
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Handbook Version 9.1
Volume 1: Design and Synthesis

QII5V1-9.1.1

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

 © November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Contents

Chapter Revision Dates . xxi

Section I. Design Flows

Chapter 1. Design Planning with the Quartus II Software
Introduction . 1-1
Creating Design Specifications . 1-2
Intellectual Property Selection . 1-2
Device Selection . 1-3

Device Migration Planning . 1-4
Planning for Device Programming or Configuration . 1-4
Early Power Estimation . 1-5

Creating Powerplay EPE Spreadsheets . 1-6
Early Pin Planning and I/O Analysis . 1-6

Creating a Top-Level Design File for I/O Analysis . 1-8
Simultaneous Switching Noise Analysis . 1-8

Selecting Third-Party EDA Tool Flows . 1-9
Synthesis Tools . 1-9
Simulation Tools . 1-9
Formal Verification Tools . 1-10

Planning for On-Chip Debugging Options . 1-10
Design Practices and HDL Coding Styles . 1-12

Design Recommendations . 1-12
Recommended HDL Coding Styles . 1-13
Managing Metastability . 1-14

Planning for Hierarchical and Team-Based Design . 1-14
Flat Compilation Flow with No Design Partitions . 1-14
Incremental Compilation with Design Partitions . 1-15
Single-Project Versus Multiple-Project Incremental Flows . 1-16
Planning Design Partitions . 1-17
Creating a Design Floorplan . 1-18

Fast Synthesis and Early Timing Estimation . 1-18
Conclusion . 1-19
Referenced Documents . 1-19
Document Revision History . 1-21

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Introduction . 2-1
Deciding Whether to Use an Incremental Compilation Flow . 2-2

Flat Compilation Flow with No Design Partitions . 2-2
Incremental Capabilities Available When Your Design Has No Partitions 2-2

Incremental Compilation Flow with Design Partitions . 2-3
Incremental and Team-Based Design Flows . 2-6

Quick Start Guide—Summary of Incremental Compilation . 2-7
Preparing a Design for Incremental Compilation . 2-8
Compiling a Design Using Incremental Compilation . 2-8

Deciding which Design Blocks Should Be Design Partitions . 2-9
Impact of Design Partitions on Design Optimization . 2-10

iv Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Partition Statistics Reports . 2-11
Partition Timing Reports . 2-13
Incremental Compilation Advisor . 2-13
Using Partitions with Third-Party Synthesis Tools . 2-14

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus 2-14
Other Synthesis Tools . 2-15

Design Partition Assignments Compared to Physical Placement Assignments 2-15
Creating Design Partition Assignments . 2-15

Creating Design Partitions with the Design Partition Planner . 2-16
Creating Design Partitions In the Design Partitions Window . 2-17
Creating Design Partitions in the Project Navigator . 2-18
Creating Design Partitions with Tcl Scripting . 2-19
Partition Name . 2-19
Automatically-generated Partitions . 2-19

Setting the Netlist Type for Design Partitions . 2-20
Fitter Preservation Level . 2-21
Empty Partitions . 2-22
Where Are the Netlist Databases Saved? . 2-23
What Changes Initiate a Partition’s Automatic Resynthesis? . 2-23

Resynthesis Due to Source Code Changes . 2-24
Forcing Use of the Post-Fitting Netlist When a Partition has Changed . 2-25

Creating a Design Floorplan with LogicLock Location Assignments . 2-26
Taking Advantage of the Early Timing Estimator . 2-28
What LogicLock Changes Initiate Refitting? . 2-29

Exporting and Importing Partitions . 2-29
Team-Based Incremental Compilation Summary . 2-30

Preparing a Design to Import Partitions . 2-31
Creating and Compiling Lower-Level Projects . 2-32
Exporting Lower-Level Projects . 2-32
Including or Importing Lower-Level Projects into the Top-Level Project 2-32
Performing an Incremental Compilation in the Top-Level Project . 2-33

Netlist Types for Imported Partitions . 2-34
Creating a Lower-Level Project . 2-34
Exporting a Lower-Level Partition to be Used in a Top-Level Project . 2-35

Exporting a Lower-Level Block within a Project . 2-36
Using a .qxp File as a Source File in the Top-Level Project . 2-37
Importing a Lower-Level Partition Into the Top-Level Project . 2-37
Importing Assignments and Advanced Import Settings . 2-39

Design Partition Properties after Importing . 2-39
Importing Design Partition Assignments Within the Subdesign . 2-39
Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer 2-39
Importing LogicLock Assignments . 2-39
Importing Other Instance Assignments . 2-40
Importing Global Assignments . 2-40
Advanced Import Settings . 2-40

Generating Design Partition Scripts for Project Management . 2-41
Project Creation . 2-42
Excluded Partitions . 2-42
Assignments from the Top-Level Design . 2-42
Virtual Pin Assignments . 2-43
LogicLock Region Assignments . 2-44
Global Signal Promotion Assignments . 2-44
Makefile Generation . 2-45

Recommended Design Flows and Compilation Application Examples . 2-46

Contents v

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Reducing Compilation Time When Changing a Source File for One Partition 2-46
Optimizing a Timing-Critical Partition to Achieve Timing Closure . 2-47
Preserving Results for Some Partitions Before Adding Other Partitions 2-48
Debugging Incrementally with the SignalTap II Logic Analyzer . 2-49
Implementing a Team-Based Design Flow With Imported Partitions . 2-50
Performing Design Iteration With Lower-Level Partitions . 2-53
Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse 2-54
Using an Exported Partition to Send a Design without Including Source Files 2-56

Incremental Compilation Restrictions . 2-58
Preserving Exact Timing Performance . 2-58
When Placement and Routing May Not Be Preserved Exactly . 2-58
Using Incremental Compilation with Quartus II Archive Files . 2-59
Formal Verification Support . 2-59
SignalProbe Pins and Engineering Change Management with the Chip Planner 2-59

Linked Partitions Due to SignalProbe Pins or ECO Changes . 2-60
Exported Partitions . 2-61

SignalTap II Embedded Logic Analyzer in Exported Partitions . 2-61
Logic Analyzer Interface in Exported Partitions . 2-61
Importing Encrypted IP Cores . 2-62
Assignments Made in HDL Source Code in Exported Partitions . 2-62
Bottom-Up Design Partition Script Limitations . 2-62

Warnings About Extra Clocks Due to Bottom-Up Design Partition Scripts 2-62
Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Bottom-Up Design
Partition Scripts . 2-62
Wildcard Support in Bottom-Up Design Partition Scripts . 2-63
Derived Clocks and PLLs in Bottom-Up Design Partition Scripts . 2-63
Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition Scripts 2-63
Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts 2-63
Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts 2-64

HardCopy Compilation and Migration Flows . 2-64
HardCopy ASIC Migration Flows . 2-64
HardCopy ASIC Stand-Alone Compilations . 2-65

Restrictions on Megafunction Partitions . 2-65
Register Packing and Partition Boundaries . 2-65
I/O Register Packing . 2-65

Scripting Support . 2-66
Preparing a Design for Incremental Compilation . 2-66
Creating Design Partitions . 2-67
Setting Properties of Design Partitions . 2-67
Creating Floorplan Location Assignments—Excluding or Filtering Certain Device Elements (Such as
RAM or DSP Blocks) . 2-68
Generating Bottom-Up Design Partition Scripts . 2-69

Command Line Support . 2-69
Exporting a Partition to be Used in a Top-Level Project . 2-70
Importing a Lower-Level Partition into the Top-Level Project . 2-71
Makefiles . 2-72
Recommended Design Flows and Compilation Application Examples—Scripting and
Command-Line Operation . 2-72

Reducing Compilation Time When Changing a Source File for One Partition—Command-Line
Example . 2-72
Optimizing the Placement for a Timing-Critical Partition . 2-73

Conclusion . 2-73
Referenced Documents . 2-74
Document Revision History . 2-74

vi Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Chapter 3. Quartus II Design Flow for MAX+PLUS II Users
Introduction . 3-1
Chapter Overview . 3-1
MAX+PLUS II Support . 3-1
Typical Design Flow . 3-2
Device Support . 3-2
Quartus II GUI Overview . 3-3

Task Window . 3-3
Project Navigator . 3-3
Node Finder . 3-3
Tcl Console . 3-3
Messages . 3-3
Status . 3-4
Change Manager . 3-4

Setting Up MAX+PLUS II Look and Feel in the Quartus II Software . 3-4
MAX+PLUS II Look and Feel . 3-5
Compiler Tool . 3-6

Analysis and Synthesis . 3-7
Incremental Compilation and Partition Merge . 3-7
Fitter . 3-7
Assembler . 3-7
Timing Analyzer . 3-8
EDA Netlist Writer . 3-8
Design Assistant . 3-8
Reducing Compilation Time . 3-8

Quartus II Software Smart Compilation . 3-8
Power Analyzer . 3-9

MAX+PLUS II Design Conversion . 3-9
Converting an Existing MAX+PLUS II Design . 3-9
Converting MAX+PLUS II Graphic Design Files . 3-10
Importing MAX+PLUS II Assignments . 3-10

Quartus II Design Flow . 3-12
Creating a New Project . 3-12
Design Entry . 3-12
Making Assignments . 3-14

Assignment Editor . 3-14
Timing Assignments . 3-15
Synthesis . 3-17
Functional Simulation . 3-17
Place and Route . 3-18
Timing Analysis . 3-19
Viewing Chip Resources . 3-20

Chip Planner . 3-20
Timing Closure Floorplan . 3-20

Timing Simulation . 3-21
Quartus II Simulator Tool . 3-21
EDA Timing Simulation . 3-22

Power Estimation . 3-22
Programming . 3-23

Conclusion . 3-23
Quartus II Command Reference for MAX+PLUS II Users . 3-23
Referenced Documents . 3-31
Document Revision History . 3-31

Contents vii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Chapter 4. Quartus II Support for HardCopy Series Devices
Introduction . 4-1

HardCopy Series Design Benefits . 4-1
Quartus II Features for HardCopy Planning . 4-2

HardCopy Development Flow . 4-2
Designing the FPGA First . 4-3
Designing the HardCopy Device First . 4-5

HardCopy Utilities Menu . 4-6
Companion Revisions . 4-8
Compiling the HardCopy Companion Revision . 4-9
Comparing HardCopy and FPGA Companion Revisions . 4-9
Generating a HardCopy Handoff Report . 4-9
Archiving HardCopy Handoff Files . 4-10
HardCopy Advisor . 4-10

HardCopy Companion Device Selection . 4-12
HardCopy Device Resource Guide . 4-13
HardCopy Recommended Settings in the Quartus II Software . 4-16

Limit DSP and RAM to HardCopy Device Resources . 4-16
Enabling Design Assistant to Run During Compile . 4-17
Timing Settings . 4-18

TimeQuest Timing Analyzer . 4-18
Setting Up the TimeQuest Timing Analyzer . 4-19

Constraints for Clock Effect Characteristics . 4-19
Quartus II Software Features Supported for HardCopy Designs . 4-21

Physical Synthesis Optimization . 4-21
LogicLock Regions . 4-21
PowerPlay Power Analyzer . 4-21
Incremental Compilation . 4-22

HardCopy Design Readiness Check . 4-22
Execution of the HardCopy Design Readiness Check . 4-23
Stratix III Support . 4-23
Setting Check . 4-24

Summary . 4-24
Global Setting . 4-24
Instance Setting . 4-24
Operating Setting . 4-24

I/O Check . 4-25
Input Pin Placement for Global and Regional Clock . 4-26

PLL Usage Check . 4-26
PLL Real-Time Reconfigurable Check . 4-26
PLL Clock Outputs Driving Multiple Clock Network Types Check . 4-26
PLL with No Compensation Mode Check . 4-27
PLL with Normal or Source Synchronous Mode Feeding Output Pin Check 4-27

RAM Usage Check . 4-27
Initialized Memory Dependency Testing . 4-27

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner 4-28
Migrating One-to-One Changes . 4-29
Migrating Changes that Must be Implemented Differently . 4-30
Changes that Cannot be Migrated . 4-30
Overall Migration Flow . 4-30

Preparing the Revisions . 4-30
Applying ECO Changes . 4-31

Formal Verification of FPGA and HardCopy Revisions . 4-32
HardCopy Floorplan View . 4-33

viii Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Referenced Documents . 4-34
Document Revision History . 4-34

Section II. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
Introduction . 5-1
Synchronous FPGA Design Practices . 5-2

Fundamentals of Synchronous Design . 5-2
Hazards of Asynchronous Design . 5-3

Design Guidelines . 5-4
Combinational Logic Structures . 5-4

Combinational Loops . 5-4
Latches . 5-5
Delay Chains . 5-5
Pulse Generators and Multivibrators . 5-6

Clocking Schemes . 5-7
Internally Generated Clocks . 5-8
Divided Clocks . 5-8
Ripple Counters . 5-8
Multiplexed Clocks . 5-9
Gated Clocks . 5-10
Synchronous Clock Enables . 5-11
Recommended Clock-Gating Methods . 5-11

Design Techniques to Save Power . 5-12
Checking Design Violations Using the Design Assistant . 5-13

Quartus II Design Flow with the Design Assistant . 5-13
The Design Assistant Settings Page . 5-15
Message Severity Levels . 5-15
Design Assistant Rules . 5-16

Summary of Rules and IDs . 5-16
Design Should Not Contain Combinational Loops . 5-17
Register Output Should Not Drive Its Own Control Signal Directly or through Combinational
Logic . 5-17
Design Should Not Contain Delay Chains . 5-18
Design Should Not Contain Ripple Clock Structures . 5-18
Pulses Should Not Be Implemented Asynchronously . 5-18
Multiple Pulses Should Not Be Generated in the Design . 5-19
Design Should Not Contain SR Latches . 5-19
Design Should Not Contain Latches . 5-19
Gated Clocks Should Be Implemented According to Altera Standard Scheme 5-20
Logic Cell Should Not Be Used to Generate Inverted Clock . 5-20
Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save
Power: <n> . 5-20
Clock Signal Source Should Drive Only Input Clock Ports . 5-21
Clock Signal Should Be a Global Signal . 5-21
Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges . . .
5-22
Combinational Logic Used as a Reset Signal Should Be Synchronized . 5-22
External Reset Should Be Synchronized Using Two Cascaded Registers 5-22
External Reset Should Be Synchronized Correctly . 5-23
Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains
Should Be Synchronized Correctly . 5-24

Contents ix

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains
Should Be Synchronized . 5-24
Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the Same Signal
Source . 5-25
Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by the Same
Signal Source . 5-25
More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by the
Same Source . 5-25
Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the Same
Signal Source . 5-25
Nodes with More Than Specified Number of Fan-outs: <n> . 5-26
Top Nodes with Highest Fan-out: <n> . 5-26
Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains . 5-26
Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Not
All Bits May Be Aligned in the Receiving Clock Domain . 5-27
Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock
Domains . 5-27
Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous Clock
Domains . 5-27
No Reset Signal Defined to Initialize the State Machine . 5-28
State Machine Should Not Contain Unreachable State . 5-28
State Machine Should Not Contain a Deadlock State . 5-28
State Machine Should Not Contain a Dead Transition . 5-28

Enabling and Disabling Design Assistant Rules . 5-28
Using the Assignment Editor . 5-29
Using Verilog HDL . 5-29
Using VHDL . 5-30
Using TCL Commands . 5-30

Viewing Design Assistant Results . 5-31
Summary Report . 5-31
Settings Report . 5-31
Detailed Results Report . 5-32
Messages Report . 5-33
Rule Suppression Assignments Report . 5-33
Ignored Design Assistant Assignments Report . 5-33
Custom Rules Report . 5-33

Custom Rules . 5-33
XML File Format for Custom Rules . 5-34
Specifying the Path to the Custom Rules File . 5-35
Custom Rules Coding Examples . 5-36

Targeting Clock and Register-Control Architectural Features . 5-39
Clock Network Resources . 5-40
Reset Resources . 5-40
Register Control Signals . 5-41

Targeting Embedded RAM Architectural Features . 5-41
Conclusion . 5-42
Referenced Documents . 5-42
Document Revision History . 5-43

Chapter 6. Recommended HDL Coding Styles
Introduction . 6-1
Quartus II Language Templates . 6-2
Using Altera Megafunctions . 6-2
Instantiating Altera Megafunctions in HDL Code . 6-3

x Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Instantiating Megafunctions Using the MegaWizard Plug-In Manager . 6-4
Creating a Netlist File for Other Synthesis Tools . 6-5
Instantiating Megafunctions Using the Port and Parameter Definition . 6-5

Inferring Multiplier and DSP Functions from HDL Code . 6-6
Multipliers—Inferring the LPM_MULT Megafunction from HDL Code . 6-6
Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and
ALTMULT_ADD Megafunctions from HDL Code . 6-8

Inferring Memory Functions from HDL Code . 6-12
RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code . 6-13

Use Synchronous Memory Blocks . 6-13
Avoid Unsupported Reset and Control Conditions . 6-14
Check Read-During-Write Behavior . 6-16
Controlling Inference and Implementation in Device RAM Blocks . 6-17
Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior 6-17
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior 6-19
Simple Dual-Port, Dual-Clock Synchronous RAM . 6-21
True Dual-Port Synchronous RAM . 6-23
Specifying Initial Memory Contents at Power-Up . 6-26

ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code . . 6-28
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code 6-32

Simple Shift Register . 6-33
Shift Register with Evenly Spaced Taps . 6-34

Coding Guidelines for Registers and Latches . 6-36
Register Power-Up Values in Altera Devices . 6-36
Secondary Register Control Signals Such as Clear and Clock Enable . 6-38
Latches . 6-42

Unintentional Latch Generation . 6-42
Inferring Latches Correctly . 6-43

General Coding Guidelines . 6-46
Tri-State Signals . 6-46
Clock Multiplexing . 6-47
Adder Trees . 6-51

Architectures with 4-Input LUTs in Logic Elements . 6-51
Architectures with 6-Input LUTs in Adaptive Logic Modules . 6-52

State Machines . 6-53
Verilog HDL State Machines . 6-54
VHDL State Machines . 6-58

Multiplexers . 6-60
Quartus II Software Option for Multiplexer Restructuring . 6-61
Multiplexer Types . 6-61
Default or Others Case Assignment . 6-63
Implicit Defaults . 6-63
Degenerate Multiplexers . 6-65
Buses of Multiplexers . 6-67

Cyclic Redundancy Check Functions . 6-68
If Performance is Important, Optimize for Speed . 6-68
Use Separate CRC Blocks Instead of Cascaded Stages . 6-68
Use Separate CRC Blocks Instead of Allowing Blocks to Merge . 6-68
Take Advantage of Latency if Available . 6-69
Save Power by Disabling CRC Blocks When Not in Use . 6-69
Use the Device Synchronous Load (sload) Signal to Initialize . 6-69

Comparators . 6-69
Counters . 6-71

Designing with Low-Level Primitives . 6-71

Contents xi

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Conclusion . 6-72
Referenced Documents . 6-72
Document Revision History . 6-73

Chapter 7. Managing Metastability with the Quartus II Software
Introduction . 7-1
Metastability Analysis in the Quartus II Software . 7-2

Synchronization Register Chains . 7-3
Identifying Synchronizers for Metastability Analysis . 7-4

Using the Global Synchronizer Identification Setting . 7-4
Refining Synchronizer Identification Using the Instance-Specific Assignment 7-5

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis 7-5
Metastability and MTBF Reporting . 7-6

Metastability Report . 7-6
MTBF Summary Report . 7-7
Synchronizer Summary . 7-8
Synchronizer Chain Statistics Report in the TimeQuest Timing Analyzer 7-8

Synchronizer Data Toggle Rate in MTBF Calculation . 7-8
MTBF Optimization . 7-9

Synchronization Register Chain Length . 7-10
Reducing Metastability Effects . 7-10

Apply Complete System-Centric Timing Constraints for the TimeQuest Timing Analyzer 7-11
Force the Identification of Synchronization Registers . 7-11
Set the Synchronizer Data Toggle Rate . 7-11
Optimize Metastability During Fitting . 7-11
Increase the Length of Synchronizers to Protect and Optimize . 7-11
Set Fitter Effort to Standard Fit instead of Auto Fit . 7-12
If Possible, Increase the Number of Stages Used in Synchronizers . 7-12
If Possible, Select a Faster Speed Grade Device . 7-12

Scripting Support . 7-12
Identifying Synchronizers for Metastability Analysis . 7-13
Synchronizer Data Toggle Rate in MTBF Calculation . 7-13
report_metastability TimeQuest and Tcl Command . 7-13
MTBF Optimization . 7-13
Synchronization Register Chain Length . 7-14

Conclusion . 7-14
Referenced Documents . 7-15
Document Revision History . 7-15

Chapter 8. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction . 8-1
Overview: Incremental Compilation . 8-2

Incremental and Team-Based Design Flows . 8-2
Recommendations for the Netlist Type and Fitter Preservation Level . 8-3
Project Management in Team-Based Designs . 8-4

Why Plan Partitions and Floorplan Assignments for Incremental Compilation? 8-5
Partition Boundaries and Optimization . 8-5

Creating Design Partitions: General Partitioning Guidelines . 8-6
Plan Design Hierarchy and Source Design Files . 8-6

Using Partitions with Third-Party Synthesis Tools . 8-7
Partition Design by Functionality and Block Size . 8-7
Partition Design by Clock Domain and Timing Criticality . 8-8
Consider What Is Changing . 8-8

xii Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating Design Partitions: Design Guidelines . 8-8
Register Partition Inputs and Outputs . 8-9
Minimize Cross-Partition-Boundary I/O . 8-9
Avoid the Need for Logic Optimization Across Partitions . 8-11

Keep Logic in the Same Partition for Optimization and Merging . 8-12
Keep Constants in the Same Partition as Logic . 8-13
Avoid Unconnected Partition I/O . 8-14
Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together 8-15
Invert Clocks in Destination Partitions . 8-16
Connect I/O Directly to I/O Register for Packing Across Partition Boundaries 8-16
Do Not Use Internal Tri-States . 8-20
Include All Tri-State and Enable Logic in the Same Partition . 8-20
Include Bidirectional I/O Registers in the Same Partition . 8-21
Summary of Guidelines Related to Logic Optimization Across Partitions 8-22

Creating Design Partitions: Consider Additional Design Suggestions . 8-23
Balance Logic Resources . 8-23
Balance Global Routing Signals and Clock Networks if Required . 8-24
Assign Virtual Pins in Team-Based Flows . 8-25
Perform Timing Budgeting if Required . 8-26
Consider a Cascaded Reset Structure . 8-26
Drive Clocks Directly in Team-Based Flows . 8-27
Recreate PLLs for Lower-Level Partitions if Required in Team_Based Flows 8-28

Checking Partition Quality . 8-29
Incremental Compilation Advisor . 8-29
Design Partition Planner . 8-29
Floorplan Partition Coloring . 8-31
Viewing Design Partition Planner and Floorplan Side-by-Side . 8-32
Partition Statistics Report . 8-33
Report Partition Timing in the TimeQuest Timing Analyzer . 8-34
Ensure Partition Assignments Do Not Impact the Quality of Results . 8-34

Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs 8-35
Creating an .sdc with Project-Wide Constraints . 8-36
Creating an .sdc with Partition-Specific Constraints . 8-37
Consolidating the .sdc in the Top-Level Design . 8-38

Introduction to Design Floorplans . 8-39
The Difference between Logical Partitions and Physical Regions . 8-39
Why Create a Floorplan? . 8-39
When to Create a Floorplan . 8-41

Early Floorplan . 8-41
Late Floorplan . 8-41

Creating a Design Floorplan: Placement Guidelines . 8-42
Assigning Partitions to LogicLock Regions . 8-42
How to Size and Place Regions . 8-43
Modifying Region Size and Origin . 8-43

I/O Connections . 8-44
LogicLock Resource Exclusions . 8-45

Creating Non-Rectangular Regions . 8-46
Checking Floorplan Quality . 8-47

Incremental Compilation Advisor . 8-47
LogicLock Region Resource Estimates . 8-47
LogicLock Region Properties Statistics Report . 8-47
Critical Path Settings for Chip Planner . 8-47
Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner 8-47
Inter-Region Connection Bundles . 8-48

Contents xiii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Routing Utilization . 8-48
Ensure Floorplan Assignments Do Not Impact Quality of Results . 8-48

Recommended Design Flows and Application Examples . 8-48
Create a Floorplan for the Entire Design . 8-49
Create a Floorplan as the Project Lead in a Team-Based Flow . 8-49
Create a Floorplan Assignment for One Design Block with Difficult Timing 8-50

Potential Issues with Creating Partitions and Floorplan Assignments . 8-51
Logic and Resource Utilization Effects . 8-51
Routing Utilization Effects . 8-52

Conclusion . 8-52
Referenced Documents . 8-53
Revision History . 8-53

Section III. Synthesis

Chapter 9. Quartus II Integrated Synthesis
Introduction . 9-1
Design Flow . 9-2
Language Support . 9-4

Verilog HDL Support . 9-4
Verilog-2001 Support . 9-5
SystemVerilog Support . 9-5
Initial Constructs and Memory System Tasks . 9-6
Verilog HDL Macros . 9-7

VHDL Support . 9-8
VHDL Standard Libraries and Packages . 9-9
VHDL wait Constructs . 9-10
VHDL-2008 Support . 9-10

AHDL Support . 9-11
Schematic Design Entry Support . 9-11
State Machine Editor . 9-11
Design Libraries . 9-12

Specifying a Destination Library Name in the Settings Dialog Box . 9-12
Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl 9-13
Specifying a Destination Library Name in a VHDL File . 9-13
Mapping a VHDL Instance to an Entity in a Specific Library . 9-14

Using Parameters/Generics . 9-15
Setting Default Parameter Values and BDF Instance Parameter Values . 9-16
Passing Parameters Between Two Design Languages . 9-17

Incremental Compilation . 9-19
Partitions for Preserving Hierarchical Boundaries . 9-19
Parallel Synthesis . 9-20
Quartus II Exported Partition File as Source . 9-21

Quartus II Synthesis Options . 9-22
Setting Synthesis Options . 9-24

Analysis & Synthesis Settings Page of the Settings Dialog Box . 9-24
Quartus II Logic Options . 9-24
Synthesis Attributes . 9-24
Synthesis Directives . 9-26

Optimization Technique . 9-27
Auto Gated Clock Conversion . 9-28
Timing-Driven Synthesis . 9-29
SDC Constraint Protection . 9-30

xiv Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

PowerPlay Power Optimization . 9-30
Limiting DSP and RAM Block Usage in Partitions . 9-31
Restructure Multiplexers . 9-32
Synthesis Effort . 9-34
State Machine Processing . 9-35
Manually Specifying State Assignments Using the syn_encoding Attribute 9-36
Manually Specifying Enumerated Types Using the enum_encoding Attribute 9-38
Safe State Machines . 9-39
Power-Up Level . 9-41

Inferred Power-Up Levels . 9-41
Power-Up Don’t Care . 9-42
Remove Duplicate Registers . 9-42
Preserve Registers . 9-42
Disable Register Merging/Don’t Merge Register . 9-43
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node . 9-44
Keep Combinational Node/Implement as Output of Logic Cell . 9-45
Disabling Synthesis Netlist Optimizations with dont_retime Attribute . 9-46
Disabling Synthesis Netlist Optimizations with dont_replicate Attribute . 9-46
Maximum Fan-Out . 9-47
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable 9-48
Megafunction Inference Control . 9-49

Multiply-Accumulators and Multiply-Adders . 9-49
Shift Registers . 9-49
RAM and ROM . 9-50
Resource Aware RAM, ROM, and Shift-Register Inference . 9-51
RAM to Logic Cell Conversion . 9-51

RAM Style and ROM Style—for Inferred Memory . 9-52
Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute 9-53
RAM Initialization File—for Inferred Memory . 9-56
Multiplier Style—for Inferred Multipliers . 9-57
Full Case . 9-59
Parallel Case . 9-60
Translate Off and On / Synthesis Off and On . 9-61
Ignore translate_off and synthesis_off Directives . 9-62
Read Comments as HDL . 9-62
Use I/O Flipflops . 9-63
Specifying Pin Locations with chip_pin . 9-65
Using altera_attribute to Set Quartus II Logic Options . 9-66

Verilog HDL . 9-67
VHDL . 9-67

Analyzing Synthesis Results . 9-68
Analysis and Synthesis Section of the Compilation Report . 9-69
Project Navigator . 9-69

Analyzing and Controlling Synthesis Messages . 9-69
Quartus II Messages . 9-69
VHDL and Verilog HDL Messages . 9-70

Setting the HDL Message Level . 9-71
Enabling or Disabling Specific HDL Messages by Module/Entity . 9-73

Node-Naming Conventions in Quartus II Integrated Synthesis . 9-73
Hierarchical Node-Naming Conventions . 9-74
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) . 9-74
Register Changes During Synthesis . 9-75

Synthesis and Fitting Optimizations . 9-76
State Machines . 9-77

Contents xv

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions 9-77
Packed Input and Output Registers of RAM and DSP Blocks . 9-77

Preserving Register Names . 9-77
Node-Naming Conventions for Combinational Logic Cells . 9-78
Preserving Combinational Logic Names . 9-79

Scripting Support . 9-79
Adding an HDL File to a Project and Setting the HDL Version . 9-80
Quartus II Synthesis Options . 9-81
Assigning a Pin . 9-83
Creating Design Partitions for Incremental Compilation . 9-83

Conclusion . 9-84
Referenced Documents . 9-84
Document Revision History . 9-85

Chapter 10. Synopsys Synplify Support
Introduction . 10-1
Altera Device Family Support . 10-1
Design Flow . 10-2

Output Netlist File Name and Result Format . 10-5
Synplify Optimization Strategies . 10-6

Using Synplify Premier to Optimize Your Design . 10-7
Implementations in Synplify Pro or Premier . 10-7
Timing-Driven Synthesis Settings . 10-7

Clock Frequencies . 10-8
Multiple Clock Domains . 10-8
Input and Output Delays . 10-8
Multicycle Paths . 10-9
False Paths . 10-9

FSM Compiler . 10-9
FSM Explorer in Synplify Pro and Premier . 10-10

Optimization Attributes and Options . 10-10
Retiming in Synplify Pro and Premier . 10-10
Maximum Fan-Out . 10-10
Preserving Nets . 10-11
Register Packing . 10-11
Resource Sharing . 10-11
Preserving Hierarchy . 10-11
Register Input and Output Delays . 10-11
syn_direct_enable . 10-12
I/O Standard . 10-12

Altera-Specific Attributes . 10-13
altera_chip_pin_lc . 10-13
altera_implement_in_esb or altera_implement_in_eab . 10-13
altera_io_powerup . 10-13
altera_io_opendrain . 10-13

Exporting Designs to the Quartus II Software Using NativeLink Integration 10-14
Running the Quartus II Software from within the Synplify Software . 10-14
Using the Quartus II Software to Run the Synplify Software . 10-15
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 10-16
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 10-16

Individual Clocks and Frequencies . 10-17
Input and Output Delay . 10-17
Multicycle Path . 10-17
False Path . 10-17

xvi Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Passing Constraints to the Quartus II Software using Tcl Commands . 10-17
Global Signals . 10-18
Default or Global Clock Frequency . 10-18
Individual Clocks and Frequencies . 10-18
Virtual Clocks . 10-19
Route Delay Option . 10-19
Multiple Clocks in Different Clock Groups . 10-19
Multiple Clocks with Different Frequencies in the Same Clock Group 10-20
Inter-Clock Relationships—Delays and False Paths between Clocks . 10-21
False Paths . 10-21
Multicycle Paths . 10-22
Maximum Path Delays . 10-23

Guidelines for Altera Megafunctions and Architecture-Specific Features . 10-25
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10-26

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
10-27
Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
10-27
Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions 10-27
Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench . . .
10-28
Using Generated Verilog HDL Files for Black Box IP Function Instantiation 10-28
Using Generated VHDL Files for Black Box IP Function Instantiation . 10-29
Other Synplify Software Attributes for Creating Black Boxes . 10-29

Including Files for Quartus II Placement and Routing Only . 10-30
Inferring Altera Megafunctions from HDL Code . 10-31

Inferring Multipliers . 10-31
Inferring RAM . 10-33
RAM Initialization . 10-35
Inferring ROM . 10-36
Inferring Shift Registers . 10-36

Incremental Compilation and Block-Based Design . 10-37
Creating a Design with Separate Netlist Files for Incremental Compilation 10-38
Using MultiPoint Synthesis with Incremental Compilation . 10-39

Set Compile Points and Create Constraint Files . 10-39
Additional Considerations for Compile Points . 10-41
Creating a Quartus II Project for Compile Points and Multiple .vqm Files 10-41

Creating Multiple .vqm Files for Incremental Compilation Using Separate Synplify Projects . . 10-43
Manually Creating Multiple .vqm Files Using Black Boxes . 10-43
Creating a Quartus II Project for Multiple .vqm Files . 10-47

Performing Incremental Compilation in the Quartus II Software . 10-48
Conclusion . 10-49
Referenced Documents . 10-49
Document Revision History . 10-50

Chapter 11. Mentor Graphics Precision Synthesis Support
Introduction . 11-1
Device Family Support . 11-1
Design Flow . 11-2
Creating and Compiling a Project in the Precision Synthesis Software . 11-5

Creating a Project . 11-5
Compiling the Design . 11-5

Mapping the Precision Synthesis Design . 11-5
Setting Timing Constraints . 11-6

Contents xvii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Setting Mapping Constraints . 11-7
Assigning Pin Numbers and I/O Settings . 11-7
Assigning I/O Registers . 11-8
Disabling I/O Pad Insertion . 11-9

Preventing the Precision Synthesis Software from Adding I/O Pads . 11-9
Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin . 11-9

Controlling Fan-Out on Data Nets . 11-9
Synthesizing the Design and Evaluating the Results . 11-10

Obtaining Accurate Logic Utilization and Timing Analysis Reports . 11-10
Exporting Designs to the Quartus II Software Using NativeLink Integration 11-10

Running the Quartus II Software from within the Precision Synthesis Software 11-11
Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl Script
11-12
Using Quartus II Software to Launch the Precision Synthesis Software . 11-13
Passing Constraints to the Quartus II Software . 11-13

create_clock . 11-13
set_input_delay . 11-14
set_output_delay . 11-15
set_max_delay . 11-15
set_min_delay . 11-16
set_false_path . 11-16
set_multicycle_path . 11-17

Guidelines for Altera Megafunctions and Architecture-Specific Features . 11-18
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 11-18

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
11-19
Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
11-19
Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench . . .
11-19
Using Generated Verilog HDL Files for Black Box IP Function Instantiation 11-20
Using Generated VHDL Files for Black Box IP Function Instantiation . 11-21

Inferring Altera Megafunctions from HDL Code . 11-21
Multipliers . 11-22
Using the GUI . 11-22
Using Attributes . 11-22
Multiplier-Accumulators and Multiplier-Adders . 11-24
Controlling DSP Block Inference . 11-24
RAM and ROM . 11-26

Incremental Compilation and Block-Based Design . 11-27
Creating a Design with Precision RTL Plus Incremental Synthesis . 11-27

Creating Partitions with the incr_partition Attribute . 11-28
Creating Multiple EDIF Netlist Files Using Separate Precision Projects or Implementations . . . 11-29

Creating Black Boxes in Verilog HDL . 11-31
Creating Black Boxes in VHDL . 11-32

Creating Quartus II Projects for Multiple EDIF Files . 11-33
Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow 11-34
Creating Multiple Quartus II Projects for a Bottom-Up Flow . 11-35

Hierarchy and Design Considerations . 11-35
Conclusion . 11-36
Referenced Documents . 11-36
Document Revision History . 11-37

Chapter 12. Mentor Graphics LeonardoSpectrum Support

xviii Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Introduction . 12-1
Altera Device Family Support . 12-1
Design Flow . 12-2
Optimization Strategies . 12-4

Timing-Driven Synthesis . 12-5
Global Power Tab . 12-5
Clock Power Tab . 12-5
Input and Output Power Tabs . 12-5

Other Constraints . 12-6
Encoding Style . 12-6
Resource Sharing . 12-6
Mapping I/O Registers . 12-7

Timing Analysis with the LeonardoSpectrum Software . 12-7
Exporting Designs Using NativeLink Integration . 12-7

Generating Netlist Files . 12-8
Including Design Files for Black Boxed Modules . 12-8
Passing Constraints with Scripts . 12-8
Integration with the Quartus II Software . 12-8

Guidelines for Altera Megafunctions and LPM Functions . 12-9
Instantiating Altera Megafunctions . 12-9
Inferring Altera Memory Elements . 12-9

Inferring Multipliers and DSP Functions . 12-10
Simple Multipliers . 12-11
Multiplier Accumulators . 12-11
Multiplier Adders . 12-11

Controlling DSP Block Inference . 12-11
Global Attribute . 12-13
Module Level Attributes . 12-13
Signal Level Attributes . 12-14
Guidelines for Using DSP Blocks . 12-16

Block-Based Design with the Quartus II Software . 12-17
Hierarchy and Design Considerations . 12-17
Creating a Design with Multiple .edif Files . 12-18

Generating Multiple .edif Files Using the LogicLock Option . 12-18
Creating a Quartus II Project for Multiple .edif Files Including LogicLock Regions 12-20

Generating Multiple .edif Files Using Black Boxes . 12-21
Black Box Methodology in Verilog HDL . 12-23
Black Boxing in VHDL . 12-23
Creating a Quartus II Project for Multiple .edif Files . 12-25

Incremental Synthesis Flow . 12-26
Modifications Required for the LogicLock_Incremental.tcl Script File . 12-26
Running the Tcl Script File in LeonardoSpectrum . 12-27

Conclusion . 12-28
Referenced Documents . 12-28
Document Revision History . 12-28

Chapter 13. Analyzing Designs with Quartus II Netlist Viewers
Introduction . 13-1
When to Use Viewers: Analyzing Design Problems . 13-2
Quartus II Design Flow with Netlist Viewers . 13-3
RTL Viewer Overview . 13-4
State Machine Viewer Overview . 13-5
Technology Map Viewer Overview . 13-5
Introduction to the User Interface . 13-6

Contents xix

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Schematic View . 13-7
Schematic Symbols . 13-7
Selecting an Item in the Schematic View . 13-12
Moving and Panning in the Schematic View . 13-13

Hierarchy List . 13-13
Selecting an Item in the Hierarchy List . 13-14

Enable or Disable the Auto Hierarchy List . 13-14
State Machine Viewer . 13-15

State Diagram View . 13-15
State Transition Table . 13-16
State Encoding Table . 13-16
Selecting an Item in the State Machine Viewer . 13-16
Switching Between State Machines . 13-17

Navigating the Schematic View . 13-17
Traversing and Viewing the Design Hierarchy . 13-17

Flattening the Design Hierarchy . 13-17
Viewing the Contents of a Design Hierarchy within the Current Schematic 13-18

Viewing Contents of Atom Primitives . 13-18
Viewing the Properties of Instances and Primitives . 13-19
Viewing LUT Representations in the Technology Map Viewer . 13-20
Grouping Combinational Logic into Logic Clouds . 13-21

Logic Clouds in the RTL Viewer . 13-22
Logic Clouds in the Technology Map Viewer . 13-22
Manually Group and Ungroup Logic Clouds . 13-23

Changing the Constant Signal Value Formatting . 13-23
Zooming and Magnification . 13-23

Schematic Debugging and Tracing Using the Bird’s Eye View . 13-25
Full Screen View . 13-25

Partitioning the Schematic into Pages . 13-25
Moving Between Schematic Pages . 13-26
Moving Back and Forward Through Schematic Pages . 13-26
Following Nets Across Schematic Pages . 13-26
Go to Net Driver . 13-27

Customizing the Schematic Display in the RTL Viewer . 13-28
Filtering in the Schematic View . 13-28

Filter Sources Command . 13-29
Filter Destinations Command . 13-29
Filter Sources and Destinations Command . 13-30
Filter Between Selected Nodes Command . 13-30
Filter Selected Nodes and Nets Command . 13-30
Filter Bus Index Command . 13-31
Filter Command Processing . 13-31
Filtering Across Hierarchies . 13-32
Expanding a Filtered Netlist . 13-33
Reducing a Filtered Netlist . 13-34

Probing to Source Design File and Other Quartus II Windows . 13-34
Moving Selected Nodes to Other Quartus II Windows . 13-35

Probing to the Viewers from Other Quartus II Windows . 13-36
Viewing a Timing Path . 13-37
Other Features in the Schematic Viewer . 13-39

Tooltips . 13-39
Radial Menu . 13-41

Enabling and Disabling the Radial Menu . 13-42
Customizing the Shortcut Commands . 13-42

xx Contents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Changing the Delay . 13-43
Rollover . 13-43
Displaying Net Names in the Schematic . 13-44
Displaying Node Names in the Schematic . 13-44
Opening the Hierarchy Dialog Box . 13-44
Exporting and Copying a Schematic Image . 13-46
Printing . 13-46

Debugging HDL Code with the State Machine Viewer . 13-47
Simulation of State Machine Gives Unexpected Results . 13-47

Conclusion . 13-50
Document Revision History . 13-50

Additional Information
About this Handbook . Info-1
How to Contact Altera . Info-1
Third-Party Software Product Information . Info-1
Typographic Conventions . Info-2

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Chapter Revision Dates

The chapters in this book, Quartus II Handbook Version 9.1 Volume 1: Design and
Synthesis, were revised on the following dates. Where chapters or groups of chapters
are available separately, part numbers are listed.

Chapter 1 Design Planning with the Quartus II Software
Revised: November 2009
Part Number: QII51016-9.1.0

Chapter 2 Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: November 2009
Part Number: QII51015-9.1.0

Chapter 3 Quartus II Design Flow for MAX+PLUS II Users
Revised: November 2009
Part Number: QII51002-9.1.0

Chapter 4 Quartus II Support for HardCopy Series Devices
Revised: November 2009
Part Number: QII51004-9.1.0

Chapter 5 Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: November 2009
Part Number: QII51006-9.1.0

Chapter 6 Recommended HDL Coding Styles
Revised: November 2009
Part Number: QII51007-9.1.0

Chapter 7 Managing Metastability with the Quartus II Software
Revised: November 2009
Part Number: QII51018-9.1.0

Chapter 8 Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: November 2009
Part Number: QII51017-9.1.0

Chapter 9 Quartus II Integrated Synthesis
Revised: December 2009
Part Number: QII51008-9.1.1

Chapter 10 Synopsys Synplify Support
Revised: November 2009
Part Number: QII51009-9.1.0

Chapter 11 Mentor Graphics Precision Synthesis Support
Revised: November 2009
Part Number: QII51011-9.1.0

Chapter 12 Mentor Graphics LeonardoSpectrum Support

xxii Chapter Revision Dates

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Revised: November 2009
Part Number: QII51010-9.1.0

Chapter 13 Analyzing Designs with Quartus II Netlist Viewers
Revised: November 2009
Part Number: QII51013-9.1.0

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Section I. Design Flows

The Altera® Quartus® II design software provides a complete design environment that
easily adapts to your specific design requirements. This handbook is arranged in
chapters, sections, and volumes that correspond to the major stages in the overall
design flow. For a general introduction to features and the standard design flow in the
software, refer to the Introduction to the Quartus II Software manual.

This section is an introduction to design planning, contains a collection of various
specialized design flows in the Quartus II software, and includes the following
chapters:

■ Chapter 1, Design Planning with the Quartus II Software

This chapter discusses important FPGA design planning issues, such as device
selection, early power estimation, I/O pin planning, and design planning. To help
you improve design productivity, it provides recommendations and describes
various tools available for Altera FPGAs .

Use this chapter for an overview of various planning considerations when you
start your design.

■ Chapter 2, Quartus II Incremental Compilation for Hierarchical and Team-Based
Design

This chapter documents Altera’s incremental design and compilation flow, which
allows you to preserve the results and performance for unchanged logic in your
design as you make changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular hierarchical and
team-based design flows using top-down or bottom-up methodologies

This chapter contains information about using the incremental compilation flow,
and recommends incremental design flows with Quartus II features.

■ Chapter , Introduction

There are many features in the Quartus II software to help users of the legacy
MAX+PLUS® II software easily transition to the Quartus II software design
environment. This chapter describes how to convert MAX+PLUS II designs to
Quartus II projects, and highlights the similarities and differences between the
MAX+PLUS II and Quartus II design flows.

This chapter is for users of the legacy MAX+PLUS II software.

■ Chapter 4, Quartus II Support for HardCopy Series Devices

With the Quartus II software, you can leverage an FPGA device as a prototype and
seamlessly migrate your design to a HardCopy ASIC to reduce cost for volume
production. This chapter describes the Quartus II support for HardCopy design
flows.

Use this chapter if you want to migrate your design to a HardCopy ASIC.

f For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

I-2 Section I: Design Flows

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1. Design Planning with the
Quartus II Software

This chapter discusses important FPGA design planning considerations, provides
recommendations, and describes various tools available for Altera® FPGAs to
improve design productivity.

Introduction
The inherent flexibility of advanced FPGAs means that the pin layout, power
consumption, area utilization, and timing performance for each design block are all
dependent on the final design implementation. Because of the significant increase in
FPGA device densities over the last few years, designs are increasingly complex and
might involve multiple designers. System architects must resolve these design issues
when integrating design blocks, often leading to problems that affect the overall time
to market and thereby increase cost. Many potential problems can be solved earlier in
the design cycle by performing good design planning.

This chapter contains the following sections:

■ “Creating Design Specifications” on page 1–2

■ “Intellectual Property Selection” on page 1–2

■ “Device Selection” on page 1–3

■ “Planning for Device Programming or Configuration” on page 1–4

■ “Early Power Estimation” on page 1–5

■ “Early Pin Planning and I/O Analysis” on page 1–6

■ “Selecting Third-Party EDA Tool Flows” on page 1–9

■ “Planning for On-Chip Debugging Options” on page 1–10

■ “Design Practices and HDL Coding Styles” on page 1–12

■ “Planning for Hierarchical and Team-Based Design” on page 1–14

■ “Fast Synthesis and Early Timing Estimation” on page 1–18

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. You should know what are the most important factors for your
design. More device features, density, or performance can increase system cost. Signal
integrity and board issues might impact I/O pin locations. Power, timing
performance, and area utilization affect each other, and compilation time is affected
by optimizations for these factors.

QII51016-9.1.0

1–2 Chapter 1: Design Planning with the Quartus II Software
Creating Design Specifications

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Quartus® II software optimizes designs for the best average results, but you can
change the settings to focus on one aspect of the design results and trade off other
aspects. Certain tools or debugging options can lead to restrictions in your design
flow. If you know what is important in a particular design, this knowledge helps you
choose the tools, features, and methodologies that you should use with the design.
This chapter cannot cover every possible consideration for planning a complex FPGA
design, but once you understand your design priorities, you can use the design
planning considerations described here as a guide to help ensure a productive and
successful FPGA design flow.

f This chapter provides an introduction to various design and planning features in the
Quartus II software. For a general overview of the Quartus II design flow and
features, refer to the Introduction to the Quartus II Software manual. For more details
about specific Quartus II features and methodologies, this chapter provides references
to other appropriate chapters in the Quartus II Handbook.

f After you have selected a device family, to check if additional guidelines are available,
refer to the Design Guideline section of the device on the Altera Literature and
Technical Documentation page.

Creating Design Specifications
Before you create your logic design or complete your system design, create detailed
design specifications that define the system, specify the I/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions. Taking the time to create these specifications helps improve design
efficiency.

Creating a test plan at this phase also helps you to design for testability and
manufacturability. For example, if you want to perform any built-in self-test functions
to drive interfaces, you can use a UART interface with a Nios® II processor inside the
FPGA device. You might require the ability to validate all the design interfaces. For
guidelines related to analyzing and debugging the device after it is in the system, refer
to “Planning for On-Chip Debugging Options” on page 1–10.

If your design includes multiple designers, it is also useful to consider a common
design directory structure at this point. This eases the design integration stages. For
more suggestions on team-based designs, refer to “Planning for Hierarchical and
Team-Based Design” on page 1–14.

Intellectual Property Selection
Altera and its third-party intellectual property (IP) partners offer a large selection of
off-the-shelf IP cores optimized for Altera devices. The IP selection often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/O interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html

Chapter 1: Design Planning with the Quartus II Software 1–3
Device Selection

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The OpenCore Plus feature, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports an untethered mode, in which the design runs for a
limited time, or a tethered mode. The tethered mode requires an Altera serial JTAG
cable connected between the JTAG port on your board and a host computer running
the Quartus II Programmer for the duration of the hardware evaluation period.

f For descriptions of available IP cores, refer to the Intellectual Property page on the
Altera website.

Device Selection
The first stage in design planning is choosing the best device for your application. The
device selection affects the rest of your design cycle, including board specification and
layout. Most of this planning is performed outside of the Quartus II software, but this
section provides a few suggestions to aid in the planning process.

Choose the device family that best suits your design requirements. Different families
offer different trade-offs, including cost, performance, logic and memory density, I/O
density, power utilization, and packaging. You should also consider feature
requirements, such as I/O standards support, high-speed transceivers, global or
regional clock networks, and the number of phase-locked loops (PLLs) available in
the device.

f You can review important features of each device family in the Selector Guides page.
Each device family also has a device handbook or set of data sheets that documents
the device features in detail.

Determining the required device density can be a challenging part of the design
planning process. Devices with more logic resources and higher I/O counts can
implement larger and potentially more complex designs, but may have a higher cost.
Smaller devices have lower static power utilization. Select a device that meets your
design requirements with some safety margin, in case you want to add more logic
later in the design cycle to upgrade or expand your design, or reserve logic and
memory for on-chip debugging (refer to “Planning for On-Chip Debugging Options”
on page 1–10). Consider requirements for specific types of dedicated logic blocks,
such as memory blocks of different sizes, or digital signal processing (DSP) blocks to
implement certain arithmetic functions.

Many next-generation designs use a current design as a starting point. If you have
other designs that target an Altera device, you can use their resource utilization as an
estimate for your new design. Compile existing designs in the Quartus II software
with the Auto device selected by the Fitter option in the Settings dialog box. Review
the resource utilization to find out which device density fits the design. Consider that
coding style, device architecture, and the optimization options used in the Quartus II
software can significantly affect the resource utilization and timing performance of
your design.

f To obtain resource utilization estimates for certain configurations of Altera’s IP
designs, refer to the user guides for Altera megafunctions and IP MegaCores on
Literature: IP and Megafunctions section of the Altera website.

http://www.altera.com/literature/lit-sg.jsp
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/products/ip/ipm-index.html

1–4 Chapter 1: Design Planning with the Quartus II Software
Planning for Device Programming or Configuration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Device Migration Planning
Determine whether you want the option of migrating your design to another device
density to allow flexibility when your design nears completion, or whether you want
to migrate to a HardCopy® ASIC when your design reaches volume production. In
some cases, designers may target a smaller (and less expensive) device and then move
to a larger device if necessary to meet their design requirements. Other designers may
prototype their design in a larger device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a smaller device after prototyping.
Similarly, many designers compile and optimize their design for an FPGA device and
then migrate to a HardCopy ASIC when the design is complete and ready for
higher-volume production. If you want the flexibility to migrate your design, you
should specify these migration options in the Quartus II software at the beginning of
your design cycle.

To specify the target migration devices, perform the following:

1. In the Assignments menu, select Settings. The Settings dialog box appears.

2. On the Device page, click on the Migration Devices button. The Migration
Devices dialog box appears.

3. In the Migration Devices dialog box, select your target device in the Compatible
migration devices section.

Selecting a migration device has an impact on pin placement because some pins may
serve different functions in different device densities or package sizes. If you are
making pin assignments in the Quartus II software, the Pin Migration View in the Pin
Planner highlights pins that change function between your migration devices. (For
more information, refer to “Early Pin Planning and I/O Analysis” on page 1–6.)
Selecting a companion device might restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration or
companion devices later in the design cycle is possible, but requires extra effort to
check pin assignments, and might require design changes to fit into the new target
device. Altera recommends that you consider these issues early in the design cycle
than at the end, when the design is near completion and ready for migration.

In addition, if you are using a HardCopy ASIC, review HardCopy guidelines early in
the design cycle for any Quartus II settings that should be used or other restrictions
you should consider. You must use complete timing constraints if you want to migrate
to a HardCopy device because of the rigorous verification requirements for ASICs.

f For more information about timing requirements and analysis for HardCopy designs,
refer to the HardCopy Series Handbook, and the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Planning for Device Programming or Configuration
Another important part of the device planning is determining how you want to
program or configure the device in your system. Choosing your programming or
configuration method early allows system and board designers to determine what
companion devices, if any, are required for your system. Your board layout also
depends on the type of programming or configuration method you plan to use for
programmable devices. Many programming options require a JTAG interface to
connect to the devices, so you might have to set up a JTAG chain on the board. In

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 1: Design Planning with the Quartus II Software 1–5
Early Power Estimation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

addition, the Quartus II software uses the settings for the configuration scheme,
configuration device, and configuration device voltage to enable the appropriate dual
purpose pins as regular I/O pins after configuration is complete. The Quartus II
software performs voltage compatibility checks of those pins during I/O assignment
analysis and compilation of your design. Click the Configuration tab of the Device
and Pin Options dialog box and select your configuration scheme.

f The device family handbooks describe the configuration options available for a given
device family. For more details about configuration options, refer to the Configuration
Handbook. For information about programming CPLD devices, refer to your device
data sheet or handbook.

Early Power Estimation
You can use the Quartus II power estimation and analysis tools to provide
information to PCB board and system designers. You can perform early power
estimation before you create any source code, or when you have a preliminary version
of the design source code, and then perform the most accurate analysis with the
PowerPlay Power Analyzer when the design is complete.

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

■ Thermal planning—You must ensure that the cooling solution is sufficient to
dissipate the heat generated by the device. The computed junction temperature
must fall within normal device specifications.

■ Power supply planning—You must ensure that the power supplies provide
adequate current to support device operation.

Power consumption in FPGA devices is dependent on the logic design. This
dependence can make power estimation challenging during the early board
specification and layout stages. Altera’s PowerPlay Early Power Estimator (EPE)
spreadsheet allows you to estimate power utilization before the design is complete. To
use the EPE, you must provide information about the device resources that are used
in the design, as well as the operating frequency, toggle rates, and environmental
considerations.

If you have an existing design or a partially-completed design, the Quartus II
software power estimator file can provide input to the EPE spreadsheet to specify
information about your current design (refer to “Creating Powerplay EPE
Spreadsheets”).

The PowerPlay EPE spreadsheets for each supported device family are available on
the PowerPlay Early Power Estimator and Power Analyzer page.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results for designers developing the PCB.

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp

1–6 Chapter 1: Design Planning with the Quartus II Software
Early Pin Planning and I/O Analysis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

When the design is complete, perform a complete power analysis to check the power
consumption more accurately. The PowerPlay Power Analyzer tool in the Quartus II
software provides an accurate estimation of power, ensuring that thermal and supply
budgets are not violated. For the most accurate power estimation, use gate-level
simulation results from a Verilog Value Change Dump File (.vcd) with the PowerPlay
Power Analyzer.

f For more information about power estimation and analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Creating Powerplay EPE Spreadsheets
You can use PowerPlay EPE spreadsheets to perform a preliminary thermal analysis
and power consumption estimate for your design. You can enter the data manually, or
you can use the tools in the Quartus II software to assist you in generating the device
resources usage information for your design.

If you manually enter data into the EPE spreadsheet, you can enter the device
resources, operating frequency, toggle rates, and other parameters for your design. If
you do not have an existing design, you can estimate the number of device resources
used in your design and enter them manually.

If you have an existing design or a partially completed design, you can use the
Quartus II software to generate the PowerPlay EPE file to assist you in completing the
PowerPlay EPE spreadsheet.

To generate the power estimation file, you must first compile your design in the
Quartus II software. After compilation is complete, on the Project menu, click
Generate PowerPlay Early Power Estimator File. The PowerPlay EPE file is a
Comma-Separated Value File (.csv) named <project>_early_power.csv. If your design
targets a Cyclone, Stratix, or Stratix GX device, the PowerPlay EPE file is in a Tab-
Separated Value File (.txt) named <project>_early_power.txt.

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the power estimation file and transfers it into the spreadsheet. If you
do not want to use the macro, you can manually transfer the data into the EPE
spreadsheet. For example, after importing the PowerPlay EPE file information into
the PowerPlay EPE spreadsheet, you can add additional devices resource information
at any time. If the existing Quartus II project represents only a portion of your full
design, you can manually enter the additional device resources used in the final
design.

Early Pin Planning and I/O Analysis
In many design environments, FPGA designers want to plan top-level FPGA I/O pins
early to help board designers to start developing the PCB design and layout. The
FPGA device’s I/O capabilities and board layout guidelines influence pin locations
and other types of assignments. If the board design team specifies an FPGA pin-out, it
is crucial that the pin locations are verified in the FPGA placement and routing
software to avoid board design changes.

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 1: Design Planning with the Quartus II Software 1–7
Early Pin Planning and I/O Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In the past, designers and system architects could not check the validity of FPGA pin
assignments until the design was completed. You can now create a preliminary
pin-out for an Altera FPGA with the Quartus II Pin Planner before the source code is
developed, based on standard I/O interfaces (such as memory and bus interfaces)
and any other I/O-related assignments defined by system requirements. For more
information, refer to “Creating a Top-Level Design File for I/O Analysis” on page 1–8.
The Quartus II I/O Assignment Analysis checks that the pin locations and
assignments are supported in the target FPGA architecture. You can use I/O
Assignment Analysis to validate I/O-related assignments that you create or modify
throughout the design process. When you compile your design in the Quartus II
software, the I/O Assignment Analysis in the Fitter validates that the assignments
meet all the device requirements and generates messages if there are any problems.

The Pin Planner enables easy I/O pin assignment planning, assignment, and
validation. You can use the View menu in the Pin Planner to create pin location and
other assignments using a device package view instead of pin numbers.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups,
and differential pin pairings to help you through the I/O planning process. If
migration devices are selected (including HardCopy devices) as described in “Device
Migration Planning” on page 1–4, the Pin Migration View highlights pins have
changed functions in the migration device when compared to the currently selected
device. Selecting pins in the Device Migration view cross-probes to the rest of the Pin
Planner, so you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins for use in
“board-aware” signal integrity reports generated with the Enable Advanced I/O
Timing option. This option ensures you get very accurate I/O timing analysis. You
have the option to use a Microsoft Excel spreadsheet to start the I/O planning process
if you normally use a spreadsheet in your design flow, and you can export a .csv
containing your I/O assignments for spreadsheet use when all pins are assigned.

When planning is complete, the pin location information can be passed to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools,
and can read pin location changes from these tools to check the suggested changes.
Your pin assignments must match between the Quartus II software and your
schematic and board layout tools to ensure the design works correctly on the board on
which it is placed, especially if changes to the pin-out must be made. The system
architect can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they compile their
design. When the design is complete, the Quartus II Fitter reports are used for the
final sign-off of pin assignments. After compilation, the Quartus II software generates
the Pin-Out File (.pin). You can use this file to verify that each pin is correctly
connected in board schematics.

Starting FPGA pin planning early—before the HDL design is complete—improves the
confidence in early board layouts, reduces the chance of error, and improves the
design’s overall time to market.

f For more information about I/O assignment and analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook. For more information about passing
I/O information between the Quartus II software and third-party EDA tools, refer to
the Mentor Graphics PCB Design Tools Support and Cadence PCB Design Tools Support
chapters in the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_02.pdf

1–8 Chapter 1: Design Planning with the Quartus II Software
Early Pin Planning and I/O Analysis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating a Top-Level Design File for I/O Analysis
Early in the design process, before the source code is created, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores that are used in the design, and any other I/O-related assignments
defined by system requirements. You can use this information with the Create/Import
Megafunction feature in the Pin Planner to specify details about the design I/O
interfaces. Specifying these details allows you to create a top-level design file that
includes all your I/O information, so you can analyze the I/O assignments in the
Quartus II software.

The Pin Planner interfaces with the MegaWizard™ Plug-In Manager, and allows you to
create or import custom megafunctions and IP cores that use I/O interfaces. You can
configure how they are connected to each other by specifying matching node names
for selected ports in the Set Up Top-Level Design File dialog box. Create any other
I/O-related assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much I/O-related information as possible, generate a
top-level design file using the Create Top-Level Design File command. The Pin
Planner creates virtual pin assignments for internal nodes, so internal nodes are not
assigned to device pins during compilation. After analysis and synthesis of the newly
generated top-level wrapper file, use the generated netlist to perform I/O Analysis
with the Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP parameters, and
repeat the checking process until the I/O interface meets your design requirements
and passes the pin checks in the Quartus II software. When this initial pin planning is
complete, you can create a Quartus II Revision based on the Quartus II-generated
netlist. You then have a choice on how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated netlist and
use the generated Quartus II Settings File (.qsf) with the actual design.

Simultaneous Switching Noise Analysis
Simultaneous switching noise (SSN) is defined as a noise voltage inducted onto a
victim I/O pin of a device due to the switching behavior of other aggressor I/O pins
in the device. SSN noise often leads to the degradation of signal integrity by causing
signal distortion, thereby reducing the noise margin of a system. It is best approach to
address SSN with estimation early in your system design, to reduce the chance of any
later board design changes. When the design is complete, tape out your PCB with
complete SSN analysis of your FPGA in the Quartus II software.

Altera provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) tool, and the SSN Analyzer in the Quartus II
software.

The ESE tool is a good starting point to estimate SSN in your FPGA design, and it is
available for various device families.

f For more information and device support for the ESE spreadsheet tool, refer to
Altera’s Signal Integrity Center on the Altera website. For more information about the
SSN Analyzer, refer to the Simultaneous Switching Noise (SSN) Analysis and
Optimizations chapter in volume 2 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/technology/signal/sgl-index.html

Chapter 1: Design Planning with the Quartus II Software 1–9
Selecting Third-Party EDA Tool Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Selecting Third-Party EDA Tool Flows
Your complete FPGA design flow may include third-party EDA tools in addition to
the Quartus II software. Determine which tools you want to use with the Quartus II
software to ensure that they are supported and set up correctly, and that you are
aware of any useful features or undesired limitations.

Synthesis Tools
The Quartus II software includes advanced and easy-to-use integrated synthesis that
supports Verilog HDL and VHDL, as well as the Altera hardware description
language (AHDL) and schematic design entry. You can also use supported standard
third-party EDA synthesis tools to synthesize your Verilog HDL or VHDL design, and
then compile the resulting output netlist file in the Quartus II software. Different
synthesis tools may give different results for each design. To assess the
best-performing tool for your application, you can experiment by synthesizing typical
designs for your specific application and coding style. Perform placement and routing
in the Quartus II software to get accurate timing analysis and logic utilization results.

Because tool vendors frequently add new features, fix tool issues, and enhance
performance for Altera devices, Altera recommends using the most recent version of
third-party synthesis tools. The Quartus II Software Release Notes lists the version of
each synthesis tool that is officially supported by that version of the Quartus II
software.

To use the correct Library Mapping File (.lmf) for your synthesis netlist, specify your
synthesis tool in the New Project Wizard or the EDA Tools Settings page of the
Settings dialog box.

Your synthesis tool may offer the capability to create a Quartus II project and pass
constraints, such as the EDA tool setting, device selection, and timing requirements
that you specified in your synthesis project. You can use this capability to save time
when setting up your Quartus II project for placement and routing.

If you want to take advantage of an incremental compilation methodology, you
should partition your design for synthesis and generate multiple output netlist files.
For more information, refer to “Incremental Compilation with Design Partitions” on
page 1–15.

f For more information about synthesis tool flows, refer to the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Simulation Tools
Altera provides the ModelSim Starter Edition with the Quartus II software. You can
also purchase the ModelSim-Altera Edition to support large designs and achieve
faster simulation performance. The Quartus II software can generate both functional
and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that is supported with your Quartus II version for best
results. You should also use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist. The Quartus II Software Release Notes list the
version of each simulation tool that is officially supported with that particular version
of the Quartus II software.

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

1–10 Chapter 1: Design Planning with the Quartus II Software
Planning for On-Chip Debugging Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Specify your simulation tool in the EDA Tools Settings page of the Settings dialog
box to generate the appropriate output simulation netlist.

f For more information about simulation tool flows, refer to the appropriate chapter in
the Simulation section in volume 3 of the Quartus II Handbook.

Formal Verification Tools
The Quartus II software supports some formal verification flows. Consider whether
your desired formal verification flow impacts the design and compilation stages of
your design.

f For more information about formal verification flows and supported tools, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the Quartus II
Handbook.

Using a formal verification flow can impact performance results because it requires
that certain logic optimizations be turned off, such as register retiming, and forces
hierarchy blocks to be preserved, which can restrict optimization. Formal verification
treats memory blocks as black boxes. Therefore, it is best to keep memory in a
separate hierarchy block so other logic does not get incorporated into the black box
for verification. There are other restrictions that may also limit your design, so consult
the documentation for details. If formal verification is important to your design, it is
easier to plan for limitations and restrictions in the beginning than to make changes
later in the design flow.

Specify your formal verification tool in the EDA Tools Settings page of the Settings
dialog box to generate the appropriate output netlist.

Planning for On-Chip Debugging Options
Altera’s in-system debugging tools offer different advantages and trade-offs, so a
particular debugging tool may work better for different systems and designers. It is
beneficial to evaluate on-chip debugging options early in your design process, to
ensure that your system board, Quartus II project, and design are all set up to support
the appropriate options. Planning can reduce time spent during debugging and
eliminates having to make changes later to accommodate your preferred debugging
methodologies.

The Quartus II portfolio of verification tools includes the following in-system
debugging features:

■ SignalProbe incremental routing—Quickly routing internal signals to I/O pins
without affecting the design. Starting with a fully routed design, you can select
and route signals for debugging to either previously reserved or currently unused
I/O pins.

■ SignalTap® II Embedded Logic Analyzer—Probes the state of the internal signals
in the design without the use of external equipment or extra I/O pins, while the
design is running at full speed in an FPGA device. Defining custom trigger-
condition logic provides greater accuracy and improves the ability to isolate
problems. The SignalTap II Embedded Logic Analyzer does not require external
probes or changes to the design files to capture the state of the internal nodes or

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf

Chapter 1: Design Planning with the Quartus II Software 1–11
Planning for On-Chip Debugging Options

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

I/O pins in the design; all captured signal data is conveniently stored in device
memory until you are ready to read and analyze the data. The SignalTap II
Embedded Logic Analyzer works best for synchronous interfaces. For debugging
asynchronous interfaces, consider using SignalProbe or an external logic analyzer
to view the signals most accurately.

■ Logic Analyzer Interface (LAI)—Enables you to connect and transmit internal
FPGA signals to an external logic analyzer for analysis. You can use this feature to
connect a large set of internal device signals to a small number of output pins for
debugging purposes, and allows you to take advantage of advanced features in
your external logic analyzer or mixed signal oscilloscope.

■ In-System Memory Content Editor—Provides read and write access to in-system
FPGA memories and constants through the JTAG interface, making it easy to test
changes to memory contents and constant values in the FPGA while the device is
functioning in a system.

■ In-System Sources and Probes—Sets up customized register chains to drive or
sample the instrumented nodes in your logic design, providing an easy way to
input simple virtual stimuli and capture the current value of instrumented nodes.
You can force trigger conditions set up using the SignalTap II Logic Analyzer,
create simple test vectors to exercise your design without the use of external test
equipment, and dynamically control run-time control signals with the JTAG chain.

■ Virtual JTAG Megafunction—Enables you to build your own system-level
debugging infrastructure, including both processor-based debugging solutions
and debugging tools in software for system-level debugging. The
SLD_VIRTUAL_JTAG megafunction can be instantiated directly in your HDL
code to provide one or more transparent communication channels to access parts
of your FPGA design using the JTAG interface of the device.

f For more information about debugging tools, refer to the appropriate “Referenced
Documents” on page 1–19. For an overview of debugging options that can help you
decide which option to use, refer to the Introduction section in Section V. In-System
Design Debugging in volume 3 of the Quartus II Handbook.

If you intend to use any of these features, you may have to plan for the features when
developing your system board, Quartus II project, and design. The following
paragraphs describe various factors to consider during your design planning stages.

The SignalTap II Embedded Logic Analyzer, Logic Analyzer Interface, In-System
Memory Content Editor, In-System Sources and Probes, and Virtual JTAG
megafunction require JTAG connections to perform in-system debugging. Plan your
system and board with JTAG ports that are available for debugging.

The JTAG debugging features also require a small amount of additional logic
resources to implement the JTAG hub logic. If you set up the appropriate feature early
in your design cycle, you can include these device resources in your early resource
estimations to ensure you do not overfill the device with logic.

The SignalTap II Embedded Logic Analyzer uses device memory to capture data
during system operation. To ensure that you have enough memory resources to take
advantage of this debugging technique, consider reserving device memory to be used
during debugging.

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

1–12 Chapter 1: Design Planning with the Quartus II Software
Design Practices and HDL Coding Styles

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To use incremental debugging with the SignalTap II Embedded Logic Analyzer, the
Full incremental compilation option must be turned on. This option is on by default
for projects created in the Quartus II software version 6.1 or later, but is not turned on
automatically for existing projects. If incremental compilation is not enabled, you
must recompile the entire design when you want to add debugging functions, or
when you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap II Embedded Logic Analyzer greatly reduces the
compilation time required for debugging.

The SignalProbe and the Logic Analyzer Interface require I/O pins for debugging.
Consider reserving I/O pins for debugging so that you do not have to change the
design or board to accommodate debugging signals later. Keep in mind that the Logic
Analyzer Interface can multiplex signals with design I/O pins if required. Ensure that
your board supports some kind of debugging mode, where debugging signals do not
affect system operation.

If you want to use the Virtual JTAG megafunction for custom debugging applications,
you must instantiate and incorporate it as part of the design process.

The In-System Sources and Probes feature requires that you instantiate a
megafunction in your HDL code. In addition, you have the option to instantiate the
SignalTap II Embedded Logic Analyzer as a megafunction, so you can manually
connect it to nodes in your design and ensure that the tapped node names do not
change during synthesis. You can add the debugging block as a separate design
partition for incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or the
LPM_CONSTANT megafunction, turn on the Allow In-System Memory Content
Editor to capture and independently update content of the system clock option when
you create the memory block in the MegaWizard Plug-In Manager.

Design Practices and HDL Coding Styles
In the development of complex FPGA designs, design practices and coding styles
have an enormous impact on your device’s timing performance, logic utilization, and
system reliability. Follow Altera’s recommendations to achieve the best synthesis and
fitting results.

Design Recommendations
You can use synchronous design practices to consistently meet your design goals.
Problems with other design techniques include reliance on propagation delays in a
device, incomplete timing analysis, and possible glitches. In a synchronous design, a
clock signal triggers all events. As long as all the registers’ timing requirements are
met, a synchronous design behaves in a predictable and reliable manner for all
process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades.

Chapter 1: Design Planning with the Quartus II Software 1–13
Design Practices and HDL Coding Styles

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Pay particular attention to clock signals, because they have a large effect on your
design’s timing accuracy, performance, and reliability. Problems with clock signals
can cause functional and timing problems in your design. You can use dedicated clock
pins and clock routing for best results, and if PLLs are available in your target device,
use the PLLs for clock inversion, multiplication, and division. For clock multiplexing
and gating, use the dedicated clock control block or PLL clock switchover feature
instead of combinational logic if these features are available in your device. If you
must use internally-generated clock signals, register the output of any combinational
logic used as a clock signal to reduce glitches.

The Design Assistant in the Quartus II software is a design-rule checking tool that
enables you to check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design guidelines or design
rules. To run the Design Assistant, on the Processing menu, point to Start and click
Start Design Assistant. To set the Design Assistant to run automatically during
compilation, turn on Run Design Assistant during compilation in the Settings
dialog box. You can also use third-party ”lint” tools to check your coding style.

You should also understand the target architecture of your device to target your
design to take advantage of those features. For example, the control signals should
use the dedicated control signals in the device architecture, so in some cases you
might be required to limit the number of different control signals used in your design
to achieve the best results.

f For more information about design recommendations and using the Design Assistant,
refer to the Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook. You can also refer to industry
papers for more information about multiple clock design. For a good analysis, refer to
Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs under
Papers (www.sunburst-design.com).

Recommended HDL Coding Styles
HDL coding styles can have a significant effect on the quality of results for
programmable logic designs. You can use Altera’s recommended coding styles to
achieve optimal synthesis results. If you are designing memory and DSP functions,
you should understand your device’s target architecture so you can take advantage of
the dedicated logic block sizes and configurations. Follow the coding guidelines for
inferring megafunctions and targeting dedicated device hardware, such as memory
and DSP blocks.

f For specific HDL coding examples and recommendations, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For any additional
tool-specific guidelines, refer to your synthesis tool’s documentation. In the Quartus II
software, you can use the HDL examples in the Language Templates available from
the right-click menu in the text editor.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.sunburst-design.com

1–14 Chapter 1: Design Planning with the Quartus II Software
Planning for Hierarchical and Team-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Managing Metastability
Metastability problems can occur in digital design when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the designer
cannot guarantee that the signal meets the setup and hold time requirements during
the signal transfer. Designers commonly use a synchronization chain to minimize the
occurrence of metastable events.

You can use the Quartus II software to analyze the average mean time between
failures (MTBF) due to metastability when a design synchronizes asynchronous
signals, and optimize the design to improve the metastability MTBF. The MTBF due to
metastability is an estimate of the average time between instances when metastability
could cause a design failure. A high MTBF (such as hundreds or thousands of years
between metastability failures) indicates a more robust design. Determine an
acceptable target MTBF given the context of your entire system and the fact that
MTBF calculations are statistical estimates.

The Quartus II software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your
clock and data frequencies.

f For information about the industry-leading metastability analysis, reporting, and
optimization features in the Quartus II software, refer to the Managing Metastability
with the Quartus II Software chapter in volume 1 of the Quartus II Handbook.

Planning for Hierarchical and Team-Based Design
If you want to create a hierarchical design that can take advantage of the
compilation-time savings and performance preservation of the Quartus II software
incremental compilation, plan for an incremental compilation flow from the
beginning of your design cycle. The following subsections describe the flat
compilation flow, in which the design hierarchy is flattened without design partitions,
and then the incremental compilation flows that use design partitions. Incremental
compilation flows offer several advantages but require more design planning to
ensure good quality of results. The last subsections discuss factors to consider when
planning an incremental compilation flow: planning design partitions and creating a
design floorplan.

f For information about using the incremental compilation flows in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions
In this compilation flow in the Quartus II software, the entire design is compiled
together in a “flat” netlist. This flow is used if you do not create any design partitions.
Your source code can have hierarchy, but the design is flattened during compilation
and all the design source code is synthesized and fit in the target device whenever the
design is recompiled after any change in the design. By processing the entire design,
the software performs all available logic and placement optimizations on the entire
design to improve area and performance. You can use debugging tools in an
incremental design flow, such as the SignalTap II Logic Analyzer, but you do not
specify any design partitions to preserve design hierarchy during compilation.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

Chapter 1: Design Planning with the Quartus II Software 1–15
Planning for Hierarchical and Team-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The flat compilation flow is easy to use; you do not have to plan any design partitions.
However, because the entire design is recompiled whenever there are any changes to
the design, compilation times can be relatively long for large devices. In addition, you
may find that the results for one part of the design change when you change a
different part of your design.

Incremental Compilation with Design Partitions
In an incremental compilation flow, the system architect splits a large design into
partitions which can be designed separately. Team members can work on partitions
independently, which can simplify the design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the device
floorplan, you can speed up your design compilation time while maintaining or even
improving the quality of results.

You may want to use incremental compilation later in the design cycle when you are
not interested in improving the majority of the design any further, and want to make
changes to, or optimize, one specific block. In this case, you may want to preserve the
performance of modules that are unmodified and reduce compilation time on
subsequent iterations.

Incremental compilation may also be useful for both reducing compilation time and
achieving timing closure. For example, you may want to specify which partitions
should be preserved in subsequent incremental compilations and then recompile the
other partitions with advanced optimizations turned on.

If a part of your design is not yet complete, you can create an empty partition for the
incomplete part of the design while compiling the completed partitions. Then, save
the results for the complete partitions while you work on the new part of the design.

Alternately, different designers or IP providers may be working on different blocks of
the design using a team-based methodology, and you may want to combine these
blocks in a bottom-up compilation flow.

If you are planning your design code and hierarchy, ensure that each design entity is
created in a separate file so the entities remain independent when you make source
code changes in the file. If you use a third-party synthesis tool, create separate Verilog
Quartus Mapping (VQM) or EDIF netlists for each design partition in your synthesis
tool. You may have to create separate projects within your synthesis tool, so the tool
synthesizes each partition separately and generates separate output netlist files. Refer
to your synthesis tool documentation for information about support for Quartus II
incremental compilation. The netlists are then considered the source files for
incremental compilation.

1–16 Chapter 1: Design Planning with the Quartus II Software
Planning for Hierarchical and Team-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Single-Project Versus Multiple-Project Incremental Flows
The Quartus II incremental compilation feature supports various design
methodologies.

The easiest compilation methodology is having one designer or project lead who
compiles the entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can add design
entities to the project as they are completed. You can also target optimizations on one
part of the design while designating the rest of the design as “empty.” Regardless of
the source for all the design logic, the project lead compiles and optimizes the
top-level project as a whole.

Incremental compilation preserves the compilation results and performance of
unchanged partitions in your design, greatly reducing design iteration time by
focusing new compilations on changed design partitions only. New compilation
results are then merged with the previous compilation results from unchanged design
partitions. Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions untouched. You
can also use this flow with empty partitions if parts of your design are incomplete or
missing.

If individual designers or IP providers want to complete the optimization of their
design in separate projects, they can integrate each lower-level project into one
top-level project.

Incremental compilation provides export and import features to enable this type of
design methodology. Designers of lower-level blocks can export the optimized netlist
for their design, along with a set of assignments, such as LogicLock™ regions. The
system architect then imports each design block as a design partition in a top-level
project.

With imported partitions, it is very important that the system architect provide
guidance to designers of lower-level blocks to ensure that each partition uses the
appropriate device resources. Because the designs are developed independently, each
lower-level designer has no information about the overall design or how their
partition connects with other partitions. This lack of information can lead to problems
during system integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, is communicated to the designers of
lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use Quartus II
incremental compilation to communicate information to lower-level designers
through automatically-generated scripts. The Generate bottom-up design partition
scripts option automates the process of transferring top-level project information to
lower-level modules. The software provides a project manager interface for managing
project information in the top-level design.

The scripts can create Quartus II projects for all the lower-level design blocks and pass
all the relevant project assignments. Using these scripts makes it easier for designers
of lower-level modules to implement the instructions from the project lead, and avoid
conflicts between projects when importing and incorporating the projects into the
top-level design. You can use this methodology to help reduce the need to further
optimize the designs after integration and improve overall designer productivity and
team collaboration.

Chapter 1: Design Planning with the Quartus II Software 1–17
Planning for Hierarchical and Team-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can combine compilation flows to take advantage of a single Quartus II project
for part of your design, while importing parts of the design that are developed
independently.

The single-project flow is generally simpler to perform. For example, having to export
and import lower-level designs is eliminated, and having a single project provides the
design software with information about the entire design, so it can perform global
placement optimizations when no part of the design is locked down to a specific
location.

Planning Design Partitions
Partitioning a design for an FPGA requires planning to ensure optimal results when
the partitions are integrated, and ensure that each partition is placed well relative to
other partitions in the device. Following Altera’s recommendations for creating
design partitions improves the overall quality of results. For example, registering
partition I/O boundaries keeps critical timing paths inside one partition that can be
optimized independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual blocks
reduces the chance of timing problems during system integration. If you optimize
lower-level partitions separately, any unregistered paths that cross between partitions
are not optimized as an entire path. To ensure that the software correctly optimizes
the input and output logic in each partition, you can perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, Altera
recommends creating timing assignments on the corresponding I/O path in each
partition to constrain both ends of the path to the budgeted timing delay. Assigning a
timing budget for each part of the connection ensures that the software optimizes
paths appropriately so they meet the top-level design requirements.

You can also plan and balance your resource utilization. If you are performing
incremental compilation, the software synthesizes each partition separately, with no
data about the resources used in other partitions. Therefore, device resources can be
overused in the individual partitions during synthesis, and the design may not fit in
the target device when the partitions are merged.

In a design flow in which designers optimize their lower-level designs and export
them to a top-level design, the software also places and routes each partition
separately. In some cases, partitions can use conflicting resources when combined at
the top level. Balancing resource utilization between the design partitions avoids any
problems with conflicting resources when all the partitions are integrated.

f For guidelines on creating design partitions and organizing your source code, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan chapter in
volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

1–18 Chapter 1: Design Planning with the Quartus II Software
Fast Synthesis and Early Timing Estimation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating a Design Floorplan
To take full advantage of incremental compilation, creating a design floorplan
prevents conflicts between design partitions, and ensures that each partition is placed
well relative to other partitions. Creating location assignments for each partition
ensures that no conflicts occur for locations between different partitions. In addition, a
design floorplan helps to avoid a situation in which the Fitter is directed to place or
replace a portion of the design in an area of the device in which most resources are
claimed. Without floorplan assignments, this situation can lead to increased
compilation time and reduced quality of results.

You can use the Quartus II Chip Planner to create a design floorplan using LogicLock
region assignments for each design partition. With a basic design framework for the
top-level design, these floorplan editors allow you to view connections between
regions, estimate physical timing delays on the chip, and move regions around the
device floorplan. When you have compiled the full design, you can also view logic
placement and locate areas of routing congestion to improve the floorplan
assignments.

Good partition and floorplan design helps lower-level designs meet top-level design
requirements when integrated with the rest of the design, reducing the time spent
integrating and verifying the timing of the top-level design.

f For information about creating placement assignments in the design floorplan, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook. For guidelines on creating a design floorplan for incremental
compilation, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Fast Synthesis and Early Timing Estimation
It is more cost-effective to find design issues early in the design cycle than to find
problems in the final timing closure stages. When the first version of the design source
code is complete, you may want to perform a quick compilation to create a kind of
silicon virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Quartus II software, you can choose to perform a Fast
synthesis, which reduces the compilation time but may give reduced quality of
results. On the Assignments menu, click Settings. On the Analysis & Synthesis
Settings tab, click More Settings and set the Synthesis Effort.

Regardless of your compilation flow, you can use the an Early Timing Estimate to
perform a quick placement and routing, and a timing analysis of your design. On the
Processing menu, point to Start, and click Start Early Timing Estimate. The software
chooses a device automatically if required, places any LogicLock regions used to
create a floorplan, finds a quick initial placement for all the design logic, and provides
a useful estimate of the final design performance. If you have entered timing
constraints, timing analysis reports on these constraints.

If you are designing individual blocks separately, you can use these features as you
develop the design. Any issues highlighted in the lower-level design blocks are
communicated to the system architect. Resolving these issues might require allocating
additional device resources to the individual block or changing its timing budget.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 1: Design Planning with the Quartus II Software 1–19
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you are a top-level designer, you can also use fast synthesis and early timing
estimation to prototype the entire design. Incomplete partitions are marked as empty
in an incremental compilation flow, while the rest of the design is compiled to get an
early timing estimate and detect any problems with design integration.

A system architect can use early timing estimation along with design partition scripts
(as described in “Planning for Hierarchical and Team-Based Design” on page 1–14) to
pass additional constraints to lower-level designers, and provide more information
about the other partitions in the design. This information is especially useful to
optimize cross-partition paths. Running early timing estimations helps you to find
and resolve design problems during the early design stages.

Conclusion
Modern FPGAs support large, complex designs with fast timing performance. By
planning several aspects of your design early in the process, you can reduce
unnecessary time spent handling issues in later stages of the process. You can use
various features of the Quartus II software to quickly plan your design and achieve
the best possible results. Following the guidelines presented in this chapter can
improve productivity, which reduces the design cost and improves the final product’s
time to market.

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II Software

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

■ Cadence PCB Design Tools chapter in volume 2 of the Quartus II Handbook

■ Configuration Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook

■ Design Debugging Using In-System Sources and Probes chapter in volume 3 of the
Quartus II Handbook

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Formal Verification section in volume 3 of the Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ In-System Debugging Using External Logic Analyzers chapter in volume 3 of the
Quartus II Handbook

■ In-System Updating of Memory and Constants chapter in volume 3 of the Quartus II
Handbook

■ Introduction to the Quartus II Software

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/an/an386.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

1–20 Chapter 1: Design Planning with the Quartus II Software
Referenced Documents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Mentor Graphics PCB Design Tools Support chapter in volume 2 of the Quartus II
Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook

■ Simulation section in volume 3 of the Quartus II Handbook

■ sld_virtual_jtag Megafunction User Guide

■ Synthesis section in volume 1 of the Quartus II Handbook

http://www/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 1: Design Planning with the Quartus II Software 1–21
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Document Revision History
Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Added details to “Creating Design Specifications” on
page 1–2

■ Added details to “Intellectual Property Selection” on
page 1–2

■ Updated information on “Device Selection” on page 1–3

■ Added reference to “Device Migration Planning” on page 1–4

■ Removed information from “Planning for Device
Programming or Configuration” on page 1–4

■ Added details to “Early Power Estimation” on page 1–5

■ Updated information on “Early Pin Planning and I/O
Analysis” on page 1–6

■ Updated information on “Creating a Top-Level Design File for
I/O Analysis” on page 1–8

■ Added new “Simultaneous Switching Noise Analysis” section

■ Updated information on “Synthesis Tools” on page 1–9

■ Updated information on “Simulation Tools” on page 1–9

■ Updated information on “Planning for On-Chip Debugging
Options” on page 1–10

■ Added new “Managing Metastability” section

■ Changed heading title “Top-Down Versus Bottom-Up
Incremental Flows” to “Single-Project Versus Multiple-
Project Incremental Flows”

■ Updated information on “Creating a Design Floorplan” on
page 1–18

■ Removed information from “Fast Synthesis and Early Timing
Estimation” on page 1–18

Updated for the Quartus II 9.1
software release.

March 2009
v.9.0.0

■ No change to content Updated for the Quartus II 9.0
software release.

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 8.1
software release.

May 2008
v8.0.0

■ Organization changes

■ Added “Creating Design Specifications” section

■ Added reference to new details in the In-System Design
Debugging section of volume 3

■ Added more details to the “Design Practices and HDL Coding
Styles” section

■ Added references to the new Best Practices for Incremental
Compilation and Floorplan Assignments chapter

■ Added reference to the Quartus II Language Templates

Updated for the Quartus II 8.0
software release and related

documentation; expanded and
improved organization of topic

coverage.

1–22 Chapter 1: Design Planning with the Quartus II Software
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

2. Quartus II Incremental Compilation for
Hierarchical and Team-Based Design

This chapter describes the Quartus II incremental compilation feature, which allows
you to preserve satisfactory compilation results and performance of unchanged
partitions in your design. This feature dramatically reduces design iteration time by
focusing subsequent compilations on parts of the design that change, and improves
your design productivity.

Introduction
The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus® II software introduced the FPGA industry’s first true incremental
design and compilation flow, with the following benefits:

■ Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere

■ Reduces design iteration time by 70% for small design changes, so you can
perform more design iterations per day and achieve timing closure efficiently

■ Facilitates modular hierarchical and team-based design flows

“Deciding Whether to Use an Incremental Compilation Flow” on page 2–2 provides
an overview of the Quartus II design flow with and without incremental compilation
to help you decide if you should take advantage of optional incremental flows for
your project. The remainder of the chapter includes the following sections:

■ “Quick Start Guide—Summary of Incremental Compilation” on page 2–7

■ “Deciding which Design Blocks Should Be Design Partitions” on page 2–9,
including integration with third-party synthesis tools

■ “Creating Design Partition Assignments” on page 2–15, including using the
Design Partition Planner

■ “Setting the Netlist Type for Design Partitions” on page 2–20

■ “Creating a Design Floorplan with LogicLock Location Assignments” on
page 2–26

■ “Exporting and Importing Partitions” on page 2–29

■ “Recommended Design Flows and Compilation Application Examples” on
page 2–46, including the steps required to carry out the following tasks:

■ “Reducing Compilation Time When Changing a Source File for One Partition”

■ “Optimizing a Timing-Critical Partition to Achieve Timing Closure”

■ “Preserving Results for Some Partitions Before Adding Other Partitions”

■ “Debugging Incrementally with the SignalTap II Logic Analyzer”

■ “Implementing a Team-Based Design Flow With Imported Partitions”

■ “Performing Design Iteration With Lower-Level Partitions”

■ “Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse”

■ “Using an Exported Partition to Send a Design without Including Source Files”

QII51015-9.1.0

2–2 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ “Incremental Compilation Restrictions” on page 2–58

■ “Scripting Support” on page 2–66

Quartus II incremental compilation supports the Arria® GX, Stratix®, and Cyclone®
series of devices, with limited support for HardCopy® ASICs (for details, refer to
“HardCopy Compilation and Migration Flows” on page 2–64).

Deciding Whether to Use an Incremental Compilation Flow
Quartus II incremental compilation enhances the standard Quartus II design flow by
allowing you to preserve the satisfactory compilation results and performance of
unchanged blocks of your design. This section outlines the flat compilation flow with
no design partitions and the incremental flow when you divide the design into
partitions, and explains the differences. The section also explains when a flat
compilation flow is satisfactory, and highlights some of the reasons you might want to
create design partitions and use the incremental flow.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions, all the source code is processed
with the Analysis & Synthesis module, and all the logic is placed and routed by the
Fitter module whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal quality of results. By
processing the entire design, the compiler can perform global optimizations to
improve area and performance. Refer to “Incremental Capabilities Available When
Your Design Has No Partitions” on page 2–2 for ways to reduce compilation time
even in flat compilations.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

Incremental Capabilities Available When Your Design Has No Partitions
The Quartus II software has incremental capabilities available even when you do not
partition your design, including, Smart Compilation, incremental debugging, and
Rapid Recompile. These features work with design partitions as well, if you do follow
an incremental design flow.

The Quartus II software includes a feature called Smart Compilation. In any
Quartus II compilation flow, you can use Smart Compilation to allow the compiler to
determine which compiler stages are required, based on the changes made to the
design since the last smart compilation, and then skip any stages that are not required.
For example, when Smart Compilation is on, the compiler skips the Analysis &
Synthesis module if all the design source files are unchanged. Smart Compilation
skips only entire compiler stages. It cannot make incremental changes within a given
stage of the compilation flow. To turn on Smart Compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process Settings and
click Use Smart Compilation.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–3
Deciding Whether to Use an Incremental Compilation Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, set the netlist type to post-fit for the automatically-created "Top" partition.
Refer to “Debugging Incrementally with the SignalTap II Logic Analyzer” on
page 2–49 for more information.

The Quartus II software also includes a Rapid Recompile feature that instructs the
compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of design are
recompiled using this option; the compiler determines which parts of the design must
be recompiled. You can turn on this option on the Incremental Compilation page
under Compilation Process Settings in the Settings dialog box. Set the option to
Compatible placement (moderate preservation) or Compatible placement and
routing (highest preservation) to specify the type of result preservation you want.

Incremental Compilation Flow with Design Partitions
Using design partitions allows you to preserve the results and performance for
unchanged blocks of logic in your design as you make changes elsewhere, and reduce
compilation time. Incremental compilation is recommended for large designs and
high resource densities when preserving results is important to achieve timing
closure. The feature also facilitates team-based design environments, allowing
designers to create and optimize design blocks independently when necessary.

Incremental compilation supports design flows where one designer manages a single
project for the entire design, as well as design flows where each design block is
developed and optimized independently. See “Incremental and Team-Based Design
Flows” on page 2–6 for more details. To take advantage of the incremental
compilation flow, start by splitting the design along any of its hierarchical boundaries
into blocks called design partitions. Refer to “Deciding which Design Blocks Should
Be Design Partitions” on page 2–9 and “Creating Design Partition Assignments” on
page 2–15 for more details. The Quartus II software synthesizes each individual
hierarchical design partition separately, then merges the partitions into a complete
netlist for subsequent stages of the compilation flow. When recompiling the design,
you can use source code, post-synthesis results, or post-fitting results for each
partition. If you want to preserve the Fitter results, you can keep just the placement
results, or keep both the placement and routing results.

You can use incremental compilation toward the end of your design cycle when you
do not have to improve the majority of the design any further and want to make
changes to or optimize one specific block. In this case, you can preserve the
performance of modules that meet their requirements to make timing closure easier
and reduce compilation time on subsequent iterations. You can also recompile the
other partitions with advanced optimizations turned on to improve their performance
without affecting the preserved partitions.

Part of your design may be incomplete or developed by a different designer or IP
provider. You can add the completed partitions to the design incrementally.
Alternatively, different designers or IP providers can develop and optimize different
blocks of the design independently, and then you can import these blocks into the top-
level project.

2–4 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For more detailed examples that describe recommended design flows to take
advantage of the incremental compilation features, refer to “Recommended Design
Flows and Compilation Application Examples” on page 2–46.

Table 2–1 shows a summary of the impact of incremental compilation on your
compilation results.

If you use the incremental compilation feature at any point in your design flow, you
should start planning for incremental compilation from the start of your design
development. It is easier to accommodate the guidelines for partitioning and creating
a floorplan if you start planning at the beginning of your design cycle.

f Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for more information and
recommendations.

Figure 2–1 shows a block diagram of the Quartus II design flow using incremental
compilation with design partitions.

Table 2–1. Impact Summary of Using Incremental Compilation

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; there are savings in
both Quartus II Integrated Synthesis and the Fitter.

Performance
Preservation

Excellent when critical paths are contained within a partition, because you can preserve post-fitting
information for unchanged partitions.

Node Name
Preservation

Preserves post-fitting node names for unchanged partitions.

Area Changes The area (logic resource utilization) might increase because cross-boundary optimizations are no
longer possible, and placement and register packing are restricted.

fMAX Changes The design’s maximum frequency might be reduced because cross-boundary optimizations are no
longer possible. If the design is partitioned and the floorplan location assignments are created
appropriately, there is no negative impact on fMAX.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–5
Deciding Whether to Use an Incremental Compilation Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The diagram in Figure 2–1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each
partition.

The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from other Quartus II
projects, depending on the netlist type you specify for each partition.

Figure 2–1. Quartus II Design Flow Using Incremental Compilation

Note to Figure 2–1:

(1) When you use EDIF or VQM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the
design database, but logic synthesis and technology mapping are performed only for black boxes.

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Timing Analyzer

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

Verilog
HDL
(.sv)

2–6 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Fitter then processes the merged netlist, preserving the placement or placement
and routing of unchanged partitions, refitting only those partitions that have
changed. The Fitter generates the complete netlist for use in further stages of the
compilation flow, including timing analysis and programming file generation. It also
generates individual netlists for each partition so the Partition Merge stage can use the
post-fit netlist to preserve the placement and routing of a partition if you specify to do
so in future compilations. The Quartus II software does not resynthesize or refit
unchanged partitions that have a netlist type assignment that specifies the use of a
post-synthesis or post-fit netlist, respectively.

For more information about using the incremental compilation feature, refer to the
“Quick Start Guide—Summary of Incremental Compilation” on page 2–7.

Incremental and Team-Based Design Flows
Incremental compilation supports various design methodologies. In the standard
incremental compilation design flow, the top-level design is divided into partitions,
which can be compiled and optimized together in the top-level Quartus II project. If
source code is not yet complete for some partitions, you can create a placeholder for
the partition until the code is added to the project.

You can preserve fitting results and performance for completed blocks while other
parts of the design are changing, which also reduces the compilation times for each
design iteration. Different designers or IP providers in a team-based design
environment can create and verify HDL code separately, and then one person
(generally the project lead or system architect) incorporates all code blocks developed
separately into the a single top-level Quartus II project.

To enable team-based design optimization and third-party IP delivery, you can design
and optimize each partition in isolation, and later integrate the results into the top-
level design with the Quartus II software export and import features. Designers of
lower-level blocks can export the optimized placed and routed netlist for their design,
along with a set of assignments such as LogicLock™ regions. The project lead then
imports each design block as a design partition in a top-level project.

Optimizing design partitions independently and importing the results into a top-level
design can have the following potential drawbacks that require careful planning:

■ Achieving timing closure for the full design may be more difficult if you compile
lower-level blocks independently without any information about each other. This
problem may be avoided by careful timing budgeting and special design rules,
such as always registering the ports at the module boundaries.

■ For the same reason, resource budgeting and allocation may be required to avoid
resource conflicts and overuse. Floorplan creation with LogicLock regions is
typically very important when design partitions are developed independently.

When you import partitions from separate Quartus II projects, the top-level project
lead can perform most of the design planning, and then passes constraints to the
designers of lower-level blocks by providing a copy of the Quartus II project with the
top-level design framework, or using Quartus II-generated design partition scripts.

With Quartus II incremental compilation, users who traditionally relied on a
“bottom-up” design approach with separate projects for each design block for the sole
reason of performance preservation can now use a standard Quartus II project to
achieve the same goal. This ability is important for the following two reasons:

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–7
Quick Start Guide—Summary of Incremental Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Having the entire design in our Quartus II project makes project management
simpler. For example, having to export and import lower-level designs is
eliminated.

■ A single Quartus II project approach provides the design software with
information about the entire design so it can perform some global placement and
routing optimizations. Therefore, it is often easier to ensure good quality of results
than when design blocks are developed independently.

If the top-level design includes one or more design blocks that are optimized by
different designers or IP providers, you can import those blocks into a project that also
includes partitions for a standard incremental methodology. In addition, as you
perform timing closure for a design, you can create a subproject for one block of the
design to be optimized by another designer in a separate Quartus II project, and pass
information about the rest of the design to the subproject to obtain the best results.

1 Importing partitions is not supported in HardCopy or FPGA companion device
compilations when there is a migration device setting. For details, refer to “HardCopy
Compilation and Migration Flows” on page 2–64.

The following Quick Start Guide describes the more commonly used and easy-to-use
incremental compilation flow. For more information about exporting design
partitions from separate Quartus II projects and importing them to the top-level
design, refer to “Exporting and Importing Partitions” on page 2–29.

Quick Start Guide—Summary of Incremental Compilation
This section provides a summary of the steps required to perform a simple
incremental compilation flow. Detailed descriptions for many of these steps are
included in later sections of this chapter. For specific examples of design flows that
take advantage of the incremental compilation features, refer to “Recommended
Design Flows and Compilation Application Examples” on page 2–46.

For a step-by-step introduction to implementing an incremental compilation flow in
the Quartus II software, on the Help menu, click Tutorial. After the introduction,
choose Module 7: Incremental Compilation to view design flows for incremental
compilation.

The flow chart in Figure 2–2 illustrates the incremental compilation flow when all
partitions are contained in one top-level project. The following subsections describe
the steps in the flow.

First, prepare the design for incremental compilation and perform a full compilation.
Then proceed to verify or debug your design and make design changes as required.
When you perform additional design iterations, choose which netlists to reuse and
perform incremental compilations.

2–8 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Quick Start Guide—Summary of Incremental Compilation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Preparing a Design for Incremental Compilation
To set up your design for incremental compilation, perform the following steps:

1. Elaborate the design. On the Processing menu, point to Start and click Start
Analysis & Elaboration, or run any compilation flow (such as a full compilation)
that includes this step. Elaboration is the part of the synthesis process that
identifies your design’s hierarchy.

2. Create partitions in your design by designating specific instances as design
partitions. In the user interface, you can right-click an instance in the Project
Navigator, point to Design Partition, and click Set as Design Partition.
Alternatively, on the Tools menu you can open the Design Partition Planner and
right-click on a design block to use the Auto-Partition feature that creates
partitions based on the size and connectivity of the hierarchical design blocks.
Refer to “Creating Design Partition Assignments” on page 2–15 for details.

Refer to “Deciding which Design Blocks Should Be Design Partitions” on page 2–9
for an explanation of design partitions and what part of your design can be
specified as a design partition.

3. If required for your design flow, use LogicLock regions to make location
assignments for each partition to create a design floorplan. If timing-critical design
blocks change with future compilations, assigning the partition to a physical
region on the device can improve results. Refer to the section “Creating a Design
Floorplan with LogicLock Location Assignments” on page 2–26 for details about
these assignments.

4. Compile the design. The first compilation after making partition assignments is a
complete compilation that prepares the design for subsequent incremental
compilations.

Compiling a Design Using Incremental Compilation
After compiling the design once and then making changes, take advantage of
incremental compilation to recompile only the changed parts of the design. To do this,
perform the following general steps:

Figure 2–2. Summary of Incremental Compilation Flow

Perform Analysis & Elaboration

Repeat as Needed
During Design, Verification
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Create Project(s) for Lower-Level Designs

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–9
Deciding which Design Blocks Should Be Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1. Choose which of the following compilation results you intend to reuse for each
partition in the Design Partitions window.

■ To preserve previous placement and routing results for a partition, set the
Netlist Type assignment for that partition to Post-Fit.

■ To preserve just placement information and allow the software to find the
best routing for the changed design, set the Fitter Preservation Level to
Placement.

■ To save only the synthesis results, set the Netlist Type assignment for that
partition to Post-Synthesis.

Partitions with design changes are recompiled automatically with these Netlist
Type settings. You can also direct the software to recompile from the source code
by choosing the Source File netlist type.

If you do not want to compile a specific partition at all, set its Netlist Type to
Empty.

For details about setting these partition properties, refer to “Setting the Netlist
Type for Design Partitions” on page 2–20.

2. Compile the design. The Quartus II software preserves the results you specified in
step 1.

Deciding which Design Blocks Should Be Design Partitions
It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not consider each
design entity or instance to be a design partition for incremental compilation
automatically; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions prevents the compiler from
performing optimizations across partition boundaries, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2–10. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design.When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 2–3, a complete design is made up of instances A, B, C, D, E, and F. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called Top, automatically contains the top-level
entity in the design, and contains any logic not defined as part of another partition.

2–10 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The design file for the top level may be just a wrapper for the hierarchical instances
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Instance F is identified as a separate partition. The partition
for the top-level entity A called Top includes the logic in one of its lower-level
instances, C, because C was not defined as part of any other partition.

You can make partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Impact of Design Partitions on Design Optimization
The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions prevents the compiler from performing logic optimizations across
partition boundaries, which allows the software to synthesize and place each partition
separately in an incremental flow. Therefore, consider partitioning guidelines to help
reduce the effect of partition boundaries.

Figure 2–3. Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Partition G

D

D

E

B

B C

A

A

F

C

E GF

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–11
Deciding which Design Blocks Should Be Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged. In
addition, avoid constant partition inputs and outputs, because to maintain
incremental behavior, the software cannot use the constants to optimize logic on
either side of the partition boundary.

The Design Partition Planner can help you make good assignments, as described in
“Creating Design Partition Assignments” on page 2–15. The following sections
describe tools you can use after compilation to analyze the partition assignments.You
can view “Partition Statistics Reports”, including information about the number of
I/O connections and how many are unregistered or driven by a constant value, in the
partition statistics reports. You can also create “Partition Timing Reports” and refer to
the “Incremental Compilation Advisor”for analysis and guidelines.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform some resource balancing
to ensure that each partition uses an appropriate number of device resources. If
design partitions are compiled separately, there may be conflicts related to global
routing resources for clock signals when the design is imported into the top. You can
use logic options to specify which clocks should use global routing, use the
ALTCLK_CTRL megafunction to instantiate a clock control block and connect it
appropriately in both the bottom and top-level projects, or find the compiler-
generated clock control node in your design and make clock control location
assignments in the Assignment Editor.

f For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource balancing, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Partition Statistics Reports
After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the Compilation
Report lists statistics about each partition. The statistics for each partition (each row in
the table) include the number of logic cells it contains, as well as the number of input
and output pins it contains and how many are registered or unconnected. This report
is useful when optimizing your design partitions, ensuring that the partitions meet
the guidelines presented in the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook. Figure 2–4
shows the report window.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–12 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. On the
Assignments menu, click Design Partitions Window. Right-click on a partition and
click Properties to open the dialog box. Click Show All Partitions to view all the
partitions in the same report (Figure 2–5).

Figure 2–4. Partition Merge Partition Statistics Report

Figure 2–5. Statistics Tab in the Design Partitions Properties Dialog Box

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–13
Deciding which Design Blocks Should Be Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Partition Timing Reports
You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer or using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to partition paths to provide a more detailed
breakdown of where the critical paths in the design are with respect to design
partitions.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations presented for creating design partitions and floorplan
location assignments. On the Tools menu, point to Advisors and click Incremental
Compilation Advisor.

As shown in Figure 2–6, recommendations are split into General Recommendations
that apply to all compilation flows and Bottom-Up Design Recommendations that
apply to design methodologies in which all partitions are compiled independently at
the "bottom" level before being combined, which means floorplan assignments to
isolate each partition are important. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action required to make
the suggested change. In some cases, there is a link to the appropriate Quartus II
settings page where you can make a suggested change to assignments or settings. The
relevant timing-independent recommendations for the design are also listed in the
Design Partitions Window and the LogicLock Regions Window.

Figure 2–6. Incremental Compilation Advisor

2–14 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding which Design Blocks Should Be Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To check whether the design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and click Check Recommendations. For large designs, these operations can
take a few minutes. After you perform a check operation, symbols appear next to each
recommendation, as shown in Figure 2–8, to indicate whether the design or project
setting follows the recommendations, or if some or all of the design or project settings
do not follow the recommendations. Refer to the Legend on the How to use the
Incremental Compilation Advisor page in the advisor for more information.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Ports recommendation, the advisor displays a list of unregistered ports with the
partition name and the node name associated with for the port.

When the advisor provides a list of nodes, you can right-click on a node and click
Locate to cross-probe to other Quartus II features such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Using Partitions with Third-Party Synthesis Tools
If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

f For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the appropriate chapter in volume 1 of the Quartus II
Handbook: Synopsys Synplify Support or Mentor Graphics Precision Synthesis Support.

http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–15
Creating Design Partition Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Other Synthesis Tools
You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Design Partition Assignments Compared to Physical Placement Assignments
Design partitions for incremental compilation are logical partitions, different from
physical placement assignments in the device floorplan. A logical design partition
does not refer to a physical area of the device and does not directly control the
placement of instances. A logical design partition sets up a virtual boundary between
design hierarchies so each is compiled separately, preventing logical optimizations
from occurring between them. When the software compiles the design source code,
the logic in each partition can be placed anywhere in the device unless you make
additional placement assignments. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse the synthesis
results or reuse the fitting results (including placement and routing information) in
subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and assignment back-annotation features
in the same Quartus II project. The incremental compilation feature does not use
placement “assignments” to preserve placement results; it simply reuses the netlist
database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock assignments. In the Quartus II software, LogicLock regions are used to
constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions to improve the quality of results and avoid placement
conflicts in some cases when performing incremental compilation. Creating floorplan
location assignments for design partitions using LogicLock regions is discussed in
“Creating a Design Floorplan with LogicLock Location Assignments” on page 2–26.

f For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Creating Design Partition Assignments
There are several ways to designate a design instance as a design partition, as
described in the following subsections. If the full incremental compilation option is
not turned on when you specify your first design partition, a dialog box appears that
asks whether you want to enable incremental compilation.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–16 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating Design Partition Assignments

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The incremental compilation option is turned on by default for new Quartus II
projects. If you need to turn on the option, on the Assignments menu, click Settings.
In the Category list, select Compilation Process Settings. Under Compilation
Process Settings, select Incremental Compilation. On the Incremental Compilation
page, turn on Full incremental compilation. Turning off the Full incremental
compilation option does not remove any partition assignments. Partition assignments
have no effect on the design if incremental compilation is turned off.

Creating Design Partitions with the Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

To view a design and create design partitions, first compile the design, or perform at
least Analysis and Synthesis. On the Tools menu, click Design Partition Planner. The
design is displayed as a single top-level design block, containing its lower-level
instances as boxes.

To show connectivity between blocks, extract instances from the top-level design
block. Click on a design block and drag it into the surrounding white space, or
right-click an entity and click Extract from Parent on the Shortcut menu. When you
extract entities, connection bundles are drawn between entities, showing the number
of connections existing between pairs of entities. When you have extracted a design
block that you want to set as a design partition, right-click on that design block and
choose Create Design Partition.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. Right-click on the
design block you want to partition (such as the top-level design hierarchy), and
choose Auto-Partition. You can then analyze and adjust the partition assignments as
required.

Figure 2–7 shows the Design Partition Planner after making a design partition
assignment to one instance (in the pale red shaded box), and dragging another
instance away from the top-level block within the same partition (two design blocks
in the pale blue shaded box). The figure shows the number of connections between
each partition and information about the size of each design instance.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–17
Creating Design Partition Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To switch between connectivity display mode and hierarchical display mode, click
Hierarchy Display on the View menu. Alternately, to switch temporarily to a
view-only hierarchy display, click and hold the hierarchy icon in the top-left corner of
any entity.

To control the way the connection bundles are displayed, right-click in the white
space and choose Bundle Configuration. For example, you can remove the
connection lines between partitions and I/O banks by turning off Display
connections to I/O banks. You can also use the settings on the Connection Counting
tab to adjust how the connections are counted in the bundles.

f For more details about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in the Quartus II Help.

Creating Design Partitions In the Design Partitions Window
The Design Partitions Window allows you to create, delete, and merge partitions, and
is the main window for setting the Netlist Type and Fitter Preservation Level
described in “Setting the Netlist Type for Design Partitions” on page 2–20. First,
perform Analysis and Elaboration, or any compilation flow that includes this step.
Elaboration is the part of the synthesis process that identifies your design’s hierarchy.
On the Assignments menu, click Design Partitions Window (Figure 2–8). In this
window, you can create your partitions in one of the following ways:

■ Create new partitions for one or more instances by dragging and dropping them
from the Hierarchy tab of the Project Navigator into the Design Partitions
Window. Using this method, you can create multiple partitions at once.

■ Create new partitions by double-clicking the <<new>> cell in the Partition Name
column. In the Create New Partitions dialog box, select the design instance and
click OK.

Figure 2–7. Design Partition Planner

2–18 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating Design Partition Assignments

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To delete partitions in the Design Partitions Window, right-click a partition and click
Delete, or select the partition and press the Delete key.

To create a partition that contains more than one design instance, first create separate
partitions for each instance. Highlight each of the partitions in the Design Partition
window, using the Ctrl key to select more than one partition. Right-click, and then
choose Merge. The two partitions are combined into one row in the window with a
new name.

The Design Partitions Window lists recommendations at the bottom of the window, as
well as a link to the Incremental Compilation Advisor, where you can view additional
recommendations about the partitions.

The Color column indicates the color of each partition in the Partition Planner view of
the Chip Planner floorplan. The Source File Status column lists the date that the
source code was changed and bold font indicates that it has changed since the last
compilation. The other status columns indicate which post-compilation netlists are
available.

Creating Design Partitions in the Project Navigator
You can use the list of instances under the Hierarchy tab in the Project Navigator to
create and delete design partitions. First, elaborate the design or run any compilation
flow that includes this step. Right-click an instance in the Project Navigator, point to
Design Partition, and click Set as Design Partition. A design partition icon appears
next to each instance that is set as a partition (Figure 2–9).

To remove an existing partition assignment, click Set as Design Partition again. (This
process turns off the option.)

Figure 2–8. Design Partitions Window

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–19
Creating Design Partition Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Design Partitions with Tcl Scripting
You can also create partitions with Tcl scripting commands. For details about the
command line and scripting flow, refer to “Scripting Support” on page 2–66.

Partition Name
When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. To change the name, double-click on
the partition name in the Design Partitions window, or right-click the partition and
click Rename. Alternatively, right-click the partition in the Design Partitions window
and click Properties to open the Design Partition Properties dialog box. On the
General tab, enter the new name in the Name field.

By renaming your partitions, you can avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially important when using command-line
commands or assignments. In addition, you might also want to change the partition
name when you merge partitions. Partition names can be from 1 to 1024 characters in
length and must be unique. The name can only contain alphanumeric characters and
the pipe (|), colon (:), and underscore (_) characters.

Automatically-generated Partitions
The compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sld_hub partition is
created for tools that use JTAG hub connections such as the SignalTap II Logic
Analyzer. The hard_block partition is created to contain certain "hard"or dedicated
logic blocks in the device that are implemented in a separate partition so they can be
shared throughout the design.

Figure 2–9. Project Navigator Showing Design Partitions

Design Partition icon

2–20 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Setting the Netlist Type for Design Partitions
The Netlist Type is a property of each design partition that allows you to specify the
type of netlist or source file that the compiler should use as the input for each
partition. The Netlist Type property controls the incremental compilation process, as
described in “Compiling a Design Using Incremental Compilation” on page 2–8. This
property determines which netlist the Partition Merge stage uses in the next
compilation.

To view and modify the Netlist Type, on the Assignments menu, click Design
Partitions Window. Double-click the Netlist Type for an entry. Alternatively,
right-click on an entry, click Design Partition Properties, then modify the Netlist Type
on the Compilation tab.

Table 2–2 describes the standard settings for the Netlist Type property, explains the
behavior of the Quartus II software for each setting, and provides guidance on when
to use each setting.

Table 2–2. Standard Netlist Type Settings

Partition Netlist
Type Quartus II Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s).(1)

Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.

Post-Synthesis Preserves post-synthesis results for the partition and reuses the post-synthesis netlist as long as the
following conditions are true:

■ A post-synthesis netlist is available from a previous synthesis

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–23.

Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available.(1)

Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following
conditions are true:

■ A post-fit netlist is available from a previous fitting

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–23.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Compiles the partition from the source files if resynthesis is
initiated.(1)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Creating Design Partitions In the Design Partitions Window” on page 2–17.

Use this netlist type to preserve the Fitter results unless you make design changes. You can also use this
netlist type to apply global optimizations, such as Physical Synthesis optimizations that occur in the
Fitter, to certain partitions while preserving the fitting results for other partitions.

Notes to Table 2–2:

(1) If you turn on the Rapid Recompile option, the Quartus II software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results as specified in the global setting if there have been only small changes to the logic in the partition.
Refer to “Incremental Capabilities Available When Your Design Has No Partitions” on page 2–2 for more information.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–21
Setting the Netlist Type for Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

describes the advanced settings for the Netlist Type property, explains the behavior of
the Quartus II software for each setting, and provides guidance on when to use each
setting.

1 For examples that describe how to use these settings to accomplish various design
goals, refer to “Recommended Design Flows and Compilation Application Examples”
on page 2–46.

Fitter Preservation Level
The Fitter Preservation Level property specifies which information the compiler uses
from a post-fit netlist.

On the Assignments menu, click Design Partitions Window. To view and modify the
Fitter Preservation Level, double-click an entry. Alternatively, right-click and click
Properties, then edit the Fitter Preservation Level on the Compilation tab.

Table 2–4 describes the Fitter Preservation Level settings. The default Fitter
Preservation Level for partitions with a Post-Fit netlist type is the highest level of
preservation available for the target device family.

Table 2–3. Advanced Netlist Type Settings

Partition Netlist
Type Quartus II Behavior for Partition During Compilation

Post-Fit (Strict) Preserves post-fit results for the partition even if changes have been made to the associated source files
since the previous fitting.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of a functionally incorrect netlist
when source design files change. Use caution when applying this assignment. For more information,
refer to “Forcing Use of the Post-Fitting Netlist When a Partition has Changed” on page 2–25.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files.(1)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level” on page 2–21.

Empty Uses an empty placeholder netlist for the partition and automatically adds virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a partition. For more details on the Empty setting,
refer to “Empty Partitions” on page 2–22.

Notes to Table 2–3:

(1) If you turn on the Rapid Recompile option, the Quartus II software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results as specified in the global setting if there have been only small changes to the logic in the partition.
Refer to “Incremental Capabilities Available When Your Design Has No Partitions” on page 2–2 for more information.

2–22 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Empty Partitions
You can use the Empty setting to skip the compilation of a partition that is incomplete
or missing from the top-level design. You can also use it if you want to compile only
some partitions in the design, such as during optimization or if the compilation time
is large for one partition and you want to exclude it. This is useful if you want to
optimize the placement of a timing-critical block such as an IP core, and then lock its
placement before adding the rest of your custom logic.

To set the Netlist Type to Empty, on the Assignments menu, click Design Partitions
Window, double-click an entry, or right-click an entry and click Design Partition
Properties and select Empty. This setting specifies that the Quartus II Compiler
should use an empty placeholder netlist for the partition.

When a partition Netlist Type is defined as Empty, virtual pins are automatically
created at the boundary of the partition. This means that the software temporarily
maps I/O pins in the lower-level design entity to internal cells instead of pins during
compilation.

You can use a design flow in which some partitions are set to Empty to develop pieces
of the design separately and then combine them at the top level at a later time.

Table 2–4. Fitter Preservation Level Settings

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Placement Preserves the netlist atoms and their placement in the design partition. Re-routes the design
partition.

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing. The minimum
preservation level required to preserve Engineering Change Order (ECO) changes made to the
post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only, but provides less flexibility to
the router to make changes if there are changes in other parts of the design.

Placement, Routing,
and High-Speed Tiles

Preserves the design partition’s netlist atoms and their placement and routing in the design
partition, as well as the high-speed power tile settings. This setting maximizes performance
preservation for timing-critical paths, while allowing low-power tiles to be switched to high-speed
if required as the rest of the design is changed.

This setting is available only for devices with configurable power tiles.

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.
A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:

■ Preserve Fitter optimizations but allow the software to perform placement and routing again

■ Reapply certain Fitter optimizations (such as Fitter, physical synthesis) that would otherwise be
impossible when the placement is locked down

■ Resolve resource conflicts between two imported partitions.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–23
Setting the Netlist Type for Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When you implement part of the design without information about the rest of the
project, it is impossible for the Compiler to perform global placement optimizations.
To reduce this effect, follow good partitioning guidelines by ensuring the input and
output ports of the partitions are registered whenever possible, and minimizing
cross-partition I/O.

When you set a design partition to Empty, a design file is required in Analysis and
Synthesis to specify the port interface information so it can connect the partition
correctly to other logic and partitions in the design. If a partition is imported from
another project, the Quartus II Exported Partition (.qxp) file contains this information.
For more information about these files, refer to “Team-Based Incremental Compilation
Summary” on page 2–30. If there is no .qxp file or design file to represent the design
entity, you must create a wrapper file (called a black box, stub, or hollow-body file)
that defines the design block and specifies the input, output, and bidirectional ports.
For example, in Verilog HDL, you should include a module declaration, and in
VHDL, you should include an entity and architecture declaration.

