined inside the Rule Attribute
section. Example 5-1 shows all three sections in a pre-defined custom rule file.

(=~ XML commands and attributes are case sensitive. However, attribute values are not
case sensitive.

Example 5-1. Predefined XML File Format for a Custom Rule

<ROOT>
<I-Start creating a rule here -->

<!--Define rule attribute for a rule here -->
<DA_RULE 1D=<rule id> NAME=<rule name> SEVERITY=<rule severity> DEFAULT_RUN=<default run> >

<RULE_DEFI NI TI O\>
<!--Define rule definition here -->
</ RULE_DEFI NI TI ON>
<REPORTI NG
<!--Define report settings here -->
</ REPORTI NG
</ DA_RULE>

</ ROOT>

The Rule Attribute section contains the name, ID, severity level, and enable value of a
rule. The order of these attributes is not important. This section is enclosed within
<DA_RULE> and </ DA_RULE> tags. Table 5-3 describes the attributes of the Rule
Attribute section.

Table 5-3. Attributes for the Rule Attribute Section

Attribute Description
D The value for this attribute is string type and must be unique. This attribute is required. For the
list of IDs of the default rules, refer to Table 5-2 on page 5-16.
NAME The value for this attribute is string type. This attribute is optional.
SEVERITY This attribute presents the severity level of the rule. The value is string type and can be

CRI Tl CAL, Hl GH, MEDI UM or | NFORMATI ON. This attribute is required.
For details about rule severity level, refer to “Message Severity Levels” on page 5-15.

DEFAULT_RUN The value is string type and can only be YES, or NO. If the value is YES, the rule is included in
the design rule check, and vice versa. By default, the value is YES. This attribute is optional.

L=~ All string-type values must be enclosed within double quotes.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-35
Checking Design Violations Using the Design Assistant

Command lines that begin with a single XML tag must end with the “/ >” sign before
another command begins.

The Rule Definition section is where you declare the node properties and rule
triggering conditions, enclosed by <RULE_DEFI NI TI ON> and
</ RULE_DEFI NI TI ON> tags.

There are four subsections within the Rule Definition section that you can use to
declare the properties and conditions:

m <DECLARE>—Global nodes that are used in the file are declared in this subsection.
Every node name must be unique.

I'=~ A node declared outside of the <DECLARE> subsection is considered a local
node. You can perform local node declaration at any place in the <BASI C>,
<REQUI RED>, and <FORBI D> subsections, and can be performed using the
node declaration command directly without being enclosed within the
<DECLARE> tag.

m <BAS| C—This subsection contains the condition that acts like a trigger point
which the Design Assistant continuously checks for a match. If the condition is
fulfilled, the Design Assistant checks the remaining conditions in the
<REQUI RED> and <FORBI D> subsections.

m <REQUI RED>—This subsection contains the acceptable conditions that your
design must meet. If the condition is not fulfilled, the Design Assistant reports a
rule violation.

m <FORBI D>—This subsection contains the undesirable condition for a design. If the
condition is fulfilled, the Design Assistant highlights a rule violation. This
subsection may be optional, depending on your rule situation.

The Reporting section is where you describe the settings for rule violation reporting,
enclosed by <REPORTI NG> and </ REPORTI NG> tags. This section is optional. If there
is no Reporting section defined, the violated rule is not reported. If the Reporting
section is defined, the Design Assistant reports the name of the violated rule and the
nodes that violated the rule according to the reporting format that you defined.

Specifying the Path to the Custom Rules File
To specify the path to the custom rule file, follow these steps:

1. To specify the path, on the Assignments menu, click Settings.
2. In the Category list, click Design Assistant and select Custom Rules Settings.

3. In the Custom Rules Settings dialog box, in the Project custom rules file name
field, specify the path to your custom rules file.

4. Click OK.

Your rules are now included in the list of default Design Assistant rules.

[=" The default file extension for a Design Assistant custom rules file is .dacr, but the file
can have any file name or extension.

To specify the rules that you want the Design Assistant to check for violations, refer to
“The Design Assistant Settings Page” on page 5-15.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-36 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Custom Rules Coding Examples

The following examples of custom rules show how to check node relationships and
clock relationships in a design.

Checking SR Latch Structures In a Design
Example 5-2 shows the XML codes for checking SR latch structures in a design.