If the project database includes a previously generated post-synthesis or post-fit
netlist for an unchanged Empty partition, you can set the Netlist Type from Empty
directly to Post-Synthesis or Post-Fit. In this case, the software reuses the previous
netlist information and does not have to recompile from the source code.

Where Are the Netlist Databases Saved?
The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the compilation database to preserve post-synthesis or
post-fit compilation results. For details, refer to “Using Incremental Compilation with
Quartus II Archive Files” on page 2–59.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a .qxp file for each partition in the design that can be
imported into the project to import the compilation results. Refer to “Exporting a
Lower-Level Block within a Project” on page 2–36 for more details about how to
create a .qxp file for a partition within your design.

What Changes Initiate a Partition’s Automatic Resynthesis?
A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the Netlist Type is set to Source File. In
addition, certain changes to a design partition initiate an automatic resynthesis of the
partition when the Netlist Type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you don’t want this resynthesis to
occur automatically, set the Netlist Type to Post-Fit (Strict). Refer to “Forcing Use of
the Post-Fitting Netlist When a Partition has Changed” on page 2–25.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the Netlist Type is set to Post-Synthesis or Post-Fit:

■ The device family setting has changed.

2–24 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Setting the Netlist Type for Design Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Any dependent source design file has changed. Refer to “Resynthesis Due to
Source Code Changes” on page 2–24 for details.

■ The partition boundary was changed by an addition, removal, or change to the
port boundaries of a lower-level partition (that is, a partition defined for a
lower-level instance within this partition).

■ A dependent source file was compiled into a different library (so it has a different
-library argument).

■ A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

■ The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

■ The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. For details about how you can
affect placement with LogicLock regions, refer to “What LogicLock Changes Initiate
Refitting?” on page 2–29. To recompile a partition with new assignments, change the
Netlist Type assignment for that partition to one of the following:

■ Source File to recompile with all new settings

■ Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

■ Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

Resynthesis Due to Source Code Changes
The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design files used to
create the design, and consist of VHDL files, Verilog HDL files, AHDL files, Block
Design Files (.bdf), EDIF netlists, VQM netlists, memory initialization files, as well as
.qxp files from exported partitions. Changes in other files, such as vector waveform
files for simulation, do not trigger recompilation. When design files in a partition have
dependencies on other files, changing one file may initiate an automatic
recompilation of another file. The Partition Dependent Files table in the Analysis and
Synthesis report lists the design files that contribute to each design partition. You can
use this table to determine which partitions are recompiled when a specific file is
changed.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–25
Setting the Netlist Type for Design Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

For example, if a design has file A.v that contains entity a, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

1 If you turn on the Rapid Recompile option, the Quartus II software may not
recompile the entire partition from the source code as described in this section; it will
reuse compatible results as specified in the global setting if there have been only small
changes to the logic in the partition. Refer to “Incremental Capabilities Available
When Your Design Has No Partitions” on page 2–2 for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘include includes.v, all partitions are dependent on this
file. A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations,
because it makes all entities in the work library visible in the current entity, which
results in the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Partition has Changed
Forcing the use of the post-fitting netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition. To force the Fitter to use a previously generated
post-fit netlist even when there are changes to the source files, you can use the
Post-Fit (Strict) Netlist Type assignment.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of a
functionally incorrect netlist when source design files change. Use caution when
applying this assignment.

2–26 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan with LogicLock Location Assignments

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating a Design Floorplan with LogicLock Location Assignments
A floorplan represents the layout of the physical resources on the device. The
expressions “creating a design floorplan” and “floorplanning” describe the process of
mapping the logical design hierarchy onto physical regions in the device floorplan.
After you have partitioned the design, you can create floorplan location assignments
for the design as discussed in this section to improve the quality of results when using
the full incremental compilation flow. Creating a design floorplan is not a requirement
to use an incremental compilation flow, but it is highly recommended in certain cases.
Floorplan location planning can be important for a design that uses incremental
compilation for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

■ To ensure a good quality of results when recompiling individual partitions

A design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). Initially, you can
leave each region with the default settings of Auto size and Floating location to allow
the Quartus II software to determine the optimal size and location for the regions.
Then, after compilation, use the Fitter-determined size and origin location as a
starting point for your design floorplan. Check the quality of results obtained for your
floorplan location assignments and make changes to the regions as needed.
Alternatively, you can perform synthesis, and then set the regions to the required size
based on resource estimates. In this case, use your knowledge of the connections
between partitions to place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging regions or nesting child LogicLock regions.

f For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, described in “Incremental Compilation Advisor” on
page 2–13.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–27
Creating a Design Floorplan with LogicLock Location Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To create a LogicLock region for each design partition, use the following general
methodology:

1. On the Assignments menu, click Design Partitions Window and ensure that all
partitions have their Netlist Type set to Source File or Post-Synthesis. If the
Netlist Type is set to Post-Fit, floorplan location assignments are not used when
recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is automatically considered a partition) using one of the following methods:

■ On the Tools menu, click Design Partition Planner. Right-click within the
colored box that represents a partition and click Create LogicLock Region. In
the Design Partitions Window, right-click on a partition and click Create New
LogicLock Region.

■ Under Compilation Hierarchy in the Project Navigator, right-click each
instance that is denoted as a partition and click Create New LogicLock Region.
In the Design Partitions Window, right click on the row for a partition and
choose Create New LogicLock Region.

With any of these methods, you can highlight multiple (or all) partitions by holding
down the Ctrl key and clicking each partition. Then you can choose the option to
create a separate LogicLock region for each highlighted partition.

1 A LogicLock icon appears in the Project Navigator next to each instance
that is set as a LogicLock region (Figure 2–10).

3. To place auto-sized, floating-location LogicLock regions, on the Processing menu,
point to Start and click Start Early Timing Estimate.

1 You must perform Analysis and Synthesis and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

Figure 2–10. Project Navigator Showing LogicLock Regions

2–28 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan with LogicLock Location Assignments

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

4. On the Assignments menu, click LogicLock Regions Window, and while holding
the Ctrl key, click each LogicLock region to select all regions (including the
top-level region).

5. Right-click the last selected LogicLock region, and click Set Size and Origin to
Previous Fitter Results.

1 Use the Fitter-chosen locations only as a starting point to make the regions
of a fixed size and location. Generally, regions with fixed size and location
yield better fMAX than auto-sized regions.

Do not back-annotate the contents of the region, just save the size and origin.
Placement is preserved using the post-fit netlist, not back-annotated content
assignments.

6. If required, modify the size and location via the LogicLock Regions Window or
the Chip Planner. For example, make the regions bigger to fill up the device and
allow for future logic changes.

7. To estimate the timing performance of your design with these LogicLock regions,
on the Processing menu, point to Start and click Start Early Timing Estimate.

8. Repeat steps 6 and 7 until you are satisfied with the quality of results for your
design floorplan.

9. On the Processing menu, click Start Compilation to run a full compilation.

If you do not use auto-sized and floating-location regions, you can estimate the size of
the regions after synthesis in steps 3–5. On the Processing menu, point to Start and
click Start Analysis & Synthesis. Right-click a region in the LogicLock Regions
dialog box, and choose Set to Estimated Size. Then continue with step 6 to modify the
size and origin of each region as appropriate.

Taking Advantage of the Early Timing Estimator
The methodology for creating a floorplan takes advantage of the Early Timing
Estimator to enable quick compilations of the design while creating assignments. The
Early Timing Estimator feature provides a timing estimate for a design as much as 45
times faster than running a full compilation, yet estimates are, on average, within 11%
of final design timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing analyzer
reports, and, if necessary, add or modify floorplan constraints. You can then rerun the
Early Timing Estimator to quickly assess the impact of any floorplan location
assignments or logic changes, enabling rapid iterations on design variants to help you
find the best solution. This faster placement has an impact on the quality of results. If
getting the best quality of results is important in a given design iteration, perform a
full compilation with the Fitter instead of using the Early Timing Estimate feature.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–29
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

What LogicLock Changes Initiate Refitting?
As described in “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–23, most assignment changes do not initiate a recompilation of a partition if
the Netlist Type and Fitter Preservation Level settings specify that Fitter results
should be preserved. For example, changing a pin assignment does not initiate a
recompilation; therefore, the design does not use the new pin assignment unless you
change the Netlist Type to Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit Netlist Type
setting or with an imported partition that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

■ When you set a new region Origin, the Fitter uses the new origin and re-places the
logic, preserving the relative placement of the member logic.

■ When you set the region Origin to Floating, the following conditions apply:

■ If the region’s member placement is preserved with an Imported partition: The
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

■ If the region’s member placement is preserved with a Post-Fit Netlist Type: The
Fitter does not change the Origin location, and reuses the previous placement
results.

Exporting and Importing Partitions
You can use the export and import features to separate out smaller design blocks that
are implemented as separate projects, potentially by different designers. The
compilation results of these lower-level projects are then exported and given to the
designer (or the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design. This type of design flow is required only if
lower-level designers want to optimize their placement and routing independently,
and pass their design to the project lead to reuse placement and routing results.
Otherwise, a project lead can integrate source HDL from several designers in a single
Quartus II project, and use the standard incremental compilation flow described
previously.

When partitions are imported from separate projects, the top-level project lead can
perform most of the design planning, and then pass constraints to the designers of
lower-level blocks. The design partition scripts generated by the Quartus II software
can make it easier to plan a design, and limit the difficulties that can arise when
integrating separate designs. Refer to “Generating Design Partition Scripts for Project
Management” on page 2–41 for details.

2–30 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For examples using team-based design and imported partitions to achieve design
goals, refer to “Recommended Design Flows and Compilation Application Examples”
on page 2–46. There are some additional restrictions related to these flows in the
Quartus II software, described in “Incremental Compilation Restrictions” on
page 2–58.

A Quartus II Exported Partition (.qxp) file is used to represent exported design
partitions. A .qxp file is a binary file that contains compilation results describing the
exported design partition and includes a post-fit or post-synthesis netlist, and a set of
assignments, often including LogicLock placement constraints. The .qxp file does not
contain the original source design files from the lower-level design.

The following sections provide an overview of the team-based design flow using
separate Quartus II projects, and describe how to generate a .qxp file for a lower-level
design partition, and how to import the .qxp file into the top-level project:

The section covers the following topics:

■ “Team-Based Incremental Compilation Summary” on page 2–30

■ “Netlist Types for Imported Partitions” on page 2–34

■ “Creating a Lower-Level Project ” on page 2–34

■ “Exporting a Lower-Level Block within a Project” on page 2–36

■ “Using a .qxp File as a Source File in the Top-Level Project” on page 2–37

■ “Importing a Lower-Level Partition Into the Top-Level Project” on page 2–37

■ “Importing Assignments and Advanced Import Settings” on page 2–39

■ “Generating Design Partition Scripts for Project Management” on page 2–41

Team-Based Incremental Compilation Summary
The flow chart in Figure 2–11 illustrates the incremental compilation flow using a
methodology in which lower-level partitions are compiled separately before being
imported into the top-level project. This flow can be used in a team-based design
environment, or when partitions are developed by an outside partner or IP developer.

First, prepare the top-level design for incremental compilation. Then design,
optimize, verify, and debug the lower-level projects. Export the design hierarchy of
each lower-level project as a Quartus II .qxp, and import the .qxp files into the
top-level design. Finally, compile the entire top-level design.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–31
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Preparing a Design to Import Partitions
To prepare the design to import partitions from separate Quartus II projects, the
project lead or top-level designer should perform the following steps:

1. Create the top-level Quartus II project, and apply project-wide settings and global
assignments.

a. Create source code for a “skeleton” of the entire design that includes the
hierarchy and the port interfaces for the lower-level designs. The top-level
design file instantiates the lower-level blocks you plan to compile in separate
Quartus II projects. If you want to compile the design with the lower-level
blocks missing, create empty black box wrapper files for each design block to
define the design entity and ports.

b. Create all global assignments, including the device assignment, pin location
assignments, and timing assignments, so the final design meets its
requirements. Lower-level project designers can add their own constraints for
their partitions as needed, and later provide them to the top-level designer, but
the project-wide constraints that affect more than one lower-level project
constraint should be provided by the top-level designer or project lead to avoid
any conflicts and ensure that lower-level projects use the correct assignments.

2. For each lower-level design block to be imported to the top-level project, designate
the instance as a design partition with an Empty Netlist Type. Refer to “Creating
Design Partition Assignments” on page 2–15 and “Setting the Netlist Type for
Design Partitions” on page 2–20 for details.

3. If the project lead plans to import placement information from the lower-level
projects, create LogicLock regions for each of the lower-level partitions to create a
design floorplan. Refer to “Creating a Design Floorplan with LogicLock Location
Assignments” on page 2–26.

Figure 2–11. Summary of Team-Based Incremental Compilation Flow

Prepare Top-Level Project for
Incremental Compilation

Repeat as Needed
During Design, Verification
& Debugging Stages

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

Import Lower-Level Project(s)
into Top-Level Project

Perform Incremental Compilation
in Top-Level Project

Create Lower-Level Project(s)

2–32 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

4. Optional: If a separate Quartus II project is used for independent design blocks
(such as when a designer or third-party IP provider does not have access to the
entire design framework), perform a full compilation of the skeleton design. On
the Project menu, click Generate Bottom-Up Design Partition Scripts. Provide
each lower-level designer with the generated Tcl file to create their project with the
appropriate constraints. If you use makefiles in your design environment, provide
the makefile for each partition. Refer to “Generating Design Partition Scripts for
Project Management” on page 2–41 for details.

Creating and Compiling Lower-Level Projects
The project lead can provide a copy of the top-level project framework for all team
members. Doing so ensures that all design developers have all the settings and
constraints needed for the design, which makes design integration easier. In this case,
you develop your design as a lower-level design partition within your copy of the
top-level project.

If you create an independent lower-level project manually, create a new Quartus II
project for the subdesign with all of the required settings. Create with LogicLock
region assignments and global assignments (including clock settings) as specified by
the project lead, as well as virtual pin assignments for ports which represent
connections to core logic instead of external device pins in the top-level module.

If you have a design partition script from the top-level designer, source the Tcl script
to create the Quartus II project with all the required settings and assignments from the
top-level design.

If you use makefiles, use the make command and the makefile provided by the
project lead to create a Quartus II project with all of the required settings and
assignments, and compile the project. Specify the dependencies in the makefile to
indicate which source file should be associated with which partition.

Compile and optimize each lower-level design in a separate Quartus II project.

Exporting Lower-Level Projects
When you achieve the design requirements for the lower-level design, export each
design as a partition for the top-level design.

If you are not using makefiles, or you want to only a portion of the design in the
lower-level project, on the Project menu, use the Export Design Partition dialog box
to export each lower-level design. If you want to export only a portion of the design in
the lower-level project, refer to “Exporting a Lower-Level Block within a Project” on
page 2–36 for instructions. Each lower-level designer must provide the .qxp file to the
project lead.

If your design team uses makefiles, the project lead can use the make command with
the master_makefile to export the lower-level partitions and create .qxp files, and
then import them into the top-level design.

Including or Importing Lower-Level Projects into the Top-Level Project
After exporting lower-level projects, the project lead then incorporates the .qxp files
sent in by the designers of each lower-level subdesign partition.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–33
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you want to use the exported .qxp file information as a design file in the top-level
design, simply add the .qxp file as a source file in the project. In this case, the instance
in the .qxp file does not have to be a partition in the top-level design. Refer to “Using
a .qxp File as a Source File in the Top-Level Project” on page 2–37 for details.

If you want to import any placement information, on the Project menu, click Import
Design Partition and specify the partition in the top-level project that is represented
by the subdesign .qxp file. Refer to “Importing a Lower-Level Partition Into the
Top-Level Project” on page 2–37 for details. Repeat the process for each partition in
the design that you want to import.

You can automate the import process by using makefiles: the master_makefile
command imports each partition into the top-level design. Be sure to specify which
source files should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported and how to avoid conflicts, refer to
“Importing Assignments and Advanced Import Settings” on page 2–39.

Performing an Incremental Compilation in the Top-Level Project
After you have imported the design partitions that make up the top-level project, you
can perform a full compilation. The software compiles imported partitions in the
same way as partitions defined in the top-level project. The software recompiles an
imported partition only if it has been imported since the last compilation.

2–34 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Netlist Types for Imported Partitions
Partitions that are imported from another project use two additional netlist types and
the top-level project uses the Empty Netlist Type to create a placeholder for partitions
until the associated .qxp files from other designers have been imported. These Netlist
Types are described in Table 2–5.

Creating a Lower-Level Project
Each lower-level subdesign can be compiled as a separate Quartus II project if
required in a team-based environment or for third-party IP developers.

If designers of lower-level blocks have access to the top-level design framework, the
project will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize lower-level designs. The top-level project lead should provide a
copy of the top-level project to be used by the lower-level designer.

If designers of lower-level blocks have a design partition script from the top level,
they should source the Tcl script to create the project and all the assignments from the
top-level design. Doing so may create many of the assignments described below.

Table 2–5. Netlist Types for Imported Partitions

Partition Netlist
Type Quartus II Behavior for Partition During Compilation

Imported Compiles the partition using a netlist imported from a .qxp file.

The software does not modify or overwrite the original imported netlist during compilation. To preserve
changes made to the imported netlist (such as movement of an imported LogicLock region), use the
Post-Fit (Import-based) setting following a successful compilation with the imported netlist. For
additional details, refer to “Exporting and Importing Partitions” on page 2–29. To remove the imported
netlist and recompile from the source code, set the Netlist Type to Source File.

The Fitter Preservation Level specifies what level of information is preserved from the imported netlist.
Refer to “Fitter Preservation Level” on page 2–21 for details.

If you have not imported a netlist for this partition using the Import Design Partition command, this
setting is not available.

Post-Fit
(Import-based)

Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following
conditions are true:

■ A post-fit netlist is available from a previous fitting

■ No change has been made to the associated imported netlist since the previous fitting

Compiles the partition from the imported netlist if the imported netlist changes (which means it has been
reimported) or if a post-fit netlist is not available. Changes to assignments do not cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist.
Refer to “Fitter Preservation Level” on page 2–21 for details.

You can use this netlist type to preserve changes to the placement and routing of an imported netlist.

If you have not imported a netlist for this partition using the Import Design Partition command, this
setting is not available.

Empty Uses an empty placeholder netlist for the partition and automatically adds virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition to be imported later. For
more details on the Empty setting, refer to “Empty Partitions” on page 2–22.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–35
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In any independent project, use the following guidelines to improve the exporting
and importing process:

■ Ensure that a LogicLock region contains the lower-level partition and uses only
the resources allocated by the top-level project lead.

■ Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

■ Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

■ To avoid other signals being placed on global routing lines, on the Assignments
menu, click Settings and turn off Auto Global Clock and Auto Global
Register Controls under More Settings on the Fitter page of the Settings
dialog box.

■ Alternatively, you can set the Global Signal assignment to Off for signals that
should not be placed on global routing lines. Placement for LABs depends on
whether the inputs to the logic cells within the LAB use a global clock. You may
encounter problems if signals do not use global lines in the lower-level design,
but use global routing in the top level.

■ Use the Virtual Pin assignment to indicate pins of a subdesign that do not drive
pins in the top-level design. This is critical when a subdesign has more output
ports than the number of pins available in the target device. Using virtual pins also
helps optimize cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as location and timing
assignments.

■ Because subdesigns are compiled independently without any information about
each other, you should provide more information about the timing paths that may
be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
subdesign to perform timing budgeting.

f For more information about resource balancing and timing budgeting between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Exporting a Lower-Level Partition to be Used in a Top-Level Project
When a subdesign partition has been compiled, and is ready to be incorporated into
the top-level design, use the following steps:

1. In the subdesign project, use one of the following methods to open the Export
Design Partition dialog box.

■ In the Design Partition Planner (available from the Tools menu), right-click
within the colored box that represents a partition and click Export Design
Partition.

■ On the Project menu, click Export Design Partition.

2. In the Export file box, type the name of the .qxp file. By default, the directory path
and file name are the same as the current project.

2–36 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

3. You can also select the Partition hierarchy to export. By default, the Top partition
(the entire project) is exported, but you can choose to export the compilation result
of any partition hierarchy in the project, as described in “Exporting a Lower-Level
Block within a Project” on page 2–36. Choose the partition hierarchy from the
pull-down list.

4. Under Netlist to export, select either Post-fit netlist or Post-synthesis netlist. The
default is Post-fit netlist. For post-fit netlists, turn on or off the Export routing
option as required.

5. Click OK. The Quartus II software creates the .qxp file in the specified directory.

Alternatively, you can set up your project so that the export process is performed
every time you compile the design:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings, select the
Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the Export Design
Partition Settings button.

5. In the Export Design Partition Settings dialog box, change the settings, if
required, as in steps 2-4 in the preceding export procedure. Click OK.

6. Click OK to close the Settings dialog box. During the next full compilation, the
software creates the .qxp file in the specified directory.

Exporting a Lower-Level Block within a Project
Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2–35 enables you to create a .qxp file for a lower-level block within a Quartus II
project. When you do this, the command exports the entire hierarchy under the
specified partition into the .qxp file.

Use this feature if you are working with a copy of the top-level design framework,
and your design block is a lower-level partition in the Quartus II project. You can also
use this feature to add test logic around a lower-level block to be exported as a design
partition. You can instantiate additional design components in a lower-level project so
it matches the top-level design environment. For example, you can include a top-level
PLL in your lower-level project so that you can optimize the design with information
about the frequency multipliers, phase shifts, compensation delays, and any other
PLL parameters. The software then captures timing and resource requirements more
accurately while ensuring that the timing analysis in the lower-level project is
complete and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature to create .qxp files for specific design partitions
that are complete. You can then import the .qxp file back into the project and use the
Imported netlist type, as described in the following section. In this usage, the .qxp file
acts as an archive for the partition, including the netlist and placement and routing
information in one file. If you change the source code for the partition, you must
change the netlist type back to Source File to use the source instead of the imported
information.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–37
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using a .qxp File as a Source File in the Top-Level Project
To include the design netlist from a .qxp file, you can simply use the .qxp file as a
source file in your design (just like a Verilog or VHDL source file).

The .qxp file contains the design block exported from the subdesign project and has
the same name as the partition. When you instantiate the design block in a top-level
design and include the .qxp file as a source file in the project, the software adds the
exported netlist to the database for the top-level project. The .qxp port names are case
sensitive if the original HDL of the lower-level partition were case sensitive.

The software also filters the assignments from the subdesign to bring the appropriate
assignments into the top-level project. Refer to the sections in “Importing
Assignments and Advanced Import Settings” on page 2–39 that describe which
assignments are included in the top-level project. The assignments in the .qxp file are
treated like assignments made in an HDL source file, and can be overridden by
assignments in the top-level project.

When you use a .qxp file as a source file in this way, you cannot currently import any
post-fit database information into your project. If you want to import post-fit
information from the exported netlist, refer to the following section, “Importing a
Lower-Level Partition Into the Top-Level Project”.

When you use a .qxp file as a source file, you can choose whether you want the file to
be a partition in the top-level project. If you do not designate the .qxp instance as a
partition, the software removes unconnected ports and unused logic just like a regular
source file. If you do assign the instance as a design partition, the partition boundary
is always preserved, as discussed in “Impact of Design Partitions on Design
Optimization” on page 2–10.

If you use the Locate command into the .qxp file or try to open the .qxp file in the
Quartus II software, you cannot view the design netlist because the .qxp file is a
binary file.

Importing a Lower-Level Partition Into the Top-Level Project
The import process imports the design netlist from the .qxp file into a particular
design partition and adds the netlist to the database for the top-level project.
Importing allows you to re-use the post-fitting results from the exported partition.
Importing also filters the assignments from the subdesign to create the appropriate
assignments in the top-level project. Before you can import a partition, you must have
performed an elaboration of the design hierarchy and assigned the design partitions.
If you elaborate the design with Empty partitions and have not created a black box
wrapper file to define the port connections, Analysis and Elaboration generates error
messages about undefined ports but you can still proceed with the import process.

2–38 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To import a subdesign partition into a top-level design, perform the following steps:

1. In the top-level project, use one of the following methods to open the Import
Design Partition dialog box:

■ In the Design Partition Planner right-click within the colored box that
represents a partition and click Import Design Partition.

■ In the Design Partitions window, right-click on the partition that you want to
import and click Import Design Partition.

■ On the Project menu, click Import Design Partition.

2. In the Partition(s) box, browse to the desired partition if required. To choose a
partition, highlight the partition name in the Select Partition(s) dialog box and use
the appropriate buttons to select or deselect the desired partitions.

1 You can select multiple partitions if your top-level design has multiple
instances of the subdesign partition and you want to use the same imported
netlist.

3. Under Import file, type the name of the .qxp file or browse for the file that you
want to import into the selected partition. This file is required only during
importation, and is not used during subsequent compilations unless you reimport
the partition.

1 If you have already imported the .qxp file for this partition at least once,
you can use the same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the latest import
files at previous locations. This option is especially useful when you
import the new .qxp files for several partitions that you have already
imported at least once. You can select all the partitions to be imported in the
Partition(s) box and then use the Reimport using latest import files at
previous locations option to import all partitions using their previous
locations, without specifying individual file names.

4. Optional: To view the contents of the selected .qxp file, click Load Properties. The
properties displayed include the Netlist Type, Entity name, Device, and statistics
about the partition size and ports.

5. Optional: Click Advanced Import Settings and make selections, as appropriate, to
control how assignments and regions are integrated from a subdesign into a
top-level design partition. During importation, some regions may be resized or
slightly moved. Click OK to apply the settings.

For more information about the advanced settings, refer to “Importing
Assignments and Advanced Import Settings” on page 2–39.

6. To start importation, in the Import Design Partition dialog box, click OK. The
specified .qxp file is imported into the database for the current top-level project.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–39
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Importing Assignments and Advanced Import Settings
When you import a subdesign partition into a top-level design, the software sets
certain assignments by default and also imports relevant assignments from the
subdesign into the top-level design.

Design Partition Properties after Importing
When you import a subdesign partition, the import process sets the partition’s Netlist
Type to Imported.

If you compile the design and make changes to the place-and-route results, use the
Post-Fit (Import-based) Netlist Type on the subsequent compilation. To discard an
imported netlist and recompile from source code, compile the partition with netlist
type set to Source File and be sure to include the relevant source code with the
top-level project.

The import process sets the partition’s Fitter Preservation Level to the setting with the
highest degree of preservation supported by the imported netlist. For example, if a
post-fit netlist is imported with placement information, the level is set to Placement,
but you can change it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2–20 for details about
the Netlist Type and Fitter Preservation Level setting.

Importing Design Partition Assignments Within the Subdesign
Design partition assignments defined within the subdesign project are not imported
into the top-level project. All logic in the subdesign is imported as one partition in the
.qxp file.

Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer
Timing assignments made for the Quartus II TimeQuest Timing Analyzer in a
Synopsys Design Constraint (.sdc) file are not imported into the top-level project.
Ensure that the top-level project includes all of the timing requirements for the entire
project.

Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for recommendations
about managing the SDC constraints for the top-level and lower-level projects.

Importing LogicLock Assignments
LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. To preserve changes made to
a partition after compilation, use the Netlist Type Post-Fit (Import-Based).

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

2–40 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

LogicLock back-annotation and node location data is not imported because the .qxp
file contains all of the relevant placement information. Altera strongly recommends
that you do not add to or delete members from an imported LogicLock region.

Importing Other Instance Assignments
All instance assignments are imported, with the exception of design partition
assignments, SDC constraints, and LogicLock assignments, as described previously.

Importing Global Assignments
Global assignments are not imported. The project lead should make global
assignments in the top-level design. Note that clock settings for the Quartus II Classic
Timing Analyzer are global assignments, and are not imported. When it is possible for
a particular constraint, the global assignment is converted to an instance-specific
assignment for the target design partition.

Advanced Import Settings
The Advanced Import Settings dialog box allows you to specify the options that
control how assignments and regions are integrated and how to resolve assignment
conflicts when importing a subdesign partition into a top-level design. The following
subsections describe each of these options.

Allow Creation of New Assignments

Allows the import command to add new assignments from the imported project to
the top-level project.

When this option is turned off, it imports updates to existing assignments, but no new
assignments are allowed.

Promote Assignments to all Instances of the Imported Entity

Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions

Choose one of the following options to determine how to handle conflicting
LogicLock assignments (that is, subdesign assignments that do not match the
top-level assignments):

■ Always replace regions in the current project (default)—Deletes existing regions
and replaces them with the new subdesign region. Any changes made to the
LogicLock region after the assignments were imported are also deleted.

■ Always update regions in the current projects—Overwrites existing region
assignments to reflect any new subdesign assignments with the exception of the
LogicLock Origin, in case the project lead has made floorplan location assignments
in the top-level design.

■ Skip conflicting regions—Ignores and does not import subdesign assignments
that conflict with any assignments that exist in the top-level design.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–41
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Assignment Conflict Resolution: Other Assignments

Choose one of the following options to determine how to handle conflicts with other
types of assignments (that is, the subdesign assignments do not match the top-level
assignments):

■ Always replace assignments in the current project (default)—Overwrites or
updates existing instance assignments with the new subdesign assignments.

■ Skip conflicting assignments—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the top-level design.

Generating Design Partition Scripts for Project Management
The design partition scripts automate the process of transferring top-level project
information to lower-level design blocks in a "bottom-up" flow where each design
block is developed independently before being combined at the top level. If the
project lead cannot provide each designer with a copy of the top-level design
framework, the Quartus II software provides an interface for managing resources and
timing budgets in the top-level design. This makes it easier for designers of lower-
level modules to implement the instructions from the project lead, and avoid conflicts
between projects when importing and incorporating the projects into the top-level
design. This helps reduce the need to further optimize the designs after integration,
and improves overall designer productivity and team collaboration.

For example design scenarios using these scripts, refer to “Implementing a
Team-Based Design Flow With Imported Partitions” on page 2–50. In a typical team-
based design flow, the project lead must perform some or all of the following tasks to
ensure successful integration of the subprojects:

■ Manually determine which assignments should be propagated from the top level
to the lower levels. This requires detailed knowledge of which Quartus II
assignments are required to set up low-level projects.

■ Manually communicate the top-level assignments to the lower-level projects. This
requires detailed knowledge of Tcl or other scripting languages to efficiently
communicate project constraints.

■ Manually determine appropriate timing and location assignments that help
overcome the limitations of bottom-up design. This requires examination of the
logic in the lower levels to determine appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance at the top level.
Because the lower-level projects have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the lower-level implementation may not be
available.

Using the Quartus II software to generate bottom-up design partition scripts from the
top level of the design makes these tasks much easier and eliminates the chance of
error when communicating between the project lead and lower-level designers.
Partition scripts pass on assignments made in the top-level design, and create some
new assignments that guide the placement and help the lower-level designers see
how their design connects to other partitions. If necessary, you can exclude specific
design partitions.

2–42 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Generate design partition scripts after a successful compilation of the top-level
design. On the Project menu, click Generate Bottom-Up Design Partition Scripts.
The design can have empty partitions as placeholders for lower-level blocks, and you
can perform an Early Timing Estimation instead of a full compilation to reduce
compilation time.

The following subsections describe the information that can be included in the
bottom-up design partition Tcl scripts. Use the options in the Generate Bottom-Up
Design Partition Scripts dialog box to choose which types of assignments you want
to pass down and create in the lower-level partition projects. Each time you rerun the
script generation process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition scripts, refer to
“Register Packing and Partition Boundaries” on page 2–65.

Project Creation
You can use the Create lower-level project if one does not exist option for the
partition scripts to create lower-level projects if they are required. The Quartus II
Project File for each lower-level project has the same name as the entity name of its
corresponding design partition.

With this project creation feature, the scripts work by themselves to create a new
project, or can be sourced to make assignments in an existing project.

Excluded Partitions
Use the Excluded partition(s) option at the bottom of the dialog box to exclude
specific partitions from the Tcl script generation process. Use the browse button, then
highlight the partition name in the Select Partition(s) dialog box and use the
appropriate buttons to select or deselect the desired partitions.

Assignments from the Top-Level Design
By default, any assignments made at the top level (not including default assignments
or project information assignments) are passed down to the appropriate lower-level
projects in the scripts. The software uses the assignment variables and determines the
logical partition(s) to which the assignment pertains. This includes global
assignments, instance assignments, and entity-level assignments. The software then
changes the assignments so that they are syntactically valid in a project with its target
partition’s logic as the top-level entity.

The names of the design files that apply to the specific partition are added to each
lower-level project.

1 The script uses the file name(s) specified in the top-level project. If the top-level
project used a placeholder wrapper file with a different name than the design file in
the lower-level project, be sure to add the appropriate file to the lower-level project.

The scripts process wildcard assignments correctly, provided there is only one
wildcard. Assignments with more than one wildcard are ignored and warning
messages are issued.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–43
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use the following options to specify which types of assignments to pass down to the
lower-level projects:

■ Timing assignments—When this option is turned on, after you have compiled a
design using TimeQuest constraints, a separate Tcl script is generated to create an
.sdc file for each lower-level project that provides the clock constraints and any
minimum or maximum delays. This option may also include timing constraints on
internal partition connections. In addition, when this option is turned on, all
Classic Timing Analyzer global timing assignments for the lower-level projects are
included in the script, including tCO, tSU, and fMAX constraints.

■ Design partition assignments—When this option is turned on, script assignments
related to design partitions in the lower-level projects are included, as well as
assignments associated with LogicLock regions.

■ Pin location assignments—When this option is turned on, all pin location
assignments for lower-level project ports that connect to pins in the top-level
design are included in the script, controlling the overuse of I/Os at the top-level
during the integration phase and preserving placement.

Virtual Pin Assignments
When Create virtual pins at low-level ports connected to other design units is
turned on, the Quartus II software searches partition netlists and identifies all ports
that have cross-partition dependencies. For each lower-level project pin associated
with an internal port in another partition or in the top-level project, the script
generates a virtual pin assignment, ensuring more accurate placement, because
virtual pins are not directly connected to I/O ports in the top-level project. These pins
are removed from a lower-level netlist when it is imported into the top-level design.

Virtual Pin Timing and Location Assignments

One of the main issues in bottom-up design methodologies is that each individual
design block includes no information about how it is connected to other design
blocks. If you turn on the option to write virtual pin assignments, you can also turn on
options to constrain these virtual pins to achieve better timing performance after the
lower-level partitions are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is turned on, the
script includes location constraints for each virtual pin created. Virtual output pins are
assigned to the location of the connection’s destination in the top-level project, and
virtual input pins are assigned to the location of the connection’s source in the
top-level project. If the top-level design uses Empty partitions, the final location of the
connection is not known, but the pin is still assigned to the LogicLock region that
contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock region of the
lower-level project, but at their location in the top-level design, eliminating resource
consumption in the lower-level project and providing more information about
lower-level projects and their port dependencies. These location constraints are not
imported into the top-level project.

2–44 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting and Importing Partitions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

When Add maximum delay to created virtual input pins, Add maximum delay from
created virtual output pins, or both are turned on, the script includes timing
constraints for each virtual pin created. The value you enter in the dialog box is the
maximum delay allowed to or from all paths between virtual pins to help meet the
timing requirements for the complete design. The software uses the
INPUT_MAX_DELAY assignment or OUTPUT_MAX_DELAY assignment to apply the
constraint.

This option allows the project lead to specify a general timing budget for all
lower-level internal pin connections. The lower-level designer can override these
constraints by applying individual node-level assignments on any specific pin as
needed.

LogicLock Region Assignments
When Copy LogicLock region assignments from top-level is turned on, the script
includes assignments identifying the LogicLock assignment for the partition.

The script can also pass assignments to create the LogicLock regions for all other
partitions. When Include all LogicLock regions in lower-level projects is turned on,
the script for each partition includes all LogicLock region assignments for the
top-level project and each lower-level partition, revealing the floorplan for the
complete design in each partition. Regions that do not belong to other partitions
contain virtual pins representing the source and destination ports for cross-partition
connections. This allows each designer to view the connectivity between their
partition and other partitions in the top-level design more easily, and helps ensure
that resource conflicts at the top level are minimized.

When Remove existing LogicLock regions from lower-level projects is turned on,
the script includes commands to remove LogicLock regions defined in the lower-level
project prior to running the script. This ensures that LogicLock regions not part of the
top-level project do not become part of the complete design, and avoids any location
conflicts by ensuring lower-level designs use the LogicLock regions specified at the
top level.

Global Signal Promotion Assignments
To help prevent conflicts in global signal usage when importing projects into the
top-level design, you can choose to write assignments that control how signals are
promoted to global routing resources in the lower-level partitions. These options can
help resource balancing of global routing resources.

When Promote top-level global signals in lower-level projects is turned on, the
Quartus II software searches partition netlists and identifies global resources,
including clock signals. For the relevant partitions, the script then includes a global
signal promotion assignment, providing information to the lower-level projects about
global resource allocation.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–45
Exporting and Importing Partitions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When Disable automatic global promotion in lower-level projects is turned on, the
script includes assignments that turn off all automatic global promotion settings in the
lower-level projects. These settings include the Auto Global Memory Control Signals
logic option, output enable logic options, and clock and register control promotions. If
you select the Disable automatic global promotion in lower-level projects option in
conjunction with the Promote top-level global signals in lower-level projects option,
you can ensure that only signals promoted to global resources in the top-level are
promoted in the lower-level projects.

Makefile Generation
Makefiles allow you to use make commands to ensure that a bottom-up project is
up-to-date if you have a make utility installed on your computer. The Generate
makefiles to maintain lower-level and top-level projects option creates a makefile
for each design partition in the top-level design, as well as a master makefile that can
run the lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their corresponding
lower-level project directories.

You must specify the dependencies in the makefiles to indicate which source file
should be associated with which partition. The makefiles use the directory locations
generated using the Create lower-level project if one does not exist option. If you
created your lower-level projects without using this option, you must modify the
variables at the top of the makefile to specify the directory location for each
lower-level project.

To run the makefiles, use a command such as make -f master_makefile.mak
from the script output directory. The master makefile first runs each lower-level
makefile, which sources its Tcl script and then generates a .qxp file to export the
project as a design partition. Next, run the top-level makefile that specifies these
newly generated .qxp files as the import files for their respective partitions in the
top-level project. The top-level makefile then imports the lower-level results and
performs a full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the EXCLUDE_FLAGS section
of master_makefile.mak according to the instructions in the file, and specify the
appropriate options. You can also exclude some partitions from being built, exported,
or imported using make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the following example:

gnumake -f master_makefile.mak exclude_<partition directory>=1 r
This command instructs that the partition whose output files are in <partition
directory> are not built. Multiple directories can be excluded by adding multiple
exclude_<partition directory> commands. Command-line options override any
options in the makefile.

Another feature of makefiles is the ability to have the master makefile invoke the
low-level makefiles in parallel on systems with multiple processors. This option can
help designers working with multiple CPUs greatly improve their compilation time.
For the GNU make utility, add the -j<N> flag to the make command. The value <N>
is the number of processors that can be used to run the build.

1 The makefile does not include a make clean option, so the design may recompile
when make is run again and a .qxp file already exists.

2–46 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Recommended Design Flows and Compilation Application Examples
This section provides design flows for solving common timing closure and
team-based design issues using incremental compilation. Each flow describes the
situation in which it should be used, and gives a step-by-step description of the
commands required to implement the flow.

The following incremental design flow examples reduce compilation time while
making incremental changes to the design. The examples also allow you to achieve
timing closure more quickly by optimizing or preserving the results for some of your
design partitions:

■ “Reducing Compilation Time When Changing a Source File for One Partition”

■ “Optimizing a Timing-Critical Partition to Achieve Timing Closure” on page 2–47

■ “Preserving Results for Some Partitions Before Adding Other Partitions” on
page 2–48

■ “Debugging Incrementally with the SignalTap II Logic Analyzer” on page 2–49

All examples assume you have set up the project to use the full incremental
compilation flow, using the steps described in “Quick Start Guide—Summary of
Incremental Compilation” on page 2–7.

The following design flow examples illustrate team-based design methodologies and
design reuse:

■ “Implementing a Team-Based Design Flow With Imported Partitions” on
page 2–50

■ “Performing Design Iteration With Lower-Level Partitions” on page 2–53

■ “Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse” on
page 2–54

■ “Using an Exported Partition to Send a Design without Including Source Files” on
page 2–56

Reducing Compilation Time When Changing a Source File for One Partition
Use this flow to update the source file in one partition without having to recompile
the other parts of the design. To reduce the compilation time, keep the post-fit netlists
for the unchanged partitions. This also preserves the performance for these blocks,
which reduces additional timing closure efforts.

Example background: You have just performed a lengthy, complete compilation of a
design that consists of multiple partitions. An error is found in the HDL source file for
one partition and it is being fixed. Because the design is currently meeting timing
requirements and the fix is not expected to affect timing performance, it makes sense
to compile only the affected partition and preserve the rest of the design.

Perform the following steps to update the single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, click Design Partitions Window.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–47
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

3. For the partitions that should be preserved, change the Netlist Type to Post-Fit.
You can set the Fitter Preservation Level to either Placement or Placement and
Routing. For the partition that contains the fix, you can change the netlist type to
Source File. (Making the Source File setting is optional because the Quartus II
software recompiles partitions by default if changes are detected in a source file.)

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Run simulation again to ensure that the error is fixed, and use the Timing
Analyzer report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition to Achieve Timing Closure
Use this flow to optimize the results of one partition when the other partitions in the
design already meet their requirements. You can use this flow iteratively to lock down
the performance of one partition and then move on to optimization of another
partition.

Example background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met and you have to optimize one particular partition. You want to
try optimization techniques such as raising the Placement Effort Multiplier, enabling
Physical Synthesis, and running the Design Space Explorer. Because these techniques
all involve significant compilation time, it makes sense to apply them to only the
partition in question.

Perform the following steps to preserve the results for partitions that meet their
timing requirements, and recompile a timing-critical partition with new optimization
settings:

1. On the Assignments menu, click Design Partitions Window.

2. For the partition in question, set the Netlist Type to Post-Synthesis if you are
changing a Fitter setting, such as raising the Placement Effort Multiplier. This
causes the partition to be placed and routed with the new Fitter settings (but not
resynthesized) during the next compilation. Set the Netlist Type to Source File if
you are changing an optimization setting that affects synthesis, such as certain
Physical Synthesis optimizations.

3. For the remaining partitions (including the top-level entity), set the Netlist Type to
Post-Fit. Set the Fitter Preservation Level to Placement to allow for the most
flexibility during routing. These partitions are preserved during the next
compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s netlist with the post-fit netlists of the remaining
partitions. The Fitter then refits only the required partition. Because the effort is
reduced as compared to the initial full compilation, the compilation time is also
reduced.

2–48 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To use the Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Preserving Results for Some Partitions Before Adding Other Partitions
Use this flow to compile one set of partitions in isolation and lock the placement to
preserve the results while you complete the rest of your design.

Example background: To reduce compilation time and help achieve timing closure,
you decide to use one of the following compilation flows:

In the first variation, a timing-critical partition is placed and routed by itself, with
extra optimizations turned on (manually or with the Design Space Explorer). After
timing closure is achieved for this partition, its content and placement are preserved
and the remaining partitions are fit with normal or reduced optimization levels so
that the compilation time can be reduced. For example, you can compile an IP block
that comes with instructions to perform optimization before you incorporate the rest
of your custom logic.

In the second variation, only the quick-compiling partitions are placed and routed
initially with normal or reduced optimization levels, using floorplan location
assignments to reserve space in the floorplan for the partitions to be added in the
future. These quick-compiling partitions are then preserved so they do not have to be
compiled again when the last partitions are introduced, with extra optimizations
turned on (manually or with the Design Space Explorer).

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments.

2. For the partitions to be compiled first, on the Assignments menu, click Design
Partitions Window and set Netlist Type to Source File.

3. For the remaining partitions (other than any direct or indirect parents of partitions
in step 2), set the Netlist Type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check Timing Analyzer reports to ensure that timing requirements are met. If so,
proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit for the first
partitions. Set the Fitter Preservation Level to Placement and Routing only if
necessary to preserve results of the timing-critical blocks; otherwise, use
Placement to allow for the most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the remaining partitions.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its Netlist Type set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements are met. If not,
make design or option changes and repeat step 8 and step 9 until the requirements
are met.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–49
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 This flow is similar to a design flows in which a module is implemented
separately and is merged into the rest of the design afterwards. Generally,
optimization in this flow works only if each critical path is contained within
a single partition. This is one reason why both the inputs and outputs of
each partition should be registered. Ensure that if there are any partitions
representing a design file that is missing from the project, you create a
placeholder wrapper file that defines the port interface. Refer to “Empty
Partitions” on page 2–22 for more information.

Debugging Incrementally with the SignalTap II Logic Analyzer
Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Logic Analyzer to your design without
recompiling your original source code.

Use this flow to reduce compilation times when adding the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II file
without modifying your logic design or its placement.

It is not necessary to create any design partitions to use the SignalTap II Incremental
Compilation feature. When your project has the default Full incremental compilation
option turned on, the SignalTap II Logic Analyzer acts as its own separate design
partition.

Perform the following steps to use the SignalTap II Embedded Logic Analyzer in an
incremental compilation flow:

1. On the Assignments menu, click Design Partitions Window.

2. Set the Netlist Type to Post-fit for all partitions to preserve their placement.

1 The netlist type for the top-level partition defaults to Source File, so be sure
to change this Top partition in addition to any design partitions that you
created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II file using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis. This allows the Fitter to add the
SignalTap II logic to the post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s Netlist Type to
Source File and use the SignalTap II: pre-synthesis filter in the Node Finder. This
allows the software to resynthesize the partition and tap directly to the
pre-synthesis node names that you choose. In this case, the partition is refit, so the
placement is typically different from previous fitting results.

1 Do not use the netlist type Post-Synthesis with the SignalTap II Logic
Analyzer.

f For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

2–50 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Implementing a Team-Based Design Flow With Imported Partitions
This example describes how to use incremental compilation in a team-based design
flow where each designer or IP developer wants to fully optimize their design in a
separate Quartus II project before sending the design to the top-level project lead.

Example background: A project consists of several lower-level subdesigns that are
implemented separately by different designers. The top-level project instantiates each
of these subdesigns exactly once. The subdesign designers want to optimize their
designs independently to ensure timing closure.

As the project lead in this scenario, perform the following steps to prepare the design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” or framework of
the design that defines the hierarchy for the subdesigns implemented by separate
designers. The top-level design implements the top-level entity in the design and
instantiates wrapper files that represent each subdesign by defining only the port
interfaces but not the implementation.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

4. Make design partition assignments for each subdesign and set the Netlist Type for
each design partition to be imported to Empty in the Design Partitions window.

5. Create LogicLock regions for each of the lower-level partitions to create a design
floorplan. This floorplan should consider the connectivity between partitions and
estimates of the size of each partition based on any initial implementation
numbers and knowledge of the design specifications.

6. Provide the constraints from the top-level project to lower-level designers using
one of the following procedures:

a. Provide a copy of the top-level Quartus II project framework. Use the Copy
Project command on the Project menu or create a project archive. Provide each
lower-level designer with the project.

b. Use scripts to pass constraints and generate separate Quartus II projects. On
the Project menu, click Generate Bottom-Up Design Partition Scripts, or run
the script generator from a Tcl or command prompt. Make changes to the
default script options as required for your project. Altera recommends that you
pass all the default constraints, including LogicLock regions, for all partitions
and virtual pin location assignments. Altera further recommends that you add
a maximum delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If lower-
level projects have not already been created by the other designers, use the
partition script to set up the projects so that you can easily take advantage of
makefiles. Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles, provide the
makefile for each partition.

c. Use documentation or scripts to manually pass all constraints and assignments
to each lower-level designer.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–51
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

As the designer of a lower-level subdesign in this example, perform the appropriate
set of steps to successfully export your design, whether your design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles, perform the following steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the
master_makefile command to export this lower-level partition and create a
.qxp file, and then import it into the top-level design.

If you are not using makefiles, perform the following steps:

1. Use your copy of the top-level design, or create a new Quartus II project for the
subdesign.

2. If you do not have a copy of the top-level project, apply the following settings and
constraints to ensure successful integration:

a. Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

b. Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level module.

c. Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level module. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition. The Export Design Partition dialog box appears.

5. Under Netlist to export, select the netlist type Post-fit netlist to preserve the
placement and performance of the subdesign, and turn on Export routing to
include the routing information if required. You can export Post-synthesis netlist
instead if placement or performance preservation is not required.

6. Provide the .qxp file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of steps to
import the files sent in by the designers of each lower-level subdesign partition.

If you are using makefiles, perform the following steps:

1. Use the master_makefile command to export each lower-level partition and
create .qxp files, and then import them into the top-level design.

2–52 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the .qxp file for each subdesign from the other designers on the
team, on the Project menu, click Import Design Partition and specify the partition
in the top-level project that is represented by the subdesign .qxp file.

2. Repeat the import process described in step 1 for each partition in the design. After
you have imported each partition once, select all the design partitions and use the
Reimport using latest import files at previous locations option to import all of
the files from their previous locations at one time.

Resolving Assignment Conflicts During Import

When importing the subdesigns, the project lead may notice some assignment
conflicts. This can occur, for example, if the subdesign designers changed their
LogicLock regions to account for additional logic or placement constraints, or if the
designers applied I/O port timing constraints that differ from constraints added to
the top-level project by the project lead. To address these conflicts, the project lead can
take one or both of the following actions:

■ Allow new assignments to be imported.

■ Allow existing assignments to be replaced or updated.

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

■ Allow the imported region to replace the existing region.

■ Allow the imported region to update the existing region.

■ Skip assignment import for regions with conflicts.

The project lead can address all of these situations using Advanced Import Settings
as described in “Importing Assignments and Advanced Import Settings” on
page 2–39.

If the placement of different subdesigns conflict, the project lead can also set the set
the partition’s Fitter Preservation Level to Netlist Only, which allows the software to
re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the scenario, one of the subdesigns is instantiated more than once
in the top-level design. The designer of the subdesign may want to compile and
optimize the entity once under a lower-level project, and then import the results as
multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving Assignment
Conflicts During Import” on page 2–52 is mandatory because the top-level partitions
share the same imported post-fit netlist. If you import multiple instances of a
subdesign in the top-level design, the imported LogicLock regions are automatically
set to Floating status.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–53
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

Performing Design Iteration With Lower-Level Partitions
Use this flow if you re-optimize lower-level partitions in separate Quartus II projects
by incorporating additional constraints from the integrated top-level design. This
procedure allows you to create a separate individual project for a partition that
requires additional optimization.

Example background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each individual lower-
level project, but critical inter-partition paths in the top level are causing timing
requirements to fail.

After trying various optimizations at the top level, the project lead determines that the
design cannot meet the timing requirements given the current lower-level partition
placements that were imported. The project lead decides to pass additional
information to the lower-level projects to improve the placement.

One way to provide top-level design information to designers of lower-level blocks is
to provide a copy of the top-level Quartus II project with the following steps:

1. For all partitions other than the one being optimized by a lower-level designer, set
the netlist type to Post-Fit.

2. Copy the entire top-level project directory (including database files), or create a
project archive including the post-compilation database.

3. Provide each lower-level designer with their project.

4. In the top-level design, on the Project menu, click Generate Bottom-Up Design
Partition Scripts, or launch the script generator from Tcl or the command line.

5. Because lower-level projects have already been created for each partition, you can
turn off Create lower-level project if one does not exist.

6. Make any additional changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.

2–54 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

7. The Quartus II software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

■ Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

■ Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top level, leading to a greater
chance of timing closure during integration at the top level.

■ INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths
to and from the I/O pins of the partition. These constrain the pins to optimize
the timing paths to and from the pins.

8. The lower-level designers source the file provided by the project lead.

■ To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command:

source <filename> r
■ To source the Tcl script at the system command prompt, type the following

command:

quartus_cdb -t <filename>.tcl r
9. The lower-level designers recompile their designs with the new project

information or assignments and optimize as needed to ensure that the internal
timing requirements are met, and then e-export their results.

10. The top-level designer re-imports the results.

11. You can now analyze the design to determine whether the timing requirements
have been achieved. Because the lower-level partitions were compiled with more
information about connectivity at the top level, it is more likely that the
inter-partition paths have improved placement which helps to meet the timing
requirements.

Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse
Use this design flow to create a hard-wired macro or precompiled IP block that can be
instantiated in a top-level design. This flow provides the ability to export a design
block with post-synthesis or placement (and, optionally, routing) information and to
import any number of copies of this pre-compiled macro into another design.

Example background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–55
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

1 Altera recommends creating a floorplan using LogicLock regions, although
it is not required for the generation and use of .qxp files. Using a LogicLock
region for the IP core allows the customer to create an empty placeholder
region to reserve space for the IP in the design floorplan. This ensures there
are no conflicts with the top-level design logic, and that the IP core does not
affect the timing performance of other logic in the top-level design.

LogicLock regions can be effective to reduce resource utilization conflicts
and to enable performance preservation. In addition, without LogicLock
regions, placement can be preserved only in an absolute manner. With
LogicLock regions, you can preserve placement absolutely or relative to the
origin of the associated regions. This is important when a .qxp file is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level project does
not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block within a Project”
on page 2–36.

5. Optimize the design and close timing to meet the design specifications.

6. Export the appropriate level of hierarchy into a single .qxp file. Following a
successful compilation of the project, you can generate a .qxp file from the GUI,
the command-line, or with Tcl commands:

■ If you are using the Quartus II GUI, use the Export Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_export option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_export.

7. Provide the .qxp file to the customer. Note that you do not have to send any of
your design source code to the customer; the design netlist and placement and
routing information is contained within this single file.

2–56 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Recommended Design Flows and Compilation Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

2. On the Processing menu, point to Start and click Perform Analysis & Elaboration
to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 2–67) with the Netlist Type set to Empty (refer to “Setting the
Netlist Type for Design Partitions” on page 2–20).

4. You can now continue work on your part of the design and accept the IP core from
the IP provider whenever it is ready.

5. Import the .qxp file from the IP provider for the appropriate partition hierarchy.
You can import a .qxp file from the GUI, the command-line, or with Tcl
commands.

■ If you are using the Quartus II GUI, use the Import Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_import option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_import.

6. You can set the imported LogicLock regions to floating or move them to a new
location, with the relative locations of the region contents preserved. Routing
information is preserved whenever possible.

1 The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp file.

7. You can control whether to preserve the imported netlist only, placement, or
placement and routing (if the placement or placement and routing information
was exported in the .qxp file) with the Fitter Preservation Level.

By default, the software preserves the absolute placement and routing of all nodes in
the imported netlist if you choose to preserve placement and routing. However, if you
use the same .qxp files for multiple partitions in the same project, the software
preserves the relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

1 If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Using an Exported Partition to Send a Design without Including Source Files
Use this flow to package a full design as a single file to send to an end customer or
another design location.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–57
Recommended Design Flows and Compilation Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient.

As the sender in this example, perform the following steps to export a design block:

1. Provide the device family name to the sender. If you send placement information
with the synthesized netlist, also provide the exact device selection so they can set
up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the appropriate level of hierarchy into a single .qxp file. If you use the
Quartus II GUI, use the Export Design Partition command (refer to “Exporting a
Lower-Level Block within a Project” on page 2–36“).

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.

6. Provide the .qxp file to the recipient. Note that you do not have to send any of
your design source code.

As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp file does not include placement information), as specified by
the IP provider sending the design block. Instantiate the design block using the port
information provided. Then incorporate the design block into a top-level design by
performing one of the following procedures.

To use the .qxp file as a design file in your design, simply add the .qxp file from the IP
provider as a source file in your Quartus II project. When you use a .qxp file as a
source file in this way, you cannot import any post-fit netlist information. You can
choose whether you want the file to be a partition in the top-level project.

To import the design instance from the .qxp file as a design partition and optionally
include the post-fit netlist information, perform the following steps:

1. On the Processing menu, point to Start and click Perform Analysis & Elaboration
to identify the design hierarchy.

2. Create a design partition for the design instance from the .qxp file (refer to
“Creating Design Partition Assignments” on page 2–15) with the Netlist Type set
to Empty (refer to “Setting the Netlist Type for Design Partitions” on page 2–20).

3. Import the .qxp file from the IP provider for the appropriate partition hierarchy. If
you are using the Quartus II GUI, use the Import Design Partition command and
browse to the .qxp file provided (refer to “Using a .qxp File as a Source File in the
Top-Level Project” on page 2–37).

4. If the sender provides Fitter information, you can control whether to preserve the
imported netlist only, placement, or placement and routing, with the Fitter
Preservation Level.

2–58 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Incremental Compilation Restrictions
This section documents the restrictions and limitations that you may encounter when
using incremental compilation, including interactions with other Quartus II features.
Some additional restrictions apply only to exported partitions.

The following restrictions and limitations are covered:

■ “Preserving Exact Timing Performance” on page 2–58

■ “When Placement and Routing May Not Be Preserved Exactly” on page 2–58

■ “Using Incremental Compilation with Quartus II Archive Files” on page 2–59

■ “Formal Verification Support” on page 2–59

■ “SignalProbe Pins and Engineering Change Management with the Chip Planner”
on page 2–59

■ “SignalTap II Embedded Logic Analyzer in Exported Partitions” on page 2–61

■ “Logic Analyzer Interface in Exported Partitions” on page 2–61

■ “Importing Encrypted IP Cores” on page 2–62

■ “Assignments Made in HDL Source Code in Exported Partitions” on page 2–62

■ “Bottom-Up Design Partition Script Limitations” on page 2–62

■ “HardCopy Compilation and Migration Flows” on page 2–64

■ “Restrictions on Megafunction Partitions” on page 2–65

■ “Register Packing and Partition Boundaries” on page 2–65

■ “I/O Register Packing” on page 2–65

Preserving Exact Timing Performance
Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly
The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–59
Incremental Compilation Restrictions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.

Using Incremental Compilation with Quartus II Archive Files
The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp file. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp file in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use_file_set full_db [-revision <revision
name>] <project name>

Formal Verification Support
You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Management with the Chip Planner
When you create SignalProbe pins or use the Resource Property Editor to make
changes due to engineering change orders (ECOs) after performing a full compilation,
recompiling the entire design is not necessary. These changes are made directly to the
netlist without performing a new placement and routing. You can preserve these
changes using a post-fit netlist with placement and routing. When a partition is
recompiled, SignalProbe pins and ECO changes in unaffected partitions are
preserved.

2–60 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For more information about using the SignalProbe feature to debug your design, refer
to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

To preserve SignalProbe pins or ECO changes, the partition netlist type should be set
to Post-Fit with the Fitter Preservation Level set to Placement and Routing. If any
partitions with SignalProbe pins or ECO changes are set to Post-Fit without Routing
or to Netlist Only, the software issues a warning and internally uses the Post-fit
netlist with Placement and Routing. If the partitions are set to use the source code or
a post-synthesis netlist, the software issues a warning and the post-fit SignalProbe
pins or ECO changes are not included in the new compilation. However, partitions
can become linked due to the SignalProbe pins or ECO changes, as described below,
in which case all linked partitions inherit the netlist type from the linked partition
with the highest level of preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes
If ECO changes affect more than one partition or the connection between any
partitions, the partitions become linked. All of the higher-level “parent” partitions up
to their nearest common parent are also linked. In this case, the connection between
the partitions is actually defined outside of the two partitions immediately affected, so
all the partitions must be compiled together. All linked partitions use the same netlist
type, and they inherit the netlist type from the linked partition with the highest level
of preservation.

When a SignalProbe pin is created, it affects the partition that contains the node being
probed. In addition, any pipeline registers are created in the same partition as the
node being probed. The SignalProbe output pin is assigned to the top-level partition.
Therefore, there is a new connection formed between the top-level partition and the
lower-level partition that is being probed. Because of this connection, the lower-level
partition being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and they inherit
the netlist type from the linked partition with the highest level of preservation.

When partitions are linked, they can change which netlists are preserved when you
recompile the design, as follows:

■ If all the linked partitions are set to use the source code or a post-synthesis netlist,
the partitions are refit as normal. In this case, the SignalProbe pins or ECO changes
are not included in the new netlists, so you must reapply the changes in the
Change Manager.

■ If any of the linked partitions are set to the Post-Fit netlist type, and there are no
source code changes, the software issues a warning and internally uses the post-fit
netlist with placement and routing for all linked partitions. By preserving the
appropriate post-fit netlists, the software can preserve the SignalProbe pins or
ECO changes.

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–61
Incremental Compilation Restrictions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ If any of the linked partitions are set to the Post-Fit (Strict) netlist type, the
software issues a warning and internally uses the post-fit netlist with placement
and routing for all linked partitions, regardless of any source code changes. By
preserving the appropriate post-fit netlists, the software can preserve the
SignalProbe pins or ECO changes. Note that in this case, source code changes in
any of the linked partitions are not included in the new netlist.

■ If any of the linked partitions are recompiled due to a change in source code, the
software issues a warning and recompiles the other linked partitions as well.
When this occurs, the SignalProbe pins or ECO changes are not included in the
new netlist, so you must reapply the changes in the Change Manager.

Exported Partitions
When you export a partition, the exported netlist includes all currently saved
SignalProbe pins and ECO changes. This might require flattening and combining
lower-level partitions in the child project to avoid partition boundary violations at the
top level. After importing this netlist, changes made in the lower-level partition do
not appear in the Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level partition, the
software issues a warning message during the export process that this netlist does not
work in the top-level design without modifying the top-level HDL code to reflect the
lower-level change.

SignalTap II Embedded Logic Analyzer in Exported Partitions
You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

You cannot export a lower-level project that uses a SignalTap II File (.stp) for the
SignalTap II Logic Analyzer. You must disable the SignalTap II feature and recompile
the design before you export the design as a partition.

You can instantiate the SignalTap II megafunction directly in your lower-level design
(instead of using an .stp file) and export the entire design to the top level.

You can tap any nodes in a Quartus II project, including nodes imported from other
projects. Use the appropriate filter in the Node Finder to find your node names. Use
SignalTap II: post-fitting if the Netlist Type is Post-Fit to incrementally tap node
names in the post-fit netlist database. Use SignalTap II: pre-synthesis if the Netlist
Type is Source File to make connections to the source file (pre-synthesis) node names
when you synthesize the partition from the source code.

f For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

Logic Analyzer Interface in Exported Partitions
You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a lower-level project that uses the
Logic Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

2–62 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Importing Encrypted IP Cores
Proper license information is required to compile encrypted IP cores. If an IP core is
imported as a .qxp file from another Quartus II project, the top-level designer must
have the correct license. That is, you require a full license to generate an unrestricted
programming file. If you do not have a license, but the IP in the .qxp file was
compiled with OpenCore Plus hardware evaluation support, you can generate an
evaluation programming file without a license. If the IP supports OpenCore
simulation only, you can fully compile the design and generate a simulation netlist,
but you cannot create programming files unless you have a full license.

Assignments Made in HDL Source Code in Exported Partitions
Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level QSF file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Bottom-Up Design Partition Script Limitations
The Quartus II software has some limitations related to design partition scripts.

Warnings About Extra Clocks Due to Bottom-Up Design Partition Scripts
The generated scripts include applicable clock information for all clock signals in the
top-level project. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Bottom-Up
Design Partition Scripts
As described in “Generating Design Partition Scripts for Project Management” on
page 2–41, design partition scripts include only clock constraints and minimum and
maximum delay settings for the TimeQuest Timing Analyzer.

1 PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for suggestions on
managing SDC constraints between top-level and lower-level projects.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–63
Incremental Compilation Restrictions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Wildcard Support in Bottom-Up Design Partition Scripts
When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top|A:inst|B:inst|*, where A and B are lower-level partitions, and
hierarchy B is a child of A, that is B is instantiated in hierarchy A. This assignment is
applied to modules A, B, and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B:inst* is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A:inst|*|B:inst|* are not
supported. The Quartus II software issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts
If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses a copy of the project framework from the project lead,
they will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic with the feature described in “Exporting a Lower-Level Block within a Project”
on page 2–36.

Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts
Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY
assignments to specify inter-partition delays associated with input and output pins,
which would not otherwise be visible to the project. These assignments require that
the software specify the clock domain for the assignment and set this clock domain to
‘*’.

2–64 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition
Scripts
When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

HardCopy Compilation and Migration Flows

HardCopy ASIC Migration Flows
Incremental compilation within a single Quartus II project is supported for the base
family in HardCopy migration flows for both the FPGA first and HardCopy first
flows. Design partition assignments are migrated to the companion device. However,
you can not make changes to the design after migration because the design would not
match the compilation results for the base family. Therefore, you can perform
incremental compilation on one device family, but cannot perform any incremental
compilations after migration.

The Netlist Only preservation level is not supported for Post-fit netlists for FPGA or
HardCopy ASIC device compilations when a migration device is specified (that is, for
HardCopy ASIC device compilations with a FPGA migration device, or FPGA device
compilations with a HardCopy ASIC migration device).

Exporting and importing partitions is not supported in HardCopy ASIC or FPGA
device compilations when there is a migration device setting. The Revision Compare
feature requires that the HardCopy ASIC and FPGA netlists are the same. Therefore,
all operations performed on one revision must also occur on the other revision. This is
accomplished by logging all operations and replaying them on the other revision.
Importing partitions does not support this requirement. You can often use Empty
partitions to implement behavior similar to an exported partition flow, as long as you
do not change any global assignments between compilations. All global assignments
must be the same for all compiled partitions, so the assignments can be reproduced in
the companion device after migration.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–65
Incremental Compilation Restrictions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

HardCopy ASIC Stand-Alone Compilations
You can use all incremental compilation flows for stand-alone HardCopy ASIC
compilations.

Routing preservation is not supported for HardCopy ASICs. Therefore, the Placement
and Routing preservation level is not available, and routing cannot be exported in the
bottom-up flow.

Restrictions on Megafunction Partitions
The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard™ Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.

The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries
The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries prevent cross-boundary
optimization. This restriction applies to all types of register packing, including I/O
cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic from two
partitions cannot be packed into the same ALM.

I/O Register Packing
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

2–66 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.

f Refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook for more information and
examples of cross-partition boundary I/O packing.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Preparing a Design for Incremental Compilation
To set or modify the current mode of incremental compilation, use the following
command:

set_global_assignment -name INCREMENTAL_COMPILATION <value> r
The incremental compilation <value> setting must be one of the following values:

■ FULL_INCREMENTAL_COMPILATION—Full incremental compilation (this is the
default)

■ OFF—No incremental compilation is performed

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–67
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Design Partitions
To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short hierarchy path is
the full hierarchy path without the top-level name (including quotation marks), for
example:

"ram:ram_unit|altsyncram:altsyncram_component"

For the top-level partition, you can use the pipe (|) symbol to represent the top-level
entity.

f For more information about hierarchical naming conventions, refer to the
Node-Naming Conventions in Quartus II Integrated Synthesis section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

The <partition name> is the user-designated partition name, which must be unique
and less than 1024 characters. The name can consist only of alphanumeric characters,
and the pipe (|), colon (:), and underscore (_) characters. Altera recommends
enclosing the name in double quotation marks (" ").

The <file name> is the name used for internally generated netlists files during
incremental compilation. Netlists are named automatically by the Quartus II software
based on the instance name if you create the partition in the user interface. If you are
using Tcl to create your partitions, you must assign a custom file name that is unique
across all partitions. For the top-level partition, the specified file name is ignored; you
can use any dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition uses the file
name my_file, no other partition can use the file name MY_FILE. For simplicity,
Altera recommends that you base each file name on the corresponding instance name
for the partition.

The software stores all netlists in the \incremental_db compilation database
directory.

Setting Properties of Design Partitions
After a partition is created, set its Netlist Type with the following command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> \
-section_id <partition name>

The netlist type <value> setting is one of the following values:

■ SOURCE—Source File

■ POST_SYNTH—Post-Synthesis

■ POST_FIT—Post-Fit

■ STRICT_POST_FIT—Post-Fit (Strict)

■ IMPORTED—Imported

■ IMPORT_BASED_POST_FIT—Post-Fit (Import-based)

■ EMPTY—Empty

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

2–68 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Set the Fitter Preservation Level for a post-fit or imported netlist using the following
command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL \
<value> -section_id <partition name>

The Fitter Preservation Level <value> setting is one of the following values:

■ NETLIST_ONLY—Netlist only

■ PLACEMENT—Placement

■ PLACEMENT_AND_ROUTING—Placement and routing

■ PLACEMENT_AND_ROUTING_AND_TILE—Placement and routing, as well as the
high-speed power tile settings

For details about these partition properties, refer to “Setting the Netlist Type for
Design Partitions” on page 2–20.

Creating Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM or DSP Blocks)

Resource filtering uses the optional Tcl argument -exclude_resources in the
set_logiclock_contents function of the incremental_compilation Tcl
package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is a
colon-delimited string of the keywords in Table 2–6.

For example, the following command assigns everything under alu:alu_unit to the
ALU region, excluding all the DSP and M512 blocks:

set_logiclock_contents -region ALU -to alu:alu_unit -exceptions \
"DSP:SMALL_MEM"

In the .qsf file, resource filtering uses an extra LogicLock membership assignment
called LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qsf
file is used to specify a resource filter for the alu:alu_unit entity assigned to the
ALU region. The value of the assignment takes the same format as the resource listing
string taken by the previous Tcl command.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
"DSP:SMALL_MEM" -to "alu:alu_unit" -section_id ALU

Table 2–6. Resources-to-be-Excluded Keywords

Keyword Resource

REGISTER Any registers in the logic cells

COMBINATIONAL Any combinational elements in the logic cells

SMALL_MEM The small TriMatrix memory blocks (M512 or MLAB)

MEDIUM_MEM The medium TriMatrix memory blocks (M4K or M9K)

LARGE_MEM The large TriMatrix memory blocks (M-RAM or M144K)

DSP Any DSP blocks

VIRTUAL_PIN Any virtual pins

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–69
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Generating Bottom-Up Design Partition Scripts
To generate scripts, type the following Tcl command at a Tcl prompt:

generate_bottom_up_scripts <options> r
The command is part of the database_manager package, which must be loaded
using the following command before the command can be used:

load_package database_manager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact format of each
option is specified in Table 2–7.

The following example shows how to use the Tcl command:

load_package database_manager
set project test_proj
project_open $project
generate_bottom_up_scripts -bottom_up_scripts_output_directory test \

-include_virtual_pin_timing on -virtual_pin_delay 1.2
project_close

Command Line Support
To generate scripts at the command prompt, type the following command:

quartus_cdb <project name> --generate_bottom_up_scripts=on <options> r
Once again, the options map to the same as those in the GUI. To add an option,
append “--<option_name>=<val>” to the command line call.

Table 2–7. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default

-include_makefiles <on|off> On

-include_project_creation <on|off> On

-include_virtual_pins <on|off> On

-include_virtual_pin_timing <on|off> On

-include_virtual_pin_locations <on|off> On

-include_logiclock_regions <on|off> On

-include_all_logiclock_regions <on|off> On

-include_global_signal_promotion <on|off> Off

-include_pin_locations <on|off> On

-include_timing_assignments <on|off> On

-include_design_partitions <on|off> On

-remove_existing_regions <on|off> On

-disable_auto_global_promotion <on|off> Off

-bottom_up_scripts_output_directory <output directory> Current project directory

-virtual_pin_delay <delay in ns> (1)

Note to Table 2–7:

(1) No default.

2–70 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The command prompt options are the same as those available in the GUI. They are
listed in Table 2–8.

Exporting a Partition to be Used in a Top-Level Project
Use the quartus_cdb executable to export a file for a bottom-up incremental
compilation flow with the following command:

quartus_cdb --INCREMENTAL_COMPILATION_EXPORT=<file> \
[--incremental_compilation_export_netlist_type=<POST_SYNTH|
POST_FIT>]\
[--incremental_compilation_export_partition_name=<partition name>] \
[--incremental_compilation_export_routing=<on|off>]

The <file> argument is the file path to the exported file. The <partition name> is the
name of the partition, not its hierarchical path. If you do not specify the options, the
executable uses any settings in the .qsf file, or it uses default values. The default
partition is the top-level partition in the project, the default netlist type is post-fit, and
the default for routing is on (for all device families that support exported routing).

The command reads the assignment
INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE to determine which netlist
type to export; the default is post-fit.

You can also use the flow INCREMENTAL_COMPILATION_EXPORT in the
execute_flow Tcl command contained in the flow Tcl package.

Table 2–8. Options for Generating Bottom-Up Partition Scripts

Option Default

--include_makefiles_with_bottom_up_scripts=<on|off> On

--include_project_creation_in_bottom_up_scripts=<on|off> On

--include_virtual_pins_in_bottom_up_scripts=<on|off> On

--include_virtual_pin_timing_in_bottom_up_scripts=<on|off> On

--bottom_up_scripts_virtual_pin_delay=<delay in ns> (1)

--include_virtual_pin_locations_in_bottom_up_scripts=<on|off> On

--include_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_all_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_global_signal_promotion_in_bottom_up_scripts=<on|off> Off

--include_pin_locations_in_bottom_up_scripts=<on|off> On

--include_timing_assignments_in_bottom_up_scripts=<on|off> On

--include_design_partitions_in_bottom_up_scripts=<on|off> On

--remove_existing_regions_in_bottom_up_scripts=<on|off> On

--disable_auto_global_promotion_in_bottom_up_scripts=<on|off> Off

--bottom_up_scripts_output_directory=<output directory> Current project
directory

Note to Table 2–8:

(1) No default. You must provide this option if you are including virtual pin timing.

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–71
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use the following commands to export a .qxp file for a given partition, choose the
netlist type, and specify whether to export routing:

load_package flow
set_global_assignment –name INCREMENTAL_COMPILATION_EXPORT_FILE \
<filename>
set_global_assignment –name
INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE \
<POST_FIT|POST_SYNTH>
set_global_assignment -name \
INCREMENTAL_COMPILATION_EXPORT_PARTITION_NAME <partition name>
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_ROUTING \
<on|off>
execute_flow –INCREMENTAL_COMPILATION_EXPORT

The default partition is the top-level partition in the project, the default netlist type is
post-fit, and the default for routing is on (for all device families that support exported
routing).

To turn on the option to always perform exportation following compilation, use the
following Tcl command:

set_global_assignment -name AUTO_EXPORT_INCREMENTAL_COMPILATION ON

Importing a Lower-Level Partition into the Top-Level Project
Use the quartus_cdb executable to import a lower-level partition with the following
command:

quartus_cdb -- INCREMENTAL_COMPILATION_IMPORT r
You can also use the flow called INCREMENTAL_COMPILATION_IMPORT in the
execute_flow Tcl command contained in the flow Tcl package.

The following example script shows how to import a partition using a Tcl script:

load_package flow
commands to set the import-related assignments for each partition
execute_flow --INCREMENTAL_COMPILATION_IMPORT

Specify the location for the imported file with the PARTITION_IMPORT_FILE
assignment. Note that the file specified by this assignment is read only during
importation. For example, the project is completely independent from any files from
the lower-level projects after importing. In the command-line and Tcl flow, any
partition that has this assignment set to a non-empty value is imported.

The following assignments specify how the partition should be imported:

PARTITION_IMPORT_PROMOTE_ASSIGNMENTS = <on|off>
PARTITION_IMPORT_NEW_ASSIGNMENTS = <on|off>
PARTITION_IMPORT_EXISTING_ASSIGNMENTS = \
replace_conflicting | skip_conflicting
PARTITION_IMPORT_EXISTING_LOGICLOCK_REGIONS = \
replace_conflicting | update_conflicting | skip_conflicting

2–72 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Makefiles
For an example of how to use incremental compilation with a makefile as part of
the bottom-up design flow, refer to the read_me.txt file that accompanies the
incr_comp example located in the /qdesigns/incr_comp_makefile subdirectory.
When using a bottom-up incremental compilation flow, the Generate Bottom-Up
Design Partition Scripts feature can write makefiles that automatically export
lower-level design partitions and import them into the top-level project whenever
design files change.

Recommended Design Flows and Compilation Application Examples—Scripting and
Command-Line Operation

This section provides scripting examples that cover some of the topics discussed in
the main section of the chapter.

The script shown in Example 2–1 opens a project called AB_project, sets up two
partitions, entities A and B, for the first time, and performs an initial complete
compilation.

Reducing Compilation Time When Changing a Source File for One Partition—
Command-Line Example
Example background: You have run the initial compilation shown in the example
script in the previous section. You have modified the HDL source file for partition A
and want to recompile it.

Example 2–1. AB_project

set project AB_project

package require ::quartus::flow
project_open $project

Ensure that incremental compilation is turned on
set_global_assignment -name INCREMENTAL_COMPILATION \
FULL_INCREMENTAL_COMPILATION

Set up the partitions
set_instance_assignment -name PARTITION_HIERARCHY \
incremental_db/A_inst -to A –section_id "Partition_A"
set_instance_assignment -name PARTITION_HIERARCHY \
incremental_db/B_inst -to B –section_id "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_A"
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_B"

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–73
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Run the standard flow compilation command in your Tcl script:

execute_flow -full_compile

Or, type the following command at a system command prompt:

quartus_sh --flow compile AB_projectr
Assuming the source files for partition B do not depend on A, only A is recompiled.
The placement of B and its timing performance is preserved, which also saves
significant compilation time.

Optimizing the Placement for a Timing-Critical Partition
Example background: You have run the initial compilation shown in the example
script under “Recommended Design Flows and Compilation Application Examples—
Scripting and Command-Line Operation” on page 2–72. You would like to apply
Fitter optimizations, such as physical synthesis, only to partition A. No changes have
been made to the HDL files.

To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in
Example 2–2:

Conclusion
With the Quartus II incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.

Example 2–2. AB_project (2)

set project AB_project

package require ::quartus::flow
project_open $project

Turn on Physical Synthesis Optimization
set_global_assignment -name \
PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON

For A, set the netlist type to post-synthesis
set_global_assignment –name PARTITION_NETLIST_TYPE POST_SYNTH \
–section_id "Partition_A"

For B, set the netlist type to post-fit
set_global_assignment –name PARTITION_NETLIST_TYPE POST_FIT \
–section_id "Partition_B"

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close

2–74 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Referenced Documents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook

■ In-System Debugging Using External Logic Analyzers chapter in volume 3 of the
Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual

■ Quick Design Debugging Using the SignalProbe chapter in volume 3 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 2–9 shows the revision history for this chapter.

Table 2–9. Document Revision History (Part 1 of 3)

Date and Document
Version Changes Made Summary of Changes

October 2009

v9.1

■ Redefined the bottom-up design flow as team-based and reorganized
previous design flow examples to include steps on how to pass top-
level design information to lower-level designers.

■ Moved SDC Constraints from Lower-Level Partitions section to the
Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

■ Reorganized the “Recommended Design Flows and Compilation
Application Examples” on page 2–46 section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.

Updated for Quartus II
software version 9.1.

March 2009
v9.0.0

■ Split up Netlist Types table

■ Moved “Team-Based Incremental Compilation Summary” and
“Team-Based Incremental Compilation Summary” into the
“Exporting and Importing Partitions” section.

■ Added new section “Preparing a Design to Import Partitions” on
page 2–31

■ Removed “Exporting a Lower-Level Partition that Uses a JTAG
Feature” restriction

■ Other edits throughout chapter

Updated for Quartus II
software version 9.0.

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–75
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

November 2008
v8.1.0

■ Added new section “Importing SDC Constraints from Lower-Level
Partitions” on page 2–44

■ Removed the Incremental Synthesis Only option

■ Removed section “OpenCore Plus Feature for MegaCore Functions in
Bottom-Up Flows”

■ Removed section “Compilation Time with Physical Synthesis
Optimizations”

■ Added information about using a .qxp file as a source design file
without importing

■ Reorganized several sections

■ Updated Figure 2–10

Updated for Quartus II
software version 8.1.

Table 2–9. Document Revision History (Part 2 of 3)

Date and Document
Version Changes Made Summary of Changes

2–76 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2008

v8.0.0

■ Added several references to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter

■ Simplified “Choosing a Quartus II Compilation Flow” section

■ Clarified material in “Quartus II software versions before version 8.1
included an “incremental synthesis only” option that did not preserve
placement results. This option has been removed beginning with
version 8.1. You can use a post-synthesis netlist to preserve
synthesis results with full incremental compilation.” section, added
information about “mixed” design flows, and added a note about
HardCopy ASIC flows

■ Removed “When Design is Resynthesized” and “When Design is
Refit” from Table 2–1.

■ Reorganized “Choosing Design Partitions” section

■ Added instructions for using the Design Partition Planner

■ Added information about design changes to Table 2–2 in “Setting the
Netlist Type for Design Partitions”

■ Removed requirement for HDL wrapper file for Empty partitions that
are Imported

■ Added details to “What Changes Trigger a Partition’s Automatic
Resynthesis?” section

■ Added “What LogicLock Changes Trigger Refitting?” section

■ Removed existing section “Guidelines for Creating Good Design
Partitions and LogicLock Regions” because it is covered in the Best
Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter and moved some of the material to other
sections of the document

■ Renamed and reorganized Application Examples

■ Removed example Placing All but One Critical Partition in a Multiple-
Partition Design in a Top-Down Compilation Flow and combined it
with previous example

■ Added recommendation to use a version-compatible database when
archiving

■ Clarified HardCopy ASIC restrictions for bottom-up flows

■ Clarified export and import of SDC constraints in bottom-up flows

■ Added “Optimizing the Placement for a Timing-Critical Partition”
section

■ Added “Using an Exported Partition to Send a Design without
Including Source Files” section

Updated for Quartus II
software version 8.0.

Table 2–9. Document Revision History (Part 3 of 3)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

3. Quartus II Design Flow for
MAX+PLUS II Users

This chapter describes how to convert MAX+PLUS® II designs to Quartus II projects,
as well as the similarities and differences between the MAX+PLUS II and Quartus II
design flows. This discussion includes supported device families, GUI comparisons,
and the advantages of the Quartus II software.

Introduction
The feature-rich Quartus® II software helps you shorten your design cycles and reduce
time-to-market. With support for MAX® device families, as well as all of Altera’s
newest devices, the Quartus II software is the most widely accepted Altera® design
software tool today.

1 The Quartus® II software versions 9.0 or earlier also support FLEX® and ACEX® device
families.

Chapter Overview
This chapter covers the following topics:

■ “MAX+PLUS II Support” on page 3–1

■ “Typical Design Flow” on page 3–2

■ “Device Support” on page 3–2

■ “Quartus II GUI Overview” on page 3–3

■ “Setting Up MAX+PLUS II Look and Feel in the Quartus II Software” on page 3–4

■ “Compiler Tool” on page 3–6

■ “MAX+PLUS II Design Conversion” on page 3–9

■ “Quartus II Design Flow” on page 3–12

MAX+PLUS II Support
The Quartus II software retains a MAX+PLUS II GUI to help users transition to the
Quartus II software design environment.

QII51002-9.1.0

3–2 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Typical Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Typical Design Flow
Figure 3–1 shows a common design flow with the Quartus II software.

Device Support
The Quartus II software supports many of the devices supported in the MAX+PLUS II
software, but it does not support obsolete devices or packages. The devices supported
by these two software packages are shown in Table 3–1.

Figure 3–1. Quartus II Software Design Flow

Analysis and Elaboration

Integrated Analysis and Synthesis

Fitter

Configuration/
Programming
Files (.sof/.pof)

Functional
Netlist

Constraints
and Settings

Constraints
and Settings

Functional
Simulation

Timing
and Area

Requirements
Satisfied?

Yes

No

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

Gate-Level
Timing

Simulation

Program/Configure Device

Design Files

Table 3–1. Device Support Comparison (Part 1 of 2)

Device Supported Quartus II Software MAX+PLUS II Software

Arria® GX v —

Stratix® Series v —

Cyclone® Series v —

HardCopy® Series v —

MAX® II v —

MAX 3000A v v
MAX 7000S/AE/B v v
MAX 7000E — v
MAX 9000 — v

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–3
Quartus II GUI Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II GUI Overview
The Quartus II software provides utility windows to assist in the development of your
designs, as described in the following paragraphs.

Task Window
The Task window feature in the Quartus II software provides a guided design
compilation flow. This type of feature is not available in the MAX+PLUS II software.

Project Navigator
The Hierarchy tab of the Project Navigator window is similar to the MAX+PLUS II
Hierarchy Display and provides additional information such as logic cell, register,
and memory bit resource utilization. The Files and Design Units tabs of the Project
Navigator window provide a list of project files and design units.

Node Finder
The Node Finder window provides the equivalent functionality of the MAX+PLUS II
Search Node Database dialog box and allows you to find and use any node name
stored in the project database.

Tcl Console
The Tcl Console window allows access to the Quartus II Tcl shell from within the GUI.
You can use the Tcl Console window to enter Tcl commands and source Tcl scripts to
make assignments, perform customized timing analysis, view information about
devices, or fully automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the MAX+PLUS II
software.

f For more information about using Tcl with the Quartus II software, refer to the Tcl
Scripting chapter in volume 2 of the Quartus II Handbook.

Messages
The Messages window is similar to the Message Processor window in the
MAX+PLUS II software, providing detailed information, warnings, and error
messages.You also can use it to locate a node from a message to various windows in
the Quartus II software.

FLEX 8000 — v
Classic™ — v
Note to Table 3–1:

(1) Some packages are supported in the Quartus II software 9.0 and earlier.

Table 3–1. Device Support Comparison (Part 2 of 2)

Device Supported Quartus II Software MAX+PLUS II Software

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

3–4 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Setting Up MAX+PLUS II Look and Feel in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Status
The Status window displays information similar to the MAX+PLUS II Compiler
window. Progress and elapsed time are shown for each stage of the compilation.

Change Manager
The Change Manager provides detailed tracking information about all design changes
made with the Chip Planner. This feature is not available in the MAX+PLUS II
software.

f For more information about the Engineering Change Manager and the Chip Planner,
refer to the Engineering Change Management with the Chip Planner chapter in volume 2
of the Quartus II Handbook.

Figure 3–2 shows the typical Quartus II software GUI.

Setting Up MAX+PLUS II Look and Feel in the Quartus II Software
You can choose the MAX+PLUS II look and feel by selecting MAX+PLUS II in the
Look & Feel box of the General tab of the Customize dialog box on the Tools menu.

1 Any changes to the look and feel do not become effective until you restart the
Quartus II software.

Figure 3–2. Quartus II Look and Feel

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–5
MAX+PLUS II Look and Feel

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

By default, when you select the MAX+PLUS II look and feel, the MAX+PLUS II quick
menu appears on the left side of the menu bar. You can turn the Quartus II and
MAX+PLUS II quick menus on or off. You also can change the preferred positions of
the two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box appears.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

MAX+PLUS II Look and Feel
The MAX+PLUS II look and feel in the Quartus II software closely resembles the
MAX+PLUS II software. Figure 3–3 and Figure 3–4 compare the MAX+PLUS II
software appearance with the Quartus II MAX+PLUS II look and feel.

Figure 3–3. MAX+PLUS II Software GUI

3–6 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Compiler Tool

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The standard MAX+PLUS II toolbar is also available in the Quartus II software with
the MAX+PLUS II look and feel in the Quartus II software (Figure 3–5).

Compiler Tool
The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style interface. You
can edit the settings and view result files for the modules described in the following
paragraphs.

To start a compilation using the Compiler Tool, click Compiler Tool from either the
MAX+PLUS II menu or the Tools menu and click Start in the Compiler Tool. The
Compiler Tool, shown in Figure 3–6, displays all modules, including optional
modules such as Partition Merge, Assembler, EDA Netlist Writer, and the Design
Assistant.

f For information about using the Quartus II software modules at the command line,
refer to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

Figure 3–4. Quartus II Software with MAX+PLUS II Look and Feel

Figure 3–5. Standard MAX+PLUS II Toolbar

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–7
Compiler Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Analysis and Synthesis
The Quartus II Analysis and Synthesis module analyzes your design, builds the
design database, optimizes the design for the targeted architecture, and maps the
technology to the design logic.

In MAX+PLUS II software, these functions are performed by the Compiler Netlist
Extractor, Database Builder, and Logic Synthesizer. There is no module in the
Quartus II software similar to the MAX+PLUS II Partitioner module.

Incremental Compilation and Partition Merge
The optional Quartus II Partition Merge module merges design partitions]for
incremental compilation to create a flattened netlist for further stages of the Quartus II
compilation flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner.

f For more information, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Fitter
The Quartus II Fitter module is used to fit your design into the available resources of
the targeted device. The Fitter places and routes the design. The Fitter module is
similar to the Fitter stage of the MAX+PLUS II software.

Assembler
The Quartus II Assembler module creates a device programming image of your
design so that you can configure your device. You can select from the following types
of programming images:

■ Programmer Object File (.pof)

■ SRAM Object File (.sof)

■ Hexadecimal (Intel-Format) Output File (.hexout)

■ Tabular Text File (.ttf)

■ Raw Binary File (.rbf)

Figure 3–6. Running a Full Compilation with the Compiler Tool

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

3–8 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Compiler Tool

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Jam™ STAPL Byte Code 2.0 File (.jbc)

■ JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off Run
assembler in the Compilation Process Settings page in the Settings dialog box. You
can also turn off the Assembler by right-clicking in the Compiler Tool window. The
Assembler module is similar to the Assembler stage of the MAX+PLUS II software.

Timing Analyzer
The Quartus II Timing Analyzer allows you to analyze more complex clocking
schemes than is possible with the MAX+PLUS II Timing Analyzer. The Quartus II
Timing Analyzer analyzes all clock domains in your design, including paths that cross
clock domains, and also reports both fMAX and slack. Slack is the margin by which the
timing requirement is met or is not met. For more information on the Timing
Analyzer, refer to “Timing Analysis” on page 3–19.

EDA Netlist Writer
The optional Quartus II EDA Netlist Writer module generates a netlist for simulation
with an EDA simulation tool. The EDA Netlist Writer module is comparable to the
VHDL and Verilog Netlist Writer in the MAX+PLUS II software.

Design Assistant
The optional Quartus II Design Assistant module checks the reliability of your design
based on a set of design rules. The Design Assistant analyzes and generates messages
for a design targeting any Altera device and is especially useful for checking the
reliability of a design to be converted to HardCopy series devices. The Design
Assistant is similar to the Design Doctor in the MAX+PLUS II software.

Reducing Compilation Time
In the Quartus II software you can reduce compilation time for your design with
either the incremental compilation flow or parallel processing capabilities. Neither of
these capabilities are available with the MAX+PLUS II software.

You can also reduce compilation time with the Quartus II software as described in the
following section.

Quartus II Software Smart Compilation
In the Quartus II software, you turn on Use smart compilation on before compiling
your design. a smartrecompilation skips any compilation stages that are not required
and that may use more disk space. This Quartus II smart compilation option is similar
to the MAX+PLUS II Smart Recompile command. To turn on the Use smart
compilation option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on Use smart compilation.

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–9
MAX+PLUS II Design Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Power Analyzer
The Quartus II software provides power analysis tools that the MAX+PLUS software
does not. The PowerPlay suite of power analysis and optimization tools allows you to
estimate device power consumption and heat dissipation from early design concepts
through design implementation. Because the quality of the resulting power
estimation depends on the quality of input data provided, you must provide the most
accurate data possible.

The PowerPlay suite of tools supports most of the new devices introduced in the
Quartus II software.

f For more information, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

MAX+PLUS II Design Conversion
With the Quartus II software, you can open MAX+PLUS II designs and convert
MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design (HDL input,
simulation vectors, assignments, and other relevant files) are associated with a project
file. For more information about creating a new project, refer to “Creating a New
Project” on page 3–12.

Converting an Existing MAX+PLUS II Design
You can easily convert an existing MAX+PLUS II design for use with the Quartus II
software with the Convert MAX+PLUS II Project command in the Quartus II
software or the Open Project command. You can find these commands on the File
menu.

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level design file
(Figure 3–7) and click Open. The Convert MAX+PLUS II Project command generates
a Quartus II Project File (.qpf) and a Quartus II Settings File (.qsf). The Quartus II
software stores project and design assignments in the .qsf file, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You can open and convert a MAX+PLUS II design with the Open Project command.
In the Open Project dialog box, browse to the Assignments and Configuration File or
the top-level design file. Click Open to display the Convert MAX+PLUS II Project
dialog box.

1 The Quartus II software can import all MAX+PLUS II-generated files, but it cannot
save files in the MAX+PLUS II format. You cannot open a Quartus II project in the
MAX+PLUS II software, nor can you convert a Quartus II project to a MAX+PLUS II
project.

The Quartus II software does not support the machine alias AHDL feature. To use the
Quartus II software, you must change the AHDL code to avoid use of this feature. The
following error message may occur when you convert a project from the legacy
MAX+PLUS® II software to the Quartus® II software if you use the machine alias
AHDL feature:

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

3–10 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
MAX+PLUS II Design Conversion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Error: AHDL feature (Machine alias) not currently supported.
The conversion process performs the following actions:

■ Converts the MAX+PLUS II Assignments and Configuration File into a .qsf file
(equivalent to importing all MAX+PLUS II assignments)

■ Creates a .qpf file

■ Displays all errors and warnings in the Quartus II message window

The Quartus II software can read MAX+PLUS II generated Graphic Design Files
(.gdf) and Simulation Channel Files (.scf) without converting them. These files are not
modified during a MAX+PLUS II design conversion.

A .gdf created or modified in the Quartus II software cannot be opened in the
MAX+PLUS II software. The Quartus II software can read a .gdf created in the
MAX+PLUS II software. However, when you save a .gdf in the Quartus II software
that was generated in the MAX+PLUS II software, the file is overwritten with the
Quartus II software format.

Converting MAX+PLUS II Graphic Design Files
The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor) saves files
as Block Design Files (.bdf). You can convert your MAX+PLUS II Graphic Design File
into a Quartus II Block Design File using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.

2. In the Save as type list, select Block Diagram/Schematic File (*.bdf).

3. Run the quartus_g2b.exe command line executable located in the \<Quartus II
installation>\bin directory. For example, to convert the chiptrip.gdf file to a Block
Design File, type the following at a command prompt:

quartus_g2b.exe chip_trip.gdf r

Importing MAX+PLUS II Assignments
You can import MAX+PLUS II assignments into an existing Quartus II project. Open
the project, and on the Assignments menu, click Import Assignments. Browse to the
Assignments and Configuration File (Figure 3–8). You can also import .qsf files and
Entity Setting Files (.esf).

Figure 3–7. Convert MAX+PLUS II Project Dialog Box

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–11
MAX+PLUS II Design Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Quartus II software accepts most MAX+PLUS II assignments. However, some
assignments can be imported incorrectly from the MAX+ PLUS II software into the
Quartus II software due to differences in node naming conventions and the advanced
Quartus II integrated synthesis algorithms.

The differing node naming conventions in the Quartus II and MAX+PLUS II software
can cause improper mapping when importing your design from MAX+PLUS II
software into the Quartus II software. Improper node names can interfere with the
design logic if you are unaware of these node name differences and do not take
appropriate steps to prevent improper node name mapping. Table 3–2 compares the
differences between the naming conventions used by the Quartus II software and the
MAX+PLUS II software.

When you import MAX+PLUS II assignments containing node names that use
numbers, such as signal0 or signal1, the Quartus II software imports the original
assignment and creates an additional copy of the assignment. The additional
assignment has square brackets inserted around the number, resulting in signal[0]
or signal[1]. The square bracket format is legal for signals that are part of a bus,
but creates illegal signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in a number
and are not part of a bus, you can edit the .qsf file to remove the square brackets from
the node names after importing them.

1 You can remove obsolete assignments in the Remove Assignments dialog box. Open
this dialog box on the Assignments menu by clicking Remove Assignments.

The Quartus II software might not recognize valid MAX+PLUS II node names, or
might split MAX+PLUS II nodes into two different nodes. As a result, any
assignments made to synthesized nodes are not recognized during compilation.

f For more information about Quartus II node naming conventions, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Figure 3–8. Import Assignments Dialog Box

Table 3–2. Quartus II and MAX+PLUS II Node and Pin Naming Conventions

Feature Quartus II Format MAX+PLUS II Format

Node name auto_max:auto|q0 |auto_max:auto|q0

Pin name d[0], d[1], d[2] d0, d1, d2

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

3–12 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Quartus II Design Flow
The following sections include information to help you get started using the
Quartus II software. They describe the similarities and differences between the
Quartus II software and the MAX+PLUS II software. The following sections highlight
improvements and benefits in the Quartus II software:

■ “Creating a New Project” on page 3–12

■ “Design Entry” on page 3–12

■ “Making Assignments” on page 3–14

■ “Synthesis” on page 3–17

■ “Functional Simulation” on page 3–17

■ “Place and Route” on page 3–18

■ “Timing Analysis” on page 3–19

■ “Viewing Chip Resources” on page 3–20

■ “Timing Simulation” on page 3–21

■ “Power Estimation” on page 3–22

■ “Programming” on page 3–23

f For an overview of the Quartus II software features and design flow, refer to the
Introduction to the Quartus II Software manual.

Creating a New Project
The Quartus II software provides a wizard to help you create new projects. On the File
menu, click New Project Wizard to create a new project. The New Project Wizard
generates the .qpf file and .qsf file for your project.

Design Entry
The Quartus II software supports the following design entry methods:

■ Altera HDL (AHDL) Text Design File (.tdf)

■ Block Diagram File (.bdf)

■ EDIF Netlist File (.edf)

■ VHDL (.vhd)

■ Verilog HDL (.v) and System Verilog (.sv)

The Quartus II software has an advanced integrated synthesis engine that fully
supports the Verilog HDL and VHDL languages and provides options to control the
synthesis process.

f For more information, refer to the Quartus II Integrated Synthesis chapter in volume 1
of the Quartus II Handbook.

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–13
Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK.

1 You can create other files from the New dialog box on the File menu.

To analyze a netlist file created by an EDA tool, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Design Entry & Synthesis. The Design Entry &
Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the netlist.

The Symbol Editor allows you to change the positions of the ports in a symbol (refer
to Figure 3–9). You can reduce wire congestion around a symbol by changing the
positions of the ports.

To make changes to a symbol in a Block Design File, right-click a symbol in the Block
Editor and click Properties to display the Symbol Properties dialog box. The Symbol
Properties dialog box allows you to change the instance name, add parameters, and
specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block Editor. Conduits
contain signals for the connected objects (see Figure 3–10). You can determine the
connections between various blocks in the Conduit Properties dialog box by
right-clicking a conduit and clicking Properties.

Figure 3–9. Various Port Positions for a Symbol

3–14 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Making Assignments
The Quartus II software stores all project and design assignments in a .qsf file, which
is a collection of assignments stored as Tcl commands and organized by the
compilation stage and assignment type. The .qsf file stores all assignments, regardless
of how they are made (except for SDC constraints for the TimeQuest Timing
Analyzer) from the Floorplan Editor, the Pin Planner, the Assignment Editor, with Tcl,
or any other method.

Assignment Editor
The Assignment Editor is an intuitive spreadsheet interface designed to allow you to
make, change, and manage a large number of assignments easily. With the
Assignment Editor, you can list all available pin numbers and design pin names for
efficiently creating pin assignments. You also can filter all assignments based on
assignment categories and node names for viewing and creating assignments.

The Assignment Editor is composed of the Category bar, Node Filter bar,
Information bar, Edit bar, and spreadsheet.

Figure 3–10. Blocks and Pins Connected with Conduits

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–15
Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To make an assignment, perform the following steps:

1. On the Assignments menu, click Assignment Editor. The Assignment Editor
window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter into the
Node Filter bar. (This step is optional; it excludes all assignments unrelated to the
node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the cell and
read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the Edit box.

Other advantages of the Assignment Editor include clipboard support in the
spreadsheet and automatic font coloring to identify the status of assignments.

f For more information, refer to the Assignment Editor chapter in volume 2 of the
Quartus II Handbook.

Timing Assignments
The Quartus II timing analyzers provide a method of analyzing, debugging, and
validating the performance of a design. Timing analysis measures the delay along the
various timing paths and verifies the performance and operation of the design. You
can specify constraints and assignments that help the design meet timing
requirements. If you specify constraints or assignments, the Fitter optimizes the
placement of logic in the device to meet those constraints.

The Quartus II software provides two independent timing analyzers: the Classic
Timing Analyzer and the TimeQuest Timing Analyzer. You can choose between these
two timing analysis tools prior to running a compilation or timing analysis. The
timing analysis tool you choose determines the available user interface, constraint
entry, reporting, and debugging options. The TimeQuest Timing Analyzer is more
powerful than the Classic Timing Analyzer, conforms to the latest industry standards,
and supports newer Altera device families.

Classic Timing Analyzer

You can use the timing wizard to help set your timing requirements. On the
Assignments menu, click Timing Wizard to create global clock and timing settings.
The settings include fMAX, setup times, hold times, clock to output delay times, and
individual absolute or derived clocks.

You can also set timing settings manually by performing the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Timing Requirements & Options. The Timing
Requirements & Options page appears.

3. Set your timing settings.

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

3–16 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can make more complex timing assignments with the Quartus II software than
allowed by the MAX+PLUS II software, including multicycle and point-to-point
assignments using wildcards and time groups.

1 A time group is a collection of design nodes grouped together and represented as a
single unit for the purpose of making timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register paths in the
design where you expect a delayed latch edge. This assignment enables accurate
timing analysis of your design.

Point-to-point timing assignments allow you to specify the required delay between
two pins, two registers, or a pin and a register. This assignment helps you optimize
and verify your design timing requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a large number
of nodes with just a few assignments. For example, Figure 3–11 shows a 4 ns tSU
requirement assignment to all paths from any node to the “d” bus in the Assignment
Editor.

TimeQuest Timing Analyzer

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in the design using industry standard
constraint, analysis, and reporting methodologies. You can use the TimeQuest Timing
Analyzer's graphical user interface (GUI) or command-line interface to constrain, run,
and view results for all timing paths in the design.

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and external
signal arrival and required times. You can specify all timing constraints in the
Synopsys Design Constraints (SDC) format using the GUI, the Quartus II Text Editor,
or the command-line interface. The Quartus II Fitter optimizes the placement of logic
in the device to meet your specified constraints.

Early in the design process, before final device fitting is completed, you can check
preliminary timing data by running an early timing estimate with the Start Early
Timing Estimate command. When your design is complete, you can run a full timing
analysis following compilation.

Figure 3–11. Single tSU Timing Assignment Applied to All Nodes of a Bus

design.chm::/ted/ted_view_edit.htm
javascript:BSSCPopup('../tan/tan_com_start_early.htm',400,300);
sta_pro_run_analysis.htm

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–17
Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
console. If the TimeQuest Timing Analyzer reports any timing violations, you can
customize the reports to view precise timing information about specific paths. You
can then determine whether the design requires additional timing constraints or
exceptions, or if the design requires logic changes or place-and-route constraints.

For more information, refer to the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Synthesis
The Quartus II advanced integrated synthesis software fully supports the industry
standard hardware description languages and provides a complete, easy-to-use,
stand-alone solution for today’s designs.

You can specify synthesis options in the Analysis & Synthesis Settings page of the
Settings dialog box. Similar to MAX+PLUS II synthesis options, you select one of
these optimization techniques: Speed, Area, or Balanced.

To achieve higher design performance, you can turn on synthesis netlist optimizations
that are available when targeting certain devices. You can unmap a netlist created by
an EDA tool and remap the components in the netlist back to Altera primitives by
turning on Perform WYSIWYG primitive resynthesis.

f For more information, refer to the Quartus II Integrated Synthesis chapter in volume 1
of the Quartus II Handbook.

Functional Simulation
Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool performs both
functional and timing simulations. The Quartus II Simulator Tool does not, however,
support the latest device families.

Altera recommends that you perform a functional and or a timing simulation of a
Quartus II-generated design, or both, with the Mentor Graphics software that was
provided with the Quartus II software, or the PE or SE software from Mentor
Graphics . The software is a dual-language simulator; you can simulate designs
containing either Verilog HDL, VHDL, or both. You can use designs in which a
Verilog HDL module instantiates VHDL entities or a VHDL module instantiates
Verilog HDL entities.

To open the Simulator Tool, on the MAX+PLUS II menu, click Simulator, or on the
Tools menu, click Simulator Tool. Before you perform a functional simulation, an
internal functional simulation netlist is required. Click Generate Functional
Simulation Netlist in the Simulator Tool dialog box, or on the Processing menu, click
Generate Functional Simulation Netlist.

1 Generating a functional simulation netlist creates a separate database that improves
the performance of the simulation significantly.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
javascript:BSSCPopup('sta_com_report.htm',400,300);
javascript:BSSCPopup('sta_com_console.htm',400,300);
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

3–18 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can view and modify the simulator options on the Simulator Settings page of the
Settings dialog box or in the Simulator Tool dialog box. You can set the simulation
period and turn on or off the Check outputs option. You can choose to display the
simulation outputs in the simulation report or in the Vector Waveform File (.vwf). To
display the simulation results in the simulation input .vfw, which is the MAX+PLUS
II behavior, turn on Overwrite simulation input file with simulation results.

When using either the MAX+PLUS II or Quartus II software, you may need to
compile additional behavioral models to perform a simulation with an EDA
simulation tool. In the Quartus II software, behavioral models for library of
parameterized modules (LPM) functions and Altera-specific megafunctions are
available in the altera_mf and 220model library files, respectively. The 220model and
altera_mf files can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File (.bdf) are not compatible
with EDA simulation tools. To perform a register transfer level (RTL) functional
simulation of a Block Design File using an EDA tool, convert your schematic designs
to a VHDL or Verilog HDL design file. Open the schematic design file and on the File
menu, point to Create/Update and then click Create HDL Design File for Current
File to create an HDL design file that corresponds to your Block Design File.

1 Altera offers a ModelSim starter edition.

You can export a .vwf file or Simulator Channel File (.scf) as a Verilog HDL or VHDL
testbench file for simulation with an EDA tool. Open your Vector Waveform File or
.scf file and on the File menu, click Export. Select Verilog or VHDL Test Bench File
(*.vt) from the Save as type list. Turn on Add self-checking code to file to add
additional self-checking code to the testbench.

f For more information, refer to the Quartus II Simulator and the Mentor Graphics
ModelSim Support chapters in volume 3 of the Quartus II Handbook.

Place and Route
The Quartus II Fitter performs place-and-route to fit your design into the targeted
device. You can control the Fitter behavior with options in the Fitter Settings page of
the Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such as the Stratix
series, sometimes require significant fitter effort to achieve an optimal fit. The
Quartus II software offers several options to reduce the time required to fit a design.
You can control the effort the Quartus II Fitter expends to achieve your timing
requirements with options. If minimizing compilation time is more important than
achieving specific timing results, you can turn off the optimization options.

You can decrease the processing time and effort the Fitter expends to fit your design
when you select options in the Fitter Settings page of the Settings dialog box on the
Assignments menu. Altera recommends the Auto setting, which is available for select
device families

To further reduce compilation times, turn on Limit to one fitting attempt in the Fitter
Settings page in the Settings dialog box on the Assignments menu.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–19
Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If your design is very close to meeting your timing requirements, you can control the
seed number used in the fitting algorithm by changing the value in the Seed box of
the Fitter Settings page of the Settings dialog box on the Assignments menu. The
default seed value is 1. You can specify any non-negative integer value. Changing the
value of the seed only repositions the starting location of the Fitter, and does not affect
compilation time or the Fitter effort level. However, if your design is difficult to fit
optimally or takes a long time to fit, sometimes you can improve results or processing
time by changing the seed value.

f For more information, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook. This chapter provides Altera recommendations for selecting
Fitter options and further instructions for reducing compilation time.

Timing Analysis
Timing analysis measures the delay along the various timing paths and verifies the
performance and operation of the design. You can specify constraints and
assignments that help the design meet timing requirements. If you specify constraints
or assignments, the Fitter optimizes the placement of logic in the device to meet those
constraints.

The TimeQuest Timing Analyzer uses the industry-standard Synopsys Design
Constraint (SDC) methodology for constraining designs and reporting results.

The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in the design with industry standard
constraint, analysis, and reporting methodologies. You can use the TimeQuest Timing
Analyzer’s graphical user interface (GUI) or command-line interface to constrain, run,
and view results for all timing paths in the design.

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and external
signal arrival and required times. You can specify all timing constraints in the
Synopsys Design Constraints (SDC) format using the GUI, the Quartus II Text Editor,
or the command-line interface. The Quartus II Fitter optimizes the placement of logic
in the device to meet your specified constraints.

Early in the design process, before final device fitting is completed, you can check
preliminary timing data by running an early timing estimate with the Start Early
Timing Estimate command. When your design is complete, you can run a full timing
analysis following compilation.

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
console. If the TimeQuest Timing Analyzer reports any timing violations, you can
customize the reports to view precise timing information about specific paths. You
can then determine whether the design requires additional timing constraints or
exceptions, or if the design requires logic changes or place-and-route constraints.

f For more information, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
design.chm::/ted/ted_view_edit.htm
javascript:BSSCPopup('../tan/tan_com_start_early.htm',400,300);
sta_pro_run_analysis.htm
javascript:BSSCPopup('sta_com_report.htm',400,300);
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
javascript:BSSCPopup('sta_com_console.htm',400,300);

3–20 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Viewing Chip Resources
The Quartus II software provides two tools for viewing chip resources, Chip Planner
and Timing Closure Floorplan, as decribed in the following sections:

Chip Planner
The Chip Planner provides a visual display of chip resources. It can show logic
placement, LogicLock regions, relative resource usage, detailed routing information,
fan-ins and fan-outs, paths between registers, and timing delay estimates for paths.
You can view critical path information, physical timing estimates, routing congestion,
and clock regions. The Chip Planner supports the most recent device families
introduced in the Quartus II software. Also, the Chip Planner has more features than
the Timing Closure Floorplan found in the MAX+PLUS II software.

The Chip Planner can perform assignment changes, such as creating and deleting
resource assignments, as well as post-compilation changes, such as creating, moving,
and deleting logic cells and I/O atoms. You can use the Chip Planner in conjunction
with the Resource Property Editor to change connections between resources and
make post-compilation changes to the properties of logic cells, I/O elements, and
PLLs.

f For more information, refer to the Analyzing and Optimizing the Design Floorplan
chapter and the Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook.

Timing Closure Floorplan
The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II Floorplan
Editor but has many improvements to help you more effectively view and debug your
design. With its ability to display logic cell usage, routing congestion, critical paths,
and LogicLockTM regions, the Timing Closure Floorplan also makes the task of
improving your design performance much easier.

The Timing Closure Floorplan supports the MAX 3000 and MAX 7000 device families.

To view the Timing Closure Floorplan, on the MAX+PLUS II menu, click Floorplan
Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views equivalent to the
MAX+PLUS II logic array block (LAB) views. In addition to these views, available
from the View menu, you can also select from the Interior MegaLABs (where
applicable), Interior LABs, and Field views.

1 The Pin Planner is equivalent to the MAX+PLUS II Device view. The Pin Planner can
be launched from the View menu or on the Assignments menu by clicking Pin

The Interior LABs view hides cell details for logic cells, Adaptive Logic Modules
(ALM), and macrocells, and shows LAB information (see Figure 3–12). You can
display the number of cells used in each LAB on the View menu by clicking Show
Usage Numbers.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–21
Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Field view is a color-coded, high-level view of your device resources that hides
both cell and LAB details. In the Field view, you can see critical paths and routing
congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in your
floorplan. You can turn on this feature on the View menu by clicking Show Critical
Paths. You can control the number of critical paths shown by modifying the settings
in the Critical Paths Settings dialog box on the View menu.

The View Congestion feature displays routing congestion by coloring and shading
logic resources. Darker shading shows greater resource utilization. This feature assists
in identifying locations where there is a lack of routing resources.

1 To show lower-level details in any view, right-click on a resource and click Show
Details.

Timing Simulation
Timing simulation is an important part of the verification process. The Quartus II
software supports native timing simulation and exports simulation netlists to
third-party software for design verification.

1 Altera recommends that you use ModelSim-Altera, rather than the Quartus II
Simulator tool. The Quartus II Simulator tool should be used for designs supported
by MAX+PLUS II, but not for designs targeting the lastest Altera device families.

Quartus II Simulator Tool
The Quartus II Simulator tool is an easy-to-use integrated solution that uses the
Compiler database to simulate the logical and timing performance of your design.
When performing timing simulation, the Simulator uses place-and-route timing
information.

1 Altera recommends that you use ModelSim-Altera, rather than the Quartus II
Simulator tool. The Quartus II Simulator tool should be used for designs supported
by MAX+PLUS II, but not for designs targeting the lastest Altera device families.

You can use Vector Table Output Files (.tbl), Vector Waveform Files (.vwf), Vector Files
(.vec), or an existing .scf file as the vector stimuli for your simulation.

Figure 3–12. Interior LAB View of the Timing Closure Floorplan

3–22 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation and the type of
checks performed by the Simulator. When the MAX+PLUS II look and feel is selected,
the Overwrite simulation input file with simulation results option is on by default.
If you turn it off, the simulation results are written to the report file. To view the report
file, click Report in the Simulator Tool window.

EDA Timing Simulation
The Quartus II software also supports timing simulation with other EDA simulation
software. Performing timing simulation with other EDA simulation software requires
a Quartus II generated timing netlist file in the form of a Verilog Output File (.vo) or
VHDL Output File (.vho), a Standard Delay Format Output File (.sdo), and a
device-specific atom file (or files), shown in Table 3–3.

To specify your EDA simulation tool, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by running a full
compilation or on the Processing menu, by pointing to Start and clicking Start EDA
Netlist Writer. The generated netlist and SDF file are placed into the \<project
directory>\simulation\<EDA simulator tool> directory. The device-specific atom files
are located in the \<Quartus II Install>\eda\sim_lib directory.

Power Estimation
To develop an appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system, you need an accurate estimate of the power
that your design consumes. You can estimate power by using the PowerPlay Early
Power Estimation spreadsheet available on the Altera website at www.altera.com, or
with the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power Estimation
spreadsheet by entering device resource and performance information. The Quartus II
PowerPlay Analyzer tool performs vector-based power analysis by reading either a
Signal Activity File (.saf) generated from a Quartus II simulation, or a Verilog Value
Change Dump File (.vcd) generated from a third-party simulation.

f For more information about how to use the PowerPlay Power Analyzer tool, refer to
the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Table 3–3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–23
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Programming
The Quartus II Programmer has the same functionality as the MAX+PLUS II
Programmer, including programming, verifying, examining, and blank checking
operations. Additionally, the Quartus II Programmer now supports the erase
capability for CPLDs. To improve usability, the Quartus II Programmer displays all
programming-related information in one window (Figure 3–13).

Click Add File or Add Device in the Programmer window to add a file or device,
respectively.

1 Figure 3–13 shows that the Programmer window now supports Erase capability.

You can save the programmer settings as a Chain Description File (.cdf). The .cdf file
is an ASCII text file that stores device name, device order, and programming file name
information.

Conclusion
The Quartus II software is the most comprehensive design environment available for
programmable logic designs. Features such as the Convert MAX+PLUS II Project
command help you make the transition from Altera’s MAX+PLUS II design software
and become more productive with the Quartus II software. The Quartus II software
has all the capabilities and features of the MAX+PLUS II software and many more to
speed up your design cycle and obtain optimal device performance.

Quartus II Command Reference for MAX+PLUS II Users
Table 3–4 lists the commands in the MAX+PLUS II software and gives their
equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not listed, the
command is the same in both tools.

Figure 3–13. Programmer Window

3–24 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Command Reference for MAX+PLUS II Users

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 1 of 8)

MAX+PLUS II Software Quartus II Software

MAX+PLUS II Menu

Hierarchy Display View menu, Utility Windows, Project Navigator

Graphic Editor Block Editor

Symbol Editor Block Symbol Editor

Text Editor Text Editor

Waveform Editor Waveform Editor

Floorplan Editor Assignments menu, Timing Closure Floorplan

Compiler Tools menu, Compiler Tool

Simulator Tools menu, Simulator Tool

Timing Analyzer Tools menu, Timing Analyzer Tool

Programmer Tools menu, Programmer

Message Processor View menu, Utility Windows, Messages

File Menu

File menu, Project, Name (Ctrl+J) File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current File
(Ctrl+Shift+J)

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)

or

File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K) Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)
or

Processing menu, Start, Start Analysis & Elaboration

File menu, Project, Save & Compile (Ctrl+L) Processing menu, Start Compilation (Ctrl+L)

File menu, Project, Save & Simulate
(Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+I)

File menu, Project, Compile & Simulate (Ctrl+Shift+K) Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive Project menu, Archive Project

File menu, Project, <Recent Projects> File menu, <Recent Projects>

File menu, Delete File NA

File menu, Retrieve NA

File menu, Info (Ctrl+I) File menu, File Properties

File menu, Create Default Symbol File menu, Create/Update, Create Symbol Files for Current File

File menu, Edit Symbol (Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File File menu, Create/Update, Create AHDL Include Files for Current
File

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–25
Quartus II Command Reference for MAX+PLUS II Users

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

File menu, Hierarchy Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U) Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D) Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top NA

File menu, Hierarchy, Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size NA

(Waveform Editor) File menu, End Time (Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare (Waveform Editor) View menu, Compare to
Waveforms in File

(Waveform Editor) File menu, Import Vector File File menu, Open (Ctrl+O)

(Waveform Editor) File menu, Create Table File File menu, Save As

(Hierarchy Display) File menu, Select Hierarchy NA

(Hierarchy Display) File menu, Open Editor (Project Navigator) Double-click

(Hierarchy Display) File menu, Close Editor NA

(Hierarchy Display) File menu, Change File Type (Project Navigator) Select file in Files tab and select Properties on
right click menu

(Hierarchy Display) File menu, Print Selected Files NA

(Programmer) File menu, Select Programming File File menu, Open

(Programmer) File menu, Save Programming Data As File menu, Save

(Programmer) File menu, Inputs/Outputs NA

(Programmer) File menu, Convert SRAM Object Files File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG Programming
Files

NA

(Programmer) File menu, Create Jam or SVF File File menu, Create/Update, Create JAM, SVF, or ISC File

(Message Processor) Select Messages NA

(Message Processor) Save Messages As (Messages) Save Messages on right click menu

(Timing Analyzer) Save Analysis As Processing menu, Compilation Report - Save Current Report on
right click menu in Timing Analyzer sections

(Simulator) Create Table File (Waveform Editor) File menu, Save As

(Simulator) Execute Command File NA

(Simulator) Inputs/Outputs NA

Edit Menu

(Waveform Editor) Edit menu, Overwrite (Waveform Editor) Edit menu, Value

(Waveform Editor) Edit menu, Insert (Waveform Editor) Edit menu, Insert Waveform Interval

(Waveform Editor) Edit menu, Align to Grid (Ctrl+Y) NA

(Waveform Editor) Edit menu, Repeat (Waveform Editor) Edit menu, Repeat Paste

(Waveform Editor) Edit menu, Grow or Shrink Edit menu, Grow or Shrink (Ctrl+Alt+G)

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 2 of 8)

MAX+PLUS II Software Quartus II Software

3–26 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Command Reference for MAX+PLUS II Users

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

(Text Editor) Edit menu, Insert Page Break (Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent (F2) (Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent (F3) (Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle Connection
Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal (Block Editor) Edit menu, Flip Horizontal

(Graphic Editor) Edit menu, Flip Vertical (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate (Block Editor) Edit menu, Rotate by Degrees

View Menu

 View menu, Fit in Window (Ctrl+W) View menu, Fit in Window (Ctrl+W)

 View menu, Zoom In (Ctrl+Space) View menu, Zoom In (Ctrl+Space)

 View menu, Zoom Out (Ctrl+Shift+Space) View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1) NA

View menu, Maximum Size (Ctrl+2) NA

(Hierarchy Display) View menu, Auto Fit in Window NA

(Waveform Editor) View menu, Time Range View menu, Zoom

Assign menu, Device Assignments menu, Device
or

Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements Assignments menu, Assignment Editor - Timing category

Assign menu, Clique Assignments menu, Assignment Editor - Cliques category

Assign menu, Logic Options Assignments menu, Assignment Editor - Logic Options
category

Assign menu, Probe NA

Assign menu, Connected Pins Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing Assignments menu, Assignment Editor - Local Routing
category

Assign menu, Global Project Device Options Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters Assignments menu, Settings - Analysis and Synthesis -
Default Parameters

Assign menu, Global Project Timing Requirements Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis Assignments menu, Settings - Analysis and Synthesis

Assign menu, Ignore Project Assignments Assignments menu, Assignment Editor - disable

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 3 of 8)

MAX+PLUS II Software Quartus II Software

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–27
Quartus II Command Reference for MAX+PLUS II Users

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Assign menu, Clear Project Assignments Assignments menu, Remove Assignments

Assign menu, Back-Annotate Project Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment Format NA

Utilities Menu

 Utilities menu, Find Text (Ctrl+F) Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File (Ctrl+B) Project menu, Locate, Locate in Design File

Utilities menu, Find Node in Floorplan Project menu, Locate, Locate in Timing Closure Floorplan

Utilities menu, Find Clique in Floorplan NA

Utilities menu, Find Node Source (Ctrl+Shift+S) NA

Utilities menu, Find Node Destination (Ctrl+Shift+D) NA

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)

Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

Utilities menu, Search and Replace (Ctrl+R) Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source (Ctrl+Alt+S) NA

Utilities menu, Timing Analysis Destination
(Ctrl+Alt+D)

NA

Utilities menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Utilities menu, Analyze Timing NA

Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G) Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching Delimiter
(Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next Transition
(Right Arrow)

(Waveform Editor) View menu, Next Transition (Right Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left Arrow)

Options Menu

Options menu, User Libraries Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User LIbraries

Options menu, Color Palette Tools menu, Options

Options menu, License Setup Tools menu, License Setup

Options menu, Preferences Tools menu, Options

(Hierarchy Display) Options menu, Orientation NA

(Hierarchy Display) Options menu, Compact Display NA

(Hierarchy Display) Options menu, Show All Hierarchy
Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All Hierarchy
Branches

NA

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 4 of 8)

MAX+PLUS II Software Quartus II Software

3–28 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Command Reference for MAX+PLUS II Users

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

(Editors) Options menu, Font Tools menu, Options

(Editors) Options menu, Text Size Tools menu, Options

(Graphic Editor) Options menu, Line Style Edit menu, Line

(Graphic Editor) Options menu, Rubberbanding Tools menu, Options

(Graphic Editor) Options menu, Show Parameters View menu, Show Parameter Assignments

(Graphic Editor) Options menu, Show Probes NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

View menu, Show Pin and Location Assignments

(Graphic Editor) Options menu, Show Clique, Timing &
Local Routing Assignments

NA

(Graphic Editor) Options menu, Show Logic Options NA

(Graphic Editor) Options menu, Show All
(Ctrl+Shift+M)

NA

(Graphic Editor) Options menu, Show Guidelines
(Ctrl+Shift+G)

Tools menu, Options - Block/Symbol Editor page

(Graphic Editor) Options menu, Guideline Spacing Tools menu, Options - Block/Symbol Editor page

(Symbol Editors) Options menu, Snap to Grid Tools menu, Options - Block/Symbol Editor page

(Text Editor) Options menu, Tab Stops Tools menu, Options - Text Editor page

(Text Editor) Options menu, Auto-Indent Tools menu, Options - Text Editor page

(Text Editor) Options menu, Syntax Coloring NA

(Waveform Editor) Options menu, Snap to Grid View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size Edit menu, Grid Size - Waveform Editor page

(Floorplan Editor) Options menu, Routing Statistics NA

(Floorplan Editor) Options menu, Show Node Fan-
In

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show Node Fan-
Out

View menu, Routing, Show Fan-Out

(Floorplan Editor) Options menu, Show Path View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved Nodes
in Gray

NA

(Simulator) Options menu, Breakpoint Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup NA

(Timing Analyzer) Options menu, Time Restrictions Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Auto-Recalculate NA

(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off I/O Pin
Feedback

Assignments menu, Timing Settings

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 5 of 8)

MAX+PLUS II Software Quartus II Software

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–29
Quartus II Command Reference for MAX+PLUS II Users

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

(Timing Analyzer) Options menu, Cut Off Clear & Reset
Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read During
Write Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only Longest
Path

NA

(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming Options Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device (Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup (Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click) (Block Editor) Edit menu, Insert Symbol (Double-Click)

Symbol menu, Update Symbol Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub Double-click on edge of symbol

Element menu, Enter Parameters NA

Templates (Text Editor)

Templates (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click) Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF Edit menu, Insert Node - click on Node Finder…

Node menu, Edit Node Double-click on the Node

Node menu, Enter Group Edit menu, Group

Node menu, Ungroup Edit menu, Ungroup

Node menu, Sort Names Edit menu, Sort

Node menu, Enter Separator NA

Layout (Floorplan Editor)

Layout menu, Full Screen View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer View menu, Equations

Layout menu, Device View (Double-Click) View menu, Package Top

or

View menu, Package Bottom

Layout menu, LAB View (Double-Click) View menu, Interior Labs

Layout menu, Current Assignments Floorplan View menu, Assignments, Show User Assignments

Layout menu, Last Compilation Floorplan View menu, Assignments, Show Fitter Assignments

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 6 of 8)

MAX+PLUS II Software Quartus II Software

3–30 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Quartus II Command Reference for MAX+PLUS II Users

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Processing (Compiler)

Processing menu, Design Doctor Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings Assignments menu, Settings - Design Assistant

Processing menu, Functional SNF Extractor Processing menu, Generate Functional Simulation Netlist

Processing menu, Timing SNF Extractor Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF NA

Processing menu, Linked SNF Extractor NA

Processing menu, Fitter Settings Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings Assignments menu, Settings

Processing menu, Generate AHDL TDO File NA

Processing menu, Smart Recompile Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name Synonyms Assignments menu, Settings - Compilation Process

Interfaces (Compiler) Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA

Initialize menu, Initialize Memory NA

Initialize menu, Save Initialization As NA

Initialize menu, Restore Initialization NA

Initialize menu, Reset to Initial SNF Values NA

Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) NA

Node menu, Timing Analysis Destination (Ctrl+Alt+D) NA

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix (Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix NA

Analysis menu, Registered Performance (Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain (Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup (Programmer) Window

JTAG menu, Save JCF File menu, Save

JTAG menu, Restore JCF File menu, Open

JTAG menu, Initiate Configuration from Configuration
Device

Tools menu, Options - Programmer page

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 7 of 8)

MAX+PLUS II Software Quartus II Software

Chapter 3: Quartus II Design Flow for MAX+PLUS II Users 3–31
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Command Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in volume 3 of the
Quartus II Handbook

■ Introduction to the Quartus II Software manual

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II Handbook Version 9.1

Document Revision History
Table 3–5 show the revision history of this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

FLEX (Programmer)

FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window

FLEX menu, Save FCF File menu, Save

FLEX menu, Restore FCF File menu, Open

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 8 of 8)

MAX+PLUS II Software Quartus II Software

Table 3–5. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

Addedreview edits. Removed APEX references. Updated for the Quartus II 9.1 software
release

March 2009
v9.0.0

Removed “Quick Menu Reference” Updated for the Quartus II 9.0 software
release

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 8.1 software
release

May 2008
v8.0.0

Updated date and part number, added hypertext links. —

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

3–32 Chapter 3: Quartus II Design Flow for MAX+PLUS II Users
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

4. Quartus II Support for HardCopy Series
Devices

This chapter describes Quartus® II support for HardCopy® series devices.

Introduction
Altera® HardCopy ASICs are the lowest risk, lowest total cost ASICs. The HardCopy
system development methodology offers fast time-to-market, low risk, and with the
Quartus II software, you can design with one set of RTL code and one IP set for both
FPGA and ASIC implementations. This flow enables you to conduct true
hardware/software co-design and completely prepare your system for production
prior to ASIC design hand-off. Altera provides a turn-key process to convert your
design to a HardCopy ASIC for production.

In this chapter, the term FPGA refers to a Stratix® II, Stratix III, or Stratix IV device,
which is the prototype device for a HardCopy II, HardCopy III, or HardCopy IV
device, respectively.

This chapter discusses the following topics:

■ “HardCopy Development Flow” on page 4–2

■ “HardCopy Utilities Menu” on page 4–6

■ “HardCopy Companion Device Selection” on page 4–12

■ “HardCopy Device Resource Guide” on page 4–13

■ “HardCopy Recommended Settings in the Quartus II Software” on page 4–16

■ “HardCopy Design Readiness Check” on page 4–22

■ “Performing ECOs with Quartus II Engineering Change Management with the
Chip Planner” on page 4–28

■ “Formal Verification of FPGA and HardCopy Revisions” on page 4–32

f For more information about HardCopy series devices, refer to the respective
HardCopy device handbook on the Altera website at www.altera.com.

HardCopy Series Design Benefits
Designing with HardCopy ASICs offers substantial benefits over other ASIC
offerings:

■ Seamless prototyping using an FPGA for at-speed system verification and system
development reduces total project development time and cost

■ Dependable conversion from an FPGA prototype to a HardCopy ASIC expands
product planning options

■ Unified design methodology for FPGA design and HardCopy design reduces the
need for ASIC development software, two sets of intellectual property, and project
risk

■ System development methodology delivers lowest total cost

QII51004-9.1.0

http://www.altera.com/

4–2 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Development Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Quartus II Features for HardCopy Planning
With the Quartus II software, you can design a HardCopy ASIC using seamless FPGA
prototyping. The Quartus II software provides the following expanded features for
HardCopy series device planning:

■ HardCopy Companion Device Assignment—Identifies compatible HardCopy
series devices for use with the FPGA prototyping device currently selected.

This feature constrains the pins of your FPGA prototype, making it compatible
with your HardCopy device. The feature also constrains the correct resources
available for the HardCopy device, ensuring the compatibility of your FPGA
design. You must compile the design targeting the HardCopy device to ensure that
the design fits, routes, and meets timing requirements.

■ HardCopy Utilities—The HardCopy Utilities menu provides a variety of
functions to create or overwrite HardCopy companion revisions, set current
revisions, and compare revisions for equivalency.

■ HardCopy Advisor—The HardCopy Advisor helps you follow the necessary
steps to successfully submit a HardCopy design to the Altera HardCopy Design
Center.

The HardCopy Advisor is structured similarly to other advisors in the Quartus II
software; Quartus II Advisors provide guidelines that you can follow during
development, reporting completed and uncompleted tasks.

■ HardCopy Floorplan—The Quartus II Chip Planner can show a preliminary
floorplan view of your HardCopy design’s Fitter placement results.

■ HardCopy Device Preliminary Timing—The TimeQuest Timing Analyzer
performs a timing analysis of HardCopy devices based on preliminary timing
models and Fitter placements. Final timing results for HardCopy devices are
provided by the Altera HardCopy Design Center.

■ HardCopy Design Readiness Check—The Quartus II software checks the project
settings to ensure compliance with the HardCopy device settings, I/O, PLL, and
RAM usage checks.

■ HardCopy Handoff Report—The Quartus II software generates a handoff report
containing information about the HardCopy design used by the Altera HardCopy
Design Center in the design review process.

■ HardCopy Design Archiving—The Quartus II software archives the HardCopy
design project’s files required to hand off the design to the Altera HardCopy
Design Center.

■ Formal Verification—Cadence Encounter Conformal software performs formal
verification between the source RTL design files and post-compilation gate-level
netlist from a HardCopy design.

HardCopy Development Flow
In the Quartus II software, you design your FPGA and HardCopy companion device
together in one Quartus II project using one of the following methods:

■ Design the FPGA first for in-system verification and then create a HardCopy
companion device second

Chapter 4: Quartus II Support for HardCopy Series Devices 4–3
HardCopy Development Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Design the HardCopy device first and then create the FPGA companion device
second for in-system verification

Both of these flows are illustrated at a high level in Figure 4–1. The added features in
the HardCopy Utilities menu help you complete your HardCopy design for
submission to the Altera HardCopy Design Center for back-end implementation.

1 The FPGA first flow is the default flow and the rest of this chapter is based on this
flow.

Designing the FPGA First
The HardCopy FPGA first flow development flow begins with seamless FPGA
prototyping and is identical to the traditional FPGA design flow; plus a few
additional tasks necessary to convert the design to the HardCopy companion device
within the same project. To design your HardCopy device when selecting the FPGA
companion device first, complete the following tasks:

■ Specify an FPGA device and a HardCopy companion device

■ Compile the FPGA design

■ Create and compile the HardCopy companion revision

■ Compare the HardCopy companion revision compilation to the FPGA device
compilation

Figure 4–1. HardCopy Flow in Quartus II Software

Notes to Figure 4–1:

(1) Refer to Figure 4–2 on page 4–4 for an expanded description of this process.
(2) Refer to Figure 4–3 on page 4–6 for an expanded description of this process.

Select FPGA Device
& HardCopy

Companion Device

Design FPGA First

Complete FPGA
Device First Flow (1)

Select HardCopy
Device & FPGA

Companion Device

Design FPGA Second

Complete HardCopy
Device First Flow (2)

In-System Verification

of FPGA Design

Compare FPGA
& HardCopy

Design Revisions

Generate the HardCopy
Handoff Files and
Archive the Design

Prepare Design HDL

Handoff Design Archive for
HardCopy ASIC Back-End

Design
FPGA
First?

Yes No

4–4 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Development Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Figure 4–2 provides an overview of the development process for designing with an
FPGA first and creating a HardCopy companion device second.

Figure 4–2. Designing FPGA Device First Flow

Prepare FPGA Design

Archive Project for Handoff

Design Submission & Back-End Implementation Phase

Select HardCopy Companion Device

Review HardCopy Advisor

Apply Design Constraints

Compile FPGA Design

Any
Violations?

Any
Violations?

Create or Overwrite HardCopy
Companion Revision

Compile HardCopy Companion Revision

Fits in
HardCopy Device?

Compare FPGA and HardCopy Revisions

Generate Handoff Report

HardCopy Device Development with the FPGA Device First Flow

In-System Verification

Select a Larger
HardCopy Companion

Device

Fix Violations
Yes

No

Yes

Yes

No

No

Chapter 4: Quartus II Support for HardCopy Series Devices 4–5
HardCopy Development Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You must select a target FPGA device and a companion HardCopy device when
compiling an FPGA design that you will migrate to a HardCopy device.

During the early stages of the design process, selecting the right HardCopy device
may be difficult. The HardCopy Device Resource Guide can assist you in the selection
process. After you have selected an FPGA and a HardCopy device, compile the FPGA
and review the HardCopy Device Resource Guide to see if all resources are available
in the targeted HardCopy device. If there are not enough resources available in the
target HardCopy device, you must select a larger HardCopy device and restart the
FPGA compilation.

Once the FPGA and the HardCopy device selections have been finalized, perform the
following tasks:

■ Review the HardCopy Advisor for required and recommended tasks

■ Enable the Design Assistant to run during compilation

■ Add timing and location assignments

■ Compile your FPGA design

■ Create your HardCopy companion revision

■ Compile your design for the HardCopy companion device

■ Compare the HardCopy companion device compilation with the FPGA revision

■ Generate a HardCopy Handoff Report

■ Generate a HardCopy Handoff Archive

■ Arrange for submission of your HardCopy Handoff Archive to the Altera
HardCopy Design Center for back-end implementation

f For more information about the overall design flow using the Quartus II software,
refer to the Introduction to the Quartus II Software manual.

Designing the HardCopy Device First
After you select an initial HardCopy ASIC device, you can design your HardCopy
device first and then create your FPGA prototype second. This approach is preferred
when using the HardCopy device to achieve higher performance than the FPGA
prototype, because you can see your potential maximum performance in the
HardCopy device immediately during development, and you can create a slower
performing FPGA prototype of the design for in-system verification. This design
process is similar to the HardCopy FPGA first flow development flow, but instead,
you begin the design with a different initial device family. The remaining tasks to
complete your design for both the FPGA and HardCopy devices roughly follow the
same process (Figure 4–3). The HardCopy Advisor adjusts its list of tasks based on
which device family you start with, FPGA or HardCopy, to help you complete the
process seamlessly.

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

4–6 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Utilities Menu

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

HardCopy Utilities Menu
The HardCopy Utilities menu contains the main functions you use to develop your
HardCopy design and FPGA prototype companion revision. To access this menu, on
the Project menu, click HardCopy Utilities. From the HardCopy Utilities menu, you
can perform the following tasks:

■ Create or update HardCopy companion revisions

Figure 4–3. Designing HardCopy Device First Flow

Prepare HardCopy Design

Design Submission & Back-End Implementation Phase

Select FPGA Companion Device

Review HardCopy Advisor

Apply Design Constraints

Compile HardCopy Design

Any
Violations?

Any
Violations?

Create or Overwrite FPGA
Companion Revision

Compile FPGA Companion Revision

Compare FPGA and HardCopy Revisions

Generate Handoff Report

HardCopy Device Development with the HardCopy Device First Flow

In-System Verification

Fix Violations
Yes

No

Yes

No

Archive Project for Handoff

Chapter 4: Quartus II Support for HardCopy Series Devices 4–7
HardCopy Utilities Menu

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Specify the current HardCopy companion revision

■ Compare the companion revisions for functional equivalence

■ Generate a HardCopy Handoff Report for design reviews

■ Archive HardCopy handoff files for submission to the Altera HardCopy Design
Center

■ Turn on the HardCopy Design Readiness Check feature (on by default)

■ Track your design progress using the HardCopy Advisor

Each HardCopy Utilities feature is summarized in Table 4–1. The process for using
each of these features is explained in the following sections.

Table 4–1. HardCopy Utilities Menu Options

Menu Description
Applicable Design

Revision Restrictions

Create/Overwrite
HardCopy Companion
Revision

Creates a new companion
revision or updates an existing
companion revision for your
FPGA and HardCopy design.

FPGA prototype design
and HardCopy companion
revision

■ Must turn off Auto Device
selection

■ Must set an FPGA device and a
HardCopy companion device

Set Current HardCopy
Companion Revision

Specifies which companion
revision to associate with the
current design revision.

FPGA prototype design
and HardCopy companion
revision

Companion revision must already
exist

Compare HardCopy
Companion Revisions

Compares the FPGA design
revision with the HardCopy
companion design revision and
generates a report.

FPGA prototype design
and HardCopy companion
revision

Both revisions must be compiled

Generate HardCopy
Handoff Report

Generates a report containing
important design information
files and messages generated by
the Quartus II Compiler.

FPGA prototype design
and HardCopy companion
revision

■ Both revisions must be
compiled

■ Compare HardCopy
Companion Revisions
command must be
successfully run

Archive HardCopy
Handoff Files

Generates a Quartus II Archive
File (.qar) specifically for
submitting the design to the
Altera HardCopy Design Center.

HardCopy companion
revision

■ Both revisions must be
compiled

■ Compare HardCopy
Companion Revisions
command must be run

■ Generate HardCopy Handoff
Report command must be
successfully run

HardCopy Advisor Opens the HardCopy Advisor,
which helps you through the
steps of creating a HardCopy
project.

FPGA prototype design
and HardCopy companion
revision

None

Start HardCopy
Design Readiness
Check

Generates a reports with the
design’s settings, I/O check, PLL,
and RAM usage checks.

FPGA prototype design
and HardCopy companion
revision.

None

4–8 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Utilities Menu

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Companion Revisions
You can create multiple design revisions for both the FPGA and the HardCopy device.
For example, if your initial FPGA revision is named top and the corresponding
HardCopy revision is top_hc, you could create another FPGA revision, top_fpga, and
the corresponding HardCopy revision would be top_fpga_hc. The Quartus II software
creates specific HardCopy design revisions of the project in conjunction with the
primary project revisions. These parallel design revisions for HardCopy devices are
called companion revisions.

1 Although you can create multiple design revisions, Altera recommends that you
maintain only one FPGA revision once you have created the HardCopy companion
revision.

Once you have successfully compiled your FPGA prototype, you can create a
HardCopy companion revision of your design and proceed with compiling the
HardCopy companion revision. To create a companion revision, on the Project menu,
point to HardCopy Utilities and click Create/Overwrite HardCopy Companion
Revision. Use the Create/Overwrite HardCopy Companion Revision dialog box to
create a new companion revision or overwrite an existing companion revision
(Figure 4–4).

You can associate only one FPGA revision to one HardCopy companion revision. If
you create more than one revision or companion revision, set the current companion
for the revision you are working on. On the Project menu, point to HardCopy
Utilities and click Set Current HardCopy Companion Revision (Figure 4–5).

Figure 4–4. Create or Overwrite HardCopy Companion Revision

Figure 4–5. Set Current HardCopy Companion Revision

Chapter 4: Quartus II Support for HardCopy Series Devices 4–9
HardCopy Utilities Menu

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Compiling the HardCopy Companion Revision
The Quartus II software allows you to compile your HardCopy design with
preliminary timing information. The timing constraints for the HardCopy companion
revision can be the same as the FPGA design used to create the revision. The
Quartus II software contains preliminary timing models for HardCopy devices and
you can gauge the degree of performance improvement you can achieve in the
HardCopy device compared to the FPGA. Altera verifies that the HardCopy
companion device timing requirements are met in the Altera HardCopy Design
Center.

After you create your HardCopy companion revision from your compiled FPGA
design, select the companion revision in the Quartus II software design revision
pull-down list (Figure 4–6) or from the Revisions list. Compile the HardCopy
companion revision. After the Quartus II software compiles your design, you can
perform a comparison check of the HardCopy companion revision to the FPGA
prototype revision.

Comparing HardCopy and FPGA Companion Revisions
Altera uses the companion revisions in a single Quartus II project to maintain
compatibility between the FPGA and HardCopy ASIC. This methodology allows you
to design with one set of RTL code that is used in both the FPGA and HardCopy
ASIC, guaranteeing functional equivalency.

When making changes to companion revisions, use the Compare HardCopy
Companion Revisions command to ensure that your design matches your HardCopy
design functionality and compilation settings. To compare companion revisions, on
the Project menu, point to HardCopy Utilities and click Compare HardCopy
Companion Revisions.

1 You must perform this comparison after both the FPGA and HardCopy designs are
compiled to hand off the design to the Altera HardCopy Design Center.

The Comparison Revision Summary is found in the Compilation Report and
identifies where assignments were changed between revisions or if there is a change
in the logic resource count due to different compilation settings.

Generating a HardCopy Handoff Report
To submit a design to the Altera HardCopy Design Center, you must generate a
HardCopy Handoff Report, which provides important information about the design
that you want the Altera HardCopy Design Center to review. To generate the
HardCopy Handoff Report, you must:

■ Successfully compile both FPGA and HardCopy revisions of your design

Figure 4–6. Changing Current Revision

4–10 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Utilities Menu

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Successfully run the Compare HardCopy Companion Revisions command

After you generate the HardCopy Handoff Report, you can archive the design using
the Archive HardCopy Handoff Files command described in “Archiving HardCopy
Handoff Files” on page 4–10.

Archiving HardCopy Handoff Files
The last step in the HardCopy design methodology is to archive the HardCopy project
for submission to the Altera HardCopy Design Center for the HardCopy back-end.
The Archive HardCopy Handoff command creates a unique .qar file, which is
different than the standard Quartus II project archive utility generates. This archive
contains only the necessary data from the Quartus II project required to implement
the design in the Altera HardCopy Design Center.

To use the Archive HardCopy Handoff Files command, you must successfully
complete the following actions:

■ Compile both the FPGA and HardCopy revisions of your design

■ Run the Compare HardCopy Companion Revisions command

■ Generate the HardCopy Handoff Report

To run this command, on the Project menu, point to HardCopy Utilities and click
Archive HardCopy Handoff Files.

HardCopy Advisor
The HardCopy Advisor provides the list of tasks to help guide you through the
development of your FPGA prototype and your HardCopy design. To open the
HardCopy Advisor, on the Project menu, point to HardCopy Utilities and click
HardCopy Advisor. The following tasks highlight the checkpoints that the HardCopy
Advisor reviews. These tasks include the major checkpoints in the design process, but
they do not include show every step in the process for completing your FPGA and
HardCopy designs:

1. Select an FPGA device.

2. Select a HardCopy device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the FPGA design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy companion results.

9. Compare companion revisions.

10. Generate a Handoff Report.

11. Archive handoff files and send to Altera.

Chapter 4: Quartus II Support for HardCopy Series Devices 4–11
HardCopy Utilities Menu

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The HardCopy Advisor shows the necessary steps related to your currently selected
device. The HardCopy Advisor shows a slightly different view for a design with an
FPGA selected as compared to a design with HardCopy device selected.

In the Quartus II software, you can start designing with the HardCopy device selected
first, and build an FPGA companion revision second. When you use this approach,
the HardCopy Advisor task list adjusts automatically to guide you from HardCopy
development through FPGA prototyping, then completes the comparison archiving
and handoff to Altera.

When your design uses the FPGA as your starting point, Altera recommends
following the HardCopy Advisor guidelines for your FPGA until you complete the
prototype revision.

When the FPGA design is complete, create and switch to your HardCopy companion
revision. Then follow the HardCopy Advisor steps shown in that revision until you
are finished with the HardCopy revision and are ready to submit the design to Altera
for the HardCopy back-end process.

Each category in the HardCopy Advisor list has an explanation of the recommended
settings and constraints, as well as quick links to the features in the Quartus II
software that are required for each section. The HardCopy Advisor displays:

■ A green check mark for steps you have successfully completed

■ A yellow caution sign for steps that must be completed before submitting your
design to Altera for HardCopy development

■ An information callout for items you must verify

1 Selecting an item within the HardCopy flow menu provides a description of the task
and recommended action. The view in the HardCopy Advisor can vary depending on
the device you select.

Figure 4–7 shows the HardCopy Advisor with an FPGA device selected.

Figure 4–7. HardCopy Advisor with FPGA Selected

4–12 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Companion Device Selection

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Figure 4–8 shows the HardCopy Advisor with an HardCopy device selected.

HardCopy Companion Device Selection
In the Quartus II software, you can select a HardCopy companion device to ensure
compatibility between the FPGA design and the HardCopy device’s resources. To
select your HardCopy companion device, on the Assignments menu, click Device
(Figure 4–9) and select your companion device from the Companion device list.

Selecting a HardCopy companion device for your FPGA prototype constrains the
memory blocks, DSP blocks, and pin assignments, so that your design fits into the
HardCopy device resources. Pin assignments are constrained in the FPGA design
revision, so that the HardCopy device selected is pin-compatible. The Quartus II
software also constrains the FPGA design revision so that identical device resources
are targeted in both the FPGA and the HardCopy ASIC.

Figure 4–8. HardCopy Advisor with HardCopy Device Selected

Chapter 4: Quartus II Support for HardCopy Series Devices 4–13
HardCopy Device Resource Guide

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

.

You can also specify your HardCopy companion device using the following tool
command language (Tcl) command:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST <HardCopy Device Part Number>

For example, to select the HC230F1020 device as your HardCopy companion device
for the EP2S130F1020C4 FPGA, the Tcl command is:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST HC230F1020C

HardCopy Device Resource Guide
The HardCopy Device Resource Guide compares the resources required to
successfully compile a design with the resources available in the various HardCopy
devices. The report rates each HardCopy device and each device resource on how
well it fits the design. The Quartus II software generates the HardCopy Device
Resource Guide for all designs successfully compiled for FPGA devices. This guide is
found in the Fitter folder of the Compilation Report. Figure 4–10 shows an example of
the HardCopy Device Resource Guide. Refer to Table 4–2 for an explanation of the
color codes in Figure 4–10.

Figure 4–9. Quartus II Settings Dialog Box

4–14 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Device Resource Guide

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Use this report to determine which HardCopy device is a potential candidate for your
design. The HardCopy device package must be compatible with the FPGA device
package. A logic resource usage greater than 100% or a ratio greater than 1:1 in any
category indicates that the design probably will not fit in that particular HardCopy
device.

Figure 4–10. HardCopy Device Resource Guide

Chapter 4: Quartus II Support for HardCopy Series Devices 4–15
HardCopy Device Resource Guide

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The HardCopy architecture consists of an array of fine-grained HCells, which are
used to build logic equivalent to FPGA adaptive logic modules (ALMs) and digital
signal processing (DSP) blocks. The DSP blocks in HardCopy devices match the
functionality of the FPGA DSP blocks, though timing of these blocks is different than
the FPGA DSP blocks because they are constructed of HCell macros. The memory
blocks in HardCopy devices are equivalent to the FPGA memory blocks. Preliminary
timing reports of the HardCopy device are available in the Quartus II software. Final
timing results of the HardCopy device are provided by the Altera HardCopy Design
Center after the HardCopy back-end process is complete.

f For more information about the HardCopy device resources, refer to the respective
HardCopy series device handbook on the Altera website.

The report example in Figure 4–10 shows the resource comparisons for a design
compiled for an EP2S130F1020 device. Based on the report, the HC230F1020 device in
the 1,020-pin FineLine BGA package is an appropriate HardCopy device. If the
HC230F1020 device is not specified as a migration target during the compilation, its
package and migration compatibility is rated orange, or Medium. The migration
compatibilities of the other HardCopy devices are rated red, or None, because the
package types are incompatible with the FPGA device. The 1,020-pin FBGA HC240
device is rated red because it is only compatible with the EP2S180F1020 device.

Figure 4–11 shows the report after the (unchanged) design was recompiled with the
HardCopy HC230F1020 device specified as a migration target. Now the HC230F1020
device package and migration compatibility is rated green, or High.

Table 4–2. HardCopy Device Resource Guide Color Legend

Color Package Resource (1) Device Resources

Green
(High)

The design can map to the HardCopy package and
has been fitted with target device migration enabled
in the HardCopy Companion Device dialog box.

The resource quantity is within the range of the
HardCopy device and the design can likely map if all
other resources also fit.

You are still required to compile the HardCopy
revision to ensure the design is able to route and
close timing.

Orange
(Medium)

The design can map to the HardCopy package.
However, the design has not been fitted with the
target device migration enabled in the HardCopy
Companion Device dialog box.

The resource quantity is within the range of the
HardCopy device. However, the resource is at risk of
exceeding the range for the HardCopy package.

If your target HardCopy device falls in this category,
compile your design targeting the HardCopy device
as soon as possible to check if the design fits and is
able to route and migrate all other resources. You
might have to select a larger device.

Red
(None)

The design cannot map to the HardCopy package. The resource quantity exceeds the range of the
HardCopy device. The design cannot migrate to this
HardCopy device.

Note to Table 4–2:

(1) The package resource is constrained by the FPGA for which the design was compiled. Only vertical migration devices within the same package
are able to migrate to HardCopy devices.

4–16 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

HardCopy Recommended Settings in the Quartus II Software
The HardCopy development flow involves additional planning and preparation in
the Quartus II software compared to a standard FPGA design. Additional planning
and preparation is required because you are developing your design for
implementation in two devices: a prototype of your design/system in an FPGA and a
companion revision in a HardCopy device for production. Additional settings and
constraints are required to make the FPGA design compatible with the HardCopy
device, and in some cases, you must remove certain settings in the design. This
section explains the additional settings and constraints necessary for your design to
be successful in both FPGA and HardCopy ASIC devices.

Figure 4–12 shows the Recommendations dialog box with the recommended settings.

Limit DSP and RAM to HardCopy Device Resources
The Limit DSP & RAM to HardCopy device resources option maintains
compatibility between the FPGA and HardCopy devices by ensuring your design
does not use resources in the FPGA device that are not available in the selected
HardCopy device or vice versa. You can access the Limit DSP & RAM to HardCopy
device resources option by clicking Device on the Assignments menu. On the Device
page, select an FPGA or HardCopy device family in the Family list. For example, if
the prototype device is a Stratix II FPGA, in the Family list, select Stratix II. Under
Companion device, Limit DSP & RAM to HardCopy device resources is turned on
by default (Figure 4–13).

Figure 4–11. HardCopy Device Resource Guide with Target Migration Enabled

Figure 4–12. Quartus II Recommended Settings

Chapter 4: Quartus II Support for HardCopy Series Devices 4–17
HardCopy Recommended Settings in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 If you require additional memory blocks or DSP blocks for debugging purposes using
the SignalTap® II Embedded Logic Analyzer, you can temporarily turn the Limit DSP
& RAM to HardCopy device resources option off to compile and verify your design
in your test environment. However, your final FPGA and HardCopy designs
submitted to Altera for the HardCopy back-end must be compiled with this setting
turned on.

Enabling Design Assistant to Run During Compile
You must use the Quartus II Design Assistant to check all HardCopy designs for
design rule violations before submitting the designs to the Altera HardCopy Design
Center. Additionally, you must fix all critical and high-level errors.

1 Altera recommends turning on the Design Assistant to run automatically during each
compilation so that you can see the violations you must fix or waive after reviewing
each violation.

f For more information about the Design Assistant and its rules, refer to the respective
HardCopy series device handbook on the Altera website.

To enable the Design Assistant to run during compilation, on the Assignments menu,
click Settings. In the Category list, select Design Assistant and turn on Run Design
Assistant during compilation (Figure 4–14) or enter the following Tcl command in
the Tcl Console:

set_global_assignment -name ENABLE_DRC_SETTINGS ON r

Figure 4–13. Limit DSP & RAM to HardCopy Device Resources Check Box

4–18 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Timing Settings
Beginning with Quartus II software version 7.1, the TimeQuest Timing Analyzer is the
required timing analysis tool for all designs. The Classic Timing Analyzer is no longer
supported and the Altera HardCopy Design Center does not accept any designs that
use the Classic Timing Analyzer for timing closure.

If you are using the Classic Timing Analyzer, Altera strongly recommends that you
switch to the TimeQuest Timing Analyzer.

1 For more information about switching to the TimeQuest Timing Analyzer, refer to the
Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

When you specify the TimeQuest Timing Analyzer as the timing analysis tool, the
TimeQuest Timing Analyzer guides the Fitter and analyzes timing results after
compilation.

TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates timing in your design by using an industry-standard constraint, analysis,
and reporting methodology. You can use the TimeQuest Timing Analyzer’s GUI or
command-line interface to constrain, analyze, and report results for all timing paths in
your design.

Figure 4–14. Enabling Design Assistant

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–19
HardCopy Recommended Settings in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Before running the TimeQuest Timing Analyzer, you must specify initial timing
constraints that describe the clock characteristics, timing exceptions, and signal
transition arrival and required times. You can specify timing constraints in the
Synopsys Design Constraints (.sdc) file format using the GUI or command-line
interface. The Quartus II Fitter optimizes the placement of logic to meet your
constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the timing paths in
the design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane and in the
Console pane. If the TimeQuest Timing Analyzer reports any timing violations, you
can customize the reporting to view precise timing information about specific paths,
and then constrain those paths to correct the violations. When your design is free of
timing violations, you can be confident that the logic will operate as intended in the
target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool that you use
as a sign-off tool for Altera FPGAs and HardCopy ASICs.

Setting Up the TimeQuest Timing Analyzer
To specify the TimeQuest Timing Analyzer as the timing analysis tool, on the
Assignments menu, click Timing Analysis Settings, and on the Timing Analysis
Settings page, select Use TimeQuest Timing Analyzer during compilation.

Use the following Tcl command to use the TimeQuest Timing Analyzer as your timing
analysis engine:

set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON

You can launch the TimeQuest Timing Analyzer in one of the following modes:

■ Directly from the Quartus II software

■ Stand-alone mode

■ Command-line mode

To perform a thorough Static Timing Analysis, you must specify all the timing
requirements. The most important timing requirements are clocks and generated
clocks, input and output delays, false paths and multi-cycle paths, and minimum and
maximum delays.

In the TimeQuest Timing Analyzer, clock latency, and recovery and removal analysis
are enabled by default.

f For more information about the TimeQuest Timing Analyzer, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Constraints for Clock Effect Characteristics
The create_clock, create_generated_clock commands create ideal clocks
and do not account for board effects. In order to account for clock effect
characteristics, you can use the following commands:

■ set_clock_latency

■ set_clock_uncertainty

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

4–20 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 For more information about how to use these commands, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Beginning in the Quartus II software version 7.1, you can use the command
derive_clock_uncertainty to automatically derive the clock uncertainties in
your .sdc file. This command is useful when you are unsure of the clock uncertainties.
The calculated clock uncertainty values are based on I/O buffer, static phase errors
(SPE) and jitter in the PLLs, clock networks, and core noise.

The derive_clock_uncertainty command applies inter-clock, intra-clock, and
I/O interface uncertainties. This command automatically calculates and applies setup
and hold clock uncertainties for each clock-to-clock transfer found in your design.

To determine I/O interface uncertainty, you must create a virtual clock, then assign
delays to the input/output ports by using the set_input_delay and
set_output_delay commands for that virtual clock.

1 These uncertainties are applied in addition to those you specified using the
set_clock_uncertainty command. However, if a clock uncertainty assignment
for a source and destination pair was already defined, the new one is ignored. In this
case, you can use either the -overwrite command to overwrite the previous clock
uncertainty command, or manually remove them by using the
remove_clock_uncertainty command.

The syntax for the derive_clock_uncertainty command is as follows:

derive_clock_uncertainty [-h | -help] [-long_help] \
[-overwrite]

where the arguments are listed in Table 4–3:

When the derive_clock_uncertainty constraint is used, a
PLLJ_PLLSPE_INFO.txt file is automatically generated in the project directory. This
file lists the names of the PLLs, as well as their jitter and SPE values in the design. This
text file can be used by the HCII_DTW_CU_Calculator.

f For more information about the derive_clock_uncertainty command, refer to
the TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

1 Altera strongly recommends that you use the derive_clock_uncertainty
command in the HardCopy revision. The Altera HardCopy Design Center does not
accept designs that do not have clock uncertainty constraints by either using the
derive_clock_uncertainty command or the HardCopy II Clock Uncertainty
Calculator, and then using the set_clock_uncertainty command.

Table 4–3. Arguments for derive_clock_uncertainty

Option Description

-h | -help Short help

-long_help Long help with examples and possible return values

-overwrite Overwrites previously performed clock uncertainty assignments

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–21
HardCopy Recommended Settings in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For more information about how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty Calculator User Guide.

Quartus II Software Features Supported for HardCopy Designs
The Quartus II software supports optimization features for HardCopy prototype
development, including:

■ Physical Synthesis Optimization

■ LogicLockTM Regions

■ PowerPlay Power Analyzer

■ Incremental Compilation (Synthesis and Fitter)

Physical Synthesis Optimization
To set physical synthesis optimizations for the FPGA revision of the design, on the
Assignments menu, click Settings. In the Category list, expand Compilation Process
Settings, and then click Physical Synthesis Optimizations. You can turn on Perform
physical synthesis for combination logic or Perform register retiming under
Optimize for performance (physical synthesis). The Effort level for HardCopy III
and HardCopy IV devices is limited to Fast only because the performance gain
achieved compared to the compile time is very limited.

The physical synthesis optimizations performed in the FPGA device are passed to the
HardCopy companion revision for placement and timing closure. When designing
with a HardCopy device first, physical synthesis optimizations can be enabled for the
HardCopy device, and these post-fit optimizations are passed to the FPGA revision.

LogicLock Regions
The use of LogicLock regions in the FPGA is supported for designs targeted to
HardCopy devices. However, LogicLock regions are not passed into the HardCopy
companion revision. You can use LogicLock regions in the HardCopy design, but you
must create new LogicLock regions in the HardCopy companion revision. In addition,
LogicLock regions in HardCopy devices cannot have their properties set to Auto Size.
However, floating LogicLock regions are supported. HardCopy LogicLock regions
must be manually sized and placed in the floorplan. When LogicLock regions are
created in a HardCopy device, they start with width and height dimensions set to
(1,1), and the origin coordinates for placement are at X1_Y1 in the lower left corner of
the floorplan. You must adjust the size and location of the LogicLock regions you
created in the HardCopy device before compiling the design.

f For information about using LogicLock regions, refer to the Analyzing and Optimizing
the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

PowerPlay Power Analyzer
You can perform power estimation and analysis of your HardCopy and FPGA devices
using the PowerPlay Early Power Estimator. Use the PowerPlay Power Analyzer for
more accurate estimation of your device’s power consumption.

f For more information about using the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/ug/ug_hc2_cuc.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

4–22 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Design Readiness Check

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Incremental Compilation
Quartus II incremental compilation using the top-down flow in the FPGA is
supported in both the FPGA first design flow and the HardCopy first design flow.

To take advantage of Quartus II incremental compilation, organize your design into
logical and physical partitions for synthesis and fitting (or place and route).
Incremental compilation preserves the compilation results and performance of
unchanged partitions in your design. This feature dramatically reduces your design
iteration time by focusing new compilations only on changed design partitions. New
compilation results are then merged with the previous compilation results from
unchanged design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions untouched.

Be aware of the following guidelines when using Quartus II incremental compilation:

■ User partitions and synthesis results are passed to a companion device.

■ LogicLock regions are suggested for user partitions, but are not migrated
automatically.

■ The compilation after migration to a companion device requires a full compilation
(all partitions are compiled).

■ The entire design must be migrated between the FPGA and HardCopy companion
devices. The Quartus II software does not support migration of partitions between
companion devices.

■ Bottom-up Quartus II incremental compilation is not supported for designs
targeting HardCopy devices.

■ Physical synthesis can be run on individual partitions within the originating
device only. The resulting optimizations are preserved in the migration to the
companion device.

f For information about using Quartus II incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

HardCopy Design Readiness Check
Beginning in the Quartus II software version 7.2, the HardCopy Design Readiness
Check (HCDRC) is available as one of the processing steps in the default compilation
of either the FPGA first or the HardCopy first flow. This feature checks issues that
must be addressed prior to handing off the HardCopy design to the Altera HardCopy
Design Center for the HardCopy back-end process. This is different from the user-
driven approach in HardCopy Advisor, in which you must manually open the
Advisor to check for any violations.

The implemented checking in the HCDRC for the Quartus II software version 7.2 is
only I/O-related. Beginning in the Quartus II software version 8.0, the checks have
been extended to include other logic checks such as PLL, RAM, and settings checks
(Global Setting, Instance Setting, and Operating Setting).

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–23
HardCopy Design Readiness Check

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Execution of the HardCopy Design Readiness Check
The HardCopy Design Readiness Check can be turned on through the .qsf file, as
follows:

set_global_assignment -name \
FLOW_HARDCOPY_DESIGN_READINESS_CHECK ON

set_global_assignment -name \
FLOW_HARDCOPY_DESIGN_READINESS_CHECK OFF

The tool can also be turned on through the GUI, as shown in Figure 4–15.

1 The HardCopy Design Readiness Check is turned On by default.

Stratix III Support
Beginning in the Quartus II software version 8.0, the HCDRC enables support for
Stratix III devices. This includes automated execution of HCDRC in the Stratix III
design flow. However, users must select a HardCopy III companion first for HCDRC
to run during the compilation. Refer to Figure 4–16.

Figure 4–15. HardCopy Design Readiness Check on the More Compilation Process Settings page

4–24 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Design Readiness Check

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

All checks are the same as for other families. If the check is specific to Stratix III
devices only, HCDRC dynamically runs the check exclusive to the Stratix III revision.

Setting Check
Beginning in the Quartus II software version 8.0, HCDRC provides the Setting Check
report section. The report panels in this category list the results of the setting checks
from the Handoff Report. The Setting Check report consists of the following three
sections.

Summary
The Summary section displays the number of settings that do not meet
recommendations. One of the following messages is displayed:

<number> global setting(s) do not meet recommendation. Please
review the recommendation and do appropriate correction as it
may affect the result of the migration to HardCopy.

or

<number> instance setting(s) do not meet recommendation. Please
review the recommendation and do appropriate correction as it
may affect the result of the migration to HardCopy.

Global Setting
This section displays recommendations for global settings only. Global settings that
currently have a different value than the recommended value are highlighted in red.

Instance Setting
This section is identical to the Global Setting section, but checks only for instances
assignments.

Operating Setting
In this section, checks related to the recommended operating settings for the FPGA
and the HardCopy device are reported.

Figure 4–16. Stratix III Support in HardCopy Design Readiness Check

Chapter 4: Quartus II Support for HardCopy Series Devices 4–25
HardCopy Design Readiness Check

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Operating Setting check is primarily applicable to Stratix III devices used as
prototype FPGAs because HardCopy III devices only support 0.9-V core voltage,
whereas the Stratix III devices support both 1.1 V and 0.9 V core voltage.

Figure 4–17 shows the Setting Check category for HCDRC in the Quartus II software
version 8.0.

Setting Check also includes checking for illegal assignments in the HardCopy design
flow. The illegal assignments checks are shown in Example 4–1.

I/O Check
The HCDRC I/O Check ensures that you have assigned location assignments for the
pins, I/O Standard, current strength assignment, output pin load assignment,
termination assignments, and also checks for any unconnected pins. The tool issues a
warning if you have not specified the assignment for the I/O check.

For example, for missing I/O Standard assignments, the HCDRC issues the following
warning:

5 pin(s) have no explicit I/O Standard assignments provided in
the setting file and default values are being used. Please add a
specific I/O Standard assignment for these pins.

Figure 4–17. Setting Check

Example 4–1. Illegal Assignment Checks

USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT ON (1)

SIGNAL_PROBE_ENABLE ON|OFF

SIGNAL_PROBE_SOURCE ON|OFF (2)

Notes to Example 4–1:

(1) Refer to the section “RAM Usage Check” on page 4–27.
(2) SignalProbe is not supported in HardCopy ASICs.

4–26 Chapter 4: Quartus II Support for HardCopy Series Devices
HardCopy Design Readiness Check

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Input Pin Placement for Global and Regional Clock
Due to the difference in the interconnect delays between the FPGA and HardCopy
device, the use of non-primary clock inputs as clock inputs in a design can cause
timing closure to be a problem when migrating the FPGA to the HardCopy device.
The Input Pin Placement for Global and Regional Clock check informs you of the
problem before finalizing the pin location, so that any clock inputs can be moved to
the primary clock input.

This check lists all the pins that drive the global or regional clock but are not placed in
a dedicated clock pad. All pins are required to have manual location assignments.
This is highlighted prior to this check. See Figure 4–18.

The following message appears in the message panel during compilation and also
appears in the I/O Check Summary:

<number> pin(s) drives global or regional clock, but is not
placed in a dedicated clock pin position. Clock insertion delay
will be different between FPGA and HardCopy companion revisions
because of differences in local routing interconnect delays.

PLL Usage Check
The PLL Usage Check Report lists PLL usage requirements and violations checks.

PLL Real-Time Reconfigurable Check
This check highlights the PLLs that do not have PLL reconfiguration. PLL
reconfiguration allows fine tuning of the PLLs in the design after manufacturing.

The following message appears in the message panel during compilation and also
appears in the Logic Check Summary:

<number> PLL(s) don't have real time reconfiguration. It is
highly recommended that each PLL to have PLL reconfiguration
for designs migrating to HardCopy.

PLL elements that do not have PLL reconfiguration are listed in a table.

PLL Clock Outputs Driving Multiple Clock Network Types Check
This check is derived from the Design Assistant rule check for HardCopy (H102). It
lists all PLL instances in the current design that have clock outputs driving multiple
clock network types. The following message is displayed if the tool detects violations
of this type:

Figure 4–18. I/O Check in the HardCopy Design Readiness Check

Chapter 4: Quartus II Support for HardCopy Series Devices 4–27
HardCopy Design Readiness Check

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Found <number> PLL(s) with clock outputs that drives multiple
clock network types.

PLL with No Compensation Mode Check
This check list all PLLs that are in No compensation operating mode. This setting is
not recommended for a design migrating to a HardCopy device because of differences
in the clock networks and the clock delays between FPGA and HardCopy devices.

The following warning message appears during compilation when a PLL is in a No
compensation mode:

<number> PLL(s) is operating in a "No compensation" mode.

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check
When a PLL is directly feeding an output pin, it must be set to Zero Delay Buffer
operating mode. However, if a PLL mode is set either in normal compensation mode
or source synchronous mode, a warning message is printed during compilation.

During the runtime of HC Ready, the following warning message appears:

<number> PLL(s) is in normal or source synchronous mode that is
not fully compensated because it feeds an output pin -- only
PLLs in zero delay buffer mode can fully compensate output pins.

RAM Usage Check
HardCopy series devices do not support initialized RAM blocks upon power-up.
However, you can use the ALTMEM_INIT megafunction to initialize the RAMs in
your design.

The ALTMEM_INIT megafunction initializes the RAM of a HardCopy series device
with the content of a ROM.

f For more information about the ALTMEM_INIT megafunction, refer to the RAM
Initializer (ALTMEM_INIT) Megafunction User Guide.

In HardCopy series devices, RAM blocks power up uninitialized. During the RAM
Usage Check, the HCDRC tool checks for RAMs that are initialized using a Memory
Initialization File (.mif). Any RAM with a .mif file is listed in a table with the
following compilation warning message:

<number> RAM(s) have Memory Initialization File (MIF). HardCopy
devices do not allow initialized RAM. Please ensure that no RAM
is initialized by a MIF file.

Initialized Memory Dependency Testing
Beginning in the Quartus II software version 7.2, the Assembler allows you to write
an FPGA programming file with an initialized checkerboard pattern for memory
contents of M4K memory blocks for the FPGA revision. You should not use this
option in a Stratix II revision used to migrate to the HardCopy II revision, because it
creates irreconcilable revision differences between the Stratix II and HardCopy II
designs since the HardCopy handoff cannot physically have any initialized memory
content. Use this option only on a parallel copy of your compiled Stratix II design that
you wish to test on your board.

http://www.altera.com/literature/ug/ug_altmem_init.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

4–28 Chapter 4: Quartus II Support for HardCopy Series Devices
Performing ECOs with Quartus II Engineering Change Management with the

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To create a programming file with an initialized checkerboard pattern, perform the
following steps:

1. Compile your completed Stratix II design revision to use for prototype testing.
This is the revision you should eventually use to create your HardCopy II
companion revision. On the Project menu, point to HardCopy Utilities and click
Create/Overwrite HardCopy Companion Revision.

2. Complete the HardCopy II companion revision creation, and then compile,
compare, and hand off archive generation for your design.

3. After completing the HardCopy II handoff archive generation, switch back to your
Stratix II revision, and on the Quartus II Project menu, click Revisions, and then
click Create in the Revisions dialog box.

4. In the Create Revision dialog box, type a a revision name in the Revision name
box and turn on Copy database and Set as current revision. This step copies your
Stratix II revision and sets the new revision as the current open revision in the
Quartus II software.

5. On the Assignments menu, point to Settings, and then click Assembler under
Category. Turn on Use checkered pattern as uninitialized RAM content on the
Assembler page, or edit the revision .qsf file and add the following line:

set_global_assignment -name
USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT ON

6. Run the Assembler in the Stratix II revision to generate a new programming file
for your FPGA.

7. Test the new programming file in your prototype environment to determine if
your design has a dependency for initial FPGA RAM contents being initialized
with zeros after power-up and configuration.

Because the checkerboard pattern is used for testing, the patterns written into the
RAM blocks for the new programming file may not detect all cases of zero-initialized
RAM content dependencies. Some designs may detect only one bit as zero (for
example, the LSB of a memory word), so this method may not detect all cases. This
checkerboard pattern test will detect when a full RAM word line is expected as zeros
at startup.

Performing ECOs with Quartus II Engineering Change Management with
the Chip Planner

As designs grow larger in density, analyzing designs for performance, routing
congestion, logic placement, and executing Engineering Change Orders (ECOs)
becomes critical. In addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This process may become
difficult to manage, because ECOs are often implemented as last minute changes to
your design.

Chapter 4: Quartus II Support for HardCopy Series Devices 4–29
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

With the Altera Chip Planner tool, you can shorten the design cycle time significantly.
When changes are made to your design as ECOs, you do not have to perform a full
compilation in the Quartus II software. Instead, you make changes directly to the post
place-and-route netlist, generate a new programming file, test the revised design by
performing a gate-level simulation and timing analysis, and proceed to verify the fix
on the system. When the fix has been verified on the FPGA, switch to the HardCopy
revision, apply the same ECOs, run the timing analyzer and assembler, perform a
revision compare, and then run the HardCopy Netlist Writer for design submission.

There are three types of migration scenarios:

■ One-to-one changes, which are changes that can be implemented on each
architecture—FPGA and HardCopy.

■ Changes that must be implemented differently on the two architectures to achieve
the same result.

■ Changes that cannot be implemented on both architectures.

The following sections outline the methods for migrating each of these types of
changes.

Migrating One-to-One Changes
One-to-one changes are implemented using identical commands in both architectures.
In general, such changes include those that affect only I/O cells or PLL cells. Some
examples of one-to-one changes are changes such as creating, deleting, or moving
pins, changing pin or PLL properties, or changing pin connectivity (provided the
source and destination of the connectivity changes are I/Os or PLLs). These can be
implemented identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated Tcl script
(with a minor text edit) on the companion revision should implement the appropriate
changes as follows:

1. Export the changes from the Change Manager to Tcl.

2. Open the generated Tcl script, change the line project_open <project> -
revision <revision> to refer to the appropriate companion revision.

3. Apply the Tcl script to the companion revision.

The following is a partial list of examples of this type:

■ I/O creation, deletion, and moves

■ I/O property changes (for example, I/O standards, delay chain settings, and so
forth)

■ PLL property changes

■ Connectivity changes between non-LCELL_COMB atoms (for example, PLL to
I/O, DSP to I/O, and so forth)

4–30 Chapter 4: Quartus II Support for HardCopy Series Devices
Performing ECOs with Quartus II Engineering Change Management with the

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Migrating Changes that Must be Implemented Differently
Some changes must be implemented differently on the two architectures. Changes
affecting the logic of the design can fall into this category. Examples are LUTMASK
changes, LC_COMB/HSADDER creation and deletion, and connectivity changes not
covered in the previous section.

Another example of changes that must be implemented differently, would be different
PLL settings for the FPGA and the HardCopy revisions.

f For more information about how to use different PLL settings for the FPGA and
HardCopy Devices, refer to AN 432: Using Different PLL Settings Between Stratix II and
HardCopy II Devices.

Table 4–4 summarizes suggested implementation for various changes.

Changes that Cannot be Migrated
A small set of changes cannot be implemented in both architectures because they are
not compatible in the both architectures. The best example of this occurs when
moving logic in a design; because the logic fabric is different between the two
architectures, locations in the FPGA are not compatible in HardCopy, and vice versa.

Overall Migration Flow
This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful revision comparison
such that the design can be submitted to the Altera HardCopy Design Center.

Preparing the Revisions
The general procedure for migrating changes between devices is the same, whether
migrating from the FPGA to HardCopy device or vice versa. The major steps are
described below:

Table 4–4. Implementation Suggestions for Various Changes

Change Type Suggested Implementation

LUTMASK changes Because a single FPGA atom can require multiple HardCopy atoms to
implement, it might be necessary to change multiple HardCopy atoms
to implement the change, including adding or modifying connectivity

Make/Delete LC_COMB If you are using an FPGA LC_COMB in extended mode (7-LUT) or are
using a SHARE chain, you must create multiple atoms to implement the
same logic functions in the HardCopy device. Additionally, the
placement of the LC_COMB cell has no meaning in the companion
revision as the underlying resources are different.

Make/Delete LC_FF The basic creation and deletion is the same on both architectures.
However, as with LC_COMB creation and deletion, the location of an
LC_FF in a HardCopy revision has no meaning in the FPGA revision,
and vice versa.

Editing Logic Connectivity Because a LCELL_COMB atom might have to be broken up into
several HardCopy LCELL_COMB atoms, the source or destination
ports for connectivity changes might have to be analyzed to properly
implement the change in the companion revision.

http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/an/AN432.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–31
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the companion
revision.

3. Compile the companion revision.

4. Run the Compare HardCopy Companion Revisions command. Both revisions
should pass the revision comparison.

If testing identifies problems requiring ECO changes, equivalent changes can be
applied to both FPGA and HardCopy revisions, as described in the following section.

Applying ECO Changes
The general flow for applying equivalent changes in companion revisions is described
below:

1. Make changes in one revision using the Chip Planner tools (Chip Planner,
Resource Property Editor, and Change Manager), and then verify and export these
changes by following these steps:

a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist Changes
command.

c. Verify correctness using timing analysis, simulation, and prototyping (FPGA
only). If more changes are required, repeat steps a and b.

d. Export change records from the Change Manager to Tcl scripts, or .csv or .txt
file formats.

This exported file is used to assist in making the equivalent changes in the
companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using the Chip Planner tool.

As stated previously, some changes can be reapplied directly to the companion
revision (either manually or by applying the Tcl commands), while others require
some modifications.

4. Run the Compare HardCopy Revisions command. The revisions should match.

5. Verify the correctness of all changes (you might have to run timing analysis).

6. Run the HardCopy Assembler command and the HardCopy Netlist Writer
command for design submission along with handoff files.

The Tcl command for running the HardCopy Assembler is as follows:

execute_module -tool asm -args "--read_settings_files=off --
write_settings_files=off"

The Tcl command for the HardCopy Netlist Writer is as follows:

execute_module -tool cdb \
-args "--generate_hardcopy_files"\

4–32 Chapter 4: Quartus II Support for HardCopy Series Devices
Formal Verification of FPGA and HardCopy Revisions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For more information about using Chip Planner, refer to the Quartus II Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Formal Verification of FPGA and HardCopy Revisions
Third-party formal verification software, Cadence Encounter Conformal verification
software, is used for FPGA and HardCopy families, as well as several other Altera
device families.

The formal verification flow for HardCopy ASIC designs is a two-step process. First,
you run formal verification on the FPGA netlist to ensure that the FPGA netlist
matches the RTL. Second, within the Quartus II software, use the Compare HardCopy
Revisions command to ensure that the HardCopy implementation matches the
FPGA.

1 While this flow is enabled, performing formal verification is not necessary due to the
one-to-one mapping of logic between the Stratix series FPGA prototype and the
HardCopy series ASIC.

To use the Conformal software with the Quartus II software project for your FPGA
design revision, you must enable the EDA Netlist Writer. You must turn on the EDA
Netlist Writer so it can generate the necessary netlist and command files required to
run the Conformal software. To automatically run the EDA Netlist Writer during the
compilation of your FPGA revision, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, under EDA Tool Settings, select Formal Verification, and
then in the Tool name list, select Conformal LEC.

3. Compile your FPGA and HardCopy design revisions.

The Quartus II EDA Netlist Writer produces the netlist for the FPGA when run on that
revision. You can compare your FPGA post-compilation netlist to your RTL source
code using the scripts generated by the EDA Netlist Writer.

After both the FPGA and HardCopy revisions have been compiled, you can run the
Compare HardCopy Revisions command to ensure that the HardCopy
implementation matches the FPGA.

f For more information about using the Cadence Encounter Conformal verification
software, refer to the Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–33
Formal Verification of FPGA and HardCopy Revisions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

HardCopy Floorplan View
The Quartus II software displays the floorplan and placement of your HardCopy
companion revision. This floorplan shows the preliminary placement and
connectivity of all I/O pins, PLLs, memory blocks, HCell macros, and DSP HCell
macros. Congestion mapping of routing connections can be viewed using the Layers
Setting dialog box (in the View menu) settings. This is useful in analyzing densely
packed areas of your floorplan that can reduce the peak performance of your design.
The Altera HardCopy Design Center verifies final HCell macro timing and placement
to guarantee timing closure is achieved.

Figure 4–19 shows an example of the HC230F1020 device floorplan.

In this small example design, the logic is placed near the bottom edge. You can see the
placement of a DSP block constructed of HCell Macros, various logic HCell Macros,
and an M4K memory block. A labeled close-up view of this region is shown in
Figure 4–20.

Figure 4–19. HC230F1020 Device Floorplan

Figure 4–20. Close-Up View of Floorplan

4–34 Chapter 4: Quartus II Support for HardCopy Series Devices
Referenced Documents

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Altera HardCopy Design Center performs final placement and timing closure on
your HardCopy design based on the timing constraints provided in the FPGA design.

f For more information about the Altera HardCopy Design Center process, refer to the
respective HardCopy series device handbook on the Altera website.

Referenced Documents
This chapter references the following documents:

■ AN 432: Using Different PLL Settings Between Stratix II and HardCopy II Devices

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Cadence Encounter Conformal Support chapter in volume 3 of the Quartus II
Handbook

■ HardCopy II Clock Uncertainty Calculator User Guide

■ Introduction to the Quartus II Software manual

■ Quartus II Engineering Change Management with the Chip Planner chapter in volume
2 of the Quartus II Handbook

■ Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ RAM Initializer (ALTMEM_INIT) Megafunction User Guide

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

Document Revision History
Table 4–5 shows the revision history for this chapter.

Table 4–5. Document Revision History (Part 1 of 2)

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed HardCopy Stratix legacy support information

■ Updated “Physical Synthesis Optimization” on page 4–21

■ Updated “Quartus II Software Features Supported for HardCopy
Designs” on page 4–21

■ Updated “Referenced Documents”

■ Updated the tables and figures for HardCopy Series devices

Updated for Quartus II
software version 9.1

March 2009
v9.0.0

■ Updated “RAM Usage Check” on page 4–27

■ Updated “Referenced Documents”

Updated for Quartus II
software version 9.0

http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/ug/ug_hc2_cuc.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

Chapter 4: Quartus II Support for HardCopy Series Devices 4–35
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

■ Added HardCopy IV E support information

■ Added notes for Initialized Memory Dependency testing

■ Changed page size to 8.5” × 11”

Updated for Quartus II
software version 8.1

May 2008
v8.0.0

■ Added new section “HardCopy Design Readiness Check”

■ Updated the tables and figures for HardCopy Series devices

Updated for Quartus II
software version 8.0

Table 4–5. Document Revision History (Part 2 of 2)

Date and
Document

Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

4–36 Chapter 4: Quartus II Support for HardCopy Series Devices
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Section II. Design Guidelines

When designing large and complex FPGAs, your design and coding styles can impact
your quality of results significantly. Designs following synchronous design practices
behave in a predictable and reliable manner, even when re-targeted to different device
families or speed grades. Using recommended HDL coding styles ensures that
synthesis tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic provides the
most flexibility when partitioning the design for incremental compilation, and leads
to the best results. If you create floorplan location assignments to control the
placement of different design blocks (useful in team-based designs so each designer
can target a different area of the device floorplan), following best practices is
important to maintaining good design performance.

This section presents design and coding style recommendations for your Altera®
design, and includes the following chapters:

■ Chapter 5, Design Recommendations for Altera Devices and the Quartus II Design
Assistant

This chapter describes synchronous design practices, and provides guidelines for
combinational logic structures and clocking schemes. It also explains how to check
design “rules” using the Quartus® II Design Assistant. Finally, it discusses
targeting your design to use the clock and register-control features in the device
architecture.

Use this chapter at the start of your design process to guide the design.

■ Chapter 6, Recommended HDL Coding Styles

This chapter discusses Altera megafunctions and provides specific Verilog HDL
and VHDL coding examples for inferring Altera dedicated logic such as memory
and DSP blocks. It also provides device-specific coding recommendations for
registers and certain logic functions such as tri-state signals, multiplexers, and
cyclic redundancy check (CRC) functions, and includes references to other Altera
documentation for low-level logic design.

Use this chapter when you code specific design blocks to ensure you create HDL
code that infers the optimal Altera device architecture.

■ Chapter 8, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and partition your
design to take advantage of the compilation time savings, performance
preservation, and hierarchical design features offered by Quartus II incremental
compilation, and to help you create a design floorplan (using LogicLockTM regions)
to support the flow when required.

II–2 Section II: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Use this chapter when setting up your design hierarchy and determining the
interfaces between logic blocks in your design, as well as if/when you create a
design floorplan. You can also use this chapter to make changes to a design that
was not originally set up to take advantage of incremental compilation, because it
provides tips on changing a design to work better with an incremental design
flow.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

5. Design Recommendations for Altera
Devices and the Quartus II Design

Assistant

Introduction
Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of such complex system designs, good
design practices have an enormous impact on your device’s timing performance, logic
utilization, and system reliability. Well-coded designs behave in a predictable and
reliable manner even when re-targeted to different families or speed grades. Good
design practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera® devices, adhere to the following guidelines:

■ Understand the impact of synchronous design practices

■ Follow recommended design techniques including hierarchical design
partitioning

■ Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas and describes the
Quartus® II Design Assistant that can help you check your design for violations of
design recommendations.

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 5–2

■ “Design Guidelines” on page 5–4

■ “Checking Design Violations Using the Design Assistant” on page 5–13

■ “Targeting Clock and Register-Control Architectural Features” on page 5–39

■ “Targeting Embedded RAM Architectural Features” on page 5–41

f For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital
signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

f For information about migrating designs to HardCopy devices, refer to the Design
Guidelines for HardCopy Series Devices chapter in volume 1 of the HardCopy Series
Handbook.

f For guidelines on partitioning a hierarchical design for incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook.

QII51006-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

5–2 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Synchronous FPGA Design Practices

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Synchronous FPGA Design Practices
The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines some of the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all the registers’
timing requirements are met, a synchronous design behaves in a predictable and
reliable manner for all process, voltage, and temperature (PVT) conditions. You can
easily target synchronous designs to different device families or speed grades. In
addition, synchronous design practices help ensure successful migration if you plan
to migrate your design to a high-volume solution such as an Altera HardCopy device
or if you are prototyping an ASIC.

Fundamentals of Synchronous Design
In a synchronous design, everything is related to the clock signal. On every active
edge of the clock (usually the rising edge), the data inputs of registers are sampled
and transferred to outputs. Following an active clock edge, the outputs of
combinational logic feeding the data inputs of registers change values. This change
triggers a period of instability due to propagation delays through the logic as the
signals go through a number of transitions and finally settle to new values. Changes
happening on data inputs of registers do not affect the values of their outputs until the
next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as the
following timing requirements are met:

■ Before an active clock edge, the data input has been stable for at least the setup
time of the register

■ After an active clock edge, the data input remains stable for at least the hold time
of the register

When you specify all of your clock frequencies and other timing requirements, the
Quartus II Classic Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin of your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers within the Altera device.

1 To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feeds a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
input of the Altera device to help prevent a violation of the required setup and hold
times.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–3
Synchronous FPGA Design Practices

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When the setup or hold time of a register is violated, the output can be set to an
intermediate voltage level between the high and low levels, called a metastable state.
In this unstable state, small perturbations such as noise in power rails can cause the
register to assume either the high or low voltage level, resulting in an unpredictable
valid state. Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

f For details about timing requirements and analysis in the Quartus II software, refer to
the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
chapters in volume 3 of the Quartus II Handbook.

Hazards of Asynchronous Design
In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
result in incomplete timing constraints and possible glitches and spikes. Because
current FPGAs provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more important to focus
on design practices that help you meet design goals consistently than to save device
resources using problematic asynchronous techniques.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster
because of device process improvements, the delays in an asynchronous design may
decrease, resulting in a design that does not function as expected. Specific examples
are provided in “Design Guidelines” on page 5–4. Relying on a particular delay also
makes asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit a number of glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

5–4 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Design Guidelines
When designing with HDL code, it is important to understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes some basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your combinational logic
carefully to avoid potential problems and pay attention to your clocking schemes so
you can maintain synchronous functionality and avoid timing problems.

Combinational Logic Structures
Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) of the device’s architecture, using either logic elements (LEs) or
adaptive logic modules (ALMs). For some cases in which combinational logic feeds
registers, the register control signals can also be used to implement part of the logic
function to save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Combinational Loops
Combinational loops are among the most common causes of instability and
unreliability in digital designs. They should be avoided whenever possible. In a
synchronous design, feedback loops should include registers. Combinational loops
generally violate synchronous design principles by establishing a direct feedback loop
that contains no registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic, as shown in
Figure 5–1.

1 Use recovery and removal analysis to perform timing analysis on asynchronous ports
such as clear or reset in the Quartus II software.

■ If you are using the Classic Timing Analyzer, on the Assignments menu, click
Settings. In the Settings dialog box, under Timing Analysis Settings, select
Classic Timing Analyzer Settings. On the Classic Timing Analyzer Settings
page, click More Settings and turn on the Enable Recovery/Removal Analysis
option.

■ If you are using the TimeQuest Timing Analyzer, refer to the “Recovery and
Removal” section in the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook for details about how the TimeQuest
Timing Analyzer performs recovery and removal analysis.

Figure 5–1. Combinational Loop through Asynchronous Control Pin

D Q

CLRN

Logic

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–5
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Combinational loops are inherently high-risk design structures for the following
reasons:

■ Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches
A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. Latches can be implemented directly with primitives, using
LPM_LATCH, or inferred from HDL code. It is common for mistakes in HDL code to
cause unintended latch inference. Quartus II Synthesis issues a warning message if
this occurs.

Unlike other technologies, a latch in an FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis is generally not able to
identify these safe applications.

The Quartus II software setting Analyze latches as Synchronous Elements allows
you to treat latches as having nontransparent start and end points. Bear in mind that
even an instantaneous transition through transparent mode can lead to glitch
propagation. The Quartus II software does not perform cycle-borrowing analysis,
such as that performed by third-party timing analysis tools (such as the Synopsys
PrimeTime software).

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, it is very important that you do not use latches when
using formal verification.

Altera recommends you avoid using latches to ensure that you can completely
analyze the timing performance and reliability of your design.

Delay Chains
Delay chains occur when two or more consecutive nodes with a single fan-in and a
single fan-out are used to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

5–6 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Delays in PLD designs can change with each place-and-route cycle. Effects such as
rise and fall time differences and on-chip variation mean that delay chains, especially
those placed on clock paths, can cause significant problems in your design. Refer to
“Hazards of Asynchronous Design” on page 5–3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to prevent these kind
of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators
Delay chains are sometimes used to generate either one pulse (pulse generators) or a
series of pulses (multivibrators). There are two common methods for pulse
generation, as shown in Figure 5–2. These techniques are purely asynchronous and
need to be avoided.

In “Using an AND Gate” (Figure 5–2), a trigger signal feeds both inputs of a 2-input
AND gate, but the design inverts or adds a delay chain to one of the inputs. The width
of the pulse depends on the relative delays of the path that feeds the gate directly and
the one that goes through the delay. This is the same mechanism responsible for the
generation of glitches in combinational logic following a change of input values. This
technique artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5–2), a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse width can only
be determined after placement and routing, when routing and propagation delays are
known. You cannot reliably determine the width of the pulse when creating HDL
code and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. In addition, static timing analysis cannot be used to verify the pulse
width, so verification is very difficult.

Figure 5–2. Asynchronous Pulse Generators

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–7
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. In addition, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be analyzed by
the design tools.

When you must use a pulse generator, use synchronous techniques, as shown in
Figure 5–3.

In this design, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes
Like combinational logic, clocking schemes have a large effect on your design’s
performance and reliability. Avoid using internally generated clocks wherever
possible because they can cause functional and timing problems in the design. Clocks
generated with combinational logic can introduce glitches that create functional
problems and the delay inherent in combinational logic can lead to timing problems.

1 Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

Altera recommends using global device-wide, low-skew dedicated routing for all
internally-generated clocks, instead of routing clocks on regular routing lines. For a
detailed explanation, refer to “Clock Network Resources” on page 5–40.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a Clock Setup Uncertainty and Clock Hold
Uncertainty value of 10% to 15% of the clock delay.

The following sections provide some specific examples and recommendations for
avoiding these problems.

Figure 5–3. Recommended Pulse-Generation Technique

D QTrigger Signal

Clock

Pulse

D Q

5–8 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Internally Generated Clocks
If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, expect to see glitches in your design. In a synchronous design, glitches on
data inputs of registers are normal events that have no consequences. However, a
glitch or a spike on the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s minimum pulse
width requirements. Setup and hold times may also be violated if the data input of the
register is changing when a glitch reaches the clock input. Even if the design does not
violate timing requirements, the register output can change value unexpectedly and
cause functional hazards elsewhere in the design.

Because of these problems, Altera recommends that you always register the output of
combinational logic before you use it as a clock signal (Figure 5–4).

Registering the output of combinational logic ensures that the glitches generated by
the combinational logic are blocked at the data input of the register.

Divided Clocks
Designs often require clocks created by dividing a master clock. Most Altera FPGAs
provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. In addition, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks” on
page 5–8, and route the clock on global clock resources. To avoid glitches, do not
decode the outputs of a counter or a state machine to generate clock signals.

Ripple Counters
To simplify verification, Altera recommends avoiding ripple counters in your design.
In the past, FPGA designers implemented ripple counters to divide clocks by a power
of two because the counters are easy to design and may use fewer gates than their
synchronous counterparts. Ripple counters use cascaded registers, in which the
output pin of each register feeds the clock pin of the register in the next stage. This
cascading can cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis, which can be
difficult and may require you to make complicated timing assignments in your
synthesis and place-and-route tools.

Figure 5–4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q

Clock
Generation

Logic

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–9
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Ripple clock structures are often used to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. Altera recommends that you avoid using ripple
counters under any circumstances.

Multiplexed Clocks
Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as in Figure 5–5. For example,
telecommunications applications that deal with multiple frequency standards often
use multiplexed clocks.

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

■ The clock multiplexing logic does not change after initial configuration

■ The design uses multiplexing logic to select a clock for testing purposes

■ Registers are always reset when the clock switches

■ A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-register paths are analyzed
using that clock.

Figure 5–5. Multiplexing Logic and Clock Sources

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

5–10 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or Clock Control Block available in certain Altera devices. These
dedicated hardware blocks ensure that you use global low-skew routing lines and
avoid any possible hold time problems on the device due to logic delay on the clock
line.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures.

Gated Clocks
Gated clocks turn a clock signal on and off using an enable signal that controls some
sort of gating circuitry, as shown in Figure 5–6. When a clock is turned off, the
corresponding clock domain is shut down and becomes functionally inactive.

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock gating rather
than using an AND or OR gate. For example, you can use the clock control block in
newer Altera devices to shut down an entire clock network. Dedicated hardware
blocks ensure that you use global routing with low skew and avoid any possible hold
time problems on the device due to logic delay on the clock line.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 5–11.

Figure 5–6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–11
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Synchronous Clock Enables
To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, but it performs the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input of every
register to either load new data or copy the output of the register (Figure 5–7).

Recommended Clock-Gating Methods
Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 5–8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so you can shut down
the entire clock network instead of gating it further along the clock network at the
registers.

In the technique shown in Figure 5–8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated (use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 5–8). Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the falling edge, use
an OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Figure 5–7. Synchronous Clock Enable

Figure 5–8. Recommended Clock-Gating Technique

D Q

Enable

Data

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

5–12 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

When using this technique, pay attention to the duty cycle of the clock and the delay
through the logic that generates the enable signal because the enable command must
be generated in one-half the clock cycle. This situation might cause problems if the
logic that generates the enable command is particularly complex, or if the duty cycle
of the clock is severely unbalanced. However, careful management of the duty cycle
and logic delay may be an acceptable solution when compared with problems created
by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the Quartus II software. As
shown in Figure 5–8 on page 5–11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer may analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help to reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. This
option is only available for devices that are supported by the TimeQuest Timing
Analyzer, except for Stratix® and Cyclone® devices.

f For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Design Techniques to Save Power
The total FPGA power consumption is comprised of I/O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven place-and-route.

f For information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook.

f For information about power optimization techniques available for Stratix III devices,
refer to AN 437: Power Optimization in Stratix III FPGAs. For information about power
optimization techniques available for Stratix IV devices, refer to AN 514: Power
Optimization in Stratix IV FPGAs.

f In addition, you can use the Quartus II PowerPlay Power Analyzer to aid you during
the design process by delivering fast and accurate estimations of power consumption.
For information about the PowerPlay Power Analyzer, refer to the PowerPlay Power
Analyzer chapter in volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–13
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Checking Design Violations Using the Design Assistant
To improve the reliability, timing performance, and logic utilization of your design,
practicing good design methodology and understanding how to avoid design rule
violations are important. The Quartus II software provides a tool that automatically
checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical, so you can allow these rule violations.
The Design Assistant generates design violation reports with clear details about each
violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II design flow
with Design Assistant, message severity levels, and an explanation about how to set
up the Design Assistant. The last parts of the section describe the design rules and the
reports generated by the Design Assistant.

Quartus II Design Flow with the Design Assistant
You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. To run the Design Assistant, on the Processing
menu, point to Start, and click Start Design Assistant.

To set the Design Assistant to run automatically during compilation, on the
Assignments menu, click Settings. In the Category list, select Design Assistant. Turn
on Run Design Assistant during compilation. This enables the Design Assistant to
perform a post-fitting netlist analysis of your design. The default is to apply all of the
rules to your project. But if there are some rules that are unimportant to your design,
you can turn off the rules that you do not want the Design Assistant to use. Refer to
“The Design Assistant Settings Page” on page 5–15.

Figure 5–9 shows the Quartus II software design flow with the Design Assistant.

5–14 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
may be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

■ When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

■ When you start the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

■ When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on r
The Design Assistant generates warning messages when your design violates design
rules and generates information messages to provide information regarding the rules.
The Design Assistant supports all Altera devices supported by the Quartus II
software.

Figure 5–9. Quartus II Design Flow with the Design Assistant

Notes to Figure 5–9:

(1) Database of the default rules for the Design Assistant.
(2) A file that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create

this file, refer to “Custom Rules” on page 5–33.

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

Timing Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule Violation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–15
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Design Assistant Settings Page
To apply design rules in the Design Assistant, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, in the Category list, select Design Assistant.

3. In the Design Assistant page, turn on the rules that you want the Design Assistant
to apply during analysis. By default, all of the rules except the finite state machine
rules are turned on.

To specify the file path to the custom rule file of the user-defined rules, refer to
“Specifying the Path to the Custom Rules File” on page 5–35.

In the Timing Closure category, if Nodes with more than specified number of
fan-outs or Top nodes with highest fan-out are turned on, you can use the High
Fan-Out Net Settings dialog box to specify the number of fan-out a node must have
to be reported by the Design Assistant. To open the High Fan-Out Net Settings dialog
box, in the Design Assistant page, in the Timing Closure category, select Nodes with
more than specified number of fan-outs or Top nodes with highest fan-out. Click
High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global signal, you can
use the Global Clock Threshold Settings dialog box to specify the number of nodes
with the highest fan-out that you want the Design Assistant to report. To open the
Global Clock Threshold Settings dialog box, on the Design Assistant page, in the
Clock category, select Clock signal should be a global signal. Click Global Clock
Threshold Settings.

To specify the maximum number of messages reported by the Design Assistant, on
the Design Assistant page, click Report Settings and enter the maximum number of
violation messages and detail messages to be reported.

Message Severity Levels
The Design Assistant classifies messages and rules using the four severity levels
described in Table 5–1. Following Altera guidelines is very important for designs that
are migrated to the HardCopy series of devices; therefore, the table highlights the
impact of a rule violation on a HardCopy migration. Designs that adhere to
Altera-recommended design guidelines do not produce any messages with critical-,
high-, or medium-level severity.

Table 5–1. Design Assistant Message Severity Levels

Severity Level Explanation

Critical A violation of the rule critically affects the reliability of the design. Altera may not be able to
implement the design successfully without closely reviewing the violations with the designer
for HardCopy device conversions.

High A violation of the rule affects the reliability of the design. Altera must review the violation
before implementing the design for HardCopy device conversions.

Medium The rule violation may result in implementation complexity that may have an impact for
HardCopy device conversions.

Information Only The rule provides information regarding the design.

5–16 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Design Assistant Rules
This section describes the Design Assistant rules and details some of the reasons that
Altera recommends following certain guidelines. Many of the Design Assistant rules
enforce the design guidelines described in previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The rule ID is
normally used in Tcl commands for rule suppression. The letter in each rule ID
corresponds to the group of rules based on the following scheme:

■ A—Asynchronous design structure rules

■ C—Clock rules

■ R—Reset rules

■ S—Signal race rules

■ T—Timing closure rules

■ D—Asynchronous clock domain rules

■ H—HardCopy rules

■ M—Finite state machine rules

For example, the rule “Design Should Not Contain Combinational Loops” is the first
rule in the asynchronous design structure rules; therefore, it is represented by rule ID
A101.

1 Finite state machine rules are applicable only to register transfer level (RTL) check.

Summary of Rules and IDs
Table 5–2 lists the rules, their rule IDs, and their severity level.

Table 5–2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level

A101 Design Should Not Contain Combinational Loops Critical

A102 Register Output Should Not Drive Its Own Control Signal Directly or through Combinational
Logic

Critical

A103 Design Should Not Contain Delay Chains High

A104 Design Should Not Contain Ripple Clock Structures Medium

A105 Pulses Should Not Be Implemented Asynchronously Critical

A106 Multiple Pulses Should Not Be Generated in the Design Critical

A107 Design Should Not Contain SR Latches High

A108 Design Should Not Contain Latches High

C101 Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical

C102 Logic Cell Should Not Be Used to Generate Inverted Clock High

C103 Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save
Power: <n>

Medium

C104 Clock Signal Source Should Drive Only Input Clock Ports Medium

C105 Clock Signal Should Be a Global Signal High

C106 Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges Medium

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–17
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Design Should Not Contain Combinational Loops
Severity Level: Critical
Rule ID: A101

A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A combinational loop also
occurs when the output of a register is fed back to an asynchronous pin of the same
register through combinational logic. Combinational loops are among the most
common causes of instability and reliability in your designs and should be avoided
whenever possible. Refer to “Combinational Loops” on page 5–4 for examples of the
kinds of problems that combinational loops can cause.

Register Output Should Not Drive Its Own Control Signal Directly or through
Combinational Logic
Severity Level: Critical
Rule ID: A102

R101 Combinational Logic Used as a Reset Signal Should Be Synchronized High

R102 External Reset Should Be Synchronized Using Two Cascaded Registers Medium

R103 External Reset Should Be Synchronized Correctly High

R104 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized Correctly

High

R105 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized

Medium

S101 Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the Same
Signal Source

High

S102 Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by
the Same Signal Source

High

S103 More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by
the Same Source

High

S104 Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the
Same Signal Source

High

T101 Nodes with More Than Specified Number of Fan-outs: <n> Information Only

T102 Top Nodes with Highest Fan-out: <n> Information Only

D101 Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains High

D102 Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But
Not All Bits May Be Aligned in the Receiving Clock Domain

Medium

D103 Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock
Domains

High

M101 Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous
Clock Domains

High

M102 No Reset Signal Defined to Initialize the State Machine Medium

M103 State Machine Should Not Contain Unreachable State Medium

M104 State Machine Should Not Contain a Deadlock State Medium

M105 State Machine Should Not Contain a Dead Transition Medium

Table 5–2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level

5–18 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

A combinational loop occurs when you feed back the output of a register to an
asynchronous pin of the same register (for example, the register’s preset or
asynchronous load signal), or the register drives combinational logic that drives one
of the control signals on the same register. Combinational loops are among the most
common causes of instability and reliability in your designs and should be avoided
whenever possible. Refer to “Combinational Loops” on page 5–4 for examples of the
kinds of problems that combinational loops can cause.

Design Should Not Contain Delay Chains
Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a single fan-in and
a single fan-out are used to cause delay. Delay chains are sometimes used to create
intentional delay to resolve race conditions. Delay chains may cause significant
problems because they affect the rise and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells and is limited to the
clock and reset path of your design. This rule does not apply to delay chains in the
data path. Altera recommends that you do not instantiate a cell that does not benefit
the design and is used only to delay the signal. Refer to “Delay Chains” on page 5–5
for examples of the kinds of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures
Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use two or more
cascaded registers in which the output of each register feeds the clock pin of the
register in the next stage. Cascading structures cause large skew in the output signal
because each stage of the structure causes a new clock domain to be defined. The
additional clock domains from each stage of the ripple clock are difficult for static
timing analysis tools to analyze. Refer to “Ripple Counters” on page 5–8 for examples
of the kinds of problems that ripple clock structures can cause.

Pulses Should Not Be Implemented Asynchronously
Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

■ Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR gate,
where the source for the two gate inputs are the same, but one of the gate inputs is
inverted

■ Using a register where the register output drives the register’s own asynchronous
reset signal through a delay chain (refer to “Delay Chains” on page 5–5 for more
details).

These techniques are purely asynchronous and therefore need to be avoided. Refer to
“Pulse Generators and Multivibrators” on page 5–6 for recommended pulse
generation guidelines.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–19
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Multiple Pulses Should Not Be Generated in the Design
Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists of a
combinational logic gate in which the inverted output feeds back to one of the inputs
of the same gate. This feedback path causes a combinational loop that forces the
output to change state and therefore, oscillate. Sometimes multiple pulse generators
or multivibrator circuits are built out of a series of cascaded inverters in a structure
called a “ring oscillator.” Oscillation creates a new artificial clock in your design that
is difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse generators
because of the number of pulses involved. In addition, multiple pulse generators
increase the frequency of the design. Refer to “Pulse Generators and Multivibrators”
on page 5–6 for recommended pulse generation guidelines.

Design Should Not Contain SR Latches
Severity Level: High
Rule ID: A107

A latch is a combinational loop that holds the value of a signal until a new value is
assigned. Combinational loops are hazardous to your design and are the most
common causes of instability and unreliability. Refer to “Combinational Loops” on
page 5–4 for examples of the kinds of problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR latch can cause
glitches and ambiguous timing, which complicates the timing analysis of your design.
Refer to “Latches” on page 5–5 for details about latches and for more examples of the
kinds of problems that latches can cause.

Design Should Not Contain Latches
Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more structures as
latches.

Refer to “Latches” on page 5–5 for details about latches and for examples of the kinds
of problems that latches can cause.

1 The difference between A107 (“Design Should Not Contain SR Latches”) and A108 is
that A107 triggers only when an SR latch is detected. A108 triggers when an
unidentified latch exists in your design.

5–20 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Gated Clocks Should Be Implemented According to Altera Standard Scheme
Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to reduce the total
power consumption of a device. Clock gating is implemented using an enable signal
that controls some sort of gating circuitry. The gated clock signal prevents any of the
logic driven by it from switching so the logic does not consume any power. For
example, when a clock is turned off, the corresponding clock domain is shut down
and becomes functionally inactive. However, the disadvantage of using this type of
circuit is that it can lead to unexpected glitches on the resultant gated clock signal if
certain rules are not followed.

Refer to “Gated Clocks” on page 5–10 for examples of the kinds of problems gated
clocks can cause. Refer to “Recommended Clock-Gating Methods” on page 5–11 for a
recommended clock gating technique. However, when following the recommended
clock gating techniques, your design must have a minimum number of fan-outs to
meet rule C103, “Gated Clock Is Not Feeding At Least A Pre-Defined Number Of
Clock Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock
Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to operate.
However, do not implement an inverter to drive the clock input of a register in your
design with a logic cell. Implementing the inverter with a logic cell can lead to clock
insertion delay and skew, which is hazardous to your design and can cause problems
with the timing closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary. Use the
programmable clock inversion featured in the register to generate the inverted clock
signal. Refer to “Clocking Schemes” on page 5–7 for details about different types of
clocking methods.

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to
Effectively Save Power: <n>
Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one gated clock.
However, to effectively reduce power consumption, Altera recommends that the
gated clock feed at least a pre-defined number of clock ports (n ports). The default
value for n is 30. You can set the number of clock ports (n) by performing the
following steps:

1. Click Settings on the Assignments menu.

2. In the Category list, select Design Assistant.

3. On the Design Assistant page, expand the Clock category and turn on Gated
clock is not feeding at least a pre-defined number of clock port to effectively
save power: <n>.

4. Click on the Gated Clock Settings button, and in the Gated Clock Settings dialog
box, set the number of clock ports a gated clock should feed.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–21
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Refer to “Clocking Schemes” on page 5–7, and “Recommended Clock-Gating
Methods” on page 5–11 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports
Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of registers. Rule
C104 triggers when a design contains a clock signal source of a register that connects
to the port rather than the clock port of another register. Note that if the clock signal
source and ports are of the same register, rule S104 “Clock Port and Any Other Signal
Port of the Same Register Should Not Be Driven by the Same Signal Source” is
triggered instead. Such a design is considered asynchronous and should be avoided.
Asynchronous design structures can be hazardous to your design because some of
them rely on the relative propagation delays of signals to function correctly, which can
result in incomplete timing constraints and possible glitches and spikes.

Refer to “Hazards of Asynchronous Design” on page 5–3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to “Clocking
Schemes” on page 5–7 for proper clocking techniques.

This rule does not apply in the following conditions:

■ When the clock signal source drives combinational logic that is used as a clock
signal and the combinational logic is implemented according to the Altera
standard scheme

■ When the clock signal source drives only a clock multiplexer that selects one clock
source from a number of different clock sources

1 This type of multiplexer adds complexity to the timing analysis of a design.
Avoid using the multiplexer in the design.

■ Using a clock multiplexer causes the “Gated Clocks Should Be Implemented
According to Altera Standard Scheme” rule (C101) to be applied; refer to
“Multiplexed Clocks” on page 5–9 for recommended clock multiplexing
techniques

Clock Signal Should Be a Global Signal
Severity Level: High
Rule ID: C105

Ensure that all clock signals in your design use the global clock networks that exist in
the target FPGA. Mapping clock signals to use non-dedicated clock networks can
negatively affect the performance of your design. A non-global signal can be slower
and have larger skew than a global signal because the clock must be distributed using
regular FPGA routing resources.

To specify the number of minimum fan-outs that you want the Design Assistant to
report, on the Design Assistant page, in the Clock category, select Clock signal
should be a global signal. Click Global Clock Threshold Settings and enter the
number in the dialog box.

5–22 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If a design contains more clock signals than are available in the target device, consider
reducing the number of clock signals in the design, such that only dedicated clock
resources are used for clock distribution. However, if the design must use more clock
signals than you can specify as global signals, implement the clock signals with the
lowest fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on page 5–40 for
detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by Different
Clock Edges
Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal source that
drives the clock inputs of both positive and negative edge-sensitive registers. This
error also triggers if your design contains an inverted clock signal that drives the clock
inputs of either positive or negative edge-sensitive registers.

These two scenarios can cause an increase in timing requirement complexity and
difficulties in design optimization. Also, synchronous resetting may not be possible
because registers are not clocked on the same edge in the design. Refer to “Clocking
Schemes” on page 5–7 for some specific examples and recommended clocking
methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized
Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design needs to be
synchronized. This means that a register is required between the combinational logic
that drives the reset signal and input reset pin. Unsynchronized combinational logic
can cause glitches and spikes that lead to unintentional reset signals. Synchronizing
the combinational logic that drives the reset signal delays the resulting reset signal by
an extra clock cycle and avoids unintentional reset. You must consider the extra clock
cycle delay when using this method in your design.

1 Rule R101 does not trigger if the combinational logic used is either a 2-input AND or
NOR that feeds active low reset port, or either a 2-input OR or NAND that feeds
active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers
Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock signal is to
use an asynchronous reset or external reset. However, an asynchronous reset can
affect the recovery time of a register, cause design stability problems, and
unintentionally reset the state machines in your design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a double-buffer
circuit, which consists of two cascaded registers triggered on the same clock edge and
on the same clock domain as the targeted registers.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–23
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

This rule does not apply in the following two conditions:

■ When the targeted registers use active-high reset ports and the external reset
signal drives the PRE ports on the cascaded registers with the input port of the first
cascaded registers is fed to GND. Refer to Figure 5–10.

■ When the targeted registers use active-low reset ports and the external reset signal
drives the CLR ports on the cascaded registers with the input port of the first
cascaded registers is fed to VCC. Refer to Figure 5–11.

External Reset Should Be Synchronized Correctly
Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock signal is to
use an asynchronous reset or external reset. However, asynchronous reset can affect
the recovery time of a register, cause design stability problems, and unintentionally
reset the state machines in your design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two cascaded
registers. The registers need to be triggered on the same clock edge and should be in
the same clock domain as the targeted registers.

Figure 5–10. Active-High Reset Ports

Figure 5–11. Active-Low Reset Ports

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA
PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst6 inst5

inst4

inst9

Cascaded Registers

Targeted
Registers

0

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst2inst3

inst1

inst

Cascaded Registers

Targeted
Registers

1

5–24 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This rule applies when an asynchronous reset or external reset signal is synchronized
but fails to follow the recommended guidelines, as described in rule R102 (“External
Reset Should Be Synchronized Using Two Cascaded Registers”). This violation
happens when the external reset is synchronized with only one register or the
cascaded synchronization registers are triggered on different clock edges.

1 R102 triggers when you don’t use two cascaded registers to synchronize the external
reset. R103 triggers when the external reset is synchronized but fails to follow the
recommended guidelines.

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized Correctly
Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one clock domain
and used in one or more other asynchronous clock domains, the reset signal needs to
be synchronized. An unsynchronized reset signal can cause metastability issues. To
synchronize reset signals across clock domains, use the following guidelines:

■ The reset signal needs to be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

■ The cascading registers needs to be triggered on the same clock edge.

■ There must be no logic between the output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain. The
synchronization registers may sample unintended data due to the glitches caused
by the logic.

This rule applies when the internal reset signal is synchronized but fails to follow the
recommended guidelines. This happens when the external reset is only synchronized
with one register, when the cascaded synchronization registers are triggered on
different clock edges, or when there is logic between the output of the transmitting
clock domain and the cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle. Consider this
delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock
Domains Should Be Synchronized
Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated in one clock
domain and used in one or more other asynchronous clock domain, the reset signal
needs to be synchronized. An unsynchronized reset signal can cause metastability
issues. To synchronize reset signals across clock domains, follow the guidelines
described in Rule R104 (“Reset Signal Generated in One Clock Domain and Used in
Other Asynchronous Clock Domains Should Be Synchronized Correctly”).

1 This rule applies when the internally generated reset signal is not being synchronized.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–25
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the
Same Signal Source
Severity Level: High
Rule ID: S101

This rule applies when your design contains a tri-state node in which the input and
output enable are driven by the same signal source. Signal race occurs between the
input and output enable signals of the tri-state when they are propagated
simultaneously. Race conditions lead to incorrect design function and unpredictable
results. To avoid violation of this rule, the input and output enable of the tri-state
should be driven by separate signal sources.

Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven
by the Same Signal Source
Severity Level: High
Rule ID: S102

A purely synchronous design is free of signal race conditions as long as the clock
signal is properly distributed and the timing requirements of the registers are met.
However, race conditions can occur typically when the synchronous and
asynchronous input pins of the register are driven by the same signal source. Race
conditions can cause incorrect design function and unpredictable results. Rule S102
triggers when the synchronous and asynchronous pins of a register are driven by the
same signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock and if the source register is directly
feeding the reset port, provided there is no combinational logic in-between the signal
and register.

More Than One Asynchronous Signal Source of the Same Register Should Not Be
Driven by the Same Source
Severity Level: High
Rule ID: S103

To avoid race conditions in your design, Altera recommends that you avoid using the
same signal source to drive more than one port on a register. The following ports are
affected: ALOAD, ADATA, Preset, and Clear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by
the Same Signal Source
Severity Level: High
Rule ID: S104

Any clock signal source in your design needs to drive only input clock ports of
registers. Rule S104 triggers only when your design contains clock signal sources that
connect to ports other than the clock ports of the same register. Rule S104 is a subset of
C104, “Clock Signal Source Should Drive Only Input Clock Ports” on page 5–21. Such
a design is considered asynchronous and should be avoided.

Refer to “Hazards of Asynchronous Design” for examples of the kinds of problems
that asynchronous design structures can cause. Refer to “Clocking Schemes” for
proper clocking techniques.

5–26 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Nodes with More Than Specified Number of Fan-outs: <n>
Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of fan-outs, which can
create timing challenges for your design.

To specify the number of fan-outs, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Design Assistant.

3. On the Design Assistant page, expand the Timing closure category by clicking
the icon next to Timing closure.

4. Turn on Nodes with more than specified number of fan-outs.

5. Click High Fan-Out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of fan-outs a node must have to be reported by the Design
Assistant.

Top Nodes with Highest Fan-out: <n>
Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out, which can
create timing challenges for your design.

To specify the number of fan-outs, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Design Assistant.

3. On the Design Assistant page, click the icon next to Timing closure to expand
the folder.

4. Select Nodes with more than specified number of fan-outs.

5. Click High Fan-Out Net Settings.

6. In the High Fan-Out Net Settings dialog box, enter the number of nodes with the
highest fan-out to be reported by the Design Assistant.

Data Bits Are Not Synchronized When Transferred between Asynchronous Clock
Domains
Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a design need to be
synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit needs to be synchronized with
two cascading registers in the receiving asynchronous clock domain, in which the
cascaded registers are triggered on the same clock edge. Do not put any logic between
the output of the transmitting clock domain and the cascaded registers in the
receiving asynchronous clock domain.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–27
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If the data bits belong to multiple-bit data, use a handshake protocol to guarantee that
all bits of the data bus are stable when the receiving clock domain samples the data. If
you use a handshake protocol, only the data bits that act as REQ (request) and ACK
(acknowledge) signals must be synchronized. The data bits that belong to multiple-bit
data do not need to be synchronized. Ignore the violation on the data bits that use a
handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are transferred between
asynchronous clock domains are synchronized. However, not all data bits may be
aligned in the receiving clock domain. Propagation delays may cause skew when the
data reaches the receiving clock domain.

If the data bits belong to multiple-bit data and you use a handshake protocol, only the
data bits that act as REQ, ACK, or both signals for the transfer need to be synchronized
with two or more cascading registers in the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the data bits does
not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous
Clock Domains
Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in a design
need to be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit needs to be synchronized with
two cascading registers in the receiving asynchronous clock domain. In this case, the
cascaded registers are triggered on the same clock edge. Do not put any logic between
the output of the transmitting clock domain and the cascaded registers in the
receiving asynchronous clock domain.

1 This rule only applies when the data bits across asynchronous clock domains are
synchronized but fail to follow the guidelines.

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains
Severity Level: High
Rule ID: M101

Data bits that are transferred between asynchronous clock domains in your design
need to be synchronized to avoid metastability problems. Rule M101 is a
state-machine-specific rule that triggers when input signals of a state machine across
asynchronous clock domains are not synchronized or improperly synchronized. Rule
M101 applies to state machines only, while the “Data Bits Are Not Synchronized
When Transferred between Asynchronous Clock Domains” rule (D101) and the “Data
Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock
Domains” rule (D103) apply only to data synchronization between registers.

5–28 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

No Reset Signal Defined to Initialize the State Machine
Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) needs to have a reset signal that initializes the state
machine to its initial state. A finite state machine without a proper initialization state
is susceptible to functional problems and can introduce extra difficulty in analysis,
verification, and maintenance.

State Machine Should Not Contain Unreachable State
Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial state. Having
an unreachable state in your design causes logic redundancy and affects your design
functionality. Rule M103 triggers when the initial state cannot traverse to a state
through any of the reachable states and transitions.

State Machine Should Not Contain a Deadlock State
Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another state except to
loop to itself. When the state machine enters a deadlock state, it stays in that state
until the state machine is reset. Your design may have a single state, or a few states
forming a deadlock structure. Having a deadlock state in your design leads to design
functionality problems, and theoretically may consume more power.

You can change the maximum number of states to be detected as a deadlock structure
by clicking Settings on the Assignments menu, and in the Settings dialog box, in the
Category list, select Design Assistant. In the Design Assistant page, click Finite State
Machine Deadlock Settings. In the Finite State Machine Deadlock Settings dialog
box, specify the maximum number of states to be reported as a deadlock structure.
The default setting is 2.

State Machine Should Not Contain a Dead Transition
Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless of the event
sequence input to the state machine. A dead transition indicates logic redundancy in
your design, although it may not affect your design functionality. Rule M105 triggers
when the condition required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules
You can selectively enable or disable Design Assistant rules on individual nodes by
making an assignment in the Assignment Editor or by using the
altera_attribute synthesis attribute in Verilog HDL or VHDL, or using a Tcl
command.

f For a list of the types of nodes that allow Design Assistant rule suppression, refer to
Node Types Eligible for Rule Suppression in the Quartus II Help.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–29
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 Assignments made with Assignment Editor, the Quartus Settings File (.qsf), and Tcl
scripts and commands, take precedence over assignments made with the
altera_attribute synthesis attribute. Assignments made to nodes, entities, or
instances, take precedence over global assignments.

Using the Assignment Editor
You can enable or disable a Design Assistant rule on selected nodes in your design by
using the Assignments Editor. You must first compile your design if you have not
already done so.

To enable or disable a Design Assistant rule, follow these steps:

1. On the Assignments menu, click Assignment Editor.

2. In the spreadsheet, for the desired node, entity, or instance, double-click the cell in
the Assignment Name column and select Enable Design Assistant Rule or
Disable Design Assistant Rule in the pull-down menu.

3. Double-click the Value cell and type in the Rule ID.

or

Click Browse to open the Design Assistant Rules dialog box. In the Design
Assistant Rules dialog box, select the rule you want to enable or disable for that
particular node.

1 You can enable or disable multiple rules by typing more than one Rule ID in the cell
and separating each Rule ID with a comma.

Using Verilog HDL
You can use the altera_attributes synthesis attribute in your Verilog HDL code
to enable or disable a Design Assistant rule on the selected nodes in your design.

To enable the rule on the selected node, the syntax is shown in the following example:

<entity class> <object> /* synthesis altera_attribute="enable_da_rule=<ruleID>" */

You can enable more than one rule on a selected node as shown in the following
example:

<entity class> <object> /* synthesis altera_attribute="enable_da_rule=\"<ruleID>,
<ruleID>, <ruleID>\""*/

To disable the rule on the selected node, the syntax is shown in the following example:

<entity class> <object> /* synthesis altera_attribute="disable_da_rule=<ruleID>" */

You can disable more than one rule on a selected node as shown in the following
example:

<entity class> <object> /* synthesis altera_attribute="disable_da_rule=\"<ruleID>,
<ruleID>, <ruleID>\""*/

1 When enabling or disabling multiple rules in Verilog HDL, you must separate the
Rule ID strings with commas and spaces only and they must be enclosed within the
\" and \" characters.

5–30 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Using VHDL
You can use the altera_attributes synthesis attribute in your VHDL code to
enable or disable a Design Assistant rule on the selected nodes in your design.

To enable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute altera_attribute of <object>: <entity
class> is "enable_da_rule=<ruleID>"

You can enable more than one rule on a selected node as shown in the following
example:

attribute altera_attribute : string;attribute altera_attribute of <object>: <entity
class> is "enable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

To disable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute altera_attribute of <object>: <entity
class> is "disable_da_rule=<ruleID>"

You can disable more than one rule on a selected node as shown in the following
example:

attribute altera_attribute : string;attribute altera_attribute of <object>: <entity
class> is "disable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

1 When enabling or disabling multiple rules in VHDL, you must separate the Rule ID
strings with commas and spaces only and they must be enclosed with double
quotation mark ("") characters.

Using TCL Commands
To enable a Design Assistant rule on the selected node in your design using Tcl in a
script or at a Tcl prompt, use the following Tcl command:

set_instance_assignment -name enable_da_rule "<rule ID>" -to <design element> r
To enable more than one rule on a selected node, use the following Tcl command:

set_instance_assignment -name enable_da_rule "<rule ID>, <rule ID>"
-to <design element> r

To disable a Design Assistant rule on a selected node in your design using Tcl in a
script, or at a command or Tcl prompt, use the following Tcl command:

set_instance_assignment -name disable_da_rule "<rule ID>" -to <design element> r
To disable more than one rule on a selected node, use the following Tcl command:

set_instance_assignment -name disable_da_rule "<rule ID>, <rule ID>"
-to <design element> r

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–31
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Viewing Design Assistant Results
If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated design rule. The Design
Assistant displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name> subdirectory
of the project directory.

The Design Assistant generates the following reports based on the settings specified
in the Design Assistant page:

■ Summary Report

■ Settings Report

■ Detailed Results Report

■ Messages Report

■ Rule Suppression Assignments Report

■ Ignored Design Assistant Assignments Report

■ Custom Rules Report

Summary Report
The Design Assistant Summary report contains a summary of the Design Assistant
process on a particular project. The Design Assistant Summary report provides the
following information:

■ Design Assistant Status—the status, end date, and end time of the Design
Assistant operation

■ Revision Name—the revision name specified in the Revisions dialog box

■ Top-level Entity Name—the top-level entity of your design

■ Family—the device family name specified in the Device page of the Settings
dialog box

■ Total Critical Violations, Total High Violations, Total Medium Violations, and
Total Information Only Violations—the total violations of the rules organized by
level, some of which might affect the reliability of the design

1 Review the violations closely before converting your design for HardCopy devices to
achieve a successful conversion.

Settings Report
The Design Assistant Settings report contains a list of enabled Design Assistant rules
and options that you specified in the Design Assistant Settings page, as shown in
Figure 5–12.

5–32 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Detailed Results Report
The Detailed Results report contains detailed information of every rule violation
including the rule name, node name, and fan-out. This report appears only if you
specify settings in the Design Assistant Settings page. For more information about
how to specify the settings, refer to “The Design Assistant Settings Page” on
page 5–15.

Separate Detailed Results reports are generated for critical, high, medium, and
information only results. Figure 5–13 shows the Information Only Violations report.

Figure 5–12. The Design Assistant Settings Report

Figure 5–13. The Design Detailed Results Report, Information Only

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–33
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Messages Report
The Messages report contains current information, warning, and error messages
generated during the Design Assistant process. You can right-click a message in the
Messages report and click Help to display the Quartus II software Help with details
about the selected message, or click Locate to trace or cross-probe the selected node
and locate the source of the violation.

Rule Suppression Assignments Report
The Rule Suppression Assignments report contains detailed information about which
Design Assistant rules are enabled or disabled, as explained in the “Enabling and
Disabling Design Assistant Rules” on page 5–28. The report shows the following
information:

■ Assignment—shows the name of the assignment

■ Value—identifies the rule

■ To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report
The Ignored Design Assistant Assignments report lists detailed information about the
invalid and conflicting rule assignments reported by the Design Assistant. This report
is generated only if you specify an invalid rule ID in the rule suppression or a
conflicting rule assignment. The following information appears in the report:

■ Assignment—shows the name of the assignment

■ Value—identifies the rule

■ To—shows the name of the node where the rule is being applied

■ Comment—shows why the assignment is being ignored

Custom Rules Report
The Design Assistant Custom Rules report contains the names of the custom rules
used in the design checking, the path to the custom rules files from which the custom
rules are read, and the list of ignored custom rules.

Custom Rules
In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) using the XML format. You then specify the path to that file in the
Design Assistant settings page and run the Design Assistant for violations checking.

The file that contains the default rules for the Design Assistant is located at
<Quartus II install path>\quartus\libraries\design-assistant\da_golden_rule.xml.

For details about how to set the file path to your custom rules, refer to “Specifying the
Path to the Custom Rules File” on page 5–35.

This section explains the basics of writing a custom rule, the Design Assistant settings,
and provides coding examples on how to check for clock relationship and node
relationship in a design.

5–34 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

XML File Format for Custom Rules
All XML commands in custom rules file must be written within the <ROOT> and
</ROOT> tags. Every user-defined rule consists of three main sections:

■ Rule Attribute

■ Rule Definition

■ Reporting

The Rule Definition and Reporting sections must be defined inside the Rule Attribute
section. Example 5–1 shows all three sections in a pre-defined custom rule file.

1 XML commands and attributes are case sensitive. However, attribute values are not
case sensitive.

The Rule Attribute section contains the name, ID, severity level, and enable value of a
rule. The order of these attributes is not important. This section is enclosed within
<DA_RULE> and </DA_RULE> tags. Table 5–3 describes the attributes of the Rule
Attribute section.

1 All string-type values must be enclosed within double quotes.

Example 5–1. Predefined XML File Format for a Custom Rule

<ROOT>
<!-Start creating a rule here -->

<!--Define rule attribute for a rule here -->
<DA_RULE ID=<rule id> NAME=<rule name> SEVERITY=<rule severity> DEFAULT_RUN=<default run> >

<RULE_DEFINITION>
<!--Define rule definition here -->

</RULE_DEFINITION>

<REPORTING>
<!--Define report settings here -->

</REPORTING>

</DA_RULE>

</ROOT>

Table 5–3. Attributes for the Rule Attribute Section

Attribute Description

ID The value for this attribute is string type and must be unique. This attribute is required. For the
list of IDs of the default rules, refer to Table 5–2 on page 5–16.

NAME The value for this attribute is string type. This attribute is optional.

SEVERITY This attribute presents the severity level of the rule. The value is string type and can be
CRITICAL, HIGH, MEDIUM, or INFORMATION. This attribute is required.

For details about rule severity level, refer to “Message Severity Levels” on page 5–15.

DEFAULT_RUN The value is string type and can only be YES, or NO. If the value is YES, the rule is included in
the design rule check, and vice versa. By default, the value is YES. This attribute is optional.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–35
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Command lines that begin with a single XML tag must end with the “/>” sign before
another command begins.

The Rule Definition section is where you declare the node properties and rule
triggering conditions, enclosed by <RULE_DEFINITION> and
</RULE_DEFINITION> tags.

There are four subsections within the Rule Definition section that you can use to
declare the properties and conditions:

■ <DECLARE>—Global nodes that are used in the file are declared in this subsection.
Every node name must be unique.

1 A node declared outside of the <DECLARE> subsection is considered a local
node. You can perform local node declaration at any place in the <BASIC>,
<REQUIRED>, and <FORBID> subsections, and can be performed using the
node declaration command directly without being enclosed within the
<DECLARE> tag.

■ <BASIC>—This subsection contains the condition that acts like a trigger point
which the Design Assistant continuously checks for a match. If the condition is
fulfilled, the Design Assistant checks the remaining conditions in the
<REQUIRED> and <FORBID> subsections.

■ <REQUIRED>—This subsection contains the acceptable conditions that your
design must meet. If the condition is not fulfilled, the Design Assistant reports a
rule violation.

■ <FORBID>—This subsection contains the undesirable condition for a design. If the
condition is fulfilled, the Design Assistant highlights a rule violation. This
subsection may be optional, depending on your rule situation.

The Reporting section is where you describe the settings for rule violation reporting,
enclosed by <REPORTING> and </REPORTING> tags. This section is optional. If there
is no Reporting section defined, the violated rule is not reported. If the Reporting
section is defined, the Design Assistant reports the name of the violated rule and the
nodes that violated the rule according to the reporting format that you defined.

Specifying the Path to the Custom Rules File
To specify the path to the custom rule file, follow these steps:

1. To specify the path, on the Assignments menu, click Settings.

2. In the Category list, click Design Assistant and select Custom Rules Settings.

3. In the Custom Rules Settings dialog box, in the Project custom rules file name
field, specify the path to your custom rules file.

4. Click OK.

Your rules are now included in the list of default Design Assistant rules.

1 The default file extension for a Design Assistant custom rules file is .dacr, but the file
can have any file name or extension.

To specify the rules that you want the Design Assistant to check for violations, refer to
“The Design Assistant Settings Page” on page 5–15.

5–36 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Custom Rules Coding Examples
The following examples of custom rules show how to check node relationships and
clock relationships in a design.

Checking SR Latch Structures In a Design

Example 5–2 shows the XML codes for checking SR latch structures in a design.

In Example 5–2, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></AND> block are tied together, meaning that
each statement in the block must be true for the block to be fulfilled (AND gate
similarity). In the <OR></OR> block, as long as one statement in the block is true, the
block is fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR> block is
specified, the default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 5–2 with their
equivalent block diagrams (Figure 5–14 and Figure 5–15):

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"

TO_TYPE="NAND" />

Example 5–2. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>

<FORBID>
<OR>

<NODE NAME="NODE_1" TYPE="SRLATCH" />
<HAS_NODE NODE_LIST="NODE_1" />
<NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
<NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
TO_TYPE="NAND" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />

</AND>
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />

</AND>
</OR>

</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />

</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–37
Checking Design Violations Using the Design Assistant

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />
</AND>

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2" TO_TYPE="NOR" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1" TO_TYPE="NOR" />

</AND>

Relating Nodes to a Clock Domain

Example 5–3 shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes
to clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done using cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 5–3 checks for the synchronizer configuration based on the following
guidelines:

■ The cascading registers need to be triggered on the same clock edge

■ Do not put any logic between the register output of the transmitting clock domain
and the cascaded registers in the receiving asynchronous clock domain

Figure 5–14. Undesired Condition 1

Figure 5–15. Undesired Condition 2

5–38 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Checking Design Violations Using the Design Assistant

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN
means non-asynchronous. This notation is useful for describing nodes that are in
different clock domains. The following lines from Example 5–3 state that NODE_2 and
NODE_3 are in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

The next line of code states that NODE_2 and NODE_3 have a clock relationship of
either sequential edge or asynchronous.

 <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

Example 5–3. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>

<NODE NAME="NODE_1" TYPE="REG" />
<NODE NAME="NODE_2" TYPE="REG" />
<NODE NAME="NODE_3" TYPE="REG" />

</DECLARE>
<FORBID>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<OR>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"

REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />
<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

</OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
<MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">

<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
<MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />

</MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–39
Targeting Clock and Register-Control Architectural Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The following examples are the undesired conditions from Example 5–3 with their
equivalent block diagrams (Figure 5–16 and Figure 5–17):

Targeting Clock and Register-Control Architectural Features
In addition to following general design guidelines, it is important to code your design
with the device architecture in mind. FPGAs provide device-wide clocks and register
control signals that can improve performance.

Example 5–4.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 5–16. Undesired Condition 3

Example 5–5.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 5–17. Undesired Condition 4

5–40 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Targeting Clock and Register-Control Architectural Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Clock Network Resources
Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or using a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In ASIC design, balancing clock delay as it is distributed across the device is
important. Because Altera FPGAs provides device-wide global clock routing
resources and dedicated inputs, there is no need to manually balance delays on the
clock network.

Altera recommends limiting the number of clocks in your design to the number of
dedicated global clock resources available in your FPGA. Clocks feeding multiple
locations that do not use global routing may exhibit clock skew across the device that
could lead to timing problems. In addition, when you use combinational logic to
generate an internal clock, it adds delays on the clock line. In some cases, delay on a
clock line can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing parameters of the
register (such as hold time requirements) are violated and the design will not function
correctly.

Current FPGAs offer increasing numbers of global clocks to address large designs
with many clock domains. Many large FPGA devices provide dedicated global clock
networks, regional clock networks, and dedicated fast regional clock networks. These
clocks are typically organized into a hierarchical clock structure that allows many
clocks in each device region with low skew and delay. There are typically a number of
dedicated clock pins to drive either the global or regional clock networks and both
PLL outputs and internal clocks can drive various clock networks.

To reduce clock skew within a given clock domain and ensure that hold times are met
within that clock domain, assign each clock signal to one of the global high fan-out,
low-skew clock networks in the FPGA device. The Quartus II software automatically
uses global routing for high fan-out control signals, PLL outputs, and signals feeding
the global clock pins on the device. You can make explicit Global Signal logic option
settings by turning on the Global Signal option settings. On the Assignments menu,
click Assignment Editor. Use this option when it is necessary to force the software to
use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Altera device families (such as FLEX® 10K and
ACEX® 1K), if a clock signal feeds the data ports of a register, the signal may not be
able to use dedicated routing, which can lead to decreased performance and clock
skew problems. In general, allowing clock signals to drive the data ports of registers is
not considered synchronous design and can complicate timing analysis. Altera does
not recommend this practice.

Reset Resources
ASIC designs may use local resets to avoid long routing delays on the signal. Take
advantage of the device-wide asynchronous reset pin available on most FPGAs to
eliminate these problems. This reset signal provides low-skew routing across the
device.

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–41
Targeting Embedded RAM Architectural Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Register Control Signals
Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid
using both asynchronous clear and preset if the architecture provides only one of
those control signals. Stratix III devices, for example, directly support an
asynchronous clear function, but not a preset or load function. When the target device
does not directly support the signals, the synthesis or place-and-route software must
use combinational logic to implement the same functionality. In addition, if you use
signals in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the desired control signals.
Combinational logic is less efficient and can cause glitches and other problems; it is
best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control signals, and
information about the inherent priority order of register control signals in Altera
device architecture, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

Targeting Embedded RAM Architectural Features
Altera’s dedicated memory architecture offers many advanced features that you can
target easily using the MegaWizard™ Plug-In Manager or using the recommended
HDL coding styles that infer the appropriate RAM megafunction (ALTSYNCRAM or
ALTDPRAM). Altera recommends using synchronous memory blocks for your
design, so the blocks can be mapped directly into the device dedicated memory
blocks. You can choose to use single-port, dual-port, or three-port RAM with a
single- or dual-clocking method. Asynchronous memory logic is not inferred as a
memory block or placed in the dedicated memory block, but is implemented in
regular logic cells.

Altera memory blocks have differing read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

It is important to check how you specify the memory in your HDL code when you use
read-during-write behavior. The HDL code describes that the read returns either the
old data at the memory location, or the new data being written to the memory
location. The old data refers to the data stored in the memory location. The new data
refers to the data that is being written to the memory location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Altera recommends that you implement the read-during-write
behavior using single-port RAM in Arria® GX devices and the Stratix and Cyclone
series of devices to avoid this extra logic implementation.

f For Verilog HDL and VHDL examples and guidelines for inferring RAM functions
that match the dedicated memory architecture in Altera devices, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

5–42 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Quartus II integrated synthesis, add the synthesis
attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block and, in some
cases, can allow memory inference when it would otherwise be impossible.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about the
synthesis attributes in other synthesis tools, refer to your synthesis tool
documentation, or to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook.

Conclusion
Following the design practices described in this chapter can help you to consistently
meet your design goals. Asynchronous design techniques may result in incomplete
timing analysis, may cause glitches on data signals, and may rely on propagation
delays in a device leading to race conditions and unpredictable results. Taking
advantage of the architectural features in your FPGA device can also improve the
quality of your results.

Referenced Documents
This chapter references the following documents:

■ AN 437: Power Optimization in Stratix III FPGAs

■ AN 514: Power Optimization in Stratix IV FPGAs

■ Design Guidelines for HardCopy Series Devices chapter in the HardCopy Series
Handbook

■ Power Optimization chapter in volume 2 of the Quartus II Handbook

■ PowerPlay Power Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf

Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant 5–43
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Document Revision History
Table 5–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 5–4. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

Removed documentation of obsolete rules. Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

No change to content. Updated for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added new section “Custom Rules Coding Examples” on
page 5–36

■ Added paragraph to “Recommended Clock-Gating Methods” on
page 5–11.

■ Added new section: “Design Techniques to Save Power” on
page 5–12.

Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Updated Figure 5–9 on page 5–13; added custom rules file to
the flow

■ Added notes to Figure 5–9 on page 5–13

■ Added new section: “Custom Rules Report” on page 5–34

■ Added new section: “Custom Rules” on page 5–34

■ Added new section: “Targeting Embedded RAM Architectural
Features” on page 5–38

■ Minor editorial updates throughout the chapter

■ Added hyperlinks to referenced documents throughout the
chapter

Updated for the Quartus II software
version 8.0 release.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

5–44 Chapter 5: Design Recommendations for Altera Devices and the Quartus II Design Assistant
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

6. Recommended HDL Coding Styles

This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Altera® devices.

Introduction
HDL coding styles can have a significant effect on the quality of results that you
achieve for programmable logic designs. Synthesis tools optimize HDL code for both
logic utilization and performance, however, synthesis tools have no information
about the purpose or intent of the design. The best optimizations require conscious
interaction by the you, the designer.

This chapter includes the following sections:

■ “Quartus II Language Templates” on page 6–2

■ “Using Altera Megafunctions” on page 6–2

■ “Instantiating Altera Megafunctions in HDL Code” on page 6–3

■ “Inferring Multiplier and DSP Functions from HDL Code” on page 6–6

■ “Inferring Memory Functions from HDL Code” on page 6–12

■ “Coding Guidelines for Registers and Latches” on page 6–36

■ “General Coding Guidelines” on page 6–46

■ “Designing with Low-Level Primitives” on page 6–71

f For additional guidelines about structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook. For additional handcrafted techniques you can
use to optimize design blocks for the adaptive logic modules (ALMs) in many Altera
devices, including a collection of circuit building blocks and related discussions, refer
to the Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and
Stratix IV Devices.

The Altera website also provides design examples for other types of functions and to
target specific applications. Refer to the Design Examples page and the Reference
Designs page.

For style recommendations, options, or HDL attributes specific to your synthesis tool
(including Quartus® II integrated synthesis and other EDA tools), refer to the tool
vendor’s documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

QII51007-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/refdesigns/ref-index.jsp

6–2 Chapter 6: Recommended HDL Coding Styles
Quartus II Language Templates

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Quartus II Language Templates
Many of the Verilog HDL and VHDL examples in this document correspond with
examples in the templates. You can easily insert examples from this document into
your HDL source code using the Insert Template dialog box in the Quartus II
software user interface, shown in Figure 6–1.

To open the Insert Template dialog box when you have a file open in the Text Editor
of the Quartus II software, on the Edit menu, click Insert Template. Alternatively, you
can right-click in the Text Editor window and click Insert Template.

Using Altera Megafunctions
Altera provides parameterizable megafunctions that are optimized for Altera device
architectures. Using megafunctions instead of coding your own logic saves valuable
design time. Additionally, the Altera-provided megafunctions may offer more
efficient logic synthesis and device implementation. You can scale the megafunction’s
size and specify various options by setting parameters. Megafunctions include the
library of parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as described in
“Instantiating Altera Megafunctions in HDL Code” on page 6–3.

Figure 6–1. Insert Template Dialog Box

Chapter 6: Recommended HDL Coding Styles 6–3
Instantiating Altera Megafunctions in HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Sometimes it is preferable to make your code independent of device family or vendor.
In this case, you might not want to instantiate megafunctions directly. For some types
of logic functions, such as memories and DSP functions, you can infer a megafunction
instead of instantiating it. Synthesis tools, including Quartus II integrated synthesis,
recognize certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code when compiling
your design—even when you do not specifically instantiate the megafunction.
Synthesis tools infer megafunctions to take advantage of logic that is optimized for
Altera devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of instantiating a
megafunction, follow the guidelines and coding examples in “Inferring Multiplier
and DSP Functions from HDL Code” on page 6–6 and “Inferring Memory Functions
from HDL Code” on page 6–12 to ensure your HDL code infers the appropriate Altera
megafunction.

1 You must use megafunctions to access some Altera device-specific architecture
features. You can infer or instantiate megafunctions to target some features such as
memory and DSP blocks. You must instantiate megafunctions to target certain device
and high-speed features such as LVDS drivers, phase-locked loops (PLLs),
transceivers, and double-data rate input/output (DDIO) circuitry.

For some designs, generic HDL code can provide better results than instantiating a
megafunction. The following guidelines and examples describe when to use standard
HDL code instead of LPM megafunctions:

■ For simple addition or subtraction functions, use the + or – symbol instead of an
LPM function. Instantiating an LPM function for simple arithmetic operations can
result in a less efficient result because the function is hard coded and the synthesis
algorithms cannot take advantage of basic logic optimizations.

■ For simple multiplexers and decoders, use array notation (such as out =
data[sel]) instead of an LPM function. Array notation works very well and has
simple syntax. Use the lpm_mux function to take advantage of architectural
features only if you want to force a specific implementation.

■ Avoid division operations where possible. Division is an inherently slow
operation. Many designers use multiplication creatively to produce division
results.

Instantiating Altera Megafunctions in HDL Code
The following sections describe how to use megafunctions by instantiating them in
your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In Manager”—You can
use the MegaWizard™ Plug-In Manager to parameterize the function and create a
wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can optionally create a
netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter Definition”—You can
instantiate the function directly in your HDL code.

6–4 Chapter 6: Recommended HDL Coding Styles
Instantiating Altera Megafunctions in HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Instantiating Megafunctions Using the MegaWizard Plug-In Manager
Use the MegaWizard Plug-In Manager as described in this section to create
megafunctions in the Quartus II software that you can instantiate in your HDL code.
The MegaWizard Plug-In Manager provides a GUI to customize and parameterize
megafunctions, and ensures that you set all megafunction parameters properly. When
you finish setting parameters, you can specify which files you want generated.
Depending on which language you choose, the MegaWizard Plug-In Manager
instantiates the megafunction with the correct parameters and generates a
megafunction variation file (wrapper file) in Verilog HDL (.v), VHDL (.vhd), or
AHDL (.tdf), along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the following files:

■ A sample instantiation template for the language of the variation file, either
_inst.v, or _inst.vhd, or _inst.tdf.

■ Component Declaration File (.cmp) that can be used in VHDL Design Files.

■ ADHL Include File (.inc) that can be used in Text Design Files (.tdf).

■ Quartus II Block Symbol File (.bsf) for schematic designs.

■ Verilog HDL module declaration file that can be used when instantiating the
megafunction as a black box in a third-party synthesis tool (_bb.v).

■ If you enable the option to generate a synthesis timing and resource estimation
netlist, the MegaWizard Plug-In Manager generates an additional synthesis netlist
file (_syn.v). Refer to “Creating a Netlist File for Other Synthesis Tools” on
page 6–5 for details.

Table 6–1 lists and describes the files generated by the MegaWizard Plug-In Manager.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL design.

<output file>.tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus II Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module in the
megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the megafunction
wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the subdesign in the
megafunction wrapper file.

<output file>_bb.v Black box Verilog HDL Module Declaration—Hollow-body module declaration that can be
used in Verilog HDL designs to specify port directions when creating black boxes in
third-party synthesis tools.

Chapter 6: Recommended HDL Coding Styles 6–5
Instantiating Altera Megafunctions in HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating a Netlist File for Other Synthesis Tools
When you use certain megafunctions with third-party EDA synthesis tools (that is,
tools other than Quartus II integrated synthesis), you can optionally create a netlist for
timing and resource estimation instead of a wrapper file.

The netlist file is a representation of the customized logic used in the Quartus II
software. The file provides the connectivity of architectural elements in the
megafunction but may not represent true functionality. This information enables
certain third-party synthesis tools to better report timing and resource estimates. In
addition, synthesis tools can use the timing information to focus timing-driven
optimizations and improve the quality of results.

To generate the netlist, turn on Generate netlist under Timing and resource
estimation on the EDA page of the MegaWizard Plug-In Manager. The netlist file is
called <output file>_syn.v. If you use this netlist for synthesis, you must include the
megafunction wrapper file, either <output file>.v or <output file>.vhd, for placement
and routing in the project created with the Quartus II software.

Because your synthesis tool may call the Quartus II software in the background to
generate this netlist, turning on this option might not be required.

f For information about support for timing and resource estimation netlists in your
synthesis tool, refer to the tool vendor’s documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Instantiating Megafunctions Using the Port and Parameter Definition
You can instantiate the megafunction directly in your Verilog HDL, VHDL, or AHDL
code by calling the megafunction and setting its parameters as you would any other
module, component, or subdesign.

f Refer to the specific megafunction in the Quartus II Help for a list of the megafunction
ports and parameters. The Quartus II Help also provides a sample VHDL component
declaration and AHDL function prototype for each megafunction.

1 Altera strongly recommends that you use the MegaWizard Plug-In Manager for
complex megafunctions such as PLLs, transceivers, and LVDS drivers. For details
about using the MegaWizard Plug-In Manager, refer to “Instantiating Megafunctions
Using the MegaWizard Plug-In Manager” on page 6–4.

<output file>_syn.v (2) Synthesis timing and resource estimation netlist—Megafunction netlist may be used by
third-party synthesis tools to improve timing and resource estimations.

Notes to Table 6–1:

(1) The MegaWizard Plug-In Manager generates either the .v, .vhd, or .tdf file, depending on the language you select for the output file on the
megafunction-selection page of the wizard.

(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate netlist option under Timing and resource estimation on
the EDA page of the wizard.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–6 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring Multiplier and DSP Functions from HDL Code
The following sections describe how to infer multiplier and DSP functions from
generic HDL code, and, if applicable, how to target the dedicated DSP block
architecture in Altera devices:

■ “Multipliers—Inferring the LPM_MULT Megafunction from HDL Code”

■ “Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM
and ALTMULT_ADD Megafunctions from HDL Code” on page 6–8

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

f For more design examples involving advanced multiply functions and complex DSP
functions, refer to the DSP Design Examples page on the Altera website.

Multipliers—Inferring the LPM_MULT Megafunction from HDL Code
To infer multiplier functions, synthesis tools look for multipliers and convert them to
LPM_MULT or ALTMULT_ADD megafunctions, or may map them directly to device
atoms. For devices with DSP blocks, the software can implement the function in a DSP
block instead of logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register packing) to
improve performance and area utilization.

f For additional information about the DSP block and the supported functions, refer to
the appropriate Altera device family handbook and the Altera DSP Solutions Center
website.

Example 6–1 and Example 6–2 show Verilog HDL code examples, and Example 6–3
and Example 6–4 show VHDL code examples, for unsigned and signed multipliers
that synthesis tools can infer as an LPM_MULT or ALTMULT_ADD megafunction.
Each example fits into one DSP block element. In addition, when register packing
occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 6–1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule

http://www.altera.com/technology/dsp/dsp-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/dsp/exm-dsp.html

Chapter 6: Recommended HDL Coding Styles 6–7
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule

Example 6–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

6–8 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and
ALTMULT_ADD Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and convert them to
ALTMULT_ACCUM or ALTMULT_ADD megafunctions, respectively, or may map
them directly to device atoms. The Quartus II software then places these functions in
DSP blocks during placement and routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Altera device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators.
Addition is always the second-level operator, if it is used. In addition to the
multiply-accumulator and multiply-adder, the Quartus II Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-add and accumulate
functions, such as complex multiplication, input shift register, or larger
multiplications.

f For details about advanced DSP block features, refer to the appropriate device
handbook. For more design examples involving DSP functions and inferring
advanced features in the multiply-add and multiply-accumulate circuitry, refer to the
DSP Design Examples page on Altera’s website.

The Verilog HDL and VHDL code samples shown in Example 6–5 through
Example 6–8 infer multiply-accumulators and multiply-adders with input, output,
and pipeline registers as well as an optional asynchronous clear signal. Using the
three sets of registers provides the best performance through the function, with a
latency of 3. You can remove the registers in your design to reduce the latency.

Example 6–4. VHDL Signed Multiplier

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN

result <= a * b;
END rtl;

http://www.altera.com/support/examples/dsp/exm-dsp.html
http://www.altera.com/support/examples/dsp/exm-dsp.html
http://www.altera.com/support/examples/dsp/exm-dsp.html

Chapter 6: Recommended HDL Coding Styles 6–9
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–5. Verilog HDL Unsigned Multiply-Accumulator

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output reg[16:0] dataout;

reg [7:0] dataa_reg, datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [16:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 17'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule

6–10 Chapter 6: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–6. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr,
result);

input signed [15:0] dataa, datab, datac, datad;
input clock, aclr;
output reg signed [32:0] result;

reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
reg signed [31:0] mult0_result, mult1_result;

always @ (posedge clock or posedge aclr) begin
 if (aclr) begin
 dataa_reg <= 16'b0;
 datab_reg <= 16'b0;
 datac_reg <= 16'b0;
 datad_reg <= 16'b0;
 mult0_result <= 32'b0;
 mult1_result <= 32'b0;
 result <= 33'b0;
 end
 else begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 datac_reg <= datac;
 datad_reg <= datad;
 mult0_result <= dataa_reg * datab_reg;
 mult1_result <= datac_reg * datad_reg;
 result <= mult0_result + mult1_result;
 end

end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–11
Inferring Multiplier and DSP Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–7. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

 IF (aclr = '1') then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 pdt_reg <= (others => '0');
 adder_out <= (others => '0');
 ELSIF (clk'event and clk = '1') THEN

a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;

6–12 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring Memory Functions from HDL Code
The following sections describe how to infer memory functions from generic HDL
code and, if applicable, to target the dedicated memory architecture in Altera devices:

■ “RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions
from HDL Code” on page 6–13

■ “ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from
HDL Code” on page 6–28

■ “Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code”
on page 6–32

Example 6–8. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;

Chapter 6: Recommended HDL Coding Styles 6–13
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Altera’s dedicated memory architecture offers a number of advanced features that can
be easily targeted using the MegaWizard Plug-In Manager, as described in
“Instantiating Altera Megafunctions in HDL Code” on page 6–3. The coding
recommendations in the following sections provide portable examples of generic
HDL code that infer the appropriate megafunction. However, if you want to use some
of the advanced memory features in Altera devices, consider using the megafunction
directly so that you can control the ports and parameters more easily.

RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code
To infer RAM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or ALTDPRAM megafunctions for device families
that have dedicated RAM blocks, or may map them directly to device memory atoms.
Tools typically consider all signals and variables that have a two-dimensional array
type and then create a RAM block, if applicable, based on the way the signals,
variables, or both are assigned, referenced, or both in the HDL source description.
This section provides examples demonstrating the coding styles that are inferred to
create a memory block.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some tools (such as the Quartus II software) also
recognize true dual-port RAM blocks that map to the memory blocks in certain Altera
devices.

1 If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

When you use a formal verification flow, Altera recommends that you create RAM
blocks in separate entities or modules that contain only the RAM logic. In certain
formal verification flows, for example, when using Quartus II integrated synthesis,
the entity or module containing the inferred RAM is put into a black box
automatically because formal verification tools do not support RAM blocks. The
Quartus II software issues a warning message when this situation occurs. If the entity
or module contains any additional logic outside the RAM block, this logic cannot be
verified because it also must be treated as a black box for formal verification.

The following subsections present several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then provide
recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks
Altera recommends using synchronous memory blocks for Altera designs. Because
the TriMatrix memory blocks in the newest devices from Altera are synchronous,
RAM designs that are targeted towards architectures that contain these dedicated
memory blocks must be synchronous to be mapped directly into the device
architecture. For these devices, asynchronous memory logic is implemented in regular
logic cells.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–14 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Synchronous memory offers several advantages over asynchronous memory,
including higher frequencies and thus higher memory bandwidth, increased
reliability, and less standby power. In many designs with asynchronous memory, the
memory interfaces with synchronous logic so that the conversion to synchronous
memory design is straightforward. To convert asynchronous memory you can move
registers from the data path into the memory block.

Synchronous memories are supported in all Altera device families. A memory block is
considered synchronous if it uses one of the following read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or a VHDL
clocked process.

■ Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). This type of
logic is not always inferred as a memory block, depending on the target device
architecture.

1 The synchronous memory structures in Altera devices can differ from the structures
in other vendors’ devices. For best results, match your design to the target device
architecture.

Later subsections provide coding recommendations for various memory types. All of
these examples are synchronous to ensure that they can be directly mapped into the
dedicated memory architecture available in Altera FPGAs.

f For additional information about the dedicated memory blocks in your specific
device, refer to the appropriate Altera device family data sheet on the Altera website
at www.altera.com.

Avoid Unsupported Reset and Control Conditions
To ensure that your HDL code can be implemented in the target device architecture,
avoid unsupported reset conditions or other control logic that does not exist in the
device architecture.

The RAM contents of Altera memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Altera recommends against putting RAM read or write operations in an
always block or process block with a reset signal. If you want to specify memory
contents, initialize the memory as described in “Specifying Initial Memory Contents
at Power-Up” on page 6–26 or write the data to the RAM during device operation.

Example 6–9 shows an example of undesirable code where there is a reset signal that
clears part of the RAM contents. Avoid this coding style because it is not supported in
Altera memories.

http://www.altera.com

Chapter 6: Recommended HDL Coding Styles 6–15
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–10 shows an example of undesirable code where the reset signal affects the
RAM, although the effect may not be intended. Avoid this coding style because it is
not supported in Altera memories.

Example 6–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device
Architecture

module clear_ram
(

input clock, reset, we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule

Example 6–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule

6–16 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In addition to reset signals, other control logic can prevent memory logic from being
inferred as a memory block. For example, you cannot use a clock enable on the read
address registers in Stratix® devices, because doing so affects the output latch of the
RAM, and therefore the synthesized result in the device RAM architecture would not
match the HDL description. You can use the address stall feature as a read address
clock enable in Stratix II, Cyclone® II, Arria® GX, and other newer devices to avoid this
limitation. Check the documentation for your device architecture to ensure that your
code matches the hardware available in the device.

Check Read-During-Write Behavior
It is important to check the read-during-write behavior of the memory block
described in your HDL design as compared to the behavior in your target device
architecture. Your HDL source code specifies the memory behavior when you read
and write from the same memory address in the same clock cycle. The code specifies
that the read returns either the old data at the address, or the new data being written
to the address. This behavior is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write behavior
depending on the target device family, memory mode, and block type.

Synthesis tools map an HDL design into the target device architecture, with the goal
of maintaining the functionality described in your source code. Therefore, if your
source code specifies unsupported read-during-write behavior for the device RAM
blocks, the software must implement the logic outside the RAM hardware in regular
logic cells.

One common problem occurs when there is a continuous read in the HDL code, as
shown in the following examples. You should avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

When a write operation occurs, this type of HDL implies that the read should
immediately reflect the new data at the address, independent of the read clock.
However, that is not the behavior of TriMatrix memory blocks. In the device
architecture, the new data is not available until the next edge of the read clock.
Therefore, if the synthesis tool mapped the logic directly to a TriMatrix memory block,
the device functionality and gate-level simulation results would not match the HDL
description or function simulation results. If the write clock and read clock are the
same, the synthesis tool can infer memory blocks and add extra bypass logic so that
the device behavior matches the HDL behavior. If the write and read clocks are
different, the synthesis tool cannot reliably add bypass logic, so the logic is
implemented in regular logic cells instead of dedicated RAM blocks. The examples in
the following sections discuss some of these differences for read-during-write
conditions.

In addition, the MLAB feature in Stratix III and Stratix IV logic array blocks (LABs)
does not easily support old data or new data behavior for a read-during-write in the
dedicated device architecture. Implementing the extra logic to support this behavior
significantly reduces timing performance through the memory.

1 For best performance in MLAB memories, your design should not depend on the read
data during a write operation.

Chapter 6: Recommended HDL Coding Styles 6–17
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; for example, if you never read from the same address to
which you write in the same clock cycle. For Quartus II integrated synthesis, add the
synthesis attribute ramstyle set to "no_rw_check" to allow the software to choose
the read-during-write behavior of a RAM, rather than use the behavior specified by
your HDL code. Using this type of attribute prevents the synthesis tool from using
extra logic to implement the memory block, and in some cases, can allow memory
inference when it would otherwise be impossible.

f For more information about attribute syntax, the no_rw_check attribute value, or
specific options for your synthesis tool, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Subsequent subsections provide coding recommendations for various memory types.
Each example describes the read-during-write behavior and addresses the support for
the memory type in Altera devices.

Controlling Inference and Implementation in Device RAM Blocks
Tools usually do not infer small RAM blocks because small RAM blocks typically can
be implemented more efficiently using the registers in regular logic. If you are using
Quartus II integrated synthesis, you can direct the software to infer RAM blocks for
all sizes with the Allow Any RAM Size for Recognition option in the More Analysis
& Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred RAM
blocks for Altera devices with TriMatrix memory blocks. For example, Quartus II
integrated synthesis provides the ramstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block. Quartus II integrated synthesis does not map inferred memory into MLABs
unless the HDL code specifies the appropriate ramstyle attribute, although the
Fitter may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

If you want to control the implementation after the RAM function is inferred during
synthesis, you can set the ram_block_type parameter of the ALTSYNCRAM
megafunction. In the Assignment Editor, select Parameters in the Categories list. You
can use the Node Finder or drag the appropriate instance from the Project Navigator
window to enter the RAM hierarchical instance name. Type ram_block_type as the
Parameter Name and type one of the following TriMatrix memory types in the Value
field: "M-RAM", "M4K", "M512K", "M9K", "M144K", or "MLAB".

Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
The code examples in this section show Verilog HDL and VHDL code that infers
simple dual-port, single-clock synchronous RAM. Single-port RAM blocks use a
similar coding style.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–18 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The read-during-write behavior in these examples is to read the old data at the
memory address. Refer to “Check Read-During-Write Behavior” on page 6–16 for
details. Altera recommends that you use the Old Data Read-During-Write coding
style for most RAM blocks as long as your design does not require the RAM location’s
new value when you perform a simultaneous read and write to that RAM location.
For best performance in MLAB memories, use the appropriate attribute so that your
design does not depend on the read data during a write operation.

If you require that the read-during-write results in new data, refer to “Single-Clock
Synchronous RAM with New Data Read-During-Write Behavior” on page 6–19.

The simple dual-port RAM code samples shown in Example 6–11 and Example 6–12
map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) can allow better RAM utilization than dual-port memory blocks,
depending on the device family.

Example 6–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address]; // q doesn't get d in this clock cycle

end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–19
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
The examples in this section describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being written to that
RAM location.

To implement this behavior in the target device, synthesis software adds bypass logic
around the RAM block. This bypass logic increases the area utilization of the design
and decreases the performance if the RAM block is part of the design’s critical path.
Refer to “Check Read-During-Write Behavior” on page 6–16 for details. If this
behavior is not required for your design, use the examples from “Single-Clock
Synchronous RAM with Old Data Read-During-Write Behavior” on page 6–17.

The simple dual-port RAM shown in Example 6–13 and Example 6–14 require the
software to create bypass logic around the RAM block.

Single-port versions of the Verilog memory block (that is, using the same read address
and write address signals) do not require any logic cells to create bypass logic in the
Arria GX, Stratix, and Cyclone series of devices, because the device memory supports
new data read-during-write behavior when in single-port mode (same clock, same
read address, and same write address).

Example 6–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;

6–20 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 Example 6–13 is similar to Example 6–11, but Example 6–13 uses a blocking
assignment for the write so that the data is assigned immediately.

An alternative way to create a single-clock RAM is to use an assign statement to read
the address of mem to create the output q, as shown in the following coding style. By
itself, the code describes new data read-during-write behavior. However, if the RAM
output feeds a register in another hierarchy, a read-during-write results in the old
data. Synthesis tools may not infer a RAM block if the tool cannot determine which
behavior is described, such as when the memory feeds a hard hierarchical partition
boundary. For this reason, avoid using this alternate type of coding style:

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

Example 6–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if

we is high
end

endmodule

Chapter 6: Recommended HDL Coding Styles 6–21
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL sample in Example 6–14 uses a concurrent signal assignment to read from
the RAM. By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, a read-during-write
results in the old data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds a hard
hierarchical partition boundary.

For Quartus II integrated synthesis, if you do not require the read-through-write
capability, add the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM, rather than use the
behavior specified by your HDL code.

Simple Dual-Port, Dual-Clock Synchronous RAM
In dual clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code. Refer to “Check Read-During-Write
Behavior” on page 6–16 for details.

When Quartus II integrated synthesis infers this type of RAM, it issues a warning
because of the undefined read-during-write behavior. If this functionality is
acceptable in your design, you can avoid the warning by adding the synthesis
attribute ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM.

Example 6–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

6–22 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The code samples shown in Example 6–15 and Example 6–16 show Verilog HDL and
VHDL code that infers dual-clock synchronous RAM. The exact behavior depends on
the relationship between the clocks.

Example 6–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule

Example 6–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–23
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

True Dual-Port Synchronous RAM
The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories. This section describes the inference rules for Quartus II
integrated synthesis. This type of RAM inference is supported only for the Arria GX,
Stratix, and Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports, allowing for
operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address. The Quartus II
software infers true dual-port RAMs in Verilog HDL and VHDL with any
combination of independent read or write operations in the same clock cycle, with at
most two unique port addresses, performing two reads and one write, two writes and
one read, or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the two ports.
Therefore, if you write to the same location on both ports at the same time, the result
is indeterminate in the device architecture. You must ensure your HDL code does not
imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority, the
logic cannot be implemented in the device RAM blocks and is implemented in regular
logic cells.

You must also consider the read-during-write behavior of the RAM block to ensure
that it can be mapped directly to the device RAM architecture. Refer to “Check
Read-During-Write Behavior” on page 6–16 for details.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

■ Read new data—This mode matches the behavior of TriMatrix memory blocks.

■ Read old data—This mode is supported only by TriMatrix memory blocks in Arria
II GX, Cyclone III, Stratix III, and Stratix IV newer device families. This behavior is
not possible in TriMatrix memory blocks of older families.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

■ Read new data—Quartus II integrated synthesis supports this mode by creating
bypass logic around the TriMatrix memory block.

■ Read old data—This behavior is supported by TriMatrix memory blocks.

The Verilog HDL single-clock code sample shown in Example 6–17 maps directly into
Altera TriMatrix memory. When a read and write operation occurs on the same port
for the same address, the new data being written to the memory is read. When a read
and write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

6–24 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If you use the following Verilog HDL read statements instead of the if-else
statements in Example 6–17, the HDL code specifies that the read results in old data
when a read operation and write operation occurs at the same time for the same
address on the same port or mixed ports. This behavior is supported only in the
TriMatrix memories of Arria II GX, Cyclone III, Stratix III, and Stratix IV newer device
families, and is not inferred as memory for older device families.

always @ (posedge clk)
begin // Port A
 if (we_a)

 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B
 if (we_b)

 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
end

Example 6–17. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
end
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule

Chapter 6: Recommended HDL Coding Styles 6–25
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL single-clock code sample shown in Example 6–18 maps directly into
Altera TriMatrix memory. When a read and write operation occurs on the same port
for the same address, the new data being written to the memory is read. When a read
and write operation occurs on different ports for the same address, the old data in the
memory is read. Altera recommends that you avoid this condition because
simultaneous write operations to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

Example 6–18. VHDL True Dual-Port RAM with Single Clock (Part 1 of 2)

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is

generic
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);

port
(

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);

end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is

-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is addr_a(raddr'high downto 0) of word_t;

-- Declare the RAM signal.
signal ram : memory_t;

6–26 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6-18. VHDL True Dual-Port RAM with Single Clock (Part 2of 2)

Specifying Initial Memory Contents at Power-Up
Your synthesis tool may offer various ways to specify the initial contents of an
inferred memory.

1 Certain device memory types do not support initialized memory, such as the M-RAM
blocks in Stratix and Stratix II devices.

There are slight power-up and initialization differences between dedicated RAM
blocks and the MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are set to the initial value
on the first read. For example, if address 0 is pre-initialized to FF, the RAM block
powers up with the output at 0. A subsequent read after power-up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is powered up and an
enable (read enable or clock enable) is held low, the power-up output of 0 is
maintained until the first valid read cycle. The MLAB is implemented using registers
that power-up to 0, but are initialized to their initial value immediately at power-up
or reset. Therefore, the initial value is seen, regardless of the enable status. Quartus II
integrated synthesis does not map inferred memory to MLABs unless the HDL code
specifies the appropriate ramstyle attribute.

begin

process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data
q_a <= ram(addr_a);

end if;
end if;

end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;

-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;

Chapter 6: Recommended HDL Coding Styles 6–27
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II integrated synthesis supports the ram_init_file synthesis attribute that
allows you to specify a Memory Initialization File (.mif) for an inferred RAM block.

f For information about the ram_init_file attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Quartus II integrated synthesis automatically converts the initial block into a
.mif file for the inferred RAM. Example 6–19 shows Verilog HDL code that infers a
simple dual-port RAM block and corresponding .mif file.

Quartus II integrated synthesis and other synthesis tools also support the $readmemb
and $readmemh commands so that RAM initialization and ROM initialization work
identically in synthesis and simulation. Example 6–20 shows an initial block that
initializes an inferred RAM block using the $readmemb command.

f Refer to the Verilog Language Reference Manual (LRM) 1364-2001 Section 17.2.8 or the
example in the Templates for the Quartus II software for details about the format of
the ram.txt file.

Example 6–19. Verilog HDL RAM with Initialized Contents

module ram_with_init(
output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule

Example 6–20. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin

$readmemb("ram.txt", ram);
end

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–28 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In VHDL, you can initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. Quartus II integrated synthesis
automatically converts the default value into a .mif file for the inferred RAM.
Example 6–21 shows VHDL code that infers a simple dual-port RAM block and
corresponding .mif file.

ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code
To infer ROM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or LPM_ROM megafunctions, depending on the
target device family, only for device families that have dedicated memory blocks.

ROMs are inferred when a CASE statement exists in which a value is set to a constant
for every choice in the case statement. Because small ROMs typically achieve the best
performance when they are implemented using the registers in regular logic, each
ROM function must meet a minimum size requirement to be inferred and placed into
memory.

Example 6–21. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–29
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 If you use Quartus II integrated synthesis, you can direct the software to infer ROM
blocks for all sizes with the Allow Any ROM Size for Recognition option in the
More Analysis & Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Altera devices with TriMatrix memory blocks. For example, Quartus II
integrated synthesis provides the romstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block.

f For details about using the romstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that you create
ROM blocks in separate entities or modules that contain only the ROM logic, because
you may need to treat the entity and module as a black box during formal verification.

1 Because formal verification tools do not support ROM megafunctions, Quartus II
integrated synthesis does not infer ROM megafunctions when a formal verification
tool is selected.

The Verilog HDL and VHDL code samples shown in Example 6–22 through
Example 6–25 infer synchronous ROM blocks. Depending on the device family’s
dedicated RAM architecture, the ROM logic may have to be synchronous; refer tothe
device family handbook for details.

For device architectures with synchronous RAM blocks, such as the Stratix series
devices and newer device families, either the address or the output must be registered
for synthesis software to infer a ROM block. When your design uses output registers,
the synthesis software implements registers from the input registers of the RAM block
without affecting the functionality of the ROM. If you register the address, the power-
up state of the inferred ROM can be different from the HDL design. In this scenario,
the synthesis software issues a warning. The Quartus II Help explains the condition
under which the functionality changes when you use Quartus II integrated synthesis.

The ROM code examples shown in Example 6–22 through Example 6–25 map directly
to the Altera TriMatrix memory architecture.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

6–30 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–22. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 6–23. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS
WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–31
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–24. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom (
input [(addr_width-1):0] addr_a, addr_b,
input clk,
output reg [(data_width-1):0] q_a, q_b

);
parameter data_width = 8;
parameter addr_width = 8;

reg [data_width-1:0] rom[2**addr_width-1:0];

initial // Read the memory contents in the file
dual_port_rom_init.txt.

begin
$readmemb("dual_port_rom_init.txt", rom);

end

always @ (posedge clk)
begin

q_a <= rom[addr_a];
q_b <= rom[addr_b];

end
endmodule

6–32 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
To infer shift registers, synthesis tools detect a group of shift registers of the same
length and convert them to an ALTSHIFT_TAPS megafunction. To be detected, all the
shift registers must have the following characteristics:

■ Use the same clock and clock enable

■ Do not have any other secondary signals

■ Have equally spaced taps that are at least three registers apart

Example 6–25. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end entity;

architecture rtl of dual_port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(addr_a'high downto 0) of word_t;

function init_rom
return memory_t is
variable tmp : memory_t := (others => (others => '0'));

begin
for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop

-- Initialize each address with the address itself
tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,

DATA_WIDTH));
end loop;
return tmp;

end init_rom;

-- Declare the ROM signal and specify a default initialization value.
signal rom : memory_t := init_rom;

begin
process(clk)
begin
if (rising_edge(clk)) then

q_a <= rom(addr_a);
q_b <= rom(addr_b);

end if;
end process;

end rtl;

Chapter 6: Recommended HDL Coding Styles 6–33
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When you use a formal verification flow, Altera recommends that you create shift
register blocks in separate entities or modules containing only the shift register logic,
because you might have to treat the entity or module as a black box during formal
verification.

1 Because formal verification tools do not support shift register megafunctions,
Quartus II integrated synthesis does not infer the ALTSHIFT_TAPS megafunction
when a formal verification tool is selected. You can select EDA tools for use with your
design on the EDA Tool Settings page of the Settings dialog box in the Quartus II
software.

f For more information about the ALTSHIFT_TAPS megafunction, refer to the
ALTSHIFT_TAPS Megafunction User Guide.

Synthesis software recognizes shift registers only for device families that have
dedicated RAM blocks, and the software uses certain guidelines to determine the best
implementation. The following guidelines are followed in Quartus II integrated
synthesis and are common in other EDA tools. The Quartus II software determines
whether to infer the ALTSHIFT_TAPS megafunction based on the width of the
registered bus (W), the length between each tap (L), and the number of taps (N). If the
Auto Shift Register Recognition setting is set to Auto, Quartus II integrated
synthesis uses the Optimization Technique setting, logic and RAM utilization
information about the design, and timing information from Timing-Driven Synthesis
to determine which shift registers are implemented in RAM blocks for logic.

■ If the registered bus width is one (W = 1), the software infers ALTSHIFT_TAPS if
the number of taps times the length between each tap is greater than or equal to 64
(N × L  64).

■ If the registered bus width is greater than one (W > 1), the software infers
ALTSHIFT_TAPS if the registered bus width times the number of taps times the
length between each tap is greater than or equal to 32 (W × N × L  32).

If the length between each tap (L) is not a power of two, the software uses more logic
to decode the read and write counters. This situation occurs because for different sizes
of shift registers, external decode logic that uses logic elements (LEs) or ALMs is
required to implement the function. This decode logic eliminates the performance and
utilization advantages of implementing shift registers in memory.

The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in a Verilog HDL or VHDL output file for simulation tools
because their node names do not exist after synthesis.

Simple Shift Register
The code samples shown in Example 6–26 and Example 6–27 show a simple,
single-bit wide, 64-bit long shift register. The synthesis software implements the
register (W = 1 and M = 64) in an ALTSHIFT_TAPS megafunction for supported
devices and maps it to RAM in supported devices, which may be placed in dedicated
RAM blocks or MLAB memory. If the length of the register is less than 64 bits, the
software implements the shift register in logic.

http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

6–34 Chapter 6: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Shift Register with Evenly Spaced Taps
The code samples shown in Example 6–28 and Example 6–29 show a Verilog HDL and
VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced
taps at 15, 31, and 47. The synthesis software implements this function in a single
ALTSHIFT_TAPS megafunction and maps it to RAM in supported devices, which is
allowed placement in dedicated RAM blocks or MLAB memory.

Example 6–26. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out);
input clk, shift;
input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule

Example 6–27. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x64 IS
PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC;
sr_out: OUT STD_LOGIC
);
END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
SIGNAL sr: sr_length;
BEGIN

PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1') THEN

IF (shift = '1') THEN
sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;
END IF;

END IF;
END PROCESS;
sr_out <= sr(63);

END arch;

Chapter 6: Recommended HDL Coding Styles 6–35
Inferring Memory Functions from HDL Code

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–28. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one,
sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
sr[0] <= sr_in;

end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule

6–36 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Coding Guidelines for Registers and Latches
This section provides device-specific coding recommendations for Altera registers
and latches. Understanding the architecture of the target Altera device helps ensure
that your code produces the expected results and achieves the optimal quality of
results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”

■ “Secondary Register Control Signals Such as Clear and Clock Enable” on
page 6–38

■ “Latches” on page 6–42

Register Power-Up Values in Altera Devices
Registers in the device core always power up to a low (0) logic level on all Altera
devices. However, there are ways to implement logic such that registers behave as if
they were powering up to a high (1) logic level.

Example 6–29. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

Chapter 6: Recommended HDL Coding Styles 6–37
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you use a preset signal on a device that does not support presets in the register
architecture, your synthesis tool may convert the preset signal to a clear signal, which
requires synthesis to perform an optimization referred to as NOT gate push-back.
NOT gate push-back adds an inverter to the input and the output of the register so
that the reset and power-up conditions will appear to be high but the device operates
as expected. In this case, your synthesis tool may issue a message informing you
about the power-up condition. The register itself powers up low, but the register
output is inverted, so the signal that arrives at all destinations is high.

Due to these effects, if you specify a non-zero reset value, you may cause your
synthesis tool to use the asynchronous clear (aclr) signals available on the registers
to implement the high bits with NOT gate push-back. In that case, the registers look as
though they power up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load of
1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power up to a 0 logic level.

f For additional details, refer to the appropriate device family handbook or the
appropriate handbook on the Altera website.

Designers typically use an explicit reset signal for the design, which forces all registers
into their appropriate values after reset. Altera recommends this practice to reset the
device after power-up to restore the proper state if there is any doubt about the
power-up conditions of the device.

You can make your design more stable and avoid potential glitches by synchronizing
external or combinational logic of the device architecture before you drive the
asynchronous control ports of registers.

f For additional information about good synchronous design practices, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, you can use the
synthesis options available in your synthesis tool. With Quartus II integrated
synthesis, you can apply the Power-Up Level logic option. You can also apply the
option with an altera_attribute assignment in your source code. Using this
option forces synthesis to perform NOT gate push-back because synthesis tools
cannot actually change the power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level logic option to a
specific register or to a design entity, module, or subdesign. If you do so, every
register in that block receives the value. Registers power up to 0 by default; therefore,
you can use this assignment to force all registers to power up to 1 using NOT gate
push-back.

1 Using NOT gate push-back as a global assignment could slightly degrade the quality
of results due to the number of inverters that are required. In some situations, issues
are caused by enable or secondary control logic inference. It may also be more difficult
to migrate such a design to an ASIC or a HardCopy® device. You can simulate the
power-up behavior in a functional simulation if you use initialization.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

6–38 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f The Power-Up Level option and the altera_attribute assignment are described
in the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Quartus II integrated
synthesis converts default values for registered signals into Power-Up Level settings.
When the Quartus II software reads the default values, the synthesized behavior
matches the power-up state of the HDL code during a functional simulation.

For example, the code samples in Example 6–30 and Example 6–31 both infer a
register for q and set its power-up level to high.

1 If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT-gate push-back algorithm creates logic to set a register to 1, that register will
power-up high. If you set a different power-up condition through a synthesis
assignment or initial value, the power-up level is ignored during synthesis.

Secondary Register Control Signals Such as Clear and Clock Enable
The registers in Altera FPGAs provide a number of secondary control signals (such as
clear and enable signals) that you can use to implement control logic for each register
without using extra logic cells. Device families vary in their support for secondary
signals, so consult the device family data sheet to verify which signals are available in
your target device.

To make the most efficient use of the signals in the device, your HDL code should
match the device architecture as closely as possible. The control signals have a certain
priority due to the nature of the architecture, so your HDL code should follow that
priority where possible.

Example 6–30. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin

q <= d;
end

Example 6–31. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN

IF (rising_edge(clk)) THEN
q <= d;

END IF;
END PROCESS;

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 6: Recommended HDL Coding Styles 6–39
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
are flexible in terms of which control signals are used and in what priority, match your
design to the target device architecture to achieve the most efficient results. If the
priority of the signals in your design is not the same as that of the target architecture,
extra logic may be required to implement the control signals. This extra logic uses
additional device resources and can cause additional delays for the control signals.

In addition, there are certain cases where using logic other than the dedicated control
logic in the device architecture can have a larger impact. For example, the clock enable
signal has priority over the synchronous reset or clear signal in the device
architecture. The clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority over the clock
enable signal, the software must emulate the clock enable functionality using data
inputs to the registers. Because the signal does not use the clock enable port of a
register, you cannot apply a Clock Enable Multicycle constraint. In this case, following
the priority of signals available in the device is clearly the best choice for the priority
of these control signals, and using a different priority causes unexpected results with
an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera devices differs from the
order for other vendors’ devices. If your design requirements are flexible regarding
priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors and try to match your
target device architecture to achieve the best results.

The signal order is the same for all Altera device families, although as noted
previously, not all device families provide every signal. The following priority order is
observed:

1. Asynchronous Clear, aclr—highest priority

2. Preset, pre

3. Asynchronous Load, aload

4. Enable, ena

5. Synchronous Clear, sclr

6. Synchronous Load, sload

7. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that creates a register
with the aclr, aload, and ena control signals.

6–40 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 The Verilog HDL example (Example 6–32) does not have adata on the sensitivity list,
but the VHDL example (Example 6–33) does. This is a limitation of the Verilog HDL
language—there is no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis tools should infer an
aload signal from this construct despite this limitation. When they perform such
inference, you may see information or warning messages from the synthesis tool.

Example 6–32. Verilog HDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

module dff_control(clk, aclr, aload, ena, data, adata, q);
input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

Example 6–33. VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
aload: IN STD_LOGIC;
adata: IN STD_LOGIC;
ena: IN STD_LOGIC;

 data: IN STD_LOGIC;
q: OUT STD_LOGIC

);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

Chapter 6: Recommended HDL Coding Styles 6–41
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The preset signal is not available in many device families; therefore, it is not included
in the examples.

Creating many registers with different sload and sclr signals can make packing the
registers into LABs difficult for the Quartus II Fitter because the sclr and sload
signals are LAB-wide signals. In addition, using the LAB-wide sload signal prevents
the Fitter from packing registers using the quick feedback path in the device
architecture, which means that some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases in which
there are enough registers with common signals to allow good LAB packing. Using
the look-up table (LUT) to implement the signals is always more flexible if it is
available. Because different device families offer different numbers of control signals,
inference of these signals is also device-specific. For example, because Stratix II
devices have more flexibility than Stratix devices with respect to secondary control
signals, synthesis tools might infer more sload and sclr signals for Stratix II
devices.

If you use these additional control signals, use them in the priority order that matches
the device architecture. To achieve the most efficient results, ensure the sclr signal
has a higher priority than the sload signal in the same way that aclr has higher
priority than aload in the previous examples. Remember that the register signals are
not inferred unless the design meets the conditions described previously. However, if
your HDL described the desired behavior, the software always implements logic with
the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace the
if (ena) q <= data; statements in the Verilog HDL example shown in
Example 6–32 (after adding the control signals to the module declaration).

In VHDL, the following code for sload and sclr could replace the IF (ena ='1')
THEN q <= data; END IF; statements in the VHDL example shown in
Example 6–33 on page 6–40 (after adding the control signals to the entity declaration).

Example 6–34. Verilog HDL sload and sclr Control Signals

if (ena) begin
if (sclr)
q <= 1'b0;

else if (sload)
q <= sdata;

else
q <= data;

end

Example 6–35. VHDL sload and sclr Control Signals

IF (ena ='1') THEN
IF (sclr = '1') THEN
q <= '0';

ELSIF (sload = '1') THEN
q <= sdata;

ELSE
q <= data;

END IF;
END IF;

6–42 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Latches
A latch is a small combinational loop that holds the value of a signal until a new value
is assigned.

1 Altera recommends that you design without the use of latches whenever possible.

f For additional information about the issues involved in designing with latches and
combinational loops, refer to the Design Recommendations for Altera Devices and the
Quartus II Design Assistant chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a latch, as
described in “Unintentional Latch Generation”. If you do intend to infer a latch, it is
important to infer it correctly to guarantee correct device operation as detailed in
“Inferring Latches Correctly” on page 6–43.

Unintentional Latch Generation
When you are designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not cover all
possible input conditions, latches may be required to hold the output if a new output
value is not assigned. Check your synthesis tool messages for references to inferred
latches. If your code unintentionally creates a latch, make code changes to remove the
latch.

1 Latches have limited support in formal verification tools. Therefore, ensure that you
do not infer latches unintentionally. For example, an incomplete CASE statement may
create a latch when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat unspecified
cases as don’t care values (X). However, using the full_case attribute can cause
simulation mismatches because this attribute is a synthesis-only attribute, so
simulation tools still treat the unspecified cases as latches.

f Refer to the appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook for more information about using attributes in your synthesis tool. The
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook provides
an example explaining possible simulation mismatches.

Omitting the final else or when others clause in an if or case statement can also
generate a latch. Don’t care (X) assignments on the default conditions are useful in
preventing latch generation. For the best logic optimization, assign the default case
or final else value to don’t care (X) instead of a logic value.

The VHDL sample code shown in Example 6–36 prevents unintentional latches.
Without the final else clause, this code creates unintentional latches to cover the
remaining combinations of the sel inputs. When you are targeting a Stratix device
with this code, omitting the final else condition can cause the synthesis software to
use up to six LEs, instead of the three it uses with the else statement. Additionally,
assigning the final else clause to 1 instead of X can result in slightly more LEs,
because the synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 6: Recommended HDL Coding Styles 6–43
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops.

1 Any use of latches generates warnings and is flagged if the design is migrated to a
HardCopy ASIC. In addition, timing analysis does not completely model latch timing
in some cases. Do not use latches unless required by your design, and you fully
understand the impact of using the latches.

When using Quartus II integrated synthesis, latches that are inferred by the software
are reported in the User-Specified and Inferred Latches section of the Compilation
Report. This report indicates whether the latch is considered safe and free of timing
hazards.

If a latch or combinational loop in your design is not listed in the User-Specified and
Inferred Latches section, it means that it was not inferred as a safe latch by the
software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells Representing
Combinational Loops table in the Compilation Report are at risk of timing hazards.
These entries indicate possible problems with your design that you should
investigate. However, it is possible to have a correct design that includes
combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This can occur in cases where there is an electrical path in the hardware,
but either the designer knows that the circuit never encounters data that causes that
path to be activated, or the surrounding logic is set up in a mutually exclusive manner
that prevents that path from ever being sensitized, independent of the data input.

Example 6–36. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
if sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END if;

END PROCESS;
END rtl;

6–44 Chapter 6: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For macrocell-based devices such as MAX® 7000AE and MAX 3000A, all data (D-type)
latches and set-reset (S-R) latches listed in the Analysis & Synthesis User-Specified
and Inferred Latches table have an implementation free of timing hazards such as
glitches. The implementation includes both a cover term to ensure there is no
glitching and a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series, and MAX II
devices, all latches in the User-Specified and Inferred Latches table with a single
LUT in the feedback loop are free of timing hazards when a single input changes.
Because of the hardware behavior of the LUT, the output does not glitch when a single
input toggles between two values that are supposed to produce the same output
value. Because of the hardware behavior of the LUT, the output does not glitch when
a single input toggles between two values that are supposed to produce the same
output value, such as a D-type input toggling when the enable input is inactive or a
set input toggling when a reset input with higher priority is active. This hardware
behavior of the LUT means that no cover term is required for a loop around a single
LUT. The Quartus II software uses a single LUT in the feedback loop whenever
possible. A latch that has data, enable, set, and reset inputs in addition to the output
fed back to the input cannot be implemented in a single 4-input LUT. If the Quartus II
software cannot implement the latch with a single-LUT loop because there are too
many inputs, the User-Specified and Inferred Latches table indicates that the latch is
not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch inputs with a
single adaptive look-up table (ALUT) in the combinational loop. Therefore, all latches
in the User-Specified and Inferred Latches table are free of timing hazards when a
single input changes.

If a latch is listed as a safe latch, other optimizations performed by the Quartus II
software, such as physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input can change at a time. Changing
two inputs simultaneously, such as deasserting set and reset at the same time, or
changing data and enable at the same time, can produce incorrect behavior in any
latch.

Quartus II integrated synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL, but not from continuous assignments in Verilog HDL
or concurrent signal assignments in VHDL. These rules are the same as for register
inference. The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample shown in Example 6–37 infers a S-R latch correctly in
the Quartus II software.

Chapter 6: Recommended HDL Coding Styles 6–45
Coding Guidelines for Registers and Latches

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The VHDL code sample shown in Example 6–38 infers a D-type latch correctly in the
Quartus II software.

The following example shows a Verilog HDL continuous assignment that does not
infer a latch in the Quartus II software:

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch and its timing is not analyzed as a latch.

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the LPM_LATCH megafunction. You can use this megafunction to
create a latch with any combination of data, enable, set, and reset inputs. The same
limitations apply for creating safe latches as for inferring latches from HDL code.

Example 6–37. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

Example 6–38. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
PORT (
enable, data : IN STD_LOGIC;
q : OUT STD_LOGIC
);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = '1') THEN
q <= data;
END IF;
END PROCESS latch;
END rtl;

6–46 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring the Altera LPM_LATCH function in another synthesis tool ensures that the
implementation is also recognized as a latch in the Quartus II software. If a
third-party synthesis tool implements a latch using the LPM_LATCH megafunction,
the Quartus II integrated synthesis lists the latch in the User-Specified and Inferred
Latches table in the same way as it lists latches created in HDL source code. The
coding style necessary to produce an LPM_LATCH implementation may depend on
your synthesis tool. Some third-party synthesis tools list the number of LPM_LATCH
functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals, including
signals that Analysis and Synthesis identifies as latch enables. In some cases the
global insertion delay may decrease the timing performance. If necessary, you can
turn off the Quartus II Global Signal logic option to manually prevent the use of
global signals. Global latch enables are listed in the Global & Other Fast Signals table
in the Compilation Report.

General Coding Guidelines
This section helps you understand how synthesis tools map various types of HDL
code into the target Altera device. Following Altera recommended coding styles, and
in some cases designing logic structures to match the appropriate device architecture,
can provide significant improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state signals for
bidirectional I/O pins.

■ “Clock Multiplexing” on page 6–47. This section provides recommendations for
multiplexing clock signals.

■ “Adder Trees” on page 6–51. This section explains the different coding styles that
lead to optimal results for devices with 4-input look-up tables and 6-input ALUTs.

■ “State Machines” on page 6–53. This section helps ensure the best results when
you use state machines.

■ “Multiplexers” on page 6–60. This section explains how multiplexers can be
synthesized for 4-input LUT devices, addresses common problems, and provides
guidelines to achieve optimal resource utilization.

■ “Cyclic Redundancy Check Functions” on page 6–68. This section provides
guidelines for getting good results when designing Cyclic Redundancy Check
(CRC) functions.

■ “Comparators” on page 6–69. This section explains different comparator
implementations and provides suggestions for controlling the implementation.

■ “Counters” on page 6–71. This section provides guidelines to ensure your counter
design targets the device architecture optimally.

Tri-State Signals
When you target Altera devices, you should use tri-state signals only when they are
attached to top-level bidirectional or output pins. Avoid lower-level bidirectional
pins, and avoid using the Z logic value unless it is driving an output or bidirectional
pin.

Chapter 6: Recommended HDL Coding Styles 6–47
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Synthesis tools implement designs with internal tri-state signals correctly in Altera
devices using multiplexer logic, but Altera does not recommend this coding practice.

1 In hierarchical block-based or incremental design flows, a hierarchical boundary
cannot contain any bidirectional ports, unless the lower-level bidirectional port is
connected directly through the hierarchy to a top-level output pin without connecting
to any other design logic. If you use boundary tri-states in a lower-level block,
synthesis software must push the tri-states through the hierarchy to the top level to
make use of the tri-state drivers on output pins of Altera devices. Because pushing
tri-states requires optimizing through hierarchies, lower-level tri-states are restricted
with block-based design methodologies.

The code examples shown in Example 6–39 and Example 6–40 show Verilog HDL and
VHDL code that creates tri-state bidirectional signals.

Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function with
different clock sources. This type of logic can introduce glitches that create functional
problems, and the delay inherent in the combinational logic can lead to timing
problems. Clock multiplexers trigger warnings from a wide range of design rule
check and timing analysis tools.

Example 6–39. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

Example 6–40. VHDL Tri-State Signal

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;

6–48 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or the Clock Control Block available in certain Altera devices.
These dedicated hardware blocks avoid glitches, ensure that you use global low-skew
routing lines, and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL
reconfiguration, which is the safest and most robust method of changing clock rates
during device operation.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures. Also refer to the ALTCLKCTRL Megafunction
User Guide, the ALTPLL Megafunction User Guide, and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunction User Guide.

If you implement a clock multiplexer in logic cells because the design has too many
clocks to use the clock control block, or if dynamic reconfiguration is too complex for
your design, it is important to consider simultaneous toggling inputs and ensure
glitch-free transitions.

Figure 6–2 shows a simple representation of a clock multiplexer (mux) in a device
with 6-input LUTs.

The data sheet for your target device describes how LUT outputs may glitch during a
simultaneous toggle of input signals, independent of the LUT function. Although in
practice the 4:1 MUX function does not generate detectable glitches during
simultaneous data input toggles, it is possible to construct cell implementations that
do exhibit significant glitches, so this simple clock mux structure is not recommended.
An additional problem with this implementation is that the output behaves erratically
during a change in the clk_select signals. This behavior could create timing
violations on all registers fed by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems, as shown in Figure 6–3.

Figure 6–2. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

Chapter 6: Recommended HDL Coding Styles 6–49
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

This structure can be generalized for any number of clock channels. Example 6–41
contains a parameterized version in Verilog HDL. The design enforces that no clock
activates until all others have been inactive for at least a few cycles, and that activation
occurs while the clock is low. The design applies a synthesis_keep directive to the
AND gates on the right side of the figure, which ensures there are no simultaneous
toggles on the input of the clk_out OR gate.

1 Switching from clock A to clock B requires that clock A continue to operate for at least
a few cycles. If the old clock stops immediately, the design sticks. The select signals
are implemented as a “one-hot” control in this example, but you can use other
encoding if you prefer. The input side logic is asynchronous and is not critical. This
design can tolerate extreme glitching during the switch process.

Figure 6–3. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

6–50 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–41. Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock_mux (clk,clk_select,clk_out);

parameter num_clocks = 4;

input [num_clocks-1:0] clk;
input [num_clocks-1:0] clk_select; // one hot
output clk_out;

genvar i;

reg [num_clocks-1:0] ena_r0;
reg [num_clocks-1:0] ena_r1;
reg [num_clocks-1:0] ena_r2;
wire [num_clocks-1:0] qualified_sel;

// A look-up-table (LUT) can glitch when multiple inputs
// change simultaneously. Use the keep attribute to
// insert a hard logic cell buffer and prevent
// the unrelated clocks from appearing on the same LUT.

wire [num_clocks-1:0] gated_clks /* synthesis keep */;

initial begin
ena_r0 = 0;
ena_r1 = 0;
ena_r2 = 0;
end

generate
for (i=0; i<num_clocks; i=i+1)
begin : lp0
wire [num_clocks-1:0] tmp_mask;
assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

assign qualified_sel[i] = clk_select[i] &
(~|(ena_r2 & tmp_mask));

always @(posedge clk[i]) begin
ena_r0[i] <= qualified_sel[i];
ena_r1[i] <= ena_r0[i];
end

always @(negedge clk[i]) begin
ena_r2[i] <= ena_r1[i];
end

assign gated_clks[i] = clk[i] & ena_r2[i];
end
endgenerate

// These will not exhibit simultaneous toggle by construction
assign clk_out = |gated_clks;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–51
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Adder Trees
Structuring adder trees appropriately to match your targeted Altera device
architecture can result in significant performance and density improvements. A good
example of an application using a large adder tree is a finite impulse response (FIR)
correlator. Using a pipelined binary or ternary adder tree appropriately can greatly
improve the quality of your results.

This section explains why coding recommendations are different for Altera 4-input
LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements
Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and
C in devices that use 4-input lookup tables is to add A + B, register the output, and
then add the registered output to C. Adding A + B takes one level of logic (one bit is
added in one LE), so this runs at full clock speed. This can be extended to as many
numbers as desired.

Example 6–42 shows five numbers A, B, C, D, and E are added. Adding five numbers
in devices that use 4-input lookup tables requires four adders and three levels of
registers for a total of 64 LEs (for 16-bit numbers).

Example 6–42. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2, sum3, sum4;
reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign out = sumreg4;

endmodule

6–52 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Architectures with 6-Input LUTs in Adaptive Logic Modules
High-performance Altera device families use a 6-input LUT in their basic logic
structure, so these devices benefit from a different coding style from the previous
example presented for 4-input LUTs. Specifically, in these devices, ALMs can
simultaneously add three bits. Therefore, the tree in Example 6–42 must be two levels
deep and contain just two add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for 6-input LUT
devices, the code is inefficient and does not take advantage of the 6-input adaptive
ALUT. By restructuring the tree as a ternary tree, the design becomes much more
efficient, significantly improving density utilization. Therefore, when you are
targeting with ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the advanced
device architecture.

Example 6–43 uses just 32 ALUTs in a Stratix II device—more than a 4:1 advantage
over the number of LUTs in the prior example implemented in a Stratix device.

1 You cannot pack a LAB full when using this type of coding style because of the
number of LAB inputs. However, in a typical design, the Quartus II Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

These examples show pipelined adders, but partitioning your addition operations can
help you achieve better results in nonpipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal
implementation of a 3-input adder for A + B + C followed by a 3-input adder for
sum1 + D + E than the code without the parentheses. If you do not add the
parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

Example 6–43. Verilog HDL Pipelined Ternary Tree

module ternary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2;
reg [width-1:0] sumreg1, sumreg2;
// registers

always @ (posedge clk)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = a + b + c;
assign sum2 = sumreg1 + d + e;
assign out = sumreg2;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–53
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

State Machines
Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to ensure the best results when you
use state machines. Ensuring that your synthesis tool recognizes a piece of code as a
state machine allows the tool to recode the state variables to improve the quality of
results, and allows the tool to use the known properties of state machines to optimize
other parts of the design. When synthesis recognizes a state machine, it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot encoding for
FPGA devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
your synthesis tool documentation for specific ways to control the manner in which
state machines are encoded.

f For information about state machine encoding in Quartus II integrated synthesis,
refer to the State Machine Processing section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to improve the
quality of results, Altera recommends that you observe the following guidelines,
which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and data paths,
including assigning output values.

■ If your design contains an operation that is used by more than one state, define the
operation outside the state machine and cause the output logic of the state
machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined power-up
state. If your state machine design contains more elaborate reset logic, such as both
an asynchronous reset and an asynchronous load, the Quartus II software
generates regular logic rather than inferring a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some kind of fault in the system. A default or when others
clause does not affect this operation, assuming that your design never deliberately
enters this state. Synthesis tools remove any logic generated by a default state if it is
not reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an option to
implement a safe state machine. The software inserts extra logic to detect an illegal
state and force the state machine’s transition to the reset state. It is commonly used
when the state machine can enter an illegal state. The most common cause of this
situation is a state machine that has control inputs that come from another clock
domain, such as the control logic for a dual-clock FIFO.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–54 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This option protects only state machines by forcing them into the reset state. All other
registers in the design are not protected this way. If the design has asynchronous
inputs, Altera recommends using a synchronization register chain instead of relying
on the safe state machine option.

f For additional information about tool-specific options for implementing state
machines, refer to the tool vendor’s documentation or the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL State
Machines” on page 6–58, describe additional language-specific guidelines and coding
examples.

Verilog HDL State Machines
To ensure proper recognition and inference of Verilog HDL state machines, observe
the following additional Verilog HDL guidelines. Some of these guidelines may be
specific to Quartus II integrated synthesis. Refer to your synthesis tool documentation
for specific coding recommendations.

If the state machine is not recognized and inferred by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as regular logic
gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types to describe
state machines (as shown in the “SystemVerilog State Machine Coding Example”
on page 6–57).

■ Represent the states in a state machine with the parameter data types in
Verilog-1995 and -2001 and use the parameters to make state assignments (as
shown in the “Verilog-2001 State Machine Coding Example” on page 6–55). This
implementation makes the state machine easier to read and reduces the risk of
errors during coding.

1 Altera recommends against the direct use of integer values for state
variables such as next_state <= 0. However, using an integer does not
prevent inference in the Quartus II software.

■ No state machine is inferred in the Quartus II software if the state transition logic
uses arithmetic similar to that shown in the following example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state variable is an
output.

■ No state machine is inferred in the Quartus II software for signed variables.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 6: Recommended HDL Coding Styles 6–55
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation (Example 6–44).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in_1 and in_2 is an output of the state machine in state_1
and state_2. The difference (in_1 – in_2) is also used in state_1 and state_2.
The temporary variables tmp_out_0 and tmp_out_1 store the sum and the
difference of in_1 and in_2. Using these temporary variables in the various states of
the state machine ensures proper resource sharing between the mutually exclusive
states.

6–56 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6–44. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
input clk, reset;
input [3:0] in_1, in_2;
output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else
state <= next_state;

end
always @ (state or in_1 or in_2)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 <= in_1 + 5'b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5'b00001;
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5'b00001;
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5'b00000;
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule

Chapter 6: Recommended HDL Coding Styles 6–57
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

An equivalent implementation of this state machine can be achieved by using
‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x
instead of a state_x, as shown in the following example:

next_state <= ‘state_3;

1 Although the ‘define construct is supported, Altera strongly recommends the use
of the parameter data type because doing so preserves the state names throughout
synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm shown in Example 6–45 is an example of a SystemVerilog
state machine implementation that uses enumerated types. Altera recommends using
this coding style to describe state machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that defines the states for the
state machine must be of an unsigned integer type as shown in Example 6–45. If you
do not specify the enumerated type as int unsigned, a signed int type is used by
default. In this case, the Quartus II integrated synthesis synthesizes the design, but
does not infer or optimize the logic as a state machine.

6–58 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

VHDL State Machines
To ensure proper recognition and inference of VHDL state machines, represent the
states in a state machine with enumerated types and use the corresponding types to
make state assignments. This implementation makes the state machine easier to read
and reduces the risk of errors during coding. If the state is not represented by an
enumerated type, synthesis software (such as Quartus II integrated synthesis) does
not recognize the state machine. Instead, the state machine is implemented as regular
logic gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

VHDL State Machine Coding Example

The following entity, vhd1_fsm, is an example of a typical VHDL state machine
implementation (Example 6–46).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in1 and in2 is an output of the state machine in state_1 and
state_2. The difference (in1 - in2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of
in1 and in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive states.

Example 6–45. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data[3:0], output int o);

enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_state_logic
 next_state = S0;
 case(state)

S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

 endcase
end

always_comb begin
 case(state)

 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];

 endcase
end

always_ff@(posedge clk or negedge reset) begin
 if(~reset)

 state <= S0;
 else

 state <= next_state;
end
endmodule

Chapter 6: Recommended HDL Coding Styles 6–59
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 6–46. VHDL State Machine (Part 1 of 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl_fsm IS
PORT(

clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_fsm IS
TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;

PROCESS (state, in1, in2)
VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

6–60 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 6-46. VHDL State Machine (Part 2 of 2))

Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation in
your Altera device. This section addresses common problems and provides design
guidelines to achieve optimal resource utilization for multiplexer designs. The section
also describes various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix devices.

1 Stratix II and newer high-performance devices have 6-input ALUTs and are not
specifically addressed here. Although many of the principles and techniques for
optimization are similar, device utilization differs in the 6-input LUT devices. For
example, these devices can implement wider multiplexers in one ALM than can be
implemented in the 4-input LUT of an LE.

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;

Chapter 6: Recommended HDL Coding Styles 6–61
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II Software Option for Multiplexer Restructuring
Quartus II integrated synthesis provides the Restructure Multiplexers logic option
that extracts and optimizes buses of multiplexers during synthesis. In certain
situations, this option automatically performs some of the recoding functions
described in this section without changing the HDL code in your design. The default
setting Auto for this option uses the optimization when it is most likely to benefit the
optimization targets for your design. You can turn the option on or off specifically to
have more control over its use.

f For details, refer to the Restructure Multiplexers subsection in the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to understand how
your coding style can be interpreted by your synthesis tool, and avoid the situations
that can cause problems in your design.

Multiplexer Types
This subsection addresses how multiplexers are created from various types of HDL
code. CASE statements, IF statements, and state machines are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers including binary multiplexers, selector multiplexers, and priority
multiplexers. Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step toward optimizing
multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
Example 6–47 shows Verilog HDL code for two ways to describe a simple 4:1 binary
multiplexer.

A 4:1 binary multiplexer is efficiently implemented by using two 4-input LUTs. Larger
binary multiplexers can be constructed that use the 4:1 multiplexer; constructing an
N-input multiplexer (N:1 multiplexer) from a tree of 4:1 multiplexers can result in a
structure using as few as 0.66*(N - 1) LUTs.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Example 6–48 shows a simple Verilog HDL
code example describing a one-hot selector multiplexer.

Example 6–47. Verilog HDL Binary-Encoded Multiplexers

case (sel)
2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

6–62 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Selector multiplexers are commonly built as a tree of AND and OR gates. Using this
scheme, two inputs can be selected using two select lines in a single 4-input LUT that
uses two AND gates and an OR gate. The outputs of these LUTs can be combined
with a wide OR gate. An N-input selector multiplexer of this structure requires at
least 0.66*(N-0.5) LUTs, which is just slightly worse than the best binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority. These
structures commonly are created from IF, ELSE, WHEN, SELECT, and ?: statements in
VHDL or Verilog HDL. The example VHDL code in Example 6–49 probably results in
the schematic implementation illustrated in Figure 6–4.

The multiplexers shown in Figure 6–4 form a chain, evaluating each condition or
select bit sequentially.

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in the chain,
requiring N-1 LUTs. This chain of multiplexers is likely to increase delay because the
critical path through the logic traverses every multiplexer in the chain.

Example 6–48. Verilog HDL One-Hot-Encoded Case Statement

case (sel)
4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Example 6–49. VHDL IF Statement Implying Priority

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

Figure 6–4. Priority Multiplexer Implementation of an IF Statement

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

Chapter 6: Recommended HDL Coding Styles 6–63
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

Default or Others Case Assignment
To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment. This assignment is especially important in one-hot
encoding schemes where many combinations of the select lines are unused.
Specifying a case for the unused select line combinations gives the synthesis tool
information about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Some designs do not require that the outcome in the unused cases be considered,
often because designers assume these cases will not occur. For these types of designs,
you can specify any value for the default or OTHERS assignment. However, be
aware that the assignment value you choose can have a large effect on the logic
utilization required to implement the design due to the different ways synthesis tools
treat different values for the assignment, and how the synthesis tools use different
speed and area optimizations.

To obtain best results, explicitly define invalid CASE selections with a separate
default or OTHERS statement instead of combining the invalid cases with one of the
defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

You can experiment with different default or OTHERS assignments for your HDL
design and your synthesis tool to test the effect they have on logic utilization in your
design.

Implicit Defaults
The IF statements in Verilog HDL and VHDL can be a convenient way to specify
conditions that do not easily lend themselves to a CASE-type approach. However,
using IF statements can result in complicated multiplexer trees that are not easy for
synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even when it is not
specified. These implicit defaults can cause additional complexity in a multiplexed
design.

The code in Example 6–50 represents a multiplexer with four inputs (a, b, c, d) and
one output (z). Altera does not recommend using this coding style.

6–64 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Although the code appears to implement a 4:1 multiplexer, each of the three separate
IF statements in the code has an implicit ELSE condition that is not specified. Because
the output values for the ELSE cases are not specified, the synthesis tool assumes the
intent is to maintain the same output value for these cases and infers a combinational
loop, such as a latch. Latches add to the design’s logic utilization and can also make
timing analysis difficult and lead to other problems.

The code sample shown in Example 6–51 shows code with the same functionality as
the code shown in Example 6–50, but specifies the ELSE cases explicitly. (This is not a
recommended coding style improvement, but it explicitly shows the default
conditions from the previous example.)

Figure 6–5 is a schematic representing the code in Example 6–51, which illustrates that
the multiplexer logic is significantly more complicated than a basic 4:1 multiplexer,
although there are only four inputs.

Example 6–50. VHDL IF Statement with Implicit Defaults

IF cond1 THEN
IF cond2 THEN

z <= a;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

z <= b;
ELSIF cond5 THEN

z <= c;
END IF;

ELSIF cond6 THEN
z <= d;

END IF;

Example 6–51. VHDL IF Statement with Default Conditions Explicitly Specified

IF cond1 THEN
IF cond2 THEN

z <= a;
ELSE

z <= z;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

z <= b;
ELSIF cond5 THEN

z <= c;
ELSE

z <= z;
END IF;

ELSIF cond6 THEN
z <= d;

ELSE
z <= z;

END IF;

Chapter 6: Recommended HDL Coding Styles 6–65
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

There are several ways you can simplify the multiplexed logic and remove the
unrequired defaults. The optimal method may be to recode the design so the logic
takes the structure of a 4:1 CASE statement. Alternatively, if priority is important, you
can restructure the code to deduce default cases and flatten the multiplexer. In this
example, instead of IF cond1 THEN IF cond2, use IF (cond1 AND cond2), which
performs the same function. In addition, examine whether the defaults are don’t care
cases. In this example, you can promote the last ELSIF cond6 statement to an ELSE
statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce the
complexity and logic utilization required to implement your design.

Degenerate Multiplexers
A degenerate multiplexer is a multiplexer in which not all of the possible cases are
used for unique data inputs. The cases that are not required tend to contribute to
inefficiency in the logic utilization for these multiplexers. You can recode degenerate
multiplexers so they take advantage of the efficient logic utilization possible with full
binary multiplexers.

Example 6–52 shows a VHDL CASE statement describing a degenerate multiplexer.

The number of select lines in a binary multiplexer normally dictates the size of a
multiplexer required to implement the desired function. For example, the multiplexer
structure represented in Figure 6–6 has four select lines capable of implementing a
binary multiplexer with 16 inputs. However, the design does not use all 16 inputs,
which makes this multiplexer a degenerate 16:1 multiplexer.

Figure 6–5. Multiplexer Implementation of an IF Statement with Implicit Defaults

Example 6–52. VHDL CASE Statement Describing a Degenerate Multiplexer

CASE sel[3:0] IS
WHEN "0101" => z <= a;
WHEN "0111" => z <= b;
WHEN "1010" => z <= c;
WHEN OTHERS => z <= d;

END CASE;

1 0

1 0

cond6
0 1cond4

0 1cond2

cond3

cond1

0 1cond5

1 0

z

z a

z c

d

b

z

6–66 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In Figure 6–6, the first and fourth multiplexers in the top level can easily be eliminated
because all four inputs to each multiplexer are the same value, and the number of
inputs to the other multiplexers can be reduced, as shown in Figure 6–7.

Implementing this version of the multiplexer still requires at least five 4-input LUTs,
two for each of the remaining 3:1 multiplexers and one for the 2:1 multiplexer. This
design selects an output from only four inputs; a 4:1 binary multiplexer can be
implemented optimally in two LUTs, therefore this degenerate multiplexer tree
reduces the efficiency of the logic.

You can improve logic utilization of this structure by recoding the select lines to
implement a full 4:1 binary multiplexer. The code sample shown in Example 6–53
shows a recoder design that translates the original select lines into the z_sel signal
with binary encoding.

The code sample shown in Example 6–54 shows you how to implement the full binary
multiplexer.

Figure 6–6. Binary Degenerate Multiplexer

Figure 6–7. Optimized Version of the Degenerate Binary Multiplexer

Example 6–53. VHDL Recoder Design for Degenerate Binary Multiplexer

CASE sel[3:0] IS
WHEN "0101" => z_sel <= "00";
WHEN "0111" => z_sel <= "01";
WHEN "1010" => z_sel <= "10";
WHEN OTHERS => z_sel <= "11";

END CASE;

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

sel[1:0]

sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

3:1

3:1

2:1

a

z

b c d

Chapter 6: Recommended HDL Coding Styles 6–67
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use the new z_sel control signal from the recoder design to control the 4:1 binary
multiplexer that chooses between the four inputs a, b, c, and d, as illustrated in
Figure 6–8. The complexity of the select lines is handled in the recoder design, and the
data multiplexing is performed with simple binary select lines enabling the most
efficient implementation.

The design for the recoder can be implemented in two LUTs and the efficient 4:1
binary multiplexer uses two LUTs, for a total of four LUTs. The original degenerate
multiplexer required five LUTs, so the recoded version uses 20% less logic than the
original.

You can often improve the logic utilization of multiplexers by recoding the select lines
into full binary cases. Although logic is required to perform the encoding, the overall
logic utilization is often improved.

Buses of Multiplexers
The inputs to multiplexers are often data input buses in which the same multiplexer
function is performed on a set of data input buses. In these cases, any inefficiency in
the multiplexer is multiplied by the number of bits in the bus. The issues described in
the previous sections become even more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in the previous
section can often be used in multiplexed buses. Recoding the select lines may have to
be completed only once for all the multiplexers in the bus. By sharing the recoder
logic among all bits in the bus, you can greatly improve the logic efficiency of a bus of
multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to implement.
If the inputs and output are 32 bits wide, the function could require 32 * 5 or 160
LUTs for the whole bus. The recoder design uses only two LUTs, and the select lines
have to be recoded only once for the entire bus. The binary 4:1 multiplexer requires
two LEs per bit of the bus. The total logic utilization for the recoded version could be
2 + (2 × 32) or 66 LUTs for the whole bus, compared to 160 LUTs for the original
version. The logic savings become more important with wide multiplexer buses.

Example 6–54. VHDL 4:1 Binary Multiplexer Design

CASE z_sel[1:0] IS
WHEN "00" => z <= a;
WHEN "01" => z <= b;
WHEN "10" => z <= c;
WHEN "11" => z <= d;

END CASE;

Figure 6–8. Binary Multiplexer with Recorder

a b c d
sel[3:0]

z_sel[1:0]

Recoder

4:1

z

6–68 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Using techniques to optimize degenerate multiplexers, removing implicit defaults are
not required, and choosing the optimal DEFAULT or OTHERS case can play an
important role when optimizing buses of multiplexers.

Cyclic Redundancy Check Functions
CRC computations are used heavily by communications protocols and storage
devices to detect any corruption of data. These functions are highly effective; there is a
very low probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in
devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Altera devices.

If Performance is Important, Optimize for Speed
Synthesis tools flatten XOR gates to minimize area and depth of levels of logic.
Synthesis tools such as Quartus II integrated synthesis target area optimization by
default for these logic structures. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Flattening for depth sometimes causes a significant increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages
Some designers optimize their CRC designs to use cascaded stages (for example, four
stages of 8 bits). In such designs, intermediate calculations are used as required (such
as the calculations after 8, 24, or 32 bits) depending on the data width. This design is
not optimal in FPGA devices. The XOR cancellations that can be performed in CRC
designs mean that the function does not require all the intermediate calculations to
determine the final result. Therefore, forcing the use of intermediate calculations
increases the area required to implement the function, as well as increasing the logic
depth because of the cascading. It is typically better to create full separate CRC blocks
for each data width that you require in the design, then multiplex them together to
choose the appropriate mode at a given time.

Use Separate CRC Blocks Instead of Allowing Blocks to Merge
Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic. As addressed previously, the CRC logic allows significant reductions
but this works best when each CRC function is optimized separately. Check for
duplicate extraction behavior if you have different CRC functions that are driven by
common data signals or that feed the same destination signals.

Chapter 6: Recommended HDL Coding Styles 6–69
General Coding Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you are having problems with the quality of results and you see that two CRC
functions are sharing logic, ensure that the blocks are synthesized independently
using one of the following methods:

■ Define each CRC block as a separate design partition in an incremental
compilation design flow

f For details, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project in your third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each

Take Advantage of Latency if Available
If your design can use more than one cycle to implement the CRC functionality,
adding registers and retiming the design can help reduce area, improve performance,
and reduce power utilization. If your synthesis tool offers a retiming feature (such as
the Quartus II software Perform gate-level register retiming option), you can insert
an extra bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide and alternate
between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use
CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design. To save power, use clock enables to disable
the CRC function for every clock cycle that the logic is not required. Some designs
don’t check the CRC results for a few clock cycles while other logic is performed. It is
valuable to disable the CRC function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize
The data in many CRC designs must be initialized to 1’s before operation. If your
target device supports the use of the sload signal, you should use it to set all the
registers in your design to 1’s before operation. To enable use of the sload signal,
follow the coding guidelines presented in “Secondary Register Control Signals Such
as Clear and Clock Enable” on page 6–38. You can check the register equations in the
Timing Closure Floorplan or the Chip Planner to ensure that the signal was used as
expected.

f If you must force a register implementation using an sload signal, you can use
low-level device primitives as described in the Designing with Low-Level Primitives
User Guide.

Comparators
Synthesis software, including Quartus II integrated synthesis, uses device and
context-specific implementation rules for comparators (<, >, or ==) and selects the
best one for your design. This section provides some information about the different
types of implementations available and provides suggestions on how you can code
your design to encourage a specific implementation.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

6–70 Chapter 6: Recommended HDL Coding Styles
General Coding Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The == comparator is implemented in general logic cells. The < comparison can be
implemented using the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain is capable of comparing up to three bits per cell. In devices
with 4-input LUTs, the capacity is one bit of comparison per cell, similar to an
add/subtract chain. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance
when it is part of a larger design due to the increased restriction on the Fitter. The area
requirement is similar for most input patterns. The synthesis software selects an
appropriate implementation based on the input pattern.

If you are using Quartus II integrated synthesis, you can guide the synthesis by using
specific coding styles. To select a carry chain implementation explicitly, rephrase your
comparison in terms of addition. As a simple example, the following coding style
allows the synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short or the signals a and b minimize to the
same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos
complement logic if a is less than b, because the subtraction a – b results in a negative
number.

If you have any information about the range of the input, you have “don’t care”
values that you can use to optimize the design. Because this information is not
available to the synthesis tool, you can often reduce the device area required to
implement the comparator with specific hand implementation of the logic.

You can also check whether a bus value is within a constant range with a small
amount of logic area by using the logic structure shown in Figure 6–9. This type of
logic occurs frequently in address decoders.

Figure 6–9. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

Chapter 6: Recommended HDL Coding Styles 6–71
Designing with Low-Level Primitives

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Counters
Implementing counters in HDL code is easy; they are implemented with an adder
followed by registers. Remember that the register control signals, such as enable
(ena), synchronous clear (sclr), and synchronous load (sload), are available. For
the best area utilization, ensure that the up/down control or controls are expressed in
terms of one addition instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement two
separate carry chains for addition (if it doesn’t detect the issue and optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because there is only
one carry chain adder, and the –1 constant logic is implemented in the LUT in front of
the adder without adding extra area utilization.

Designing with Low-Level Primitives
Low-level HDL design is the practice of using low-level primitives and assignments
to dictate a particular hardware implementation for a piece of logic. Low-level
primitives are small architectural building blocks that assist you in creating your
design. With the Quartus II software, you can use low-level HDL design techniques to
force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

1 Using low-level primitives is an advanced technique to help with specific design
challenges, and is optional in the Altera design flow. For many designs, synthesizing
generic HDL source code and Altera megafunctions gives you the best results.

Low-level primitives allow you to use the following types of coding techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II integrated
synthesis from performing optimizations across a logic cell

■ Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE
primitives

■ Instantiate registers with specific control signals using DFF primitives

■ Specify the creation of LUT functions by identifying the LUT boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

■ Use I/O buffers to specify differential pin names in your HDL code, instead of
using the automatically-generated negative pin name for each pair

f For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

6–72 Chapter 6: Recommended HDL Coding Styles
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Conclusion
Because coding style and megafunction implementation can have such a large effect
on your design performance, it is important to match the coding style to the device
architecture from the very beginning of the design process. To improve design
performance and area utilization, take advantage of advanced device features, such as
memory and DSP blocks, as well as the logic architecture of the targeted Altera device
by following the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Referenced Documents
This chapter references the following documents:

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and Stratix IV
Devices

■ ALTSHIFT_TAPS Megafunction User Guide

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Designing with Low-Level Primitives User Guide

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Synthesis section in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Chapter 6: Recommended HDL Coding Styles 6–73
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated support for Controlling Inference and
Implementation in Device RAM Blocks

■ Updated support for Shift Registers

Updated for the Quartus II 9.1 software
release.

March 2009
v9.0.0

■ Corrected and updated several examples

■ Added support for Arria II GX devices

■ Other minor changes to chapter

Updated for the Quartus II 9.0 software
release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 8.1 software
release.

May 2008

v8.0.0

Updates for the Quartus II software version 8.0 release,
including:

■ Added information to “RAM Functions—Inferring
ALTSYNCRAM and ALTDPRAM Megafunctions from
HDL Code” on page 6–13

■ Added information to “Avoid Unsupported Reset and
Control Conditions” on page 6–14

■ Added information to “Check Read-During-Write
Behavior” on page 6–16

■ Added two new examples to “ROM Functions—Inferring
ALTSYNCRAM and LPM_ROM Megafunctions from HDL
Code” on page 6–28: Example 6–24 and Example 6–25

■ Added new section: “Clock Multiplexing” on page 6–46

■ Added hyperlinks to references within the chapter

■ Minor editorial updates

Updates and enhancements to subject
coverage for the Quartus II software
version 8.0 release.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

6–74 Chapter 6: Recommended HDL Coding Styles
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

7. Managing Metastability with the
Quartus II Software

This chapter describes the industry-leading analysis, reporting, and optimization
features that can help you manage metastability in Altera® devices. You can use the
Quartus® II software to analyze the average mean time between failures (MTBF) due
to metastability caused by synchronization of asynchronous signals, and optimize the
design to improve the metastability MTBF. This chapter explains how to take
advantage of these features in the Quartus II software, and provides guidelines to
help you reduce the chance of metastability effects caused by signal synchronization.

Introduction
All registers in digital devices, such as FPGAs, have defined signal-timing
requirements that allow each register to correctly capture data at its input ports and
produce an output signal. To ensure reliable operation, the input to a register must be
stable for a minimum amout of time before the clock edge (register setup time or tSU)
and a minimum amount of time after the clock edge (register hold time or tH). The
register output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
You should determine an acceptable target MTBF given the context of your entire
system and the fact that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

f For more information about metastability due to signal synchronization, its effects in
FPGAs, and how MTBF is calculated, refer to the Understanding Metastability in FPGAs
white paper on the Altera website. Your overall device MTBF is also affected by other
FPGA failure mechanisms that you cannot control with your design. For information
about Altera device reliability, refer to the Reliability Report on the Altera website.

QII51018-9.1.0

http://www.altera.com/literature/rr/rr.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

7–2 Chapter 7: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Quartus II software provides analysis, optimization, and reporting features to
help manage metastability in Altera designs. These metastability features are
supported only for designs constrained with the Quartus II TimeQuest timing
analyzer. Both typical and worst-case MBTF values are generated for select device
families.

f For details about device and version support for the metastability features in the
Quartus II software, refer to Quartus II Help.

This chapter contains the following topics:

■ “Metastability Analysis in the Quartus II Software” on page 7–2, including the
important first step “Identifying Synchronizers for Metastability Analysis”

■ “Metastability and MTBF Reporting” on page 7–6

■ “MTBF Optimization” on page 7–9

■ “Reducing Metastability Effects” on page 7–10, including guidelines to ensure
complete and accurate metastability analysis and some suggestions to follow if the
Quartus II metastability reports calculate an unacceptable MTBF value

Metastability Analysis in the Quartus II Software
When a signal transfers between circuitry in unrelated or asynchronous clock
domains, the first register in the new clock domain acts as a synchronization register.
To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve
to a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The TimeQuest timing analyzer can analyze and report the MTBF for each identified
synchronizer that meets its timing requirements, and can generate an estimate of the
overall design MTBF. The software uses this information to optimize the design
MTBF, and you can use this information to determine whether you require longer
synchronizer chains in your design.

The first step to enable metastability MTBF analysis and optimization in the
Quartus II software is to identify which registers are part of a synchronization register
chain.

This section contains the following subsections:

■ “Synchronization Register Chains” on page 7–3

■ “Identifying Synchronizers for Metastability Analysis” on page 7–4

■ “How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis” on page 7–5

For information about the reports generated by the TimeQuest timing analyzer, refer
to “Metastability and MTBF Reporting” on page 7–6. For more information about
optimizing the MTBF, refer to “MTBF Optimization” on page 7–9.

Chapter 7: Managing Metastability with the Quartus II Software 7–3
Metastability Analysis in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Synchronization Register Chains
A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

■ The registers in the chain are all clocked by the same clock or phase-related clocks.

■ The first register in the chain is driven asynchronously or from an unrelated clock
domain.

■ Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. Figure 7–1 shows a
sample two-register synchronization chain.

The path between synchronization registers can contain combinational logic, as long
as all registers of the synchronization register chain are in the same clock domain.
Figure 7–2 shows an example of a synchronization register chain that includes logic
between the registers.

The Quartus II software uses the design timing constraints to determine which
connections are asynchronous signal transfers, as described in “How Timing
Constraints Affect Synchronizer Identification and Metastability Analysis” on
page 7–5.

Figure 7–1. Sample Synchronization Register Chain

Figure 7–2. Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data

7–4 Chapter 7: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Identifying Synchronizers for Metastability Analysis
The first step in enabling metastability MTBF analysis and optimization in the
Quartus II software is to identify which registers are part of a synchronization register
chain with the Synchronizer Identification option.

You can apply synchronizer identification settings globally, to a design entity, or to
specific registers of a synchronization chain. You can use the global options in “Using
the Global Synchronizer Identification Setting” on page 7–4 to automatically list or
analyze possible synchronizers. Review this list of possible synchronizers to identify
the confirmed synchronization chains with specific registers assignments as described
in “Refining Synchronizer Identification Using the Instance-Specific Assignment” on
page 7–5.

Synchronization chains are already identified within most Altera intellectual property
(IP) cores.

Using the Global Synchronizer Identification Setting
To set the global Synchronizer Identification option, on the Assignments menu, click
Settings. Under Timing Analysis Settings, click on the TimeQuest Timing Analyzer
page and select the appropriate Synchronizer Identification setting under
Metastability Analysis: Off, Auto, or Forced If Asynchronous. To apply the global
assignment with Tcl, use the following command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION
<OFF|AUTO|"FORCED IF ASYNCHRONOUS">

Use the following guidelines to choose the global setting:

■ The default global Off setting means that no synchronization registers are
automatically analyzed.

■ Use the global Auto setting to generate a list of likely synchronization chains in
your design, based on the software’s automatic synchronizer detection criteria.

■ With this setting, any chain synchronizing an asynchronous signal with more
than one register is listed as a likely synchronizer if the chain does not contain
logic.

■ MTBF is not reported or optimized for automatically detected register chains.

Chapter 7: Managing Metastability with the Quartus II Software 7–5
Metastability Analysis in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ You can use the global Forced If Asynchronous setting to report and optimize
MTBF for all asynchronous signal transfers in the design.

■ This setting forces synchronization register identification and MTBF analysis if
the software detects any asynchronous signal transfer, even if there is
combinational logic or only one register in the synchronization register chain.

■ This setting is likely to identify some registers that were not designed as
synchronizers, and thus might report an MTBF that is too conservative. For
example, asynchronous reset signals to registers and SignalTap® II Embedded
Logic Analyzer signals might generate metastability reports.

■ You can turn off synchronizer identification for specific registers using the
instance-specific option, as described below.

Refining Synchronizer Identification Using the Instance-Specific Assignment
To enable MTBF optimization and reporting, identify synchronizers by applying the
Synchronizer Identification setting of Forced If Asynchronous to each register in a
synchronization chain.

If you use the global Synchronizer Identification setting of Auto to detect likely
synchronizers, use instance-specific assignments to identify the true synchronizers for
MTBF optimization and reporting. There might also be additional synchronization
chains in your design that are not detected by the Auto setting because they contain
logic or only one register.

You can use the Assignment Editor to apply this assignment to a specific register or
design instance. To apply the assignment with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZER IDENTIFICATION "FORCED IF
ASYNCHRONOUS" -to <register or instance name>

If you have a specific register or register chain in your design that the software detects
as synchronous (such as a virtual pin associated with a virtual clock), but you want to
analyze and optimize the register or register chain for metastability like an
asynchronous signal, apply the Forced setting to the first synchronization register in
the chain.

The Forced setting is not globally available in the Settings dialog box, because
making this setting globally would incorrectly identify every register in the design as
a synchronizer.

If some register chains are misidentified as synchronizers when you set either the
global or entity-level Synchronizer Identification option to Forced If Asynchronous,
you can disable metastability analysis for specific registers. To do so, use the
Assignment Editor to set Synchronizer Identification to Off for the first
synchronization register in mis-identified register chains.

How Timing Constraints Affect Synchronizer Identification and Metastability Analysis
The TimeQuest timing analyzer can analyze metastability MTBF only if a
synchronization chain meets its timing requirements. The metastability failure rate
depends on the timing slack available in the synchronizer’s register-to-register
connections, because that slack is the available settling time for a potential metastable
signal. Therefore, it is important for your design to be correctly constrained with the
real application frequency requirements to get an accurate MTBF report.

7–6 Chapter 7: Managing Metastability with the Quartus II Software
Metastability and MTBF Reporting

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The TimeQuest timing analyzer views input ports as asynchronous signals unless
they are associated correctly with a clock domain. If an input port fans out to registers
that are not acting as synchronization registers, apply a set_input_delay
constraint to the input port; otherwise, the input register might be reported as a
synchronization register. If you constrain a synchronous input port with a
set_max_delay constraint for a setup (tSU) requirement, this does not prevent
synchronizer identification because the constraint does not associate the input port
with a clock domain.

Instead, use the following syntax to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu
requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.

Metastability and MTBF Reporting
The Quartus II software reports the metastability analysis results in the Compilation
Report and TimeQuest Timing Analyzer reports as described in “Metastability
Report”. The MTBF calculation uses timing and structural information about the
design, silicon characteristics, and operating conditions, along with the data toggle
rate described in “Synchronizer Data Toggle Rate in MTBF Calculation” on page 7–8.

f For more information about how metastability MTBF is calculated, refer to the
Understanding Metastability in FPGAs white paper.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the TimeQuest Timing Analyzer. However, you
should rerun the Fitter first so that the registers identified with the new setting can be
optimized for metastability MTBF. For information about metastability optimization,
refer to “MTBF Optimization” on page 7–9.

Metastability Report
The Metastability Report provides a summary of the metastability analysis results. In
addition to the MTBF Summary and Synchronizer Summary reports, the TimeQuest
Timing Analyzer tool reports additional statistics in a report for each synchronizer
chain. This section provides more information about the reports.

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf.

Chapter 7: Managing Metastability with the Quartus II Software 7–7
Metastability and MTBF Reporting

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To view the MTBF Summary and Synchronizer Summary reports, open the
Metastability Report in the TimeQuest Timing Analyzer section of the Compilation
Report. If the software performs multicorner timing analysis, expand the timing
analysis results for one of the timing corners, and then select the Metastability Report
for those operating conditions.

To view the additional synchronizer statistics in the TimeQuest timing analyzer
report, open the TimeQuest Timing Analyzer from the Tools menu, and double-click
Report Metastability in the Tasks list (or use the report_metastability
command). You can generate the reports with Tcl commands in addition to the
TimeQuest timing analyzer user interface. Refer to “Scripting Support” on page 7–12
for details.

1 If the design uses only the Auto Synchronizer Identification setting, the reports list
likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain, force identification of synchronization registers as described in “Identifying
Synchronizers for Metastability Analysis” on page 7–4.

1 If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is properly constrained and that the synchronizer meets its timing
requirements, as described in “How Timing Constraints Affect Synchronizer
Identification and Metastability Analysis” on page 7–5.

MTBF Summary Report
The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF
results of all synchronization chains in the design to calculate an MTBF for the entire
design.

The MTBF Summary Report reports the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.

When you analyze multiple timing corners in the TimeQuest timing analyzer, the
MTBF calculation may vary because of changes in the operating conditions, and the
timing slack or available metastability settling time. Altera recommends running
multi-corner timing analysis to ensure that you analyze the worst MTBF results,
because the worst timing corner for MTBF does not necessarily match the worst
corner for timing performance. In the Settings dialog box, under Timing Analysis
Settings, click the TimeQuest Timing Analyzer page, and turn on Enable
multicorner timing analysis during compilation.

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information. If the number of synchronizer
chains found is different from what you expect, or if the length of the shortest
synchronizer chain is less than you expect, you might have to add or change
Synchronizer Identification settings for the design. The report also provides the
Worst Case Available Settling Time, defined as the available settling time for the
synchronizer with the worst MTBF.

7–8 Chapter 7: Managing Metastability with the Quartus II Software
Metastability and MTBF Reporting

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer Identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

Finally, the MTBF Summary report specifies how an increase of 100ps in available
settling time increases the MTBF values. If your MTBF is not satisfactory, this metric
can help you determine how much extra slack would be required in your
synchronizer chain to allow you to reach the desired design MTBF.

Synchronizer Summary
The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting. The Source Node is the
register or input port that is the source of the asynchronous transfer. The
Synchronization Node is the first register of the synchronization chain. The Source
Clock is the clock domain of the source node, and the Synchronization Clock is the
clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement. To see more detail about each synchronizer, refer to the
TimeQuest statistics report described in the following section.

Synchronizer Chain Statistics Report in the TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer provides an additional report for each synchronizer
chain. The Chain Summary tab matches the Synchronizer Summary information
described in the previous section, while the Statistics tab adds more details.

The Statistics list whether the Method of Synchronizer Identification was User
Specified (with the Forced if Asynchronous or Forced settings for the Synchronizer
Identification setting) or Automatic (with the Auto setting). The Number of
Synchronization Registers in Chain is also reported. This report provides more
details about the parameters that affect the MTBF calculation: the Available Settling
Time for the chain and the Data Toggle Rate Used in MTBF Calculation (for
information about the toggle rate, see “Synchronizer Data Toggle Rate in MTBF
Calculation” on page 7–8). There is also additional detail to help you identify where
this chain is in your design: the Source Clock and Asynchronous Source node of the
signal, the Synchronization Clock in the destination clock domain, and the node
names of the Synchronization Registers in the chain.

Synchronizer Data Toggle Rate in MTBF Calculation
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles. If multiple clocks apply, the highest
frequency is used. If no source clocks can be determined, the data rate is taken as
12.5% of the synchronization clock frequency.

Chapter 7: Managing Metastability with the Quartus II Software 7–9
MTBF Optimization

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number of
transitions per second, on the first register of a synchronization chain. The TimeQuest
timing analyzer takes the specified rate into account when computing the MTBF of
that particular register chain. If a data signal never toggles and does not affect the
reliability of the design, you can set the Syncronizer Toggle Rate to 0 for the
synchronization chain so the MTBF is not reported. To apply the assignment with Tcl,
use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

1 There are two other assignments associated with toggle rates, which are not used for
metastability MTBF calculations. The I/O Maximum Toggle Rate is only used for
pins, and specifies the worst-case toggle rates used for signal integrity purposes. The
Power Toggle Rate assignment is used to specify the expected time-averaged toggle
rate, and is used by the PowerPlay Power Analyzer to estimate time-averaged power
consumption.

MTBF Optimization
In addition to reporting synchronization register chains and MTBF values found in
the design, the Quartus II software can also protect these registers from optimizations
that might negatively impact MTBF and can optimize the register placement and
routing if the MTBF is too low. Synchronization register chains must first be explicitly
identified as synchronizers, as described in “Identifying Synchronizers for
Metastability Analysis” on page 7–4. Altera recommends that you set Synchronizer
Identification to Forced If Asynchronous for all registers that are part of a
synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option which is described in the next section.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by
placing and routing the registers to increase their output setup slack values. Adding
slack in the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

Metastability optimization is on by default. To view or change the option, on the
Assignments menu, click Settings. Under Fitter Settings, click More Settings. From
the More Settings dialog box, you can turn on or off the Optimize Design for
Metastability option. To turn the optimization on or off with Tcl, use the following
command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

7–10 Chapter 7: Managing Metastability with the Quartus II Software
Reducing Metastability Effects

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Synchronization Register Chain Length
The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with
the Optimize Design for Metastability option. For example, if the Synchronization
Register Chain Length option is set to 2, optimizations such as register duplication or
logic retiming are prevented from being performed on the first two registers in all
identified synchronization chains. The first two registers are also optimized to
improve MTBF when the Optimize Design for Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 2. The
first register of a synchronization chain is always protected from operations that
might reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Altera recommends that you set this option to the maximum
length of synchronization chains you have in your design so that all synchronization
registers are preserved and optimized for MTBF.

To change the global Synchronization Register Chain Length option, on the
Assignments menu, click Settings. Under Analysis & Synthesis Settings, click More
Settings. From the More Settings dialog box, you can set the Synchronization
Register Chain Length.

You can also set the Synchronization Register Chain Length on a node or an entity in
the Assignment Editor. You can set this value on the first register in a synchronization
chain to specify how many registers to protect and optimize in this chain. This
individual setting is useful if you want to protect and optimize extra registers that you
have created in a specific synchronization chain that has low MTBF, or optimize less
registers for MTBF in a specific chain where the maximum frequency or timing
performance is not being met.

To make the global setting with Tcl, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Reducing Metastability Effects
You can check your design's metastability MTBF in the Metastability Summary report
described in “Metastability Report” on page 7–6. As discussed in the “Introduction”,
you should determine an acceptable target MTBF given the context of your entire
system and the fact that MTBF calculations are statistical estimates. A high
metastability MTBF (such as hundreds or thousands of years between metastability
failures) indicates a more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Quartus II metastability reports
calculate an unacceptable MTBF value. The Timing Optimization Advisor (available
from the Tools menu) gives similar suggestions in the Metastability Optimization
section.

Chapter 7: Managing Metastability with the Quartus II Software 7–11
Reducing Metastability Effects

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Apply Complete System-Centric Timing Constraints for the TimeQuest Timing Analyzer
To enable the Quartus II metastability features, make sure that the TimeQuest Timing
Analyzer is used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains may be
identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using
FPGA-centric timing constraints. As described in “How Timing Constraints Affect
Synchronizer Identification and Metastability Analysis” on page 7–5, you should use
set_input_delay constraints in place of set_max_delay constraints to associate
each input port with a clock domain to help eliminate false positives during
synchronization register identification.

Force the Identification of Synchronization Registers
Use the guidelines in “Identifying Synchronizers for Metastability Analysis” on
page 7–4 to ensure the software reports and optimizes the appropriate register chains.

In summary, identify synchronization registers with the Synchronizer Identification
set to Forced If Asynchronous in the Assignment Editor. If there are any registers that
the software detects as synchronous but you want to be analyzed for metastability,
apply the Forced setting to the first synchronizing register. Set Synchronizer
Identification to Off for registers that are not synchronizers for asynchronous signals
or unrelated clock domains.

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on the TimeQuest Timing Analyzer page of the
Settings dialog box to Auto to generate a list of all the possible synchronization
chains in your design.

Set the Synchronizer Data Toggle Rate
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. To obtain a more accurate MTBF for a
specific chain or all chains in your design, set the Synchronizer Toggle Rate as
described in “Synchronizer Data Toggle Rate in MTBF Calculation” on page 7–8.

Optimize Metastability During Fitting
Ensure that the Optimize Design for Metastability setting described in “MTBF
Optimization” on page 7–9 is turned on.

Increase the Length of Synchronizers to Protect and Optimize
Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design, as described in “Synchronization Register
Chain Length” on page 7–10. If you have synchronization chains longer than 2
identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

7–12 Chapter 7: Managing Metastability with the Quartus II Software
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Set Fitter Effort to Standard Fit instead of Auto Fit
If your design MTBF is too low after following the previous guidelines in this section,
you can try increasing the Fitter effort to perform more metastability optimization.
The default Auto Fit setting reduces the Fitter’s effort after meeting the design’s
timing and routing requirements to reduce compilation time. This effort reduction can
result in less metastability optimization if the timing requirements are easy to meet. If
Auto Fit reduces Fitter effort during your design compilation, setting the Fitter effort
to Standard Fit might improve the design’s MTBF results. On the Assignments menu,
click Settings. On the Fitter Settings page, set Fitter effort to Standard Fit.

If Possible, Increase the Number of Stages Used in Synchronizers
Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, using chains of length two or even three may not
be enough to produce a high enough MTBF when the design runs at high clock and
data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage
increases the settling time of the synchronization chain, allowing more opportunity
for the signal to resolve to a known state during a metastable event. Additional
settling time increases the MTBF of the chain and improves the robustness of your
design. Of course, adding a synchronization stage does introduce an additional stage
of latency on the signal.

If you use the Altera FIFO megafunction with separate read and write clocks to cross
clock domains, increase the metastability protection (and latency) for better MTBF. In
the MegaWizard™ Plug-In Manager for the DCFIFO function, choose the Best
metastability protection, best fmax, unsynchronized clocks option to add 3 or more
synchronization stages. You can increase the number of stages to more than 3 using
the How many sync stages? setting.

If Possible, Select a Faster Speed Grade Device
The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly
below the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in PDF form.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 7: Managing Metastability with the Quartus II Software 7–13
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Identifying Synchronizers for Metastability Analysis
To apply the global Synchronizer Identification assignment described on page
“Identifying Synchronizers for Metastability Analysis” on page 7–4, use the following
command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION
<OFF|AUTO|"FORCED IF ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or instance,
use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION
<AUTO|"FORCED IF ASYNCHRONOUS"|FORCED|OFF> -to <register or instance
name>

Synchronizer Data Toggle Rate in MTBF Calculation
To specify a toggle rate for MTBF calculations as described on page “Synchronizer
Data Toggle Rate in MTBF Calculation” on page 7–8, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

report_metastability TimeQuest and Tcl Command
If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “Metastability Report” on page 7–6 outside of the
Quartus II and TimeQuest user interfaces. Table 7–1 describes the options for the
report_metastability TimeQuest and Tcl command.

MTBF Optimization
To ensure that metastability optimization described on page “MTBF Optimization” on
page 7–9 is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Table 7–1. report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified
in the file name determines the file type—either *.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the new
panel.

-stdout Indicates the report be sent to the standard output, via messages.
This option is required only if you have selected another output
format, such as a file, and would also like to receive messages.

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

7–14 Chapter 7: Managing Metastability with the Quartus II Software
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Synchronization Register Chain Length
To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “Synchronization Register Chain Length” on
page 7–10, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Conclusion
Altera’s Quartus II software provides industry-leading analysis and optimization
features to help you manage metastability in your FPGA designs. Set up your
Quartus II project with the appropriate constraints and settings to enable the software
to analyze, report, and optimize the design MTBF. Take advantage of these features in
the Quartus II software and follow the guidelines in this chapter as required to make
your design more robust with respect to metastability.

Chapter 7: Managing Metastability with the Quartus II Software 7–15
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ Understanding Metastability in FPGAs white paper

Document Revision History
Table 7–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 7–2. Document Revision History

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

Clarified description of synchronizer identification settings.

Minor changes to text and figures throughout document.

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

Initial release. —

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf.

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

7–16 Chapter 7: Managing Metastability with the Quartus II Software
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

8. Best Practices for Incremental
Compilation Partitions and

Floorplan Assignments

This chapter provides a set of guidelines to help you partition your design to take
advantage of Quartus II incremental compilation, and to help you create a design
floorplan using LogicLockTM regions to support the flow.

Introduction
The Quartus® II incremental compilation feature allows you to partition a design,
compile partitions separately, and reuse results for unchanged partitions. It provides
the following benefits:

■ Reduces compilation times by as much as 70%

■ Preserves performance for unchanged design blocks

■ Provides repeatable results and reduces the number of compilations

■ Enables true team-based design

f For more information about feature usage and application examples, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

This document contains the following sections:

■ “Overview: Incremental Compilation” on page 8–2

■ “Why Plan Partitions and Floorplan Assignments for Incremental Compilation?”
on page 8–5

■ “Creating Design Partitions: General Partitioning Guidelines” on page 8–6

■ “Creating Design Partitions: Design Guidelines” on page 8–8

■ “Creating Design Partitions: Consider Additional Design Suggestions” on
page 8–23

■ “Checking Partition Quality” on page 8–29

■ “Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs”
on page 8–35

■ “Introduction to Design Floorplans” on page 8–39

■ “Creating a Design Floorplan: Placement Guidelines” on page 8–42

■ “Checking Floorplan Quality” on page 8–47

■ “Recommended Design Flows and Application Examples” on page 8–48

■ “Potential Issues with Creating Partitions and Floorplan Assignments” on
page 8–51

QII51017-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–2 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Overview: Incremental Compilation
Quartus II incremental compilation is an optional compilation flow that enhances the
default Quartus II compilation. If you do not divide up your design for incremental
compilation, your design is compiled using the default “flat” compilation flow. This
section provides an overview of the incremental flow and highlights several best
practices.

The following procedure outlines the general Quartus II incremental compilation
flow:

1. Set up your design hierarchy and source code to support partitioning along logical
hierarchy boundaries. If you use a third-party synthesis tool, set up your tool to
generate separate netlist files for each partition.

2. Create design partition assignments in the Quartus II software to specify which
hierarchy blocks are compiled independently as partitions (including empty
partitions for any missing or incomplete logic blocks).

3. During design compilation, Quartus II Analysis and Synthesis and the Fitter create
separate netlists for each partition. These netlists are internal post-synthesis and
post-fit database representations of your design.

4. Select which netlist type to preserve for each partition. You can either reuse the
synthesis or fitting netlist or instruct the Quartus II software to resynthesize the
source files. You can also import compilation results from another project, as
described in “Incremental and Team-Based Design Flows”.

5. After part of the design changes, the software recompiles only the required
partitions and merges the new compilation results with existing netlists for other
partitions, according to the settings from step 4.

In some cases, as described in “Introduction to Design Floorplans” on page 8–39, you
should create a design floorplan with placement assignments to constrain each part of
the design to a specific region of the device.

Incremental and Team-Based Design Flows
The Quartus II incremental compilation feature supports various design flows. Your
design flow affects how much impact design partitions have on design optimization.

f For more information about the different types of incremental design flows and
example applications, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

In the standard incremental compilation flow, the top-level design is divided into
partitions, which can be compiled and optimized together in one Quartus II project. If
source code is not yet complete for a design partition, you can create a placeholder for
the partition until the code is ready and added to the top-level design. To enable team-
based development and third-party IP delivery, you can design and optimize each
partition in isolation, and later integrate the results into the top-level design with the
Quartus II software export and import features.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–3
Overview: Incremental Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Keeping design partitions in one Quartus II project is generally a more simple design
flow to use than when partitions are imported from separate Quartus II projects.
Keeping all design partitions in one project provides the Quartus II software with
information about the entire design, allowing it to perform global placement and
routing optimizations. Therefore, it is often easier to ensure good quality of results
when partitions are imported from other team members or third-party IP providers.

You can combine design flows and use imported partitions when it is necessary to
support your design environment. If the top-level design includes one or more design
blocks that are optimized by remote designers or IP providers, you can import those
blocks into a project that also includes partitions for a standard incremental design
flow. In addition, as you perform timing closure for a design, you can create a
subproject for one block of the design to be optimized by another designer in a
separate Quartus II project, and pass information about the rest of the design to the
subproject to obtain the best results.

1 You cannot use an imported partition if you want to migrate to a HardCopy ASIC.
The Revision Compare feature requires that the HardCopy and FPGA netlists are the
same, and all operations performed on one revision must also occur on the other
revision. Unfortunately, importing partitions does not support this requirement.

Recommendations for the Netlist Type and Fitter Preservation Level
You must specify which post-compilation netlist you want to use in subsequent
compilations by specifying a Netlist Type setting for each partition. For post-fit
netlists, you can also specify a Fitter Preservation Level setting to indicate the amount
of fitting information you want to preserve. Use the following general guidelines for
these standard Netlist Type settings:

■ Source File: Use this setting to resynthesize the source code (with any new
assignments and replace any previous synthesis or Fitter results)

■ If you modify the design source, the software automatically resynthesizes the
appropriate partitions with standard Netlist Type settings, so setting the
partition to Source File is optional in this case

■ Most assignments do not trigger an automatic recompilation, so setting the
partition to Source File is required to compile the source files with new
assignments or constraints that affect synthesis

■ Post-Synthesis (default): Use this setting to re-fit the design (with any new Fitter
assignments) but preserve the synthesis results

■ Post-Fit: Use this setting to preserve Fitter and performance results

■ The default setting for post-fit is to use the highest available level of netlist
preservation

■ Post-Fit with Fitter Preservation Level set to Placement: Use these settings to allow
more flexibility to find the best routing for all partitions given their placement on
the design. Although routing can change with these options, there is typically very
good performance preservation.

8–4 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Quartus II software also includes a Rapid Recompile feature, which allows you to
reuse previous compilation results for unchanged logic when you have changed a
very small portion of the design. You can set the Rapid Recompile option to preserve
compatible placement or compatible placement and routing to reduce compilation
time when you make small changes inside a partition or the full design. If you choose
a netlist type that specifies recompilation and the Rapid Recompile option is turned
on, then the specified compatible compilation results are preserved and reused. To
ensure you compile from new source files with no compilation results reused, you can
turn off the Rapid Recompile option.

Project Management in Team-Based Designs
In a team-based design methodology in which some partitions are developed
independently, the project lead must pass top-level constraints (such as floorplan and
pin assignments, timing constraints, and optimization settings) to the designers of
lower-level partitions.

One option is for the lead designer to make a copy of the top-level project framework
for all team members. This option ensures that all design developers have all the
settings and constraints needed for the design and makes design integration easier.
Each lower-level project designer can export their completed design as a partition,
and the lead designer can then integrate each partition into the top-level design.

An alternate option is for each lower-level project designer to use their own Quartus II
project for their independent design block. You might use this design flow if a
designer, such as a third-party IP provider, does not have access to the entire design
framework. In this case, each designer of a lower-level project must create a project
with all the relevant assignments and constraints. When lower-level projects are
developed independently, it is sometimes referred to as a bottom-up design
methodology.

The bottom-up design partition script provide a project manager interface for
managing resource and timing budgets in the top-level design. This interface makes it
easier for designers of independent lower-level projects to implement the instructions
from the project lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. Using the scripts also helps
reduce the need for further optimization to the designs after integration and improves
overall designer productivity and team collaboration.

The scripting feature creates Tcl files that an independent designer can run to set up a
project and makefiles for designers who use a make environment. To use this feature,
first set up the top-level project with appropriate constraints and floorplan
assignments to be passed to lower levels. Then generate design partition scripts after
successful compilation of the top-level design. You can perform a Fast Synthesis and
Early Timing Estimation instead of full compilation to reduce compilation time. The
top-level design can have empty partitions when you generate the scripts. To generate
the scripts, on the Project menu, click Generate Bottom-Up Design Partition Scripts
and set the appropriate options.

f For more information about different design flows and features to support the flows,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–5
Why Plan Partitions and Floorplan Assignments for Incremental Compilation?

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Why Plan Partitions and Floorplan Assignments for Incremental
Compilation?

Incremental compilation flows require more up-front planning than flat compilations.
For example, you might have to structure your source code or design hierarchy to
ensure that logic is grouped correctly for optimization. It is easier to implement the
correct logic grouping early in the design cycle than to restructure the code later.
Incremental compilation generally requires you to be more rigorous about following
good design practices than flat compilations.

Planning involves setting up the design logic for partitioning and may involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation much
easier. Poor partition or floorplan assignments can worsen design area utilization and
performance, making timing closure more difficult.

As FPGA devices get larger and more complex, following good design practices
becomes more important for all design flows.These planning issues are similar to the
requirements for a multiple-chip solution if you were using smaller devices, although
planning for one chip is much easier. Adhering to the recommended synchronous
design practices makes designs more robust and easier to debug. Using an
incremental compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation times.

Partition Boundaries and Optimization
If there are any cross-boundary optimizations between partitions, the software cannot
obtain separate results for each individual partition. The logical hierarchical
boundaries between partitions are treated as hard boundaries for logic optimization
to allow the software to synthesize and place each partition independently. Figure 8–1
shows the effects of partition boundaries during logic optimization. It is important to
understand this effect so that you can effectively plan your design partitions.

Figure 8–1. Effects of Partition Boundaries During Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Presence of cross-boundary
optimization

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

Possible to incrementally
recompile each hierarchy

8–6 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: General Partitioning Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To avoid cross-boundary optimizations, the software synthesizes each partition
without using any information about logic in other partitions. In a flat compilation,
the software uses unconnected signals, constants, inversions, and other design
information to perform optimizations. When you partition a design, these types of
optimizations do not take place on partition I/O ports. Good design partitions do not
rely on these types of logic optimizations.

When all partitions are placed together, the Fitter can perform placement
optimizations on the design as a whole to optimize the placement of cross-partition
paths. However, the Fitter can never perform any logic optimizations such as physical
synthesis across the partition boundary. If partitions are fit separately in different
projects, or if some partitions use previous post-fitting results, the Fitter does not
place and route the entire cross-boundary path at the same time and cannot fully
optimize placement across the partition boundaries. Good design partitions can be
placed independently because cross-partition paths are not the critical timing paths in
the design.

Because cross-boundary logic and placement optimizations cannot occur, the quality
of results may decrease as the number of partitions increases. Although more
partitions allow for greater reduction in compilation time, consider limiting the
number of partitions to prevent degradation in the quality of results. Creating good
design partitions and good floorplan location assignments helps improve the
performance results for cross-partition paths. Guidelines for creating these
assignments are discussed in the following sections.

Creating Design Partitions: General Partitioning Guidelines
The first stage in planning your design partitions is to organize your source code so
that it supports good partition assignments. Although you can assign any hierarchical
block of your design as a design partition, following the design guidelines presented
in this section ensures better results. This section includes the following topics:

■ “Plan Design Hierarchy and Source Design Files” on page 8–6

■ “Partition Design by Functionality and Block Size” on page 8–7

■ “Partition Design by Clock Domain and Timing Criticality” on page 8–8

■ “Consider What Is Changing” on page 8–8

Plan Design Hierarchy and Source Design Files
Start by planning the design hierarchy. When you assign a hierarchical instance as a
design partition, the partition includes the assigned instance and any entities
instantiated below it that are not defined as separate partitions. You can also use the
Merge command to combine hierarchical partitions into a single partition, as long as
they have the same immediate parent partition. However, in the Quartus II software
version 9.0, logic is not merged or optimized across hierarchical blocks that are
merged into the same partition.

Take advantage of the design hierarchy to provide flexibility for partitioning and to
support different design flows. Keep logic in the “leaves” of the hierarchy tree instead
of having a lot of logic at the top level of the design. Doing so ensures that you can
isolate partitions if required.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–7
Creating Design Partitions: General Partitioning Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Create entities that can lead to partitions of approximately equal size. For example, do
not instantiate a lot of small entities at the same hierarchy level because it is more
difficult to group them to form reasonably-sized partitions.

Create each entity in an independent file. The compiler uses a file checksum to detect
changes, and automatically recompiles a partition if its source file changes and their
netlist type is set to either post-synthesis or post-fit. If the design entities for two
partitions are defined in the same file, changes to the logic in one partition initiate
recompilation for both partitions.

Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes in
that lower level affect both partitions. Commands such as VHDL use and Verilog
HDL `include create dependencies between files, so that changes to one file can
trigger recompilations in all dependent files. Avoid these types of file dependencies if
they are not required. The Partition Dependent Files report for each partition in the
Analysis & Synthesis folder of the Compilation Report lists which files contribute to
each partition.

f For more information about what changes initiate an automatic recompilation, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Using Partitions with Third-Party Synthesis Tools
Incremental compilation works well with third-party synthesis tools in addition to
Quartus II Integrated Synthesis. If you use a third-party synthesis tool, set up your
tool to create a separate Verilog Quartus Mapping File (.vqm) or EDIF Input File (.edf)
netlist for each hierarchical partition. In the Quartus II software, designate the
top-level entity from each netlist as a design partition. The .vqm or .edf netlist file is
treated as the source file for the partition in the Quartus II software.

f For more information about incremental synthesis in third-party tools, refer to your
tool vendor's documentation or the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Partition Design by Functionality and Block Size
Initially, partition your design along functional boundaries. In a top-level system
block diagram, each block often is a natural design partition. Typically, each block of a
system is relatively independent and has more signal interaction internally than
interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can
optimize related logic as a whole, which can lead to improved optimization.

Consider how many partitions you want to maintain in your design to determine how
large each partition should be. How much compilation time reduction you want to
achieve is also a factor, because compiling small partitions is typically faster than
compiling large partitions.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–8 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should be more
than approximately 2,000 logic elements (LEs) or adaptive logic modules (ALMs). If
your design is not yet complete when you partition the design, use previous designs
to help you estimate the size that each block is likely to be.

Partition Design by Clock Domain and Timing Criticality
Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if
the partition logic is going to be constrained to one region of the design. In addition,
limiting the number of clocks within each partition simplifies the timing requirements
for each partition during optimization. Use an appropriate subsystem to handle any
clock domain transfers (such as a synchronization circuit, dual-port RAM, or FIFO).
You can include this logic inside the partition at one side of the transfer.

Try to isolate timing-critical logic from logic that you expect to meet its timing
requirements easily. Doing so allows you to preserve the satisfactory results for
non-critical partitions and focus optimization iterations on just the timing-critical
portions of the design to minimize compilation time.

Consider What Is Changing
When assigning partitions, you should consider what is changing in the design. Is
there intellectual property (IP) or reused logic for which the source code will not
change during future design iterations? If so, define the logic in its own partition so
that you can compile one time and immediately preserve the results, then you will not
have to compile that part of the design again. Is logic being tuned or optimized, or are
specifications changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest of the design
remains unchanged

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of
unchanged logic and minimizes compilation time.

Creating Design Partitions: Design Guidelines
Follow the partitioning guidelines presented in this section when creating or
modifying the HDL code for each design block that you might want to assign as a
design partition. Not all these recommendations have to be followed exactly to be
successful with incremental compilation, but adhering to as many as possible
maximizes your chances of success.

This section includes the following topics:

■ “Register Partition Inputs and Outputs” on page 8–9

■ “Minimize Cross-Partition-Boundary I/O” on page 8–9

■ “Avoid the Need for Logic Optimization Across Partitions” on page 8–11

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–9
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

This last subsection includes examples of the types of optimizations that are
prevented by partition boundaries, and describes how you can structure or modify
your partitions to avoid such optimizations.

Register Partition Inputs and Outputs
Use registers at partition input and output connections that are potentially
timing-critical. Registers minimize the delays on inter-partition paths, and prevent the
need for cross-boundary logic optimizations.

If every partition boundary has a register as shown in Figure 8–2, every
register-to-register timing path between partitions includes only routing delay.
Therefore, the timing paths between partitions are likely not timing-critical, and the
Fitter can generally place each partition independently from other partitions. This
advantage makes it easier to create floorplan location assignments for each separate
partition, and is especially important for flows in which each partition is placed
completely independently in separate projects. In addition, the partition boundary
does not affect combinational logic optimization because each register-to-register
logic path is contained within a single partition.

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each connection.
If you register every partition output, for example, the combinational logic that occurs
in each cross-partition path is included in one partition so that it can be optimized
together.

It is also good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block.

The statistics described in “Partition Statistics Report” on page 8–33 list how many
I/Os are registered or unregistered. The Incremental Compilation Advisor described
on page 8–47 lists the unregistered ports for each partition.

Minimize Cross-Partition-Boundary I/O
Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

Figure 8–2. Registering Partition I/O

Partition A Partition B

Cross-partition
routing delay is not the

critical timing path

D Q D Q D Q D Q

8–10 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This guideline is most important for the timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework the partitions to avoid these
inter-partition paths.

When dividing your design into partitions, consider the types of functions at the
partition boundaries. Figure 8–3 shows an expansive function with more outputs than
inputs on the left side, which makes a poor partition boundary, and a better place to
assign the partition boundary that minimizes cross-partition I/Os on the right side.
Adding registers to one or both sides of the cross-partition path in this example would
improve the partition quality even more.

Another way to minimize connections between partitions is to avoid using
combinational “glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram in Figure 8–4 includes a new level of hierarchy C
that is defined as a partition instead of block B. It is clear that there are fewer I/O
connections between partitions A and C than between partitions A and B in the top
diagram.

Figure 8–3. Minimizing I/O Between Partitions by Moving the Partition Boundary

Expansive function;
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–11
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The statistics described in “Partition Statistics Report” on page 8–33 list the number of
I/O ports as well as the number of inter-partition connections for each partition. The
Incremental Compilation Advisor described on “Incremental Compilation Advisor”
on page 8–47 lists the number of intra-partition (within a partition) and inter-partition
(between partitions) timing edges.

Avoid the Need for Logic Optimization Across Partitions
As discussed in “Partition Boundaries and Optimization” on page 8–5, partition
boundaries prevent logic optimizations across partitions. Remember this rule: Logic
cannot be optimized or merged across a partition boundary.

To ensure correct and optimal logic optimization, follow the guidelines in this section.
In some cases, especially if part of the design is complete or comes from another
designer, these guidelines may not have been followed when the source code was
created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in this section. Many of the
examples provide suggestions for making simple changes to your partition
definitions or hierarchy to move the partition boundary and improve your results.

These guidelines ensure that your design does not require any logic optimization
across partitions:

■ “Keep Logic in the Same Partition for Optimization and Merging” on page 8–12

■ “Keep Constants in the Same Partition as Logic” on page 8–13

■ “Avoid Unconnected Partition I/O” on page 8–14

■ “Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together” on
page 8–15

Figure 8–4. Minimizing I/O between Partitions by Modifying Glue Logic

Top

A B
Glue
Logic

Many cross-partition paths: Poor design partition assignment

Fewer cross-partition paths: Better partitions

Top

A
C

Glue
Logic

B

8–12 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ “Invert Clocks in Destination Partitions” on page 8–16

■ “Connect I/O Directly to I/O Register for Packing Across Partition Boundaries”
on page 8–16

■ “Do Not Use Internal Tri-States” on page 8–20

■ “Include All Tri-State and Enable Logic in the Same Partition” on page 8–20

■ “Include Bidirectional I/O Registers in the Same Partition” on page 8–21

Keep Logic in the Same Partition for Optimization and Merging
If any design logic requires logic optimization or merging to obtain optimal results,
ensure all the logic is part of the same partition.

If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left side of Figure 8–5. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The software cannot use information about other
partitions when it compiles each partition, because each partition is allowed to change
independently from the other.

On the right side of the figure, partitions A and B have been grouped into one
partition C. You can create a wrapper file to define a new level of hierarchy that
contains both blocks, and set this new hierarchy block as the partition. With the logic
contained in one partition, the software can optimize the logic and remove the two
inverters (shown in gray color), which reduces the delay for that logic path. Removing
two inverters is not a significant reduction in resource utilization because inversion
logic is readily available in Altera device architecture; however, it is a good
demonstration of the types of logic optimization that are prevented by partition
boundaries.

In a flat design, the Quartus II Fitter can also merge logical instantiations into the
same physical device resource. With incremental compilation, logic defined in
different partitions cannot be merged to use the same physical device resource.

Figure 8–5. Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in merged partition can be removed:
Better partition

A

Merged Parition

B

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–13
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different
partitions, the Fitter cannot merge them into one dedicated device RAM block.

This limitation is a concern only if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
than during planning, if your design uses more logic than is available in the device.

Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL megafunction can use the same PLL resource on the
device. Similarly, GXB transceiver instances can share high-speed serial interface
(HSSI) resources in the same quad as other instances.

The Fitter can merge multiple instantiations of these blocks into the same device
resource, even if it requires optimization across partitions. Therefore, there are no
restrictions for PLLs and high-speed transceiver blocks when setting up partitions.

Keep Constants in the Same Partition as Logic
Because the software cannot optimize across a partition boundary, constants are not
propagated across partition boundaries. A signal that is constant (1/VCC or 0/GND) in
one partition cannot affect another partition.

For example, the left side of Figure 8–6 shows part of a design in which partition A
defines some signals as constants (and assumes that the other input connections come
from elsewhere in the design and are not shown in the figure). Constants like this
could appear due to parameter/generic settings or configurations with parameters,
setting a bus to a specific set of values, or could result from optimizations that occur
within a group of logic. Because the blocks are independent, the software cannot
optimize the logic in block B based on the information from block A. The right side of
Figure 8–6 shows new partition C that groups the logic in blocks A and B. You can
create a wrapper file to define a new level of hierarchy that contains both blocks, and
set this new hierarchical block as the partition. Within the single partition, the
software can use the constants to optimize and remove much of the logic in block B
(shown in gray color).

Figure 8–6. Keeping Constants in the Same Partition as the Logic They Support

Connections to constants in another partition:
Poor design partition assignment

Constants in merged partition are used to optimize:
Better partition

VCC

GND

A

M
er

ge
d

Pa
rti

tio
n

A

D Q

VCC

GND

B
B

D Q

8–14 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The statistics described in “Partition Statistics Report” on page 8–33 list how many
input ports are fed by GND or VCC. The Incremental Compilation Advisor described
on page 8–47 lists the ports.

Avoid Unconnected Partition I/O
When a port is left unconnected, optimizations might be able to remove logic driving
that port and improve results, similar to a constant connection. However, these
optimizations are not allowed across partitions in incremental compilation, because
they would create cross-partition dependence. For best results, connect ports to an
appropriate node or remove them from the partition. If you know a port will not be
used, consider defining a wrapper module with a port interface that reflects this fact.

For example, the left side of Figure 8–7 shows a design that has a 10-bit function
defined in partition A, but has only 5 bits connected in partition B. In a flat design,
you would expect the logic for the other unused 5 bits to be removed during
synthesis. With incremental compilation, synthesis does not remove the unused logic
from partition A because partition B is allowed to change independently from
partition A. Therefore, you could later connect all 10 bits in partition B and use all 10
bits from partition A. In this design, if you know that you will not use the other 5 bits
of partition A, you should remove the unconnected ports and replace them with
ground signals inside A. You can create a new wrapper file in the design hierarchy to
do this, as shown on the right side of the figure. A new partition C contains the logic
from A but includes only the 5 output ports required for connection with partition B.
Within this new partition C, the logic for the unused 5 bits can be removed from the
design, reducing area utilization.

The statistics described in “Partition Statistics Report” on page 8–33 list how many
I/Os are unconnected. The Incremental Compilation Advisor described on page 8–47
lists the unconnected ports.

Figure 8–7. Avoiding Unconnected Partition I/O by Creating a Wrapper File

A

10-bit
Logic

Unused logic is
preserved in A:

Poor design
partition

assignment

B

Merged partition:
Better partition

5-bit
Logic

C

B

A

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–15
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition.

If the same signal drives multiple ports of a partition, or if two ports of a partition are
directly connected, those ports are logically equivalent. However, because the
software has no information about connections made in another partition (including
the Top partition), the compilation cannot take advantage of the equivalence. This
restriction usually results in sub-optimal results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition and then make the
two connections within the partition. If an output port drives an input port of the
same partition, the connection can be made internally without going through any I/O
ports. If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals
in a higher-level design partition.

Figure 8–8 shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate
partition A, the RAM block is implemented as though there are two unique clocks. If
you know that the port connectivity will not change (that is, the ports will always be
driven by the same signal in the Top partition in this case), redefine the port interface
so there is only a single port that can drive both connections inside the partition. You
can create a wrapper file to define a partition that has fewer ports, as shown in the
diagram on the right side. With the single clock fed into the partition, the RAM can be
optimized into a single-clock RAM instead of a dual-clock RAM. Single-clock RAM
can provide better performance in the device architecture. In addition, partition A
might use two global routing lines for the two copies of the clock signal. Partition B
can use one global line that fans out to all destinations. Using just the single port
connection prevents overuse of global routing resources.

The Incremental Compilation Advisor described on “Incremental Compilation
Advisor” on page 8–47 lists partition ports that have the same driving signal, and
ports that are directly connected together.

Figure 8–8. Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk

wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk

wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better partition

8–16 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Invert Clocks in Destination Partitions
For best results, clock inversion should be done in the destination logic array block
(LAB), because each LAB contains clock inversion circuitry in the device architecture.
In a flat compilation, the software can optimize a clock inversion to propagate it to the
destination LABs regardless of where the inversion takes place in the design
hierarchy. However, clock inversion cannot propagate through a partition boundary
to take advantage of the inversion architecture in the destination LABs.

With partition boundaries as shown on the left side of Figure 8–9, the Quartus II
software uses logic to invert the signal in the partition that defines the inversion (the
Top partition in this example), and then routes the signal on a global clock resource to
its destinations (in partitions A and B). The inverted clock acts as a gated clock with
high skew. A better solution is to invert the clock signal in the destination partitions as
shown on the right side of the figure. In this case the correct logic and routing
resources can be used, and the signal is not a gated clock.

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

Connect I/O Directly to I/O Register for Packing Across Partition Boundaries
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

Figure 8–9. Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (skew!):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal: Better partition

Clock

Top Top

Clock

A

B

A

B

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–17
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/O register packing illustrate this point using Block
Design File (.bdf) schematics to describe the design logic.

Example 1—Output Register in Partition Feeding Multiple Output Pins

In this example, a subdesign contains a single register, as shown in Figure 8–10.

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the
Quartus II software can perform cross-partition register packing because the single
partition port feeds the output pin directly.

In this example, the top-level design instantiates the subdesign as an output register
with more than one fan-out signal, as shown in Figure 8–11.

In this case, the software does not perform output register packing. If there is a Fast
Output Register assignment on pin out, the software issues a warning that the Fitter
cannot pack the node to an I/O pin because the node and the I/O cell are connected
across a design partition boundary.

This type of cross-partition register packing is not permitted because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the software must preserve the interface of design partitions.

To allow the software to pack the register in the subdesign from Figure 8–10 with the
output pin out in Figure 8–11, restructure your HDL code so that output registers
directly connects output pins by making one of the following changes:

Figure 8–10. Subdesign with One Register, Designated as a Separate Partition

Figure 8–11. Top-Level Design Instantiating the Subdesign in Figure 8–10 with Two Output Pins

8–18 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Place the register in the same partition as the output pin. The simplest option is to
move the register from the subdesign partition into the partition containing the
output pin. This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Duplicate the register in your subdesign HDL as in Figure 8–12 so that each
register feeds only one pin, then connect the extra output pin to the new port in the
top-level design as shown in Figure 8–13. This converts the cross-partition register
packing into the simplest case where each register has a single fan-out.

Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in
Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register, as
shown in Figure 8–10. The top-level design in Figure 8–14 instantiates the subdesign
as an input register with the input pin inverted. The top-level design in Figure 8–15
instantiates the subdesign as an output register with the signal inverted before
feeding an output pin.

Figure 8–12. Modified Subdesign from Figure 8–10 with Two Output Registers and Two Output Ports

Figure 8–13. Modified Top-Level Design from Figure 8–11 Connecting Two Output Ports to Output Pins

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–19
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In these cases, the software does not perform register packing. If there is a Fast Input
Register assignment on pin in in Figure 8–14 or a Fast Output Register assignment
on pin out in Figure 8–15, the software issues a warning that the Fitter cannot pack
the node to an I/O pin because the node and I/O cell are connected across a design
partition boundary.

This type of register packing is not permitted because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition, or the
inverter must be moved into the subdesign partition to be implemented in the
register.

To allow the software to pack the register in the subdesign from Figure 8–10 with the
input pin in in Figure 8–14 or the output pin out in Figure 8–15, restructure your
HDL code to place the register in the same partition as the inverter by making one of
the following changes:

■ Move the register from the subdesign partition into the top-level partition
containing the pin. This ensures that the Fitter can optimize the I/O register and
inverter without violating any partition boundaries.

■ Move the inverter from the top-level block into the subdesign, then connect the
subdesign directly to a pin in the top-level design. This allows the Fitter to
optimize the inverter into the register implementation, so the register is directly
connected to a pin, which enables register packing.

Figure 8–14. Top-Level Design Instantiating the Subdesign in Figure 8–10 as an Input Register with an Inverted Input Pin

Figure 8–15. Top-Level Design Instantiating the Subdesign in Figure 8–10 as an Output Register Feeding an Inverted Output
Pin

8–20 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Do Not Use Internal Tri-States
Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs do use internal
tri-states in a flat design (with no partitions), the tri-state logic is usually converted to
OR gates or multiplexing logic. But if tri-state logic occurs on a hierarchical partition
boundary, the software cannot convert the logic to combinational gates because the
partition could be connected to a top-level device I/O through another partition.

Figure 8–16 shows a design with partitions that are not supported for incremental
compilation due to the internal tri-state output logic on the partition boundaries.
Instead of using internal tri-state logic for partition outputs, implement the correct
logic to select between the two signals. Doing so is good practice even when there are
no partitions, because such logic explicitly defines the behavior for the internal signals
instead of relying on the software to convert the tri-state signals into logic.

Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is contained
in the same partition, in which case the software can convert the internal tri-state
signals into multiplexing logic like in a flat design. If possible, you should avoid using
internal tri-state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

Include All Tri-State and Enable Logic in the Same Partition
When multiple output signals use tri-state logic to drive a device output pin, the
Quartus II software merges the logic into one tri-state output pin. The software cannot
merge tri-state outputs into one output pin if any of the tri-state logic occurs on a
partition boundary. Similarly, output pins with an output enable signal cannot be
packed into the device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with an output
enable signal, structure your HDL code or design partition assignments so that the
register and enable logic are defined in the same partition.

Figure 8–16. Unsupported Internal Tri-State Signals

Design results in Quartus II error message:
The software cannot synthesize this

design and maintain incremental functionality

Top

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–21
Creating Design Partitions: Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 8–17 shows a design with tri-state output signals that feed a device
bidirectional I/O pin (assuming that the input connection feeds elsewhere in the
design and is not shown in the figure). On the left side of the figure, the tri-state
output signals appear as the outputs of two separate partitions. In this case, the
software cannot implement the specified logic and maintain incremental functionality.
On the right side, another level of hierarchy C has been created to group the logic
from blocks A and B. With this single partition, the Quartus II software can merge the
two tri-state output signals and implement them in the tri-state logic available in the
device I/O element.

Include Bidirectional I/O Registers in the Same Partition
For a bidirectional partition port that feeds a bidirectional I/O pin at the top level, all
the logic that forms the bidirectional I/O cell must reside in the same partition. This
guideline applies only to the Stratix II, Stratix, Cyclone® II, Cyclone families, but not
newer devices. In addition, as discussed in the previous two recommendations, the
I/O logic must feed the I/O pin without any intervening logic.

In Figure 8–18, for the software to implement all three registers in the I/O element
along with the tri-state logic, all the I/O logic must be defined inside the same
partition. The logic connected to the registers can occur in the same partition or any
other partition; only the I/O registers must be grouped with the tri-state logic
definition. The bidirectional I/O port of the partition must be directly connected to
the bidirectional device pin at the top level. The signal can go through several
partition boundaries if necessary, as long as the connection path contains no logic.

Figure 8–17. Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal partitions

Tri-state output logic within merged partition:
Better partition

Top

Merged Partition
A

B

8–22 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Summary of Guidelines Related to Logic Optimization Across Partitions
Follow the guidelines presented in this section to ensure that your design does not
require any logic optimization across partitions:

■ Keep logic in the same partition for optimization and merging

■ Keep constants in the same partition as logic

■ Avoid unconnected partition I/O

■ Avoid signals that drive multiple partition I/O or connect I/O together

■ Invert clocks in destination partitions

■ Connect I/O directly to I/O register for packing across partition boundaries

■ Do not use internal tri-states

■ Include all tri-state and enable logic in the same partition

■ Include bidirectional I/O registers in the same partition (in older device families)

Remember that these guidelines are not strict rules to implement an incremental
compilation flow, but can improve the quality of results. When creating source design
code, keep these guidelines in mind and organize your HDL code to support good
partition boundaries. For designs that are complete, assess whether assigning a
partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or
hierarchy to improve your results.

Figure 8–18. Including All Bidirectional I/O Registers in the Same Partition

Logic
to/from

any
partition

Top

Output Enable Register

Output
Register Tri-State

Logic

Input
Register

Partition

D

D

D

Q

Q

Q

Bidirectional logic is within one partition, and I/O logic directly feeds I/O pin

Bidir.
pin

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–23
Creating Design Partitions: Consider Additional Design Suggestions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Design Partitions: Consider Additional Design Suggestions
This section includes additional design practices that may improve success in
incremental compilation flows, if they are applicable to your design:

■ “Balance Logic Resources” on page 8–23

■ “Balance Global Routing Signals and Clock Networks if Required” on page 8–24

■ “Assign Virtual Pins in Team-Based Flows” on page 8–25

■ “Perform Timing Budgeting if Required” on page 8–26

■ “Consider a Cascaded Reset Structure” on page 8–26

■ “Drive Clocks Directly in Team-Based Flows” on page 8–27

■ “Recreate PLLs for Lower-Level Partitions if Required in Team_Based Flows” on
page 8–28

Balance Logic Resources
If you are using incremental compilation, the software synthesizes each partition
separately with no data about the resources used in other partitions. This means that
device resources could be overused in the individual partitions during synthesis,
thus, the design may not fit in the target device when the partitions are merged.

In a design flow in which designers optimize their lower-level designs and export
them to a top-level design, the software places and routes each partition separately. In
some cases, partitions can use conflicting resources when combined at the top level.

For example, in the standard synthesis flow, the Quartus II Compiler can perform
automated resource balancing for DSP blocks or RAM blocks and convert some of the
logic into regular logic cells to prevent overuse. Without data about DSP and RAM
blocks used in other partitions, it is possible for the logic in each separate partition to
maximize the use of a particular device resource.

To avoid these effects, you may have to perform manual resource balancing across
partitions. This is more applicable with imported partitions, because compilation
usually handles resource balancing without any user intervention if all resource
information is in one Quartus II project.

You can use the Quartus II synthesis options to control inference of megafunctions
that use the DSP or RAM blocks. You can also use the MegaWizardTM Plug-In Manager
to customize your RAM or DSP megafunctions to use regular logic instead of the
dedicated hardware blocks.

You can also assign a number of LAB, DSP or RAM resources for each partition. Use
the following logic options to specify the maximum number of logic blocks that the
software can use in the specified partition: Maximum Number of LABs, Maximum
DSP Block Usage, Maximum Number of M4K/M9K Memory Blocks, or Maximum
Number of M-RAM/M144K Memory Blocks. You can set these options globally for
all partitions. To set an option for all partitions, on the Assignments menu, click
Settings. Under Category, select Analysis & Synthesis Settings. Click More Settings,
and in the Existing option settings list, select the appropriate option. You can also set
the option for a specific partition with the Assignment Editor. Select the assignment

8–24 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

name, apply it to the root entity of a partition, and set an integer as the value. The
partition-specific assignment overrides the global assignment, if any. However, each
partition that does not have a partition-specific assignment can use the number of
LAB, DSP, or RAM blocks set by the global assignment. Be aware that this behavior
can lead to over-allocation of logic blocks, eventually resulting in a no-fit error.

f For more information about resource balancing DSP and RAM blocks when using
Quartus II synthesis, refer to the “Megafunction Inference Control” section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
more tips about resource balancing and reducing resource utilization, refer to the
appropriate “Resource Utilization Optimization Techniques” section in the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

It is often helpful to create a LogicLock region to isolate the placement of each
partition, especially when partitions are imported, to minimize the chance that the
logic in more than one partition uses the same logic resource. However, there are
situations in which partition placement may still cause conflicts at the top level. For
example, you can design a partition one way in a lower-level design (such as using an
M-RAM memory block) and then instantiate it in two different ways in the top level
(such as one using an M-RAM block and another using an M4K block). In this case,
you can export a post-fit netlist with no placement information from the lower-level
design and allow the software to refit the logic at the top level.

Balance Global Routing Signals and Clock Networks if Required
If your design is very complex and has many clocks, you may have to allocate global
routing resources between the different design partitions. In most cases, you do not
have to allocate routing because the software finds the best solution for the global
signals.

Global routing signals can cause conflicts when multiple projects are imported into a
top-level design. The Quartus II software automatically promotes high fan-out signals
to use global routing resources available in the device. Lower-level partitions can use
the same global routing resources, thus causing conflicts at the top level. In addition,
LAB placement depends on whether the inputs to the logic cells within the LAB are
using a global clock signal. Therefore, problems can occur if a design does not use a
global signal in the lower-level design, but does use a global signal in the top-level
design.

To avoid these problems, the project lead can first determine which partitions use
which type of global routing signals. Each designer of a lower-level partition can then
assign the appropriate type of global signals manually and prevent other signals from
using global routing resources, or set a maximum number of clocks for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks that cover only part of the device. Alternatively, designers of lower-level
partitions can specify the number of clocks allowed in the project using the maximum
clocks allowed options. On the Assignments menu, click Settings. Under Category,

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–25
Creating Design Partitions: Consider Additional Design Suggestions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

select Fitter Settings. Click More Settings, and in the Existing option settings list,
select the appropriate option. Choose Maximum number of clocks of any type
allowed, or use the Maximum number of global clocks allowed, Maximum number
of regional clocks allowed, and Maximum number of periphery clocks allowed
options to restrict the number of clock resources of a given type in the project.

You can view the resource coverage of regional clocks in the Chip Planner, and then
align LogicLock regions that constrain partition placement with available global clock
routing resources. For example, if the LogicLock region for a particular partition is
limited to one device quadrant, that partition’s clock can use a regional clock routing
type that covers only one device quadrant. If all partition logic is available, the project
lead can compile the entire design at the top level with floorplan assignments to allow
the use of regional clocks that span only a part of the chip. You can use the Fitter’s
results to make assignments when optimizing the lower-level partitions in separate
Quartus II projects.

If you require more control when planning a design with imported partitions, you can
assign a specific signal to use a particular clock network in Stratix II and newer device
families by assigning the clock control block instance called CLKCTRL. Use the
Global Clock CLKCTRL Location logic option. You can make a point-to-point
assignment from a clock source node to a destination node, or a single-point
assignment to a clock source node. Set the assignment value to the name of the clock
control block: CLKCTRL_G<global network number> to choose one of the global routing
networks or CLKCTRL_R<regional network number> to choose one of the dedicated
regional routing networks in the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options. On the
Assignments menu, click Settings. On the Fitter Settings page, click More Settings
and change the settings to Off.

If you are using design partition scripts, the software can automatically write the
commands to pass global constraints and turn off the automatic options. For more
information, refer to “Project Management in Team-Based Designs” on page 8–4.

Alternatively, to avoid problems when importing, direct the Fitter to discard the
placement and routing of the imported netlist by setting the Fitter preservation level
property of the partition to Netlist Only. With this option, the Fitter reassigns all the
global signals for this particular partition when compiling the top-level design.

Assign Virtual Pins in Team-Based Flows
Virtual pins map lower-level design I/Os to internal cells. Use them when the number
of I/Os on a lower-level design exceeds the device I/O count, and to increase the
timing accuracy of cross-partition paths.

Make a virtual pin assignment in the Assignment Editor for lower-level design I/Os
that will become internal nodes in the top level. Leave clock pins mapped to I/O pins
to ensure proper routing.

You can specify locations for the virtual pins that correspond to the placement of other
partitions. You can also make timing assignments to the virtual pins to define a timing
budget, as described in the following section.

8–26 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 Virtual pins are created automatically from the top-level design if you use the
Generate Bottom-Up Design Partition Scripts command. The scripts place the
virtual pins to correspond with other partitions’ placement from the top-level design.
For more information, refer to “Project Management in Team-Based Designs” on
page 8–4. Tri-state outputs cannot be assigned as virtual pins because internal tri-state
signals are not supported in Altera devices. Connect the signal in the design with
regular logic, or allow the software to implement the signal as an external device I/O
pin.

Perform Timing Budgeting if Required
If you optimize lower-level partitions independently and import them to the top level,
or compile with empty partitions, any unregistered paths that cross between
partitions are not optimized as an entire path. In these cases, the Compiler has no
information about the placement of the logic that connects to the I/O ports. If the logic
in one partition is placed far away from logic in another partition, the routing delay
between the logic can lead to problems in meeting the timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible.

To ensure that the Compiler correctly optimizes the input and output logic in each
partition, you may be required to perform some manual timing budgeting. For each
unregistered timing path that crosses between partitions, make timing assignments
on the corresponding I/O path in each partition to constrain both ends of the path to
the budgeted timing delay. Assigning a timing budget for each part of the connection
ensures that the Compiler optimizes the paths appropriately.

When performing manual timing budgeting in a lower-level partition for I/O ports
that become internal partition connections in a top-level design, you can assign
location and/or timing constraints to the virtual pin that represents each connection
to further improve the quality of the timing budget. Refer to the previous section for a
description of virtual pins.

If you are using the design partition scripts, the software can write I/O timing budget
constraints automatically for virtual pins. For more information, refer to “Project
Management in Team-Based Designs” on page 8–4.

Consider a Cascaded Reset Structure
Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. For incremental flows, the global reset signal also creates a
timing dependency between the Top partition and lower-level partitions.

For incremental compilation, minimizing the impact of global structures is helpful. To
isolate each partition, consider adding reset synchronizers. By using cascaded reset
structures, the design intent is to reduce the inter-partition fan-out of the reset signal,
thereby minimizing the effect of the global signal. Reducing the fan-out of the global
reset signal also provides more flexibility in routing the cascaded signals, and may
help recovery and removal times in some cases.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–27
Creating Design Partitions: Consider Additional Design Suggestions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

This suggestion can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, you probably do not have to follow
this recommendation. It is more relevant for high-performance designs where
meeting timing on the reset logic can be challenging. Isolating each partition and
allowing more flexibility in global routing structures is an additional advantage in
incremental flows.

If you add additional reset synchronizers to your design, it adds latency to the reset
path, so be sure that this is acceptable in your design. In addition, parts of the design
may come out of reset in different clock cycles. You can balance the latency or add
hand-shaking logic between partitions, if necessary, to accommodate these
differences.

Figure 8–19 shows a cascaded reset structure. The signal is first synchronized as it
comes on the chip, following good synchronous design practices. This logic means the
design asynchronously resets, but synchronously releases from reset to avoid any race
conditions or metastability problems. Then, to minimize the impact of global
structures, the circuit employs a divide-and-conquer approach for the reset structure.
By implementing a cascaded reset structure, each partition’s reset paths are
independent. This reduces the effect of inter-partition dependency because the
inter-partition reset signals can now be treated as false paths for timing analysis. In
some cases, the partition’s reset signal can be placed on local lines to reduce the delay
added by routing to a global routing line. In other cases, the signal can be routed on a
regional or quadrant clock signal.

This circuit may help you achieve timing closure and partition independence for your
global reset signal. Evaluate the circuit and consider how it works for your design.

Drive Clocks Directly in Team-Based Flows
When partitions are imported from a Quartus II project, you should drive partition
clock inputs directly with device clock input pins.

Figure 8–19. Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ

8–28 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can cause trouble especially in team-based flows
because the lower-level partitions have no information about any gating that takes
place at the top level or in another partition. If a gated clock is required in a partition,
perform the gating within that partition, as described for clock inversion in “Invert
Clocks in Destination Partitions” on page 8–16.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to the lower-level partitions.

Recreate PLLs for Lower-Level Partitions if Required in Team_Based Flows
If you use a PLL in your top-level design and connect it to lower-level partitions, the
lower-level partitions do not have information about the multiplication, phase shift,
or compensation delays for the PLL. To accommodate the PLL timing, you can make
appropriate timing assignments in your lower-level Quartus II project to ensure that
clocks are not left unconstrained or constrained with an incorrect frequency.
Alternatively, you can duplicate the top-level PLL (or other derived clock logic) in the
lower-level design file to ensure that you have the correct PLL parameters and clock
delays for complete, accurate timing analysis.

One methodology for team-based design is for the lead designer to create a top-level
project framework that includes all the settings and constraints needed for the design.
This framework should include PLLs and other interface logic if this information is
important to optimize lower-level designs.

If you use a separate Quartus II project for an independent design block (such as
when a designer or third-party IP provider does not have access to the entire design
framework), you can include a copy of the top-level PLL in the lower-level project as
shown in Figure 8–20.

In either case, the project for the lower-level design should include a a design
partition to contain the lower-level design logic that will be exported to the top level.
When the design is complete, you can export just the lower-level partition, without
exporting any auxiliary PLL components to the top-level design. When you use the
feature to export a partition within a project, the software exports any hierarchy under
the specified partition into the Quartus II Exported Partition File (.qxp) but does not
include logic defined outside the partition (the PLL in this example).

Figure 8–20. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins

Lower-Level
Partition

to be
Exported

Virtual
Output
Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–29
Checking Partition Quality

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Checking Partition Quality
This section provides an overview of tools you can use as you make partitions in the
Quartus II software. Take advantage of these tools to assess your partition quality, and
use the information to improve your design or assignments as required to achieve the
best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating design partitions that are presented in this
document.

On the Tools menu, point to Advisors and click Incremental Compilation Advisor.
Recommendations are split into General Recommendations, which apply to all
compilation flows, and Bottom-Up Design Recommendations, which apply when
partitions are developed independently and are exported to the top level design
project so that floorplan recommendations are important to isolate the partition. Each
recommendation provides an explanation, describes the effect of the
recommendation, and provides the action required to make the suggested change.

To check whether the design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page (for the TimeQuest Timing Analyzer or the Classic Timing Analyzer), and click
Check Recommendations. For large designs, these operations can take a few minutes.

After you check the design, a symbol appears next to each recommendation that
indicates whether or not your design follows that particular recommendation. Refer
to the Legend on the How to use the Incremental Compilation Advisor page in the
Incremental Compilation Advisor for more information.

In some items, there is a link to the appropriate Quartus II settings page where you
can make a suggested change to assignments or settings. For many items, if your
design does not follow the recommendation, the Check Recommendations operation
creates a table that lists any nodes or paths in the design that could be improved.

For example, if not all the partition I/O ports follow the Register All Ports
recommendation, the Incremental Compilation Advisor displays a list of unregistered
ports with the partition name and the source and destination nodes for the port.
When the Incremental Compilation Advisor provides a list of nodes, you can
right-click on a node and click Locate to cross-probe to other Quartus II features such
as the RTL Viewer, Chip Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow the guidelines in
this document. You can also use the Design Partition Planner to optimize design
performance, by isolating and resolving failing paths on a partition-by-partition basis.

8–30 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To view a design and create design partitions, first compile the design, or perform
Analysis and Synthesis. On the Tools menu, click Design Partition Planner. The
design appears as a single top-level design block, containing its lower-level instances
as boxes.

To show connectivity between blocks, extract instances from the top-level design
block. Click on a design block and drag it into the surrounding white space, or
right-click an entity and click Extract from Parent on the Shortcut menu.

When you extract entities, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. When you have
extracted a design block that you want to set as a design partition, right-click on that
design block and click Create Design Partition.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. Right-click on the
design block you want to partition (such as the top-level design hierarchy), and
choose Auto-Partition. You can then analyze and adjust the partition assignments as
required.

Figure 8–21 shows the Design Partition Planner after making a design partition
assignment to one instance (in the pale red shaded box), and dragging another
instance away from the top-level block within the same partition (two design blocks
in the pale blue shaded box). The figure shows the number of connections between
each partition and information about the size of each design instance.

Figure 8–21. Design Partition Planner

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–31
Checking Partition Quality

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To switch between connectivity display mode and hierarchical display mode, click
Hierarchy Display on the View menu. Alternately, to switch temporarily to a
view-only hierarchy display, click and hold the hierarchy icon in the top-left corner of
any entity.

To control the way the connection bundles are displayed, right-click in the white
space and choose Bundle Configuration. For example, you can remove the
connection lines between partitions and I/O banks by turning off Display
connections to I/O banks. You can also use the settings on the Connection Counting
tab to adjust how the connections are counted in the bundles.

To optimize design performance, it is desirable to confine failing paths within
individual design partitions, so that there are no failing paths passing between
partitions, as discussed in earlier sections. To view the critical timing paths from a
timing analyzer report, perform the following steps:

1. Open the TimeQuest Timing Analyzer and perform a timing analysis on the
design.

2. In the Design Partition Planner, click Show Timing Data on the View menu.

In the top-level entity, child entities containing failing paths are marked by a small red
dot in the upper right corner of the entity box.

f For more information about how to use the Design Partition Planner to analyze your
design and create partitions, refer to “Using the Design Partition Planner” in the
Quartus II Help.

Floorplan Partition Coloring
After making a set of partition assignments, it can be useful to view how the
partitions are placed in the device. The Chip Planner can display nodes for each
partition in a different color.

After compilation, in the Chip Planner Task list, select Partition Display
(Assignment), as shown in Figure 8–22. In this figure, you can see that the three
different-colored partitions are grouped in three fairly independent areas of the
device.

8–32 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Viewing Design Partition Planner and Floorplan Side-by-Side
You can view the Design Partition Planner together with the Chip Planner’s Partition
Planner, to analyze natural placement groupings in the floorplan view. This
information can help you decide whether the design blocks should be grouped
together in one partition, or whether they will make good partitions for the next
compilation. It can also help determine whether the logic can easily be constrained by
a LogicLock region to create a design floorplan. If logic naturally groups together
when compiled without placement constraints, you can probably assign a reasonably
sized LogicLock region to constrain the placement for future compilations. You can
experiment by extracting different design blocks in the Design Partition Planner and
viewing the placement results of those design blocks from the last compilation.

Open the Design Partition Planner, then open the Chip Planner and select the
Partition Planner task in the Task list. This task selection displays the physical
locations of design entities with the same colors as the Design Partition Planner
display. For ease of viewing, drag and size the Chip Planner and Design partition
Planner windows so they are side-by-side.

In the Design Partition Planner, you can extract instances of interest from their parents
with the drag and drop method or the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it to be physically dispersed over a noncontiguous area of the device

Figure 8–22. Partition Display in the Chip Planner Showing Three Partitions with Different Color
Shades

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–33
Checking Partition Quality

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

after compilation. You can use the Design Partition Planner as described in “Design
Partition Planner” on page 8–29 to analyze the design connections. For child instances
that are unsuitable to be set as separate design partitions or placed in LogicLock
regions, you can return those instances to their parent with the drag and drop method
or the Collapse to Parent command.

Figure 8–23 shows a design displayed in both viewers, with different colors for the
top-level design and the three major design instances.

Partition Statistics Report
You can view statistics about design partitions in the Partition Merge Partition
Statistics compilation report and the Statistics tab in the Design Partitions
Properties dialog box. These reports are useful when optimizing your design
partitions, or when you are compiling the full top-level design in a team-based
compilation flow, to ensure that the partitions meet the guidelines discussed in this
document.

The Partition Statistics page under the Partition Merge folder of the Compilation
Report lists statistics about each partition. The statistics for each partition (each row in
the table) include the number of logic cells it contains, as well as the number of input
and output pins and how many are registered. This report also lists how many ports
are unconnected, or driven by a constant VCC or GND. You can use this information to
assess whether you have followed the guidelines for partition boundaries.

Figure 8–23. Top-Level Design and Three Major Instances Shown in Both Viewers

8–34 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. On the
Assignments menu, click Design Partitions Window. Right-click on a partition and
click Properties to open the dialog box. Click Show All Partitions to view all the
partitions in the same report. The Design Partition Properties report also shows
statistics for the Internal Congestion: Total Connections and Registered Connections.
This represents how many signals are connected within the partition. It then lists the
inter-partition connections for each partition, which helps you see how partitions are
connected to each other.

Report Partition Timing in the TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer includes a diagnostic report called Report Partitions,
and the report_partitions SDC command. The resulting Partition Timing
Overview lists the design partitions and provides the number of failing paths and the
worst case timing slack within that partition. The function also creates a Partition
Timing Details table that lists the number of failing paths and worst-case slack from
each partition to the others.

You can use this report to analyze where the critical timing paths in the design are
with respect to design partitions. If a certain partition contains many failing paths, or
failing inter-partition paths, you may be able to change your partitioning scheme and
improve your timing performance.

f For more information about the TimeQuest report_timing command, see the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Ensure Partition Assignments Do Not Impact the Quality of Results
There is often a trade-off between compilation time and quality of results when you
vary the number of partitions in a project. You can ensure that you limit any negative
effect on the quality of results by following an iterative methodology during the
partitioning process. In any incremental compilation flow in which you can compile
the source code for every partition during the partition planning phase, Altera
recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the Processing menu,
point to Start and click Start Early Timing Estimate.

1 You must perform Analysis and Synthesis and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the Processing
menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fMAX, area, and any
other relevant results).

4. Create design partitions following the guidelines described in this chapter.

5. Perform another Early Timing Estimate or a full compilation.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–35
Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

6. Record the quality of results from the Compilation Report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
4 through step 6 to change your partition assignments and use a different
partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat step 4 through step 6 by
further dividing a large partition into several smaller partitions. Doing so
improves compilation time in future incremental compilations. You can repeat this
step until you achieve a good trade-off point (that is, all critical paths are localized
within partitions, the quality of results is not negatively affected, and the size of
each partition is reasonable).

Importing SDC Constraints from Lower-Level Partitions in Team-Based
Designs

In a team-based design environment, the project lead must transfer the top-level
project information and constraints to the lower-level projects, so that lower-level
designers each have a consistent view of the constraints that apply to the entire
design. You can copy the top-level project for each designer, or use the design
partition scripts to automate the process of sending assignments and constraints. If
the lower-level partition designers make any changes or add any constraints, they
might have to transfer new constraints back to the project lead, so that these
constraints are included in final timing sign-off of the entire design. You can use the
Import command to import assignments from lower-level partition projects into the
top-level project; however, the automatic import does not include SDC format
constraints for the TimeQuest Timing Analyzer.

Passing additional timing constraints from a lower-level project to the top-level
project must be managed carefully. This section provides recommendations for
managing the timing constraints in a team-based incremental compilation flow.

To ensure that there are no conflicts between the project lead’s top-level constraints
and those added by the lower-level designer, use two Synopsys Design Constraint
Files (.sdc) for each lower-level project: an .sdc created by the project lead that
includes project-wide constraints and an .sdc created by the lower-level partition
designer that includes partition-specific constraints. This section uses the example
design shown in Figure 8–24 to illustrate these recommendations. The top-level
design instantiates a lower-level design block called module_A that is set as a design
partition and developed by another designer in a separate Quartus II project.

Figure 8–24. Example Design to Illustrate SDC Constraints

8–36 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Importing SDC Constraints from Lower-Level Partitions in Team-Based

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In this top-level project, there is a single clock setting called clk associated with the
FPGA input called top_level_clk. The top-level .sdc contains the following
constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]

Creating an .sdc with Project-Wide Constraints
The .sdc with project-wide constraints for the lower-level project should contain all
constraints that are not completely localized to the lower-level partition. The .sdc
should be maintained by the top-level project lead. The project lead must ensure that
these timing constraints are delivered to the individual partition owners and that they
are syntactically correct for each of the lower-level projects. This can be challenging
when the design is in flux and hierarchies change. The project lead can use the
Generate Bottom-Up Design Partition Scripts tool to automatically generate some of
these constraints, as described in the previous section.

The .sdc with project-wide constraints is used in the lower-level project, but is not
exported back to the top-level project lead. The lower-level partition designer should
not modify this file. If changes are necessary, they should be communicated to the
top-level project lead, who can then update the SDC constraints and distribute new
files to all lower-level partition designers as required.

The .sdc should include clock creation and clock constraints for any clock used by
more than one lower-level project. This is particularly important when dealing with
complex clocking structures, such as the following:

■ Cascaded clock multiplexers

■ Cascaded PLLs

■ Multiple independent clocks on the same clock pin

■ Redundant clocking structures required for secure applications

■ Virtual clocks and generated clocks which are consistently used for source
synchronous interfaces

■ Clock uncertainties

In addition, the .sdc with project-wide constraints should contain all project-wide
timing exception assignments, such as the following:

■ Multicycle assignments, set_multicycle_path

■ False path assignments, set_false_path

■ Maximum delay assignments, set_max_delay

■ Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or
set_output_delay constraints on a lower-level project’s ports, because these
represent delays external to a given partition. If a lower-level designer wants to set
these constraints within the lower-level project, the team must ensure that the I/O
port names are identical in the two projects so the assignments can be imported
successfully without any changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the
project-wide .sdc, because it is not completely localized in a single lower-level project.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–37
Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example Step 1: Project Lead Produces .sdc with Project-Wide Constraints for
Lower-Level Project

The device input top_level_clk in Figure 8–24 drives the input_clk port of
module_A. To make sure the clock constraint is passed correctly to the lower-level
project, the project lead creates an .sdc with project-wide constraints for module_A
that contains the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {INPUT_CLK}]

The designer of module_A includes this .sdc as part of the lower-level project.

Creating an .sdc with Partition-Specific Constraints
The .sdc with partition-specific constraints should contain all constraints that affect
only the lower-level partition. For example, a set_false_path or
set_multicycle_path constraint for a path entirely within the lower-level
partition should be in the partition-specific .sdc. These constraints are required for
correct compilation of the partition, but need not be present in any other lower-level
projects.

The partition-specific .sdc should be maintained by the individual partition designer;
it is their responsibility to add any constraints required to properly compile and
analyze their partition.

The partition-specific .sdc is used in the lower-level project and must be exported
back to the project lead for the top-level design. The project lead must use the
partition-specific constraints to properly constrain the placement, routing, or both if
the partition logic is fit at the top level, and to ensure that final timing sign-off is
accurate. Use the following guidelines in the partition-specific .sdc to simplify these
export and import steps:

■ Create a hierarchy variable for this partition (such as module_A_hierarchy) and
set it to an empty string because the partition is the top-level instance in the
separate project. The project lead modifies this variable for the top-level hierarchy,
reducing the effort of translating constraints on lower-level design hierarchies into
constraints that apply in the top-level hierarchy. Use the following Tcl command
first to check if the variable is already defined in the project, so that the top-level
project does not use this empty hierarchy path: if {![info exists
module_A_hierarchy]}.

■ Use the hierarchy variable in the partition-specific .sdc as a prefix for assignments
in the project. For example, instead of naming a particular instance of a register
reg:inst, use ${module_A_hierarchy}reg:inst. Also use the hierarchy
variable as a prefix to any wildcard characters (such as '*').

■ Be careful with assignments to I/O ports of the partition. In most cases, these
assignments should be specified in the .sdc with project-wide constraints because
the partition’s interface depends on the top-level design. If you want to set I/O
constraints within the lower-level project, the team must ensure that the I/O port
names are identical in the two projects so the assignments can be imported
successfully without any changes.

8–38 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Importing SDC Constraints from Lower-Level Partitions in Team-Based

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Be careful with the derive_clocks and derive_pll_clocks commands. In
most cases, the .sdc with project-wide constraints should call these commands.
Because these commands impact the entire design, importing them unexpectedly
into the top-level design could cause problems.

If the team follows these recommendations, the project lead should be able to include
the .sdc with partition-specific constraints directly in the top-level project to add the
.sdc constraints provided by the lower-level designer.

Example Step 2: Partition Designer Creates .sdc with Partition-Specific Constraints

The lower-level designer compiles the design with the .sdc with project-wide
constraints and might want to add some additional constraints. In this example, the
designer realizes that they must specify a false path between the register called
reg_in_1 and all destinations in this design block with the wildcard character *. This
constraint applies entirely within the partition and must be exported to the top-level
design, so it qualifies for inclusion in the .sdc with partition-specific constraints. The
designer first defines the module_A_hierarchy variable and uses it when writing
the constraint as follows:

if {![info exists module_A_hierarchy]} {
set module_A_hierarchy ""

}
set_false_path -from [get_registers ${module_A_hierarchy}reg_in_1] -to
[get_registers ${module_A_hierarchy}*]

Consolidating the .sdc in the Top-Level Design
When the lower-level designers complete their designs, they export the results to the
top-level project lead. The project lead receives the exported .qxp and a copy of the
.sdc with partition-specific constraints.

To set up the top-level .sdc constraint file to accept the .sdc files from the lower-level
projects, the top-level .sdc should define the hierarchy variables specified in the
lower-level .sdc files. List the variable for each lower-level partition and set it to the
hierarchy path, up to and including the instantiation of the lower-level partition in the
top-level project, including the final '|' hierarchy character.

To ensure that the .sdc files are used in the correct order, the project lead can use the
Tcl Source command to load each .sdc.

Example Step 3: Project Lead Performs Final Timing Analysis and Sign-off

With these commands, the project lead’s top-level .sdc file looks like the following
example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]
Include the lower-level SDC file
set module_A_hierarchy "module_A:inst|" # Note the final '|' character
source <partition-specific constraint file such as
..\module_A\module_A_constraints>.sdc

When the project lead performs top-level timing analysis, the false path assignment
from the lower-level module_A project expands to the following:

set_false_path -from module_A:inst|reg_in_1 -to module_A:inst|*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal
in the top-level project, and ensures that the wildcard does not affect any nodes
outside the partition that it was intended to target.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–39
Introduction to Design Floorplans

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

By following the guidelines in this section, constraint propagation between the
projects is managed effectively.

Introduction to Design Floorplans
A floorplan represents the layout of the physical resources on the device. The
expressions “creating a design floorplan” and “floorplanning” describe the process of
mapping the logical design hierarchy onto physical regions in the device floorplan.

In the Quartus II software, LogicLock regions are used to constrain blocks of a design
to a particular region of the device. LogicLock regions represent a rectangular area of
the device with a user-defined or Fitter-defined size and location on the device layout.

f For more information about design floorplans and LogicLock regions, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

The Difference between Logical Partitions and Physical Regions
Design partitions are “logical” entities based on the design hierarchy. LogicLock
regions are “physical” placement assignments that constrain logic to a rectangular
region on the device.

It is a common misconception that logic from a design partition is always grouped
together on the device when you use incremental compilation. This is not true. Logic
from a partition can be placed anywhere in the device if it is not constrained to a
LogicLock region. A logical design partition does not refer to any physical area of the
device and does not directly control where instances are placed on the device.

If you want to control the placement of the logic from a design partition and isolate it
to a particular part of the device, you can assign the logical design partition to a
physical region in the device floorplan with a LogicLock region assignment. Creating
a design floorplan by assigning design partitions to LogicLock regions is
recommended to improve the quality of results and avoid placement conflicts in
many situations for incremental compilation. For more information, refer to “Why
Create a Floorplan?” on page 8–39.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. This is also not true. LogicLock regions only
constrain logic to a physical region of the device. Incremental compilation does not use
LogicLock assignments or any location assignments to preserve the placement results;
it simply reuses the results stored in the database netlist from the previous
compilation.

Why Create a Floorplan?
Floorplan location planning can be important for a design that uses full incremental
compilation, for the following two reasons:

■ To avoid resource conflicts between partitions, predominantly when importing
partitions from another Quartus II project

■ To ensure a good quality of results when recompiling individual partitions in a
single Quartus II project

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

8–40 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction to Design Floorplans

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating a design floorplan is required if you want to preserve placement for
lower-level partitions that will be exported into another project, to avoid resource
conflicts between partitions.

Location assignments for each partition ensure that there are no placement conflicts
between different partitions. If there are no LogicLock region assignments, or if
LogicLock regions are set to auto-size or floating, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define this
resource budget, logic placement can conflict when you import the partitions to a top-
level project.

Creating a floorplan is also highly recommended for timing-critical partitions to
maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in one
Quartus II project. The logic for partitions that are not timing-critical (such as simple
top-level glue logic) can be placed anywhere in the device on each recompilation if
that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are used by other partitions. A
LogicLock region provides a reasonable region to re-place logic after a change, so the
Fitter does not have to scatter logic throughout the available space in the device.

Figure 8–25 illustrates the problems associated with refitting designs that do not have
floorplan location assignments. It shows the initial placement of a four-partition
design (P1-P4) without any floorplan location assignments. The second part of the
figure shows the device if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for P3 in the
scattered white space shown in Figure 8–25. The placement of the post-fit netlists for
other partitions forces the Fitter to implement P3 with the device resources that have
not been used.

The Fitter must work harder due to more difficult physical constraints, and as a result,
compilation time often increases. The Fitter might not be able to find any legal
placement for the logic in partition P3, even if it could in the initial compilation. In
addition, if the Fitter can find a legal placement, the quality of results often decreases
in these cases, sometimes dramatically, because the new partition is now scattered
throughout the device.

Figure 8–25. Representation of Device Floorplan without Location Assignments

P1

P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–41
Introduction to Design Floorplans

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 8–26 shows the initial placement of a four-partition design with floorplan
location assignments. Each partition is assigned to a LogicLock region. The second
part of the figure shows the device after partition P3 is removed. This placement
presents a much more reasonable task to the Fitter and yields better results.

Altera recommends that you create a LogicLock floorplan assignment for any
timing-critical blocks that will be recompiled as you make changes to the design.

When to Create a Floorplan
It is important that you plan early to incorporate partitions into the design, and
ensure that each design partition follows the partitioning guidelines. You can make
the floorplan assignments at different stages of the design flow, early or late in the
flow. These guidelines help ensure better results when you start creating floorplan
location assignments.

Early Floorplan
An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a team-based design to give each designer a portion of the device
resources. Doing so allows each designer to create the logic for their design partition
without conflicting with other logic. Each design partition can be implemented
independently and integrated later in the top-level project.

You can use an early floorplan in a standard incremental compilation flow as well to
roughly divide up the design partitions into LogicLock regions while iterating
through the design cycle.

When you have your complete design compiled, or after you have integrated the first
version of all design partitions in a team-based flow, you can use the design
information and Quartus II features to tune and improve the floorplan, as described
in the following section.

Late Floorplan
A late floorplan is created or modified after the design is created, when the code is
close to complete and the design structure is likely to remain stable. When the design
is complete, you can take advantage of the Quartus II analysis features to check the
floorplan quality. To tune the floorplan, you can perform iterative compilations as
required and assess the results of different assignments.

Figure 8–26. Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has 4
partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3

8–42 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 It may not be possible to create a good-quality late floorplan if you do not create
partitions in the early stages of the design.

Creating a Design Floorplan: Placement Guidelines
The following guidelines are key to creating a good design floorplan:

■ Capture correct resources in each region

■ Use good region placement to maintain design performance compared to flat
compilation

It is a common misconception that creating a floorplan enhances timing performance,
as compared to a flat compilation with no location assignments. The Quartus II Fitter
does not usually require guidance to get optimal results for a full design.

Floorplan assignments can help maintain good performance when designs change
incrementally, as described in “Why Create a Floorplan?” on page 8–39. However, bad
placement assignments can often hurt performance results, as compared to a flat
compilation, because the assignments limit the options for the Fitter. Investing some
time to find good region placement is required to match the performance of a full flat
compilation.

Use the following general procedure to create a floorplan:

1. Divide the design into partitions.

2. Assign the partitions to LogicLock Regions.

3. Compile the design.

4. Analyze the results.

5. Modify the placement and size of regions as required.

You may have to iterate through these steps several times to find the best combination
of design partitions and LogicLock regions that meet the design’s resource and timing
goals.

f For more information about performing these steps, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Assigning Partitions to LogicLock Regions
To create a full floorplan: Create a LogicLock region for each partition (including the
top-level) to assign all logic to a place in the device.

To create a partial floorplan: Create a LogicLock region for any critical or
often-changing partitions.

Before compiling the design with new LogicLock assignments, ensure the affected
partitions’ Netlist Type is set so that the Fitter does not reuse previous placement
results.

In most cases, each LogicLock region should contain logic from only one partition.
This organization helps prevent resource conflicts when partitions are imported and
can lead to better performance preservation when locking down parts of a project in a
single project.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–43
Creating a Design Floorplan: Placement Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The software is flexible and does allow exceptions to this rule. For example, you can
place more than one partition in the same LogicLock region if the partitions are tightly
connected, but you do not want to merge the assigned partitions into one larger
partition. For best results, ensure that you recompile all partitions in the LogicLock
region every time the logic in one partition changes. In addition, if a partition contains
multiple lower-level entities, you can place those entities in different areas of the
device with multiple LogicLock regions (even if they are defined in the same
partition).

You can use the Reserved LogicLock option to ensure that you avoid any conflicts
with other logic which is not locked into any LogicLock region. This option prevents
other logic from being placed in the region, and is useful if you have empty partitions
at any point during your design flow, so that you can reserve space in the floorplan.
Do not make reserved regions too large, to prevent unused area, because no other
logic can be placed in a region with the Reserved LogicLock option.

How to Size and Place Regions
In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan when the design is complete, you can use Fitter-chosen regions as a
guideline. Start with the default Auto size and Floating origin location. After
compilation, lock the size and origin location. Instead of a full compilation, you can
use the Start Early Timing Estimate command to perform a fast placement.

Alternatively, in a late floorplan, you can specify the size based on the synthesis
results and use Fitter-chosen locations. Right-click on a region in the LogicLock
Regions dialog box, and choose Set to Estimated Size. Like the previous option, start
with Floating origin location. After compilation, lock the origin location. Again,
instead of a full compilation, you can use the Start Early Timing Estimate command
to perform a fast placement. You can also enable the Fast Synthesis Effort setting to
reduce synthesis time.

After a compilation or early timing estimate, save the Fitter’s size and origin location.
Click on each LogicLock region in the LogicLock Regions Window while holding the
Ctrl key to select all regions (including the top-level region). Right-click on the last
selected LogicLock region and click Set Size and Origin to Previous Fitter Results.

1 It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the chip.
On average, regions with fixed size and location yield better timing performance than
auto-sized regions.

Modifying Region Size and Origin
After saving the Fitter’s results from an initial compilation for a late floorplan, modify
the regions using your knowledge of the design to set a specific size and location. If
you have a good understanding of how the design fits together, you can often
improve upon the regions placed in the initial compilation. In an early floorplan, you
can use the guidelines in this section to set the size and origin, even though there is no
initial Fitter placement for a basis.

8–44 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Ensure you select the User-Defined region in the floorplan (as
opposed to the Fitter-Placed region from the last compilation) so that you can change
the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. If you find that the Early
Timing Estimate did not result in good relative placements, try performing a full
compilation so that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also
allows the Fitter more flexibility when placing the other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so
usually improves the final results because it gives the Fitter more freedom to place
additional or modified logic added to the partition during future incremental
compilations. It also allows room for optimizations such as pipelining and physical
synthesis logic duplication.

Try to have each region evenly full, with the same ”fullness” that the complete design
would have without LogicLock regions. As a very rough suggestion, try to have each
region approximately 75% full.

Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. If two partitions are allocated an
overlapping portion of the chip, each may independently claim some common
resources in this region. This leads to resource conflicts when importing results into a
final top-level design. In a single project, overlapping regions give more difficult
constraints to the Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions Window, drag
and drop the child region to the parent region.

I/O Connections
Consider I/O timing when placing regions. Using I/O registers can minimize I/O
timing problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/O timing might still be a concern. It is
most important for flows where each partition is compiled independently, because the
Fitter can optimize the placement for paths between partitions if the partitions are
compiled at the same time.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–45
Creating a Design Floorplan: Placement Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Place regions close to the appropriate I/O, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. It is best to
create LogicLock regions for internal logic only, and provide pin location assignments
for external device I/O pins (instead of including the I/O cells in a LogicLock region
to control placement).

LogicLock Resource Exclusions
You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or digital signal processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent elements of certain types from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the region’s Reserved property is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, due to their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding
RAM or DSP elements can help to resolve no-fit errors that are caused by regions
spanning too many resources, especially for designs that are memory-intensive,
DSP-intensive, or both. Figure 8–27 shows an example of a design with an
odd-shaped region to accommodate DSP blocks for a region that does not contain
very much logic. The right side of the figure shows the result after excluding DSP
blocks from the region. The region can be placed more easily without wasting logic
resources. The DSP blocks are placed outside the region.

Figure 8–27. LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

D
SPM
4K

 R
AM

M
51

2
R

AM

M
R

AM

Allows better shape, easier
placement, and less unused

logic resources

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

Exclude DSP
blocks from
LogicLock region

8–46 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To view any resource exceptions, right-click in the LogicLock Regions Window and
click Properties. In the LogicLock Region Properties dialog box, highlight the design
element (module/entity) in the Members box and click Edit. To set up a resource
exception, click the browse button under Excluded element types, then turn on the
design element types to be excluded from the region. You can choose to exclude
combinational logic or registers from logic cells, or any of the sizes of TriMatrix
memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

Creating Non-Rectangular Regions
To constrain placement to non-rectangular areas of the device, you can connect
multiple rectangular regions together using the Merge command. To merge regions,
select one or more rectangles that should be part of the same region (using the Ctrl
key), right-click and choose LogicLock Region Properties, and then click Merge.

For devices that do not support the Merge command (Arria TM GX, Cyclone,
Cyclone II, HardCopy, HardCopy II, MAX TM II, Stratix, Stratix II, Stratix II GX, and
Stratix GX devices), you can limit entity placement to a sub-area of a LogicLock region
to create non-rectangular constraints. Construct a LogicLock hierarchy by creating
child regions inside of parent regions, and then use the Reserved option to control
which logic can be placed inside these child regions.

Setting a region’s Reserved option to On prevents the Fitter from placing nodes that
are not assigned to the region inside the boundary of the region. Setting a region’s
Reserved option to Limited prevents the Fitter from placing nodes that are assigned
to the immediate parent LogicLock region’s hierarchy inside the boundary of the
region. Any other logic can be placed inside the region. To create non-rectangular
regions for a specific entity, you can place child LogicLock regions inside a parent
region and set the Reserved setting of the child regions to Limited. The child region
prevents the parent region hierarchy from using that area of the device floorplan, but
leaves it open for the rest of the design. You can assign other LogicLock regions to
cover that area of the device if required.

f For information and examples of creating non-rectangular regions with the Reserved
property, refer to Examples of Creating Non-Rectangular LogicLock Regions with the
Limited Reserved Setting in the Quartus II Help.

f For information about creating non-rectangular regions with the Merge command,
refer to Create LogicLock Region/Merge LogicLock Region Commands in the
Quartus II Help.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–47
Checking Floorplan Quality

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Checking Floorplan Quality
This section provides an overview of tools that you can use as you create a floorplan
in the Quartus II software. Take advantage of these tools to assess your floorplan
quality and use the information to improve your design or assignments as required to
achieve the best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating floorplan location assignments that are presented
in this document. For more information, refer to “Incremental Compilation Advisor”
on page 8–29.

LogicLock Region Resource Estimates
You can view resource estimates included in a LogicLock region to determine the
region’s resource coverage. You can use this estimate before compilation to check
region size. Using this estimate helps ensure adequate resources when you are sizing
or moving regions.

Right-click in the LogicLock Regions Window, choose Properties, and select the Size
& Origin tab. Specify a size and an origin to see the Available resources estimate in
the dialog box.

LogicLock Region Properties Statistics Report
The LogicLock Region Properties Statistics are similar to the Design Partition
Properties described in “Partition Statistics Report” on page 8–33, but include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region. The statistics also list the number of I/O connections and how many I/Os
are registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).

Right-click in the LogicLock Regions Window, choose Properties and select the
Statistics tab. Click Show All Regions to see all regions displayed in the same report.

Critical Path Settings for Chip Planner
The Critical Path Settings dialog box allows you to display the most critical paths
from the Timing Analyzer report in the Chip Planner floorplan view. You can specify a
threshold for which paths to highlight in the Chip Planner. Use this information to
identify inter-region critical paths and improve your partition or floorplan
assignments.

Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
In the TimeQuest user interface, you can locate a specific path in the Chip Planner to
view its placement. Perform a report timing operation (for example, report timing for
all paths with less than 0 ns slack). Right-click in the detailed path report (Data Path
tab) for a specific path and choose Locate Path. Click OK to choose the Chip Planner.

8–48 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Recommended Design Flows and Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inter-Region Connection Bundles
The Chip Planner can display bundles of connections between LogicLock regions,
with filtering options that allow you to choose the relevant data for display. These
bundles can help you visualize how many connections there are between each
LogicLock region, to improve floorplan assignments, or to change partition
assignments if required.

With the Chip Planner open, on the View menu, click Generate Inter-region Bundles.

Routing Utilization
The Chip Planner includes a mode to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, click the Layer Settings icon next to the Task list. Change the
Background Color Map to Routing Utilization (the default is Block Utilization).

The darker-colored LAB blocks indicate higher routing congestion. Move your mouse
pointer over a LAB to see a tool tip that reports the logic and routing utilization
information.

Ensure Floorplan Assignments Do Not Impact Quality of Results
The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare the results before creating your floorplan location assignments to
the results after doing so. Consider using another scheme if any of the following
guidelines are not met:

■ You should see no degradation in fMAX after the design is partitioned and floorplan
location assignments are created. In many cases, a slight increase in fMAX is possible

■ The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created

■ The time spent in the routing stage should not significantly increase

The amount of compilation time spent in the routing stage is reported in the Messages
window by an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease the
number of LogicLock regions. Doing so typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

Recommended Design Flows and Application Examples
This section provides design flows for partitioning and creating a design floorplan
during common timing closure and team-based design scenarios. Each flow describes
the situation in which it should be used, and provides a step-by-step description of
the commands required to implement the flow.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–49
Recommended Design Flows and Application Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Create a Floorplan for the Entire Design
Use this flow for incremental compilation designs in which you would like to assign a
floorplan location for each design block that is assigned as a separate partition. This is
the standard floorplan procedure described in the Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook. A
full floorplan ensures that partitions do not interact as they are changed and
recompiled—each partition has its own area of the device floorplan.

To create a LogicLock region for each design partition, perform the following steps:

1. On the Assignments menu, click Design Partitions Window and ensure that all
partitions have their Netlist Type set to Source File or Post-Synthesis. If the
Netlist Type is set to Post-Fit, floorplan location assignments are not used when
recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is automatically considered a partition).

3. On the Processing menu, point to Start and click Start Early Timing Estimate to
place auto-sized, floating-location LogicLock regions.

1 You must perform Analysis and Synthesis, and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and click on each
LogicLock region while holding the Ctrl key to select all regions (including the
top-level region).

5. Right-click on the last selected LogicLock region, and click Set Size and Origin to
Previous Fitter Results.

6. If required, modify the size and location with the LogicLock Regions Window or
the Chip Planner. For example, make the regions bigger to fill up the device and
allow for future logic changes.

7. On the Processing menu, point to Start and click Start Early Timing Estimate to
estimate the timing performance of your design with these LogicLock regions.

8. Repeat step 6 and 7 until you are satisfied with the quality of results for your
design floorplan. On the Processing menu, click Start Compilation to run a full
compilation.

Create a Floorplan as the Project Lead in a Team-Based Flow
Use this approach when you have several lower-level subdesigns that will be
implemented separately by different designers. The subdesign designers want to
optimize their designs independently and pass the results on to you, the project lead.

As the project lead in this scenario, perform the following steps to prepare the design
for a successful team-based design methodology with early floorplan planning:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–50 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Recommended Design Flows and Application Examples

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

2. Create a “skeleton” or framework of the design that defines the hierarchy for the
subdesigns that will be implemented by separate designers. Consider the
partitioning guidelines in this chapter while determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

4. Make design partition assignments for each major subdesign and set the Netlist
Type for each design partition that will be imported to Empty in the Design
Partitions window.

5. Create LogicLock regions for each of the lower-level partitions to create a design
floorplan. This floorplan should consider the connectivity between partitions and
estimates of the size of each partition based on any initial implementation
numbers and knowledge of the design specifications. Use the guidelines described
in this chapter to choose a size and location for each LogicLock region.

6. Provide the constraints from the top-level project to lower-level designers using
one of the following procedures:

a. Provide a copy of the top-level Quartus II project framework. Use the Copy
Project command on the Project menu or create a project archive. Provide each
lower-level designer with the project.

b. Use scripts to pass constraints and generate separate Quartus II projects. On
the Project menu, click Generate Bottom-Up Design Partition Scripts, or run
the script generator from a Tcl or command prompt. Make changes to the
default script options as required for your project. Altera recommends that you
pass all the default constraints, including LogicLock regions, for all partitions
and virtual pin location assignments. Altera further recommends that you add
a maximum delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If lower-
level projects have not been created by the other designers, use the partition
script to set up the projects so that you can easily take advantage of makefiles.
Provide each lower-level designer with the Tcl file to create their project with
the appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

c. Use documentation or scripts to manually pass all constraints and assignments
to each lower-level designer.

Create a Floorplan Assignment for One Design Block with Difficult Timing
Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you may not have to create floorplan assignments for the entire
design. You can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere else in the device. To create a
region, perform the following steps:

1. Divide up your design into partitions to reduce compilation time. Consider the
guidelines in this chapter while determining the partition boundaries. Ensure that
you isolate the timing-critical logic in a separate design partition.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–51
Potential Issues with Creating Partitions and Floorplan Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

2. Define a LogicLock region for the timing-critical design partition. Ensure that you
capture the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

■ If the design block is not complete, reserve space in the design floorplan based
on your knowledge of the design specifications, connectivity between design
blocks, and estimates of the size of the partition based on any initial
implementation numbers.

■ If the critical design block has initial source code ready, compile the design as
in the scenario “Create a Floorplan for the Entire Design” on page 8–49 to place
the LogicLock region. Save the Fitter-determined size and origin, then enlarge
the region to provide more flexibility and allow for future design changes.

3. As the rest of the design is completed, and the device fills up, the timing-critical
region has a reserved area of the floorplan. When you make changes to the design
block, the logic can be re-placed in the same part of the device, which helps ensure
good quality of results.

Potential Issues with Creating Partitions and Floorplan Assignments
There are some limitations and restrictions when using incremental compilation and
using certain design flows with certain Altera features.

1 For more information about restrictions and limitations, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Consider documented limitations and restrictions as you plan your design flow and
select partitions. Although most limitations and restrictions do not affect most users,
but it is helpful to know if you must modify your partitions or design flow to
accommodate certain restrictions.

There are also possible utilization effects due to partitioning and creating a floorplan.
Consider these effects if your design is close to using all the device resources before
adding partition or floorplan assignments.

The following subsections describe the utilization effects:

■ “Logic and Resource Utilization Effects”

■ “Routing Utilization Effects”

Logic and Resource Utilization Effects
Partitions can increase resource utilization due to cross-partition optimization
limitations. Floorplan assignments can increase resource utilization because regions
sometimes lead to unused logic. Follow the recommendations in this document to
reduce these effects.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–52 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If your device is very full with the flat version of your design, you might not be able to
use a complete incremental flow for the entire design. You can use a “partial”
incremental flow instead to get compilation time and performance preservation
benefits for key parts of the design. Focus on creating partitions and floorplan
assignments for timing-critical or often-changing blocks to get the most benefit out of
the feature.

Routing Utilization Effects
Partitions and floorplan assignments typically increase routing utilization compared
to a flat design. Follow the recommendations in this document to reduce the effect.

If long compilation times are due to routing congestion, you might not be able to use
incremental flows to reduce compilation time. Focus on creating partitions and
floorplan assignments for parts of the design that are not routing-critical to get some
benefit.

You can also use incremental compilation to lock routing for routing-critical blocks
only (with other partitions empty), and then compile the rest of the design after the
critical block meets its requirements.

Review the Fitter Messages to check how much time is spent during routing
optimizations and to see the percentage of routing utilization. This information helps
highlight routing issues.

Conclusion
Incremental compilation provides a number of benefits, especially to large, complex
designs. To take advantage of the feature, it is worth spending some time to create
quality partition and floorplan assignments.

Follow the guidelines to set up your design hierarchy and source code for incremental
compilation. Keep partitions independent of each other and do not rely on any
cross-boundary logic optimizations.

Floorplan location assignments are required when design blocks are developed
independently, and are recommended for timing-critical partitions that are expected
to change. Follow the guidelines to create and modify LogicLock regions to create
good placement assignments for your design partitions.

Take advantage of the numerous Quartus II software tools to assess partition quality
and analyze the floorplan to make good partition and LogicLock location
assignments. Remember that you do not have to follow all the guidelines exactly to
implement an incremental compilation design flow, but following the guidelines can
maximize your chances of success.

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–53
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

Revision History
Table 8–1 shows the revision history for this chapter.

Table 8–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2009
v9.1.0

■ Redefined the bottom-up design flow as
team-based and reorganized previous design
flow examples to include steps on how to
pass top-level design information to lower-
level projects.

■ Added “Importing SDC Constraints from
Lower-Level Partitions in Team-Based
Designs” from the Quartus II Incremental
Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II
Handbook.

■ Reorganized the “Recommended Design
Flows and Application Examples” on
page 8–48 section.

■ Removed HardCopy APEX and HardCopy
Stratix Devices section.

Updated for the Quartus II software version 9.1
release.

March 2009
v9.0.0

■ Added I/O register packing examples from
Incremental Compilation for Hierarchical and
Team-Based Designs chapter

■ Moved “Incremental Compilation Advisor”
section

■ Added “Viewing Design Partition Planner and
Floorplan Side-by-Side” section

■ Updated Figure 8–21

■ Chapter 8 was previously Chapter 7 in
software release 8.1.

Updated for the Quartus II software version 9.0
release.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

8–54 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to
content.

Updated for the Quartus II software version 8.1
release.

May 2007
v8.0.0

Initial release. This content of this chapter is based on
information that was contained in Application
Note 470.

Table 8–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Section III. Synthesis

As programmable logic devices become more complex and require increased
performance, advanced design synthesis has become an important part of the design
flow. In the Quartus® II software you can use the integrated Analysis and Synthesis
module of the Compiler to synthesize your design files and create the project database
for future stages of the compilation flow. You can also use other EDA synthesis tools
to first synthesize your designs, and then generate EDIF netlist files or Verilog
Quartus Mapping Files (.vqm) that you can use with the Quartus II software. The
Quartus II netlist viewers allow you to visually analyze the design netlist at different
stages of synthesis and compilation. This section explains the options that are
available for each of these flows and how they are supported in the Quartus II
software version 9.1.

This section includes the following chapters:

■ Chapter 9, Quartus II Integrated Synthesis

This chapter documents the integrated synthesis design flow and language
support in the Quartus II software. It explains how you can improve synthesis
results with Quartus II synthesis options and optimization techniques, and how
you can control the inference of architecture-specific megafunctions. This chapter
also explains some of the node-naming conventions used during synthesis to help
you better understand your synthesized design and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying all the
options and settings described are also provided.

Use this chapter for Quartus II synthesis support and to improve your synthesis
results.

■ Chapter 10, Synopsys Synplify Support

This chapter documents support for the Synopsys Synplify software in the
Quartus II software, as well as key design flows, methodologies, and techniques
for achieving good results in Altera® devices. To use this chapter, you must have
set up, licensed, and be familiar with the Synplify software.

Use this chapter to prepare design files for the Quartus II place-and-route process,
as well as improve performance and optimize a design with the Synopsys
Synplify synthesis tool.

■ Chapter 11, Mentor Graphics Precision Synthesis Support

This chapter documents support for the Mentor Graphics® Precision Synthesis
software in the Quartus II software design flow, as well as key design flow,
methodologies, and techniques for improving the results in Altera devices.

Use this chapter to prepare design files for the Quartus II place-and-route process,
as well as improve performance and optimize a design with the Mentor Graphics
Precision Synthesis tool.

III–2 Section III: Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Chapter 12, Mentor Graphics LeonardoSpectrum Support

This chapter documents key design methodologies and techniques for Altera
devices using the Mentor Graphics LeonardoSpectrum™ software and Quartus II
design flow. The LeonardoSpectrum software is a mature synthesis tool
supporting legacy devices and many current devices. Altera recommends using
the advanced Precision Synthesis software for new designs in new device families.

Use this chapter to prepare design files for the Quartus II place-and-route process,
as well as improve performance and optimize a design if you use the Mentor
Graphics LeonardoSpectrum tool.

■ Chapter 13, Analyzing Designs with Quartus II Netlist Viewers

This chapter contains examples of using the different Quartus II viewers to
analyze your design at various stages of the design cycle. It also provides an
introduction to the Quartus II design flow using netlist viewers, an overview of
each viewer, and an explanation of the user interface.

Use this chapter if you want to visually analyze your compilation results to debug,
optimize, or constrain your design more efficiently and increase your productivity.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

9.Quartus II Integrated Synthesis

This chapter documents the design flow and features of the Quartus II software,
including the following topics:

■ Language Support in the Quartus II software

■ How to reduce your synthesis and compilation time

■ Improving synthesis results with the Quartus II synthesis options

■ Controlling the inference of architecture-specific megafunctions

■ Node-naming conventions used during synthesis to help you better understand
your synthesized design and messages issued during synthesis to improve your
HDL code

Scripting techniques for applying all the options and settings described are also
provided.

Introduction
As programmable logic designs become more complex and require increased
performance, advanced synthesis has become an important part of the design flow.
The Quartus® II software includes advanced integrated synthesis that fully supports
VHDL and Verilog HDL, as well as Altera®-specific design entry languages, and
provides options to control the synthesis process. With this synthesis support, the
Quartus II software provides a complete, easy-to-use solution.

This chapter contains the following sections:

■ “Design Flow” on page 9–2

■ “Language Support” on page 9–4

■ “Incremental Compilation” on page 9–19

■ “Quartus II Synthesis Options” on page 9–22

■ “Analyzing Synthesis Results” on page 9–68

■ “Analyzing and Controlling Synthesis Messages” on page 9–69

■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on page 9–73

■ “Scripting Support” on page 9–79

f For examples of Verilog HDL and VHDL code synthesized for specific logic functions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For information about coding with primitives that describe specific
low-level functions in Altera devices, refer to the Designing With Low-Level Primitives
User Guide.

QII51008-9.1.1

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

9–2 Chapter 9: Quartus II Integrated Synthesis
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Design Flow
The Quartus II Analysis and Synthesis stage of the compilation flow runs Quartus II
integrated synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific
languages, and supports major features of the SystemVerilog language (for
information, refer to “Language Support” on page 9–4). In this stage of the
compilation flow, the Quartus II software performs logic synthesis to optimize design
logic and performs technology mapping to implement the design logic in device
resources such as logic elements (LEs) or adaptive logic modules (ALMs), and other
dedicated logic blocks. This stage also generates the single project database that
integrates all the design files in a project (including any netlists from third-party
synthesis tools).

You can use the Analysis and Synthesis stage of the Quartus II compilation flow to
perform any of the following levels of Analysis and Synthesis:

■ Analyze Current File—Parse the current design source file to check for syntax
errors. This command does not report on many semantic errors that require
further design synthesis. To perform this analysis, on the Processing menu, click
Analyze Current File.

■ Analysis and Elaboration—Check a design for syntax and semantic errors and
perform elaboration to identify the design hierarchy. To perform Analysis and
Elaboration, on the Processing menu, point to Start and click Start Analysis &
Elaboration.

■ Analysis and Synthesis—Perform complete Analysis and Synthesis on a design,
including technology mapping. To perform Analysis and Synthesis, on the
Processing menu, point to Start and click Start Analysis & Synthesis. This is the
most commonly used command and is part of the full compilation flow.

The Quartus II design and compilation flow using Quartus II integrated synthesis
consists of the following steps:

1. Create a project in the Quartus II software and specify the general project
information, including the top-level design entity name.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all design files to
your Quartus II project using the Files page of the Settings dialog box.

4. Specify compiler settings that control the compilation and optimization of the
design during synthesis and fitting. For synthesis settings, refer to “Quartus II
Synthesis Options” on page 9–22. Add timing constraints to specify the timing
requirements.

1 If you want to partition your design to reduce compilation time, refer to
“Incremental Compilation” on page 9–19.

5. Compile the design. To just synthesize the design, on the Processing menu, point
to Start, and click Start Analysis & Synthesis. To run a complete compilation flow
including placement, routing, creation of a programming file, and timing analysis,
click Start Compilation on the Processing menu.

6. After obtaining synthesis and place-and-route results that meet your
requirements, program or configure your Altera device.

Chapter 9: Quartus II Integrated Synthesis 9–3
Design Flow

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Quartus II software produces netlists that allow you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.

f For more information about Quartus II projects, the compilation flow and other
features in the Quartus II software, refer to the Quartus II Help. For an overall
summary of features in the Quartus II software, refer to the Introduction to the
Quartus II Software manual.

Figure 9–1 shows the basic design flow using Quartus II integrated synthesis.

Figure 9–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

Notes to Figure 9–1:

(1) AHDL stands for the Altera Hardware Description Language.
(2) BDF stands for the Altera schematic Block Design File format (.bdf).
(3) The Quartus II Exported Partition (.qxp) file is a precompiled netlist that can be used as a design source file. For more information, refer to “Quartus

II Exported Partition File as Source” on page 9–21.

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & Synthesis
Constraints
& Settings

Constraints
& Settings

Fitter Assembler
Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
Place-and-Route
Simulation Files

(.vho/.vo and .sdo)

Post
Place-and-Route

Formal Verification File
(.vo)

Verilog HDL VHDL AHDL (1) BDF (2)

Configure/Program Device

.qxp file (3)SystemVerilog

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

9–4 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Language Support
This section explains Quartus II integrated synthesis support for HDL, schematic
design entry, graphical state machine entry, and how to specify the Verilog HDL or
VHDL language version used in your design. It also documents language features
such as Verilog HDL macros, initial constructs and memory system tasks, and VHDL
libraries. “Design Libraries” on page 9–12 describes how to compile and reference
design units in different custom libraries and “Using Parameters/Generics” on
page 9–15 describes how to use parameters or generics and pass them between
different languages.

To ensure that the software reads all associated project files, add each file to your
Quartus II project. To add files to your project in the Quartus II GUI, on the Project
menu, click Add/Remove Files In Project. Design files can be added to the project in
any order. You can mix all supported languages and netlists generated by third-party
synthesis tools in a single Quartus II project.

Verilog HDL Support
The Quartus II Compiler’s Analysis and Synthesis module supports the following
Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)

■ Verilog-2001 (IEEE Standard 1364-2001)

■ SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs are supported)

f For complete information about specific Verilog HDL syntax features, and language
constructs, refer to the Quartus II Help.

The Verilog HDL code samples provided in this document follow the Verilog-2001
standard unless otherwise specified. The Quartus II Compiler uses the Verilog-2001
standard by default for files that have the extension .v, and the SystemVerilog
standard for files that have the extension .sv.

You can specify a default Verilog HDL version for all files by performing the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis & Synthesis
Settings, and select Verilog HDL Input.

3. On the Verilog HDL Input page, under Verilog version, select the appropriate
Verilog HDL version, then click OK.

You can override the default Verilog HDL version for each Verilog HDL design file by
performing the following steps:

1. On the Project menu, click Add/Remove Files in Project. The Settings dialog box
appears.

2. On the Files page, select the appropriate file in the list and click the Properties
button.

3. In the HDL Version list, select SystemVerilog_2005, Verilog_2001, or
Verilog_1995 and click OK.

Chapter 9: Quartus II Integrated Synthesis 9–5
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can also control the Verilog HDL version used to compile the design inside a
design file by using the VERILOG_INPUT_VERSION synthesis directive, as shown in
Example 9–1. This directive overrides the default HDL version and any HDL version
specified in the File Properties dialog box.

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

When the software reads a VERILOG_INPUT_VERSION synthesis directive, the
current language version setting changes as specified until the end of the file, or until
the next VERILOG_INPUT_VERSION directive is reached.

1 You cannot change the language version in the middle of a Verilog HDL module.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. Refer to “Adding an HDL File to a
Project and Setting the HDL Version” on page 9–80.

The Quartus II software support for Verilog HDL is case-sensitive in accordance with
the Verilog HDL standard. The Quartus II software supports the compiler directive
`define, in accordance with the Verilog HDL standard.

The Quartus II software supports the include compiler directive to include files
with absolute paths (with either “/” or “\” as the separator), or relative paths (relative
to project root, user libraries, or current file location). When searching for a relative
path, the Quartus II software initially searches relative to the project directory. If the
Quartus II software cannot find the file, it then searches relative to all user libraries,
and finally relative to the directory location of the current file.

Verilog-2001 Support
The Quartus II software does not support Verilog-2001 libraries and configurations.

SystemVerilog Support
The Quartus II software supports the following SystemVerilog constructs:

■ Parameterized interfaces, generic interfaces, and modport constructs

■ Packages

■ Extern module declarations

■ Built-in data types logic, bit, byte, shortint, longint, int

■ Unsized integer literals ‘0, ‘1, ‘x, ‘z, ‘X, and ‘Z

■ Structure data types using struct

Example 9–1. Controlling the Verilog HDL Input Version with a Synthesis Directive

// synthesis VERILOG_INPUT_VERSION <language version>

9–6 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ Ports and parameters with unrestricted data types

■ User-defined types using typedef

■ Global declarations of task/functions/parameters/types (does not support global
variables)

■ Coding constructs always_comb, always_latch, always_ff

■ Continuous assignments to nodes other than nets, and procedural assignments to
nodes other than reg

■ Enumeration methods First, Last, Next(n), Prev(n), Num, and Name

■ Assignment operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=

■ Increment ++ and decrement --

■ Jump statements return, break, and continue

■ Enhanced for loop (declare loop variables inside initial condition)

■ Do-while loop and local loop constructs

■ Assignment patterns

■ Keywords unique and priority in case statements

■ Default values for function/task arguments

■ Closing labels

■ Extensions to directives ‘define and ‘include

■ Expression size system function $bits

■ Array query system functions $dimensions, $unpacked_dimensions,
$left, $right, $high, $low, $increment, and $size

■ Packed array (include multidimensional packed array)

■ Unpacked array (include single-valued range dimension)

■ Implicit port connections with .name and .*

Quartus II integrated synthesis also parses, but otherwise ignores the SystemVerilog
assertions.

1 Designs written to comply with the Verilog-2001 standard might not compile
successfully using the SystemVerilog setting because the SystemVerilog standard
adds a number of new reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Initial Constructs and Memory System Tasks
The Quartus II software infers power-up conditions from Verilog HDL initial
constructs. The software creates power-up settings for variables, including RAM
blocks. If the Quartus II software encounters non-synthesizable constructs in an
initial block, it generates an error. To avoid such errors, enclose non-synthesizable
constructs (such as those intended only for simulation) in translate_off and

Chapter 9: Quartus II Integrated Synthesis 9–7
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

translate_on synthesis directives, as described in “Translate Off and On /
Synthesis Off and On” on page 9–61. Synthesis of initial constructs enables the
power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 9–41.

1 Initial blocks do not infer power-up conditions in some third-party EDA synthesis
tools. If you are converting between synthesis tools, ensure that your power-up
conditions are set correctly.

Quartus II integrated synthesis supports the $readmemb and $readmemh system
tasks to initialize memories. Example 9–2 shows an initial construct that initializes an
inferred RAM with $readmemb.

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, then specify the memory word such as 110101
or abcde on the next line. Example 9–3 shows a portion of a memory initialization file
for the RAM in Example 9–2.

Verilog HDL Macros
The Quartus II software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the GUI or on the command line.

Setting a Verilog HDL Macro Default Value in the GUI

To specify a macro in the GUI, you must perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Verilog
HDL Input.

3. Under Verilog HDL macro, type the macro name in the Name box, the value in
the Setting box.

Example 9–2. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

Example 9–3. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

9–8 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

4. Click Add.

Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the
--verilog_macro option, as shown in Example 9–4.

The command in Example 9–5 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

To specify multiple macros, you can repeat the option more than once, as in
Example 9–6.

VHDL Support
The Quartus II Compiler’s Analysis and Synthesis module supports the following
VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)

■ VHDL 1993 (IEEE Standard 1076-1993)

■ VHDL 2008 (IEEE Standard 1076-2008)

f For information about specific VHDL syntax features and language constructs, refer
to the Quartus II Help.

The Quartus II Compiler uses the VHDL 1993 standard by default for files that have
the extension .vhdl or .vhd.

1 The VHDL code samples provided in this document follow the VHDL 1993 standard.

To specify a default VHDL version for all files, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, expand Analysis & Synthesis Settings and select VHDL
Input.

3. On the VHDL Input page, under VHDL version, select the appropriate version,
then click OK.

Example 9–4. Command Syntax for Specifying a Verilog HDL Macro

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>" r

Example 9–5. Specifying a Verilog HDL Macro a = 2

quartus_map my_design --verilog_macro="a=2" r

Example 9–6. Specifying Verilog HDL Macros a = 2 and b = 3

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r

Chapter 9: Quartus II Integrated Synthesis 9–9
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can override the default VHDL version for each VHDL design file by performing
the following steps:

1. On the Project menu, click Add/Remove Files in Project. The Settings dialog box
appears.

2. On the Files page, select the appropriate file in the list and click Properties.

3. In the HDL version list, select VHDL_2008, VHDL_1993, or VHDL_1987 and click
OK.

You can also specify the VHDL version used to compile the design for each design file
by using the VHDL_INPUT_VERSION synthesis directive, as shown in Example 9–7.
This directive overrides the default HDL version and any HDL version specified in
the File Properties dialog box.

The variable <language version> takes one of the following values:

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

When the software reads a VHDL_INPUT_VERSION synthesis directive, it changes the
current language version as specified until the end of the file, or until it reaches the
next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in the middle of a VHDL design unit.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. Refer to “Adding an HDL File to a
Project and Setting the HDL Version” on page 9–80.

The Quartus II software reads default values for registered signals defined in the
VHDL code and converts the default values into power-up level settings. This enables
the power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 9–41.

VHDL Standard Libraries and Packages
The Quartus II software includes the standard IEEE libraries and a number of
vendor-specific VHDL libraries. For information about organizing your own design
units into custom libraries, refer to “Design Libraries” on page 9–12.

Example 9–7. Controlling the VHDL Input Version with a Synthesis Directive

--synthesis VHDL_INPUT_VERSION <language version>

Example 9–8. VHDL 2008—Controlling the VHDL Input Version with a Synthesis Directive

/* synthesis VHDL_INPUT_VERSION <language version> */

9–10 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The IEEE library includes the standard VHDL packages std_logic_1164,
numeric_std, numeric_bit, and math_real. The STD library is part of the
VHDL language standard and includes the packages standard (included in every
project by default) and textio. For compatibility with older designs, the Quartus II
software also supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and std_logic_unsigned in
the IEEE library

■ Mentor Graphics® packages such as std_logic_arith in the ARITHMETIC
library

■ Altera primitive packages altera_primitives_components (for primitives
such as GLOBAL and DFFE) and maxplus2 (for legacy support of MAX+PLUS® II
primitives) in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for Altera-specific
megafunctions including LCELL), and lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

f For a complete listing of library and package support, refer to the Quartus II Help.

1 Altera recommends that you import component declarations for Altera primitives
such as GLOBAL and DFFE from the altera_primitives_components package
and not the altera_mf_components package.

VHDL wait Constructs
The Quartus II software supports one VHDL wait until statement per process
block. Other VHDL wait constructs, such as wait for, or wait on statements, or
processes with multiple wait statements, are not supported.

Example 9–9 is a VHDL code example of a supported wait until construct.

VHDL-2008 Support
The Quartus II software supports the following VHDL 2008 functions:

■ Block comments

■ Simplified sensitivity lists

■ Extensions to generate

Example 9–9. VHDL Code: Supported wait until Construct

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

Chapter 9: Quartus II Integrated Synthesis 9–11
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

AHDL Support
The Quartus II Compiler’s Analysis and Synthesis module fully supports the Altera
Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf file with an AHDL include statement. Altera provides .inc files for all
megafunctions shipped with the Quartus II software.

f For information about specific AHDL syntax features and language constructs, refer
to the Quartus II Help.

1 The AHDL language does not support the synthesis directives or attributes described
in this chapter.

Schematic Design Entry Support
The Quartus II Compiler’s Analysis and Synthesis module fully supports Block
Design Files (.bdf) for schematic design entry.

You can use the Quartus II Block Editor to create and edit .bdf files and open Graphic
Design Files (.gdf) imported from the MAX+PLUS II software. Use the Symbol Editor
to create and edit Block Symbol Files (.bsf) and open MAX+PLUS II Symbol Files
(.sym). You can read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them as .bdf or .bsf
files.

f For information about creating and editing schematic designs, refer to the About
Schematic Design Entry in the Quartus II Help.

1 Schematic entry methods do not support the synthesis directives or attributes
described in this chapter.

State Machine Editor
The Quartus II software supports graphical state machine entry. To create a new finite
state machine (FSM) design, on the File menu, click New. In the New dialog box,
expand the Design Files list and choose State Machine File.

In the editor, you can use the State Machine Wizard to step you through the state
machine creation. Click the State Machine Wizard icon. Specify the reset information,
define the input ports, states, and transitions, and then define the output ports and
output conditions. Click Finish to create the state machine diagram.

You can also create the state machine diagram using the editor GUI. Use the icons or
right-click menu options to insert new input and output signals and create states in
the schematic display. To specify transitions, select the Transition Tool and click on
the source state, then drag the mouse to the destination state. Double-click on a
transition to specify the transition equation, using a syntax that conforms to Verilog
HDL. Double-click on a state to open the State Properties dialog box, where you can
change the state name, specify whether it acts as the reset state, and change the
incoming and outgoing transition equations.

To view and edit state machine information in a table format, click the State Machine
Table icon.

9–12 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The state machine diagram is saved as a State Machine File (.smf). When you have
finished defining the state machine logic, create a Verilog HDL or VHDL design file
by clicking the Generate HDL File icon. You can then instantiate the state machine in
your design using any design entry language.

f For more information about creating and editing state machine diagrams, refer to the
Quartus II Help.

Design Libraries
By default, the Quartus II software compiles all design files into the work library. If
you do not specify a design library, or if a file refers to a library that does not exist, or
if the referenced library does not contain a referenced design unit, the software
searches the work library. This behavior allows the Quartus II software to compile
most designs with minimal setup, while creating separate custom design libraries is
optional.

To compile your design files into specific libraries (for example, when you have two
or more functionally different design entities that share the same name), you can
specify a destination library for each design file in various ways, as described in the
following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box”

■ “Specifying a Destination Library Name in the Quartus II Settings File or Using
Tcl”

When the Quartus II Compiler analyzes the file, it stores the analyzed design units in
the file’s destination library.

1 A design can contain two or more entities with the same name if they are compiled
into separate libraries.

When compiling a design instance, the Quartus II software initially searches for the
entity in the library associated with the instance (which is the work library if no other
library is specified). If the entity definition is not found, the software searches for a
unique entity definition in all design libraries. If more than one entity with the same
name is found, the software generates an error. If your design uses multiple entities
with the same name, you must compile the entities into separate libraries.

In VHDL, there are several ways to associate an instance with a particular entity, as
described in “Mapping a VHDL Instance to an Entity in a Specific Library”. In Verilog
HDL, BDF schematic entry, AHDL, as well as VQM and EDIF netlists, use different
libraries for each of the entities that have the same name, and compile the
instantiation into the same library as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box
To specify a library name for one of your design files, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Files. The Files page appears.

3. Select the file in the File Name list.

4. Click Properties.

Chapter 9: Quartus II Integrated Synthesis 9–13
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

5. In the File Properties dialog box, select the type of design file from the Type list.

6. Type the desired library name in the Library field.

7. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File (.qsf) or with Tcl
commands.

For example, the following assignments specify that the Quartus II software analyzes
the my_file.vhd and stores its contents (design units) in the VHDL library my_lib,
and then analyzes the Verilog HDL file my_header_file.h and stores its contents in a
library called another_lib. Refer to Example 9–10.

For more information about Tcl scripting, refer to “Scripting Support” on page 9–79.

Specifying a Destination Library Name in a VHDL File
You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes as a single string argument the name of the destination
library. Specify the library directive in a VHDL comment prior to the context clause
for a primary design unit (that is, a package declaration, an entity declaration, or a
configuration), using one of the supported keywords for synthesis directives, that is,
altera, synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 9–26.

The library directive overrides the default library destination work, the library
setting specified for the current file through the Settings dialog box, any existing QSF
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 9–11 uses the library synthesis directive to create a library called my_lib
that contains the design unit my_entity.

1 You can specify a single destination library for all the design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or using
the Tcl interface. Using the library directive to change the destination VHDL library
within a source file gives you the option of organizing the design units in a single file
into different libraries, rather than just a single library.

Example 9–10. Specifying a Destination Library Name

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib

Example 9–11. Using the Library Synthesis Directive

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

9–14 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The Quartus II software produces an error if you use the library directive within a
design unit.

Mapping a VHDL Instance to an Entity in a Specific Library
The VHDL language provides a number of ways to map or bind an instance to an
entity in a specific library, as described in the following subsections.

Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library, as shown in Example 9–12.

Component Instantiation—Explicit Binding Instantiation

There is more than one mechanism for binding a component to an entity. In an explicit
binding indication, you bind a component instance to a specific entity, as shown in
Example 9–13.

Example 9–12. VHDL Code: Direct Entity Instantiation

entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;

Example 9–13. VHDL Code: Binding Instantiation

entity entity1 is
port(...);
end entity entity1;

package components is
component entity1 is
port map (...);
end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;

Chapter 9: Quartus II Integrated Synthesis 9–15
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Component Instantiation—Default Binding

If you do not provide an explicit binding indication, a component instance is bound to
the nearest visible entity with the same name. If no such entity is visible in the current
scope, the instance is bound to the entity in the library in which the component was
declared. For example, if the component is declared in a package in library MY_LIB,
an instance of the component is bound to the entity in library MY_LIB. The portions of
code in Example 9–14 and Example 9–15 show this instantiation method.

Using Parameters/Generics
This section describes how parameters, known as generics in VHDL, are supported in
the Quartus II software, and how you can pass these parameters between different
design languages.

You can enter default parameter values for your design in the Default Parameters
page under the Analysis & Synthesis Settings page in the Settings dialog box.
Default parameters allow you to specify the parameter overrides for your top-level
entity. In AHDL, parameters are inherited, so any default parameters apply to all
AHDL instances in the design. You can also specify parameters for instantiated
modules in a .bdf. To modify parameters in a .bdf instance, double-click on the
parameter value box for the instance symbol, or right-click on the symbol and choose
Properties, then click the Parameters tab. For these GUI-based entry methods,
information about how parameter values are interpreted, and recommendations
about the format you should use, refer to “Setting Default Parameter Values and BDF
Instance Parameter Values”.

Example 9–14. VHDL Code: Default Binding to the Entity in the Same Library as the Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in
-- library “mylib”

architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

Example 9–15. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

9–16 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can specify parameters for instantiated modules in your design source files, using
the syntax provided for that language. Some designs instantiate entities in a different
language; for example, they might instantiate a VHDL entity from a Verilog HDL
design file. You can pass parameters or generics between VHDL, Verilog HDL,
AHDL, and BDF schematic entry, and from EDIF or VQM to any of these languages.
In most cases, you do not have to do anything special to pass parameters from one
language to another. However, in some cases you might have to specify the type of
parameter you are passing. In those cases, you should follow certain guidelines to
ensure that the parameter value is interpreted correctly. For parameter type rules,
refer to “Passing Parameters Between Two Design Languages” on page 9–17.

Setting Default Parameter Values and BDF Instance Parameter Values
Default parameter values and BDF instance parameter values do not have an
explicitly declared type. In most cases, the Quartus II software can correctly infer the
type from the value without ambiguity. For example, “ABC” is interpreted as a string,
123 as an integer, and 15.4 as a floating-point value. In other cases, such as when the
instantiated subdesign language is VHDL, the Quartus II software uses the type of the
parameter/generic in the instantiated entity to determine how to interpret the value,
so that a value of 123 is interpreted as a string if the VHDL parameter is of type
string. In addition, you can set the parameter value in a format that is legal in the
language of the instantiated entity. For example, to pass an unsized bit literal value
from BDF to Verilog HDL, you can use '1 as the parameter value, and to pass a 4-bit
binary vector from BDF to Verilog HDL, you can use 4'b1111 as the parameter
value.

In a few cases, the Quartus II software cannot infer the correct type of parameter
value. To avoid ambiguity, specify the parameter value in a type-encoded format
where the first or first and second characters of the parameter indicate the type of the
parameter, and the rest of the string indicates the value in a quoted sub-string. For
example, to pass a binary string 1001 from BDF to Verilog HDL, you cannot simply
use the value 1001, because the Quartus II software interprets it as a decimal value.
You also cannot use the string "1001", because the Quartus II software interprets it as
an ASCII string. You must use the type-encoded string B"1001" for the Quartus II
software to correctly interpret the parameter value. Table 9–1 provides a list of valid
parameter strings and shows how they are interpreted within the Quartus II software.
Use the type-encoded format only when necessary to resolve ambiguity.

Table 9–1. Valid Parameter Strings and Interpretations (Part 1 of 2)

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

Chapter 9: Quartus II Integrated Synthesis 9–17
Language Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In the Quartus II software version 8.1 and later, you can select the parameter type
using the pull-down list in the Parameter tab of the Symbol Properties dialog box.
You can select the parameter types for global parameters or global constants. The
Quartus II software supports the following parameter types:

■ Unsigned Integer

■ Signed Integer

■ Unsigned Binary

■ Signed Binary

■ Octal

■ Hexadecimal

■ Float

■ Enum

■ String

■ Boolean

■ Char

■ Untyped/Auto

If you do not specify the parameter type, the Quartus II software interprets the
parameter value and defines the parameter type. Specify parameter type with the
pull-down list to avoid ambiguity.

1 If you open a .bdf in the Quartus II software version 8.1 and later, the software
automatically updates the parameter types of old symbol blocks by interpreting the
parameter value based on the language-independent format. If the parameter value
type is not recognized, the parameter type is set as untyped.

Passing Parameters Between Two Design Languages
When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. It is essential for the parameter to be correctly interpreted by
the subdesign language (the design entity that is instantiated). Based on the
information provided by the higher-level design and the value format, and sometimes
by the parameter type of the subdesign entity, the Quartus II software interprets the
type and value of the passed parameter.

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enum type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type, whose content is determined
by the string (...)

Table 9–1. Valid Parameter Strings and Interpretations (Part 2 of 2)

Parameter String Quartus II Parameter Type, Format, and Value

9–18 Chapter 9: Quartus II Integrated Synthesis
Language Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), it is essential that the enumeration literal is spelled correctly
in the language of the higher-level design block (block that is higher in the hierarchy).
The parameter value is passed as a string literal, and it is up to the language of the
lower-level design to correctly convert the string literal into the correct enumeration
literal.

If the language of the lower-level entity is SystemVerilog, it is essential that the enum
value is used in the correct case. In SystemVerilog, it is recommended that two
enumeration literals do not only differ in case. For example, enum {item, ITEM} is
not a good choice of item names because these names can create confusion among
users and it is more difficult to pass parameters from case-insensitive HDLs, such as
VHDL.

Arrays have different support in different design languages. For details about the
array parameter format, refer to the Parameter section in the Analysis & Synthesis
Report of a design that contains array parameters or generics.

The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language. Example 9–16 shows a VHDL
subdesign that is instantiated in a top-level Verilog HDL design in Example 9–17.
Example 9–18 shows a Verilog HDL subdesign that is instantiated in a top-level
VHDL design in Example 9–19.

Example 9–16. VHDL Parameterized Subdesign Entity

type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Example 9–17. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity
from Example 9–16

vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

Example 9–18. Verilog HDL Parameterized Subdesign Module

module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Chapter 9: Quartus II Integrated Synthesis 9–19
Incremental Compilation

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To use an HDL subdesign such as the one shown in Example 9–18 in a top-level BDF
design, you must first generate a symbol for the HDL file, such as shown in
Figure 9–2. Open the HDL file in the Quartus II software, and then, on the File menu,
point to Create/Update and click Create Symbol Files for Current File.

To modify parameters on a BDF instance, double-click on the parameter value box for
the instance symbol, or right-click on the symbol and choose Properties, then click the
Parameters tab. Right-click on the symbol and choose Update Design File from
Selected Block... to pass the updated parameter to the HDL file.

Incremental Compilation
The incremental compilation feature in the Quartus II software manages a design
hierarchy for incremental design by allowing you to divide the design into multiple
partitions. Incremental compilation ensures that when a design is compiled, only
those partitions of the design that have been updated are resynthesized, reducing
compilation time and runtime memory usage. This also means that node names are
maintained during synthesis for all registered and combinational nodes in unchanged
partitions. You can perform incremental synthesis by setting the Netlist Type for all
design partitions to Post-Synthesis.

You can also preserve the placement (and optionally routing) information for
unchanged partitions. This feature allows you to preserve performance of unchanged
blocks in your design and reduces the time required for placement and routing, which
significantly reduces your design compilation time.

Partitions for Preserving Hierarchical Boundaries
A design partition represents a portion of the design that you want to synthesize and
fit incrementally.

Example 9–19. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 9–18

inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")

Figure 9–2. BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module
from Example 9–18.

9–20 Chapter 9: Quartus II Integrated Synthesis
Incremental Compilation

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Beginning with Quartus II software version 9.0, if you want to preserve the
Optimization Technique and Restructure Multiplexers logic options set in any
entity, you must create new partitions for the particular entity instead of using the
Preserve Hierarchical Boundary logic option. If you have settings applied to specific
existing design hierarchies, particularly those created in the Quartus II software
versions before 9.0, you must create a design partition for the design hierarchy so that
synthesis can optimize the design instance independently and preserve the
hierarchical boundaries.

The Preserve Hierarchical Boundary logic option is available only in Quartus II
software versions 8.1 and earlier. Incremental compilation maintains the hierarchical
boundaries of design partitions, so you should use design partitions if you want to
preserve hierarchical boundaries through the synthesis and fitting process.

Parallel Synthesis
The Parallel Synthesis option is one of the Analysis and Synthesis options that you
can use to reduce compilation time for synthesis. The feature enables the Quartus II
software to use multiple processors to synthesize multiple partitions in parallel.

This feature is available only if the following requirements are met:

■ The number of processors allowed in a single machine is greater than 1. You
can specify the maximum number of processors allowed under Parallel
Compilation options in the Compilation Process Settings page of the Settings
dialog box.

■ Incremental compilation is enabled and your design has two or more
partitions.

■ In version 9.1 of the Quartus II software, Parallel Synthesis runs when
Physical Synthesis is on.

■ Parallel Synthesis is enabled.

By default, the Parallel Synthesis option is enabled. To disable parallel synthesis,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click Analysis & Synthesis Settings and click More Settings
to select Parallel Synthesis.

You can also set the Parallel Synthesis option using the following Tcl command:

set_global_assignment -name parallel_synthesis off

You can view all messages generated during parallel synthesis in the Message
console. Messages from different partitions are interleaved at runtime, but the
Partition Column displays the partition ID of the partition referred to in the message.
After compilation, you can sort the messages by Partition Column—effectively
grouping all the messages from a particular partition. To display the partition column,
right-click on the message console, point to Message Column and select Show
Partition Column. You can also display the Partition column on the Tools menu, by
clicking Options and selecting Messages in the Category list. In the Messages page,
turn on Show the Partition column.

Chapter 9: Quartus II Integrated Synthesis 9–21
Incremental Compilation

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in Messages
page. This option shows the partition ID in parenthesis for each message.

Quartus II Exported Partition File as Source
You can use a Quartus II Exported Partition File (.qxp) as a source file in the
Quartus II software version 8.1 and later. The .qxp is used in incremental compilation,
and contains the precompiled design netlist exported from another Quartus II project
or from a design partition within the project, which fully defines the entity. Project
team members or IP providers can use a .qxp to send their design to the project lead,
instead of sending the original HDL source code. Using this file preserves the
previous compilation results and instance-specific assignments. Not all global
assignments can be used in a different Quartus II project. You can override the
assignments for the entity in the .qxp by applying assignments in the full top-level
project.

A .qxp instance that is not assigned as a design partition does not preserve placement
and routing results. If you want to preserve the placement (and optionally routing)
results from another project or compilation, you must import a post-fitting .qxp into a
design partition in your project using the bottom-up incremental compilation flow.
The bottom-up incremental compilation flow uses a .qxp to represent lower-level
design partitions.

To create a .qxp, perform the following steps:

1. On the Project menu, click Export Design Partition.

2. In the Export file box, type the name of the .qxp. By default, the directory path and
file name are the same as the current project.

3. You can also select the Partition hierarchy to export. By default, the Top partition
(the entire project) is exported, but you can choose to export the compilation
results of any partition hierarchy in the project.

4. Under Netlist to export, select either Post-fit netlist or Post-synthesis netlist. The
default is Post-fit netlist. For post-fit netlists, turn on or off the Export routing
option as required.

5. Click OK. The Quartus II software creates the .qxp in the specified directory.

The Quartus II software adds the file into the project and .qxp into a specific library.
The design entity in the .qxp can also be instantiated multiple times in the design.

f For more information about exporting design partitions and using .qxp files, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

9–22 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Quartus II Synthesis Options
The Quartus II software offers a number of options to help you control the synthesis
process and achieve optimal results for your design. “Setting Synthesis Options” on
page 9–24 describes the Analysis & Synthesis Settings page of the Settings dialog
box, where you can set the most common global settings and options, and defines the
following three types of synthesis options: Quartus II logic options, synthesis
attributes, and synthesis directives.

1 When you apply a Quartus II Synthesis option globally or to an entity it affects all
lower-level entities in the hierarchy path, including entities instantiated with Altera
and third-party IP.

The other subsections describe the following common synthesis options in the
Quartus II software, and provide HDL examples of how to use each option, where
applicable:

■ Major Optimization Settings

■ “Optimization Technique” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–28

■ “PowerPlay Power Optimization” on page 9–30

■ “Restructure Multiplexers” on page 9–32

■ “Synthesis Effort” on page 9–34

■ Settings Related to Timing Constraints

■ “Timing-Driven Synthesis” on page 9–29

■ “Optimization Technique” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–28

■ “SDC Constraint Protection” on page 9–30

■ State Machine Settings and Enumerated Types

■ “State Machine Processing” on page 9–35

■ “Manually Specifying State Assignments Using the syn_encoding Attribute”
on page 9–36

■ “Manually Specifying Enumerated Types Using the enum_encoding Attribute”
on page 9–38

■ “Safe State Machines” on page 9–39

■ Register Power-Up Settings

■ “Power-Up Level” on page 9–41

■ “Power-Up Don’t Care” on page 9–42

Chapter 9: Quartus II Integrated Synthesis 9–23
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Controlling, Preserving, Removing, and Duplicating Logic and Registers

■ “Limiting DSP and RAM Block Usage in Partitions” on page 9–31

■ “Remove Duplicate Registers” on page 9–42

■ “Preserve Registers” on page 9–42

■ “Disable Register Merging/Don’t Merge Register” on page 9–43

■ “Noprune Synthesis Attribute/Preserve Fan-out Free Register Node” on
page 9–44

■ “Keep Combinational Node/Implement as Output of Logic Cell” on page 9–45

■ “Disabling Synthesis Netlist Optimizations with dont_retime Attribute” on
page 9–46

■ “Disabling Synthesis Netlist Optimizations with dont_replicate Attribute” on
page 9–46

■ “Maximum Fan-Out” on page 9–47

■ “Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable” on page 9–48

■ “Auto Gated Clock Conversion” on page 9–28

■ “Partitions for Preserving Hierarchical Boundaries” on page 9–19

■ Megafunction Inference Options

■ “Megafunction Inference Control” on page 9–49

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–52

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 9–53

■ “RAM Initialization File—for Inferred Memory” on page 9–56

■ “Multiplier Style—for Inferred Multipliers” on page 9–57

■ Controlling Synthesis with Other Synthesis Directives

■ “Full Case” on page 9–59

■ “Parallel Case” on page 9–60

■ “Translate Off and On / Synthesis Off and On” on page 9–61

■ “Ignore translate_off and synthesis_off Directives” on page 9–62

■ “Read Comments as HDL” on page 9–62

■ Specifying I/O-Related Assignments

■ “Use I/O Flipflops” on page 9–63

■ “Specifying Pin Locations with chip_pin” on page 9–65

■ Setting Quartus II Logic Options in Your HDL Source Code

■ “Using altera_attribute to Set Quartus II Logic Options” on page 9–66

9–24 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Setting Synthesis Options
You can set synthesis options in the Settings dialog box, or with logic options in the
Quartus II software, or you can use synthesis attributes and directives within your
HDL source code.

Analysis & Synthesis Settings Page of the Settings Dialog Box
The Analysis & Synthesis Settings page allows you to set global synthesis options
that apply to the entire project. You can also use a corresponding Tcl command. These
options are described in later subsections.

In the Quartus II software version 9.0 and later, some of the advanced synthesis
settings are set in the Physical Synthesis Optimizations page under Compilation
Process Settings.

f For more information about Physical Synthesis options, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Quartus II Logic Options
The Quartus II logic options control many aspects of the synthesis and
place-and-route process. To set logic options in the Quartus II GUI, on the
Assignments menu, click Assignment Editor. You can also use a corresponding Tcl
command to set global assignments. The Quartus II logic options allow you to set
instance or node-specific assignments without editing the source HDL code.

f For more information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

Synthesis Attributes
The Quartus II software supports synthesis attributes for Verilog HDL and VHDL,
also commonly called pragmas. These attributes are not standard Verilog HDL or
VHDL commands. Synthesis tools use attributes to control the synthesis process in a
particular manner. Attributes always apply to a specific design element, and are
applied in the HDL source code. Some synthesis attributes are also available as
Quartus II logic options via the Quartus II GUI or scripting. Each attribute description
in this chapter indicates whether there is a corresponding setting or logic option that
can be set in the GUI. Some attributes can be specified only with HDL synthesis
attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .qsf. Assignments or settings made with the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with synthesis attributes
in your HDL code. The Quartus II software generates warning messages if invalid
attributes are found, but does not generate an error or stop the compilation. This
behavior is required because attributes are specific to various design tools, and
attributes not recognized in the Quartus II software might be intended for a different
EDA tool. The Quartus II software lists the attributes specified in your HDL code in
the Source assignments table of the Analysis & Synthesis report.

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–25
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Example 9–20 through Example 9–23, where <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional. The
examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, synthesis attributes in Verilog HDL files are
also case-sensitive.

Verilog-1995 comment-embedded attributes, as shown in Example 9–20, must be used
as a suffix to (that is, placed after) the declaration of an item and must appear before
the semicolon when one is required.

1 You cannot use the open one-line comment in Verilog HDL when a semicolon is
required at the end of the line, because it is not clear to which HDL element the
attribute applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could be read as part of the
next line.

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces, as follows:

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (for details, refer to “Maximum Fan-
Out” on page 9–47) and set the preserve attribute (for details, refer to “Preserve
Registers” on page 9–42) on a register called my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword shown above, the keywords pragma,
synopsys, and exemplar are supported for compatibility with other synthesis tools.
The keyword altera is also supported, which allows you to add synthesis attributes
that will be recognized only by Quartus II integrated synthesis and not by other tools
that recognize the same synthesis attribute.

1 Because formal verification tools do not recognize the exemplar, pragma, and
altera keywords, avoid using these attribute keywords when using formal
verification.

Example 9–20. Synthesis Attributes in Verilog-1995

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Example 9–21. Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

9–26 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 attributes, as shown in Example 9–21, must be used as a prefix to (that is,
placed before) a declaration, module item, statement, or port connection, and used as
a suffix to (that is, placed after) an operator or a Verilog HDL function name in an
expression.

1 Because formal verification tools do not recognize the syntax, the Verilog-2001
attribute syntax is not supported when using formal verification.

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas, as shown in Example 9–22:

For example, to set the maxfan attribute to 16 (refer to “Maximum Fan-Out” on
page 9–47 for details) and set the preserve attribute (refer to “Preserve Registers” on
page 9–42 for details) on a register called my_reg, use the following syntax:

(* maxfan = 16, preserve *) reg my_reg;

VHDL attributes, as shown in Example 9–23, declare the attribute type and then apply
it to a specific object. Each attribute is defined and applied separately to a given node.
For VHDL designs, all supported synthesis attributes are declared in the
altera_syn_attributes package in the Altera library. You can call this library
from your VHDL code to declare the synthesis attributes, as follows:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Synthesis Directives
The Quartus II software supports synthesis directives, also commonly called compiler
directives or pragmas. You can include synthesis directives in Verilog HDL or VHDL
code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process in a
particular manner. Directives do not apply to a specific design node but change the
behavior of the synthesis tool from the point where they occur in the HDL source
code. Other tools, such as simulators, ignore these directives and treat them as
comments.

You can enter synthesis directives in your code using the syntax shown in
Example 9–24, Example 9–25, and Example 9–26, in which <directive> and <value> are
variables, and the entry in brackets is optional. Notice that for synthesis directives
there is no equal sign before the value; this is different than the Verilog syntax for
synthesis attributes. The examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, all synthesis directives are also case-sensitive.

Example 9–22. Applying Multiple Attributes

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

Example 9–23. Synthesis Attributes in VHDL

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

Chapter 9: Quartus II Integrated Synthesis 9–27
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In addition to the synthesis keyword shown above, the pragma, synopsys, and
exemplar keywords are supported in both Verilog HDL and VHDL for compatibility
with other synthesis tools. The keyword altera is also supported, which allows you
to add synthesis directives that are recognized only by Quartus II integrated synthesis
and not by other tools that recognize the same synthesis directives.

1 Because formal verification tools ignore keywords exemplar, pragma, and altera,
avoid using these directive keywords when you are using formal verification to
prevent mismatches with the Quartus II results.

Optimization Technique
The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two. Table 9–2 lists the
settings for this logic option, which you can apply only to a design entity. You can also
set this logic option for your whole project in the Settings dialog box. If you want to
set this logic option for an entity, you must create a design partition for the entity
before setting the Optimization Technique logic option. Beginning in Quartus II
version 9.0, this option is ignored when set on an entity that is not a design partition.

The default setting varies by device family and is generally optimized for the best area
or speed trade-off. Results are design-dependent and vary depending on which
device family you use.

Example 9–24. Verilog HDL Code: Synthesis Directives

// synthesis <directive> [<value>]
or
/* synthesis <directive> [<value>] */

Example 9–25. VHDL Code: Synthesis Directives

-- synthesis <directive> [<value>]

Example 9–26. VHDL 2008 Code: Synthesis Directives

/* synthesis <directive> [<value>] */

Table 9–2. Optimization Technique Settings

Setting Description

Area The compiler makes the design as small as possible to minimize resource usage.

Speed The compiler chooses a design implementation that has the fastest fMAX.

Balanced (1) The compiler maps part of the design for area and part for speed, providing better area utilization than
optimizing for speed, with a slightly slower fMAX than optimizing for speed.

Note to Table 9–2:

(1) The balanced optimization technique is not supported for all device families.

9–28 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Auto Gated Clock Conversion
Clock gating is a common optimization technique used in ASIC designs to minimize
power consumption. You can use the Auto Gated Clock Conversion option to
optimize your prototype ASIC designs by converting gated clocks into clock enables
when you use FPGAs in your ASIC prototyping. The automatic conversion of gated
clocks to clock enables is more efficient than manually modifying source code.
However, this feature should not be used when migrating FPGA designs to
HardCopy ASICs. The Auto Gated Clock Conversion option automatically converts
qualified gated clocks (base clocks as defined in the synopsys design constraints
[SDC]) to clock enables. To use Auto Gated Clock Conversion, you must select the
option from the More Analysis & Synthesis Settings dialog box, which is found in
the Analysis & Synthesis Settings page.

The gated clock conversion occurs when the following conditions are met:

■ Only one base clock drives a gated-clock

■ For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

■ For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The feature supports combinational gates in clock gating network.

Figure 9–3 shows examples of gated clock conversions.

Figure 9–3. Gated Clock Conversion

clk

ena1

clk

ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1

ena2

Chapter 9: Quartus II Integrated Synthesis 9–29
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 This feature does not support registers in RAM, DSP blocks, or I/O related
WYSIWYG primitives. The gated clock conversion does not support multiple design
partitions from incremental compilation where the gated clock and base clock are not
in the same hierarchical partition because the gated-clock conversion cannot trace the
base clock from the gated clock. Thus, base clocks and gated clocks must be in the
same hierarchical design partition. If a gated clock that is derived from a root gated
clock of a multiple cascaded gated clock cannot be converted, the whole gated clock
tree is not converted, because each conversion is based on a gated clock tree instead of
every gated clock.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and non-converted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The reasons for
non-converted gated clocks are listed in the Gated Clock Conversion Details table.

This feature is available only for the TimeQuest timing analyzer and supports the
following device families: Arria GX series, Stratix series (except for Stratix) and
Cyclone series (except for Cyclone), HardCopy II, and MAX II devices.

Timing-Driven Synthesis
The Timing-Driven Synthesis option specifies whether Analysis & Synthesis should
use the design's SDC timing constraints to better optimize the circuit. When this
option is turned on, Analysis & Synthesis runs timing analysis to obtain timing
information about the netlist, and then takes into account the SDC timing constraints
to focus on critical portions of the design when optimizing for performance, while
optimizing non-critical portions for area. When you turn on this option, Analysis &
Synthesis also protects SDC constraints by not merging duplicate registers that have
incompatible timing constraints. For more information, refer to “SDC Constraint
Protection” on page 9–30.

Turning on the Timing-Driven Synthesis option causes Analysis & Synthesis to
increase performance by improving logic depth on critical portions of the design, and
to improve area on non-critical portions of the design. The increased performance
comes at the cost of area, specifically adaptive look-up tables (ALUTs) and registers in
the design. Depending on how much of the design is timing critical, overall area can
increase or decrease when the Timing-Driven Synthesis option is turned on. Runtime
and peak memory use increases slightly if you turn on the Timing-Driven Synthesis
option.

When you turn on the Timing-Driven Synthesis option, the Optimization
Technique logic option has the following effect. With Optimization Technique
Speed, Timing-Driven Synthesis optimizes timing-critical portions of the design for
performance at the cost of increasing area (logic and register utilization). With an
Optimization Technique of Balanced, Timing-Driven Synthesis also optimizes the
timing-critical portions of the design for performance, but it only allows limited area
increase. With Optimization Technique Area, Timing-Driven Synthesis only
optimizes the design for area. Timing-Driven Synthesis prevents registers with
incompatible timing constraints from merging for any Optimization Technique

9–30 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

setting. If your design contains multiple partitions, you can select Timing-Driven
Synthesis options individually for every partition. If you use a .qxp as a source file, or
if your design uses imported partitions, these partitions are treated as a black box.
This means that Timing-Driven Synthesis cannot properly compute timing of paths
that cross the boundary of such a partition.

To change the Timing-Driven Synthesis option, perform the following steps:

1. On the Assignment menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, select or unselect Timing-Driven Synthesis.

The feature is available only for the TimeQuest timing analyzer and supports Arria
series, Cyclone series (except Cyclone devices), Stratix series (except Stratix devices),
and HardCopy II devices. The feature is turned on by default for all supported
devices except for Stratix II and Cyclone II devices. Altera recommends that you select
a specific device for timing-driven synthesis to have the most accurate timing
information. When auto device is selected, timing-driven synthesis uses the smallest
device for the selected family to obtain timing information.

SDC Constraint Protection
The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, two registers that are duplicates of each other but have different multicycle
constraints on them are not merged when this option is on. When Timing-Driven
Synthesis is turned on, registers with incompatible constraints are automatically
detected, and there is no need to explicitly turn on SDC Constraint Protection. To use
the SDC constraint protection option, you must turn on the option in the More
Analysis & Synthesis Settings dialog box, which is found in the Analysis &
Synthesis Settings page.

This feature supports the following device families: Arria GX, Stratix series (except
Stratix devices), Cyclone series (except Cyclone devices), HardCopy II, and MAX II
devices.

PowerPlay Power Optimization
This logic option controls the power-driven compilation setting of Analysis and
Synthesis and determines how aggressively Analysis and Synthesis optimizes the
design for power. On the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings. This displays the Analysis & Synthesis
Settings page. The following three settings are available for the PowerPlay power
optimization option:

■ Off—Analysis and Synthesis does not perform any power optimizations.

■ Normal compilation—Analysis and Synthesis performs power optimizations,
without reducing design performance.

■ Extra effort—Analysis and Synthesis performs additional power optimizations,
which can reduce design performance.

This logic option is available for the following device families: Arria GX,
Cyclone series, HardCopy II, MAX II, and Stratix series.

Chapter 9: Quartus II Integrated Synthesis 9–31
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For more information about optimizing your design for power utilization, refer to the
Power Optimization chapter in volume 2 of the Quartus II Handbook. For information
about analyzing your power results, refer to the PowerPlay Power Analysis chapter in
volume 3 of the Quartus II Handbook.

Limiting DSP and RAM Block Usage in Partitions
One important step of Analysis and Synthesis is resource balancing. In this step,
Quartus II integrated synthesis logic option allows you to specify the maximum
number of digital signal processing (DSP) blocks that the DSP block balancer assumes
exist in the current device for the current partition. This option overrides the usual
method of using the maximum number of DSP blocks the current device supports.
For incremental compilation, each partition has a separate balancing step.

By default, Quartus II integrated synthesis looks at the targeted device information to
find out the number of DSP blocks available for use. However, in incremental
compilation, each partition looks at the device information independently and
consequently assumes that it has all the DSP blocks in the device available for use.
This can result in over-allocation of DSP blocks in the design, which means that the
total number of DSP blocks used by all the partitions is greater than the number of
DSP blocks available in the device. This can eventually lead to a no-fit error during
the fitting process.

To avoid this, set the Maximum DSP Block Usage assignment on each partition to
manually limit the number of DSP blocks used. You can set this assignment on a
partition using the Assignment Editor by selecting the Maximum DSP Block Usage
assignment, and setting it on the root entity of a partition. Set any positive integer as
the value of this assignment. If this assignment is set on a name other than a partition
root, the Analysis and Synthesis gives an error.

The Maximum DSP Block Usage assignment is available only for supported device
families. Refer to the Quartus II Help for a list of the devices.

f For more information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

1 The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific Maximum DSP Block Usage
assignment limits the number of the DSP blocks to the value set by the global
assignment. This can also lead to over-allocation of DSP blocks. Therefore, always set
this assignment on each partition individually.

Manually limiting the DSP blocks usage is also useful for HardCopy ASIC device
migration, in which the number of DSP blocks that are implemented in
HardCopy ASIC devices is more than the number of DSP blocks that are implemented
in its companion Stratix II device.

In the Quartus II software version 8.1 and later, the floorplan aware synthesis feature
enables you to use LogicLock regions to define resource allocation for DSP blocks and
RAM blocks before setting the maximum resource allocation assignment.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

9–32 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about using LogicLock regions to create a floorplan for
incremental compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook, or refer to the
Quartus II Help.

Altera recommends that you always use LogicLock assignments first before setting
the maximum resource allocation assignments per partition. However, this
recommendation might not affect resource balancing if you manually assign nodes in
a partition to different LogicLock regions and if there are some unassigned nodes
which fall in the root LogicLock region where nodes are often from more than one
partition. Thus, you can move the unassigned nodes to the defined LogicLock regions
in the respective partitions and use the floorplan aware synthesis feature for better
DSP and RAM balancing.

The floorplan-aware synthesis feature is turned on by default. If you do not want the
software to consider the LogicLock floorplan constraints when performing DSP and
RAM balancing, you can turn off the floorplan aware synthesis feature. Set the Use
LogicLock Constraints During Resource Balancing option to Off in the Analysis &
Synthesis Settings page by clicking More Settings.

DSP balancing converts extra DSP blocks in the design into equivalent logic to meet
Fitter requirements where the number of DSP blocks in design is less than or equal to
the number of DSP blocks available. RAM balancing converts RAM blocks from one
RAM type to another to meet Fitter requirements in which the RAM block utilization
of each RAM type is within limits of the available blocks for each RAM type. The
floorplan aware synthesis option also allows you to specify maximum resources for
different RAM types, such as Maximum Number of M4K/M9K Memory Blocks,
Maximum Number of M512 Memory Blocks, or Maximum Number of
M-RAM/M144K Memory Blocks.

You can specify the maximum DSP and RAM resource allocation by selecting either
the Maximum DSP Block Usage or Maximum Number <block type> Memory Blocks
option in the More Analysis & Synthesis Settings dialog box, which is found in the
Analysis & Synthesis Settings page.

1 HardCopy II devices have a limited number of DSP and RAM blocks and there is no
assignment to limit the DSP and RAM blocks usage in the HardCopy II device
migration. Thus, Altera recommends that the maximum resource options are set to
the default value of -1 (UNLIMITED) for the migration flow.

You can view DSP and RAM block usage after balancing from the Compilation
Report.

Restructure Multiplexers
The Restructure Multiplexers option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced number of LEs or
ALMs. This option is available for: Arria GX, Cyclone series, HardCopy II, MAX II,
and Stratix series.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 9: Quartus II Integrated Synthesis 9–33
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Restructure Multiplexers option works on entire trees of multiplexers.
Multiplexers may arise in different parts of the design through Verilog HDL or VHDL
constructs such as the “if,” “case,” or “?:” statements. When multiplexers from one
part of the design feed multiplexers in another part of the design, trees of multiplexers
are formed. Multiplexer buses occur most often as a result of multiplexing together
arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The Restructure
Multiplexers option identifies buses of multiplexer trees that have a similar structure.
When it is turned on, this option optimizes the structure of each multiplexer bus for
the target device to reduce the overall amount of logic used in the design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fMAX.

Table 9–3 lists the settings for the logic option, which you can apply to an individual
node or to an entity that is a design partition. Beginning in the Quartus II software
version 9.0, this option is only valid when set on an entity that is a design partition.
You can also specify this option for your whole project on the Analysis & Synthesis
Settings page of the Settings dialog box by clicking More Settings and setting the
option value.

After compilation, you can view multiplexer restructuring information in the
Multiplexer Restructuring Statistics report in the Multiplexer Statistics folder under
Analysis & Synthesis Optimization Results in the Analysis & Synthesis section of
the Compilation Report. Table 9–4 describes the information that is listed in the
Multiplexer Restructuring Statistics report table for each bus of multiplexers.

Table 9–3. Restructure Multiplexer Settings

Setting Description

On Enables multiplexer restructuring to minimize your design area. This setting can reduce the fMAX.

Off Disables multiplexer restructuring to avoid possible reductions in fMAX.

Auto
(Default)

Allows the compiler to determine whether to enable the option based on your other Quartus II synthesis
settings. When the Optimization Technique option is set to Area or Balanced, Quartus II integrated synthesis
restructures all multiplexers.

When the Optimization Technique option is set to Speed, Quartus II integrated synthesis attempts to
restructure the multiplexers selectively and makes a good trade-off between area and fMAX.

Table 9–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 1 of 2)

Heading Description

Multiplexer Inputs The number of different inputs that are multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area An estimate of how many logic cells are required to implement the bus of multiplexers (before
any multiplexer restructuring takes place). This estimate can be used to identify any large
multiplexers in the design.

Area if Restructured An estimate of how many logic cells are required to implement the bus of multiplexers if
Multiplexer Restructuring is applied.

Saving if Restructured An estimate of how many logic cells are saved if Multiplexer Restructuring is applied.

9–34 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about optimizing for multiplexers, refer to the Multiplexers
section of the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Synthesis Effort
The Synthesis Effort option specifies the overall synthesis effort level in the
Quartus II software. The level can be either Fast or Auto.

The Auto setting indicates standard synthesis effort. The Quartus II software attempts
to optimize your design as much as possible.

When the effort level is set to Fast, Quartus II integrated synthesis skips a number of
steps to make synthesis run much faster (at the cost of performance and resource
utilization). Use the Fast synthesis effort level with the Fitter early timing estimate
feature. The early timing estimate feature gives you preliminary timing estimates
before running a full compilation, which results in a quicker iteration time; therefore,
you can save significant compilation time to get a good estimation of the final timing
of your design. When you use the Fast synthesis effort level as part of a full
compilation, Fitter runtime might increase because fast synthesis produces a netlist
that is slightly more difficult for the Fitter to route as compared to the netlist from a
normal synthesis. When the Synthesis Effort option is set to Fast, Timing-Driven
Synthesis automatically turns off.

To set the Synthesis Effort option from the Quartus II GUI, on the Analysis &
Synthesis Settings page, click More Settings. Select Auto or Fast from the pull-down
menu in the Synthesis Effort option, and click OK to close the Settings dialog box.

To set the Synthesis Effort option at the command line, use the --effort option
with the quartus_map executable, as shown in Example 9–27.

If you want to run fast synthesis with the Fitter Early Timing Estimate option, use the
command shown in Example 9–28. This command runs the full flow with timing
analysis.

Registered An indication of whether registers are present on the multiplexer outputs. Multiplexer
Restructuring uses the secondary control signals of a register (such as synchronous clear and
synchronous load) to further reduce the amount of logic required to implement the bus of
multiplexers.

Example Multiplexer
Output

The name of one of the multiplexer outputs. This name can help determine where in the design
the multiplexer bus originated.

Table 9–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 2 of 2)

Heading Description

Example 9–27. Command Syntax for Specifying Synthesis Effort Option

quartus_map <Design name> --effort= "auto | fast"

Example 9–28. Command Syntax for running fast synthesis with Early Timing Estimate Option

quartus_sh --flow early_timing_estimate_with_synthesis <Design name>

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–35
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can also run this flow from the Tasks pane in the Quartus II software. Select and
expand Compile Design, then Analysis & Synthesis. Double-click Early Timing
Estimate to start the flow.

State Machine Processing
The State Machine Processing logic option specifies the processing style used to
synthesize a state machine. Table 9–5 lists the settings for this logic option, which you
can apply to a state machine name or to a design entity containing a state machine.
You can also set this option for your whole project on the Analysis & Synthesis
Settings page in the Settings dialog box.

The default state machine encoding, which is Auto, uses one-hot encoding for FPGA
devices and minimal-bits encoding for CPLDs. These settings achieve the best results
on average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

f For guidelines to ensure that your state machine is inferred and encoded correctly,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

For one-hot encoding, the Quartus II software does not guarantee that each state has
one bit set to one and all other bits to zero. Quartus II integrated synthesis creates
one-hot register encoding by using standard one-hot encoding and then inverting the
first bit. This results in an initial state with all zero values, and the remaining states
have two 1 values. Quartus II integrated synthesis encodes the initial state with all
zeros for the state machine power-up because all device registers power up to a low
value. This encoding has the same properties as true one-hot encoding: each state can
be recognized by the value of one bit. For example, in a one-hot-encoded state
machine with five states, including an initial or reset state, the software uses the
following register encoding:

Table 9–5. State Machine Processing Settings

Setting Description

Auto (Default) Allows the compiler to choose what it determines to be the best encoding for the state machine.

Minimal Bits Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in one-hot style. See the example below for details.

User-Encoded Encodes the state machine in the manner that you specify.

Sequential Uses a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0, the
second 1, and so on.

Gray Uses an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

Johnson Uses an encoding similar to a gray code, in which each state only has one bit different from its
neighboring states. Each state is generated by shifting the previous state’s bits to the right by 1. The most
significant bit of each state is the negation of the least significant bit of the previous state. An N-bit
Johnson code can represent at most 2N states but requires less logic than a gray encoding.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–36 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If the State Machine Processing logic option is set to User-Encoded in a Verilog HDL
design, the software starts with the original design values for the state constants. For
example, a Verilog HDL design can contain a declaration such as the following
example:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers the states S0, S1,... the encoding 4'b1010, 4'b0101,...
encoding is used. If necessary, the software inverts bits in a user-encoded state
machine to ensure that all bits of the reset state of the state machine are zero.

To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values. For more information, refer to “Manually Specifying State
Assignments Using the syn_encoding Attribute”.

For information about the Safe State Machine option, refer to “Safe State Machines”
on page 9–39.

Manually Specifying State Assignments Using the syn_encoding Attribute
The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine Processing” on
page 9–35. With this logic option, you can choose the value User-Encoded to use the
encoding from your HDL code. However, in standard VHDL code, you cannot specify
user encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine Processing
setting, use the syn_encoding synthesis attribute to apply specific binary encodings
to the elements of an enumerated type or to specify an encoding style. The Quartus II
software can implement Enumeration Types with the different encoding styles shown
in Table 9–6.

Table 9–6. syn_encoding Attribute Values (Part 1 of 2)

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals in the Enumeration Type. If there are
fewer than five literals, use the "sequential" encoding. If there are more than five but fewer than
50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0,
the second 1, and so on.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the number of enumeration literals in the
Enumeration Type.

Chapter 9: Quartus II Integrated Synthesis 9–37
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The syn_encoding attribute must follow the enumeration type definition but
precede its use.

In Example 9–29, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis
tool to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Quartus II software to encode each
state with its corresponding value from the Verilog HDL source code. By changing the
values of your state constants, you can change the encoding of your state machine.

In Example 9–30, the states are encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software encodes the state
machine based on the current value of the State Machine Processing logic option.

"compact" Use an encoding with the fewest bits.

"user" Encode each state using its value in the Verilog source. By chaining the values of your state constants,
you can change the encoding of your state machine.

Table 9–6. syn_encoding Attribute Values (Part 2 of 2)

Attribute Value Description

Example 9–29. Specifying User-Encoded States with the syn_encoding Attribute in VHDL

ARCHITECTURE rtl OF my_fsm IS
TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

Example 9–30. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with the
syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:
out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end

9–38 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

If you are also specifying a safe state machine (as described in “Safe State Machines”
on page 9–39), separate the encoding style value in the quotation marks from the safe
value with a comma, as follows: “safe, one-hot” or “safe, gray”.

Manually Specifying Enumerated Types Using the enum_encoding Attribute
By default, the Quartus II software one-hot encodes all user-defined enumerated
types. With the enum_encoding attribute, you can specify the logic encoding for an
enumerated type and override the default one-hot encoding to improve the logic
efficiency.

1 If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the compiler
from recognizing state machines based on the enumerated type. Instead, the compiler
processes these state machines as “regular” logic using the encoding specified by the
attribute, and they are not listed as state machines in the Report window for the
project. If you want to control the encoding for a recognized state machine, use the
State Machine Processing logic option and the syn_encoding synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute
with the enumeration type whose encoding you want to control. The
enum_encoding attribute must follow the enumeration type definition but precede
its use. In addition, the attribute value must be a string literal that specifies either an
arbitrary user encoding or an encoding style of "default", "sequential",
"gray", "johnson", or "one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as there are enumeration literals in your
enumeration type. In addition, the encodings must all have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library. In the code fragment of Example 9–31,
the enum_encoding attribute specifies an arbitrary user encoding for the
enumeration type fruit.

In this example, the enumeration literals are encoded as:

apple = "11"
orange = "01"
pear = "10"
mango = "00"

You might want to specify an encoding style, rather than a manual user encoding,
especially when the enumeration type has a large number of enumeration literals. The
Quartus II software can implement enumeration types with the different encoding
styles shown in Table 9–7.

Example 9–31. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Chapter 9: Quartus II Integrated Synthesis 9–39
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Observe that in Example 9–31, the enum_encoding attribute manually specified a
gray encoding for the enumeration type fruit. This example could be written more
concisely by specifying the "gray" encoding style instead of a manual encoding, as
shown in Example 9–32.

Safe State Machines
The Safe State Machine option and corresponding syn_encoding attribute value
safe specify that the software should insert extra logic to detect an illegal state and
force the state machine’s transition to the reset state.

It is possible for a finite state machine to enter an illegal state—meaning the state
registers contain a value that does not correspond to any defined state. By default, the
behavior of the state machine that enters an illegal state is undefined. However, you
can set the syn_encoding attribute to safe or use the Safe State Machine logic
option if you want the state machine to recover deterministically from an illegal state.
The software inserts extra logic to detect an illegal state and forces the transition of the
state machine to the reset state. This option is most commonly used when the state
machine can enter an illegal state. The most common cause of this situation is a state
machine that has control inputs that come from another clock domain, such as the
control logic for a clock-crossing FIFO, because the state machine must have inputs
from another clock domain. This option protects only state machines by forcing them
into the reset state. All other registers in the design are not protected this way. You can
use this option if your design has asynchronous inputs. However, Altera recommends
using a synchronization register chain instead of relying on the safe state machine
option.

Table 9–7. enum_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals in the enumeration type. If there are
fewer than five literals, use the "sequential" encoding. If there are more than five but fewer than
50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in the enumeration type has encoding 0,
the second 1, and so on.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states but
requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the number of enumeration literals in the
enumeration type.

Example 9–32. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

9–40 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL allow you
to explicitly specify a behavior for all states in the state machine, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Any flag signals or logic used in the
design to indicate such an illegal state are also removed. If the state machine is
implemented as safe, the recovery logic added by Quartus II integrated synthesis
forces its transition from an illegal state to the reset state.

The Safe State Machine option can be set globally, or on individual state machines. To
set this option, on the Analysis & Synthesis Settings page, select More Settings. In
the Existing option settings list, select Safe State Machine, and turn on this option in
the Setting list.

You can also use the Assignment Editor to turn on the Safe State Machine option for
specific state machines.

You can set the syn_encoding safe attribute on a state machine in HDL, as shown
in Example 9–33 through Example 9–35.

If you are also specifying an encoding style (as described in “Manually Specifying
State Assignments Using the syn_encoding Attribute” on page 9–36), separate the
encoding style value in the quotation marks with the safe value with a comma, as
follows: "safe, one-hot" or "safe, gray".

Safe state machine implementation can result in a noticeable area increase for the
design. Therefore, Altera recommends that you set this option only on the critical state
machines in the design where the safe mode is required, such as a state machine that
uses inputs from asynchronous clock domains. You can also reduce the necessity of
this option by correctly synchronizing inputs coming from other clock domains.

1 If the safe state machine assignment is made on an instance that is not recognized as
a state machine, or an entity that contains a state machine, the software takes no
action. You must restructure the code so that the instance is recognized and properly
inferred as a state machine.

f For guidelines to ensure that your state machine is correctly inferred, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Example 9–33. Verilog HDL Code: a Safe State Machine Attribute

reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 9–34. Verilog-2001 and SystemVerilog Code: a Safe State Machine Attribute

(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 9–35. VHDL Code: a Safe State Machine Attribute

ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–41
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Power-Up Level
This logic option causes a register (flipflop) to power up with the specified logic level,
either High (1) or Low (0). Registers in the device core hardware power up to 0 in all
Altera devices. For the register to power up with a logic level High specified using
this option, the compiler performs an optimization referred to as NOT-gate push back
on the register. NOT-gate push back adds an inverter to the input and the output of
the register so that the reset and power-up conditions appear to be high and the
device operates as expected. The register itself still powers up low, but the register
output is inverted so the signal arriving at all destinations is high. This option is
available for all Altera devices supported by the Quartus II software except
MAX® 3000A and MAX 7000S devices.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers if you want to set the power level for all registers in the design
entity. If this option is assigned to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for it to take effect. You can also apply
the option to a pin with the logic configurations described in the following list:

■ If this option is turned on for an input pin, the option is transferred automatically
to the register that is driven by the pin if the following conditions are present:

■ There is no logic, other than inversion, between the pin and the register

■ The input pin drives the data input of the register

■ The input pin does not fan-out to any other logic

■ If this option is turned on for an output or bidirectional pin, it is transferred
automatically to the register that feeds the pin, if the following conditions are
present:

■ There is no logic, other than inversion, between the register and the pin

■ The register does not fan-out to any other logic

Inferred Power-Up Levels
Quartus II integrated synthesis reads default values for registered signals defined in
Verilog HDL and VHDL code, and converts the default values into Power-Up Level
settings. The software also synthesizes variables that are assigned values in Verilog
HDL initial blocks into power-up conditions. Synthesis of these default and initial
constructs enables the design’s synthesized behavior to match, as closely as possible,
the power-up state of the HDL code during a functional simulation.

For example, the following register declarations all set a power-up level of VCC or a
logic value “1”:

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

9–42 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about NOT-gate push back, the power-up states for Altera
devices, and how the power-up level is affected by set and reset control signals, refer
to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Power-Up Don’t Care
This logic option allows the compiler to optimize registers in the design that do not
have a defined power-up condition. This option is turned on by default.

For example, your design might have a register with its D input tied to VCC, and with
no clear signal or other secondary signals. If this option is enabled, the compiler can
choose for the register to power up to VCC. Therefore, the output of the register is
always VCC. The compiler can remove the register and connect its output to VCC. If you
turn this option off or if you set a Power-Up Level assignment of Low for this register,
the register transitions from GND to VCC when the design starts up on the first clock
signal. Thus, the register is not stuck at VCC and cannot be removed. Similarly, if the
register has a clear signal, it is not removed because after the clear is asserted, the
register transitions again to GND and back to VCC.

If the compiler performs a Power-Up Don’t Care optimization that allows it to remove
a register, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

Remove Duplicate Registers
If you turn on this logic option, the compiler removes registers that are identical to
another register. If two registers generate the same logic, the compiler removes the
second register, and the first register fans out to the destinations of the second register.
Also, if the deleted register has different logic option assignments, the compiler
ignores them. This option is turned on by default.

Typically, you should use this option only if you want to prevent the compiler from
removing duplicate registers. That is, you should use this option only with the Off
setting. You can apply this option to an individual register or a design entity that
contains registers.

Preserve Registers
This attribute and logic option directs the compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;
this option prevents a register from being reduced to a constant or merged with a
duplicate register. This option can preserve a register so you can observe it during
simulation or with the SignalTap® II Embedded Logic Analyzer. Additionally, it can
preserve registers if you are creating a preliminary version of the design in which
secondary signals are not specified. You can also use the attribute to preserve a
duplicate of an I/O register so that one copy can be placed in an I/O cell and the
second can be placed in the core.

1 This option cannot preserve registers that have no fan-out. To prevent the removal of
registers with no fan-out, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 9–44.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–43
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The Preserve Registers option prevents a register from being inferred as a state
machine.

You can set the Preserve Registers logic option in the Quartus II GUI or you can set
the preserve attribute in your HDL code, as shown in Example 9–36 through
Example 9–38. In these examples, the my_reg register is preserved.

1 In addition to preserve, the Quartus II software supports the syn_preserve
attribute name for compatibility with other synthesis tools.

1 The = 1 after the preserve in Example 9–36 and Example 9–37 is optional, because
the assignment uses a default value of 1 when it is specified.

Disable Register Merging/Don’t Merge Register
This logic option and attribute prevents the specified register from being merged with
other registers and prevents other registers from being merged with the specified
register. When applied to a design entity, it applies to all registers in the entity.

You can use this option to instruct the compiler to correctly use your timing
constraints for the register during synthesis. For example, if the register has a
multicycle constraint, this option prevents the compiler from merging other registers
into the specified register, avoiding unintended timing effects and functional
differences.

This option differs from the Preserve Register option because it does not prevent a
register with constant drivers or a redundant register from being removed.

You can set the Disable Register Merging logic option in the Quartus II GUI, or you
can set the dont_merge attribute in your HDL code, as shown in Example 9–39
through Example 9–41. In these examples, the my_reg register is prevented from
merges.

Example 9–36. Verilog HDL Code: syn_preserve Attribute

reg my_reg /* synthesis syn_preserve = 1 */;

Example 9–37. Verilog-2001 Code: syn_preserve Attribute

(* syn_preserve = 1 *) reg my_reg;

Example 9–38. VHDL Code: preserve Attribute

signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Example 9–39. Verilog HDL Code: dont_merge Attribute

reg my_reg /* synthesis dont_merge */;

Example 9–40. Verilog-2001 and SystemVerilog Code: dont_merge Attribute

(* dont_merge *) reg my_reg;

9–44 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
This synthesis attribute and corresponding logic option direct the compiler to
preserve a fan-out-free register through the entire compilation flow. This is different
from the Preserve Registers option, which prevents a register from being reduced to a
constant or merged with a duplicate register. Standard synthesis optimizations
remove nodes that do not directly or indirectly feed a top-level output pin. This
option can retain a register so you can observe it in the Simulator or the SignalTap II
Embedded Logic Analyzer. Additionally, it can retain registers if you are creating a
preliminary version of the design in which the fan-out logic of the register is not
specified. This option is supported for inferred registers in the Arria GX, Stratix series,
Cyclone series, and MAX II device families.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus II
GUI, or you can set the noprune attribute in your HDL code, as shown in
Example 9–42 though Example 9–44. In these examples, the my_reg register is
preserved.

1 You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute,
registers with no fan-out are removed (or “pruned”) during Analysis and Elaboration
before the logic synthesis stage applies any logic options. If the register has no fan-out
in the full design, but has fan-out within its module or entity, you can use the logic
option to retain the register through compilation.

The attribute name syn_noprune is supported for compatibility with other synthesis
tools.

Example 9–41. VHDL Code: dont_merge Attribute

signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Example 9–42. Verilog HDL Code: syn_noprune Attribute

reg my_reg /* synthesis syn_noprune */;

Example 9–43. Verilog-2001 and SystemVerilog Code: noprune Attribute

(* noprune *) reg my_reg;

Example 9–44. VHDL Code: noprune Attribute

signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Chapter 9: Quartus II Integrated Synthesis 9–45
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Keep Combinational Node/Implement as Output of Logic Cell
This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell will be the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
SignalTap II Embedded Logic Analyzer.

1 The option cannot keep nodes that have no fan-out. Node names cannot be
maintained for wires with tri-state drivers, or if the signal feeds a top-level pin of the
same name (in this case, the node name is changed to a name such as
<net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis and Synthesis
to ignore logic cell buffers created by the Implement as Output of Logic Cell logic
option or the LCELL primitive. If you apply this logic option globally or to an entity, it
affects all lower-level entities in the hierarchy path.

1 To avoid unintended design optimizations, make sure the Ignore LCELL Buffers
logic option is not inherited by an entity instantiated with Altera or third-party IP that
relies on logic cell buffers for correct behavior. For example, if an IP core uses logic cell
buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers logic
option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

You can set the Implement as Output of Logic Cell logic option in the Quartus II
GUI, or you can set the keep attribute in your HDL code, as shown in Example 9–45
through Example 9–47. In these examples, the Compiler maintains the node name
my_wire.

1 In addition to keep, the Quartus II software supports the syn_keep attribute name
for compatibility with other synthesis tools.

Example 9–45. Verilog HDL Code: keep Attribute

wire my_wire /* synthesis keep = 1 */;

Example 9–46. Verilog-2001 Code: keep Attribute

(* keep = 1 *) wire my_wire;

Example 9–47. VHDL Code: syn_keep Attribute

signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

9–46 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Disabling Synthesis Netlist Optimizations with dont_retime Attribute
This attribute disables synthesis retiming optimizations on the specified register.
When applied to a design entity, it applies to all registers in the entity.

You can use this option to turn off retiming optimizations and prevent node name
changes so that the compiler can correctly use your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable retiming along with other synthesis netlist optimizations, or you can
set the dont_retime attribute in your HDL code, as shown in Example 9–48 through
Example 9–50. In these examples, the my_reg register is prevented from being
retimed.

1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog HDL) or false (VHDL). This attribute does not
have any effect when set to 1 or true.

Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
This attribute disables synthesis replication optimizations on the specified register.
When applied to a design entity, it applies to all registers in the entity.

You can use this option to turn off register replication (or duplication) optimizations
so that the compiler can use your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable replication along with other synthesis netlist optimizations, or you can
set the dont_replicate attribute in your HDL code, as shown in Example 9–51
through Example 9–53. In these examples, the my_reg register is prevented from
being replicated.

Example 9–48. Verilog HDL Code: dont_retime Attribute

reg my_reg /* synthesis dont_retime */;

Example 9–49. Verilog-2001 and SystemVerilog Code: dont_retime Attribute

(* dont_retime *) reg my_reg;

Example 9–50. VHDL Code: dont_retime Attribute

signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

Example 9–51. Verilog HDL Code: dont_replicate Attribute

reg my_reg /* synthesis dont_replicate */;

Example 9–52. Verilog-2001 and SystemVerilog Code: dont_replicate Attribute

(* dont_replicate *) reg my_reg;

Chapter 9: Quartus II Integrated Synthesis 9–47
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_replicate. To disable replication, set syn_replicate
to 0 (Verilog HDL) or false (VHDL). This attribute does not have any effect when set
to 1 or true.

Maximum Fan-Out
This attribute and logic option directs the compiler to control the number of
destinations fed by a node. The compiler duplicates a node and splits its fan-out until
the individual fan-out of each copy falls below the maximum fan-out restriction. You
can apply this option to a register or a logic cell buffer, or to a design entity that
contains these elements. You can use this option to reduce the load of critical signals,
which can improve performance. You can use the option to instruct the compiler to
duplicate a register that feeds nodes in different locations on the target device.
Duplicating the register can allow the Fitter to place these new registers closer to their
destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II software except
MAX 3000 and MAX 7000 devices. To turn off the option for a given node if the option
is set at a higher level of the design hierarchy, in the Netlist Optimizations logic
option, select Never Allow. If not disabled by the Netlist Optimizations option, the
maximum fan-out constraint is honored as long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain.

■ The node does not feed itself.

■ The node feeds other logic cells, DSP blocks, RAM blocks, and/or pins through
data, address, clock enable, and other ports, but not through any asynchronous
control ports (such as asynchronous clear).

The software does not create duplicate nodes in these cases, either because there is no
clear way to duplicate the node, or to avoid the small differences in timing which
could produce functional differences in the implementation (in the third condition
above where asynchronous control signals are involved). If the constraint cannot be
applied because one of these conditions is not met, the Quartus II software issues a
message indicating that it ignored the maximum fan-out assignment. To instruct the
software not to check node destinations for possible problems like the third condition,
you can set the Netlist Optimizations logic option to Always Allow for a given node.

1 If you have enabled any of the Quartus II netlist optimizations that affect registers,
add the preserve attribute to any registers to which you have set a maxfan
attribute. The preserve attribute ensures that the registers are not affected by any of
the netlist optimization algorithms, such as register retiming.

f For details about netlist optimizations, refer to the Netlist Optimizations and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

Example 9–53. VHDL Code: dont_replicate Attribute

signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

9–48 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can set the Maximum Fan-Out logic option in the Quartus II GUI; this option
supports wildcard characters. You can also set the maxfan attribute in your HDL
code, as shown in Example 9–54 through Example 9–56. In these examples, the
compiler duplicates the clk_gen register, so its fan-out is not greater than 50.

1 In addition to maxfan, the Quartus II software supports the syn_maxfan attribute
for compatibility with other synthesis tools.

Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. The
option is on by default. You can set this option to Off for individual registers or
design entities to solve fitting or performance issues with designs that have many
clock enables. Turning the option off prevents the software from using the register’s
clock enable port. The software implements the clock enable functionality using
multiplexers in logic cells.

If specific logic is not automatically moved to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a direct
clock enable signal. Applying the direct_enable attribute to a specific signal
instructs the software to use the clock enable port of a register to implement the
signal. The attribute ensures that the clock enable port is driven directly by the signal,
and the signal is not optimized or combined with any other logic.

Example 9–57 through Example 9–59 show how to set this attribute to ensure that the
signal is preserved and used directly as a clock enable.

1 In addition to direct_enable, the Quartus II software supports the
syn_direct_enable attribute name for compatibility with other synthesis tools.

Example 9–54. Verilog HDL Code: syn_maxfan Attribute

reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 9–55. Verilog-2001 Code: maxfan Attribute

(* maxfan = 50 *) reg clk_gen;

Example 9–56. VHDL Code: maxfan Attribute

signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Example 9–57. Verilog HDL Code: direct_enable attribute

wire my_enable /* synthesis direct_enable = 1 */ ;

Chapter 9: Quartus II Integrated Synthesis 9–49
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Megafunction Inference Control
The Quartus II Compiler automatically recognizes certain types of HDL code and
infers the appropriate megafunction. The software uses the Altera megafunction code
when compiling your design, even when you do not specifically instantiate the
megafunction. The software infers megafunctions to take advantage of logic that is
optimized for Altera devices. The area and performance of such logic can be better
than the results obtained by inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain architecture-specific
features, such as RAM, DSP blocks, and shift registers that generally provide
improved performance compared with basic logic cells.

f For details about coding style recommendations when targeting megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

The Quartus II software provides options to control the inference of certain types of
megafunctions, as described in the following subsections.

Multiply-Accumulators and Multiply-Adders
Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. This option is turned on by default. To
disable inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box, or disable the option for a specific
block with the Assignment Editor.

1 Any registers that the software maps to the ALTMULT_ACCUM and
ALTMULT_ADD megafunctions and places in DSP blocks are not available in the
Simulator because their node names do not exist after synthesis.

Shift Registers
Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Quartus II integrated synthesis decides which shift registers to
replace or leave in registers. Putting shift registers in memory saves logic area, but can
have a negative effect on fmax. Quartus II integrated synthesis uses the optimization
technique setting, logic and RAM utilization of the design, and timing information
from Timing-Driven Synthesis to determine which shift registers are located in
memory and which are located in registers. To disable inference, turn off this option
for your whole project on the Analysis & Synthesis Settings page of the Settings
dialog box by clicking More Settings and setting the option to Off. You can also

Example 9–58. Verilog-2001 and SystemVerilog Code: syn_direct_enable attribute

(* syn_direct_enable *) wire my_enable;

Example 9–59. VHDL Code: direct_enable attribute

attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–50 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

disable the option for a specific block with the Assignment Editor. Even if the logic
option is set to On or Auto, the software might not infer small shift registers because
small shift registers typically do not benefit from implementation in dedicated
memory. However, you can use the Allow Any Shift Register Size for Recognition
logic option to instruct synthesis to infer a shift register even when its size is
considered too small.

1 The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in the Simulator because their node names do not exist after
synthesis.

The Auto Shift Register Replacement logic option is turned off automatically when a
formal verification tool is selected on the EDA Tool Settings page. The software
issues a warning and lists shift registers that would have been inferred if no formal
verification tool was selected in the compilation report. To allow the use of a
megafunction for the shift register in the formal verification flow, you can either
instantiate a shift register explicitly using the MegaWizard™ Plug-In Manager or make
the shift register into a black box in a separate entity/module.

RAM and ROM
Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. These options are turned on by
default. To disable inference, turn off the appropriate option for your whole project on
the Analysis & Synthesis Settings page of the Settings dialog box by clicking More
Settings and setting the option to Off. You can also disable the option for a specific
block with the Assignment Editor.

1 Although inferred shift registers are implemented in RAM blocks, you cannot turn off
the Auto RAM Replacement option to disable shift register replacement. Use the
Auto Shift Register Replacement option (refer to “Shift Registers”).

The software might not infer very small RAM or ROM blocks because very small
memory blocks can typically be implemented more efficiently by using the registers
in the logic. However, you can use the Allow Any RAM Size for Recognition and
Allow Any ROM Size for Recognition logic options to instruct synthesis to infer a
memory block even when its size is considered too small.

1 The Auto ROM Replacement logic option is automatically turned off when a formal
verification tool is selected in the EDA Tool Settings page. A warning is issued and a
report panel lists ROMs that would have been inferred if no formal verification tool
was selected. To allow the use of a megafunction for the shift register in the formal
verification flow, you can either instantiate a ROM explicitly using the MegaWizard
Plug-In Manager or create a black box for the ROM in a separate entity or module.

Although formal verification tools do not support inferred RAM blocks, because of
the importance of inferring RAM in many designs, the Auto RAM Replacement logic
option remains on when a formal verification tool is selected in the EDA Tool
Settings page. The Quartus II software automatically performs black box instance for
any module or entity that contains a RAM block that is inferred. The software issues a

Chapter 9: Quartus II Integrated Synthesis 9–51
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

warning and lists the black box that is created in the compilation report. This block
box allows formal verification tools to proceed; however, the entire module or entity
containing the RAM cannot be verified in the tool. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or entities so that as much logic
as possible can be verified by the formal verification tool.

Resource Aware RAM, ROM, and Shift-Register Inference
Beginning with the Quartus II software version 9.1, Quartus II integrated synthesis
takes resource usage into account when inferring RAM, ROM, and shift registers.
During RAM, ROM, and shift register inferencing, synthesis looks at the number of
memories available in the current device and does not infer more memory than is
available to avoid a no-fit. Synthesis tries to select the memories that are not inferred
in a way that aims at the smallest increase in logic and registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option and is turned on by default. You can disable
this option for the entire project in the More Analysis & Synthesis Settings dialog
box, or per partition in the Assignment Editor.

When the Auto setting is selected, resource aware RAM, ROM, and shift register
inference uses the resource counts from the largest device.

For designs with multiple partitions, Quartus II integrated synthesis considers one
partition at a time. Therefore, for each partition, it assumes that all RAM blocks are
available to that partition. If this causes a no-fit, the number of RAM blocks available
per partition can be limited with the following settings in the assignment editor:
Maximum Number of M512 Memory Blocks, Maximum Number of M4K/M9K
Memory Blocks, and Maximum Number of M-RAM/M144K Memory Blocks. These
options are also used by the balancer. For more information, refer to “Limiting DSP
and RAM Block Usage in Partitions” on page 9–31.

RAM to Logic Cell Conversion
The Auto RAM to Logic Cell Conversion option allows Quartus II integrated
synthesis to convert RAM blocks that are small in size to logic cells if the logic cell
implementation is deemed to give better quality of results. Only single-port or
simple-dual port RAMs with no initialization files can be converted to logic cells. This
option is off by default. You can set this option globally or apply it to individual RAM
nodes. You can enable this option by turning on the appropriate option for your
whole project in the More Analysis & Synthesis Settings dialog box.

For Arria GX and Stratix series of devices, the software uses the following rules to
determine whether a RAM should be placed in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64

■ If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32

■ Otherwise, implement the RAM in logic cells

For the Cyclone series of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM block

9–52 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128

■ Otherwise, implement the RAM in logic cells

RAM Style and ROM Style—for Inferred Memory
These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block to be used, or specify the
use of standard logic cells (LEs or ALMs). The attributes are supported only for device
families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The values
"M512", "M4K", "M-RAM", "MLAB", "M9K", and "M144K" (as applicable for the target
device family) indicate the type of memory block to use for the inferred RAM or
ROM. If you set the attribute to a block type that does not exist in the target device
family, the software generates a warning and ignores the assignment. The value
logic indicates that the RAM or ROM should be implemented in regular logic rather
than dedicated memory blocks. You can set the attribute on a module or entity, in
which case it specifies the default implementation style for all inferred memory blocks
in the immediate hierarchy. You can also set the attribute on a specific signal (VHDL)
or variable (Verilog HDL) declaration, in which case it specifies the preferred
implementation style for that specific memory, overriding the default implementation
style.

1 If you specify a value of logic, the memory still appears as a RAM or ROM block in
the RTL Viewer, but it is converted to regular logic during a later synthesis step.

In addition to ramstyle and romstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other synthesis tools.

Example 9–60 through Example 9–62 specify that all memory in the module or entity
my_memory_blocks should be implemented using a specific type of block.

Example 9–63 through Example 9–65 specify that the inferred memory my_ram or
my_rom should be implemented using regular logic instead of a TriMatrix memory
block.

Example 9–60. Verilog-1995 Code: Applying a romstyle Attribute to a Module Declaration

module my_memory_blocks (...) /* synthesis romstyle = "M4K" */;

Example 9–61. Verilog-2001 and SystemVerilog Code: Applying a ramstyle Attribute to a Module
Declaration

 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 9–62. VHDL Code: Applying a romstyle Attribute to an Architecture

architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Chapter 9: Quartus II Integrated Synthesis 9–53
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can control the depth of an inferred memory block using the max_depth
attribute. By using this attribute, you can optimize the usage of the memory block.
Example 9–66 through Example 9–68 specify the depth of the inferred memory mem
using the max_depth synthesis attribute.

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 9–24.

Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
Setting the no_rw_check value for the ramstyle attribute, or turning off the
corresponding global Add Pass-Through Logic to Inferred RAMs logic option
indicates that your design does not depend on the behavior of the inferred RAM
when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or turn off the logic option, the Quartus II software can choose a
read-during-write behavior instead of using the read-during-write behavior of your
HDL source code.

Example 9–63. Verilog-1995 Code: Applying a syn_ramstyle Attribute to a Variable Declaration

reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 9–64. Verilog-2001 and SystemVerilog Code: Applying a romstyle Attribute to a Variable
Declaration

(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Example 9–65. VHDL Code: Applying a ramstyle Attribute to a Signal Declaration

type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

Example 9–66. Verilog-1995 Code: Applying a max_depth Attribute to a Variable Declaration

reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Example 9–67. Verilog-2001 and SystemVerilog Code: Applying a max_depth Attribute to a Variable
Declaration

(* max_depth = 2048*) reg [7:0] mem [127:0];

Example 9–68. VHDL Code: Applying a max_depth Attribute to a Variable Declaration

type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;

9–54 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

In some cases, an inferred RAM must be mapped into regular logic cells because it has
a read-during-write behavior that is not supported by the TriMatrix memory blocks in
your target device. In other cases, the Quartus II software must insert extra logic to
mimic read-during-write behavior of the HDL source, increasing the area of your
design and potentially reducing its performance. In these cases, you can use the
attribute to specify that the software can implement the RAM directly in a TriMatrix
memory block without using logic. You can also use the attribute to prevent a
warning message for dual-clock RAMs in the case that the inferred behavior in the
device does not exactly match the read-during-write conditions described in the HDL
code.

f For more information about recommended styles for inferring RAM and some of the
issues involved with different read-during-write conditions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

To set the Add Pass-Through Logic to Inferred RAMs logic option with the
Quartus II GUI, click More Settings on the Analysis & Synthesis Settings page of the
Settings dialog box. Example 9–69 and Example 9–70 use two addresses and
normally require extra logic after the RAM to ensure that the read-during-write
conditions in the device match the HDL code. If a defined read-during-write
condition is not required in your design, the extra logic is not needed. With the
no_rw_check attribute, Quartus II integrated synthesis does not generate the extra
logic.

Example 9–69. Verilog HDL Inferred RAM Using no_rw_check Attribute

module ram_infer (q, wa, ra, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–55
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can use a ramstyle attribute with the MLAB value so that the Quartus II software
can infer a small RAM block and place it in an MLAB.

1 This attribute is also useful in cases in which some asynchronous RAM blocks might
be coded with read-during-write behavior that does not match the Stratix III
architecture. Thus, the device behavior would not exactly match the behavior
described in the code. If the difference in behavior is acceptable in your design, use
the ramstyle attribute with the no_rw_check value to specify that the software
should not check the read-during-write behavior when inferring the RAM. When this
attribute is set, Quartus II integrated synthesis allows the behavior of the output to be
different when the asynchronous read occurs on an address that had a write on the
most recent clock edge. That is, functional HDL simulation results will not match the
hardware behavior if you write to an address that is being read.

To include both attributes, set the value of the ramstyle attribute to "MLAB,
no_rw_check".

Example 9–71 and Example 9–72 show the method of setting two values to the
ramstyle attribute using a small asynchronous RAM block, with the ramstyle
synthesis attribute set so that the memory can be implemented in the MLAB memory
block and the read-during-write behavior is not important. Without the attribute, this
design requires 512 registers and 240 ALUTs. With the attribute, the design requires 8
memory ALUTs and just 15 registers.

Example 9–70. VHDL Inferred RAM Using no_rw_check Attribute

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

9–56 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

RAM Initialization File—for Inferred Memory
The ram_init_file attribute specifies the initial contents of an inferred memory in
the form of a Memory Initialization File (.mif). The attribute takes a string value
containing the name of the RAM initialization file.

Example 9–71. Verilog HDL Inferred RAM Using no_rw_check and MLAB Attributes

module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);

 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];

 assign data_out = mem[addr];

 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule

Example 9–72. VHDL Inferred RAM Using no_rw_check and MLAB Attributes

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

Chapter 9: Quartus II Integrated Synthesis 9–57
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 In VHDL, you can also initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. In Verilog HDL, you can use an initial
block to specify the memory contents. Quartus II integrated synthesis automatically
converts the default value into a .mif for the inferred RAM.

Multiplier Style—for Inferred Multipliers
The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression containing the * operator. In VHDL, apply the synthesis attribute to
a signal, variable, entity, or architecture.

1 Specifying a multstyle of "dsp" does not guarantee that the Quartus II software
can implement a multiplication in dedicated DSP hardware. The final implementation
depends on several conditions, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one or both operands are
constant.

In addition to multstyle, the Quartus II software supports the syn_multstyle
attribute name for compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Quartus II software to
implement all multiplications inside module my_module in the dedicated
multiplication hardware.

Example 9–73. Verilog-1995 Code: Applying a ram_init_file Attribute

reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 9–74. Verilog-2001 Code: Applying a ram_init_file Attribute

(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

Example 9–75. VHDL Code: Applying a ram_init_file Attribute

type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

Example 9–76. Verilog-1995 Code: Applying a multstyle Attribute to a Module Declaration

module my_module (...) /* synthesis multstyle = "dsp" */;

9–58 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style to be used for a multiplication operator which has a result that
is directly assigned to the variable. It overrides the multstyle attribute associated
with the enclosing module, if present. In Example 9–78 and Example 9–79, the
multstyle attribute applied to variable result directs the Quartus II software to
implement a * b in general logic rather than the dedicated hardware.

When applied directly to a binary expression containing the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute associated with the target variable or enclosing module. In
Example 9–80, the multstyle attribute indicates that a * b must be implemented
in the dedicated hardware.

1 You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture. In
Example 9–81, the multstyle attribute directs the Quartus II software to use
dedicated hardware, if possible, for all multiplications inside architecture rtl of
entity my_entity.

Example 9–77. Verilog-2001 Code: Applying a multstyle Attribute to a Module Declaration

(* multstyle = "dsp" *) module my_module(...);

Example 9–78. Verilog-2001 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 9–79. Verilog-1995 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 9–80. Verilog-2001 Code: Applying a multstyle Attribute to a Binary Expression

wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

Example 9–81. VHDL Code: Applying a multstyle Attribute to an Architecture

architecture rtl of my_entity is
attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin

Chapter 9: Quartus II Integrated Synthesis 9–59
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When applied to a VHDL signal or variable, the attribute specifies the
implementation style to be used for all instances of the * operator which has a result
that is directly assigned to the signal or variable. It overrides the multstyle attribute
associated with the enclosing entity or architecture, if present. In Example 9–82, the
multstyle attribute associated with signal result directs the Quartus II software
to implement a * b in general logic rather than the dedicated hardware.

Full Case
A Verilog HDL case statement is considered full when its case items cover all possible
binary values of the case expression or when a default case statement is present. A
full_case attribute attached to a case statement header that is not full forces the
unspecified states to be treated as a “don’t care” value. VHDL case statements must
be full, so the attribute does not apply to VHDL.

f Using this attribute on a case statement that is not full avoids the latch inference
problems discussed in the Design Recommendations for Altera Devices and the Quartus II
Design Assistant chapter in volume 1 of the Quartus II Handbook.

1 Latches have limited support in formal verification tools. It is important to ensure that
you do not infer latches unintentionally; for example, through an incomplete case
statement when using formal verification. Formal verification tools do support the
full_case synthesis attribute (with limited support for attribute syntax, as
described in “Synthesis Attributes” on page 9–24).

When you use the full_case attribute, there is a potential cause for a simulation
mismatch between the Verilog HDL functional and the post-Quartus II simulation
because unknown case statement cases can still function like latches during functional
simulation. For example, a simulation mismatch can occur with the code in
Example 9–83 when sel is 2'b11 because a functional HDL simulation output
behaves like a latch while the Quartus II simulation output behaves as a “don’t care”
value.

1 Altera recommends making the case statement “full” in your regular HDL code,
instead of using the full_case attribute.

The case statement in Example 9–83 is not full because not all binary values for sel
are specified. Because the full_case attribute is used, synthesis treats the output as
“don’t care” when the sel input is 2'b11.

Example 9–82. VHDL Code: Applying a multstyle Attribute to a Signal or Variable

signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

9–60 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 syntax also accepts the statements in Example 9–84 in the case header
instead of the comment form shown in Example 9–83.

Parallel Case
The parallel_case attribute indicates that a Verilog HDL case statement should be
considered parallel; that is, only one case item can be matched at a time. Case items in
Verilog HDL case statements might overlap. To resolve multiple matching case items,
the Verilog HDL language defines a priority relationship among case items in which
the case statement always executes the first case item that matches the case expression
value. By default, the Quartus II software implements the extra logic required to
satisfy this priority relationship.

Attaching a parallel_case attribute to a case statement header allows the
Quartus II software to consider its case items as inherently parallel; that is, at most
one case item matches the case expression value. Parallel case items reduce the
complexity of the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you only use this attribute when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

1 Altera recommends that you avoid using the parallel_case attribute, due to the
possibility of introducing mismatches between the Verilog HDL functional and the
post-Quartus II simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

Example 9–83. Verilog HDL Code: a full_case Attribute

module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];

endcase
endmodule

Example 9–84. Verilog-2001 Syntax for the full_case Attribute

(* full_case *) case (sel)

Chapter 9: Quartus II Integrated Synthesis 9–61
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 9–85 shows a casez statement with overlapping case items. In functional
HDL simulation, the three case items have a priority order that depends on the bits in
sel. For example, sel[2] takes priority over sel[1], which takes priority over
sel[0]. However, the synthesized design can simulate differently because the
parallel_case attribute eliminates this priority order. If more than one bit of sel is
high, more than one output (a, b, or c) is high as well, a situation that cannot occur in
functional HDL simulation.

Verilog-2001 syntax also accepts the statements shown in Example 9–86 in the case
(or casez) header instead of the comment form, as shown in Example 9–85.

Translate Off and On / Synthesis Off and On
The translate_off and translate_on synthesis directives indicate whether the
Quartus II software or a third-party synthesis tool should compile a portion of HDL
code that is not relevant for synthesis. The translate_off directive marks the
beginning of code that the synthesis tool should ignore; the translate_on directive
indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

A common use of these directives is to indicate a portion of code that is intended for
simulation only. The synthesis tool reads synthesis-specific directives and processes
them during synthesis; however, third-party simulation tools read the directives as
comments and ignore them. Example 9–87, Example 9–88, and Example 9–89 show
these directives.

Example 9–85. Verilog HDL Code: a parallel_case Attribute

module parallel_case (sel, a, b, c);
input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Example 9–86. Verilog-2001 Syntax

(* parallel_case *) casez (sel)

Example 9–87. Verilog HDL Code: Translate Off and On

// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

9–62 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

If you wish to ignore a portion of code in Quartus II integrated synthesis only, you can
use the Altera-specific attribute keyword altera. For example, use the // altera
translate_off and // altera translate_on directives to direct Quartus II
integrated synthesis to ignore a portion of code that is intended only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives
The Ignore translate_off and synthesis_off directives logic option directs Quartus II
integrated synthesis to ignore the translate_off and synthesis_off directives
described in the previous section. This allows you to compile code that was
previously intended to be ignored by third-party synthesis tools; for example,
megafunction declarations that were treated as black boxes in other tools but can be
compiled in the Quartus II software. To set the Ignore translate_off and synthesis_off
directives logic option, click More Settings on the Analysis & Synthesis Settings
page of the Settings dialog box.

Read Comments as HDL
The read_comments_as_HDL synthesis directive indicates that the Quartus II
software should compile a portion of HDL code that is commented out. This directive
allows you to comment out portions of HDL source code that are not relevant for
simulation, while instructing the Quartus II software to read and synthesize that same
source code. Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting the
read_comments_as_HDL directive to off indicates the end of the code.

1 You can use this directive with translate_off and translate_on to create one
HDL source file that includes both a megafunction instantiation for synthesis and a
behavioral description for simulation.

Because formal verification tools do not recognize the read_comments_as_HDL
directive, it is not supported when you are using formal verification.

In Example 9–90, Example 9–91, and Example 9–92, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is synthesized.
VHDL 2008 allows block comments which is also supported for synthesis directives.

1 Because synthesis directives are case-sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Example 9–88. VHDL Code: Translate Off and On

-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

Example 9–89. VHDL 2008 Code: Translate Off and On

/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */

Chapter 9: Quartus II Integrated Synthesis 9–63
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Use I/O Flipflops
This attribute directs the Quartus II software to implement input, output, and output
enable flipflops (or registers) in I/O cells that have fast, direct connections to an I/O
pin, when possible. Applying the useioff synthesis attribute can improve I/O
performance by minimizing setup, clock-to-output, and clock-to-output enable times.
This synthesis attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be set in the
Assignment Editor.

f For more information about which device families support fast input, output, and
output enable registers, refer to the device family data sheet, device handbook, or the
Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be applied to the
port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored if
applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs
the Quartus II software to pack registers into I/O cells. Setting the value to 0 (Verilog
HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Example 9–93 and Example 9–94, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and o_reg in the I/O
cells corresponding to the ports a, b, and o, respectively.

Example 9–90. Verilog HDL Code: Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 9–91. VHDL Code: Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Example 9–92. VHDL 2008 Code: Read Block Comments as HDL

/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */

9–64 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Verilog-2001 syntax also accepts the type of statements shown in Example 9–94 and
Example 9–95 instead of the comment form shown in Example 9–93.

Example 9–93. Verilog HDL Code: the useioff Attribute

module top_level(clk, a, b, o);
 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule

Example 9–94. Verilog-2001 Code: the useioff Attribute

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 9–95. VHDL Code: the useioff Attribute

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;

o <= o_reg;
end rtl;

Chapter 9: Quartus II Integrated Synthesis 9–65
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Specifying Pin Locations with chip_pin
This attribute enables you to assign pin locations in your HDL source. The attribute
can be used only on the ports of the top-level entity or module in the design, and
cannot be used to assign pin locations from entities at lower levels of the design
hierarchy. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the device’s pin table.

1 In addition to the chip_pin attribute, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@” symbol in front of each pin assignment. In the Quartus II software, the “@” is
optional.

Example 9–96 through Example 9–98 show different ways of assigning input pin
my_pin1 to Pin C1 and my_pin2 to Pin 4 on a different target device.

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the port’s range determines the mapping
of assignments to individual bits in the port. To leave a particular bit unassigned,
simply leave its corresponding pin assignment blank.

Example 9–99 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0]
to Pin_6.

Example 9–100 reverses the order of the signals in the bus, assigning my_pin[0] to
Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

Example 9–96. Verilog-1995 Code: Applying Chip Pin to a Single Pin

input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 9–97. Verilog-2001 Code: Applying Chip Pin to a Single Pin

(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 9–98. VHDL Code: Applying Chip Pin to a Single Pin

entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

Example 9–99. Verilog-1995 Code: Applying Chip Pin to a Bus of Pins

input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

9–66 Chapter 9: Quartus II Integrated Synthesis
Quartus II Synthesis Options

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Example 9–101 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves
my_pin[1] unassigned.

Using altera_attribute to Set Quartus II Logic Options
This attribute enables you to apply Quartus II options and assignments to an object in
your HDL source code. You can set this attribute on an entity, architecture, instance,
register, RAM block, or I/O pin. You cannot set it on an arbitrary combinational node
such as a net. With altera_attribute, you can control synthesis options from your
HDL source even when the options lack a specific HDL synthesis attribute (such as
many of the logic options presented earlier in this chapter). You can also use this
attribute to pass entity-level settings and assignments to phases of the compiler flow
beyond Analysis and Synthesis, such as Fitting.

Assignments or settings made through the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 9–24.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons, as shown in Example 9–102.

If the Quartus II option or assignment includes a target, source, and/or section tag,
use the syntax in Example 9–103 for each .qsf variable assignment.

The syntax for the full attribute value, including the optional target, source, and
section tags for two different .qsf assignments, is shown in Example 9–104.

Example 9–100. Verilog-1995 Code: Applying Chip Pin to Part of a Bus

input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 9–101. VHDL Code: Applying Chip Pin to Part of a Bus of Pins

entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";

Example 9–102. Variable Assignments Separated by Semicolons

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Example 9–103. Syntax for Each .qsf Variable Assignment

-name <variable> <value>
-from <source> -to <target> -section_id <section>

Example 9–104. Syntax for Fill Attribute Value

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id \
<section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>] \
[-section_id <section_2>] "

Chapter 9: Quartus II Integrated Synthesis 9–67
Quartus II Synthesis Options

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If the assigned value of a variable is a string of text, you must use escaped quotes
around the value in Verilog HDL, or double-quotes in VHDL, as shown in the
following examples (using non-existent variable and value terms):

Verilog HDL
"VARIABLE_NAME \"STRING_VALUE\""

VHDL
"VARIABLE_NAME ""STRING_VALUE"""

To find the .qsf variable name or value corresponding to a specific Quartus II option
or assignment, you can make the option setting or assignment in the Quartus II GUI
and then note the changes in the .qsf. You can also refer to the Quartus II Settings File
Reference Manual, which documents all variable names.

Example 9–105 through Example 9–107 use altera_attribute to set the power-up
level of an inferred register.

1 For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the instance’s output nets. The
Quartus II software moves the attribute to the inferred instance automatically.

Example 9–108 through Example 9–110 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply the Altera
Attribute to a VHDL entity, you must set the attribute on its architecture rather than
on the entity itself.

Example 9–105. Verilog-1995 Code: Applying altera_attribute to an Instance

reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH"
*/;

Example 9–106. Verilog-2001 Code: Applying altera_attribute to an Instance

(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 9–107. VHDL Code: Applying altera_attribute to an Instance

signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";

Example 9–108. Verilog-1995 Code: Applying altera_attribute to an Entity

module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 9–109. Verilog-2001 Code: Applying altera_attribute to an Entity

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

9–68 Chapter 9: Quartus II Integrated Synthesis
Analyzing Synthesis Results

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can also use altera_attribute for more complex assignments involving more
than one instance. In Example 9–111 through Example 9–113, the
altera_attribute is used to cut all timing paths from reg1 to reg2, equivalent to
this Tcl or QSF command:

set_instance_assignment -name CUT ON -from reg1 -to reg2 r

You can specify either the -to option or the -from option in a single
altera_attribute; integrated synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either
option. For example, if you specify “*” for the -to option instead of reg2 in these
examples, the Quartus II software cuts all timing paths from reg1 to every other
register in this design entity.

The altera_attribute can be used only for entity-level settings, and the
assignments (including wildcards) apply only to the current entity.

Analyzing Synthesis Results
After you have performed synthesis, you can check your synthesis results in the
Analysis & Synthesis section of the Compilation Report and the Project Navigator.

Example 9–110. VHDL Code: Applying altera_attribute to an Entity

entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

Example 9–111. Verilog-1995 Code: Applying altera_attribute with the -to Option

reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 9–112. Verilog-2001 and SystemVerilog Code: Applying altera_attribute with the -to Option

reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 9–113. VHDL Code: Applying altera_attribute with the -to Option

signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";

Chapter 9: Quartus II Integrated Synthesis 9–69
Analyzing and Controlling Synthesis Messages

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Analysis and Synthesis Section of the Compilation Report
The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation, or you can choose it from the Processing menu. After
Analysis and Synthesis, before the Fitter begins, the Summary information provides a
summary of utilization based on synthesis data, before Fitter optimizations have
occurred. Synthesis-specific information is listed in the Analysis & Synthesis section.

There are various report sections under Analysis and Synthesis, including a list of the
source files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

f For more information about each report section, refer to the Quartus II Help.

Project Navigator
The Hierarchy tab of the Project Navigator provides a summary of resource
information about the entities in the project. After Analysis and Synthesis, before the
Fitter begins, the Project Navigator provides a summary of utilization based on
synthesis data, before Fitter optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy tab, a tooltip
appears that shows parameter information for each instance.

Analyzing and Controlling Synthesis Messages
This section provides information about the messages generated during synthesis,
and how you can control which messages appear during compilation.

Quartus II Messages
The messages that appear during Analysis and Synthesis describe many of the
optimizations that the software performs during the synthesis stage, and provide
information about how the design is interpreted. You should always check the
messages to analyze Critical Warnings and Warnings, because these messages can
relate to important design problems. It is also useful to read the information messages
Info and Extra Info to get more information about how the software processes your
design.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display messages
grouped by type.

You can right-click on a message in the Messages window and get help on the
message, locate the source of the message in your design, and manage messages.

You can use message suppression to reduce the number of messages listed after a
compilation by preventing individual messages and entire categories of messages
from being displayed. For example, if you review a particular message and determine
that it is not caused by something in your design that should be changed or fixed, you
can suppress the message so it is not displayed during subsequent compilations. This
saves time because you see only new messages during subsequent compilations.

9–70 Chapter 9: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You can right-click on an individual message in the Messages window and choose
commands in the Suppress submenu. Another way to achieve the same goal is to
open the Message Suppression Manager. To do this, right-click in the Messages
window, point to Suppress, and click Message Suppression Manager.

f For more information about messages and how to suppress them, refer to the
Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

In the Quartus II software version 8.1 and later, you can specify the type of Analysis
and Synthesis messages that you want to view by selecting the Analysis & Synthesis
Message Level option. You can specify the display level by performing the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Click More Settings. Select the level for the Analysis & Synthesis Message Level
option.

f For more information about the Analysis & Synthesis Message Level option, refer to
the Quartus II Help File.

VHDL and Verilog HDL Messages
The Quartus II software issues a variety of messages when it is analyzing and
elaborating the Verilog HDL and VHDL files in your design. These HDL messages are
a subset of all Quartus II messages that help you identify potential problems early in
the design process.

HDL messages fall into the following three categories:

■ Info message—Lists a property of your design.

■ Warning message—Indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, you should always investigate
code that generates an HDL warning. Otherwise, the synthesized behavior of your
design might not match your original intent or its simulated behavior.

■ Error message—Indicates an actual problem with your design. Your HDL code
can be invalid due to a syntax or semantic error, or it might not be synthesizable as
written. Consult the Help associated with any HDL error messages for assistance
in removing the error from your design.

In Example 9–114, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 9: Quartus II Integrated Synthesis 9–71
Analyzing and Controlling Synthesis Messages

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When processing the HDL code, the Quartus II software generates the following
warning message:

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2):
sensitivity list contains multiple entries for "i".

In Verilog HDL, variable names are case-sensitive, so the variables my_reg and
MY_REG in Example 9–115 are two different variables. However, declaring variables
which have names in different cases is potentially confusing, especially if you use
VHDL, in which variables are not case-sensitive.

When processing the HDL code, the Quartus II software generates the following
informational message:

Info: (10281) Verilog HDL information at namecase.v(3): variable name
"MY_REG" and variable name "my_reg" should not differ only in case.

In addition, the Quartus II software generates additional HDL info messages to
inform you that neither my_reg or MY_REG are used in this small design:

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object
"my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object
"MY_REG" declared but not used

The Quartus II software allows you to control how many HDL messages you see
during the analysis and elaboration of your design files. You can set the HDL Message
Level to enable or disable groups of HDL messages, or you can enable or disable
specific messages, as described in the following sections.

For more information about synthesis directives and their syntax, refer to “Synthesis
Directives” on page 9–26.

Setting the HDL Message Level
The HDL Message Level specifies the types of messages that the Quartus II software
displays when it is analyzing and elaborating your design files. Table 9–8 describes
the HDL message levels.

Example 9–114. Generating an HDL Warning Message

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

Example 9–115. Generating HDL Info Messages

// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

9–72 Chapter 9: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

You must address all issues reported at the Level1 setting. The default HDL message
level is Level2.

To set the HDL Message Level in the GUI, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Set the desired message level from the pull-down menu in the HDL Message
Level list, and click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values level1, level2, and level3, as
shown in Example 9–116 and Example 9–117.

A message_level synthesis directive remains effective until the end of a file or until
the next message_level directive. In VHDL, you can use the message_level
synthesis directive to set the HDL Message Level for entities and architectures, but not
for other design units. An HDL Message Level for an entity applies to its
architectures, unless overridden by another message_level directive. In Verilog
HDL, you can use the message_level directive to set the HDL Message Level for a
module.

Table 9–8. HDL Info Message Level

Level Purpose Description

Level1 Displays high-severity
messages only

If you only want to see the HDL messages that identify likely problems with your
design, select Level1. When Level1 is selected, the Quartus II software issues a
message only if there is a high probability that it points to an actual problem with
your design.

Level2 Displays high-severity and
medium-severity messages

If you want to see additional HDL messages that identify possible problems with
your design, select Level2. This is the default setting.

Level3 Displays all messages,
including low-severity
messages

If you want to see all HDL info and warning messages, select Level3. This level
includes extra “LINT” messages that suggest changes to improve the style of your
HDL code or make it easier to understand.

Example 9–116. Verilog HDL Examples of message_level Directive

// altera message_level level1
or
/* altera message_level level3 */

Example 9–117. VHDL Code: message_level Directive

-- altera message_level level2

Chapter 9: Quartus II Integrated Synthesis 9–73
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Enabling or Disabling Specific HDL Messages by Module/Entity
You can enable or disable a specific HDL info or warning message with its Message
ID, which is displayed in parentheses at the beginning of the message. Enabling or
disabling a specific message overrides its HDL Message Level. This method is
different from the message suppression in the Messages window because you can use
this method to disable messages for a specific module or entity. This method applies
only to the HDL messages, and if you disable a message with this method, the
message is listed as a Suppressed message in the Quartus II GUI.

To disable specific HDL messages in the GUI, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Advanced.

3. In the Advanced Message Settings dialog box, add the Message IDs you want to
enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_off synthesis directives. Both directives take a space-separated list of
Message IDs. You can enable or disable messages with these synthesis directives
immediately before Verilog HDL modules, VHDL entities, or VHDL architectures.
You cannot enable or disable a message in the middle of an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis
directive overrides its HDL Message Level or any message_level synthesis
directive. The message remains disabled until the end of the source file or until its
status is changed by another message_on or message_off directive.

Node-Naming Conventions in Quartus II Integrated Synthesis
This section provides an overview of the conventions used by the Quartus II software
during synthesis to name the nodes created from your HDL design. This information
is useful for finding logic node names during verification and debugging of a design.
This section focuses on the conventions for Verilog HDL and VHDL code, but AHDL
and BDFs are discussed when appropriate.

Whenever possible, Quartus II integrated synthesis uses wire or signal names from
your source code to name nodes such as LEs or ALMs. Some nodes, such as registers,
have predictable names that typically do not change when a design is resynthesized,
although certain optimizations can affect register names. The names of other nodes,
particularly LEs or ALMs that contain only combinational logic, can change due to
logic optimizations that the software performs.

This section discusses the following topics:

Example 9–118. Verilog HDL message_off Directive for Message with ID 10000

// altera message_off 10000
or
/* altera message_off 10000 */

Example 9–119. VHDL message_off Directive for Message with ID 10000

-- altera message_off 10000

9–74 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ “Hierarchical Node-Naming Conventions”

■ “Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)”

■ “Register Changes During Synthesis” on page 9–75

■ “Preserving Register Names” on page 9–77

■ “Node-Naming Conventions for Combinational Logic Cells” on page 9–78

■ “Preserving Combinational Logic Names” on page 9–79

Hierarchical Node-Naming Conventions
To make each name in the design unique, the Quartus II software adds the hierarchy
path to the beginning of each name. The “|” separator is used to indicate a level of
hierarchy. For each instance in the hierarchy, the software adds the entity name and
the instance name of that entity, using the “:” separator between each entity name and
its instance name. For example, if a design defines entity A with the name
my_A_inst, the hierarchy path of that entity would be A:my_A_inst. The full name
of any node is obtained by starting with the hierarchical instance path, followed by a
“|”, and ending with the node name inside that entity, using the following
convention:

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|
<node_name>

For example, if entity A contains a register (DFF atom) called my_dff, its full
hierarchy name would be A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and the turn off Display entity name for node name. With this option off,
the node names use the following convention:

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>

Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
In Verilog HDL and VHDL, inferred registers are named after the reg or signal
connected to the output.

Example 9–120 is a description of a register in Verilog HDL that creates a DFF
primitive called my_dff_out:

Similarly, Example 9–121 is a description of a register in VHDL that creates a DFF
primitive called my_dff_out.

Example 9–120. Verilog HDL Register

wire dff_in, my_dff_out, clk;

always @ (posedge clk)
my_dff_out <= dff_in;

Chapter 9: Quartus II Integrated Synthesis 9–75
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In AHDL designs, DFF registers are declared explicitly rather than inferred, so the
software uses the user-declared name for the register.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design, so the software uses the user-defined name for the register
or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Quartus II software
cannot use that name for the register (for example, cannot use my_dff_out) because
the software requires that all logic and I/O cells have unique names. In this case,
Quartus II integrated synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 9–122 produces a register called
q~reg0:

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the port is removed during hierarchy flattening and
the register retains its original name, in this case, q.

Register Changes During Synthesis
On some occasions, you might not be able to find registers that you expect to see in
the synthesis netlist. Registers might be removed by logic optimization, or their
names might be changed due to synthesis optimization. Common optimizations
include inference of a state machine, counter, adder-subtractor, or shift register from
registers and surrounding logic. Other common register changes occur when registers
are packed into dedicated hardware on the FPGA, such as a DSP block or a RAM
block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations”

■ “State Machines”

■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions” on
page 9–77

■ “Packed Input and Output Registers of RAM and DSP Blocks” on page 9–77

Example 9–121. VHDL Register

signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

Example 9–122. Verilog HDL Register Feeding Output Pin

module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule

9–76 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

■ “Preserving Register Names” on page 9–77

■ “Preserving Combinational Logic Names” on page 9–79

Synthesis and Fitting Optimizations
Registers might be removed by logic optimization during synthesis if they are not
connected to inputs or outputs in the design, or if the logic can be simplified due to
constant signal values. Register names might also be changed due to synthesis
optimizations, such as when duplicate registers are merged together to reduce
resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when registers are used as
clock dividers. If this situation occurs in your design, change the clock settings to
work on the new register name.

Synthesis netlist optimizations often change node names because registers can be
combined or duplicated to optimize the design.

f For more information about the type of optimizations performed by synthesis netlist
optimizations, refer to the Netlist Optimizations and Physical Synthesis chapter in
volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that are removed
during synthesis optimizations, and a brief reason for the removal. To generate the
Quartus II Compilation Report, you must perform the following steps:

1. In the Analysis & Synthesis folder, open Optimization Results.

2. Open Register Statistics, and click on the Registers Removed During Synthesis
report.

3. Click on Removed Registers Triggering Further Register Optimizations report.

The second report contains a list of registers that are the cause of other registers being
removed in the design. It provides a brief reason for the removal, and a list of registers
that were removed due to the removal of the initial register.

Synthesis creates synonyms for registers duplicated with the Maximum Fan-Out
option (or maxfan attribute). Therefore, timing assignments applied to nodes that are
duplicated with this option are applied to the new nodes as well.

The Quartus II Fitter can also change node names after synthesis (for example, when
the Fitter uses register packing to pack a register into an I/O element, or when logic is
modified by physical synthesis). The Fitter creates synonyms for duplicated registers
so timing analysis can use the existing node name when applying assignments.

You can instruct the Quartus II software to preserve certain nodes throughout
compilation so you can use them for verification or making assignments. For more
information, refer to “Preserving Register Names” on page 9–77.

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–77
Node-Naming Conventions in Quartus II Integrated Synthesis

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

State Machines
If a state machine is inferred from your HDL code, the registers that represent the
states are mapped into a new set of registers that implement the state machine. Most
commonly, the software converts the state machine into a one-hot form where each
state is represented by one register. In this case, for Verilog HDL or VHDL designs, the
registers are named according to the name of the state register and the states, where
possible.

For example, consider a Verilog HDL state machine where the states are parameter
state0 = 1, state1 = 2, state2 = 3, and where the state machine register is
declared as reg [1:0] my_fsm. In this example, the three one-hot state registers are
named my_fsm.state0, my_fsm.state1, and my_fsm.state2.

In AHDL, state machines are explicitly specified with a machine name. State machine
registers are given synthesized names based on the state machine name but not the
state names. For example, if a state machine is called my_fsm and has four state bits,
they might be synthesized with names such as my_fsm~12, my_fsm~13,
my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
The Quartus II software infers megafunctions from Verilog HDL and VHDL code for
logic that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic
functions that are placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the registers and logic are typically implemented inside
the dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.

Packed Input and Output Registers of RAM and DSP Blocks
Registers are packed into the input registers and output registers of RAM and DSP
blocks, so that they are not visible as separate registers in LEs or ALMs.

f For information about packing registers into RAM and DSP megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Preserving Register Names
Altera recommends you to preserve certain register names for verification or
debugging, or to ensure that timing assignments are applied correctly. Quartus II
integrated synthesis preserves certain nodes automatically if they are likely to be used
in a timing constraint.

Use the preserve attribute to instruct the compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations. For
details, refer to “Preserve Registers” on page 9–42.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–78 Chapter 9: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

Use the noprune attribute to preserve a fan-out-free register through the entire
compilation flow. For details, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 9–44.

Use the synthesis attribute syn_dont_merge to ensure that the registers are not
merged with other registers, and other registers are not merged with them. For
details, refer to “Disable Register Merging/Don’t Merge Register” on page 9–43.

Node-Naming Conventions for Combinational Logic Cells
Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus II software
uses wire names that are the targets of assignments, but can change the node names
due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 9–123. Quartus II integrated
synthesis uses the names c, d, e, and f for the combinational logic cells that are
produced.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design and the software uses the user-defined name when possible.

1 Node naming conventions for schematic buses in the Quartus II software version 7.2
and later are different than the MAX+PLUS II software and older versions of the
Quartus II software. In most cases, the Quartus II software uses the appropriate
naming convention for the design source file. Designs created using the Quartus II
software version 7.1 or earlier use the MAX+PLUS II naming convention. Designs
created in the Quartus II software version 7.2 and later use the Quartus II naming
convention that matches the behavior of standard HDLs. In some cases, however, a
design might contain files created in various versions. To set an assignment for a
particular instance in the Assignment Editor, enter the instance name in the To field,
choose Block Design Naming from the Assignment Name list, and set the value to
MaxPlusII or QuartusII.

If logic cells, such as those created in Example 9–123, are packed with registers in
device architectures such as the Stratix and Cyclone device families, those names
might not appear in the netlist after fitting. In other devices, such as newer families in
the Stratix and Cyclone series device families, the register and combinational nodes
are kept separate throughout the compilation, so these names are more often
maintained through fitting.

Example 9–123. Naming Nodes for Combinational Logic Cells in Verilog HDL

wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end

always @ (a or b)
f = ~(a | b);

Chapter 9: Quartus II Integrated Synthesis 9–79
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When logic optimizations occur during synthesis, it is not always possible to retain
the initial names as described. In some cases, synthesized names are used, which are
the wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells,
those cells can have names such as w, w~1, w~2, and so on. Sometimes the original
wire name w is removed, and an arbitrary name such as rtl~123 is created. It is a
goal of Quartus II integrated synthesis to retain user names whenever possible. Any
node name ending with ~<number> is a name created during synthesis, which can
change if the design is changed and re-synthesized. Knowing these naming
conventions can help you understand your post-synthesis results and make it easier
to debug your design or make assignments.

The software maintains combinational clock logic by making sure nodes that are
likely to be a clock are not changed during synthesis. The software also maintains or
protects multiplexers in clock trees so that the TimeQuest timing analyzer has
information about which paths are unate, to allow complete and correct analysis of
combinational clocks. Multiplexers often occur in clock trees when the design selects
between different clocks. To help with the analysis of clock trees, the software ensures
that each multiplexer encountered in a clock tree is broken into 2:1 multiplexers, and
each of those 2:1 multiplexers is mapped into one look-up table (independent of the
device family). This optimization might result in a slight increase in area, and for
some designs a decrease in timing performance. You can turn off this multiplexer
protection with the option Clock MUX Protection under More Settings on the
Analysis & Synthesis Settings page of the Settings dialog box. This option applies to
Arria GX devices, the Stratix and Cyclone series of devices, and MAX II devices.

Preserving Combinational Logic Names
You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through
logic synthesis minimizations and netlist optimizations. For details, refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 9–45.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute on combinational logic
involved in cut assignments and -through assignments.

1 Setting the keep attribute on combinational logic can increase the area utilization and
increase the delay of the final mapped logic because it requires the insertion of extra
combinational logic. Use the attribute only when necessary.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in PDF form.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

9–80 Chapter 9: Quartus II Integrated Synthesis
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an instance, at
the global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value>\ -to
<Instance Name> r

Adding an HDL File to a Project and Setting the HDL Version
Use the following Tcl assignments to add an HDL or schematic entry design file to
your project:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

1 You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

To specify the Verilog HDL or VHDL version, use the following option at the end of
the VERILOG_FILE or VHDL_FILE command:

-HDL_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

For example, to add a Verilog HDL file called my_file.v that is written in Verilog-1995,
use the following command:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \
VERILOG_1995

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 9: Quartus II Integrated Synthesis 9–81
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II Synthesis Options
Table 9–9 lists the .qsf variable names and applicable values for the settings discussed
in this chapter. The .qsf variable name is used in the Tcl assignment to make the
setting along with the appropriate value.

1 When you apply a Quartus II Synthesis option globally or to an entity, it affects all
lower-level entities in the hierarchy path, including entities instantiated with Altera
and third-party IP.

Table 9–9. Quartus II Synthesis Options (Part 1 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

Add Pass-Through Logic to
Inferred RAMs

ADD_PASS_THROUGH_LOGIC_TO_INFERRED_
RAMS

On/Off

Allow Any RAM Size for
Recognition

ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION On/Off

Allow Any ROM Size for
Recognition

ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION On/Off

Allow Any Shift Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

On/Off

Allow Asynchronous Clear Usage
For Shift Register Replacement

ALLOW_ACLR_FOR_SHIFT_REGISTER_
RECOGNITION

On/Off

Allow Synchronous Control
Signals

ALLOW_SYNCH_CTRL_USAGE On/Off

Analysis & Synthesis Message
Level

SYNTH_MESSAGE_LEVEL Low/Medium/High

Auto Carry Chains AUTO_CARRY_CHAINS On/Off

Auto Clock Enable Replacement AUTO_CLOCK_ENABLE_RECOGNITION On/Off

Auto DSP Block Replacement AUTO_DSP_RECOGNITION On/Off

Auto Gated Clock Conversion SYNTH_GATED_CLOCK_CONVERSION On/Off

Auto Open-Drain Pins AUTO_OPEN_DRAIN_PINS On/Off

Auto RAM Block Balancing AUTO_RAM_BLOCK_BALANCING On/Off

Auto RAM to Logic Cell
Conversion

AUTO_RAM_TO_LCELL_CONVERSION On/Off

Auto RAM Replacement AUTO_RAM_RECOGNITION On/Off

Auto Resource Sharing AUTO_RESOURCE_SHARING On/Off

Auto ROM Replacement AUTO_ROM_RECOGNITION On/Off

Auto Shift-Register Replacement AUTO_SHIFT_REGISTER_RECOGNITION Always/Auto/Off

Block Design Naming BLOCK_DESIGN_NAMING Auto/Max+Plus II/
Quartus II

Carry Chain Length <device name>_CARRY_CHAIN_LENGTH <Maximum allowable
length of a chain>

Clock MUX Protection SYNTH_CLOCK_MUX_PROTECTION On/Off

Create Debugging Nodes for IP
Cores

ENABLE_IP_DEBUG On/Off

9–82 Chapter 9: Quartus II Integrated Synthesis
Scripting Support

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

DSP Block Balancing DSP_BLOCK_BALANCING Auto/DSP Blocks/ Logic
Elements/ Off/Simple

18-bit Multipliers/
Simple Multipliers/Width

18-bit Multipliers

Extract Verilog State Machines EXTRACT_VERILOG_STATE_MACHINES On/Off

Extract VHDL State Machines EXTRACT_VHDL_STATE_MACHINES On/Off

Force Use of Synchronous Clear
Signals

FORCE_SYNCH_CLEAR On/Off

HDL Message Level HDL_MESSAGE_LEVEL Level1/Level2/ Level3

Ignore CARRY Buffers IGNORE_CARRY_BUFFERS On/Off

Ignore CASCADE Buffers IGNORE_CASCADE_BUFFERS On/Off

Ignore GLOBAL Buffers IGNORE_GLOBAL_BUFFERS On/Off

Ignore LCELL Buffers IGNORE_LCELL_BUFFERS On/Off

Ignore Maximum Fan-Out
Assignments

IGNORE_MAX_FANOUT_ASSIGNMENTS On/Off

Ignore ROW GLOBAL Buffers IGNORE_ROW_GLOBAL_BUFFERS On/Off

Ignore SOFT Buffers IGNORE_SOFT_BUFFERS On/Off

Ignore translate_off and
synthesis_off directives

IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF On/Off

Ignore Verilog Initial Constructs IGNORE_VERILOG_INITIAL_CONSTRUCTS On/Off

Iteration limit for constant Verilog
loops

VERILOG_CONSTANT_LOOP_LIMIT <Maximum limit to
infinite loops before

exhaustion of memory>

Iteration limit for non-constant
Verilog loops

VERILOG_NON_CONSTANT_LOOP_LIMIT <Maximum limit to
infinite loops before

exhaustion of memory>

Limit AHDL Integers to 32 Bits LIMIT_AHDL_INTEGERS_TO_32_BITS On/Off

Maximum DSP Block Usage (2) MAX_BALANCING_DSP_BLOCKS <Maximum DSP Block
Usage Value>

Maximum Number of M4K/
M9K Memory Blocks

MAX_RAM_BLOCKS_M4K <Maximum memory
blocks usage>

Maximum Number of M512
Memory Blocks

MAX_RAM_BLOCKS_M512 <Maximum memory
blocks usage>

Maximum Number of M-RAM/
M144K Memory Blocks

MAX_RAM_BLOCKS_MRAM <Maximum memory
blocks usage>

NOT Gate Push-Back NOT_GATE_PUSH_BACK On/Off

Number of Inverted Registers
Reported in Synthesis Report

NUMBER_OF_INVERTED_REGISTERS_REPORTED <Maximum number of
inverted registers>

Number of Removed Registers
Reported in Synthesis Report

NUMBER_OF_REMOVED_REGISTERS_REPORTED <Maximum number of
inverted registers>

Optimization Technique <device family>_OPTIMIZATION_TECHNIQUE Area/Speed/ Balanced

Parallel Synthesis PARALLEL_SYNTHESIS On/Off

Table 9–9. Quartus II Synthesis Options (Part 2 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

Chapter 9: Quartus II Integrated Synthesis 9–83
Scripting Support

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Assigning a Pin
Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment -to <signal name> <location>

For example: set_location_assignment -to data_input Pin_A3

Valid locations are pin location names. Some device families also support edge and
I/O bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, where n is the
number of I/O banks in a particular device.

Creating Design Partitions for Incremental Compilation
To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

Perform WYSIWYG Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP On/Off

PowerPlay Power Optimization OPTIMIZE_POWER_DURING_SYNTHESIS Normal compilation/
Extra effort/Off

Power-Up Don’t Care (2) ALLOW_POWER_UP_DONT_CARE On/Off

Remove Duplicate Registers REMOVE_DUPLICATE_REGISTERS On/Off

Remove Redundant Logic Cells
(2)

REMOVE_REDUNDANT_LOGIC_CELLS On/Off

Restructure Multiplexers MUX_RESTRUCTURE On/Off/Auto

Resource Aware Inference for
Block RAM

SYNTH_RESOURCE_AWARE_INFERENCE_FOR_
BLOCK_RAM

On/Off

Safe State Machine SAFE_STATE_MACHINE On/Off

SDC Constraint Protection SYNTH_PROTECT_SDC_CONSTRAINT On/Off

Show Parameter Settings Tables
in Synthesis Report

SHOW_PARAMETER_SETTINGS_TABLES_IN_
SYNTHESIS_REPORT

On/Off

State Machine Processing STATE_MACHINE_PROCESSING Auto/One-Hot/
Gray/Johnson/ Minimal

Bits/ Sequential/
User-Encoded

Strict RAM Replacement STRICT_RAM_RECOGNITION On/Off

Synthesis Effort (2) SYNTHESIS_EFFORT Auto/Fast

Timing Driven Synthesis SYNTH_TIMING_DRIVEN_SYNTHESIS On/Off

Use LogicLock Constraints during
Resource Balancing

USE_LOGICLOCK_CONSTRAINTS_IN_BALANCING On/Off

Notes to Table 9–9:

(1) These settings are supported as Global and Instance settings, unless specified.
(2) This setting is only a Global setting.

Table 9–9. Quartus II Synthesis Options (Part 3 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

9–84 Chapter 9: Quartus II Integrated Synthesis
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

The <file name> is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Quartus II GUI, netlist files,
netlist files are named automatically by the Quartus II software based on the instance
name. If you are using Tcl to create your partitions, you must assign a custom file
name that is unique across all partitions. For the top-level partition, the specified file
name is ignored, and you can use any dummy value. To ensure the names are safe and
platform independent, file names must be unique regardless of case. For example, if a
partition uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file name on the
corresponding instance name for the partition.

The <destination> should be the entity’s short hierarchy path. A short hierarchy path is
the full hierarchy path without the top-level name, for example:
"ram:ram_unit|altsyncram:altsyncram_component" (with quotation
marks). For the top-level partition, you can use the pipe (|) symbol to represent the
top-level entity.

For more information about hierarchical naming conventions, refer to “Node-Naming
Conventions in Quartus II Integrated Synthesis” on page 9–73.

The <partition name> is the user-designated partition name, which must be unique
and less than 1024 characters long. The name can consist only of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Conclusion
The Quartus II software includes Verilog HDL, SystemVerilog, and VHDL language
support, as well as support for Altera-specific languages, making it an easy-to-use,
stand-alone solution for Altera designs. You can use the synthesis options in the
software or in your HDL code to better control the way your design is synthesized,
helping you improve your synthesis results. Use Quartus II reports and messages to
analyze your compilation results.

Referenced Documents
This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Designing With Low-Level Primitives User Guide

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Introduction to the Quartus II Software

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 9: Quartus II Integrated Synthesis 9–85
Document Revision History

© December 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 9–10 shows the revision history for this chapter.

Table 9–10. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

December 2009
v9.1.1

■ Added information clarifying inheritance of Synthesis settings
by lower-level entities, including Altera and third-party IP

■ Updated “Keep Combinational Node/Implement as Output of
Logic Cell” on page 9–45

Added information to clarify
inherited option behavior.

November 2009
v9.1.0

■ Updated the following sections:

“Initial Constructs and Memory System Tasks” on page 9–6

“VHDL Support” on page 9–8

“Parallel Synthesis” on page 9–20

“Synthesis Directives” on page 9–26

“Timing-Driven Synthesis” on page 9–29

“Safe State Machines” on page 9–39

“RAM Style and ROM Style—for Inferred Memory” on
page 9–52

“Translate Off and On / Synthesis Off and On” on page 9–61

“Read Comments as HDL” on page 9–62

“Adding an HDL File to a Project and Setting the HDL
Version” on page 9–80

■ Removed “Remove Redundant Logic Cells” section

■ Added “Resource Aware RAM, ROM, and Shift-Register
Inference” section

■ Updated Table 9–9 on page 9–81

Updated for Quartus II software
version 9.1 release.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

9–86 Chapter 9: Quartus II Integrated Synthesis
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © December 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

March 2009 v9.0.0 ■ Updated Table 9–9.

■ Updated the following sections:

“Partitions for Preserving Hierarchical Boundaries” on
page 9–20

“Analysis & Synthesis Settings Page of the Settings Dialog
Box” on page 9–24

“Timing-Driven Synthesis” on page 9–30

“Turning Off Add Pass-Through Logic to Inferred RAMs/
no_rw_check Attribute Setting” on page 9–54

■ Added “Parallel Synthesis” on page 9–21

■ Chapter 9 was previously Chapter 8 in software version 8.1

Updated for Quartus II software
version 9.0 release.

November 2008
v8.1.0

■ Changed page size to 8.5” × 11”

■ Restructured chapter by rearranging sections

■ Updated Figure 8–1

■ Updated Table 8–9

■ Added Example 8–23 and Example 8–28

Updated for Quartus II software
version 8.1 release.

November 2008
v8.1.0

■ Updated the following sections:

“Setting Default Parameter Values and BDF Instance
Parameter Values”

“Incremental Compilation”

“Quartus II Synthesis Options”

“Limiting DSP Block Usage in Partitions”

“Synthesis Effort”

“Using altera_attribute to Set Quartus II Logic Options”

“Quartus II Messages”

■ Added the following sections:

“Quartus II Exported Partition (.qxp) File as Source”

“Auto Gated Clock Conversion”

“Timing-Driven Synthesis”

“SDC Constraint Protection”

Updated for Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Adjusted the items listed in “System Verilog Support”

■ Added the section “VHDL wait Constructs and associated
Examples”

■ Added the section “Limiting DSP Block Usage in Partitions”

■ Added the section “Synthesis Effort”

■ Added hyperlinks to referenced documents throughout the
chapter

■ Minor editorial updates

Updated for Quartus II software
version 8.0 release.

Table 9–10. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

10. Synopsys Synplify Support

This chapter documents support for the Synopsys Synplify software in the Quartus® II
software, as well as key design flows, methodologies, and techniques for achieving
good results in Altera® devices.

Introduction
This chapter includes the following topics:

■ General design flow with the Synplify and Quartus II software

■ Synplify software optimization strategies, including timing-driven compilation
settings, optimization options, and Altera-specific attributes

■ Exporting designs and constraints to the Quartus II software using NativeLink
integration

■ Guidelines for Altera megafunctions and library of parameterized module (LPM)
functions, instantiating them with the MegaWizard™ Plug-In Manager, and tips for
inferring them from hardware description language (HDL) code

■ Incremental compilation and block-based design, including the MultiPoint flow in
the Synplify Pro and Synplify Premier software

The content in this chapter applies to the Synplify, Synplify Pro, and Synplify Premier
software unless otherwise specified. This chapter includes the following sections:

■ “Altera Device Family Support”

■ “Design Flow” on page 10–2

■ “Synplify Optimization Strategies” on page 10–6

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 10–14

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 10–25

■ “Incremental Compilation and Block-Based Design” on page 10–37

This chapter assumes that you have set up, licensed, and are familiar with the
Synplify software.

Altera Device Family Support
The Synplify software maps synthesis results to Altera device families. The following
list shows the Altera device families supported by the Synplify software version
C-2009.06 SP1, with the Quartus II software version 9.1:

■ Arria® series

■ Cyclone®, series

■ HardCopy® series

QII51009-9.1.0

10–2 Chapter 10: Synopsys Synplify Support
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ MAX® series

■ Stratix® series

The Synplify software also supports the FLEX 8000 and MAX 9000 legacy devices that
are supported only in the Altera MAX+PLUS® II software, as well as ACEX® 1K,
APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX 6000 legacy
devices that are supported by the Quartus II software version 9.0 and earlier.

1 To learn about new device support for a specific Synplify version, refer to the release
notes at www.synopsys.com. Support for newly released device families may require
an overlay.

Design Flow
A Quartus II software design flow using the Synplify software consists of the
following steps:

1. Create Verilog HDL or VHDL design files.

2. Set up a project in the Synplify software and add the HDL design files for
synthesis.

3. Select a target device and add timing constraints and compiler directives in the
Synplify software to optimize the design during synthesis.

4. Run synthesis in the Synplify software.

5. Create a Quartus II project and import these files generated by the Synplify
software into the Quartus II software. These files are used for placement and
routing, and for performance evaluation.

■ The technology-specific Verilog Quartus Mapping File (.vqm) netlist or EDIF
(.edf) netlist for legacy devices also supported by the MAX+PLUS II software

■ The Synopsys Constraints Format (.scf) file for TimeQuest timing constraints

■ The Tcl constraints file (.tcl)

Alternatively, you can run the Quartus II software from within the Synplify
software. For more detailed information, refer to “Running the Quartus II
Software from within the Synplify Software” on page 10–14.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

http://www.synopsys.com

Chapter 10: Synopsys Synplify Support 10–3
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 10–1 shows the recommended design flow when using the Synplify and the
Quartus II software.

The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files.
However, only the Synplify Pro and Premier software supports mixed synthesis,
allowing a combination of VHDL and Verilog HDL or SystemVerilog format source
files.

Specify timing constraints and attributes for a design in a SCOPE Design Constraints
File (.sdc) with the SCOPE window in the Synplify software using standard Synopsys
Design Constraint (SDC) format, or directly in the HDL source file. Compiler
directives can also be defined in the HDL source file. Many of these constraints are
forward-annotated for use by the Quartus II software. (See Table 10–1 for a list of the
files generated by Synplify.)

Figure 10–1. Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post-Place-and-Route
Simulation File

(.vho/.vo)

Quartus II Software

Yes

No

10–4 Chapter 10: Synopsys Synplify Support
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The HDL Analyst that is included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view netlist (.srs) and
technology-view netlist (.srm) files. You can use the Synplify HDL Analyst to analyze
and debug your design visually. The HDL Analyst supports cross probing between
the RTL and Technology views, the HDL source code, and the Finite State Machine
(FSM) viewer. The HDL Analyst also supports cross-probing between the technology
view and the timing report file in the Quartus II software.

1 A separate license file is required to enable the HDL Analyst in the Synplify software.
The Synplify Pro and Premier software include the HDL Analyst.

After synthesis is completed, import the .vqm or .edf netlist to the Quartus II software
for place-and-route. Use the .tcl file generated by the Synplify software to
forward-annotate your constraints (including device selection) and optionally to set
up your project in the Quartus II software.

If you select a Stratix III, Cyclone III, Arria GX, or newer device, the Quartus II
software uses the SDC-format timing constraints from the .scf file with the TimeQuest
Timing Analyzer by default. If you select a Stratix II or Stratix II GX device, you have
the option to switch from the Classic Timing Analyzer to the TimeQuest Timing
Analyzer by turning on the Use TimeQuest Timing Analyzer option in the Device
tab in the Implementation Options dialog box in the Synplify software. For older
devices, the Quartus II software uses the Tcl-format timing constraints from the
Quartus Setting File (.qsf) with the Classic Timing Analyzer. Refer to “Passing
TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File” on
page 10–16 for information about manually changing from the TimeQuest Timing
Analyzer to the Classic Timing Analyzer in the Quartus II software.

If the area and timing requirements are satisfied, use the files generated by the
Quartus II software to program or configure the Altera device. As shown in
Figure 10–1, if your area or timing requirements are not met, you can change the
constraints in the Synplify software or the Quartus II software and repeat the
synthesis. Altera recommends that you provide the timing constraints in the Synplify
software and the placement constraints in the Quartus II software. Repeat the process
until the area and timing requirements are met.

While you can perform simulation at various points in the process, you can also
perform final timing analysis after placement and routing is complete. You can also
perform formal verification at various stages of the design process.

f For more information about how the Synplify software supports formal verification,
refer to Section III. Formal Verification in volume 3 of the Quartus II Handbook.

You can also use other options and techniques in the Quartus II software to meet area
and timing requirements. One such option is called WYSIWYG Primitive Resynthesis,
which can perform optimizations on your .vqm netlist within the Quartus II software.

f For information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

1 In some cases, you might be required to modify the source code if the area and timing
requirements cannot be met using options in the Synplify and Quartus II software.

http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf

Chapter 10: Synopsys Synplify Support 10–5
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

After synthesis, the Synplify software produces several intermediate and output files.
Table 10–1 lists these file types.

Output Netlist File Name and Result Format
To specify the output netlist directory location and name for the Synplify software,
perform the following steps:

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

3. In the Results Directory box, type your output netlist file directory location.

4. In the Result File Name box, type your output netlist file name.

By default, the directory and file name are set to the project implementation directory
and the top-level design module or entity name.

The Result Format and Quartus Version options are also available on the
Implementation Results tab. The Result Format list specifies an .edf or .vqm netlist,
depending on your device family. The software creates an .edf output netlist file only
for devices supported by the MAX+PLUS II software. For current Altera devices, the
software generates a .vqm-formatted netlist.

Table 10–1. Synplify Intermediate and Output Files

File Extensions File Description

.srs Technology-independent RTL netlist that can be read only by the Synplify software.

.srm Technology view netlist.

.srr (1) Synthesis Report file.

.vqm/.edf Technology-specific netlist in .vqm or .edf file format.

An .edf file is created for devices supported by the MAX+PLUS II software. A .vqm file is created for all
other Altera device families.

.tcl Forward-annotated constraints file containing constraints and assignments.

A .tcl file for the Quartus II software is created for all devices. The .tcl file contains the appropriate Tcl
commands to create and set up a Quartus II project and pass placement constraints.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.scf Synopsys Constraint Format file containing timing constraints for the TimeQuest Timing Analyzer.

Note to Table 10–1:

(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use the fMAX reported by the Quartus II
software after place-and-route—it is the only reliable source of timing information. This report file includes post-synthesis device resource
utilization statistics that might inaccurately predict resource usage after place-and-route. The Synplify software does not account for black box
functions nor for logic usage reduction achieved through register packing performed by the Quartus II software. Register packing combines a
single register and look-up table (LUT) into a single logic cell, reducing logic cell utilization below the Synplify software estimate. Use the device
utilization reported by the Quartus II software after place-and-route.

10–6 Chapter 10: Synopsys Synplify Support
Synplify Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Select the version of the Quartus II software that you are using in the Quartus Version
list. This option ensures that the netlist is compatible with the software version and
supports the newest features. Altera recommends using the latest version of the
Quartus II software whenever possible. If your Quartus II software is newer than the
versions available in the Quartus Version list, check if there is a newer version of the
Synplify software available that supports the current Quartus II software version.
Otherwise, choose the latest version in the list for the best compatibility.

1 The Quartus Version list is available only after selecting an Altera device.

To set the Quartus II software version used in the Synplify software, perform the
following steps:

1. In the Synplify software, on the Project menu, click Implementation Options.

2. Click the Implementation Results tab, then click Quartus Version.

3. Choose the correct version number in the list.

Alternatively, use the following command from the command line:

set_option -quartus_version <version number> r

Synplify Optimization Strategies
As designs become more complex and require increased performance, using different
optimization strategies has become important. Combining Synplify software
constraints with VHDL and Verilog HDL coding techniques and Quartus II software
options can help you obtain the required results.

f For additional design and optimization techniques, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 and the Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

The Synplify software offers many constraints and optimization techniques to
improve your design’s performance. The Synplify Pro and Premier software add
additional techniques that are not supported by the basic Synplify software. This
section provides an overview of some of the techniques you can use to help improve
the quality of your results.

f For more information about applying the attributes discussed in this section, refer to
the Altera Constraints, Attributes, and Options chapter of the Synopsys FPGA Synthesis
Reference Manual.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 10: Synopsys Synplify Support 10–7
Synplify Optimization Strategies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using Synplify Premier to Optimize Your Design
Synplify Premier offers additional physical synthesis optimizations than the other
Synplify products. After regular logic synthesis, Synplify Premier places and routes
the design and attempts to restructure the netlist based on the physical location of the
logic in the Altera device. Synplify Premier forward-annotates the design netlist to the
Quartus II software to perform the final placement and routing. In the default flow,
Synplify Premier also forward-annotates placement information for the critical
path(s) in the design, which can improve the compilation time in the Quartus II
software.

The physical location annotation file is called <design name>_plc.tcl. If you call the
Quartus II software from the Synplify Premier user interface, the Quartus II software
automatically uses this file for the placement information.

The Physical Analyst allows you to examine the placed netlist from Synplify Premier,
similar to the HDL Analyst for a logical netlist. You can use this display to analyze
and diagnose possible problems.

Implementations in Synplify Pro or Premier
To create different synthesis results without overwriting the other results, in the
Synplify Pro or Premier software, on the Project menu, click New Implementation.
For each implementation, specify the target device, synthesis options, and constraint
files. Each implementation generates its own subdirectory that contains all the
resulting files, including .vqm/.edf, .scf, and .tcl files, from a compilation of the
particular implementation. You can then compare the results of the different
implementations to find the optimal set of synthesis options and constraints for a
design.

Timing-Driven Synthesis Settings
The Synplify software supports timing-driven synthesis with user-assigned timing
constraints to optimize the performance of the design. The Synplify software
optimizes the design to attempt to meet these constraints.

The Quartus II NativeLink feature allows timing constraints that are applied in the
Synplify software to be forward-annotated for the Quartus II software using either a
.tcl script file or a .scf file for timing-driven place and route. Refer to “Passing
TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File” on
page 10–16 or “Passing Constraints to the Quartus II Software using Tcl Commands”
on page 10–17 for more details about how constraints such as clock frequencies, false
paths, and multicycle paths are forward-annotated. This section explains some of the
important timing constraints in the Synplify software.

1 The Synplify Synthesis Report File (.srr) contains timing reports of estimated
place-and-route delays. The Quartus II software can perform further optimizations on
a post-synthesis netlist from third-party synthesis tools. In addition, designs might
contain black boxes or intellectual property (IP) functions that have not been
optimized by the third-party synthesis software. Actual timing results are obtained
only after the design has gone through full placement and routing in the Quartus II
software. For these reasons, the Quartus II post place-and-route timing reports
provide a more accurate representation of the design. Use the statistics in these
reports to evaluate design performance.

10–8 Chapter 10: Synopsys Synplify Support
Synplify Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Clock Frequencies
For single-clock designs, specify a global frequency when using the push-button flow.
While this flow is simple and provides good results, often it does not meet the
performance requirements for more advanced designs. You can use timing
constraints, compiler directives, and other attributes to help optimize the performance
of a design. You can enter these attributes and directives directly in the HDL code.
Alternatively, you can enter attributes (not directives) into an .sdc file with the SCOPE
window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the entire design
and individual clock settings. Use the Clocks tab in the SCOPE window to specify
frequency (or period), rise times, fall times, duty cycle, and other settings. Assigning
individual clock settings, rather than over-constraining the global frequency, helps the
Quartus II software and the Synplify software achieve the fastest clock frequency for
the overall design. The define_clock attribute assigns clock constraints.

Multiple Clock Domains
The Synplify software can perform timing analysis on unrelated clock domains. Each
clock group is a different clock domain and is treated as unrelated to the clocks in all
other clock groups. All the clocks in a single clock group are assumed to be related
and the Synplify software automatically calculates the relationship between the
clocks. You can assign clocks to a new clock group or put related clocks in the same
clock group by using the Clocks tab in the SCOPE window or with the
define_clock attribute.

Input and Output Delays
Specify the input and output delays for the ports of a design in the Input/Output tab
of the SCOPE window or with the define_input_delay and
define_output_delay attributes. The Synplify software does not allow you to
assign the tCO and tSU values directly to inputs and outputs. However, a tCO value can
be inferred by setting an external output delay; a tSU value can be inferred by setting
an external input delay.

Equation 10–1 illustrates the relationship between tCO and the output delay:

Equation 10–2 illustrates the relationship between tSU and the input delay:

When the syn_forward_io_constraints attribute is set to 1, the Synplify
software passes the external input and output delays to the Quartus II software using
NativeLink integration. The Quartus II software then uses the external delays to
calculate the maximum system frequency.

Equation 10–1.

Equation 10–2.

tCO clock period external output delay–=

tSU clock period external input delay–=

Chapter 10: Synopsys Synplify Support 10–9
Synplify Optimization Strategies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Multicycle Paths
Specify any multicycle paths in the design in the Multi-Cycle Paths tab of the SCOPE
window or with the define_multicycle_path attribute. A multicycle path is a
path that requires more than one clock cycle to propagate. You must specify which
paths are multicycle to avoid having the Quartus II and the Synplify compilers work
excessively on a non-critical path. Not specifying these paths can also result in an
inaccurate critical path being reported during timing analysis.

False Paths
False paths are paths that should not be considered during timing analysis or which
should be assigned low (or no) priority during optimization. Some examples of false
paths are slow asynchronous resets and test logic added to the design. Set these paths
in the False Paths tab of the SCOPE window. Use the define_false_path
attribute.

FSM Compiler
If the FSM Compiler is turned on, the compiler automatically detects state machines
in a design. The compiler can then extract and optimize the state machine. The FSM
Compiler analyzes the state machine and decides to implement sequential, gray, or
one-hot encoding based on the number of states. It also performs unused-state
analysis, optimization of unreachable states, and minimization of transition logic.

If the FSM Compiler is turned off, the compiler does not optimize logic as state
machines. The state machines are implemented as coded in the HDL code. Thus, if the
coding style for the state machine was sequential, the implementation is also
sequential. If the FSM Compiler is turned on, the compiler infers and optimizes the
state machines. The implementation is based on the number of states regardless of the
coding style in the HDL code.

Use the syn_state_machine complier directive to specify or prevent a state
machine from being extracted and optimized. To override the default encoding of the
FSM Compiler, use the syn_encoding directive.

The values for the syn_encoding directive are shown in Table 10–2.

Example 10–1 shows sample VHDL code for applying the syn_encoding directive.

Table 10–2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called binary, state machines
are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be free of glitches.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines typically provide
the best performance and shortest clock-to-output delays. However, one-hot implementations are usually
larger than sequential implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is reached. You
can use the safe value in conjunction with the other three values, which results in the state machine being
implemented with the requested encoding scheme and the generation of the reset logic.

10–10 Chapter 10: Synopsys Synplify Support
Synplify Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The default is to optimize state machine logic for speed and area, but this is
potentially undesirable for critical systems. The safe value generates extra control
logic to force the state machine to the reset state if an invalid state is reached.

FSM Explorer in Synplify Pro and Premier
The Synplify Pro and Premier software can use FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement the best
encoding based on the overall design constraints. FSM Explorer uses the FSM
Compiler to identify and extract state machines from a design. However, unlike the
FSM Compiler that chooses the encoding style based on the number of states, the FSM
Explorer tries several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to perform the analysis of the state
machine, but finds an optimal encoding scheme for the state machine.

Optimization Attributes and Options
The following sections describe other attributes and options that you can modify in
the Synplify software to improve your design performance.

Retiming in Synplify Pro and Premier
The Synplify Pro and Premier software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register balancing)
across combinational elements. Be aware that retimed registers incur name changes.
To retime your design, turn on the Retiming option in the Device tab in the
Implementation Options section, or use the syn_allow_retiming attribute.

Maximum Fan-Out
When your design has critical path nets with high fan-out, use the syn_maxfan
attribute to control the fan-out of the net. Setting this attribute for a specific net results
in the replication of the driver of the net to reduce overall fan-out. The syn_maxfan
attribute takes an integer value and applies it to inputs or registers. (The syn_maxfan
attribute cannot be used to duplicate control signals. The minimum allowed value of
the attribute is 4.) Using this attribute might result in increased logic resource
utilization, thus putting a strain on routing resources and leading to long compile
times and difficult fitting.

If you must duplicate an output register or output enable register, you can create a
register for each output pin by using the syn_useioff attribute (refer to “Register
Packing”).

Example 10–1. Sample VHDL Code for syn_encoding

SIGNAL current_state : STD_LOGIC_VECTOR(7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

Chapter 10: Synopsys Synplify Support 10–11
Synplify Optimization Strategies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Preserving Nets
During synthesis, the compiler maintains ports, registers, and instantiated
components. However, some nets cannot be maintained to create an optimized circuit.
Applying the syn_keep directive overrides the optimization of the compiler and
preserves the net during synthesis. The syn_keep directive takes a Boolean value
and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value to
true preserves the net through synthesis.

Register Packing
Altera devices allow for the packing of registers into I/O cells. Altera recommends
allowing the Quartus II software to make the I/O register assignments. However, you
can control register packing with the syn_useioff attribute. The syn_useioff
attribute takes a Boolean value and can be applied to ports or entire modules. Setting
the value to 1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Quartus II software.

Resource Sharing
The Synplify software uses resource sharing techniques during synthesis by default to
reduce area. Turning off the Resource Sharing option on the Options tab of the
Implementation Options dialog box improves performance results for some designs.
You can also turn off the option for a specific module with the syn_sharing
attribute. If you turn off this option, be sure to check the results to determine if it helps
the timing performance. If it does not help, leave Resource Sharing turned on.

Preserving Hierarchy
The Synplify software performs cross-boundary optimization by default. This results
in the flattening of the design to allow optimization. Use the syn_hier attribute to
over-ride the default compiler settings. The syn_hier attribute takes a string value
and applies it to modules, architectures, or both. Setting the value to hard maintains
the boundaries of a module, architecture, or both, but allows constant propagation.
Setting the value to locked prevents all cross-boundary optimizations. Use the locked
setting with the partition setting to create separate design blocks and multiple output
netlists for incremental compilation, as described in “Using MultiPoint Synthesis with
Incremental Compilation” on page 10–39.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file,
set the syn_netlist_hierarchy attribute to 0.

Register Input and Output Delays
The advanced options called define_reg_input_delay and
define_reg_output_delay can speed up paths feeding a register or coming from
a register by a specific number of nanoseconds. The Synplify software attempts to
meet the global clock frequency goals for a design as well as the individual clock
frequency goals (set with define_clock). You can use these attributes to add delay
to paths feeding into or out of registers to further constrain critical paths. The setting
also works with negative numbers, so you can slow down a path that is too highly
optimized.

10–12 Chapter 10: Synopsys Synplify Support
Synplify Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

These options are useful to close timing when your design does not meet timing goals
because the routing delay after placement and routing exceeds the delay predicted by
the Synplify software. Rerun synthesis using these options, specifying the actual
routing delay (from place-and-route results) so that the tool can meet the required
clock frequency. Synopsys recommends that for best results, do not make these
assignments too aggressively. For example, increase the routing delay value but don't
use the full routing delay from the last compilation.

In the SCOPE constraint window, use the registers panel with the following entries:

■ Register—Specifies the name of the register. If you have initialized a compiled
design, choose the name from the list.

■ Type—Specifies whether the delay is an input or output delay.

■ Route—Shrinks the effective period for the constrained registers by the specified
value without affecting the clock period that is forward-annotated to the
Quartus II software.

Use the following Tcl command syntax to specify an input or output register delay in
nanoseconds.

syn_direct_enable
This attribute controls the assignment of a clock-enable net to the dedicated enable
pin of a register. Using this attribute, you can direct the Synplify mapper to use a
particular net as the only clock enable when the design has multiple clock enable
candidates.

You can also use this attribute as a compiler directive to infer registers with clock
enables. To do so, enter the syn_direct_enable directive in your source code, not
the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net
assignment to the clock-enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

I/O Standard
For certain Altera devices, specify the I/O standard type to use for an I/O pad in the
design using the I/O Standard panel in the Synplify SCOPE window.

Example 10–3 shows the Synplify SDC syntax for the define_io_standard
constraint, in which the delay_type must be either input_delay or
output_delay.

f For details about supported I/O standards, refer to Altera I/O Standards in the
Synopsys FPGA Synthesis Reference Manual.

Example 10–2. Specifying an Input or Output Register Delay Using Tcl Command Syntax

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

Example 10–3. Synplify SDC Syntax for the define_io_standard Constraint

define_io_standard [-disable|-enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]

Chapter 10: Synopsys Synplify Support 10–13
Synplify Optimization Strategies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Altera-Specific Attributes
The following attributes are for use with specific Altera device features. These
attributes are forward-annotated to the Quartus II project and are used during the
place-and-route process.

altera_chip_pin_lc
Use this attribute to make pin assignments. This attribute takes a string value and
applies it to inputs and outputs. Use the attribute only on the ports of the top-level
entity in the design. Do not use this attribute to assign pin locations from entities at
lower levels of the design hierarchy.

1 This attribute is not supported for any of the MAX series devices.

In the SCOPE window, select the attribute altera_chip_pin_lc and set the value to a
pin number or a list of pin numbers.

Example 10–4 shows VHDL code for making location assignments for supported
Altera devices. Pin location assignments for these devices are written to the output Tcl
script.

1 The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and
data_out[0] is assigned to pin 15.

altera_implement_in_esb or altera_implement_in_eab
Use these attributes to implement logic in either embedded system blocks (ESBs) or
embedded array blocks (EABs) rather than in logic resources to improve area
utilization. The modules selected for such implementation cannot have feedback
paths, and either all or none of the I/Os must be registered. This attribute takes a
boolean value and can be applied to instances. (This option is applicable for devices
with ESBs/EABs only. For example, the Stratix series is not supported by this option.
This attribute is ignored for designs targeting devices that do not have ESBs or EABs.)

altera_io_powerup
Use this attribute to define the power-up value of an I/O register that has no set or
reset. This attribute takes a string value (high|low) and applies it to ports that have
I/O registers. By default, the power-up value of the I/O is set to low.

altera_io_opendrain
Use this attribute to specify open-drain mode I/O ports. This attribute takes a boolean
value and applies it to outputs or bidirectional ports for devices that support
open-drain mode.

Example 10–4. Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

10–14 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, and allows you to run
other EDA design entry or synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software. After a design is synthesized in the
Synplify software, a .vqm or .edf netlist file, an .scf file for TimeQuest Timing
Analyzer timing constraints, and .tcl files are used to import the design into the
Quartus II software for place-and-route. You can run the Quartus II software from
within the Synplify software or as a stand-alone application. After you have imported
the design into the Quartus II software, you can specify different options to further
optimize the design.

1 When you are using NativeLink integration, the path to your project must not contain
white space. The Synplify software uses Tcl scripts to communicate with the
Quartus II software, and the Tcl language does not accept arguments with white space
in the path.

Use NativeLink integration to integrate the Synplify software and Quartus II software
with a single GUI for both synthesis and place-and-route operations. NativeLink
integration allows you to run the Quartus II software from within the Synplify
software GUI or to run the Synplify software from within the Quartus II software
GUI.

This section explains the different NativeLink flows and provides details about how
constraints are passed to the Quartus II software. This section describes the following
topics:

■ “Running the Quartus II Software from within the Synplify Software” on
page 10–14

■ “Using the Quartus II Software to Run the Synplify Software” on page 10–15

■ “Running the Quartus II Software Manually Using the Synplify-Generated Tcl
Script” on page 10–16

■ “Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf
File” on page 10–16

■ “Passing Constraints to the Quartus II Software using Tcl Commands” on
page 10–17

Running the Quartus II Software from within the Synplify Software
To use the Quartus II software from within the Synplify software, you must first
verify that the QUARTUS_ROOTDIR environment variable contains the Quartus II
software installation directory located at <Altera Design Suite Installation
Directory>\quartus. This environment variable is required to use the Synplify and
Quartus II software together.

Chapter 10: Synopsys Synplify Support 10–15
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In the Windows operating system, the QUARTUS_ROOTDIR variable is set when you
open the Quartus II user interface, so it is automatically set to the most recent version
you opened in the user interface. If your software installation is located on another
machine, ensure that you set this variable correctly. You can change the variable
manually using the Control Panel, System icon.

On UNIX and Linux operating systems, the variable is not set automatically, so you
must create an environment variable QUARTUS_ROOTDIR that points to the <Altera
Design Suite Installation Directory>/quartus location.

Under each implementation in the Synplify Pro software, create a place-and-route
implementation called pr_<number> Altera Place and Route. You can create
new place and route implementations using the New P&R button in the GUI. To run
the Quartus II software in command-line mode after each synthesis run, use the text
box to turn on the place-and-route implementation. The results of the place and route
are written to a log file in the pr_<number> directory under the current
implementation directory.

You can also use the commands in the Quartus II menu to run the Quartus II software
at any time following a successful completion of synthesis. In the Synplify software,
on the Options menu, click Quartus II and then choose one of the following
commands:

■ Launch Quartus—Opens the Quartus II software GUI and creates a Quartus II
project with the synthesized output file, forward-annotated timing constraints,
and pin assignments. Use this command to configure options for the project and
execute any Quartus II commands.

■ Run Background Compile—Runs the Quartus II software in command-line mode
with the project settings from the synthesis run. The results of the place-and-route
are written to a log file.

The <project_name>_cons.tcl file is used to set up the Quartus II project and calls the
<project_name>.tcl file to pass constraints from the Synplify software to the Quartus II
software. By default, the <project_name>.tcl file contains device, timing, and location
assignments. If the project is set up to use the TimeQuest Timing Analyzer, the
<project_name>.tcl file contains the command to use the Synplify-generated .scf
constraints file with TimeQuest instead of using the Tcl constraints with the Classic
Timing Analyzer.

Using the Quartus II Software to Run the Synplify Software
You can set up the Quartus II software to run the Synplify software for synthesis using
NativeLink integration. This feature allows you to use the Synplify software to
quickly synthesize a design as part of a normal compilation in the Quartus II
software. When you use this feature, the Synplify software does not use any timing
constraints or assignments such as incremental compilation partitions that you have
set in the Quartus II software.

1 For best results, Synopsys recommends that you set constraints in the Synplify
software and use the Tcl script to pass these constraints to the Quartus II software,
instead of calling Synplify from within the Quartus II software.

10–16 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To set up Synplify in the Quartus II software, on the Tools menu, click Options. In the
Options dialog box, click EDA Tool Options and specify the path of Synplify or
Synplify Pro software.

f For detailed information about using NativeLink integration with the Synplify
software, refer to the Quartus II Help.

Beginning with the Quartus II software version 7.1, running the Synplify software
with NativeLink integration is supported on both floating network and node-locked
single-PC licenses. Both types of licenses support batch mode compilation.

Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script
You can also use the Quartus II software separately from the Synplify software. To run
the Tcl script generated by the Synplify software to set up your project and set up
assignments such as the device selection, perform the following steps:

1. Ensure the .vqm/.edf, .scf (if you are using the TimeQuest Timing Analyzer
timing constraints), and .tcl files are located in the same directory (they are located
in the implementation directory by default).

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console. The Quartus II Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl r

Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File
The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry
standard constraints format, Synopsys Design Constraints (SDC). This section
explains how timing constraints set in the Synplify software are passed to the
Quartus II software for use with the TimeQuest Timing Analyzer.

The Synplify-generated .tcl file contains constraints for the Quartus II software, such
as the device specification and any location constraints. The timing constraints are
forward-annotated using the .tcl file for the Quartus II Classic Timing Analyzer, as
described in “Passing Constraints to the Quartus II Software using Tcl Commands” on
page 10–17. For the TimeQuest Timing Analyzer, the timing constraints are forward-
annotated in the Synopsys Constraints Format (.scf) file.

Altera recommends that you use the TimeQuest Timing Analyzer, as specified in the
Synplify .tcl file that sets up the Quartus II project for the newest devices. However,
you can use the Tcl commands for the Classic Timing Analyzer if required. You can
manually change from the TimeQuest Timing Analyzer to the Classic Timing
Analyzer in the Quartus II software by performing the following steps:

1. From the Assignments menu, click Settings.

2. In the Category list, select Timing Analysis Settings.

3. Under Timing analysis processing, select Use Classic Timing Analyzer during
compilation.

4. Click OK.

Chapter 10: Synopsys Synplify Support 10–17
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 For additional information about the TimeQuest Timing Analyzer, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Synopsys recommends that you modify constraints using the SCOPE constraint editor
window and not through the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Quartus II
SDC commands and are forward-annotated to the Quartus II software in the .scf file:

■ define_clock

■ define_input_delay

■ define_output_delay

■ define_multicycle_path

■ define_false_path

All Synplify constraints described in the following sections use the same Synplify
commands as described in “Passing Constraints to the Quartus II Software using Tcl
Commands” on page 10–17; however, the constraints are mapped to SDC commands
for the TimeQuest Timing Analyzer.

f For syntax and arguments for these commands, refer to the applicable subsection or
refer to Synplify Help. For a list of corresponding commands in the Quartus II
software, refer to the Quartus II Help.

Individual Clocks and Frequencies
Specify clock frequencies for individual clocks in the Synplify software with the
command define_clock. This command is passed to the Quartus II software with
create_clock.

Input and Output Delay
Specify input delay and output delay constraints in the Synplify software with the
commands define_input_delay and define_output_delay, respectively.
These commands are passed to the Quartus II software with set_input_delay and
set_output_delay.

Multicycle Path
Specify a multicycle path constraint in the Synplify software with the command
define_multicycle_path. This command is passed to the Quartus II software
with set_multicycle_path.

False Path
Specify a false path constraint in the Synplify software with the command
define_false_path. This command is passed to the Quartus II software with
set_false_path.

Passing Constraints to the Quartus II Software using Tcl Commands
This section describes how Synplify constraints are converted to the equivalent
Quartus II assignments and are forward-annotated to the Quartus II software with Tcl
commands.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–18 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

This section also describes timing constraints for the Quartus II Classic Timing
Analyzer. If you are using the TimeQuest Timing Analyzer, the Quartus II timing
constraints described in this section do not apply. Refer to “Passing TimeQuest SDC
Timing Constraints to the Quartus II Software in the .scf File” on page 10–16 for
information about timing constraints supported by TimeQuest.

Global Signals
The Synplify software automatically promotes clock signals to global routing lines
and passes Global Signal assignments to the Quartus II software. The assignments
ensure that the same global routing constraints are applied during placement and
routing.

1 The signals promoted to global routing can be different than the ones that the
Quartus II software promotes to global routing by default. The Synplify software
promotes only clock signals and not other control signals such as reset or enable. By
default, without constraints from the Synplify software, the Quartus II software
promotes control signals to global routing if they have high fan-out.

Default or Global Clock Frequency
Use the following Synplify command to set the Synplify default or global clock
frequency that applies to the entire project:

set_option -frequency <frequency>

The <frequency> is specified in MHz. If a global frequency is not specified, the
software uses the default global clock frequency of 1 MHz.

The set_option constraint is passed to the Quartus II software with the following
command:

set_global_assignment -name FMAX_REQUIREMENT <frequency> MHz

If a frequency is not specified in the Quartus II software, the software uses the default
global clock frequency of 1 GHz.

Individual Clocks and Frequencies
Specify clock frequencies for individual clocks with the following Synplify commands
as shown in Example 10–5.

Table 10–3 shows the command arguments.

Example 10–5. Specifying Clock Frequencies for Individual Clocks

define_clock -name {<clock_name>} -freq <frequency> -clockgroup <clock_group> -rise <rise_time>\
-fall <fall_time>
define_clock -name {<clock_name>} -period <period> -clockgroup <clock_group> -rise <rise_time>\
-fall <fall_time>

Table 10–3. Command Arguments (Part 1 of 2)

Argument Description

-name The <clock_name> specifies a design port name or register output signal name and, after synthesis,
corresponds to a <mapped_clock_name>.

-freq (1) The <frequency> is specified in MHz.

Chapter 10: Synopsys Synplify Support 10–19
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

The equivalent Quartus II Classic Timing Analyzer commands depend on how the
clock groups are defined. In the Quartus II software, clocks that belong to the same or
related clock settings are considered related clocks. Clocks assigned to unrelated clock
settings are unrelated clocks. There is a one-to-one correspondence between each
Quartus II clock setting and a Synplify clock group.

1 The following sections describe only the frequency constraints. Use the corresponding
constraints for the period.

Virtual Clocks
The Quartus II software supports virtual clocks. If you use the virtual clock setting in
the Synplify software, the setting is mapped to a constraint in the Quartus II software.

Route Delay Option
The -route option in the Synplify software clock constraints is designed for use in
synthesis only if you do not meet timing goals because the routing delay after
placement and routing exceeds the delay predicted by the Synplify software. This
constraint does not have to be forward-annotated to the Quartus II software.

Multiple Clocks in Different Clock Groups
You can specify clock frequencies for multiple clocks with the Synplify commands
shown in Example 10–6.

<clock_group1> and <clock_group2> are unique names defined in the Synplify software
for base clock settings in the Quartus II Classic Timing Analyzer.

-period (2) The <period> is specified in ns.

-clockgroup If the <clock_group> is not specified, it defaults to default_clkgroup. The Synplify software
assumes all clocks belonging to the same clock group are related. If you do not specify a clock group,
the clock belongs to the default clock group. Therefore, if you do not specify any clock groups, all the
clocks are considered related by default in the software.

-rise
-fall

The <rise_time> and <fall_time> specify a non-default duty cycle. By default, the Synplify synthesis
tool assumes that the clock is a 50% duty cycle clock, with the rising edge at 0 and the falling edge at
period/2. If you have another duty clock cycle, you can specify the appropriate Rise At and Fall At
values.

Notes to Table 10–3:

(1) When the <frequency> is specified, the Synplify software uses <fall_time> and <frequency> to calculate the duty_cycle with the following
formula: duty_cycle = (<fall_time> – <rise_time>) × <frequency> / 100.

(2) When the <period> is specified, the Synplify software uses <fall_time> and <period> to calculate the duty_cycle with the following formula:
duty_cycle = 100 × (<fall_time> – <rise_time>) / <period>.

Table 10–3. Command Arguments (Part 2 of 2)

Argument Description

Example 10–6. Specifying Clock Frequencies for Multiple Clocks

define_clock -name {<clock_name1>} -freq <frequency1> -clockgroup <clock_group1> \
-rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> -clockgroup <clock_group2> \
-rise <rise_time2> -fall <fall_time2>

10–20 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If the clock <rise_time> is zero (“0”), multiple separate clocks are passed to the
Quartus II software with the commands shown in Example 10–7.

If the clock <rise_time> is non-zero, multiple separate clocks are passed to the
Quartus II software with the following commands shown in Example 10–8.

Multiple Clocks with Different Frequencies in the Same Clock Group
In the Synplify software, you can specify multiple clocks with relative clock settings in
the same clock group with different frequencies, with the commands shown in
Example 10–9.

1 When you specify clocks with different frequencies in the same clock group, the
software calculates the <multiply_by> and the <divide_by> factors for relative clock
settings from <frequency1> and <frequency2> in the clock group settings.

If the clock <rise_time> is zero, multiple clocks with relative clock settings in the same
clock group with different frequencies are passed to the Quartus II software with the
commands shown in Example 10–10.

Example 10–7. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Zero

create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target mapped_clock_name1 <base_clock_setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty_cycle2> \
-target mapped_clock_name2 <base_clock_setting2>

Example 10–8. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Not Zero

create_base_clock -fmax <frequency1>MHz -duty_cycle <duty cycle1> -no_target <base clock setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty cycle2> -no_target <base clock setting2>

create_relative_clock -base_clock <base clock setting1> -offset <rise time1>ns \
-duty_cycle <duty cycle1> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name1> <derived clock setting1>

create_relative_clock -base_clock <base clock setting2> -offset <rise time2>ns \
-duty_cycle <duty cycle2> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name2> <derived clock_setting2>

Example 10–9. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group

define_clock -name {<clock_name1>} -freq <frequency1> -clockgroup <clock_group1> \
-rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> -clockgroup <clock_group2> \
-rise <rise_time2> -fall <fall_time2>

Example 10–10. Quartus II Assignments for Multiple Clocks with Different Frequencies in the Same Clock Group, if the Clock
Rise Time is Zero

create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target <mapped_clock_name1> <base_clock_setting1>

create_relative_clock -base_clock <base_clock_setting1> -duty_cycle <duty_cycle2> \
-multiply <multiply_by> -divide <divide_by> -target <mapped_clock_name2> <derived_clock_setting2>

Chapter 10: Synopsys Synplify Support 10–21
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inter-Clock Relationships—Delays and False Paths between Clocks
Set a clock-to-clock delay constraint in Synplify with the commands in
Example 10–11.

If <delay_value> is set to false, these constraints in Synplify indicate a false path
between the two clocks. If all four rise/fall clock-edge pairs are specified in the
Synplify software, the Synplify constraints are mapped to the following constraint in
the Quartus II software:

set_timing_cut_assignment -from <clock_name1> -to <clock_name2>

If all four clock-edge pairs are not specified in Synplify, the constraint cannot be
mapped to a constraint for the Quartus II Classic Timing Analyzer.

If <delay_value> is set to a value other than false, these constraints in Synplify are
not mapped to constraints in the Quartus II software. The Quartus II Classic Timing
Analyzer does not support clock-edge to clock-edge delay constraints.

False Paths
Specify the false path constraint in the Synplify software with the following
command:

define_false_path -from <sig_name1> -to <sig_name2>

The signals <sig_name1> and <sig_name1> can be design port names or register
instance names.

The define_false_path constraint in the Synplify software is mapped to the constraint
in the Quartus II software, as shown in the following command:

set_timing_cut_assignment -from <sig_name2> -to <sig_name2>

The Synplify software can identify pairs of signal sets such that every member of the
cross-product of these two sets is a valid false path constraint. Signal groups can be
defined in the Quartus II Classic Timing Analyzer with the following commands:

timegroup -add_member sig_name1_i <sig_group1>
(for every signal in <sig_group1>)
timegroup -add_member sig_name2_i <sig_group2>
(for every signal in <sig_group2>)
set_timing_cut_assignment -from <sig_group1> -to <sig_group2>

If the signals <sig_name1> or <sig_name2> represent multiple signals such as a
wildcard, group, or bus, the constraints can be appropriately expanded for
representation in the Quartus II software. The Quartus II software supports wildcard
signal names, and signal groups for timing assignments. The Quartus II software does
not support bus notation, such as A[7:4].

Example 10–11. Specifying Clock-to-Clock Delay Constraints

define_clock_delay -fall <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -fall <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -fall <clock_name1> -fall <clock_name2> <delay_value>

10–22 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

False Path from a Signal

Specify a false path constraint from a signal in the Synplify software with the
following command:

define_false_path -from <sig_name>

The Quartus II Classic Timing Analyzer does not support “from-only” path
specifications. You must also include a “to-path” specification. However, you can
specify a wildcard for the -to signal. This constraint in Synplify is mapped to the
following constraint in the Quartus II software:

set_timing_cut_assignment -from <sig_name> -to {*}

False Path to a Signal

Specify a false path constraint to a signal in the Synplify software with the following
command:

define_false_path -to <sig_name>

The Quartus II Classic Timing Analyzer does not support “to-only” path
specifications. You must include a “from-path” specification. However, you can
specify a wildcard for the -from signal. This constraint in the Synplify software is
mapped to the following constraint in the Quartus II software:

set_timing_cut_assignment -from {*} -to <sig_name>

False Path through a Signal

Specify a false path constraint through a signal in the Synplify software with the
following command:

define_false_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3>

The Quartus II Classic Timing Analyzer does not support false paths with a “through
path” specification. Any constraint in the Synplify software with a -through
specification is not mapped to a constraint for the Quartus II Classic Timing Analyzer.

Multicycle Paths
Specify a multicycle path constraint in the Synplify software with the following
command:

define_multicycle_path -from <sig_name1> -to <sig_name2> <clock_cycles>

This constraint in the Synplify software is mapped to the following constraint in the
Quartus II software:

set_multicycle_assignment -from <sig_name1> \
-to <sig_name2> <clock_cycles>

If the signals <sig_name1> or <sig_name2> represent multiple signals such as a
wildcard, group, or bus, the constraints can be appropriately expanded for
representation in the Quartus II software as described in “False Paths” on page 10–9.

1 <clock_cycles> is the number of clock cycles for the multicycle path.

Chapter 10: Synopsys Synplify Support 10–23
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Multicycle Path from a Signal

Specify a multicycle path constraint from a signal in the Synplify software with the
following command:

define_multicycle_path -from <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -to value in the Quartus II Classic
Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from <sig_name> -to {*} <clock_cycles>

Multicycle Path to a Signal

Specify a multicycle path constraint to a signal in the Synplify software with the
following command:

define_multicycle_path -to <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -from value in the Quartus II
Classic Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from {*} -to <sig_name> <clock_cycles>

Multicycle Path through a Signal

Specify a multicycle path constraint through a signal in the Synplify software using
the following command:

define_multicycle_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3> <clock_cycles>

The Quartus II Classic Timing Analyzer does not support multicycle paths with a
“through path” specification. Any constraint in the Synplify software with a
-through specification is not mapped to a constraint for the Quartus II Classic
Timing Analyzer.

Maximum Path Delays
Specify the maximum path delay relationships between signals in the Synplify
software with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> -max <delay_value>

This constraint in the Synplify software is mapped to the following constraint in the
Quartus II software:

set_instance_assignment -from <sig_name1> \
-to <sig_name2> -name SETUP_RELATIONSHIP <delay_value>ns

The Quartus II Classic Timing Analyzer does not support signal groups or bus
notation. It supports only register names for this constraint.

Maximum Path Delay from a Signal

Specify the maximum path delay constraint from a signal in the Synplify software
with the following command:

define_path_delay -from <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -to value in the Quartus II Classic
Timing Analyzer, similar to false path constraints:

set_instance_assignment -from <sig_name> -to {*} \
-name SETUP_RELATIONSHIP <delay_value>ns

10–24 Chapter 10: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Maximum Path Delay to a Signal

Specify the maximum path delay constraint to a signal in the Synplify software with
the following command:

define_path_delay -to <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -from value in the Quartus II
Classic Timing Analyzer, similar to the false path constraints.

set_instance_assignment -from {*}<sig_name> \
-to <sig_name> -name SETUP_RELATIONSHIP <delay_value>ns

Maximum Path Delay through a Signal

Specify the maximum path delay constraint through a signal in the Synplify software
with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> \
-through <sig_name3> -max <delay_value>

The Quartus II Classic Timing Analyzer does not support maximum path delay
constraints with a “through path” specification. Any constraint in Synplify with a
-through specification is not mapped to a constraint for the Quartus II Classic
Timing Analyzer.

Register Input and Output Delays

These register input delay and register output delay constraints in the Synplify
software are for use in synthesis only, and therefore are not forward-annotated to the
Quartus II software.

Default External Input Delay

Specify the default input delay constraint in the Synplify software with the following
command:

define_input_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II software:

set_input_delay -clock {*} <delay_value> {*}

Port-Specific External Input Delay

Specify a port-specific input delay constraint in the Synplify software with the
following command:

define_input_delay <input_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge).

When the clock edge is r (rising edge), this constraint is mapped to the following
constraint in the Quartus II software:

set_input_delay -clock <clock_name> <delay_value> <input_port_name>

When the <clock_edge> is f (falling edge), this constraint is not mapped to a constraint
in the Quartus II software. The Quartus II Classic Timing Analyzer does not support
the specification of input delays with respect to the falling edge of the clock.

Chapter 10: Synopsys Synplify Support 10–25
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Default External Output Delay

Specify the default output delay constraint in the Synplify software with the
following command:

define_output_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II software:

set_output_delay -clock {*} <delay_value> {*}

Port-Specific External Output Delay

Specify a port-specific input delay constraint in the Synplify software with the
following command:

define_output_delay <output_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge). When the clock edge
is r (rising edge), this constraint is mapped to the following constraint in the
Quartus II software:

set_output_delay -clock <clock_name> <delay_value> <output_port_name>

When the clock_edge is f (falling edge), this constraint is not mapped to a constraint
in the Quartus II software. The Quartus II Classic Timing Analyzer does not support
the specification of output delays with respect to the falling edge of the clock.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions including LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore® functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code, or you can
infer certain megafunctions from generic HDL code.

If you want to instantiate a megafunction in your HDL code, you can do so with the
MegaWizard Plug-In Manager to parameterize the function or by instantiating the
function using the port and parameter definition. The MegaWizard Plug-In Manager
provides a graphical interface within the Quartus II software for customizing and
parameterizing any available megafunction for the design. For more information
about the MegaWizard Plug-In Manager flow with the Synplify software, refer to
“Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager” on
page 10–26 and “Instantiating Intellectual Property Using the MegaWizard Plug-In
Manager and IP Toolbench” on page 10–28.

f For more information about specific Altera megafunctions, refer to the Quartus II
Help. For more information about IP functions, refer to the appropriate IP
documentation.

The Synplify software also automatically recognizes certain types of HDL code and
infers the appropriate megafunction when a megafunction provides optimal results.
The Synplify software provides options to control inference of certain types of
megafunctions, as described in “Inferring Altera Megafunctions from HDL Code” on
page 10–31.

10–26 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For a detailed discussion about instantiating versus inferring megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.
This chapter also provides details about using the MegaWizard Plug-In Manager in
the Quartus II software and explains the files generated by the wizard, as well as
providing coding style recommendations and HDL examples for inferring
megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
This section describes how to instantiate Altera megafunctions using the MegaWizard
Plug-In Manager.

When you use the MegaWizard Plug-In Manager to set up and parameterize a
megafunction, the MegaWizard Plug-In Manager creates a VHDL or Verilog HDL
wrapper file <output file>.v|vhd that instantiates the megafunction.

The Synplify software makes use of the Quartus II timing and resource estimation
netlist feature to report more accurate resource utilization and timing performance
estimates, and take better advantage of timing-driven optimization than treating the
megafunction as a “black box”. Include the MegaWizard-generated megafunction
variation wrapper file in your Synplify project so the Synplify software has all the
information about the megafunction.

1 There is an option in the MegaWizard Plug-In Manager to generate a netlist for
resource and timing estimation. This option is not recommended for the Synplify
software because the software generates this information in the background without a
separate netlist. If you do create a separate netlist <output file>_syn.v and use that file
in your synthesis project, you must also include the <output file>.v|vhd file in your
Quartus II project.

Make sure to set the correct Quartus II version in the Synplify software before
compiling the MegaWizard-generated file so the software uses the correct library
definitions for the megafunction. The Quartus Version setting must match the version
of the Quartus II software used to generate the customized megafunction in the
MegaWizard Plug-In Manager.

For details about how to set the Quartus II version in the Synplify software, refer to
“Output Netlist File Name and Result Format” on page 10–5.

In addition, ensure that the QUARTUS_ROOTDIR environment variable is set to the
installation directory location of the correct Quartus II version. The Synplify software
uses this information to launch the Quartus II software in the background. The
environment variable setting must match the version of the Quartus II software used
to generate the customized megafunction in the MegaWizard Plug-In Manager. Refer
to “Using the Quartus II Software to Run the Synplify Software” on page 10–15 for
details.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 10: Synopsys Synplify Support 10–27
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction
Instantiation
If you check the <output file>_inst.v option on the last page of the wizard, the
MegaWizard Plug-In Manager generates a Verilog HDL instantiation template file for
use in your Synplify design. The instantiation template file, <output file>_inst.v, helps
to instantiate the megafunction variation wrapper file, <output file>.v, in your
top-level design. Include the megafunction variation wrapper file <output file>.v in
your Synplify project. The Synplify software includes the megafunction information
in the output .vqm netlist file. There is no need to include the MegaWizard-generated
megafunction variation wrapper file in your Quartus II project.

Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction
Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on the last page
of the wizard, the MegaWizard Plug-In Manager generates a VHDL component
declaration file and a VHDL instantiation template file for use in your Synplify
design. These files can help you instantiate the megafunction variation wrapper file,
<output file>.vhd, in your top-level design. Include <output file>.vhd in your Synplify
project. The Synplify software includes the megafunction information in the output
.vqm netlist file. There is no need to include the MegaWizard-generated megafunction
variation wrapper file in your Quartus II project.

Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
By default, the Synplify software automatically calls the Quartus II software in the
background to generate a resource and timing estimation netlist for megafunctions, as
described in the previous sections.

You might want to change this behavior to reduce run times in the Synplify software
(because generating the netlist files can take several minutes for large designs), or if
the Synplify software cannot access your Quartus II software installation to generate
the files. Changing this behavior might speed up the compilation time in the Synplify
software, but the Quality of Results (QoR) might be reduced.

The Synplify software calls the Quartus II software to generate information in two
ways:

■ Some megafunctions provide a “clear box” model—Synplify software can fully
synthesize this model and include the device architecture-specific primitives in the
output .vqm netlist file.

■ Other megafunctions provide a “grey box” model—Synplify can read the resource
information but the netlist does not contain all the logic functionality.

For these functions, the Synplify software uses the logic information for resource and
timing estimation and optimization, and then instantiates the megafunction in the
output .vqm netlist file so the Quartus II software can implement the appropriate
device primitives. By default, the Synplify software uses the clear box model when
available, and otherwise uses the grey box model. To change this behavior, click
Implementation Options, and on the Device tab, change the Altera Models setting.
The default is on. To enable clear box models but not grey box, select clearbox_only,
or to turn off the feature entirely, choose off.

10–28 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP
Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Synplify software uses to report more accurate resource utilization and timing
performance estimates, and take better advantage of timing-driven optimization than
a black box function.

To create this netlist file, first select the IP function in the MegaWizard Plug-In
Manager and click Next to open the IP Toolbench. Click Step 2: Set Up Simulation,
which sets up all the EDA options. Enable the Generate netlist option to generate a
netlist for resource and timing estimation. The netlist file is generated when you click
Step 3: Generate.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
“grey box” information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file in your Synplify project. Next, include
the megafunction variation wrapper file <output file>.v|vhd in the Quartus II project
along with your Synplify .vqm output netlist.

If your IP function does not include a resource and timing estimation netlist, the
Synplify software must treat the IP function as a black box. In this case, refer to the
following subsections for details about creating black boxes.

For information about including Quartus II-specific files in your Synplify project so
they are automatically passed to the Quartus II software along with the output .vqm
file, refer to “Including Files for Quartus II Placement and Routing Only” on
page 10–30.

Using Generated Verilog HDL Files for Black Box IP Function Instantiation
Use the syn_black_box compiler directive to declare a module as a black box. The
top-level design files must contain the IP port mapping and a hollow-body module
declaration. Apply the syn_black_box directive to the module declaration in the
top-level file or a separate file included in the project to instruct the Synplify software
that this is a black box. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to add other
directives, as discussed in “Other Synplify Software Attributes for Creating Black
Boxes” on page 10–29.

Example 10–12 shows a sample top-level file that instantiates my_verilogIP.v, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Example 10–12. Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
input clk;
output[7:0] count;
my_verilogIP verilogIP_inst (.clock (clk), .q (count));

endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;

input clock;
output[7:0] q;

endmodule

Chapter 10: Synopsys Synplify Support 10–29
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using Generated VHDL Files for Black Box IP Function Instantiation
Use the syn_black_box compiler directive to declare a component as a black box.
The top-level design files must contain the megafunction variation component
declaration and port mapping. Apply the syn_black_box directive to the
component declaration in the top-level file. The software compiles successfully
without this directive, but reports an additional warning message. Using this
directive allows you to add other directives, such as the ones in the “Other Synplify
Software Attributes for Creating Black Boxes” section.

Example 10–13 shows a sample top-level file that instantiates my_vhdlIP.vhd, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Other Synplify Software Attributes for Creating Black Boxes
Instantiating a function as a black box methodology does not provide the synthesis
tool any visibility into the function module. Thus, it does not take full advantage of
the synthesis tool’s timing-driven optimization. For better timing optimization,
especially if the black box does not have registered inputs and outputs, add timing
models to black boxes. This can be done by adding the syn_tpd, syn_tsu, and
syn_tco attributes. Refer to Example 10–14 for a Verilog HDL example.

Example 10–13. Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
PORT (

clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP

PORT (
clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN

vhdlIP_inst : my_vhdlIP PORT MAP (
clock => clk,
q => count

);
END rtl;

10–30 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The following additional attributes are supported by the Synplify software to
communicate details about the characteristics of the black box module within the
HDL code:

■ syn_resources—Specifies the resources used in a particular black box

■ black_box_pad_pin—Prevents mapping to I/O cells

■ black_box_tri_pin—Indicates a tri-stated signal

f For more information about applying these attributes, refer to the Altera Constraints,
Attributes, and Options chapter of the Synopsys FPGA Synthesis Reference Manual.

Including Files for Quartus II Placement and Routing Only
In the Synplify software, you can add files to your project that are used only during
placement and routing in the Quartus II software. This can be useful if you have grey
boxes or black boxes for Synplify synthesis that require the full design files to be
compiled in the Quartus II software.

Add the files to the Synplify project like other source files. Then right-click on the file
and click File options. Enable the Use for Place and Route Only option. You can also
set the option in a script using the -job_owner par option.

For example, the commands in Example 10–15 define files for a Synplify project that
includes a top-level design file, a grey box netlist file, an IP wrapper file, and an
encrypted IP file. With these files, the Synplify software writes an empty instantiation
of “core” in the .vqm file and uses the gray box netlist for resource and timing
estimation. The files core.v and core_enc8b10b.v are not compiled by Synplify and are
copied into the place-and-route directory. The Quartus II software compiles these files
to implement the “core” IP block.

Example 10–14. Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output[3:0]z;
input[3:0]d;
input[3:0]addr;
input we
input clk

endmodule

Example 10–15. Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

Chapter 10: Synopsys Synplify Support 10–31
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inferring Altera Megafunctions from HDL Code
The Synplify software uses Behavior Extraction Synthesis Technology (BEST)
algorithms to infer high-level structures such as RAMs, ROMs, operators, FSMs, and
DSP multiplication operations. It then keeps the structures abstract for as long as
possible in the synthesis process. This allows the use of technology-specific resources
to implement these structures by inferring the appropriate Altera megafunction when
a megafunction provides optimal results. The following sections outline some of the
Synplify-specific details when inferring Altera megafunctions. The Synplify software
provides options to control inference of certain types of megafunctions, which is also
described in the following sections.

f For coding style recommendations and examples for inferring megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

Inferring Multipliers
Figure 10–2 shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two
pipeline stages after synthesis as seen in HDL Analyst in the Synplify software. This
multiplier is converted into an ALTMULT_ADD or ALTMULT_ACCUM
megafunction. For devices with DSP blocks, the software might implement the
function in a DSP block instead of regular logic, depending on device utilization. For
certain devices, the software maps directly to DSP block device primitives instead of
instantiating a megafunction in the .vqm file.

Resource Balancing

While mapping multipliers to DSP blocks, the Synplify software performs resource
balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which include a fixed number of
embedded multipliers. If the design uses more multipliers than are available, the
Synplify software automatically maps the extra multipliers to logic elements (LEs), or
adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify
software maps the multipliers in the critical paths to DSP blocks. Next, any wide
multipliers, which might or might not be in the critical paths, are mapped to DSP
blocks. Smaller multipliers and multipliers that are not in the critical paths might then
be implemented in the logic (LEs or ALMs). This ensures that the design fits
successfully in the device.

Figure 10–2. HDL Analyst View of LPM_MULT Megafunction (Unsigned 8 × 8 Multiplier with
Pipeline=2)

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

10–32 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Controlling the Inferring of DSP Blocks

You can implement multipliers in DSP blocks or in logic in Altera devices that contain
DSP blocks. You can control this implementation through attribute settings in the
Synplify software.

Signal Level Attribute

You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown in the following Verilog HDL code:

<signal_name> /* synthesis syn_multstyle = "logic" */;

where signal_name is the name of the signal.

1 This setting applies to wires only; it cannot be applied to registers.

Table 10–4 shows the values for the signal level attribute in the Synplify software that
controls the implementation of the multipliers in the DSP blocks or LEs.

Example 10–16 and Example 10–17 show simple Verilog HDL and VHDL code using
the syn_multstyle attribute.

Table 10–4. Attribute Settings for DSP Blocks in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM function inferred and multipliers implemented in DSP blocks

syn_multstyle logic LPM function not inferred and multipliers implemented LEs by the Synplify
software

syn_multstyle block_mult DSP megafunction is inferred and multipliers are mapped directly to DSP
block device primitives (for supported devices)

Example 10–16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp : c;

endmodule

Chapter 10: Synopsys Synplify Support 10–33
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Inferring RAM
When a RAM block is inferred from an HDL design, the software uses an Altera
megafunction to target the device memory architecture. For certain devices, the
software maps directly to memory block device primitives instead of instantiating a
megafunction in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer RAM in a
design:

■ The address line must be at least two bits wide.

■ Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports must be
synchronous.

■ Some Verilog HDL statements with blocking assignments might not be mapped to
RAM blocks, so avoid blocking statements when modeling RAMs in Verilog HDL.

For certain device families, the syn_ramstyle attribute specifies the implementation
to use for an inferred RAM. You can apply syn_ramstyle globally, to a module, or
to a RAM instance, to specify registers or block_ram values. To turn off RAM
inference, set the attribute value to registers.

When inferring RAM for certain Altera device families, the Synplify software
generates additional bypass logic. This logic is generated to resolve a half-cycle
read/write behavior difference between the RTL and post-synthesis simulations. The
RTL simulation shows the memory being updated on the positive edge of the clock;
the post-synthesis simulation shows the memory being updated on the negative edge
of the clock. To eliminate bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle, by which
time the update has occurred, thus eliminating the need for bypass logic.

Example 10–17. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
r : out std_logic_vector(15 downto 0);
en : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : in std_logic_vector(15 downto 0)
);

end onereg;

architecture beh of onereg is
signal temp : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
temp <= a * b;
r <= temp when en='1' else c;

end beh;

10–34 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For devices with TriMatrix memory blocks, disable the creation of glue logic by
setting the syn_ramstyle value to no_rw_check. Use syn_ramstyle with a
value of no_rw_check to disable the creation of glue logic in dual-port mode.

Example 10–18 shows sample VHDL code for inferring dual-port RAM.

Example 10–18. VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we: IN STD_LOGIC;
clk: IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem: Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
data_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN

mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;

END IF;
END PROCESS;

END ram_infer;

Chapter 10: Synopsys Synplify Support 10–35
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Example 10–19 shows an example of the VHDL code preventing bypass logic for
inferring dual-port RAM. The extra latency behavior stems from the inferring
methodology and is not required when instantiating a megafunction.

RAM Initialization
Use Verilog HDL system tasks $readmemb or $readmemh in your HDL code to
initialize RAM memories. The Synplify compiler forward-annotates the initialization
values in the .srs (technology-independent RTL netlist) file and the mapper generates
a corresponding hexadecimal memory initialization (.hex) file. One .hex file is created
for each of the altsyncram megafunctions that are inferred in the design. The .hex
file is associated with the altsyncram instance in the .vqm file using the
init_file attribute.

Example 10–19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we : IN STD_LOGIC;
clk : IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR(7 DOWNTO 0); --output register

BEGIN
tmp_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN

mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;
data_out <= tmp_out; --registers output preventing

 -- bypass logic generation.
END IF;

END PROCESS;
END ram_infer;

10–36 Chapter 10: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Example 10–20 and Example 10–21 illustrate how RAM memories can be initialized
through HDL code and how the corresponding .hex file is generated using Verilog
HDL.

Inferring ROM
When a ROM block is inferred from an HDL design, the software uses an Altera
megafunction to target the device memory architecture. For certain devices, the
software maps directly to memory block device atoms instead of instantiating a
megafunction in the .vqm file. Follow these guidelines for the Synplify software to
successfully infer ROM in a design:

■ The address line must be at least two bits wide.

■ The ROM must be at least half full.

■ A CASE or IF statement must make 16 or more assignments using constant values
of the same width.

Inferring Shift Registers
The software infers shift registers for sequential shift components so that they can be
placed in dedicated memory blocks in supported device architectures using the
ALTSHIFT_TAPS megafunction.

If required, set the implementation style with the syn_srlstyle attribute. If you do
not want the components automatically mapped to shift registers, set the value to
registers. You can set the value globally or on individual modules or registers.

For some designs, turning off shift register inference improves the design
performance.

Example 10–20. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code

initial
begin

$readmemb("mem.ini", mem);
end

always @(posedge clk)
begin

raddr_reg <= raddr;
if(we)

mem[waddr] <= data;
end

Example 10–21. Sample of .vqm Instance Containing Memory Initialization File from Example 10–20

altsyncram mem_hex(.wren_a(we), .wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

Chapter 10: Synopsys Synplify Support 10–37
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to part of the design while maintaining the
placement and performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on particular design
partitions and merging results with previous compilation results of other partitions.
You can perform optimization on individual subblocks and then preserve the results
before you integrate the blocks into a final design and optimize it at the top level.

MultiPoint synthesis, which is available for certain device technologies in the
Synplify Pro and Premier software, provides an automated block-based incremental
synthesis flow. The MultiPoint feature manages a design hierarchy to let you design
incrementally and synthesize designs that take too long for top-down synthesis of the
entire project. MultiPoint synthesis allows different netlist files to be created for
different sections of a design hierarchy and supports the Quartus II incremental
compilation methodology. It also ensures that only those sections of a design that
have been updated are resynthesized when the design is compiled, reducing
synthesis run time and preserving the results for the unchanged blocks. You can
change and resynthesize one section of a design without affecting other sections of the
design.

You can also partition your design and create different netlist files manually with the
Synplify software by creating a separate project for the logic in each partition of the
design. Creating different netlist files for each partition of the design also means that
each partition can be independent of the others.

Hierarchical design methodologies can improve the efficiency of your design process,
providing better design reuse opportunities and fewer integration problems when
working in a team environment. When you use these incremental synthesis
methodologies, you can take advantage of incremental compilation in the Quartus II
software. You can perform placement and routing on only the changed partitions of
the design, reducing place-and-route time and preserving your fitting results. Follow
the guidelines in this section to help you achieve good results with these
methodologies.

The following list shows the general top-down compilation flow when using these
features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as in the regular design flow.

2. Determine which hierarchical blocks are to be treated as separate partitions in
your design.

3. Set up your design using the MultiPoint feature or separate projects so that a
separate netlist file is created for each partition of the design.

4. If using separate projects, disable I/O pad insertion in the implementations for
lower-level partitions.

5. Compile and map each partition in the Synplify software, making constraints as
you would in the regular design flow.

6. Import the .vqm netlist and .tcl file for each partition into the Quartus II software
and set up the Quartus II project(s) to use incremental compilation.

10–38 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

7. Compile your design in the Quartus II software and preserve the compilation
results using the post-fit netlist in incremental compilation.

8. When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate a new netlist and .tcl file. Do
not regenerate netlist files for the unchanged partitions.

9. Import the new netlist and .tcl file into the Quartus II software and recompile the
design in the Quartus II software using incremental compilation.

f For more information about creating partitions and using the incremental compilation
in the Quartus II software, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Separate Netlist Files for Incremental Compilation
The first stage of a hierarchical or incremental design flow is to ensure that different
parts of your design do not affect each other. Ensure that you have separate netlists
for each partition in your design so you can take advantage of incremental
compilation in the Quartus II software. If the entire design is in one netlist file,
changes in one partition might affect other partitions because of possible node name
changes when you resynthesize the design.

To ensure the proper functioning of the synthesis flow, create separate netlist files only
for modules and entities. In addition, each module or entity requires its own design
file. If two different modules are in the same design file but are defined as being part
of different partitions, you cannot maintain incremental compilation since both
partitions would have to be recompiled when you change one of the modules.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Synplify software pushes (or
“bubbles”) the tri-states through the hierarchy to the top level to make use of the
tri-state drivers on output pins of Altera devices. Because bubbling tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. Use tri-state drivers only at the external
output pins of the device and in the top-level block in the hierarchy.

f For more detailed recommendations about designing your hierarchy and creating
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

You can generate multiple .vqm netlist files with the MultiPoint synthesis flow in the
Synplify Pro and Premier software, or by manually creating separate Synplify projects
and creating a black box for each block that you want to be considered as a separate
design partition.

In the MultiPoint synthesis flow (Synplify Pro and Premier only), you create multiple
.vqm netlist files from one easy-to-manage, top-level synthesis project. By using the
manual black box method, you have multiple synthesis projects, which might be
required for certain team-based or bottom-up designs where a single top-level project
is not desired.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 10: Synopsys Synplify Support 10–39
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

After you have created multiple .vqm files using one of these two methods, you must
create the appropriate Quartus II projects to place-and-route the design.

Using MultiPoint Synthesis with Incremental Compilation
This section describes how to generate multiple .vqm files using the Synplify Pro and
Premier MultiPoint synthesis flow. You must first set up your constraint file and
Synplify options, then apply the appropriate Compile Point settings to write multiple
.vqm files and create design partition assignments for incremental compilation.

Set Compile Points and Create Constraint Files
The MultiPoint flow lets you segment a design into smaller synthesis units, called
“Compile Points.” The synthesis software treats each Compile Point as a partition for
incremental mapping, which allows you to isolate and work on individual Compile
Point modules as independent segments of the larger design without impacting other
design modules. A design can have any number of Compile Points, and Compile
Points can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be another
Compile Point or a top-level design. Each block created with a Compile Point is
unaffected by critical paths or constraints on its parent or other blocks. A Compile
Point is independent, with its own individual constraints. During synthesis, any
Compile Points that have not yet been synthesized are synthesized before the top
level. Nested Compile Points are synthesized before the parent Compile Points in
which they are contained. When you apply the appropriate setting for the Compile
Point, a separate netlist is created for that Compile Point, isolating that logic from any
other logic in the design.

Figure 10–3 shows an example of a design hierarchy that is split into multiple
partitions. The top-level block of each partition can be synthesized as a separate
Compile Point.

Figure 10–3. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

10–40 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

In this case, modules A, B, and F are Compile Points. The top-level Compile Point
consists of the top-level block in the design (that is, block A in this example),
including the logic that is not defined under another Compile Point. In this example,
the design for top-level Compile Point A also includes the logic in one of its
subblocks, C. Because block F is defined as its own Compile Point, it is not treated as
part of the top-level Compile Point A. Another separate Compile Point B contains the
logic in blocks B, D, and E. One netlist is created for the top-level module A and
submodule C, another netlist is created for B and its submodules D and E, while a
third netlist is created for F.

Apply Compile Points to the module or architecture in the Synplify Pro SCOPE
spreadsheet or in the .sdc file. You cannot set a Compile Point in the Verilog HDL or
VHDL source code. You can set the constraints manually using Tcl or by editing the
.sdc file, or you can use one of two methods in the GUI, as described in the following
subsections.

Defining Compile Points Using .tcl or .sdc Files

To set Compile Points using a .tcl or .sdc file, use the define_compile_point
command, as shown in Example 10–22.

In Example 10–22, objname represents any module in the design. The Compile Point
type {locked, partition} indicates that the Compile Point represents a partition
for the Quartus II incremental compilation flow.

Each Compile Point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE environment, as follows:

define_current_design {<my_module>}

Defining Compile Points in the Top-Level SCOPE Window

The following method requires you to separately create constraint files for the
top-level and lower-level Compile Points:

1. In the top-level SCOPE window, select the Compile Points tab.

2. Select the modules that you want to define as Compile Points and set Type to
locked, partition.

3. Manually create a constraint file for each module to set constraints for each
Compile Point.

Defining Compile Points by Creating a New SCOPE File

When you use the following process, the lower-level constraint file is created
automatically:

1. On the File menu, click New and choose to create a new Constraint File. Or, click
the SCOPE icon in the tool bar.

2. From the Select File Type tab of the Create a New SCOPE File dialog box, select
Compile Point.

Example 10–22. The define_compile_point Command

define_compile_point [-disable] {<objname>} -type {locked, partition}

Chapter 10: Synopsys Synplify Support 10–41
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

3. Select the module you want to designate as a Compile Point and click OK. The
software automatically sets the Compile Points in the top-level constraint file and
creates a lower-level constraint file for each Compile Point.

Additional Considerations for Compile Points
To ensure that changes to a Compile Point do not affect the top-level parent module,
disable the Update Compile Point Timing Data option in the Implementation
Options dialog box. If this option is enabled, updates to a child module can impact
the top-level module.

You can apply the syn_allowed_resources attribute to any Compile Point view to
restrict the number of resources for a particular module.

When using Compile Points with incremental compilation, keep the following
restrictions in mind:

■ To use Compile Points effectively, you must provide timing constraints (timing
budgeting) for each Compile Point; the more accurate the constraints, the better
your results are. Constraints are not automatically budgeted, so manual time
budgeting is essential. Altera recommends that you register all inputs and outputs
of each partition. This avoids any logic delay penalty on signals that cross partition
boundaries.

■ When using the Synplify attribute syn_useioff to pack registers in the I/O
Elements (IOEs) of Altera devices, these registers must be in the top-level module,
not a lower level. Otherwise, you must allow the Quartus II software to perform
I/O register packing instead of the syn_useioff attribute. You can use the Fast
Input Register or Fast Output Register options, or set I/O timing constraints and
turn on Optimize I/O cell register placement for timing on the Fitter Settings
page of the Settings dialog box in the Quartus II software.

■ There is no incremental synthesis support for top-level logic; any logic in the
top-level is resynthesized during every compilation in the Synplify software.

f For more information about using Compile Points and setting Synplify attributes and
constraints for both top-level and lower-level Compile Points, refer to the Synopsys
FPGA Synthesis User Guide and the Synopsys FPGA Synthesis Reference Manual in the
Synplify software.

Creating a Quartus II Project for Compile Points and Multiple .vqm Files
During compilation, the Synplify Pro and Premier software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate constraints
and design partition assignments, creating a partition for each .vqm file along with
the information to set up a Quartus II project. For details about using the Tcl script
generated by the Synplify software to set up your Quartus II project and pass your
constraints, refer to “Running the Quartus II Software Manually Using the
Synplify-Generated Tcl Script” on page 10–16.

10–42 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Depending on your design methodology, you can create one Quartus II project for all
netlists (a top-down placement and routing flow) or a separate Quartus II project for
each netlist (a bottom-up placement and routing flow). In a top-down incremental
compilation design flow, you create design partition assignments and optionally
LogicLock™ floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.

You might require a bottom-up design flow if each partition must be optimized
separately, such as in certain team-based design flows. If you use this flow, Altera
recommends you create a design floorplan to avoid placement conflicts between each
partition. To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a top-level design
using the incremental compilation export and import features to maintain placement
results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for all
partitions within the project. This method allows you to import all the partitions into
one Quartus II project and optimize all modules within the project at once, taking
advantage of the performance preservation and compilation-time reduction
incremental compilation offers. Figure 10–4 shows a visual representation of the
design flow for the example design in Figure 10–3 on page 10–39.

Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

Use the <lower-level compile point>.tcl files that contain the Synplify assignments for
each Compile Point. Generate multiple Quartus II projects, one for each partition and
netlist in the design. The designers in the project can optimize their own partitions
separately within the Quartus II software and export the results for their own
partitions. Figure 10–5 shows a visual representation of the design flow for the
example design in Figure 10–3 on page 10–39. You can export the optimized
sub-designs and then import them into one top-level Quartus II project using
incremental compilation to complete the design.

Figure 10–4. Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl
to import Synplify Pro assignments.

Chapter 10: Synopsys Synplify Support 10–43
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Multiple .vqm Files for Incremental Compilation Using Separate Synplify
Projects

This section describes how to manually generate multiple .vqm files for incremental
compilation using black boxes and separate Synplify projects for each design
partition. This manual flow is supported by versions of the Synplify software that do
not include the MultiPoint Synthesis feature.

Manually Creating Multiple .vqm Files Using Black Boxes
To create multiple .vqm files manually in the Synplify software, create a separate
project for each low-level module and top-level design that you want to maintain as a
separate .vqm file for an incremental compilation partition. Implement black box
instantiations of lower-level partitions in your top-level project.

When synthesizing the projects for the lower-level modules, perform the following
steps:

1. In the Implementation Options dialog box, turn on Disable I/O Insertion for the
target technology.

2. Read the HDL files for the modules.

1 Modules might include black box instantiations of lower-level modules that
are also maintained as separate .vqm files.

3. Add constraints with the SCOPE constraint window.

4. Enter the clock frequency to ensure that the sub-design is correctly optimized.

5. In the Attributes tab, set syn_netlist_hierarchy to 0.

When synthesizing the top-level design project, perform the following steps:

1. Turn off Disable I/O Insertion for the target technology.

2. Read the HDL files for top-level designs.

3. Create black boxes using lower-level modules in the top-level design.

Figure 10–5. Design Flow Using Multiple .vqm Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Pro Assignments

 Use the lower-level
Tcl file b.tcl to Import

Synplify Pro Assignments

10–44 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

4. Add constraints with the SCOPE constraint window.

5. Enter the clock frequency to ensure that the design is correctly optimized.

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

The following sections describe an example of black box implementation to create
separate .vqm files. Figure 10–3 on page 10–39 shows an example of a design
hierarchy that is split into multiple partitions.

The partition top contains the top-level block in the design (block A) and the logic that
is not defined as part of another partition. In this example, the partition for top-level
block A also includes the logic in one of its sub-blocks, C. Because block F is contained
in its own partition, it is not treated as part of the top-level partition A. Another
separate partition, B, contains the logic in blocks B, D, and E. In a team-based design,
different engineers can work on the logic in different partitions. One netlist is created
for the top-level module A and its submodule C, another netlist is created for B and its
submodules D and E, while a third netlist is created for F.

To create multiple .vqm files for this design, follow these steps:

1. Generate a .vqm file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate a .vqm file for module F. Use F.v/.vhd as the source files.

3. Generate a top-level .vqm file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you use black box modules B and F, which were
optimized separately in the previous steps.

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list of files to be
read for a project are treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to create a black box for the given module. In
Verilog HDL, you must provide an empty module declaration for the module that is
treated as a black box.

Example 10–23 shows an example of the A.v top-level file. Follow the same procedure
for lower-level files that also contain a black box for any module beneath the current
level hierarchy.

Chapter 10: Synopsys Synplify Support 10–45
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to treat the given component as a black box. In
VHDL, you must have a component declaration for the black box just like any other
block in the design.

1 Although VHDL is not case-sensitive, a .vqm (a subset of Verilog HDL) file is
case-sensitive. Entity names and their port declarations are forwarded to the .vqm
file. Black box names and port declarations are also passed to the .vqm file. To prevent
case-based mismatches, use the same capitalization for black box and entity
declarations in VHDL designs.

Example 10–24 shows an example of the A.vhd top-level file. Follow this same
procedure for any lower-level files that contain a black box for any block beneath the
current level of hierarchy.

Example 10–23. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q) /* synthesis syn_black_box */ ;
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

10–46 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

After you have completed the steps described in this section, you have a netlist file for
each partition of the design. These files are ready for use with incremental
compilation in the Quartus II software.

Example 10–24. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
USE synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

attribute syn_black_box of B: component is true;
attribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

Chapter 10: Synopsys Synplify Support 10–47
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating a Quartus II Project for Multiple .vqm Files
The Synplify software creates a .tcl file for each .vqm file that provides the Quartus II
software with the appropriate constraints and information to set up a project. For
details about using the Tcl script generated by the Synplify software to set up your
Quartus II project and pass your constraints, refer to “Running the Quartus II
Software Manually Using the Synplify-Generated Tcl Script” on page 10–16.

Depending on your design methodology, you can create one Quartus II project for all
netlists (a top-down placement and routing flow) or a separate Quartus II project for
each netlist (a bottom-up placement and routing flow). In a top-down incremental
compilation design flow, you create design partition assignments and optional
LogicLock floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design. You might
require a bottom-up design flow where each partition must be optimized separately,
such as in certain team-based design flows.

To perform a bottom-up compilation in the Quartus II software, create separate
Quartus II projects and import each design partition into a top-level design using the
incremental compilation export and import features to maintain the results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for the
top-level design. This method allows you to import all of the partitions into one
Quartus II project and optimize all modules within the project at once, taking
advantage of the performance preservation and compilation time reduction offered by
incremental compilation. Figure 10–6 shows a visual representation of the design flow
for the example design in Figure 10–3 on page 10–39.

All of the constraints from the top-level project are passed to the Quartus II software
in the top-level .tcl file, but any constraints made in the lower-level projects within the
Synplify software is not forward-annotated. Enter these constraints manually in your
Quartus II project.

Figure 10–6. Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to import top-level
Synplify Pro assignments.

Enter any lower-level
assignments manually.

10–48 Chapter 10: Synopsys Synplify Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

Use the .tcl file that is created for each .vqm file by the Synplify software for each
Synplify project. This method generates multiple Quartus II projects, one for each
block in the design. The designers in the project can optimize their own blocks
separately within the Quartus II software and export the placement of their own
blocks. Figure 10–7 shows a visual representation of the design flow for the example
in Figure 10–3 on page 10–39.

Designers should create a LogicLock region to create a design floorplan for each block
to avoid conflicts between partitions. The top-level designer then imports all the
blocks and assignments into the top-level project. This method allows each block in
the design to be optimized separately and then imported into one top-level project.

Performing Incremental Compilation in the Quartus II Software
In a top-down design flow using Multipoint Synthesis, the Synplify software uses the
Quartus II top-level .tcl file to ensure that the two tools databases stay synchronized.
The Tcl creates, changes, or deletes partition assignments in the Quartus II software
for Compile Points that you create, change, or delete in Synplify. However, if you
create, change, or delete a partition in the Quartus II software, the Synplify software
does not change your Compile Point settings. Make any corresponding change in
your Synplify project so that you create the correct .vqm files.

1 If you use the NativeLink integration feature described in “Using the Quartus II
Software to Run the Synplify Software” on page 10–15, the Synplify software does not
use any information about design partition assignments that you have set in the
Quartus II software.

If you are creating netlist files using multiple Synplify projects, or if you don’t use the
Synplify Pro or Premier-generated .tcl files to update constraints in your Quartus II
project, you must ensure that your Synplify .vqm netlists align with your Quartus II
partition settings.

Figure 10–7. Design Flow Using Multiple Synplify Projects and Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level
Tcl file a.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file b.tcl to Import
Synplify Assignments

Chapter 10: Synopsys Synplify Support 10–49
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

After you have set up your Quartus II project with .vqm netlist files as separate
design partitions, set the appropriate Quartus II options to preserve your compilation
results. On the Assignments menu, click Design Partitions Window. Change the
Netlist Type to Post-Fit to preserve the previous compilation’s post-fit placement
results. To preserve routing results as well, set the Fitter Preservation Level to
Placement and Routing. If you do not make these settings, the Quartus II software
does not reuse the placement or routing results from the previous compilation.

You can take advantage of incremental compilation with your Synplify design to
reduce compilation time in the Quartus II software and preserve the results for
unchanged design blocks.

f For more information about using Quartus II incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Conclusion
Advanced synthesis is an important part of the design flow. Taking advantage of the
Synopsys Synplify and Altera Quartus II design flows allow you to control how your
design files are prepared for the Quartus II place-and-route process, as well as
improve performance and optimize a design for use with Altera devices. The
methodologies outlined in this chapter can help optimize a design to achieve
performance goals and save design time.

Referenced Documents
This chapter references the following documents:

■ Altera Constraints, Attributes, and Options chapter in the Synopsys FPGA Synthesis
Reference Manual

■ Altera I/O Standards in the Synopsys FPGA Synthesis Reference Manual

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Section III. Formal Verification in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www./altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www./altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

10–50 Chapter 10: Synopsys Synplify Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Document Revision History

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 10–5. Document Revision History

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Minor updates for the Quartus II software version 9.1 release Updated for the Quartus II software
version 9.1 release

March 2009
v9.0.0

■ Added new section “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 10–14

■ Minor updates for the Quartus II software version 9.0 release

■ Chapter 10 was previously Chapter 9 in software version 8.1

Updated for the Quartus II software
version 9.0 release

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size

■ Changed the chapter title from “Synplicity Synplify & Synplify
Pro Support” to “Synopsys Synplify Support”

■ Replaced references to Synplicity with references to Synopsys

■ Added information about Synplify Premier

■ Updated supported device list

■ Added SystemVerilog information to Figure 10–1

Updated for the Quartus II software
version 8.1 release and the Synplify
software version 9.6.2 release.

May 2008
v8.0.0

■ Updated supported device list

■ Updated constraint annotation information for the TimeQuest
Timing Analyzer

■ Updated RAM and MAC constraint limitations

■ Revised Table 9–1

■ Added new section “Changing Synplify’s Default Behavior for
Instantiated Altera Megafunctions”

■ Added new section “Instantiating Intellectual Property Using
the MegaWizard Plug-In Manager and IP Toolbench”

■ Added new section “Including Files for Quartus II Placement
and Routing Only”

■ Added new section “Additional Considerations for Compile
Points”

■ Removed section “Apply the LogicLock Attributes”

■ Modified Figure 9–4, 9–43, 9–47. and 9–48

■ Added new section “Performing Incremental Compilation in
the Quartus II Software”

■ Numerous text changes and additions throughout the chapter

■ Renamed several sections

■ Updated “Referenced Documents” section

Updated for Quartus II software
release, version 8.0, and the Synplify
software release, version 9.4.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

11. Mentor Graphics Precision Synthesis
Support

This chapter documents support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Quartus® II software design flow, as
well as key design methodologies and techniques for improving your results for
Altera® devices.

Introduction
The topics discussed in this chapter include:

■ “Design Flow” on page 11–2

■ “Creating and Compiling a Project in the Precision Synthesis Software” on
page 11–5

■ “Mapping the Precision Synthesis Design” on page 11–5

■ “Synthesizing the Design and Evaluating the Results” on page 11–10

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 11–10

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 11–18

■ “Incremental Compilation and Block-Based Design” on page 11–27

This chapter assumes that you have installed and licensed the Precision Synthesis
software and the Quartus II software. You must install and license the Precision RTL
Plus Synthesis software if you want to use the incremental synthesis feature for
incremental compilation and block-based design.

f To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website at www.mentor.com. To install and run the Precision Synthesis software and
to set up your work environment, refer to the Precision Synthesis Installation Guide in
the Precision Manuals Bookcase. To access the Manuals Bookcase, in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Device Family Support
The following list shows the Altera device families supported by the Mentor Graphics
Precision Synthesis software version 2009a when used with the Quartus II software
version 9.1:

■ Arria® series

■ Cyclone®, series

■ HardCopy® series

■ MAX® series

■ Stratix® series

QII51011-9.1.0

http://www.mentor.com

11–2 Chapter 11: Mentor Graphics Precision Synthesis Support
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Precision Synthesis software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX
6000 legacy devices that are supported by the Quartus II software version 9.0 and
earlier.

1 Support for newly released device families may require an overlay. Contact Mentor
Graphics for more information.

Design Flow
The basic steps in a Quartus II design flow using the Precision Synthesis software
include:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints. Refer to
“Creating and Compiling a Project in the Precision Synthesis Software” on
page 11–5 for details about how to create a project in the Precision Synthesis
software.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis.

1 For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false
and multicycle paths guide the synthesis algorithms more accurately
toward a suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software. With the design analysis
capabilities and cross-probing of the Precision Synthesis software, you can identify
and improve circuit area and performance issues using pre-layout timing
estimates.

6. Create a Quartus II project and import the following files generated by the
Precision Synthesis software into the Quartus II project:

■ Technology-specific EDIF (.edf) netlist

■ Synopsys Design Constraints (.sdc) file for the TimeQuest Timing Analyzer

■ Tool command language (.tcl) files to set up your Quartus II project and pass
constraints

You can run the Quartus II software from within the Precision Synthesis software,
or launch the Precision Synthesis software using the Quartus II software. Refer to
“Running the Quartus II Software from within the Precision Synthesis Software”
on page 11–11 and “Using Quartus II Software to Launch the Precision Synthesis
Software” on page 11–13 for more detailed information.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–3
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 11–1 shows the Quartus II design flow using the Precision Synthesis software
as described in these steps. The steps are further described in detail in this chapter.

If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change
constraints to optimize the design during place-and-route in the Quartus II software.
Repeat the process until the area and timing requirements are met (Table 11–1).

You can use other options and techniques in the Quartus II software to meet area and
timing requirements. One such option is the WYSIWYG Primitive Resynthesis
option, which can perform optimizations on your EDIF netlist in the Quartus II
software.

f For information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook. For more
recommendations about how to optimize your design, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Figure 11–1. Design Flow Using the Precision Synthesis Software and Quartus II Software

Functional/RTL
Simulation

VHDL Verilog HDL

Constraints &
Settings

Constraints &
Settings

Precision Synthesis

Gate-Level
Functional
Simulation

Gate-Level Timing
Simulation

Timing & Area
Requirements

Satisfied?

Forward-Annotated Project
Configuration
(.tcl /.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/Programming Files
(.sof/.pof)

Yes

No

Program/Configure Device

Quartus II Software

Quartus II Timing Constraints
in SDC format (.sdc)

System
Verilog

Design Specifications

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

11–4 Chapter 11: Mentor Graphics Precision Synthesis Support
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

During the synthesis process, the Precision Synthesis software produces several
intermediate and output files. Table 11–1 lists these files and provides a brief
description of each file type.

Table 11–1. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep (1) Synthesis Area and Timing Report File.

.edf Technology-specific netlist in electronic design interchange format (EDIF).

.tcl Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is generated for all
devices. It acts as the Quartus II Project Configuration file and is used to make basic project and
placement assignments, and to create and compile a Quartus II project for your EDIF netlist. If the project
is set up to use the TimeQuest Timing Analyzer, this file contains the command required to use the
TimeQuest Timing Analyzer instead of the Classic Timing Analyzer.

The <project name>_pnr_constraints.tcl file is generated automatically for devices that use the Classic
Timing Analyzer by default in the Quartus II software, and contains timing constraints for the Classic
Timing Analyzer.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.sdc Quartus II timing constraints file in Synopsys Design Constraints format

This file is generated automatically if the device uses the TimeQuest Timing Analyzer by default in the
Quartus II software, and has the naming convention <project name>_pnr_constraints.sdc. For more
information about generating a TimeQuest constraint file, refer to “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 11–10.

Note to Table 11–1:

(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the fMAX reported by the
Quartus II software after place-and-route for accurate post-place-and-route timing information. The area report file includes post-synthesis
device resource utilization statistics that can differ from the resource usage after place-and-route due to black boxes or further optimizations
performed during placement and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 11–10 for details.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–5
Creating and Compiling a Project in the Precision Synthesis Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating and Compiling a Project in the Precision Synthesis Software
After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

Creating a Project
Set up your design files as follows:

1. In the Precision Synthesis software, click the New Project icon in the Design Bar
on the left side of the GUI.

2. Set the Project Name and the Project Folder. The implementation name of the
design corresponds to this project name.

3. Add input files to the project with the Add Input Files icon in the Design Bar.
Precision Synthesis software automatically detects the top-level module/entity of
the design. It uses the top-level module/entity to name the current
implementation directory, logs, reports, and netlist files.

4. In the Design Bar, click the Setup Design icon.

5. To specify a target device family, expand the Altera entry and choose the target
device and speed grade.

6. If desired, set a global design frequency and/or default input and output delays.
This constrains all clock paths and all I/O pins in your design. Modify the settings
for individual paths or pins that do not require such a setting.

To generate additional netlist files (for example, an HDL netlist for simulation), on the
Tools menu, point to Set Options and Output and select the desired output format.
The Precision Synthesis software generates a separate file for each selected type of file:
EDIF, Verilog HDL, and VHDL.

Compiling the Design
To compile the design into a technology-independent implementation, in the Design
Bar, click the Compile icon.

Mapping the Precision Synthesis Design
In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command line constraint parameters, or using the Precision
Synthesis software to generate one automatically for you on the first synthesis run. To
create a constraint file with the user interface, set constraints on design objects (such

11–6 Chapter 11: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

as clocks, design blocks, or pins) in the Design Hierarchy browser. By default, the
Precision Synthesis software saves all timing constraints and attributes in two files:
precision_rtl.sdc and precision_tech.sdc. The precision_rtl.sdc file contains
constraints set on the RTL-level database (after compilation) and the
precision_tech.sdc file contains constraints set on the gate-level database (after
synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command. You can
add constraints that change infrequently directly to the HDL source files with HDL
attributes or pragmas.

1 The Precision SDC constraints file contains all the constraints for the Precision
Synthesis project. For the Quartus II software, placement constraints are written in a
.tcl file along with timing constraints for the Classic Timing Analyzer. The Quartus II
.sdc file contains only timing constraints for the TimeQuest Timing Analyzer.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. For
more details and examples of attributes, refer to the Attributes chapter in the Precision
Synthesis Reference Manual. To access these manuals, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Setting Timing Constraints
Timing constraints, based on the industry-standard .sdc file format, help the Precision
Synthesis software to deliver optimal results. Missing timing constraints can result in
incomplete timing analysis and might prevent timing errors from being detected.
Precision Synthesis software provides constraint analysis prior to synthesis to ensure
that designs are fully and accurately constrained. If the selected device uses the
Classic Timing Analyzer by default in the Quartus II software, all timing constraints
are forward-annotated to the Quartus II software using Tcl scripts for the Quartus II
Classic Timing Analyzer. If the selected device uses the TimeQuest Timing Analyzer
by default in the Quartus II software, <project name>_pnr_constraints.sdc is generated
that contains timing constraints in SDC format.

1 Because the .sdc file format requires that timing constraints must be set relative to
defined clocks, you must specify your clock constraints before applying any other
timing constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements. Doing so can improve area utilization and
allow the software optimizations to focus on the most critical parts of the design.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. To
access these manuals, in the Precision Synthesis software, click Help and select Open
Manuals Bookcase.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–7
Mapping the Precision Synthesis Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Setting Mapping Constraints
Mapping constraints affect how your design is mapped into the target Altera device.
You can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.

Assigning Pin Numbers and I/O Settings
The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew-rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Quartus II software
during place-and-route and do not affect synthesis.

You can use the set_attribute command in Precision’s .sdc file format to specify pin
number constraints, I/O standards, drive strengths, and slow slew-rate settings.
Table 11–2 outlines the format to use for entries in the Precision constraint file.

You can also specify these options in the GUI. To specify a pin number or other I/O
setting in the Precision Synthesis GUI, follow these steps:

1. After compiling the design, expand the Ports entry in the Design Hierarchy
Browser.

2. Under Ports, expand the Inputs or Outputs entry.

1 You also can assign I/O settings by right-clicking the pin in the Schematic
Viewer.

3. Right-click the desired pin name and select the Set Input Constraints option
under Inputs or Set Output Constraints option under Outputs.

4. Enter the desired pin number on the Altera device in the Pin Number box (Port
Constraints dialog box).

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew rate setting
using the DRIVE and SLOW SLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments. Example 11–1 and Example 11–2 show code samples that make a pin
assignment in your HDL code.

Table 11–2. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port
<port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

11–8 Chapter 11: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can use the same syntax to assign the I/O standard using the attribute
IOSTANDARD, drive strength using the attribute DRIVE, and slew rate using the
attribute SLEW.

1 For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual. To access this manual, in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Assigning I/O Registers
The Precision Synthesis software performs timing-driven I/O register mapping by
default. It moves registers into an I/O element (IOE) when doing so does not
negatively impact the register-to-register performance of your design, based on the
timing constraints.

You can force a register to the device’s IOE using the Complex I/O constraint. This
option does not apply if you turn off I/O pad insertion. Refer to “Disabling I/O Pad
Insertion” for more information.

To force an I/O register into the device’s IOE using the GUI, follow these steps:

1. After compiling the design, expand the Ports entry in the Design Hierarchy
browser.

2. Under Ports, expand the Inputs or Outputs entry, as desired.

3. Under Inputs or Outputs, right-click the desired pin name, point to Map Input
Register to IO or Map Output Register to IO for input or output respectively, and
click True.

1 You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix and Cyclone series, and MAX II device families, the Precision Synthesis
software can move an internal register to an I/O register without any restrictions on
design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top level of the design.

Example 11–1. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 11–2. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is “P10”;

Chapter 11: Mentor Graphics Precision Synthesis Support 11–9
Mapping the Precision Synthesis Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Disabling I/O Pad Insertion
The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top level of a design by
default. In certain situations, you might not want the software to add I/O pads to all
I/O pins in the design. The Quartus II software can compile a design without I/O
pads; however, including I/O pads provides the Precision Synthesis software with the
most information about the top-level pins in the design.

Preventing the Precision Synthesis Software from Adding I/O Pads
If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device and therefore should not have an I/O pad associated
with them. To prevent the Precision Synthesis software from adding I/O pads,
perform the following steps:

1. On the Tools menu, click Set Options. The Options dialog box appears.

2. On the Optimization page, turn off Add IO Pads.

3. Click Apply.

These steps add the following command to the project file:

setup_design -addio=false

Preventing the Precision Synthesis Software from Adding an I/O Pad on an
Individual Pin
To prevent I/O pad insertion on an individual pin when you are using a black box,
such as DDR or a phase-locked loop (PLL), at the external ports of the design, follow
these steps:

1. After compiling the design, in the Design Hierarchy browser, expand the Ports
entry by clicking the “+” icon.

2. Under Ports, expand the Inputs or Outputs entry.

3. Under Inputs or Outputs, right-click the desired pin name and click Set Input
Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn off Insert Pad.

1 You also can make the assignment by right-clicking on the pin in the Schematic
Viewer or by attaching the nopad attribute to the port in the HDL source code.

Controlling Fan-Out on Data Nets
Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can have significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause larger delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Quartus II software automatically routes high fan-out signals on global
routing lines in the Altera device whenever possible.

11–10 Chapter 11: Mentor Graphics Precision Synthesis Support
Synthesizing the Design and Evaluating the Results

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

Synthesizing the Design and Evaluating the Results
To synthesize the design for the target device, click on the Synthesize icon in the
Precision Synthesis Design Bar. During synthesis, the Precision Synthesis software
optimizes the compiled design, then writes out netlists and reports to the
implementation subdirectory of your working directory after the implementation is
saved, using the naming convention:

<project name>_impl_<number>

f After synthesis is complete, you can evaluate the results in terms of area and timing.
The Precision RTL Synthesis User’s Manual on the Mentor Graphics website describes
different results that can be evaluated in the software.

There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These
analysis tools allow you to quickly and easily isolate the source of timing or area
issues, and to make additional constraint or code changes to optimize the design.

Obtaining Accurate Logic Utilization and Timing Analysis Reports
Historically, designers have relied on post-synthesis logic utilization and timing
reports to determine how much logic their design requires, how big a device they
require, and how fast the design runs. However, today’s FPGA devices provide a
wide variety of advanced features in addition to basic registers and look-up tables
(LUTs). The Quartus II software has advanced algorithms to take advantage of these
features, as well as optimization techniques to increase performance and reduce the
amount of logic required for a given design. In addition, designs can contain black
boxes and functions that take advantage of specific device features. Because of these
advances, synthesis tool reports provide post-synthesis area and timing estimates, but
the place-and-route software should be used to obtain final logic utilization and
timing reports.

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, which allows you to run
other EDA design entry/synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software.

After a design is synthesized in the Precision Synthesis software, the
technology-mapped design is written to the current implementation directory as an
EDIF netlist file, along with a Quartus II Project Configuration File and a
place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Quartus II project for your EDIF netlist.
This script makes basic project assignments, such as assigning the target device

Chapter 11: Mentor Graphics Precision Synthesis Support 11–11
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

specified in the Precision Synthesis software. For the Quartus II Classic Timing
Analyzer, the Project Configuration script calls the place-and-route constraints script,
<project name>_pnr_constraints.tcl, to make your timing constraints. If you select an
Arria GX, Stratix III, Cyclone III, or newer device, the constraints are written in SDC
format to the <project name>_pnr_constraints.sdc file by default and is used by the
Fitter and the TimeQuest Timing Analyzer in the Quartus II software.

If you want to use the Quartus II TimeQuest Timing Analyzer, use the following
Precision command before compilation:

setup_design -timequest_sdc

With this command, a file named <project name>_pnr_constraints.sdc is generated
after the synthesize command.

Running the Quartus II Software from within the Precision Synthesis Software
Precision Synthesis software also has a built-in place-and-route environment that
allows you to run the Quartus II Fitter and view the results in the Precision Synthesis
GUI. This feature is useful when performing an initial compilation of your design to
view post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are available.

After you specify an Altera device as the target, set the options for the Quartus II
software. On the Tools menu, click Set Options. On the Integrated Place and Route
page (under Quartus II Modular), specify the path to the Quartus II executables in
the Path to Quartus II installation tree box.

To automate the place-and-route process, click the Run Quartus II icon in the
Quartus II Modular window of the Precision Synthesis toolbar. The Quartus II
software uses the current implementation directory as the Quartus II project directory
and runs a full compilation in the background (that is, the user interface does not
appear).

Two primary Precision Synthesis software commands control the place-and-route
process. Use the setup_place_and_route command to set the place-and-route
options. The process is started with the place_and_route command.

Precision Synthesis software versions 2004a and later support using individual
Quartus II executables, such as analysis and synthesis (quartus_map), Fitter
(quartus_fit), and the Classic Timing Analyzer (quartus_tan) or the TimeQuest
Timing Analyzer (quartus_sta) (only for software version 2006a and later), for
improved runtime and memory utilization during place and route. This flow is
referred to as the Quartus II Modular flow option in Precision Synthesis software and
is compatible with Quartus II software versions beginning with version 4.0. By
default, the Precision Synthesis software generates a Quartus II Project Configuration
File (.tcl file) for Arria GX, Stratix series, MAX II, and Cyclone series device families.
When you use this flow, all timing constraints that you set during synthesis are
exported to the Quartus II place-and-route constraints file
<project name>_pnr_constraints.tcl, or <project name>_pnr_constraints.sdc,
depending on which Quartus II timing analyzer the Precision Synthesis software is
targeting.

11–12 Chapter 11: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

For other device families, the Precision Synthesis software uses the Quartus II flow
option, which enables the Quartus II compilation flow that existed in Precision
Synthesis software versions earlier than 2004a. The Quartus II Project Configuration
File (.tcl file) is written when using the Quartus II flow option that includes
supported timing constraints that you specified during synthesis. This .tcl file is
compatible with all versions of the Quartus II software; however, the format and
timing constraints do not take full advantage of the features in the Quartus II software
introduced with version 4.0.

To force the use of a particular flow when it is not the default for a certain device
family, use the following command to set up the integrated place-and-route flow:

setup_place_and_route -flow "<Altera Place-and-Route flow>"

Depending on the device family, you can use one of the following flow options in the
preceding command:

■ Quartus II Modular

■ Quartus II

■ MAX+PLUS II

For example, for the Stratix II or MAX II device families (which were not supported in
Quartus II software versions earlier than 4.0), you can use only the Quartus II
Modular flow. For the Stratix device family, you can use either the Quartus II
Modular or Quartus II flows. The FLEX 8000 device family, which is not supported in
the Quartus II software, is supported only by the MAX+PLUS II flow.

After the design is compiled in the Quartus II software from within the Precision
Synthesis software, you can invoke the Quartus II GUI manually and then open the
project using the generated Quartus II project file. You can view reports, run analysis
tools, specify options, and run the various processing flows available in the Quartus II
software.

Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl
Script

You can use the Quartus II software separately from the Precision Synthesis software.
To run the Tcl script generated by the Precision Synthesis software to set up your
project and start a full compilation, perform the following steps:

1. Ensure the .edf, .tcl files, and .sdc file (if using the TimeQuest Timing Analyzer)
are located in the same directory (by default, the files should be located in the
implementation directory).

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r
4. On the File menu, click Open Project. Browse to the project name, and click Open.

5. Compile the project in the Quartus II software.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–13
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using Quartus II Software to Launch the Precision Synthesis Software
With NativeLink integration, you can set up the Quartus II software to run the
Precision Synthesis software. This feature allows you to use the Precision Synthesis
software to synthesize a design as part of a normal compilation. When you use this
feature, the Precision Synthesis software does not use any timing constraints or
assignments such as incremental compilation partitions that you have set in the
Quartus II software.

f For detailed information about using NativeLink integration with the Precision
Synthesis software, go to Using the NativeLink Feature with Other EDA Tools in the
Quartus II Help.

Passing Constraints to the Quartus II Software
The place-and-route constraints script forward-annotates timing constraints that you
made in the Precision Synthesis software. This integration allows you to enter these
constraints once in the Precision Synthesis software, and then pass them
automatically to the Quartus II software.

1 All of the constraints you set in the Precision Synthesis software are mapped to the
Quartus II software. For some constraints you set in the Precision Synthesis software,
there might be a different command mapped to the Quartus II software, depending
on whether you are using the TimeQuest Timing Analyzer or the Classic Timing
Analyzer.

f Refer to the introductory text in the section “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 11–10 for information on how to
ensure the Precision Synthesis software targets the TimeQuest Timing Analyzer.

The following constraints are translated by the Precision Synthesis software and are
applicable to the Classic Timing Analyzer and the TimeQuest Timing Analyzer:

■ create_clock

■ set_input_delay

■ set_output_delay

■ set_max_delay

■ set_min_delay

■ set_false_path

■ set_multicycle_path

create_clock
You can specify a clock in the Precision Synthesis software, as shown in Example 11–3.

Example 11–3. Specifying a Clock using create_clock

create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>} -domain \
<ClockDomain> <pin>

11–14 Chapter 11: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The period is specified in units of nanoseconds (ns). If no clock domain is specified,
the clock belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (related) clocks. If no <clock_name> is provided, the default
name virtual_default is used. The <edge_list> sets the rise and fall edges of the
clock signal over an entire clock period. The first value in the list is a rising transition,
typically the first rising transition after time zero. The waveform can contain any even
number of alternating edges, and the edges listed should alternate between rising and
falling. The position of any edge can be equal to or greater than zero but must be
equal to or less than the clock period.

If -waveform <edge_list> is not specified, and -period <period in ns> is specified,
the default waveform has a rising edge of 0.0 and a falling edge of <period_value>/2.

The Precision Synthesis software passes the clock definitions to the Quartus II
software with the create_base_clock command in the place-and-route constraints
file for the Classic Timing Analyzer. For the TimeQuest Timing Analyzer, the clock
constraint is mapped to the TimeQuest create_clock setting in the Quartus II
software.

The following list describes some differences in the clock properties supported by the
Precision Synthesis software and the Quartus II software:

■ The Quartus II software supports only clock waveforms with two edges in a clock
cycle. If the Precision Synthesis software finds a multi-edge clock, it issues an error
message when you synthesize your design in the Precision Synthesis software.
This applies to both the Quartus II TimeQuest Timing Analyzer and the Quartus II
Classic Timing Analyzer.

■ Clocks in the same clock domain are annotated with the
create_relative_clock command to create related clocks for the Quartus II
Classic Timing Analyzer.

■ The Quartus II Classic Timing Analyzer assumes the first clock edge to be at time
zero (0.0). If the Precision Synthesis software waveform has a first transition at a
time different than time zero, the Precision Synthesis software creates a base clock
without any target, then uses this to create a relative clock with an offset set to the
first clock edge.

set_input_delay
This port-specific input delay constraint is specified in the Precision Synthesis
software, as shown in Example 11–4.

This constraint is mapped to the set_input_delay setting in the Quartus II
software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The input pin name for the assignment can be
an input pin name of a time group. The software can use the option clock_fall to
specify delay relative to the falling edge of the clock.

Example 11–4. Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay

Chapter 11: Mentor Graphics Precision Synthesis Support 11–15
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

1 Although the Precision Synthesis software allows you to set input delays on pins
inside the design, these constraints are not sent to the Quartus II software, and a
message is displayed.

set_output_delay
This port-specific output delay constraint is specified in the Precision Synthesis
software, as shown in Example 11–5.

This constraint is mapped to the set_output_delay setting in the Quartus II
software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The output pin name for the assignment can
be an output pin name of a time group.

1 Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Quartus II software.

set_max_delay
The total delay for a point-to-point timing path constraint is specified in the Precision
Synthesis software, as shown in Example 11–6.

This command specifies that the maximum required delay for any start point in
<from_node_list> to any endpoint in <to_node_list> must be less than <delay_value>.
Typically, this command is used to override the default setup constraint for any path
with a specific maximum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The
-from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node on a list, you must enclose the nodes in
quotes or in '{ }' braces.

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_max_delay between clocks applies the exception from all registers or
ports driven by the source clock to all registers or ports driven by the destination
clock. Applying exceptions between clocks is more efficient than applying them for
specific node to node, or node to clock paths. If you want to specify pin names in the
list, the source must be a clock pin, and the destination must be any non-clock input
pin to a register. Assignments from clock pins, or to and from cells, apply to all
registers in the cell or for those driven by the clock pin.

Example 11–5. Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay

Example 11–6. Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

11–16 Chapter 11: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

set_min_delay
The minimum delay for a point-to-point timing path constraint is specified in the
Precision Synthesis software, as shown in Example 11–7.

This command specifies that the minimum required delay for any start point in
<from_node_list> to any endpoint in <to_node_list> must be greater than <delay_value>.
Typically, you use this command to override the default setup constraint for any path
with a specific minimum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The
-from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node to a list, you must enclose the nodes in
quotes or in ’{ }’ braces.

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_min_delay between clocks applies the exception from all registers or
ports driven by the source clock to all registers or ports driven by the destination
clock. Applying exceptions between clocks is more efficient than applying them for
specific node to node, or node to clock paths. If you want to specify pin names in the
list, the source must be a clock pin, and the destination must be any non-clock input
pin to a register. Assignments from clock pins, or to and from cells, apply to all
registers in the cell or for those driven by the clock pin.

set_false_path
The false path constraint is specified in the Precision Synthesis software, as shown in
Example 11–8.

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in
the list can be represented using wildcards such as “*” and “?”.

In place-and-route Tcl constraints file, this setting in the Precision Synthesis software
is mapped to a set_timing_cut_assignment setting for the Classic Timing
Analyzer. For the TimeQuest Timing Analyzer, this constraint is mapped to the
set_false_path setting.

The node lists for this assignment represents top-level ports and/or nets connected to
instances (end points of timing assignments).

The Quartus II software supports setup, hold, rise, or fall options for this
assignment only if you are using the TimeQuest Timing Analyzer.

The Quartus II Classic Timing Analyzer does not support false paths with the
through path specification. Any setting in the Precision Synthesis software with a
through specification can be mapped to a setting in the Quartus II software only if
you use the TimeQuest Timing Analyzer.

Example 11–7. Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 11–8. Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path

Chapter 11: Mentor Graphics Precision Synthesis Support 11–17
Exporting Designs to the Quartus II Software Using NativeLink Integration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

For the Classic Timing Analyzer, if you use the -from or -to option without using
both options, the Precision Synthesis command is converted to a Quartus II command
using wildcards. Table 11–3 lists these set_false_path constraints in the Precision
Synthesis software and the Quartus II software equivalent when the Classic Timing
Analyzer is used.

set_multicycle_path
This multi-cycle path constraint is specified in the Precision Synthesis software, as
shown in Example 11–9.

The node list can contain clocks, ports, instances, and pins. Multiple elements in the
list can be represented using wildcards such as “*” and “?”. Paths without multicycle
path definitions are identical to paths with multipliers of 1. To add one additional
cycle to the datapath, use a multiplier value of 2. The option start indicates that
source clock cycles should be considered for the multiplier. The option end indicates
that destination clock cycles should be considered for the multiplier. The default is to
reference the end clock.

In the place-and-route Tcl constraints file, this setting in the Precision Synthesis
software is mapped to a set_multicycle_assignment setting for the Classic
Timing Analyzer. For TimeQuest Timing Analyzer, this constraint is mapped to the
set_multicycle_path setting.

The node lists represent top-level ports and/or nets connected to instances (end
points of timing assignments). The node lists can contain wildcards (such as “*”); the
Quartus II software automatically expands all wildcards.

For the Classic Timing Analyzer, if you use the -from or -to option without using
both options, the Precision Synthesis command is converted to a Quartus II command
using wildcards. Table 11–4 lists the set_multicycle_path constraints in the
Precision Synthesis software and the Quartus II software equivalent, when the Classic
Timing Analyzer is used.

Table 11–3. set_false_path Constraints with the Classic Timing Analyzer

Precision Synthesis Assignment Quartus II Equivalent

set_false_path –from <from_node_list> set_timing_cut_assignment -to {*} -from \
<node_list>

set_false_path -to <to_node_list> set_timing_cut_assignmet -to <node_list> \
-from {*}

Example 11–9. Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from <from_node_list> \
-reset_path

Table 11–4. set_multicycle_path Constraints for the Classic Timing Analyzer

Precision Synthesis Assignment Quartus II Equivalent

set_multicycle_path -from \
<from_node_list> <value>

set_multicycle_assignment -to {*} \
-from <node_list> <value>

set_multicycle_path -to \
<to_node_list> <value>

set_multicycle_assignmet -to \
<node_list> -from {*} <value>

11–18 Chapter 11: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The Quartus II software supports the rise or fall options on this assignment only if
you use the TimeQuest Timing Analyzer.

The Quartus II Classic Timing Analyzer does not support multicycle path with a
through path specification. Any setting in Precision Synthesis software with a
-through specification can be mapped to a setting in the Quartus II software only if
you use the TimeQuest Timing Analyzer.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions, including the LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code or you can
infer certain megafunctions from generic HDL code.

If you want to instantiate a megafunction such as a PLL in your HDL code, you can do
so with the MegaWizard™ Plug-In Manager to parameterize the function or
instantiating the function using the port and parameter definition. The MegaWizard
Plug-In Manager provides a graphical interface within the Quartus II software for
customizing and parameterizing any available megafunction for the design.
“Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager” and
“Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP
Toolbench” on page 11–19 describe the MegaWizard Plug-In Manager flow with the
Precision Synthesis software.

f For more information about specific Altera megafunctions, refer to the Quartus II
Help. For more information about IP functions, refer to the appropriate IP
documentation.

The Precision software automatically recognizes certain types of HDL code and infers
the appropriate megafunction. The Precision Synthesis software provides options to
control inference of certain types of megafunctions, as described in “Inferring Altera
Megafunctions from HDL Code” on page 11–21.

f For a detailed discussion about instantiating versus inferring megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.
This chapter also provides details on using the MegaWizard Plug-In Manager in the
Quartus II software and explains the files generated by the wizard, as well as
providing coding style recommendations and HDL examples for inferring
megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
This section describes how to instantiate Altera megafunctions using the MegaWizard
Plug-In Manager, and how to generate the files that are included in the Precision
Synthesis project for synthesis.

You can run the stand-alone version of the MegaWizard Plug-In Manager by typing
the following command at a command prompt:

qmegawiz r

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 11: Mentor Graphics Precision Synthesis Support 11–19
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction
Instantiation
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation template
file <output file>_inst.v and a hollow-body black box module declaration <output
file>_bb.v for use in your Precision Synthesis design. Incorporate the instantiation
template file, <output file>_inst.v, into your top-level design to instantiate the
megafunction wrapper file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the megafunction wrapper file <output file>.v in your Precision Synthesis project is
optional, but you must add it to your Quartus II project along with the Precision
Synthesis-generated EDIF netlist.

Alternatively, you can include the megafunction wrapper file <output file>.v in your
Precision Synthesis project and then right-click on the file in the input file list, and
select Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is on, the Precision Synthesis software
excludes the file from compilation and makes a copy of the file in the appropriate
directory so that the Quartus II software can use it during place and route.

Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction
Instantiation
The MegaWizard Plug-In Manager generates a VHDL component declaration file
<output file>.cmp and a VHDL instantiation template file <output file>_inst.vhd for
use in your Precision Synthesis design. Incorporate the component declaration and
instantiation template into your top-level design to instantiate the megafunction
wrapper file, <output file>.vhd.

Adding the megafunction wrapper file <output file>.vhd in your Precision Synthesis
project is optional, but you must add it to your Quartus II project along with the
Precision Synthesis-generated EDIF netlist.

Alternatively, you can include the megafunction wrapper file <output file>.vhd in
your Precision Synthesis project and then right-click on the file in the input file list,
and select Properties. In the Input file properties dialog box, turn on Exclude file
from Compile Phase and click OK. When this option is on, the Precision Synthesis
software excludes the file from compilation and makes a copy of the file in the
appropriate directory so that the Quartus II software can use it during place and
route.

Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP
Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black-box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager and click Next to open
the IP Toolbench.

2. Click Set Up Simulation, which sets up all the EDA options.

11–20 Chapter 11: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

3. Enable the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

4. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
“grey box” information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file into your Precision Synthesis project as
an input file. Then include the megafunction wrapper file <output file>.v|vhd into the
Quartus II project along with your EDIF output netlist.

1 The generated “grey box” netlist file, <output file>_syn.v, is always in Verilog HDL
format, even if you select VHDL as the output file format.

1 There is currently no grey box support for SOPC Builder systems in the MegaWizard
Plug-In Manager. For information about creating a grey box netlist file from the
command line, search Altera's Knowledge Database. Alternatively, you can use a
black box approach as described in “Using Generated Verilog HDL Files for Black Box
IP Function Instantiation”.

Using Generated Verilog HDL Files for Black Box IP Function Instantiation
You can use the syn_black_box or black_box compiler directive to declare a
module as a black box. The top-level design files must contain the IP port mapping
and a hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project to instruct the
Precision Synthesis software that this is a black box.

1 The syn_black_box and black_box directives are supported only on module or
entity definition.

Example 11–10 shows a sample top-level file that instantiates my_verilogIP.v, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Example 11–10. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule

Chapter 11: Mentor Graphics Precision Synthesis Support 11–21
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Using Generated VHDL Files for Black Box IP Function Instantiation
You can use the syn_black_box or black_box compiler directive to declare a
component as a black box. The top-level design files must contain the megafunction
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

1 The syn_black_box and black_box directives are supported only on module or
entity definition.

Example 11–11 shows a sample top-level file that instantiates my_vhdlIP.vhd, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Inferring Altera Megafunctions from HDL Code
The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetic and relational operators, and memory (RAM and ROM), to
efficient technology-specific implementations. This allows for the use of
technology-specific resources to implement these structures by inferring the
appropriate Altera megafunction to provide optimal results. In some cases, the
Precision Synthesis software has options that you can use to disable or control
inference.

f For coding style recommendations and examples for inferring megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook, and the Precision Synthesis Style Guide in the Precision Manuals
Bookcase. To access these manuals, in the Precision Synthesis software, click Help and
select Open Manuals Bookcase.

Example 11–11. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

11–22 Chapter 11: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Multipliers
The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers, as described in the following section.

Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in the Stratix
series of devices to implement multipliers. The default setting is AUTO, to allow
Precision Synthesis software the flexibility to choose between logic look-up tables
(LUTs) and DSP blocks, depending on the size of the multiplier. You can use the
Precision Synthesis GUI or HDL attributes to direct the mapping to only logic
elements or to only DSP blocks. The options for multiplier mapping in the Precision
Synthesis software are shown in Table 11–5.

Using the GUI
To set the Use Dedicated Multiplier option in the Precision Synthesis GUI,
perform the following steps:

1. Compile the design.

2. In the Design Hierarchy browser, right-click the operator for the desired multiplier
and click Use Dedicated Multiplier.

Using Attributes
To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 11–5, as shown in
Example 11–12 and Example 11–13.

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier
code, such as a = b * c.

Table 11–5. Options for dedicated_mult Parameter to Control Multiplier Implementation in Precision
Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers.

AUTO Use logic (LUTs) and DSP blocks to implement multipliers depending on the size of
the multipliers.

Example 11–12. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 11–13. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

Chapter 11: Mentor Graphics Precision Synthesis Support 11–23
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Some signals for which the dedicated_mult attribute is set can be synthesized
away by the Precision Synthesis software because of design optimization. In such
cases, if you want to force the implementation, you should preserve the signal by
setting the preserve_signal attribute to TRUE, as shown in Example 11–14 and
Example 11–15.

Example 11–16 and Example 11–17 are examples in Verilog HDL and VHDL of using
the dedicated_mult attribute to implement the given multiplier in regular logic in
the Quartus II software.

Example 11–14. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE

Example 11–15. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 11–16. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b;
//synthesis attribute result dedicated_mult OFF

endmodule

Example 11–17. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;

11–24 Chapter 11: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Multiplier-Accumulators and Multiplier-Adders
The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD megafunction so
that the logic can be placed in DSP blocks, or maps directly to device atoms to
implement the multiplier in the appropriate type of logic.

1 The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks.

The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module. Refer to “Controlling DSP Block Inference” for more information.

f For more information about DSP blocks in Altera devices, refer to the appropriate
Altera device family handbook and device-specific documentation. For details about
which functions a given DSP block can implement, refer to the DSP Solutions Center
on the Altera website at www.altera.com.

For more information about inferring Multiply-Accumulator and Multiply-Adder
megafunctions in HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Synthesis Manuals Bookcase.

Controlling DSP Block Inference
By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM megafunction as appropriate for your design. These
megafunctions allow the Quartus II software the flexibility to choose regular logic or
DSP blocks depending on the device utilization and the size of the function.

You can use the extract_mac attribute to prevent the inference of an
ALTMULT_ADD or ALTMULT_ACCUM megafunction in a certain module or entity.
The options for this attribute are shown in Table 11–6.

To control inference, use the extract_mac attribute with the appropriate value from
Table 11–6 in your HDL code, as shown in Example 11–18 and Example 11–19.

Table 11–6. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is inferred

FALSE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is not inferred

Example 11–18. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example 11–19. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 11: Mentor Graphics Precision Synthesis Support 11–25
Guidelines for Altera Megafunctions and Architecture-Specific Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

Example 11–20 and Example 11–21 use the extract_mac, dedicated_mult, and
preserve_signal attributes (in Verilog HDL and VHDL) to implement the given
DSP function in logic in the Quartus II software.

Example 11–20. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL

module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;
else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

11–26 Chapter 11: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

RAM and ROM
The Precision Synthesis software detects memory structures in HDL code and
converts them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP
megafunction, depending on the device family. The software then places these
functions in memory blocks.

The software supports inference for these functions only if the target device family
has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in HDL code,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook, and the Precision Synthesis Style Guide in the Precision Synthesis Manuals
Bookcase. To access these manuals, in the Precision Synthesis software, click Help and
select Open Manuals Bookcase.

Example 11–21. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS

PORT(
a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS

SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);
ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 11: Mentor Graphics Precision Synthesis Support 11–27
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
hierarchical or incremental design flow is often an effective design approach. In an
incremental compilation flow, you can make changes to a part of the design while
maintaining the placement and performance of unchanged parts of the design. Design
iterations can be made dramatically faster by focusing new compilations on particular
design partitions and merging results with the results of previous compilations of
other partitions. You can perform optimization on individual blocks and then
integrate them into a final design and optimize it at the top level.

The first step in a hierarchical or incremental design flow is to make sure that different
parts of your design do not affect each other. Ensure that you have separate netlists
for each partition in your design so that you can take advantage of the incremental
compilation design flow in the Quartus II software. If the whole design is in one
netlist file, changes in one partition affect other partitions because of possible node
name changes when you resynthesize the design.

You can create different implementations for each partition in your Precision
Synthesis project, which allows you to switch between partitions without leaving the
current project file. You can also create a separate project for each partition if you
require separate projects for a team-based design flow. Alternatively, you can use the
incremental synthesis capability in the Precision RTL Plus software.

f For more information about creating partitions and using incremental compilation in
the Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Precision RTL Plus Incremental Synthesis
The Precision RTL Plus incremental synthesis flow for Quartus II incremental
compilation uses a partition-based approach to achieve faster design iterations cycle
time in one Precision implementation without sacrificing design performance.

Using the incremental synthesis feature, you can create different netlist files for
different partitions of a design hierarchy within one partition implementation. This
makes each partition independent of the others in an incremental compilation flow. In
either case, only the portions of a design that have been updated must be recompiled
during design iterations. You can make changes and resynthesize one partition in a
design to create a new netlist without affecting the synthesis results or fitting of other
partitions.

The following steps show a general flow for partition-based incremental synthesis
with Quartus II incremental compilation.

1. Create Verilog HDL or VHDL design files as you do in the regular design flow.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design and indicate the partitions using the incr_partition attribute. For
the syntax to create partitions, refer to “Creating Partitions with the incr_partition
Attribute” on page 11–28.

3. Create a project in the Precision RTL Plus Synthesis software and add the HDL
design files to the project.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

11–28 Chapter 11: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using
one of these methods:

■ On the Tools menu, click Set Options. On the Optimization page, turn on
Enable Incremental Synthesis.

■ Run the following command in the Transcript Window:

setup_design -enable_incr_synth r
5. Run the basic Precision Synthesis flow of compile, synthesis, and place-and-route

on your design. In subsequent runs, the Precision RTL Plus Synthesis software
processes only the parts of the design that have changed, resulting in a shorter
iteration than the initial run. The performance of the unchanged partitions is
preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged
partitions to Post-Fit, and the changed partitions to Post-Synthesis. You can
change the netlist type during timing closure in the Quartus II software to get the
best QoR.

6. Import the EDIF netlist for each partition and the top-level .tcl file into the
Quartus II software and set up the Quartus II project to use incremental
compilation.

7. Compile your Quartus II project.

1 To change the Quartus II incremental compilation netlist type for a
partition, on the Assignments menu, click Design Partitions Window.

■ To preserve the previous post-fit placement results, change the Netlist Type of
the partition to Post-Fit.

■ To preserve the previous routing results, set the Fitter Preservation Level of
the partition to Placement and Routing.

Creating Partitions with the incr_partition Attribute
Partitions are set using the HDL incr_partition attribute. The Precision Synthesis
software creates or deletes partitions by looking at this attribute during compile
iterations. The attribute can be attached to either the design unit definition, or an
instance. Example 11–22 and Example 11–23 show how to use the attribute to create
partitions. Simply remove the attribute or set the attribute value to false to delete the
partitions.

1 The Precision Synthesis software ignores partitions set in a black box.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–29
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Multiple EDIF Netlist Files Using Separate Precision Projects or
Implementations

This section describes how to manually generate multiple EDIF netlist files for
incremental compilation using black boxes and separate Precision projects or
implementations for each design partition. This manual flow is supported in versions
of the Precision software that do not include the incremental synthesis feature. You
might also use this feature if you perform synthesis in a team-based environment
where there is no one top-level synthesis project that includes all of the lower-level
design blocks.

In the Precision Synthesis software, create a separate implementation or a separate
project for each lower-level module and for the top-level design that you want to
maintain as a separate EDIF netlist file. Implement black box instantiations of
lower-level modules in your top-level implementation or project.

Example 11–22. Using incr_partition Attribute to Create Partition in Verilog HDL

Design unit partition:

module my_block(
 input clk;
 output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 11–23. Using incr_partition Attribute to Create Partition in VHDL

Design unit partition:

entity my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
 attribute incr_partition : boolean;
 attribute incr_partition of my_block : entity is true;
end entity my_block;

Instance partition:

component my_block is
 port(

clk : in std_logic;
data_out : out std_logic_vector(31 downto 0)

);
end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
 port map(clk, data_out);

11–30 Chapter 11: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

f For more information about managing implementations and projects, refer to the
Precision RTL Synthesis User’s Manual. To access this manual, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

When synthesizing the implementations for lower-level modules, perform these steps
in the Precision Synthesis software:

1. On the Tools menu, turn off Add IO Pads on the Optimization page under Set
Options.

1 You must turn off the Add IO Pads option while synthesizing the
lower-level modules individually. Enable the Add IO Pads option only
while synthesizing the top-level module.

2. Read the HDL files for the modules.

1 Modules can include black box instantiations of lower-level modules that
are also maintained as separate EDIF files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these steps:

1. Read the HDL files for top-level designs.

2. On the Tools menu, click Set Options. On the Optimization page, turn on Add IO
Pads.

3. Create black boxes for lower-level modules in the top-level design.

4. Add constraints.

1 In a top-down Quartus II incremental compilation flow, Precision constraints made on
lower-level modules are not passed to the Quartus II software. Ensure that
appropriate constraints are made in the top-level Precision Synthesis project, or in the
Quartus II project.

The following sections describe an example of implementing black boxes to create
separate EDIF netlists. Figure 11–2 shows an example of a design hierarchy separated
into various partitions.

Figure 11–2. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

Chapter 11: Mentor Graphics Precision Synthesis Support 11–31
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

In Figure 11–2, the top-level partition contains the top-level block in the design (block
A) and the logic that is not defined as part of another partition. In this example, the
partition for top-level block A also includes the logic in the C sub-block. Because block
F is contained in its own partition, it is not treated as part of the top-level partition A.
Another separate partition, B, contains the logic in blocks B, D, and E. In a team-based
design, different engineers may work on the logic in different partitions. One netlist is
created for the top-level module A and its submodule C, another netlist is created for
module B and its submodules D and E, while a third netlist is created for module F. To
create multiple EDIF netlist files for this design, follow these steps:

1. Generate an EDIF file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate an EDIF file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level EDIF file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you create black boxes for modules B and F, which were
optimized separately in the previous steps.

The goal is to individually synthesize and generate an EDIF netlist file for each
lower-level module and then instantiate these modules as black boxes in the top-level
file. You can then synthesize the top-level file to generate the EDIF netlist file for the
top-level design. Finally, both the lower-level and top-level EDIF netlist files are
provided to your Quartus II project.

1 When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate the new EDIF netlist file. Do not
resynthesize the implementations or projects for the unchanged partitions.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In Verilog HDL, you must
provide an empty module declaration for any module that is treated as a black box.

A black box for the top-level file A.v is shown in the following example. Use this same
procedure for any lower-level files, which also contain a black box for any module
beneath the current level of hierarchy.

11–32 Chapter 11: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In VHDL, you must have a
component declaration for the black box just like any other block in the design.

A black box for the top-level file A.vhd is shown in Example 11–25. Follow this same
procedure for any lower-level files that also contain a black box or for any block
beneath the current level of hierarchy.

Example 11–24. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;
wire [15:0] cnt_out;
B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
// Any other code in A.v goes here.

endmodule
// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.
module B (data_in, clk, ld, data_out);

input data_in, clk, ld;
output [15:0] data_out;

endmodule
module F (d, clk, e, q);

input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Chapter 11: Mentor Graphics Precision Synthesis Support 11–33
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

After you complete the steps outlined in this section, you have different EDIF netlist
files for each partition of the design. These files are ready for use with incremental
compilation in the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files
The Precision Synthesis software creates a .tcl file for each implementation, and
provides the Quartus II software with the appropriate constraints and information to
set up a project. When using incremental synthesis, the Precision RTL Plus Synthesis
software creates only a single .tcl file, <project name>_incr_partitions.tcl, to pass the
partition information to the Quartus II software. For details about using the .tcl script
generated by the Precision Synthesis software to set up your Quartus II project and to
pass your top-level constraints, refer to “Running the Quartus II Software Manually
Using the Precision Synthesis-Generated Tcl Script” on page 11–12.

Example 11–25. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
COMPONENT F PORT(

d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here
END a_arch;

11–34 Chapter 11: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Depending on your design methodology, you can create one Quartus II project for all
EDIF netlists (a top-down flow), or a separate Quartus II project for each EDIF netlist
(a bottom-up flow). In a top-down compilation design flow, you create design
partition assignments for each partition in the design within a single Quartus II
project. This methodology provides the best QoR and performance preservation
during incremental changes to your design. You might have to use a bottom-up
design flow when each partition must be optimized separately, such as in certain
team-based design flows.

To perform a bottom-up compilation in the Quartus II software, create separate
Quartus II projects and import each design partition into a top-level design using the
incremental compilation export and import features to maintain placement results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
Use the <top-level project>.tcl file generated for the top-level partition to create your
Quartus II project and import all the netlists into this one Quartus II project for an
incremental compilation flow. You can optimize all partitions within the single
Quartus II project and take advantage of the performance preservation and
compilation time reduction that incremental compilation provides. Figure 11–3 shows
the design flow for the example design in Figure 11–2 on page 11–30.

All the constraints from the top-level implementation are passed to the Quartus II
software in the top-level .tcl file, but any constraints made only in the lower-level
implementations within the Precision Synthesis software are not forward-annotated.
Enter these constraints manually in your Quartus II project.

Figure 11–3. Design Flow Using Multiple EDIF Files with One Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
top-level Precsion
Synthesis software

assignments.
Enter any lower level

assignments manually.

Chapter 11: Mentor Graphics Precision Synthesis Support 11–35
Incremental Compilation and Block-Based Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Creating Multiple Quartus II Projects for a Bottom-Up Flow
Use the .tcl files generated by the Precision Synthesis software for each Precision
Synthesis software implementation or project to generate multiple Quartus II projects,
one for each partition in the design. Each designer in the project can optimize their
block separately in the Quartus II software and export the placement of their blocks
using incremental compilation. Designers should create a LogicLock region to
provide a floorplan location assignment for each block; the top-level designer should
then import all the blocks and assignments into the top-level project. Figure 11–4
shows the design flow for the example design in Figure 11–2 on page 11–30.

Hierarchy and Design Considerations
To ensure the proper functioning of the synthesis flow, you can create separate
partitions only for modules, entities, or existing netlist files. In addition, each module
or entity must have its own design file. If two different modules are in the same
design file but are defined as being part of different partitions, you cannot maintain
incremental synthesis because both regions must be recompiled when you change one
of the modules.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software
pushes the tri-states through the hierarchy to the top level to make use of the tri-state
drivers on output pins of Altera devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Figure 11–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision Synthesis
software assignments.

Use f.tcl to import
Precision Synthesis
software assignments.

Use b.tcl to import
Precision Synthesis

software assignments.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

11–36 Chapter 11: Mentor Graphics Precision Synthesis Support
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Conclusion
Advanced synthesis is an important part of the design flow. The Mentor Graphics
Precision Synthesis software and Quartus II design flow allow you to control how to
prepare your design files for the Quartus II place-and-route process. This allows you
to improve performance and optimize your design for use with Altera devices.
Several of the methodologies outlined in this chapter can help you optimize your
design to achieve performance goals and decrease design time.

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ Precision RTL Synthesis User’s Manual in the Precision Manuals Bookcase

■ Precision Synthesis Style Guide in the Precision Manuals Bookcase

■ Precision Synthesis Reference Manual in the Precision Manuals Bookcase

■ Specifying EDA Tool Settings in the Quartus II Help index

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 11: Mentor Graphics Precision Synthesis Support 11–37
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Document Revision History
Table 11–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 11–7. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Minor updates for the Quartus II software
version 9.1 release

Updated for the Quartus II software version 9.1
release

March 2009
v9.0.0

■ Updated list of supported devices for the
Quartus II software version 9.0 release

■ Chapter 11 was previously Chapter 10 in
software version 8.1

Updated chapter for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size

■ Title changed to Mentor Graphics Precision
Synthesis Support

■ Updated list of supported devices

■ Added information about the Precision RTL
Plus incremental synthesis flow

■ Updated Figure 10-1 to include
SystemVerilog

■ Updated “Guidelines for Altera
Megafunctions and Architecture-Specific
Features” on page 10–19

■ Updated “Incremental Compilation and
Block-Based Design” on page 10–28

■ Added section “Creating Partitions with the
incr_partition Attribute” on page 10–29

Updated chapter for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Removed Mercury from the list of
supported devices

■ Changed Precision version to 2007a update
3

■ Added note for Stratix IV support

■ Renamed “Creating a Project and Compiling
the Design” section to “Creating and
Compiling a Project in the Precision RTL
Synthesis Software”

■ Added information about constraints in the
Tcl file

■ Updated document based on the Quartus II
software version 8.0

Updated chapter based on the Quartus II software
version 8.0

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

11–38 Chapter 11: Mentor Graphics Precision Synthesis Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

12. Mentor Graphics LeonardoSpectrum
Support

This chapter documents key design methodologies and techniques for Altera® devices
using the LeonardoSpectrum and Quartus II design flow.

Introduction
Combining HDL coding techniques, Mentor Graphics LeonardoSpectrum™ software
constraints, and Quartus® II options provide the performance increase required for
today’s system-on-a-programmable-chip (SOPC) designs. This chapter includes the
following sections:

■ “Altera Device Family Support”

■ “Design Flow” on page 12–2

■ “Optimization Strategies” on page 12–4

■ “Timing Analysis with the LeonardoSpectrum Software” on page 12–7

■ “Exporting Designs Using NativeLink Integration” on page 12–7

■ “Guidelines for Altera Megafunctions and LPM Functions” on page 12–9

■ “Block-Based Design with the Quartus II Software” on page 12–17

f Altera recommends using the advanced Precision Synthesis software for new designs
in new device families. For more information about Precision RTL Synthesis, refer to
the Mentor Graphics Precision Synthesis Support chapter in volume 1 of the Quartus II
Handbook.

1 This chapter assumes that you have set up, licensed, and are familiar with the
LeonardoSpectrum software.

f To obtain and license the LeonardoSpectrum software, refer to the Mentor Graphics
website at www.mentor.com. For information about installing the LeonardoSpectrum
software and setting up your working environment, refer to the LeonardoSpectrum
Installation Guide and the LeonardoSpectrum User’s Manual.

Altera Device Family Support
The LeonardoSpectrum software is a mature synthesis tool supporting legacy devices
and many current devices. The following list shows the Altera device families
supported by the LeonardoSpectrum software version 2009a with the Quartus II
software version 9.1:

■ Arria® GX

■ Cyclone® series

■ MAX® series

■ Stratix® series

QII51010-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii51011.pdf

12–2 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Design Flow

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The LeonardoSpectrum software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX
6000 legacy devices that are supported by the Quartus II software version 9.0 and
earlier.

1 Newly released device families may not be supported. Contact Mentor Graphics for
more information.

Design Flow
The following are basic steps in a LeonardoSpectrum-Quartus II design flow:

1. Create Verilog HDL or VHDL design files in the LeonardoSpectrum software or a
text editor.

2. Import the Verilog HDL or VHDL design files into the LeonardoSpectrum
software for synthesis.

3. Select a target device and add timing constraints and compiler directives to help
optimize the design during synthesis.

4. Synthesize the project in the LeonardoSpectrum software.

5. Create a Quartus II project and import the technology-specific EDIF Input File
(.edf) netlist and the Tcl Script File (.tcl) generated by the LeonardoSpectrum
software into the Quartus II software for placement and routing, and for
performance evaluation.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

Figure 12–1 on page 12–3 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–3
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

If your area and timing requirements are satisfied, use the programming files
generated by the Quartus II software to program or configure the Altera device. As
shown in Figure 12–1, if the area or timing requirements are not met, change the
constraints in the LeonardoSpectrum software and re-run the synthesis. Repeat the
process until the area and timing requirements are met. You can also use other
Quartus II software options and techniques to meet the area and timing requirements.

Figure 12–1. Recommended Design Flow Using LeonardoSpectrum and Quartus II Software

No

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post-Synthesis
Simulation Files

(.vho/.vo)

Forward Annotated
Timing Constraints
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Gate-Level
Functional
Simulation

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/
Programming
Files (.sof/.pof)

LeonardoSpectrum Software

Quartus II Software

Constraints
& Settings

Constraints
& Settings

Program/Configure Device

Verilog
HDL
(.v)

VHDL
(.vhd)

12–4 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The LeonardoSpectrum software supports both VHDL and Verilog HDL source files.
With the appropriate license, it also supports mixed synthesis, allowing a combination
of VHDL and Verilog HDL source files. After synthesis, the LeonardoSpectrum
software produces several intermediate and output files. Table 12–1 lists these file
extensions with a short description of each file.

Altera recommends that you do not use project directory names that include spaces.
Some file operations in the LeonardoSpectrum software do not work correctly if the
path name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). Many of these constraints are
forward-annotated in the .tcl file for use by the Quartus II software.

1 The LeonardoSpectrum software does not generate a Synopsys Design Constraint
(SDC) format file for the TimeQuest Timing Analyzer. If you use TimeQuest, you must
convert your timing constraints to SDC format for use in the Quartus II software.
Altera recommends using the Mentor Graphics advanced Precision Synthesis
software for new designs in new device families, instead of using the
LeonardoSpectrum software.

The LeonardoInsight™ Schematic Viewer is an add-on graphical tool for schematic
views of the technology-independent RTL netlist (.xdb) and the technology-specific
gate-level results. You can use the Schematic Viewer to visually analyze and debug
the design. It also supports cross-probing between the RTL and gate-level schematics,
the design browser, and the source code in the HDLInventor™ text editor.

Optimization Strategies
You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. Other Flow tabs provide additional options, and
some Flow tabs include multiple Power tabs (at the bottom of the screen) with more
options. Advanced optimization options in the LeonardoSpectrum software include
timing-driven synthesis, encoding style, resource sharing, and mapping I/O registers.

Table 12–1. LeonardoSpectrum Intermediate and Output Files

File Extension(s) File Description

.xdb Technology-independent register transfer level (RTL) netlist file that can only be read by the
LeonardoSpectrum software.

.edf Technology-specific output netlist in electronic design interchange format (EDIF).

.tcl Forward-annotated constraints file containing constraints and assignments.

A .tcl file for the Quartus II software is created for all devices. The .tcl file contains the appropriate
Tcl commands to create and set up a Quartus II project and pass placement constraints.

.acf Assignment and Configurations file for backward compatibility with the MAX+PLUS II software.
For devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported
from the MAX+PLUS II .acf file.

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–5
Optimization Strategies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Timing-Driven Synthesis
The LeonardoSpectrum software supports timing-driven synthesis through
user-assigned timing constraints to optimize the performance of the design. The
process for setting constraints in the LeonardoSpectrum software is straightforward.
Constraints such as clock frequency can be specified globally or for individual clock
signals. The following sections describe how to set the various types of timing
constraints in the LeonardoSpectrum software.

The timing constraints described in “Global Power Tab” are set in the Constraints
Flow tab. In this tab, there are Power tabs at the bottom, such as Global and Clock, for
setting various constraints.

Global Power Tab
The Global tab is the default Power tab in the Constraints Flow tab where you can
specify the global clock frequency. The Clock Frequency on the Quick Setup tab is
equivalent to the Registers to Registers delay setting. You can also specify the Input
Ports to Registers, Registers to Output Ports, and Inputs to Outputs delays that
correspond to global tSU, tCO, and tPD requirements, respectively, in the Quartus II
software. The timing diagram on this tab reflects the settings you have made.

Clock Power Tab
You can set various constraints for each clock in your design. First, select the clock
name in the Clock(s) window. The clock names appear after the design is read from
the Input Flow tab. Configure settings for that particular clock and click Apply. If
necessary, you can also set the Duty Cycle to a value other than the default 50%. The
timing diagram shows these settings.

If a clock has an Offset from the main clock, which is considered to be time “0”, this
constraint corresponds to the OFFSET_FROM_BASE_CLOCK setting in the Quartus II
software.

You can specify the pin number for the clock input pin in the Pin Location field. This
pin number is passed to the Quartus II software for place-and-route, but does not
affect synthesis in the LeonardoSpectrum software.

Input and Output Power Tabs
Configure settings for individual input or output pins in the Input and Output tabs.
First, select a name in the Input Ports or Output Ports window. The names appear
after the design is read from the Input Flow tab. Then make the setting for that pin as
described below.

The Arrival Time setting indicates that the input signal arrives a specified time after
the rising clock edge (time “0”). This setting constrains the path from the pin to the
first register by including the arrival time in the total delay, and corresponds to the
EXTERNAL_INPUT_DELAY assignment in the Quartus II software.

The Required Time setting indicates the maximum delay after time “0” that the
output signal should arrive at the output pin. This setting directly constrains the
register to output delay, and corresponds with the EXTERNAL_OUTPUT_DELAY
assignment in the Quartus II software.

12–6 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Optimization Strategies

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Specify the pin number for the I/O pin in the Pin Location field. This pin number is
passed to the Quartus II software for place-and-route, but does not affect synthesis in
the LeonardoSpectrum software.

Other Constraints
The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface and contain these topics:

■ “Encoding Style”

■ “Resource Sharing”

■ “Mapping I/O Registers”

Encoding Style
The LeonardoSpectrum software encodes state machines during the synthesis
process. To improve performance when coding state machines, separate state machine
logic from all arithmetic functions and data paths. When encoded, a design cannot be
re-encoded later in the optimization process. You must follow a particular VHDL or
Verilog HDL coding style for the LeonardoSpectrum software to identify the state
machine.

Table 12–2 shows the state machine encoding styles supported by the
LeonardoSpectrum software.

The Encoding Style setting is created in the Input Flow tab. It instructs the software
to use a particular state machine encoding style for all state machines. The default
Auto selection implements binary or one-hot encoding, depending on the size of
enumerated types in the state machine.

f To ensure proper recognition and improve performance when coding state machines,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook for design guidelines.

Resource Sharing
You can also enable the Resource Sharing setting in the Input Flow tab. This setting
allows optimization to reduce device resources. You should generally leave this
setting turned on.

Table 12–2. State Machine Encoding Styles in the LeonardoSpectrum Software

Style Description

Binary Generates state machines with the fewest possible flipflops. Binary state machines are useful for
area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be glitchless.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines provide the best
performance and shortest clock-to-output delays. However, one-hot implementations are usually larger
than binary implementations.

Random Generates state machines using random state machine encoding. Only use random state machine
encoding when no other implementation achieves the desired results.

Auto (Default) Implements binary or one-hot encoding, depending on the size of enumerated types in the state machine.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–7
Timing Analysis with the LeonardoSpectrum Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Mapping I/O Registers
The Map I/O Registers option is located in the Technology Flow tab. The Map I/O
Registers option applies to Altera FPGAs containing I/O cells (IOCs) or I/O elements
(IOEs). If the option is turned on, input or output registers are moved into the device’s
I/O cells for faster setup or clock-to-output times.

Timing Analysis with the LeonardoSpectrum Software
The LeonardoSpectrum software reports successful synthesis with an information
message in the Transcript or Information window. Estimated device usage and timing
results are reported in the Device Utilization section of this window. Figure 12–2
shows an example of a LeonardoSpectrum compilation report.

The LeonardoSpectrum software estimates the timing results based on timing models.
The LeonardoSpectrum software has no information about how the design is placed
and routed in the Quartus II software, so it cannot report accurate routing delays.
Additionally, if the design includes any black boxed Altera-specific functions, the
LeonardoSpectrum software does not report timing information for these functions.

Final timing results are generated by the Quartus II software and are reported
separately in the Transcript or Information window if the Run Integrated Place and
Route option is turned on. Refer to “Integration with the Quartus II Software” for
more information.

Exporting Designs Using NativeLink Integration
You can use NativeLink® integration to integrate the LeonardoSpectrum software and
the Quartus II software with a single GUI for both the synthesis and place-and-route
operations. You can run the Quartus II software from within the LeonardoSpectrum
software GUI with NativeLink integration or you can run the LeonardoSpectrum
software from within the Quartus II software GUI for device families supported in the
Quartus II software.