Example 5-2. Detecting SR Latches in a Design

<DA RULE | D="EX01" SEVERI TY="CRI Tl CAL" NAME="Checki ng Design for SR Latch"
DEFAULT_RUN=" YES" >
<RULE_DEFI NI TI ON>
<FORBI D>
<OR>
<NODE NAME="NODE_1" TYPE="SRLATCH' />
<HAS NODE NCDE_LI ST="NODE_1" />
<NODE NAME="NODE_1" TOTAL_FANI N="EQ@" />
<NODE NAME="NODE_2" TOTAL_FANI N="EQ@" />
<AND>
<NODE_RELATI ONSHI P FROM_NAME="NCDE_1" FROM TYPE="NAND' TO_NAME=" NODE_2"
TO_TYPE="NAND"' />
<NODE_RELATI ONSHI P FROM _NAME=" NCDE_2" FROM TYPE="NAND' TO NAME="NODE 1"
TO_TYPE="NAND"' />
</ AND>
<AND>
<NODE_RELATI ONSHI P FROM_NAME="NCDE_1" FROM TYPE="NOR"' TO_NAME="NCDE_2"
TO_TYPE="NOR' />
<NODE_RELATI ONSHI P FROM _NAME=" NCDE_2" FROM TYPE="NOR"' TO_NAME="NCDE 1"
TO_TYPE="NOR' />
</ AND>
</ OR>
</ FORBI D>
</ RULE_DEFI NI TI ON>

<REPORTI NG_ROOT>
<MESSAGE NAME="Rul e Y%ARGL% Found %ARG2% node(s) related to this rule.">
<MESSAGE_ARGUMENT NAME="ARGL" TYPE="ATTRI BUTE" VALUE="ID' />
<MESSAGE_ARGUMENT NAME="AR®R" TYPE="TOTAL_NODE" VALUE="NCDE 1" />
</ MESSAGE>
</ REPCORTI NG_ROOT>
</ DA_RULE>

In Example 5-2, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></ AND> block are tied together, meaning that
each statement in the block must be true for the block to be fulfilled (AND gate
similarity). In the <OR></ OR> block, as long as one statement in the block is true, the
block is fulfilled (OR gate similarity). If no <AND></ AND> or <OR></ OR> block is
specified, the default is <AND></ AND>.

The <FORBI D></ FORBI D> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 5-2 with their
equivalent block diagrams (Figure 5-14 and Figure 5-15):

<AND>
<NODE_RELATI ONSH P FROM_NAME="NCDE_1" FROM TYPE="NAND' TO_NAME="NCDE 2"
TO _TYPE="NAND" />

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-37
Checking Design Violations Using the Design Assistant

<NODE_RELATI ONSHI P FROM_NAME=" NCDE_2" FROM TYPE="NAND' TO_NAME="NODE_1"
TO_TYPE="NAND"' />
</ AND>

Figure 5-14. Undesired Condition 1

<AND>
<NODE_RELATI ONSHI P FROM_NAME=" NCDE_1" FROM TYPE="NOR' TO_NAME="NODE 2" TO TYPE="NOR' />
<NCDE_RELATI ONSHI P FROM_NAME="NODE_2" FROM TYPE="NOR' TO NAME="NODE 1" TO TYPE="NOR' />
</ AND>

Figure 5-15. Undesired Condition 2

Relating Nodes to a Clock Domain

Example 5-3 shows how to use the CLOCK_RELATI ONSHI P attribute to relate nodes
to clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done using cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 5-3 checks for the synchronizer configuration based on the following
guidelines:

m The cascading registers need to be triggered on the same clock edge

m Do not put any logic between the register output of the transmitting clock domain
and the cascaded registers in the receiving asynchronous clock domain

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-38 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Checking Design Violations Using the Design Assistant

Example 5-3. Detecting Incorrect Synchronizer Configuration

<DA_RULE | D="EX02" SEVERI TY="HI GHd' NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES" >

<RULE_DEFI NI TI ON>
<DECLARE>
<NODE NAME="NODE_1" TYPE="REG' />

<NODE NAME="NCDE_2" TYPE="REG' />
<NODE NAME=" NCDE_3" TYPE="REG' />
</ DECLARE>
<FORBI D>
<NODE_RELATI ONSH P FROM NAVE="NODE_1" TO NAME="NODE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN' />
<NODE_RELATI ONSH P FROM NAVE="NODE_2" TO NAME="NODE_3" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="! ASYN' />
<OR>
<NODE_RELATI ONSH P FROM NAVE="NODE_1" TO NAME="NODE_2" TO PORT="D_PORT"
REQUI RED_THROUGH=" YES" THROUGH TYPE="COMB" CLOCK_RELATI ONSHI P="ASYN' />
<CLOCK_RELATI ONSHI P NAME=" SEQ EDGE| ASYN' NODE_LI ST="NCDE_2, NODE_3" />
</ OR>
</ FORBI D>
</ RULE_DEFI NI TI ON>

<REPORTI NG_ROOT>
<MESSAGE NAME="Rul e %ARGL% Found %ARG2% node(s) related to this rule.">
<MESSAGE_ARGUMENT NAME="ARGL" TYPE="ATTRI BUTE" VALUE="ID' />
<MESSAGE_ARGUMENT NAME="ARXR" TYPE="TOTAL_NODE" VALUE="NCDE 1" />
<MESSAGE NAME="Sour ce node(s): %ARG3% Destination node(s): YARAX >
<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NCDE" VALUE="NCDE_1" />
<MESSAGE_ARGUMENT NAME="AR&" TYPE="NCDE" VALUE="NODE 2" />
</ MESSAGE>
</ MESSAGE>
</ REPORTI NG_ROOT>
</DA_RULE>

The codes differentiate the clock domains. ASYN means asynchronous, and ! ASYN
means non-asynchronous. This notation is useful for describing nodes that are in
different clock domains. The following lines from Example 5-3 state that NODE_2 and
NODE_3 are in the same clock domain, but NODE_1 is not.