Figure 12–2. LeonardoSpectrum Compilation Report

12–8 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Exporting Designs Using NativeLink Integration

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Generating Netlist Files
The LeonardoSpectrum software generates an .edif netlist file readable as an input file
in the Quartus II software for place-and-route. Select the .edif file option name in the
Output Flow tab. The .edif netlist file is also generated if the Auto option is turned on
in the Output Flow tab.

Including Design Files for Black Boxed Modules
If the design has black boxed megafunctions, be sure to include the MegaWizard™
Plug-In Manager-generated custom megafunction variation design file in the
Quartus II project directory, or add it to the list of project files for place-and-route.

Passing Constraints with Scripts
The LeonardoSpectrum software can write out a .tcl file called <project name>.tcl. This
file contains commands to create a Quartus II project along with constraints and other
assignments. To output a Tcl script, turn on the Write Vendor Constraint Files option
in the Output Flow tab.

To create and compile a Quartus II project using the .tcl file generated from the
LeonardoSpectrum software, perform the following steps in the Quartus II software:

1. Place the .edif netlist files and Tcl scripts in the same directory.

2. On the View menu, point to Utility, and click Tcl Console to open the Quartus II
Tcl Console.

3. Type source <path>/<project name>.tcl at a Tcl Console command
prompt.

4. On the File menu, click Open Project to open the new project. On the Processing
menu, click Start Compilation.

1 The LeonardoSpectrum software does not generate a Synopsys Design Constraint
(SDC) format file for the TimeQuest Timing Analyzer. If you use TimeQuest, you must
convert your timing constraints to SDC format for use in the Quartus II software.
Altera recommends using the Mentor Graphics advanced Precision Synthesis
software for new designs in new device families, instead of using the
LeonardoSpectrum software.

Integration with the Quartus II Software
You can launch the Quartus II software from within the LeonardoSpectrum software
with the Place And Route section in the Quick Setup tab. Turn on the Run Integrated
Place and Route option to start the compilation using the Quartus II software to show
the fitting and performance results. You can also run the place-and-route software by
turning on the Run Quartus option on the Physical Flow tab and clicking Run PR.

To use integrated place-and-route software, on the Options menu, point to Place and
Route Path and click Tools. Specify the location of the Quartus II software executable
file (browse to <Quartus II software installation directory>/bin).

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–9
Guidelines for Altera Megafunctions and LPM Functions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Guidelines for Altera Megafunctions and LPM Functions
Altera provides parameterizable megafunctions ranging from simple arithmetic units,
such as adders and counters, to advanced phase-locked loop (PLL) blocks,
multipliers, and memory structures. These functions are performance-optimized for
Altera devices. Megafunctions include the library of parameterized modules (LPM),
device-specific megafunctions such as PLLs, LVDS, and digital signal processing
(DSP) blocks, intellectual property (IP) available as Altera MegaCore® functions, and
IP available through the Altera Megafunction Partners Program (AMPPsm).

1 Some IP cores require that you synthesize them in the LeonardoSpectrum software.
Refer to the user guide for the specific IP.

There are two methods for handling megafunctions in the LeonardoSpectrum
software: inference and instantiation.

The LeonardoSpectrum software supports inferring some of the Altera
megafunctions, such as multipliers, DSP functions, and RAM and ROM blocks. The
LeonardoSpectrum software supports all Altera megafunctions through instantiation.

Instantiating Altera Megafunctions
There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The first and least common method is to directly
instantiate the megafunction in the Verilog HDL or VHDL code. The second method,
to maintain target technology awareness, is to use the MegaWizard Plug-In Manager
in the Quartus II software to set up and parameterize a megafunction variation. The
megafunction wizard creates a wrapper file that instantiates the megafunction. The
advantage of using the megafunction wizard in place of the instantiation method is
the megafunction wizard properly sets all the parameters and you do not need the
library support required in the direct instantiation method. This is referred to as black
box methodology.

1 Altera recommends using the MegaWizard Plug-In Manager to ensure that the ports
and parameters are set correctly.

f When directly instantiating megafunctions, see the Quartus II Help for a list of the
ports and parameters.

Inferring Altera Memory Elements
The LeonardoSpectrum software can infer memory blocks from Verilog HDL or
VHDL code. When the LeonardoSpectrum software detects a RAM or ROM from the
style of the RTL code at a technology-independent level, it then maps the element to a
generic module in the RTL database. During the technology-mapping phase of
synthesis, the LeonardoSpectrum software maps the generic module to the most
optimal primitive memory cells, or Altera megafunction, for the target Altera
technology.

f For more information about inferring RAM and ROM megafunctions, including
examples of VHDL and Verilog HDL code, see the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

12–10 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Inferring RAM

The LeonardoSpectrum software supports RAM inference for various device families.
The following are the restrictions for the LeonardoSpectrum software to successfully
infer RAM in a design:

■ The write process must be synchronous

■ The read process can be asynchronous or synchronous depending on the target
Altera architecture

■ Resets on the memory are not supported

The Stratix series and the Cyclone series support the RAM primitive altsyncram
with a minimum RAM size of 2 bits, and a minimum RAM address width of 1 bit.

To disable RAM inference, set the extract_ram and infer_ram variables to
“false.” On the Tools menu, click Variable Editor to enter the value “false” when
synthesizing in the user interface with the Advanced Flow tabs, or add the commands
set extract_ram false and set infer_ram false to your synthesis script.

Inferring ROM

You can implement ROM behavior in HDL source code with CASE statements or
specify the ROM as a table. The LeonardoSpectrum software infers both synchronous
and asynchronous ROM depending on the target Altera device. For example, memory
for the Stratix series devices must be synchronous to be inferred.

To disable ROM inference, set the extract_rom variable to “false.” To enter the
value “false” when synthesizing in the user interface with the Advanced Flow tabs,
on the Tools menu, click Variable Editor, or add the commands set extract_rom
false to your synthesis script.

Inferring Multipliers and DSP Functions
Some Altera devices include dedicated DSP blocks optimized for DSP applications.
The following Altera megafunctions are used with DSP block modes:

■ LPM_MULT

■ ALTMULT_ACCUM

■ ALTMULT_ADD

You can instantiate these megafunctions in the design or have the LeonardoSpectrum
software infer the appropriate megafunction by recognizing a multiplier,
multiplier-accumulator (MAC), or multiplier-adder in the design. The Quartus II
software maps the functions to the DSP blocks in the device during place-and-route.

f For more information about inferring multipliers and DSP functions, including
examples of VHDL and Verilog HDL code, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–11
Guidelines for Altera Megafunctions and LPM Functions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Simple Multipliers
The LPM_MULT megafunction implements the DSP block in the simple multiplier
mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage

■ Signed and unsigned arithmetic is supported

Multiplier Accumulators
The ALTMULT_ACCUM megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage

■ The output registers are required for the accumulator

■ The input and pipeline registers are optional

■ Signed and unsigned arithmetic is supported

1 If the design requires input registers to be used as shift registers, use the black box
method to instantiate the ALTMULT_ACCUM megafunction.

Multiplier Adders
The LeonardoSpectrum software can infer multiplier adders and map them to either
the two-multiplier adder mode or the four-multiplier adder mode of the DSP blocks.
The LeonardoSpectrum software maps the HDL code to the correct ALTMULT_ADD
function.

The following functionality is supported in these modes:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage

■ Signed and unsigned arithmetic is supported, but support for the Verilog HDL
“signed” construct is limited

Controlling DSP Block Inference
Device features, such as dedicated DSP blocks, multipliers, multiply-accumulators,
and multiply-adders can be implemented in DSP blocks or in logic. You can control
this implementation through attribute settings in the LeonardoSpectrum software.

As shown in Table 12–3, attribute settings in the LeonardoSpectrum software control
the implementation of the multipliers in DSP blocks or logic at the signal block (or
module), and project level.

Table 12–3. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software (Part 1 of 2) (Note 1)

Level Attribute Name Value Description

Global extract_mac (2) TRUE All multipliers in the project mapped to DSP blocks.

FALSE All multipliers in the project mapped to logic.

12–12 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Module extract_mac (3) TRUE Multipliers inside the specified module mapped to DSP blocks.

FALSE Multipliers inside the specified module mapped to logic.

Signal dedicated_mult ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred, but multipliers implemented in logic by the Quartus II software.

LCELL LPM not inferred, and multipliers implemented in logic by the
LeonardoSpectrum software.

AUTO LPM inferred, but the Quartus II software automatically maps the multipliers to
either logic or DSP blocks based on the Quartus II software place-and-route.

Notes to Table 12–3:

(1) The extract_mac attribute takes precedence over the dedicated_mult attribute.
(2) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for all modules.

Table 12–3. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software (Part 2 of 2) (Note 1)

Level Attribute Name Value Description

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–13
Guidelines for Altera Megafunctions and LPM Functions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Global Attribute
You can set the global attribute extract_mac to control the implementation of
multipliers in DSP blocks for the entire project. You can set this attribute using the
script interface. The script command is:

set extract_mac <value>

Module Level Attributes
You can control the implementation of multipliers inside a module or component by
setting attributes in the Verilog HDL source code. The attribute used is
extract_mac. Setting this attribute for a module affects only the multipliers inside
that module. The command is:

//synthesis attribute <module name> extract_mac <value>

The Verilog HDL and VHDL code samples in Example 12–1 and Example 12–2 show
how to use the extract_mac attribute.

Example 12–1. Using Module Level Attributes in Verilog HDL Code

module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE
// Port Declaration
input [15:0] dataa;
input [15:0] datab;
input [15:0] datac;
input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] mult0_result;
wire [31:0] mult1_result;

// Implementation
// Each of these can go into one of the 4 mults in a
// DSP block
assign mult0_result = dataa * `signed datab;
//synthesis attribute mult0_result preserve_signal TRUE

assign mult1_result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (mult0_result + mult1_result);

endmodule

12–14 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Signal Level Attributes
You can control the implementation of individual LPM_MULT multipliers by using
the dedicated_mult attribute, as shown below:

//synthesis attribute <signal_name> dedicated_mult <value>

1 The dedicated_mult attribute is only applicable to signals or wires; it is not
applicable to registers.

Example 12–2. Using Module Level Attributes in VHDL Code

library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

entity mult_acc is
 generic (size : integer := 4) ;
 port (
 a: in std_logic_vector (size-1 downto 0) ;
 b: in std_logic_vector (size-1 downto 0) ;
 clk : in std_logic;

accum_out: inout std_logic_vector (2*size downto 0)
) ;
 attribute extract_mac : boolean;
 attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

architecture synthesis of mult_acc is
 signal a_int, b_int : signed (size-1 downto 0);
 signal pdt_int : signed (2*size-1 downto 0);
 signal adder_out : signed (2*size downto 0);

begin
 a_int <= signed (a);
 b_int <= signed (b);
 pdt_int <= a_int * b_int;
 adder_out <= pdt_int + signed(accum_out);
 process (clk)
 begin
 if (clk'event and clk = '1') then
 accum_out <= std_logic_vector (adder_out);
 end if;
 end process;
end synthesis ;

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–15
Guidelines for Altera Megafunctions and LPM Functions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Table 12–4 shows the supported values for the dedicated_mult attribute.

1 Some signals for which the dedicated_mult attribute is set might get synthesized
away by the LeonardoSpectrum software due to design optimization. In such cases, if
you want to force the implementation, the signal is preserved from being synthesized
away by setting the preserve_signal attribute to “true.”

The extract_mac attribute must be set to “false” for the module or project level
when using the dedicated_mult attribute.

Example 12–3 and Example 12–4 are samples of Verilog HDL and VHDL codes,
respectively, using the dedicated_mult attribute.

Table 12–4. Values for the dedicated_mult Attribute

Value Description

ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred and multipliers synthesized, implemented in logic, and optimized by the Quartus II software. (1)

LCELL LPM not inferred and multipliers synthesized, implemented in logic, and optimized by the LeonardoSpectrum
software. (1)

AUTO LPM inferred but the Quartus II software maps the multipliers automatically to either the DSP block or logic based
on resource availability.

Note to Table 12–4:

(1) Although both dedicated_mult=OFF and dedicated_mult=LCELLS result in logic implementations, the optimized results in these two cases may
differ.

Example 12–3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult (AX, AY, BX, BY, m, n, o, p);
input [7:0] AX, AY, BX, BY;
output [15:0] m, n, o, p;
wire [15:0] m_i = AX * AY; // synthesis attribute m_i dedicated_mult ON
// synthesis attribute m_i preserve_signal TRUE
//Note that the preserve_signal attribute prevents
// signal m_i from getting synthesized away
wire [15:0] n_i = BX * BY; // synthesis attribute n_i dedicated_mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o_i dedicated_mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p_i dedicated_mult
LCELL
// since n_i , o_i , p_i signals are not preserved,
// they may be synthesized away based on the design
assign m = m_i;
assign n = n_i;
assign o = o_i;
assign p = p_i;
endmodule

12–16 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Guidelines for Using DSP Blocks
In addition to the guidelines mentioned earlier in this section, use the following
guidelines while designing with DSP blocks in the LeonardoSpectrum software:

■ To access all the control signals for the DSP block, such as sign A, sign B, and
dynamic addnsub, use the black box technique.

■ While performing signed operations, ensure that the specified data width of the
output port matches the data width of the expected result. Otherwise, the sign bit
might be lost or data might be incorrect because the sign is not extended. For
example, if the data widths of input A and B are width_a and width_b,
respectively, the maximum data width of the result can be (width_a + width_b
+2) for the four-multipliers adder mode. Thus, the data width of the output port
should be less than or equal to (width_a + width_b +2).

■ While using the accumulator, the data width of the output port should be equal to
or greater than (width_a + width_b). The maximum width of the accumulator
can be (width_a + width_b + 16). Accumulators wider than this are
implemented in logic.

Example 12–4. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_signed.all;
ENTITY mult is

PORT(AX,AY,BX,BY: IN
std_logic_vector (17 DOWNTO 0);
m,n,o,p: OUT
std_logic_vector (35 DOWNTO 0));
attribute dedicated_mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n_i, o_i, p_i : unsigned (35 downto 0);
attribute dedicated_mult of m_i:signal is "ON";
attribute dedicated_mult of n_i:signal is "OFF";
attribute dedicated_mult of o_i:signal is "AUTO";
attribute dedicated_mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n_i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_i <= unsigned (BX) * unsigned (AY);

m <= std_logic_vector(m_i);
n <= std_logic_vector(n_i);
o <= std_logic_vector(o_i);
p <= std_logic_vector(p_i);
end struct;

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–17
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ If the design uses more multipliers than are available in a particular device, you
might get a no fit error in the Quartus II software. In such cases, use the attribute
settings in the LeonardoSpectrum software to control the mapping of multipliers
in your design to DSP blocks or logic.

Block-Based Design with the Quartus II Software
The incremental compilation design flow with LogicLock™ constraints enables users
to design, optimize, and lock down a design one section at a time. You can
independently create and implement each logic module into a hierarchical or
team-based design. With this method, you can preserve the performance of each
module during system integration and have more control over placement of your
design. To maximize the benefits of the incremental compilation in the Quartus II
software, you can partition a new design into a hierarchy of netlist files during
synthesis in the LeonardoSpectrum software.

You can create different netlist files with the LeonardoSpectrum software for different
sections of a design hierarchy. When you have different netlist files, it means that each
section is independent of the others. When synthesizing the entire project, only
portions of a design that have been updated have to be re-synthesized when you
compile the design. You can make changes, optimize, and re-synthesize your section
of a design without affecting other sections.

f For more information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook. For more information about the LogicLock feature, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

Hierarchy and Design Considerations
You must plan your design’s structure and partitioning carefully to use incremental
compilation and LogicLock features effectively. Optimal hierarchical design practices
include partitioning the blocks at functional boundaries, registering the boundaries of
each block, minimizing the I/O between each block, separating timing-critical blocks,
and keeping the critical path within one hierarchical block.

f For more recommendations for hierarchical design partitioning, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can apply the LogicLock
option in the LeonardoSpectrum software only to modules, entities, or netlist files. In
addition, each module or entity should have its own design file. It is difficult to
maintain incremental synthesis if two different modules are in the same design file
(but are defined as being part of different regions), because both regions have to be
recompiled when you change one of the modules or entities.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

12–18 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If you use boundary tri-states in a lower-level block, the LeonardoSpectrum software
pushes (or “bubbles”) the tri-states through the hierarchy to the top-level to take
advantage of the tri-state drivers on the output pins of the Altera device. Because
bubbling tri-states require optimizing through hierarchies, lower-level tri-states are
not supported with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in the
hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across boundaries,
preventing you from making LogicLock assignments to the flattened blocks. Altera
recommends preserving the hierarchy when compiling the design. In the Optimize
command of your script, use the Hierarchy Preserve command, or in the user
interface, select Preserve in the Hierarchy section on the Optimize Flow tab.

If you are compiling your design with a script, you can use an alternative method for
preventing optimization across boundaries. In this case, use the Auto hierarchy
setting and set the auto_dissolve attribute to false on the instances or views that
you want to preserve (that is, the modules with LogicLock assignments) using the
following syntax:

set_attribute -name auto_dissolve -value false \
.work.<block1>.INTERFACE

This alternative method flattens your design according to the auto_dissolve limits,
but does not optimize across boundaries where you apply the attribute as described.

f For more details about LeonardoSpectrum attributes and hierarchy levels, refer to the
LeonardoSpectrum documentation in the Help menu.

Creating a Design with Multiple .edif Files
The first stage of a hierarchical design flow is to generate multiple .edif files, so that
you can take advantage of the incremental compilation flows in the Quartus II
software. If the whole design is in one .edif file, changes in one block affect other
blocks because of possible node name changes. You can generate multiple .edif files
either by using the LogicLock option in the LeonardoSpectrum software, or by
manually using a black box methodology on each block that you want to be part of a
LogicLock region.

After you have created multiple .edif files with one of these methods, you must create
the appropriate Quartus II project(s) to place-and-route the design.

Generating Multiple .edif Files Using the LogicLock Option
This section describes how to generate multiple .edif files using the LogicLock option
in the LeonardoSpectrum software.

When synthesizing a top-level design that includes LogicLock regions, perform the
following general steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or choose Run Flow.

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–19
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To set the correct constraints and compile the design, perform the following steps in
the LeonardoSpectrum software:

1. On the Tools menu, switch to the Advanced Flow tab instead of the Quick Setup
tab.

2. Set the target technology and speed grade for the device on the Technology Flow
tab.

3. Open the input source files on the Input Flow tab.

4. Click Read on the Input Flow tab to read the source files but not begin
optimization.

5. Select the Module Power tab located at the bottom of the Constraints Flow tab.

6. Click on a module to be placed in a LogicLock region in the Modules section.

7. Turn on the LogicLock option.

8. Type the desired LogicLock region name in the text field under the LogicLock
option.

9. Click Apply.

10. Repeat steps 6-9 for any other modules that you want to place in LogicLock
regions.

1 In some cases, you are prompted to save your LogicLock and other
non-global constraints in a Constraints File (.ctr) when you click anywhere
off the Constraints Flow tab. The default name is <project name>.ctr. This
file is added to your Input file list, and must be manually included later if
you recreate the project.

The command written into the LeonardoSpectrum Information or
Transcript Window is the Tcl command that gets written into the .ctr file.
The format of the “path” for the module specified in the command should
be work.<module>.INTERFACE. To ensure that you don’t see an optimized
version of the module, do not perform a Run Flow on the Quick Setup tab
prior to setting LogicLock constraints. Always use the Read command, as
described in step 4.

11. Continue making any other settings as required on the Constraints tab.

12. Select Preserve in the Hierarchy section on the Optimize tab to ensure that the
hierarchy names are not flattened during optimization.

13. Continue making any other settings as required on the Optimize tab.

14. Run your synthesis flow with each Flow tab, or click Run Flow.

Synthesis creates an .edif file for each module that has a LogicLock assignment in the
Constraints Flow tab. You can now use these files with the incremental compilation
flows in the Quartus II software.

12–20 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 You might occasionally see multiple .edif files and LogicLock commands for the same
module. An “unfolded” version of a module is created when you instantiate a module
more than once and the boundary conditions of the instances are different. For
example, if you apply a constant to one instance of the block, it might be optimized to
eliminate unneeded logic. In this case, the LeonardoSpectrum software must create a
separate module for each instantiation (unfolding). If this unfolding occurs, you see
more than one .edif file, and each EDIF file has a LogicLock assignment to the same
LogicLock region. When you import the .edif files to the Quartus II software, the .edif
files created from the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the LogicLock
methodology must be performed separately for each .edif netlist file.

Creating a Quartus II Project for Multiple .edif Files Including LogicLock Regions
The LeonardoSpectrum software creates .tcl files that provide the Quartus II software
with the appropriate LogicLock assignments, creating a region for each .edif file along
with the information to set up a Quartus II project.

The .tcl file contains the commands shown in Example 12–5 for each LogicLock
region. This example is for module taps where the name taps_region was typed as
the LogicLock region name in the Constraints Flow tab in the LeonardoSpectrum
software.

These commands create a LogicLock region with Auto-Size and Floating-Origin
properties. This flexible LogicLock region allows the Quartus II Compiler to select the
size and location of the region.

f For more information about Tcl commands, refer to the TCL Scripting chapter in
volume 2 of the Quartus II Handbook.

Example 12–5. Tcl File for Module Taps with taps_region as LogicLock Region Name

project add_assignment {taps} {taps_region} {} {}
{LL_AUTO_SIZE} {ON}

project add_assignment {taps} {taps_region} {} {}
{LL_STATE} {FLOATING}

project add_assignment {taps} {taps_region} {} {}
{LL_MEMBER_OF} {taps_region}

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–21
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can use the following methods to import the .edif file and corresponding .tcl file
into the Quartus II software:

■ Use the .tcl file that is created for each .edif file by the LeonardoSpectrum
software. This method allows you to generate multiple Quartus II projects, one for
each block in the design. Each designer in the project can optimize their block
separately in the Quartus II software and preserve their results. Altera
recommends this method for bottom-up incremental and hierarchical design
methodologies because it allows each block in the design to be treated separately.
Each block can be brought into one top-level project with the import function.

or

■ Use the <top-level project>.tcl file that contains the assignments for all blocks in the
project. This method allows the top-level designer to import all the blocks into one
Quartus II project. You can optimize all modules in the project at once in a
top-down design flow. If additional optimization is required for individual blocks,
each designer can use their .edif file to create a separate project at that time. You
would then have to add new assignments to the top-level project using the import
function.

In both methods, use the following steps to create the Quartus II project, import the
appropriate LogicLock assignments, and compile the design:

1. Place the .edif and .tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console to open the
Quartus II Tcl Console.

3. Type source <path>/<project name>.tcl r.

4. To open the new completed project, on the File menu, click Open Project. Browse
to and select the project name, and click Open.

f For more information about importing a design using incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook. For more information about importing
LogicLock assignments, see the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

Generating Multiple .edif Files Using Black Boxes
This section describes how to manually generate multiple .edif files using the black
box technique. The manual flow was supported in older versions of the
LeonardoSpectrum software. The manual flow is discussed here because some
designers want more control over the project for each submodule.

To create multiple .edif files in the LeonardoSpectrum software, create a separate
project for each module and top-level design that you want to maintain as a separate
.edif file. Implement black box instantiations of lower-level modules in your top-level
project.

When synthesizing the projects for the lower-level modules and the top-level design,
use the following general guidelines.

For lower-level modules:

■ Turn off Map IO Registers for the target technology on the Technology Flow tab.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

12–22 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ Read the HDL files for the modules. Modules may include black box instantiations
of lower-level modules that are also maintained as separate .edif files.

■ Add constraints.

■ Turn off Add I/O Pads on the Optimize Flow tab.

For the top-level design:

■ Turn on Map IO Registers if you want to implement input and/or output
registers in the IOEs for the target technology on the Technology Flow tab.

■ Read the HDL files for the top-level design.

■ Black box lower-level modules in the top-level design.

■ Add constraints (clock settings should be made at this time).

The following sections describe examples of black box modules in a block-based and
team-based design flow.

In Figure 12–3, the top-level design A is assigned to one engineer (designer 1), while
two-engineers work on the lower levels of the design. Designer 2 works on B and its
submodules D and E, while designer 3 works on C and its submodule F.

One netlist is created for the top-level module A, another netlist is created for B and its
submodules D and E, and another netlist is created for C and its submodule F. To
create multiple .edif files, perform the following steps:

1. Generate an .edif file for module C. Use C.v and F.v as the source files.

2. Generate an .edif file for module B. Use B.v, D.v, and E.v as the source files.

3. Generate a top-level .edif file A.v for module A. Ensure that your black box
modules B and C were optimized separately in steps 1 and 2.

Figure 12–3. Block-Based and Team-Based Design Example

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–23
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Black Box Methodology in Verilog HDL
Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. In Verilog HDL, you must
also provide an empty module declaration for the module that you plan to treat as a
black box.

Example 12–6 shows an example of the A.v top-level file. If any of your lower-level
files also contain a black-boxed lower-level file in the next level of hierarchy, follow
the same procedure.

1 Previous versions of the LeonardoSpectrum software required an attribute statement
//exemplar attribute U1 NOOPT TRUE, which instructed the software to treat
the instance U1 as a black box. This attribute is no longer required, although it is still
supported in the software.

Black Boxing in VHDL
Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. In VHDL, a component
declaration is required for the black box which is normal for any other block in the
design.

Example 12–7 shows an example of the A.vhd top-level file. If any of your lower-level
files also contain a black boxed lower-level file in the next level of hierarchy, follow
the same procedure.

Example 12–6. Verilog HDL Top-Level File Black Boxing Example

module A (data_in,clk,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B U1 (.data_in (data_in),.clk (clk), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for
blackboxing.

module B (data_in,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

endmodule

module C (d,clk,e,q);
input d, clk, e;
output [15:0] q;

endmodule

12–24 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 Previous versions of the LeonardoSpectrum software required the attribute statement
noopt of C: component is TRUE, which instructed the software to treat the
component C as a black box. This attribute is no longer required, although it is still
supported in the software.

Example 12–7. VHDL Top-Level File Black Boxing Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
e => e,
ld => ld,
data_out => cnt_out

);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => reg_a_out

);

-- Any other code in A.vhd goes here

END a_arch;

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–25
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

After you have completed the steps outlined in this section, you have a different .edif
netlist file for each block of code. You can now use these files for incremental
compilation flows in the Quartus II software.

Creating a Quartus II Project for Multiple .edif Files
The LeonardoSpectrum software creates a .tcl file for each .edif file, which provides
the Quartus II software with the information to set up a project.

As in the previous section, there are two different methods for bringing each .edif file
and corresponding .tcl file into the Quartus II software:

■ Use the .tcl file that is created for each .edif file by the LeonardoSpectrum
software. This method generates multiple Quartus II projects, one for each block in
the design. Each designer in the project can optimize their block separately in the
Quartus II software and preserve their results. Designers should create a
LogicLock region for each block; the top-level designer should then import all the
blocks and assignments into the top-level project. Altera recommends this method
for bottom-up incremental and hierarchical design methodology because it allows
each block in the design to be treated separately; each block can be imported into
one top-level project.

or

■ Use the <top-level project>.tcl file that contains the information to set up the
top-level project. This method allows the top-level designer to create LogicLock
regions for each block and bring all the blocks into one Quartus II project.
Designers can optimize all modules in the project at once in a top-down design
flow. If additional optimization is required for individual blocks, each designer
can take their .edif file and create a separate Quartus II project at that time. New
assignments would then have to be added to the top-level project manually or
through the import function.

f For more information about importing designs using incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook. For more information about importing
LogicLock regions, refer to the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

In both methods, use the following steps to create the Quartus II project and compile
the design:

1. Place the .edif and .tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console. The
Quartus II Tcl Console appears.

3. At a Tcl prompt, type source <path>/<project name>.tcl r.

4. On the File menu, click Open Project. In the New Project window, browse to and
select the project name. Click Open.

5. To create LogicLock assignments, on the Assignments menu, click LogicLock
Regions Window.

6. On the Processing menu, click Start Compilation.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

12–26 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Incremental Synthesis Flow
If you make changes to one or more submodules, you can manually create new
projects in the LeonardoSpectrum software to generate a new .edif netlist file when
there are changes to the source files. Alternatively, you can use incremental synthesis
to generate a new netlist for the changed submodule(s). To perform incremental
synthesis in the LeonardoSpectrum software, use the script described in this section to
reoptimize and generate a new .edif netlist file for only the affected modules using the
LeonardoSpectrum top-level project. This method applies only when you are using
the LogicLock option in the LeonardoSpectrum software.

Modifications Required for the LogicLock_Incremental.tcl Script File
There are three sets of entries in the file that must be modified before beginning
incremental synthesis. The variables in the .tcl file are surrounded by angle brackets
(< >).

1. Add the list of source files that are included in the project. You can enter the full
path to the file or just the file name if the files are located in the working directory.

2. Indicate which modules in the design have changed. These modules are the .edif
files that are regenerated by the LeonardoSpectrum software. These modules
contain a LogicLock assignment in the original compilation.

1 Obtain the LeonardoSpectrum software path for each module by looking at
the .ctr file that contains the LogicLock assignments from the original
project. Each LogicLock assignment is applied to a particular module in the
design.

3. Enter the target device family using the appropriate device keyword. The device
keyword is written into the Transcript or Information window when you select a
target Technology and click Load Library or Apply on the Technology Flow tab in
the graphical user interface.

Example 12–8 shows the LogicLock_Incremental.tcl file for the incremental synthesis
flow. You must modify the .tcl file before you can use it for your project.

Chapter 12: Mentor Graphics LeonardoSpectrum Support 12–27
Block-Based Design with the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Running the Tcl Script File in LeonardoSpectrum
When you have modified the Tcl script, as described in “Modifications Required for
the LogicLock_Incremental.tcl Script File” on page 12–26, you can compile your
design using the script.

You can run the script in batch mode at the command line prompt using the following
command:

spectrum -file <Tcl_file> r
To run the script from the interface, on the File menu, click Run Script, then browse to
your .tcl file and click Open.

The LogicLock incremental design flow uses module-based design to help you
preserve performance of modules and have control over placement. By tagging the
modules that require separate .edif files, you can make multiple .edif files for use
with the Quartus II software from a single LeonardoSpectrum software project.

Example 12–8. LogicLock_Interface.tcl Script File for Incremental Synthesis

##
LogicLock Incremental Synthesis Flow
##

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules
that had LogicLock assignments and separate EDIF netlist files in the
first pass and had their source code modified)

set list_of_modified_modules {.work.<block2>.INTERFACE .work.<block1>.INTERFACE}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_touch $module

}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt $module

}

12–28 Chapter 12: Mentor Graphics LeonardoSpectrum Support
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Conclusion
Taking advantage of the Mentor Graphics LeonardoSpectrum software and the
Quartus II design flow allows you to control how your design files are prepared for
the Quartus II place-and-route process, as well as to improve performance and
optimize a design for use with Altera devices. The methodologies outlined in this
chapter can help optimize a design to achieve performance goals and save design
time with the LeonardoSpectrum software. For the best results with new designs in
new device families, Altera recommends migrating to Mentor Graphics advanced
Precision Synthesis software.

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook

■ LeonardoSpectrum Installation Guide and the LeonardoSpectrum User’s Manual.

■ Mentor Graphics Precision Synthesis Support chapter in volume 1 of the Quartus II
Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 12–5 shows the revision history of this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 12–5. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Minor updates for the Quartus II software version 9.1 release.

■ Removed Table 12–3, Inferring RAM Summary.

Updated for the Quartus II
software version 9.1 release

March 2009
v9.0.0

■ No change to content.

■ Chapter 12 was previously Chapter 11 in software release 8.1.

Updated for the Quartus II 9.0
software release.

November 2008
v8.1.0

■ Changed to 8-1/2” x 11” page size.

■ Updated Table 12–3.

Updated for the Quartus II 8.1
software release.

May 2008

v8.0.0

Updated date and part number and added hypertext links. —

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

13. Analyzing Designs with Quartus II
Netlist Viewers

This chapter describes how you can use Quartus II netlist viewers to analyze and
debug your designs.

Introduction
As FPGA designs grow in size and complexity, the ability to analyze, debug, optimize,
and constrain your design is critical. Often, with today’s advanced designs, several
design engineers are involved in coding and synthesizing different design blocks,
making it difficult to analyze and debug the design. The Quartus® II RTL Viewer, State
Machine Viewer, and Technology Map Viewer provide powerful ways to view your
initial and fully mapped synthesis results during the debugging, optimization, and
constraint entry processes.

The first section in this chapter, “When to Use Viewers: Analyzing Design Problems”,
describes examples of using the viewers to analyze your design at various stages of
the design cycle. The sections following this section provide an introduction to the
Quartus II design flow using netlist viewers, an overview of each viewer, and an
explanation of the user interface. These sections describe the following tasks:

■ How to navigate and filter schematics

■ How to probe to and from other windows within the Quartus II software

■ How to view a timing path from the Timing Analyzer report

This chapter contains the following sections:

■ “Introduction to the User Interface” on page 13–6

■ “Navigating the Schematic View” on page 13–17

■ “Customizing the Schematic Display in the RTL Viewer” on page 13–28

■ “Filtering in the Schematic View” on page 13–28

■ “Probing to Source Design File and Other Quartus II Windows” on page 13–34

■ “Probing to the Viewers from Other Quartus II Windows” on page 13–36

■ “Viewing a Timing Path” on page 13–37

■ “Other Features in the Schematic Viewer” on page 13–39

■ “Debugging HDL Code with the State Machine Viewer” on page 13–47

QII51013-9.1.0

13–2 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
When to Use Viewers: Analyzing Design Problems

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

When to Use Viewers: Analyzing Design Problems
You can use netlist viewers to analyze and debug your design. This section provides
simple examples of how to use the RTL Viewer, State Machine Viewer, and
Technology Map Viewer to analyze problems encountered in the design process.

The following sections contain information about how netlist viewers display your
design:

■ “Quartus II Design Flow with Netlist Viewers” on page 13–3

■ “RTL Viewer Overview” on page 13–4

■ “State Machine Viewer Overview” on page 13–5

■ “Technology Map Viewer Overview” on page 13–5

Using the RTL Viewer is a good way to view your initial synthesis results to
determine whether you have created the desired logic, and that the logic and
connections have been interpreted correctly by the software. You can use the
RTL Viewer and State Machine Viewer to check your design visually before
simulation or other verification processes. Catching design errors at this early stage of
the design process can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace
through the netlist and ensure that the connections and logic in your design are as
expected. You can also view state machine transitions and transition equations with
the State Machine Viewer. Viewing the design can help you find and analyze the
source of design problems. If your design looks correct in the RTL Viewer, you know
to focus your analysis on later stages of the design process and investigate potential
timing violations or issues in the verification flow itself.

You can use the Technology Map Viewer to look at the results at the end of synthesis
and technology mapping by running the viewer after performing Analysis and
Synthesis. If you have compiled your design through the Fitter stage, you can view
your post-mapping netlist in the Technology Map Viewer (Post-Mapping) and your
post-fitting netlist in the Technology Map Viewer. If you perform only Analysis and
Synthesis, both viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the
source of a particular signal, which can help you debug your design. Use the
navigation techniques described in this chapter to search easily through the design.
You can trace back from a point of interest to find the source of the signal and ensure
the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist
and make assignments when optimizing your design. This functionality is useful, for
example, when making a multicycle clock timing assignment between two registers in
your design. Start at an I/O port and trace forward or backward through the design
and through levels of hierarchy to find nodes that interest you, or locate a specific
register by visually inspecting the schematic.

You can use the RTL Viewer, State Machine Viewer, and Technology Map Viewer in
many other ways throughout the design, debugging, and optimization stages.
Viewing the design netlist is a powerful way to analyze design problems. This chapter
shows you how to use the various features of the netlist viewers to increase your
productivity when analyzing a design.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–3
Quartus II Design Flow with Netlist Viewers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Quartus II Design Flow with Netlist Viewers
The first time you open one of the netlist viewers after compiling the design, a
preprocessor stage runs automatically before the viewer opens. If you close the viewer
and open it again later without recompiling the design, the viewer opens immediately
without performing the preprocessing stage. Figure 13–1 shows how the netlist
viewers fit into the basic Quartus II design flow.

To use a viewer, and before the viewer can run the preprocessor and open the design,
compile your design with the following minimum compilation:

■ To open the RTL Viewer or State Machine Viewer, first perform Analysis and
Elaboration.

■ To open the Technology Map Viewer or the Technology Map Viewer
(Post-Mapping), first perform Analysis and Synthesis.

1 If you open one of the viewers without first compiling the design with the appropriate
minimum compilation stage, the viewer does not appear. Instead, the Quartus II
software issues an error message instructing you to run the necessary compilation
stage and restart the viewer.

Both viewers display the results of the last successful compilation. Therefore, if you
make a design change that causes an error during Analysis and Elaboration, you
cannot view the netlist for the new design files, but you can still see the results from
the last successfully compiled version of the design files. If you receive an error
during compilation and you have not yet successfully run the appropriate
compilation stage for your project, the viewer cannot be displayed; in this case, the
Quartus II software issues an error message when you try to open the viewer.

Figure 13–1. Quartus II Design Flow Including the RTL Viewer and Technology Map Viewer

13–4 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
RTL Viewer Overview

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 If the viewer window is open when you start a new compilation, the viewer closes
automatically. You must open the viewer again to view the new design netlist after
compilation completes successfully.

RTL Viewer Overview
The Quartus II RTL Viewer allows you to view a register transfer level (RTL)
graphical representation of your Quartus II integrated synthesis results or your
third-party netlist file within the Quartus II software.

You can view results after Analysis and Elaboration when your design uses any
supported Quartus II design entry method, including Verilog HDL Design Files (.v),
SystemVerilog Design Files (.sv), VHDL Design Files (.vhd), AHDL Text Design Files
(.tdf), schematic Block Design Files (.bdf), or schematic Graphic Design Files (.gdf)
imported from the MAX+PLUS® II software. You can also view the hierarchy of atom
primitives (such as device logic cells and I/O ports) when your design uses a
synthesis tool to generate a Verilog Quartus Mapping File (.vqm) or Electronic Design
Interchange Format (.edf) netlist file. Refer to Figure 13–1 for a flow diagram.

The Quartus II RTL Viewer displays a schematic view of the design netlist after
Analysis and Elaboration or netlist extraction is performed by the Quartus II software,
but before technology mapping and any synthesis or fitter optimization algorithms
occur. This view is not the final design structure because optimizations have not yet
occurred. This view most closely represents your original source design. If you
synthesized your design with the Quartus II integrated synthesis, this view shows
how the Quartus II software interpreted your design files. If you are using a
third-party synthesis tool, this view shows the netlist written by your synthesis tool.

When displaying your design, the RTL Viewer optimizes the netlist to maximize
readability in the following ways:

■ Logic with no fan-out (its outputs are unconnected) and logic with no fan-in (its
inputs are unconnected) are removed from the display.

■ Default connections such as VCC and GND are not shown.

■ Pins, nets, wires, module ports, and certain logic are grouped into buses where
appropriate.

■ Constant bus connections are grouped.

■ Values are displayed in hexadecimal format.

■ NOT gates are converted to bubble inversion symbols in the schematic.

■ Chains of equivalent combinational gates are merged into a single gate. For
example, a 2-input AND gate feeding a 2-input AND gate is converted to a single
3-input AND gate.

■ State machine logic is converted into a state diagram, state transition table, and
state encoding table, which are displayed in the State Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to generate an
RTL netlist. To analyze the design and generate an RTL netlist, on the Processing
menu, point to Start and click Start Analysis & Elaboration. You can also perform a
full compilation on any process that includes the initial Analysis and Elaboration
stage of the Quartus II compilation flow.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–5
State Machine Viewer Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To run the RTL Viewer, on the Tools menu, point to Netlist Viewers and click RTL
Viewer.

You can set the RTL Viewer preprocessing to run during a full compilation, which
allows you to launch the RTL Viewer after Analysis and Synthesis has completed, but
while the Fitter is still running. In this case, you do not have to wait for the Fitter to
finish before viewing the schematic. This technique is useful for a large design that
requires a substantial amount of time in the place-and-route stage.

To set the RTL Viewer preprocessing to run during compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process Settings and
turn on Run RTL Viewer preprocessing during compilation. By default, this option
is turned off.

State Machine Viewer Overview
The State Machine Viewer presents a high-level view of finite state machines in your
design. The State Machine Viewer provides a graphical representation of the states
and their related transitions, as well as a state transition table that displays the
condition equation for each of the state transitions, and encoding information for each
state.

To run the State Machine Viewer, on the Tools menu, point to Netlist Viewers and
click State Machine Viewer. To open the State Machine Viewer for a particular state
machine, double-click the state machine instance in the RTL Viewer or right-click the
state machine instance and click Hierarchy Down.

Technology Map Viewer Overview
The Quartus II Technology Map Viewer provides a technology-specific, graphical
representation of your design after Analysis and Synthesis or after the Fitter has
mapped your design into the target device. The Technology Map Viewer shows the
hierarchy of atom primitives (such as device logic cells and I/O ports) in your design.
For supported families, you can also view internal registers and look-up tables (LUTs)
inside logic cells (LCELLs) and registers in I/O atom primitives. Refer to “Viewing
Contents of Atom Primitives” on page 13–18 for details.

1 Where possible, the port names of each hierarchy are maintained throughout
synthesis. However, port names might change or be removed from the design. For
example, if a port is unconnected or driven by GND or VCC, it is removed during
synthesis. When a port name changes, the port is assigned a related user logic name in
the design or a generic port name such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis, fitting, or
timing analysis. To run the Technology Map Viewer for a Quartus II project, on the
Processing menu, point to Start and click Start Analysis & Synthesis to synthesize
and map the design to the target technology. At this stage, the Technology Map
Viewer shows the same post-mapping netlist as the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process that includes
the synthesis stage in the compilation flow.

13–6 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

If you have completed the Fitter stage, the Technology Map Viewer shows the
changes made to your netlist by the Fitter, such as physical synthesis optimizations,
while the Technology Map Viewer (Post-Mapping) shows the post-mapping netlist. If
you have completed the Timing Analysis stage, you can locate timing paths from the
Timing Analyzer report in the Technology Map Viewer (refer to “Viewing a Timing
Path” on page 13–37 for details). Refer to Figure 13–1 on page 13–3 for a flow
diagram.

To run the Technology Map Viewer, on the Tools menu, point to Netlist Viewers and
click Technology Map Viewer, or select Technology Map Viewer from the
Applications toolbar.

To run the Technology Map Viewer (Post-Mapping), on the Tools menu, point to
Netlist Viewers and click Technology Map Viewer (Post-Mapping).

Introduction to the User Interface
The RTL Viewer window and Technology Map Viewer window each consist of two
main parts: the schematic view and the hierarchy list. Figure 13–2 shows the RTL
Viewer window and indicates these two parts. Both viewers also contain a toolbar
that provides tools to use in the schematic view. The toolbar contains a Hierarchy List
button. This tool enables you to refine your searches. For more information, refer to
“Opening the Hierarchy Dialog Box” on page 13–44.

You can have only one RTL Viewer, one Technology Map Viewer, one Technology
Map Viewer (Post-Mapping), and one State Machine Viewer window open at the
same time, although each window can show multiple pages. For example, you cannot
have two RTL Viewer windows open at the same time. The viewer window has
characteristics similar to other “child” windows in the Quartus II software; it can be
resized and moved, minimized or maximized, tiled or cascaded, and moved in front
of or behind other windows.

Figure 13–2. RTL Viewer Window and RTL Toolbar

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–7
Introduction to the User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Schematic View
The schematic view is shown on the right side of the RTL Viewer and Technology
Map Viewer. It contains a schematic representing the design logic in the netlist. This
view is the main screen for viewing your gate-level netlist in the RTL Viewer and your
technology-mapped netlist in the Technology Map Viewer.

Schematic Symbols
The symbols for nodes in the schematic represent elements of your design netlist.
These elements include input and output ports, registers, logic gates, Altera®
primitives, high-level operators, and hierarchical instances.

Figure 13–3 shows an example of an RTL Viewer schematic for a 3-bit synchronous
loadable counter. Example 13–1 shows the Verilog HDL code that produced this
schematic. This example includes multiplexers and a group of registers (Table 13–1) in
a bus along with an ADDER operator (Table 13–3 on page 13–11) inferred by the
counting function in the HDL code.

The schematic in Figure 13–3 displays wire connections between nodes with a thin
black line and bus connections with a thick black line.

Figure 13–3. Example Schematic Diagram in the RTL Viewer

Example 13–1. Code Sample for Counter Schematic Shown in Figure 13–3

module counter (input [2:0] data, input clk, input load, output [2:0]
result);

reg [2:0] result_reg;
always @ (posedge clk)

if (load)
result_reg <= data;

else
result_reg <= result_reg + 1;

assign result = result_reg;
endmodule

13–8 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Figure 13–4 shows a portion of the corresponding Technology Map Viewer schematic
with a compiled design that targets a Stratix® device. In this schematic, you can see the
LCELL (logic cell) device-specific primitives that represent the counter function,
labeled with their post-synthesis node names. The REGOUT port represents the output
of the register in the LCELL; the COMBOUT port represents the output of the
combinational logic in the LUT of the LCELL. The hexadecimal number in
parentheses below each LCELL primitive represents the LUT mask, which is a
hexadecimal representation of the logic function of the LCELL.

Table 13–1 lists and describes the primitives and basic symbols that you can display in
the schematic view of the RTL Viewer and Technology Map Viewer. Table 13–3 on
page 13–11 lists and describes the additional higher-level operator symbols used in
the RTL Viewer schematic view.

1 The logic gates and operator primitives appear only in the RTL Viewer. Logic in the
Technology Map Viewer is represented by atom primitives, such as registers and
LCELLs.

Figure 13–4. Example Schematic Diagram in the Technology Map Viewer

Table 13–1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description

I/O Ports An input, output, or bidirectional port in the current level of hierarchy. A device input, output, or
bidirectional pin when viewing the top-level hierarchy. The symbol can also represent a bus.
Only one wire is shown connected to the bidirectional symbol, representing both the input and
output paths.

Input symbols appear on the left-most side of the schematic. Output and bidirectional symbols
appear on the right-most side of the schematic.

I/O Connectors An input or output connector, representing a net that comes from another page of the same
hierarchy (refer to “Partitioning the Schematic into Pages” on page 13–25). To go to the page
that contains the source or the destination, right-click on the net and choose the page from the
menu (refer to “Following Nets Across Schematic Pages” on page 13–26).

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–9
Introduction to the User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Hierarchy Port Connector A connector representing a port relationship between two different hierarchies. A connector
indicates that a path passes through a port connector in a different level of hierarchy.

OR, AND, XOR Gates An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle (bubble
symbol) on an input or output port indicates the port is inverted.

MUX A multiplexer (MUX) primitive with a selector port that selects between port 0 and port 1. A
MUX with more than two inputs is displayed as an operator (refer to “Operator Symbols in the
RTL Viewer Schematic View” on page 13–11).

BUFFER A buffer primitive. The figure shows the tri-state buffer, with an inverted output enable port.
Other buffers without an enable port include LCELL, SOFT, CARRY, and GLOBAL. The NOT gate
and EXP expander buffers use this symbol without an enable port and with an inverted output
port.

CARRY_SUM A CARRY_SUM buffer primitive with the following ports:

■ SI – SUM IN

■ SO – SUM OUT

■ CI – CARRY IN

■ CO – CARRY OUT

LATCH A latch primitive with the following ports:

■ D – data input

■ ENA – enable input

■ Q – data output

■ PRE – preset

■ CLR – clear

DFFE/DFFEA/DFFAE

S

A DFFE (data flipflop with enable) primitive, with the same ports as a latch and a clock trigger.
The other flipflop primitives are similar:

■ DFFEA (data flipflop with enable and asynchronous load) primitive with additional ALOAD
asynchronous load and ADATA data signals

■ DFFEAS (data flipflop with enable and both synchronous and asynchronous load), which has
ASDATA as the secondary data port

Atom Primitive Primitives are low-level nodes that cannot be expanded to any lower hierarchy. The symbol
displays the port names, the primitive type, and its name. The blue shading indicates an atom
primitive in the Technology Map Viewer that allows you to view the internal details of the
primitive. Refer to “Viewing Contents of Atom Primitives” on page 13–18 for details.

Table 13–1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description

13–10 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Other Primitive Any primitive that does not fall into the categories above. Primitives are low-level nodes that
cannot be expanded to any lower hierarchy. The symbol displays the port names, the primitive
or operator type, and its name.

The figure shows an LCELL WYSIWYG primitive, with DATAA to DATAD and COMBOUT port
connections. This type of LCELL primitive is found in the Technology Map Viewer for
technology-specific atom primitives when the contents of the atom primitive cannot be viewed.
The RTL Viewer contains similar primitives if the source design is a VQM or EDIF netlist.

Instance An instance in the design that does not correspond to a primitive or operator (generally a
user-defined hierarchy block), indicated by the double outline and green shading. The symbol
displays the instance name.

To open the schematic for the lower-level hierarchy, right-click the instance and click the
appropriate command (refer to “Traversing and Viewing the Design Hierarchy” on page 13–17).

Encrypted Instance A user-defined encrypted instance in the design, indicated by the double outline and gray
shading. The symbol displays the instance name. You cannot open the schematic for the lower
level hierarchy, because the source design is encrypted.

State Machine Instance A finite state machine instance in the design, indicated by the double outline and yellow
shading. Double-clicking this instance opens the State Machine Viewer. Refer to “State Machine
Viewer” on page 13–15 for more details.

RAM A synchronous memory instance with registered inputs and optionally registered outputs,
indicated by purple shading. The symbol shows the device family and the type of TriMatrix
memory block. This figure shows a true dual-port memory block in a Stratix M-RAM block.

Logic Cloud A logic cloud is a group of combinational logic, indicated by a cloud symbol. Refer to “Grouping
Combinational Logic into Logic Clouds” on page 13–21 for more details.

Constant A constant signal value that is highlighted in gray and displayed in hexadecimal format by
default throughout the schematic. To change the format, refer to “Changing the Constant Signal
Value Formatting” on page 13–23.

Table 13–1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–11
Introduction to the User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Table 13–2 lists and describes the symbol used only in the State Machine Viewer.

Table 13–3 lists and describes the additional higher level operator symbols used in the
RTL Viewer schematic view.

Table 13–2. Symbol Available Only in the State Machine Viewer

Symbol Description

State Node The node representing a state in a finite state machine. State transitions are
indicated with arcs between state nodes. The double circle border indicates the
state connects to logic outside the state machine, and a single circle border
indicates the state node does not feed outside logic.

Table 13–3. Operator Symbols in the RTL Viewer Schematic View (Part 1 of 2)

Symbol Description

An adder operator:

OUT = A + B

A multiplier operator:

OUT = A ¥ B

A divider operator:

OUT = A / B

Equals

A left shift operator:

OUT = (A << COUNT)

A right shift operator:

OUT = (A >> COUNT)

13–12 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Selecting an Item in the Schematic View
To select an item in the schematic view, ensure that the Selection Tool is enabled in the
viewer toolbar (this tool is enabled by default). Click an item in the schematic view to
highlight it in red.

Select multiple items by pressing the Shift or Ctrl key while selecting with your
mouse. You can also select all nodes in a region by selecting a rectangular box area
with your mouse cursor when the Selection Tool is enabled. To select nodes in a box,
move your mouse to one corner of the area you want to select, click the mouse button,
drag the mouse to the opposite corner of the box, and then release the mouse button.
By default, this highlights and selects all nodes in the selected area (instances,
primitives, and pins), but not the nets. The Viewer Options dialog box provides an
option to select nets. To include nets, right-click in the schematic and click Viewer
Options. Under Net Selection, turn on the Select entire net when segment is
selected option.

Items selected in the schematic view are automatically selected in the hierarchy list
(refer to the “Hierarchy List” on page 13–13). The list expands automatically if
required to show the selected entry. However, the list does not collapse automatically
when entries are not being used or are deselected.

A modulo operator:

OUT = (A % B)

A less than comparator:

OUT = (A < B : A > B)

A multiplexer:

OUT = DATA [SEL]

The data range size is 2sel range size

A selector:

A multiplexer with one-hot select input and more than two input signals

A binary number decoder:

OUT = (binary_number (IN) == x)

for x = 0 to x = 2(n+1) - 1

Table 13–3. Operator Symbols in the RTL Viewer Schematic View (Part 2 of 2)

Symbol Description

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–13
Introduction to the User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When you select a hierarchy box, node, or port in the schematic view, the item is
highlighted in red but none of the connecting nets are highlighted. When you select a
net (wire or bus) in the schematic view, all connected nets are highlighted in red. The
selected nets are highlighted across all hierarchy levels and pages. Net selection can
be useful when navigating a netlist because you see the net highlighted when you
traverse between hierarchy levels or pages.

In some cases, when you select a net that connects to nets in other levels of the
hierarchy, these connected nets are also highlighted in the current hierarchy. If you
prefer that these nets not be highlighted, use the Viewer Options dialog box option to
highlight a net only if the net is in the current hierarchy. Right-click in the schematic
and click Viewer Options. In the Net Selection section, turn on the Limit selections
to current hierarchy option.

Moving and Panning in the Schematic View
When the schematic view page is larger than the portion currently displayed, you can
use the scroll bars at the bottom and right side of the schematic view to see other areas
of the page.

You can also use the Hand Tool to “grab” the schematic page and drag it in any
direction. Enable the Hand Tool with the toolbar button. Click and drag to move
around the schematic view without using the scroll bars.

In addition to the scroll bars and Hand Tool, you can use the middle-mouse/wheel
button to move and pan in the schematic view. Click the middle-mouse/wheel button
once to enable the feature. Move the mouse or scroll the wheel to move around the
schematic view. Click the middle-mouse/wheel button again to turn the feature off.

Hierarchy List
The hierarchy list is displayed on the left side of the viewer window. The hierarchy list
displays the entire netlist in a tree format based on the hierarchical levels of the
design. Within each level, similar elements are grouped into subcategories. Using the
hierarchy list, traverse through the design hierarchy to view the logic schematic for
each level. You can also select an element in the hierarchy list to highlight in the
schematic view.

1 Nodes inside atom primitives are not listed in the hierarchy list.

For each module in the design hierarchy, the hierarchy list displays the applicable
elements listed in Table 13–4. Click the “+” icon to expand an element.

Table 13–4. Hierarchy List Elements (Part 1 of 2)

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines State machine instances in the design that can be viewed in the State Machine Viewer.

13–14 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Selecting an Item in the Hierarchy List
When you click any item in the hierarchy list, the viewer performs the following
actions:

■ Searches for the item in the currently viewed pages and displays the page
containing the selected item in the schematic view if it is not currently displayed.
(If you are currently viewing a filtered netlist, for example, the relevant page
within the filtered netlist is displayed.)

■ If the selected item is not found in the currently viewed pages, the entire design
netlist is searched and the item is displayed in a default view.

■ Highlights the selected item in red in the schematic view.

When you double-click an instance in the hierarchy list, the viewer displays the
underlying implementation of the instance.

You can select multiple items by pressing the Shift or Ctrl key while selecting with
your mouse. When you right-click an item in the hierarchy list, you can navigate in
the schematic view with the Filter and Locate commands. Refer to “Filtering in the
Schematic View” on page 13–28 and “Probing to Source Design File and Other
Quartus II Windows” on page 13–34 for more information.

Enable or Disable the Auto Hierarchy List
When you select any node or net in a schematic, the hierarchy list expands
automatically to show the selected node or net in the list. This allows you to easily
identify the node or net when you have a complex schematic. By default, this option is
disabled.

To enable the auto hierarchy list option, perform the following steps:

1. On the Tools menu, click Options.

2. In the Options dialog box, under Category, click Netlist Viewers.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These primitives include:

■ Registers and gates that you can view in the RTL Viewer when using Quartus II integrated synthesis

■ Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM or EDIF from
third-party synthesis software

In the Technology Map Viewer, you can view the internal implementation of certain atom primitives, but
you cannot traverse into a lower level of hierarchy.

Pins The I/O ports in the current level of hierarchy.

■ Pins are device I/O pins when viewing the top hierarchy level and are I/O ports of the design when
viewing the lower levels.

■ When a pin represents a bus or an array of pins, expand the pin entry in the list view to see individual
pin names.

Nets Nets or wires connecting the nodes. When a net represents a bus or array of nets, expand the net entry in
the tree to see individual net names.

Logic Clouds A group of related combinational logics of a particular source. You can automatically or manually group
combinational logics or ungroup logic clouds in your design.

Table 13–4. Hierarchy List Elements (Part 2 of 2)

Elements Description

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–15
Introduction to the User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

3. Turn on the Enable Auto Hierarchy Expansion option.

4. Click OK.

State Machine Viewer
The State Machine Viewer displays a graphical representation of the state machines in
your design. You can open the State Machine Viewer in any of the following ways:

■ On the Tools menu, point to Netlist Viewers and click State Machine Viewer.

■ Double-click a state machine instance in the RTL Viewer

■ Right-click a state machine instance in the RTL Viewer and click Hierarchy Down.

■ Select a state machine instance in the RTL Viewer, and on the Project menu, point
to Hierarchy and click Down.

Figure 13–5 shows an example of the State Machine Viewer for a simple state
machine. The State Machine toolbar on the left side of the viewer provides tools you
can use in the state diagram view.

State Diagram View
The state diagram view appears at the top of the State Machine Viewer window. It
contains a diagram of the states and state transitions.

Figure 13–5. State Machine in the State Machine Viewer

13–16 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The nodes that represent each state are arranged horizontally in the state diagram
view with the initial state (the state node that receives the reset signal) in the left-most
position. Nodes that connect to logic outside of the state machine instance are
represented by a double circle. The state transition is represented by an arc with an
arrow pointing in the direction of the transition.

When you select a node in the state diagram view, and turn on the Highlight Fan-in
or Highlight Fan-out command from the View menu or the State Machine Viewer
toolbar, the respective fan-in or fan-out transitions from the node are highlighted in
red.

1 An encrypted block with a state machine displays encoding information in the state
encoding table, but does not display a state transition diagram or table.

State Transition Table
The state transition table on the Transitions tab at the bottom of the State Machine
Viewer window displays the condition equation for each state transition. Each
transition (each arc in the state diagram view) is represented by a row in the table. The
table has the following columns:

■ Source State—the name of the source state for the transition

■ Destination State—the name of the destination state for the transition

■ Condition—the condition equation that causes the transition from source state to
destination state

To see all of the transitions to and from each state name, click the appropriate column
heading to sort on that column.

The text in each column is left-aligned by default; to change the alignment and more
easily see the relevant part of the text, right-click in the column and click Align Right.
To change back to left alignment, click Align Left.

Click in any cell in the table to select it. To select all cells, right-click in the cell and
click Select All; or, on the Edit menu, click Select All. To copy selected cells to the
clipboard, right-click the cells and click Copy Table; or, on the Edit menu, point to
Copy and click Copy Table. You can paste the table into any text editor as
tab-separated columns.

State Encoding Table
The state encoding table on the Encoding tab at the bottom of the State Machine
Viewer window displays encoding information for each state transition.

To view state encoding information in the State Machine Viewer, you must have
synthesized your design with the Start Analysis & Synthesis command. If you have
only elaborated your design with the Start Analysis & Elaboration command, the
encoding information is not displayed.

Selecting an Item in the State Machine Viewer
You can select and highlight each state node and transition in the State Machine
Viewer. To select a state transition, click the arc that represents the transition.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–17
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

When you select a state node, transition arc, or both in the state diagram view, the
matching state node and equation conditions in the state transition table are
highlighted. Conversely, when you select a state node, equation condition, or both in
the state transition table, the corresponding state node and transition arc are
highlighted in the state diagram view.

Switching Between State Machines
A design may contain multiple state machines. To choose which state machine to
view, use the State Machine selection box located at the top of the State Machine
Viewer. Click in the drop-down box and select the desired state machine.

Navigating the Schematic View
The previous sections provided an overview of the user interface for each netlist
viewer, and explained how to select an item in each viewer. This section describes
methods to navigate through the pages and hierarchy levels in the schematic view of
the RTL Viewer and the Technology Map Viewer.

Traversing and Viewing the Design Hierarchy
You can open different hierarchy levels in the schematic view from the hierarchy list
(refer to “Hierarchy List” on page 13–13), or the Hierarchy Up and Hierarchy Down
commands (Shortcut menu) in the schematic view.

Use the Hierarchy Down command to go down in an instance’s hierarchy, and open a
lower-level schematic showing the internal logic of the instance. Use the Hierarchy
Up command to go up in hierarchy or collapse a lower level hierarchy, and open the
parent higher level hierarchy. When the Selection Tool is selected, the appropriate
option is available when your mouse pointer is located over an area of the schematic
view that has a corresponding lower or higher level hierarchy.

The mouse pointer changes as it moves over different areas of the schematic to
indicate whether you can move up, down, or both up and down in the hierarchy
(Figure 13–6). To open the next hierarchy level, right-click in that area of the schematic
and click Hierarchy Down or Hierarchy Up, as appropriate, or double-click in that
area of the schematic.

Flattening the Design Hierarchy
You can flatten the design hierarchy to view the design without hierarchical
boundaries. To flatten the hierarchy from the current level and all lower level
hierarchies of the current design hierarchy, right-click in the schematic and click
Flatten Netlist. To flatten the entire design, choose Flatten Netlist from the top-level
schematic of the design.

Figure 13–6. Mouse Pointers Indicate How to Traverse Hierarchy

13–18 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Viewing the Contents of a Design Hierarchy within the Current Schematic
You can use the Display Content and Hide Content (Shortcut menu) commands to
show or hide a lower hierarchy level for a specific instance within the schematic for
the current hierarchy level.

To display the lower hierarchy netlist of an instance on the same schematic as the
remaining logic in the currently viewed netlist, right-click the selected instance and
click Display Content.

To hide all of the lower hierarchy logic of a hierarchy box into a closed instance,
right-click the selected instance and click Hide Content.

Viewing Contents of Atom Primitives
In the Technology Map Viewer, you can view the contents of certain device atom
primitives to see their underlying implementation details. For logic cell (LCELL)
atoms in the Stratix and Cyclone® series of devices, in Arria® GX devices, and in
MAX® II devices, you can view LUTs, registers, and logic gates. For I/O atoms in the
Stratix and Cyclone series of devices, in Arria GX devices, and HardCopy® IV devices,
you can view registers and logic gates.

In addition, you can view the implementation of RAM and DSP blocks in certain
devices in the RTL Viewer or Technology Map Viewer. You can view the
implementation of RAM blocks in the Stratix and Cyclone series of devices, and in
Arria GX devices. You can view the implementation of DSP blocks only in the Stratix
series of devices and Arria GX devices.

If you can view the contents of an atom instance, the internal contents are shown in
blue in the schematic view (Figure 13–7).

To view the contents of one or more atom primitive instances, select the desired atom
instances. Right-click a selected instance and click Display Content. You can also
double-click the desired atom instance to view the contents. Figure 13–8 shows an
expanded version of the instance in Figure 13–7.

Figure 13–7. Instance That Can Be Expanded to View Internal Contents

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–19
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

To hide the contents (and revert to the compact format), select and right-click the atom
instance(s), and click Hide Content.

1 In the schematic view, the internal details within an atom instance cannot be selected
as individual nodes. Any mouse action on any of the internal details is treated as a
mouse action on the atom instance.

Viewing the Properties of Instances and Primitives
You can view the properties of an instance or primitive using the Properties dialog
box. To view the properties of an instance or primitive in the RTL Viewer or
Technology Map Viewer, right-click the node and click Properties.

The Properties dialog box contains the following information about the selected node:

■ The parameter values of an instance.

■ The active level of the port (for example, active high or active low). An active low
port is denoted with an exclamation mark “!”.

■ The port’s constant value (for example, VCC or GND). Table 13–5 describes the
possible value of a port.

In the LUT of a logic cell (LCELL), the Properties dialog box contains the following
additional information:

■ The schematic of the LCELL

■ The Truth Table representation of the LCELL

Figure 13–8. Internal Contents of the Atom Instance in Figure 13–7.

Table 13–5. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

13–20 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ The Karnaugh map representation of the LCELL

Viewing LUT Representations in the Technology Map Viewer
You can view different representations of a LUT by right-clicking the selected LUT
and clicking Properties. This feature is supported for the Stratix and Cyclone series of
devices, Arria GX devices, and MAX II devices only. There are three tabs in the
Properties dialog box so that you can view the LUT representations:

■ The Schematic tab (Figure 13–9) shows you the equivalent gate representations of
the LUT.

■ The Truth Table tab (Figure 13–10) shows the truth table representations.

■ The Karnaugh Map tab (Figure 13–11) shows the Karnaugh map representations
of the LUT. The Karnaugh map supports up to 6 input LUTs.

For details about the Ports tab, refer to “Viewing the Properties of Instances and
Primitives” on page 13–19.

Figure 13–9. Schematic Tab

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–21
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Grouping Combinational Logic into Logic Clouds
The following sections describe how to group combinational logic into logic clouds.

1 For the definition of a logic cloud, refer to Table 13–1 on page 13–8.

Figure 13–10. Truth Table Tab

Figure 13–11. Karnaugh Map Tab

13–22 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Logic Clouds in the RTL Viewer
You can automatically group all combinational logic nodes in your design into logic
clouds. On the Tools menu, click Options, and in the Category list, click the “+” to
expand Netlist Viewers and select RTL Viewer. On the RTL Viewer page, turn on
Group combinational logic into logic cloud. You can also turn on this option by
right-clicking in the schematic and clicking Viewer Options. In the RTL/Technology
Map Viewer Options dialog box, click the Customize View tab. Under the
Customize Groups section, turn on Group combinational logic into logic cloud.
Figure 13–12 and Figure 13–13 show the schematic before and after the combinational
logic grouping operation in the RTL Viewer.

Logic Clouds in the Technology Map Viewer
In the Technology Map Viewer, the Group combinational logic into logic clouds
option is supported for Stratix II, Cyclone II, and HardCopy families of devices only.
To set this option, right-click in the schematic and click Viewer Options. In the
RTL/Technology Map Viewer Options dialog box, click on the Customize View tab.
Turn on the Group combinational logic into logic cloud option.

Figure 13–12. Schematic Before Combinational Logic Grouping

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–23
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Manually Group and Ungroup Logic Clouds
To group logic nodes into a logic cloud manually, right-click the selected node or
input port and click Group source logic into logic cloud. To ungroup a logic cloud
manually, right-click the selected logic cloud and click Ungroup source logic from
logic cloud. You can also ungroup a logic cloud manually by double-clicking the
selected logic cloud. These options are not available if the nodes cannot be grouped.

Changing the Constant Signal Value Formatting
The constant signal value is highlighted in gray in the schematic view. By default, the
value is displayed in hexadecimal format, but you can also choose binary or decimal
format. To change the value formatting, on the Tools menu, click Options. In the
Category list, select Netlist Viewers and select the desired format in the Constant
Signal Format list.

Changing the format affects all constant signal values throughout the schematic. Refer
to Table 13–3 on page 13–11 to see what constant signal values look like in the
schematic.

Zooming and Magnification
You can control the magnification of your schematic on the View menu, with the
Zoom Tool in the toolbar, or the Ctrl key and mouse wheel button, as described in this
section.

Figure 13–13. Schematic After Combinational Logic Grouping

13–24 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

By default, the viewer displays most pages sized to fit in the window. If the schematic
page is very large, the schematic is displayed at the minimum zoom level, and the
view is centered on the first node. Click Zoom In to view the image at a larger size,
and click Zoom Out to view the image (when the entire image is not displayed) at a
smaller size. The Zoom command allows you to specify a magnification percentage
(100% is considered the normal size for the schematic symbols). To change the
minimum and maximum zoom level, on the Tools menu, click Options. In the
Options dialog box, in the Category list, select Netlist Viewers and set the desired
minimum and maximum zoom level.

The Fit Selection in Window command zooms in on the selected nodes in a schematic
to fit within the window. Use the Selection Tool to select one or more nodes (instances,
primitives, pins, and nets), then click Fit Selection in Window to enlarge the area
covered by the selection. This feature is helpful when you want to see a particular
element in a large schematic. After you select a node, you can easily zoom in to view
the particular node.

You can also use the Zoom Tool on the viewer toolbar to control magnification in the
schematic view. When you select the Zoom Tool in the toolbar, clicking in the
schematic zooms in and centers the view on the location you clicked. Right-click in
the schematic to zoom out and center the view on the location you clicked. When you
select the Zoom Tool, you can also zoom in to a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to
show the selected area.

Alternatively, you can specify the magnification percentage by right-clicking on the
desired area and dragging the mouse to the right to zoom in or to the left to zoom out
with the Zoom Tool. You will see a green line with the zoom percentage above it. The
zoom percentage is proportional to the length of the green line (Figure 13–14). Release
the mouse button at the desired zoom percentage.

Figure 13–14. Dragging the Mouse Pointer to Change Zoom Percentage

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–25
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

By default, the viewers maintain the zoom level when filtering on the schematic (refer
to “Filtering in the Schematic View” on page 13–28). To change the behavior so that
the zoom level is always reset to “Fit in Window,” on the Tools menu, click Options.
In the Category list, select Netlist Viewers, and turn off Maintain zoom level.

Schematic Debugging and Tracing Using the Bird’s Eye View
Viewing the entire schematic can be useful when debugging and tracing through a
large netlist. The Quartus II software allows you to view the entire schematic in a
single window. The Bird’s Eye View is displayed in a separate window that is linked
directly to the netlist viewers. This feature is available in the RTL, Technology Map,
and Technology Map (Post-Mapping) viewers.

The Bird’s Eye View shows the current area of interest. Select the desired area by
clicking and dragging the indicator or right-clicking to form a rectangular box around
the desired area. You can also click and drag the rectangular box to move around the
schematic. To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or
click on the Bird’s Eye View icon in the Viewer toolbar (Figure 13–15).

Full Screen View
To set the viewer window to fill the entire screen, on the View menu, click Full Screen,
or click the Full Screen icon in the viewer toolbar (Figure 13–15), or press
Ctrl+Alt+Space. The keyboard shortcut toggles between the full screen and standard
screen views.

Partitioning the Schematic into Pages
For large design hierarchies, the RTL Viewer and Technology Map Viewer partition
your netlist into multiple pages in the schematic view. To control how much of the
design is visible on each page, on the Tools menu, click Options. In the Category list,
select Netlist Viewers and set the desired options under Display Settings.

The Nodes per page option specifies the number of nodes per partitioned page. The
default value is 50 nodes; the range is 1 to 1,000 nodes. The Ports per page option
specifies the number of ports (or pins) per partitioned page. The default value is 1,000
ports (or pins); the range is 1 to 2,000 ports (or pins). The viewers partition your
design into a new page if either the node number or the port number exceeds the limit
you have specified. You might occasionally see the number of ports exceed the limit,
depending on the configuration of nodes on the page.

If the Display boundary around hierarchy levels option is turned on and the total
number of nodes or ports within the hierarchy exceeds the value of Nodes per page or
Ports per page, the boundary is displayed as a hierarchy port connector (refer to
Table 13–1 on page 13–8). For more information about the Display boundary around
hierarchy levels option, refer to “Filtering Across Hierarchies” on page 13–32.

Figure 13–15. Bird’s Eye View and Full Screen Icons

13–26 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

When a hierarchy level is partitioned into multiple pages, the title bar for the
schematic window indicates which page is displayed and how many total pages exist
for this level of hierarchy (shown in the format:
Page <current page number> of <total number of pages>), as shown in Figure 13–16.

When you change the number of nodes or ports per page, the change applies only to
new pages that are shown or opened in the viewer. To refresh the current page so that
it displays the changed number of nodes or ports, click the Refresh button on the
toolbar.

Moving Between Schematic Pages
To move to another schematic page, on the View menu, click Previous Page or Next
Page, or click the Previous Page icon or the Next Page icon on the viewer toolbar.

To go to a particular page of the schematic, on the Edit menu, click Go To, or
right-click in the schematic view and click Go To. In the Page list, select the desired
page number. You can also go to a particular page by selecting the desired page
number from the pull-down list on the top right of the viewer window.

Moving Back and Forward Through Schematic Pages
To return to the previous view after changing the page view, click Back on the View
menu, or click the Back icon on the viewer toolbar. To go to the next view, click
Forward on the View menu, or click the Forward icon on the viewer toolbar.

1 You can go forward only if you have not made any changes to the view since going
back. Use the Back and Forward commands to switch between page views. These
commands do not undo an action, such as selecting a node.

Following Nets Across Schematic Pages
Input and output connectors indicate nodes that connect across pages of the same
hierarchy. Right-click a connector to display a menu of commands that trace the net
through the pages of the hierarchy.

1 After you right-click to follow a connector port, the viewer opens a new page, which
centers the view on the particular source or destination net using the same zoom
factor as the previous page. To trace a specific net to the new page of the hierarchy,
Altera recommends that you first select the desired net, which highlights it in red,
before you right-click to traverse pages.

Figure 13–16. RTL Viewer Title Bars Indicating Page Number Information

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–27
Navigating the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Input Connectors

Figure 13–17 shows an example of the menu that appears when you right-click an
input connector. The From command opens the page containing the source of the
signal. The Related commands, if applicable, open the specified page containing
another connection fed by the same source.

Output Connectors

Figure 13–18 shows an example of the menu that appears when you right-click an
output connector. The To command opens the specified page that contains a
destination of the signal.

Go to Net Driver
To locate the source of a particular net in the schematic view, right-click the net, point
to Go to Net Driver and click Current page, Current hierarchy, or Across hierarchies.
Refer to Table 13–6 for details.

Figure 13–17. Input Connector Shortcut Menu

Figure 13–18. Output Connector Shortcut Menu

Table 13–6. Go to Net Driver Commands

Command Action

Current page Locates the source or driver on the current page of the schematic only.

Current hierarchy Locates the source within the current level of hierarchy, even if the source is located on another page
of the netlist schematic.

Across hierarchies Locates the source across hierarchies until the software reaches the source at the top hierarchy level.

13–28 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Customizing the Schematic Display in the RTL Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

The schematic view opens the correct page of the schematic, if required, and adjusts
the centering of the page so that you can see the net source. The schematic shows the
default page for the net driver. The view is unfiltered, so no filtering results are kept.

Customizing the Schematic Display in the RTL Viewer
You can customize the schematic display for better viewing and to speed up your
debugging process. The options that control the schematic display are available in the
Customize View tab of the RTL/Technology Map Viewer Options dialog box. To
open the dialog box, right-click in the schematic and click Viewer Options. You can
turn on the options to remove fan-out free nodes, simplify logic, group or ungroup
related nodes, and group combinational logic into a logic cloud.

You can also customize the schematic view in the RTL Viewer by clicking Options on
the Tools menu. In the Category list, under Netlist Viewers, select RTL Viewer. Set
the desired customization for your schematic display.

1 When you change settings, the list of previously viewed pages is cleared. The settings
are revision-specific, so different revisions can have different settings.

To remove fan-out free registers from your schematic display, turn on Remove
registers without fan-out. By default, this option is turned on.

To remove all single-input nodes and merge a chain of equivalent combinational gates
that have direct connections (without inversion in between) into a single
multiple-input gate, turn on Show simplified logic. By default, this option is turned
on.

To group all related nodes into a single node, turn on Group all related nodes. This
option is turned on by default. You can manually group or ungroup any nodes by
right-clicking the selected nodes in the schematic and selecting Group Related Nodes
or Ungroup Selected Nodes.

Filtering in the Schematic View
Filtering allows you to filter out nodes and nets in your netlist to view only the logic
that interests you.

Filter your netlist by selecting hierarchy boxes, nodes, ports of a node, nets, or states
in a state machine that are part of the path you want to see. The following filter
commands are available:

■ Sources—Displays the sources of the selection

■ Destinations—Displays the destinations of the selection

■ Sources & Destinations—Displays both the sources and destinations of the
selection

■ Selected Nodes and Nets—Displays only the selected nodes and nets with the
connections between them

■ Between Selected Nodes—Displays nodes and connections in the path between
the selected nodes

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–29
Filtering in the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Bus Index—Displays the sources or destinations for one or more indices of an
output or input bus port

Select a hierarchy box, node, port, net, or state node, right-click in the window, point
to Filter and click the appropriate filter command. The viewer generates a new page
showing the netlist that remains after filtering.

When filtering in a state diagram in the State Machine Viewer, sources and
destinations refer to the previous and next transition states or paths between
transition states in the state diagram. The transition table and encoding table also
reflect the filtering.

You can go back to the netlist page before it was filtered using the Back command, as
described in “Moving Back and Forward Through Schematic Pages” on page 13–26.

1 When viewing a filtered netlist, clicking an item in the hierarchy list causes the
schematic view to display an unfiltered view of the appropriate hierarchy level. You
cannot use the hierarchy list to select items or navigate in a filtered netlist.

Filter Sources Command
To filter out all but the source of the selected item, right-click the item, point to Filter,
and click Sources. The selected object type determines what is displayed, as outlined
in Table 13–7 and shown in Figure 13–19.

Filter Destinations Command
To filter out all but the destinations of the selected node or port as outlined in
Table 13–8 and shown in Figure 13–19, right-click the node or port, point to Filter, and
click Destinations.

Table 13–7. Selected Objects Determine Filter Sources Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the sources of the node’s input ports. For an example, refer to Figure 13–19.

Net Shows the sources that feed the net.

Input port of a node Shows only the input source nodes that feed this port.

Output port of a node Shows only the selected node.

State node in a state machine Shows the states that feed the selected state (previous transition states).

Table 13–8. Selected Objects Determine Filter Destinations Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the destinations of the node’s output ports. For an example, refer to
Figure 13–19.

Net Shows the destinations fed by the net.

Input port of a node Shows only the selected node.

Output port of a node Shows only the fan-out destination nodes fed by this port.

State node in a state machine Shows the states that are fed by the selected states (next transition states).

13–30 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Filtering in the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Filter Sources and Destinations Command
The Sources & Destinations command is a combination of the Sources and
Destinations filtering commands, in which the filtered page shows both the sources
and the destinations of the selected item. To select this option, right-click the desired
object, point to Filter, and click Sources & Destinations. Refer to the example in
Figure 13–19.

Filter Between Selected Nodes Command
To show the nodes in the path between two or more selected nodes or hierarchy
boxes, right-click the desired object, point to Filter, and click Between Selected
Nodes. For this option, selecting a port of a node is the same as selecting the node. For
an example, refer to Figure 13–20.

Filter Selected Nodes and Nets Command
To create a filtered page that shows only the selected nodes, nets, or both, and, if
applicable, the connections between the selected nodes, nets, or both, right-click the
desired object, point to Filter, and click Selected Nodes & Nets. Figure 13–21 shows a
schematic with several nodes selected.

Figure 13–19. Sources, Destinations, and Sources and Destinations Filtering for inst4

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

Sources & Destinations

Sources

Destinations

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Selected Node

Figure 13–20. Between Selected Nodes Filtering Between inst2 and inst3

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Between Selected Nodes

Selected Nodes

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–31
Filtering in the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 13–22 shows the schematic after filtering. If you select a net, the filtered page
shows the immediate sources and destinations of the selected net.

Filter Bus Index Command
To show the path related to a specific index of a bus input or output port in the RTL
Viewer, right-click the port, point to Filter, and click Bus Index. The Select Bus Index
dialog box allows you to select the indices of interest.

Filter Command Processing
The options to control filtering are available in the Tracing section of the
RTL/Technology Map Viewer Options dialog box. Right-click in the schematic and
click Viewer Options to open the dialog box.

For all the filtering commands, the viewer stops tracing through the netlist to obtain
the filtered netlist when it reaches one of the following objects:

■ A pin

■ A specified number of filtering levels, counting from the selected node or port

Figure 13–21. Using Selected Nodes and Nets to Select Nodes

Figure 13–22. Selected Nodes and Nets Filtering on Figure 13–21 Schematic

13–32 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Filtering in the Schematic View

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

1 Specify the number of filtering levels in the Tracing section of the
RTL/Technology Map Viewer Options dialog box. The default value is 3,
which ensures optimal processing time when performing filtering, but you
can specify a value from 1 to 15. To see more than 15 levels, set the
Expanding option. For more information, refer to “Expanding a Filtered
Netlist”.

■ A register (optional; turned on by default)

1 Turn the Stop filtering at register option on or off in the Tracing section of
the RTL/Technology Map Viewer Options dialog box. Right-click in the
schematic and click Viewer Options to open the dialog box.

By default, the filtered schematic shows all possible connections between the nodes
shown in the schematic. To remove the connections that are not directly part of the
path that was traced to generate a filtered netlist, turn off the Shows all connections
between nodes option in the Tracing section of the RTL/Technology Map Viewer
Options dialog box.

Filtering Across Hierarchies
The filtering commands display nodes in all hierarchies by default. When the filtered
path passes through levels of hierarchy on the same schematic page, green hierarchy
boxes group the logic and show the hierarchy boundaries. A green rectangular
symbol appears on the border that represents the port relationship between two
different hierarchies (Figure 13–23 and Figure 13–24).

The RTL/Technology Map Viewer Options dialog box provides an option to control
filtering if you prefer to filter only within the current hierarchy. Right-click the
schematic and click Viewer Options. In the Tracing section, turn off the Filter across
hierarchy option.

To disable the box hierarchy display, on the Tools menu, click Options. In the
Category list, select Netlist Viewers and turn off Display boundary around
hierarchy levels.

1 Netlists of the same hierarchy displayed over more than one page are not grouped
with a box. Filtering and expanding on a blue atom primitive does not trace the
underlying netlist, even when Filter across hierarchy is enabled.

Figure 13–23 and Figure 13–24 show examples of filtering across hierarchical
boundaries. Figure 13–23 shows an example after the Sources filter has been applied
to an input port of the taps instance, where the input port of the lower level
hierarchical block connects directly to an input pin of the design. The name of the
instance appears within the green border and as a tooltip when you move your mouse
pointer over the instance.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–33
Filtering in the Schematic View

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Figure 13–24 shows a larger example after the Sources filter has been applied to an
input port of an instance, in which the source comes from input pins that are fed
through another level of hierarchy.

Expanding a Filtered Netlist
After a netlist is filtered, some ports might not have connections displayed because
their connections are not part of the main path through the netlist. Two expansion
features, immediate expansion and the Expand command, allow you to add the fan-in
or fan-out signals of these ports to the schematic display of a filtered netlist.

You can immediately expand any port whose connections are not displayed. When
you double-click that port in the filtered schematic, one level of logic is expanded.

To expand more than one level of logic, right-click the port and click the Expand
command. This command expands logic from the selected port by the amount
specified in Viewer Options. To set these options, right-click in the schematic view
and click Viewer Options. In the Expansion section, set the Number of expansion
levels option to specify the number of levels to expand (the default value is 3 and the
range is 1 to 15 levels). You can also set the Stop expanding at register option (which
is turned on by default) to specify whether netlist expansion should stop when a
register is reached.

Figure 13–23. Filtering Across Hierarchical Boundaries, Small Example

Figure 13–24. Filtering Across Hierarchical Boundaries, Large Example

13–34 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Probing to Source Design File and Other Quartus II Windows

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

You can select multiple nodes to expand when you use the Expand command. If you
select ports that are located on multiple schematic pages, only the ports on the
currently viewed page appear in the expanded schematic.

In the State Machine Viewer, the Expand command has the following three options:

■ Sources—Displays the states that feed the selected states (previous transition
states)

■ Destinations—Displays the states that are fed by the selected states (next
transition states)

■ Sources & Destinations—Displays both the previous and next transition states

The state transition table and state encoding table also reflect the changes to the filter.

The expansion feature works across hierarchical boundaries if the filtered page
containing the port you want to expand was generated with the Filter across
hierarchy option turned on (refer to “Filtering in the Schematic View” on page 13–28
for details about this option). When viewing timing paths in the Technology Map
Viewer, the Expand command always works across hierarchical boundaries because
filtering across hierarchy is always turned on for these schematics (refer to “Viewing a
Timing Path” on page 13–37 for details about these schematics).

Reducing a Filtered Netlist
In some cases, removing logic from a filtered schematic or state diagram makes the
schematic view easier to read and minimizes distracting logic in the schematic that
you do not need to view.

To reduce elements in the filtered schematic or state diagram view, right-click the
node or nodes you want to remove and click Reduce.

Probing to Source Design File and Other Quartus II Windows
The RTL Viewer, Technology Map Viewer, and State Machine Viewer let you
cross-probe to the source design file and to various other windows within the
Quartus II software. You can select one or more hierarchy boxes, nodes, nets, state
nodes, or state transition arcs that interest you in the viewer and locate the
corresponding items in another applicable Quartus II software window. You can then
view and make changes or assignments in the appropriate editor or floorplan.

To locate an item from the viewer in another window, right-click the items of interest
in the schematic or state diagram, point to Locate, and click the appropriate
command. The following commands are available:

■ Locate in Assignment Editor

■ Locate in Pin Planner

■ Locate in Timing Closure Floorplan

■ Locate in Chip Planner

■ Locate in Resource Property Editor

■ Locate in RTL Viewer

■ Locate in Technology Map Viewer

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–35
Probing to Source Design File and Other Quartus II Windows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ Locate in Design File

The options available for locating depend on the type of node and whether it exists
after placement and routing. If a command is enabled in the menu, it is available for
the selected node. You can use the Locate in Assignment Editor command for all
nodes, but assignments might be ignored during placement and routing if they are
applied to nodes that do not exist after synthesis.

The viewer automatically opens another window for the appropriate editor or
floorplan and highlights the selected node or net in the newly opened window. You
can switch back to the viewer by selecting it in the Window menu or by closing,
minimizing, or moving the new window.

1 When probing to a logic cloud in the RTL Viewer, a message box appears that prompts
you to ungroup the logic cloud or allow it to remain grouped.

Moving Selected Nodes to Other Quartus II Windows
You can drag selected nodes from the netlist viewers to the Text Editor, Block Editor,
Pin Planner, SignalTap® II Embedded Logic Analyzer, and Waveform Editor windows
within the Quartus II software. Whenever you see the drag-and-drop pointer on the
selected node in the netlist viewers, it means that the node can be dragged to other
child windows within the Quartus II software.

To tap a node from the schematic in the Technology Map Viewer to an open
SignalTap II Embedded Logic Analyzer window or to a new SignalTap II file (.stp),
right-click the selected node in the schematic diagram or in the hierarchy list and then
click Add Node to SignalTap II Logic Analyzer. If the node cannot be tapped, the
option is unavailable.

Figure 13–25 shows the drag-and-drop pointer and an example of dragging a node
from the RTL Viewer to the SignalTap II Embedded Logic Analyzer.

13–36 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Probing to the Viewers from Other Quartus II Windows

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Probing to the Viewers from Other Quartus II Windows
You can cross-probe to the RTL Viewer and Technology Map Viewer from other
windows within the Quartus II software. You can select one or more nodes or nets in
another window and locate them in one of the viewers.

You can locate nodes between the RTL Viewer, State Machine Viewer, and Technology
Map Viewer, and you can locate nodes in the RTL Viewer and Technology Map
Viewer from the following Quartus II software windows:

■ Project Navigator

■ Timing Closure Floorplan

■ Chip Planner

■ Resource Property Editor

■ Node Finder

■ Assignment Editor

■ Messages Window

■ Compilation Report

Figure 13–25. Dragging a Node to the SignalTap II Logic Analyzer

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–37
Viewing a Timing Path

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

■ TimeQuest Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the viewer from another Quartus II window, select the node or
nodes in the appropriate window; for example, select an entity in the Entity list on the
Hierarchy tab in the Project Navigator, or select nodes in the Timing Closure
Floorplan, or select node names in the From or To column in the Assignment Editor.
Next, right-click the selected object, point to Locate, and click Locate in RTL Viewer
or Locate in Technology Map Viewer. After you click this command, the viewer
window opens, or is brought to the foreground if the viewer window is already open.

1 The first time the window opens after a compilation, the preprocessor stage runs
before the viewer window opens.

The viewer shows the selected nodes and, if applicable, the connections between the
nodes. The display is similar to what you see if you right-click the object, point to
Filter, and click Selected Nodes & Nets using Filter Across Hierarchy. If the nodes
cannot be found in the viewer, a message box displays the message: Can’t find
requested location.

Viewing a Timing Path
To see a visual representation of a timing path, cross-probe from the Timing Analysis
section of the Compilation Report with the Classic Timing Analyzer, or from a report
panel in the TimeQuest Timing Analyzer.

To take advantage of this feature, you must first successfully complete a full
compilation of your design, including the timing analyzer stage. To see the timing
results for your design, on the Processing menu, click Compilation Report. On the left
side of the Compilation Report, select Timing Analyzer or TimeQuest Timing
Analyzer. When you select a detailed report, the timing information is listed in a table
format on the right side of the Compilation Report; each row of the table represents a
timing path in the design. You can also view timing paths in TimeQuest report panels.
To view a particular timing path in the Technology Map Viewer or RTL Viewer,
right-click the appropriate row in the table, point to Locate, and click Locate in
Technology Map Viewer or Locate in RTL Viewer.

In the Technology Map Viewer, the schematic page displays the nodes along the
timing path with a summary of the total delay. If you locate from the Classic Timing
Analyzer, the timing path also includes timing data representing the interconnect (IC)
and cell delays associated with each node. The delay for each node is shown in the
following format: <post-synthesis node name> (<IC delay> ns, <cell delay> ns).

When you locate the timing path from the TimeQuest Timing Analyzer to the
Technology Map Viewer, the interconnect and cell delay associated with each node is
displayed on top of the schematic symbols. The total slack of the selected timing path
is displayed in the Page Title section of the schematic. If the nodes are grouped in a
logic cloud, the delay information displayed with the logic cloud is the total sum
delay of the grouped nodes. The delay information for each node in the logic cloud is
displayed in a tooltip. Move the mouse pointer over the logic cloud to see the tooltip.
For more information about tooltips, refer to “Tooltips” on page 13–39.

13–38 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Viewing a Timing Path

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Figure 13–26 shows a portion of a Classic Timing Analyzer timing path represented in
the Technology Map Viewer. The total delay for the entire path through several levels
of logic (only three levels are shown in Figure 13–26) is 7.159 ns. The delays are
indicated for each level of logic. For example, the IC delay to the first LCELL primitive
is 0.383 ns and the cell delay through the LCELL is 0.075 ns. When the timing path
passes through a level of hierarchy, green hierarchy boxes group the logic and show
the hierarchical boundaries. A green rectangular symbol on the border indicates that
the path passes between two different hierarchies.

In the RTL Viewer, the schematic page displays the nodes in the paths between the
source and destination registers with a summary of the total delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the post-fitting
nodes might not exist in the RTL Viewer netlist. Therefore, the internal delay numbers
are not displayed in the RTL Viewer as they are in the Technology Map Viewer, and
the timing path might not be displayed exactly as it appears in the timing analysis
report. If multiple paths exist between the source and destination registers, the RTL
Viewer might display more than just the timing path. There are also some cases in
which the path cannot be displayed, such as paths through state machines, encrypted
intellectual property (IP), or registers that are created during the fitting process. In
cases where the timing path displayed in the RTL Viewer might not be the correct
path, the compiler issues messages.

Figure 13–26. Timing Path Schematic in the Technology Map Viewer

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–39
Other Features in the Schematic Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Other Features in the Schematic Viewer
This section describes other features in the schematic view that enhance usability and
help you analyze your design.

Tooltips
A tooltip is displayed whenever the mouse pointer is held over an element in the
schematic. The tooltip contains useful information about a node, net, logic cloud,
input port, or output port. Table 13–9 lists the information contained in the tooltip for
each type of node.

The tooltip information for an instance (the first row in Table 13–9) includes a list of
the primitives found within that level of hierarchy and the number of each primitive
contained in the current instance. The number includes all hierarchical blocks below
the current instance in the hierarchy. This information lets you estimate the size and
complexity of a hierarchical block without navigating into the block.

The tooltip information for atom primitives in the Technology Map Viewer (the
second row in Table 13–9) shows the equation for the design atom. The equations are
an expanded version of the equations you can view in the Equations window in the
Timing Closure Floorplan. Advanced users can use these equations to analyze the
design implementation in detail.

f For details about understanding equations, refer to the Quartus II Help.

To copy tooltips into the clipboard for use in other applications, right-click the desired
node or netlist and click Copy Tooltip.

To turn off tooltips or change the duration of time that a tooltip is displayed in the
view, on the Tools menu, click Options. In the Category list, select Netlist Viewers
and set the desired options under Tooltip settings.

The Show names in tooltip for option specifies the number of seconds to display the
names of assigned nodes and pins in a tooltip when the pointer is over the assigned
nodes and pins. Selecting Unlimited displays the tooltip as long as the pointer
remains over the node or pin. Selecting 0 turns off tooltips. The default value is 5
seconds.

The Delay showing tooltip for option specifies the number of seconds you must hold
the mouse pointer over assigned nodes and pins before the tooltip displays the names
of the assigned nodes and pins. Selecting 0 displays the tooltip immediately when the
pointer is over an assigned node or pin. Selecting Unlimited prevents the display of
tooltips. The default value is 1 second.

13–40 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Table 13–9. Tooltip Information (Part 1 of 2)

Tooltip Format Description Example Tooltips

Instance Format: <instance name>, <instance type>

<primitive type>, <number of primitives>...

<primitive type>, <number of primitives>

Atom Primitive Format: <instance name>, <primitive name> (<LUT Mask
Value>)

{(r | c <Register or Combinational equation>)}
...

An r (as in the first example) represents the equation for a
register, and a c (as in the second example) represents the
equation for combinational logic.

Primitive Format:<primitive name>, <primitive type>

Pin Format: <pin name>, <pin type>

Connector Format: <connector name>

Net Format: <net name>, fan-out = <number of fan-out
signals>

Output Port Format: fan-out = <number of fan-out signals>

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–41
Other Features in the Schematic Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Radial Menu
The radial menu is a rectangular menu with eight commands you can choose from.
This menu provides a quick way to perform any of the commands with a single click
whenever you are in the schematic view. The radial menu feature is enabled by
default.

To open the radial menu, right-click and hold anywhere in the schematic view and
wait for the menu to appear. By default, the menu appears after 0.2 seconds. The
radial menu appears with the mouse pointer always at the center point. The small
rectangle at the center of the menu indicates a non-trigger boundary where no
command is started when you click within the rectangle.

To invoke the desired command, hold down the right mouse button, drag the mouse
onto the command, and then release the mouse button. If you decide not to trigger
any command after the radial menu appears, press the ESC key or drag the pointer
back into the small rectangle and release the mouse button.

Input Port The information displayed depends on the type of source
net. The examples of the tooltips shown represent the
following types of source nets:

(1) Single net

(2) Individual nets, part of the same bus net

(3) Combination of different bus nets

(4) Constant inputs

(5) Combination of single net and constant input

(6) Bus net

Source from—refers to the source net name that connects
to the input port.

Destination Index—refers to the bit(s) at the destination
input port to which the source net is connected (not
applicable for single nets).

State Machine Node Format: <node name>

State Machine
Transition Arc

This information is displayed when you hold your mouse
over the arrow on the arc representing the transition
between two states.

Format: (<equation for transition between states>)

Table 13–9. Tooltip Information (Part 2 of 2)

Tooltip Format Description Example Tooltips

(1)

(2)

(3)

(4)

(5)

(6)

13–42 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Figure 13–27 shows the radial menu.

Enabling and Disabling the Radial Menu
To enable the radial menu, on the Tools menu, click Options. In the Options dialog
box, click Netlist Viewers and turn on the Enable Radial Menu option under Radial
Menu settings. Turn off the Enable Radial Menu option to disable the feature.

Customizing the Shortcut Commands
You can choose the 8 commands to appear on the radial menu, from a list of 24
available commands. To customize the command list on the menu, first launch the
RTL Viewer, the Technology Map Viewer, or the Technology Map Viewer
(Post-Mapping). On the Tools menu, click Customize RTL Viewer, Customize
Technology Map Viewer, or Customize Technology Map Viewer (Post-Mapping).
On the Shortcut Commands tab, drag and drop the icon under Buttons into any
region under Shortcut Commands Popup. You can click the icon under Buttons to see
its description.

Figure 13–28 shows the Shortcut Commands tab for customizing the radial menu.

Figure 13–27. Radial Menu

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–43
Other Features in the Schematic Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Changing the Delay
To change the amount of time you have to wait before the Radial menu appears, on
the Tools menu, click Options. In the Options dialog box, select Netlist Viewers.
Select the desired time interval in the pull-down list for Delay showing radial menu
for. The default delay is 0.2 seconds. The Radial menu feature must be enabled before
you can change this setting. Refer to “Enabling and Disabling the Radial Menu” on
page 13–42 for details about how to enable the Radial menu feature.

Rollover
You can highlight an element and view its name in your schematic using the Rollover
feature. When you place your mouse pointer over an object, the object is highlighted
and the name is displayed (Figure 13–29). This feature is enabled by default in the
netlist viewers. To turn off the Rollover feature, on the Tools menu, click Options. In
the Options dialog box, in the Category list, select Netlist Viewers and turn off
Enable Rollover.

Figure 13–28. Shortcut Commands Tab

13–44 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Displaying Net Names in the Schematic
To see the names of all the nets displayed in your schematic, on the Tools menu, click
Options. In the Category list, select Netlist Viewers and under Display Settings, turn
on Show Net Name. This option is disabled by default. If you turn on this option, the
schematic view refreshes automatically to display the net names.

Displaying Node Names in the Schematic
In some designs, nodes have long names that overlap the ports of other symbols in the
schematic. To remove the node names from the schematic, on the Tools menu, click
Options. In the Category list, select Netlist Viewers and under Display Settings, turn
off Show node name. This option is turned on by default.

Opening the Hierarchy Dialog Box
To open the Hierarchy dialog box shown in Figure 13–30, on the Edit menu, click
Find, click the Find icon in the viewer toolbar, or right-click in the schematic view and
click Find. There is also a Hierarchy List button at the bottom of the toolbar in the
viewer window. You can switch between the Find and Hierarchy lists with the Tab
button.

Figure 13–29. Rollover in the RTL Viewer and Technology Map Viewer

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–45
Other Features in the Schematic Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

You can narrow the range of the search process by setting the following options in the
Hierarchy dialog box:

■ Click the Select Hierarchy Level button to specify the level of the search. In the
Select Hierarchy Level dialog box, select the particular instance that you want to
search.

■ Turn on the Include subentities option to include child hierarchies of the parent
instance during the search.

■ Click Options to open the Find Options dialog box. Turn on Instances, Nodes,
Pins, or any combination of the three to further refine the parameters of the search.

When you click List, a progress bar appears below the Find box. When the bar is full,
the search process is finished.

All results that match the criteria you set are listed in a table. When you double-click
an item in the table, the related node is highlighted in red in the schematic view.

f For more information about using the Hierarchy dialog box, refer to “Finding Nodes
in the RTL Viewer and Technology Map Viewer” in the Quartus II Help.

Figure 13–30. Hierarchy Dialog Box

13–46 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Exporting and Copying a Schematic Image
You can export the schematic view of the RTL Viewer or Technology Map Viewer into
various image formats. This allows you to include the schematic in project
documentation or share it with other project members. The currently supported
formats are JPEG File Interchange Format (.jpg), Portable Network Graphics (.png),
Graphics Interchange Format (.gif), and Windows Bitmap (.bmp). To export the
schematic view, on the File menu, click Export. In the Export dialog box, type a file
name and location and select the desired file type. The default file name is based on
the current instance name; the default file type is .jpg. However, for pages that use
filtering, expanding, or reducing operations, the default name is
Filter<number of export operation>.jpg.

1 Nodes grouped as logic clouds are not shown in the exported or copied schematic
image; the logic clouds are shown instead.

You can copy the entire image or a portion of the image. To copy the entire image, on
the Edit menu, point to Copy and click Full Image. To copy a portion of the image, on
the Edit menu, point to Copy and click Partial Image. The cursor changes to a “+”
sign to indicate that you can draw a box shape. Drag the mouse pointer around the
portion of the schematic you want to copy. When you release the mouse button, the
partial image is copied to the clipboard.

1 Occasionally, due to the design size and objects selected, an image is too large to copy
to the clipboard. In this case, the Quartus II software displays an error message.

To export or copy a schematic that is too large to copy in one piece, split the design
into multiple pages to export or to copy smaller portions of the design. For
information about controlling how much of your design is shown on each schematic
page, refer to “Partitioning the Schematic into Pages” on page 13–25. As an
alternative, use the Partial Image feature to copy a portion of the image.

1 The Copy feature is not available on UNIX platforms.

Printing
To print your schematic page, on the File menu, click Print. You can print each
schematic page onto one page, or you can print selected parts of your schematic onto
one page with the Selection option. Refer to “Partitioning the Schematic into Pages”
on page 13–25 to control how much of your design is shown on each schematic page.

The hierarchy list in the viewers and the table view of the State Machine Viewer
cannot be printed. You can use the State Machine Viewer Copy command to copy the
table to a text editor and print from the text editor.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–47
Debugging HDL Code with the State Machine Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Debugging HDL Code with the State Machine Viewer
This section provides an example of using the State Machine Viewer to help debug
HDL code. This example shows how you can use the various features in the netlist
viewers to help solve design problems.

Simulation of State Machine Gives Unexpected Results
This section presents a design scenario in which you compiled your design and
performed a simulation in the Quartus II Simulator. The simulation result is shown in
Figure 13–31 and has unexpected undefined states.

To analyze the state machine design in the State Machine Viewer, perform the
following steps:

1. Open the State Machine Viewer for the state machine of interest. You can do this in
any of the following ways:

■ On the Tools menu, point to Netlist Viewers and click State Machine Viewer.
In the State Machine selection box, choose the state machine that you want to
view.

■ On the Tools menu, point to Netlist Viewers and click RTL Viewer. Browse to
the hierarchy block containing the state machine definition and double-click
the yellow state machine instance to open the State Machine Viewer
(Figure 13–32).

■ In the schematic view, double-click an instance in the hierarchy to open the
lower hierarchy level. You can traverse through the schematic hierarchy in this
way to open the schematic page that contains the state machine (Figure 13–32).

Figure 13–31. Simulation Result Showing Undefined States

13–48 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Debugging HDL Code with the State Machine Viewer

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

■ In the hierarchy list, click the “+“ symbol next to Instances to open a list of the
instances in that hierarchy level of the design. You can traverse down the
hierarchy tree in this way to find the instance that contains the state machine.
Click the name of the state machine in the State Machines folder (Figure 13–33)
to open the appropriate schematic in the schematic view (Figure 13–32).

Double-click the state machine instance (Figure 13–32) to see its state transition
diagram in the State Machine Viewer (Figure 13–34).

2. You can analyze this state machine instance using the state machine diagram,
transition table, and encoding table. Clearly something is wrong with the state
machine because every state has a transition to every other state (Figure 13–34).
After inspecting the state machine behavior, you determine that in this scenario,
the designer did not create default assignments for the next state (that is,
next_state = current_state if the conditions are not met).

Figure 13–32. State Machine Instance in RTL Viewer Schematic View

Figure 13–33. State Machine Instance in RTL Viewer Hierarchy List

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–49
Debugging HDL Code with the State Machine Viewer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

3. After fixing the error in the HDL code, recompile the design and repeat steps 1 and
2 to view the new state machine diagram and transition table (shown in
Figure 13–35), and check that the state transitions now occur correctly.

4. Perform a new simulation, as shown in Figure 13–36, and verify that the state
machine performs as expected.

Figure 13–34. State Machine Viewer Showing Incorrect Transitions

Figure 13–35. State Machine Viewer Showing Correct Transitions

13–50 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Conclusion

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

Conclusion
The Quartus II RTL Viewer, State Machine Viewer, and Technology Map Viewer allow
you to explore and analyze your initial synthesis netlist, post-synthesis netlist, or
post-fitting and physical synthesis netlist. The viewers provide a number of features
in the hierarchy list and schematic view to help you quickly trace through your netlist
and find specific hierarchies or nodes of interest. These capabilities can help you
debug, optimize, and constrain your design more efficiently to increase your
productivity.

Document Revision History
Table 13–10 shows the revision history for this chapter.

Figure 13–36. Simulation Result Showing Correct States

Table 13–10. Document Revision History (Part 1 of 2)

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated devices

■ Minor text edits

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

■ Chapter 13 was formerly Chapter 12 in version 8.1.0

■ Updated Figure 13–2, Figure 13–3, Figure 13–4,
Figure 13–14, and Figure 13–30

■ Added “Enable or Disable the Auto Hierarchy List” on
page 13–15

■ Updated “Find Command” on page 13–44

Updated for the Quartus II software
version 9.0 release.

Chapter 13: Analyzing Designs with Quartus II Netlist Viewers 13–51
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

Changed page size to 8.5” × 11” —

May 2008
v8.0.0

■ Added Arria GX support

■ Updated operator symbols

■ Updated information about the radial menu feature

■ Updated zooming feature

■ Updated information about probing from schematic to
SignalTap II Analyzer

■ Updated constant signal information

■ Added .png and .gif to the list of supported image file formats

■ Updated several figures and tables

■ Added new sections “Enabling and Disabling the Radial
Menu”, “Changing the Time Interval”, “Changing the
Constant Signal Value Formatting”, “Logic Clouds in the RTL
Viewer”, “Logic Clouds in the Technology Map Viewer”,
“Manually Group and Ungroup Logic Clouds”, “Customizing
the Shortcut Commands”

■ Renamed several sections

■ Removed section “Customizing the Radial Menu”

■ Moved section “Grouping Combinational Logic into Logic
Clouds”

■ Updated document content based on the Quartus II software
version 8.0

Updated for Quartus II software
version 8.0.

Table 13–10. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

13–52 Chapter 13: Analyzing Designs with Quartus II Netlist Viewers
Document Revision History

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © November 2009 Altera Corporation

© March 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis

Additional Information

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 9.1.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.1 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information

Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-
SIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is impor-
tant, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Handbook Version 9.1
Volume 2: Design Implementation and Optimization

QII5V2-9.1

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Contents

Chapter Revision Dates . xix

Section I. Scripting and Constraint Entry

Chapter 1. Assignment Editor
Introduction . 1-1
Overview of the Assignment Editor . 1-1

Dynamic Syntax Checking . 1-2
Viewing and Saving Assignments in the Assignment Editor . 1-2

User Interface . 1-3
Category Bar . 1-4
Node Filter Bar . 1-4
Information Bar . 1-4
Edit Bar . 1-4
Assignment Spreadsheet . 1-5
Toolbar . 1-5

Navigating the Assignment Editor Spreadsheet . 1-5
Entering Values into the Spreadsheet . 1-5
Wildcards . 1-6
Assignment Groups . 1-7
Customizing the Spreadsheet Columns . 1-7

Exporting and Importing Assignments . 1-8
Exporting Assignments . 1-8
Importing Assignments . 1-9

Creating Timing Constraints Using the Assignment Editor . 1-10
Tcl Interface . 1-11
Probing to Source Design Files and Other Quartus II Windows . 1-11

Probing to the Assignment Editor from Other Quartus II Windows . 1-11
Conclusion . 1-12
Referenced Documents . 1-12
Document Revision History . 1-13

Chapter 2. Command-Line Scripting
Introduction . 2-1
The Benefits of Command-Line Executables . 2-1
Introductory Example . 2-2
Command-Line Executables . 2-3

Command-Line Scripting Help . 2-5
Command-Line Option Details . 2-6
Option Precedence . 2-7

Design Flow . 2-9
Compilation with quartus_sh --flow . 2-9
Text-Based Report Files . 2-9
Makefile Implementation . 2-11

The MegaWizard Plug-In Manager . 2-13
Command-Line Support . 2-14

Module and Wizard Names . 2-15
Ports and Parameters . 2-15

iv Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Invalid Configurations . 2-16
Strategies to Determine Port and Parameter Values . 2-16

Optional Files . 2-16
Parameter File . 2-18
Working Directory . 2-18
Variation File Name . 2-18

Command-Line Scripting Examples . 2-19
Create a Project and Apply Constraints . 2-19
Check Design File Syntax . 2-20
Create a Project and Synthesize a Netlist Using Netlist Optimizations . 2-20
Archive and Restore Projects . 2-21
Perform I/O Assignment Analysis . 2-21
Update Memory Contents Without Recompiling . 2-21
Create a Compressed Configuration File . 2-22
Fit a Design as Quickly as Possible . 2-22
Fit a Design Using Multiple Seeds . 2-23
The QFlow Script . 2-24

Referenced Documents . 2-24
Document Revision History . 2-25

Chapter 3. Tcl Scripting
Introduction . 3-1

What is Tcl? . 3-2
Quartus II Tcl Packages . 3-2

Loading Packages . 3-4
Quartus II Tcl API Help . 3-4
Executables Supporting Tcl . 3-7

Command-Line Options: -t, -s, and --tcl_eval . 3-7
Run a Tcl Script . 3-7
Interactive Shell Mode . 3-8
Evaluate as Tcl . 3-8

Using the Quartus II Tcl Console Window . 3-8
End-to-End Design Flows . 3-9
Creating Projects and Making Assignments . 3-10

HardCopy Device Design . 3-10
Compiling Designs . 3-11

The flow Package . 3-11
Compile All Revisions . 3-11

Reporting . 3-12
Creating .csv Files for Excel . 3-13

Timing Analysis . 3-14
Classic Timing Analysis . 3-14

Advanced Classic Timing Analysis . 3-16
TimeQuest Timing Analysis . 3-18

TimeQuest Scripting . 3-18
Automating Script Execution . 3-18

Making the Assignment . 3-19
Script Execution . 3-20
Execution Example . 3-20
Controlling Processing . 3-21
Displaying Messages . 3-21

Other Scripting Features . 3-21
Natural Bus Naming . 3-21
Short Option Names . 3-22

Contents v

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using Collection Commands . 3-22
The foreach_in_collection Command . 3-22
The get_collection_size Command . 3-22

Using the post_message Command . 3-23
Accessing Command-Line Arguments . 3-23

Using the cmdline Package . 3-24
Using the Quartus II Tcl Shell in Interactive Mode . 3-25
Quartus II Legacy Tcl Support . 3-28
Using the tclsh Shell . 3-28
Tcl Scripting Basics . 3-29

Hello World Example . 3-29
Variables . 3-29
Substitutions . 3-29

Variable Value Substitution . 3-30
Nested Command Substitution . 3-30
Backlash Substitution . 3-30

Arithmetic . 3-30
Lists . 3-30
Arrays . 3-31
Control Structures . 3-32
Procedures . 3-33
File I/O . 3-33
Syntax and Comments . 3-34
External References . 3-35

Referenced Documents . 3-35
Document Revision History . 3-35

Chapter 4. Managing Quartus II Projects
Introduction . 4-1
Quartus II Text Editor . 4-2

Setting the Quartus II Text Editor Options . 4-2
Using the Quartus II Text Editor . 4-3
Setting a Preferred Text Editor . 4-3

Creating a New Project . 4-3
Using Revisions with Your Design . 4-4
Creating and Deleting Revisions . 4-4

Create a Revision . 4-5
Delete a Revision . 4-5
Compare Revisions . 4-6

Creating New Copies of Your Design . 4-7
Archiving Projects . 4-7

Archive a Project . 4-8
Restore an Archived Project . 4-10

Version-Compatible Databases . 4-11
Migrate to a New Version . 4-11
Save the Database in a Version-Compatible Format . 4-12

Quartus II Project Platform Migration . 4-12
Filenames and Hierarchies . 4-12

Relative Paths . 4-13
Specifying Libraries . 4-14
Specifying User Libraries . 4-14
Specifying Global Libraries . 4-15

Quartus II Search Path Precedence Rules . 4-15
Quartus II-Generated Files for Third-Party EDA Tools . 4-16

vi Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Migrating Database Files Between Platforms . 4-17
Working with Messages . 4-17

Messages Window . 4-18
Hiding Messages . 4-19

Message Suppression . 4-20
Message Suppression Methods . 4-21
Message Suppression Details and Limitations . 4-21
Message Suppression Manager . 4-22

Suppressible Messages . 4-22
Suppression Rules . 4-22
Suppressed Messages . 4-23

Quartus II Settings File . 4-24
QSF Format Preservation . 4-24

Quartus II Default Settings File . 4-25
Scripting Support . 4-25

Managing Revisions . 4-26
Creating Revisions . 4-26
Setting the Current Revision . 4-26
Getting a List of Revisions . 4-26
Deleting Revisions . 4-26

Archiving Projects . 4-26
Restoring Archived Projects . 4-27
Importing and Exporting Version-Compatible Databases . 4-27

Specifying Libraries Using Scripts . 4-28
Reducing Compilation Time . 4-29
Conclusion . 4-29
Referenced Documents . 4-30
Document Revision History . 4-30

Section II. I/O and PCB Tools

Chapter 5. I/O Management
Introduction . 5-1
Understanding Altera FPGA Pin Terminology . 5-2

Package Pins . 5-2
Pads . 5-3
I/O Banks . 5-3
VREF Groups . 5-4

I/O Planning Overview . 5-5
Device Selection . 5-7
Early I/O Planning Using the Pin Planner . 5-7

Create or Import a Megafunction or IP MegaCore Variation from the Pin Planner 5-8
Connecting Nodes Before Creating Your Top-Level Design File . 5-9

Adding User Nodes . 5-9
Setting Up and Creating the Top-Level File . 5-10

Importing and Exporting Pin Assignments . 5-12
Tcl Scripts and .csv Files . 5-12
Quartus II Settings Files . 5-12
FPGA Xchange File . 5-12
.pin Files . 5-13

Creating Pin-Related Assignments . 5-13
Creating Pin Assignments Using the Pin Planner . 5-14

Pin Migration . 5-15

Contents vii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using the Pin Finder to Find Compatible Pin Locations . 5-17
SSN Visualization View . 5-17
Creating Exclusive Group Assignments . 5-17
Assigning Locations for Differential Pins . 5-18
Changing the Slew Rate and Current Drive Strength in Pin Planner . 5-19
I/O Error Checking Capability . 5-20
Displaying and Accepting Fitter Placements . 5-21

Creating Pin Assignments with Tcl . 5-21
Creating Pin Assignments with the Chip Planner . 5-22
Creating Pin Assignments in HDL . 5-22

Synthesis Attributes . 5-22
chip_pin and useioff . 5-23
altera_attribute . 5-23

Creating Pin Assignments with Low-Level I/O Primitives . 5-24
Validating Pin Assignments . 5-24

Using the Live I/O Check Feature to Validate Pin Assignments . 5-25
Using I/O Assignment Analysis to Validate Pin Assignments . 5-27
I/O Assignment Analysis Design Flows . 5-27

I/O Assignment Analysis without Design Files . 5-28
I/O Assignment Analysis with Design Files . 5-29
Inputs for I/O Assignment Analysis . 5-32
Understanding the I/O Assignment Analysis Report and Messages . 5-34

Using Output Enable Group Logic Option Assignments with I/O Assignment Analysis 5-38
Validating Pin Assignments after Full Compilation . 5-39
I/O Timing Analysis . 5-40

I/O Timing and Power with Capacitive Loading . 5-41
Enabling and Configuring Advanced I/O Timing . 5-42

Define Overall Board Trace Models . 5-43
Customize the Board Trace Model in the Pin Planner . 5-44
Configuring Board Trace Models . 5-46
Near-End vs Far-End Timing Analysis . 5-47
Create Signal Integrity Result Reports . 5-47

Incorporating PCB Design Tools . 5-48
Scripting Support . 5-48

Running the I/O Assignment Analysis . 5-49
Generating a Mapped Netlist . 5-49
Reserving Pins . 5-49
Location Assignments . 5-49

Conclusion . 5-50
Referenced Documents . 5-50
Document Revision History . 5-51

Chapter 6. Simultaneous Switching Noise (SSN) Analysis and Optimizations
Introduction . 6-1
Definitions . 6-1
Understanding SSN and its Effects . 6-2
SSN Estimation Tools from Altera . 6-5
Design Factors Affecting SSN Results . 6-5
Using the SSN Analyzer in the Quartus II Software . 6-5

Tools Overview . 6-6
I/O Standards Supported in the Quartus II SSN Analyzer . 6-6
Tool Inputs . 6-7

Board Trace Models . 6-7
PCB Layers and PCB Layer Thickness . 6-8

viii Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Example of Specifying PCB Layers . 6-9
Signal Breakout Layers . 6-11
I/O Assignments . 6-12
Automatic Aggressor Identification . 6-12

Group Assignments . 6-13
Running the SSN Analyzer . 6-13
Understanding the SSN Reports . 6-14

Settings Report . 6-14
Summary Report . 6-14
Input Pins Report . 6-15
Output Pins Report . 6-15
Confidence Metric Details Report . 6-15
Unanalyzed Pins Report . 6-15

Visualizing SSN in the Pin Planner . 6-15
Invoking the SSN Map . 6-16

SSN Analyzer Usage Models . 6-16
Early Pin-Out SSN Analysis . 6-17

Early Pin-Out SSN Analysis Using the Early SSN Estimator Spreadsheet 6-17
Early Pin-Out SSN Analysis Using the Quartus II SSN Analyzer . 6-17
SSN Aware Fitter . 6-19
Default Assignments Used in Early SSN Analysis . 6-19

Final Pin-Out Analysis: Fully Constrained Design SSN Analysis . 6-20
Scripting Support . 6-20
Run Time Considerations in SSN Analysis . 6-20

Running SSN Analyzer with Multi-CPU machines . 6-21
Running the Complete Design for SSN Analysis after I/O Assignment Analysis 6-21
Running the Complete Design for SSN Analysis after a Full Fit . 6-21
Making ECO Changes and Rerunning SSN Analysis . 6-21
Running SSN Analysis for One I/O Bank . 6-21

SSN Optimization . 6-22
Back-Annotating the Fitter Results . 6-24
SSN Optimization in Your System . 6-24

Conclusion . 6-24
Referenced Documents . 6-25
Document Revision History . 6-25

Chapter 7. Signal Integrity Analysis with Third-Party Tools
Introduction . 7-1
I/O Model Selection: IBIS or HSPICE . 7-3
FPGA to Board Signal Integrity Analysis Flow . 7-3

Create I/O and Board Trace Model Assignments . 7-5
Output File Generation . 7-6
Customize the Output Files . 7-6
Set Up and Run Simulations in Third-Party Tools . 7-7
Interpret Simulation Results . 7-7

Simulation with IBIS Models . 7-7
Elements of an IBIS Model . 7-7
Creating Accurate IBIS Models . 7-8

Download IBIS Models . 7-8
Generate