<NODE_RELATI ONSH P FROM NAVE="NODE_1" TO NAME="NODE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN' />

<NODE_RELATI ONSH P FROM NAVE="NODE_2" TO NAME="NODE_3" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN' />

The next line of code states that NODE_2 and NCDE_3 have a clock relationship of
either sequential edge or asynchronous.

<CLOCK_RELATI ONSHI P NAME=" SEQ_EDGE| ASYN' NCDE_LI ST="NODE_2, NODE_3" />

The <FORBI D></ FORBI D> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant 5-39
Targeting Clock and Register-Control Architectural Features

The following examples are the undesired conditions from Example 5-3 with their
equivalent block diagrams (Figure 5-16 and Figure 5-17):

Example 5-4.

<NODE_RELATI ONSH P FROM_NAME="NCDE_1" TO_NAME="NODE_2" TO _PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN" />

<NODE_RELATI ONSH P FROM_NAME=" NCDE_2" TO_NAME="NODE_3" TO _PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN" />

<NODE_RELATI ONSH P FROM_NAME="NCDE_1" TO_NAME="NODE_2" TO PORT="D_PORT"
REQUI RED_THROUGH="YES" THROUGH_TYPE="COVB" CLOCK_RELATI ONSH P="ASYN' />

Figure 5-16. Undesired Condition 3

NODE_1 m NODE_2 NODE_2
FRE . FRE TRE
D i D a Logic D a D a 0

CLOCK_1 m————|

ENA ENA ENA

CLR CLR CLR

CLOCE_2 =

Example 5-5.

<NCDE_RELATI ONSHI P FROM_NAME="NODE_1" TO _NAME="NODE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN" />

<NCDE_RELATI ONSHI P FROM_NAME="NODE_2" TO_NAME="NODE_3" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN" />

<CLOCK_RELATI ONSHI P NAME=" SEQ_ EDGE| ASYN' NODE_LI ST="NCDE_2, NCDE_3" />

Figure 5-17. Undesired Condition 4

MODE_1 MODE_2 NODE_3
PRE FRE FRE
D = D a D a D @ =0
CLOCK_1 s———
ENA ENA Ena
ciR ClR ciR

CLOCK_ 2 s

Targeting Clock and Register-Control Architectural Features

In addition to following general design guidelines, it is important to code your design
with the device architecture in mind. FPGAs provide device-wide clocks and register
control signals that can improve performance.

© November 2009 Altera Corporation Quartus Il Handbook Version 9.1 Volume 1: Design and Synthesis

5-40 Chapter 5: Design Recommendations for Altera Devices and the Quartus Il Design Assistant
Targeting Clock and Register-Control Architectural Features

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or using a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In ASIC design, balancing clock delay as it is distributed across the device is
important. Because Altera FPGAs provides device-wide global clock routing
resources and dedicated inputs, there is no need to manually balance delays on the
clock network.

Altera recommends limiting the number of clocks in your design to the number of
dedicated global clock resources available in your FPGA. Clocks feeding multiple
locations that do not use global routing may exhibit clock skew across the device that
could lead to timing problems. In addition, when you use combinational logic to
generate an internal clock, it adds delays on the clock line. In some cases, delay on a
clock line can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing parameters of the
register (such as hold time requirements) are violated and the design will not function
correctly.

Current FPGAs offer increasing numbers of global clocks to address large designs
with many clock domains. Many large FPGA devices provide dedicated global clock
networks, regional clock networks, and dedicated fast regional clock networks. These
clocks are typically organized into a hierarchical clock structure that allows many
clocks in each device region with low skew and delay. There are typically a number of
dedicated clock pins to drive either the global or regional clock networks and both
PLL outputs and internal clocks can drive various clock networks.

To reduce clock skew within a given clock domain and ensure that hold times are met
within that clock domain, assign each clock signal to one of the global high fan-out,
low-skew clock networks in the FPGA device. The Quartus II software automatically
uses global routing for high fan-out control signals, PLL outputs, and signals feeding
the global clock pins on the device. You can make explicit Global Signal logic option
settings by turning on the Global Signal option settings. On the Assignments menu,
click Assignment Editor. Use this option when it is necessary to force the software to
use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals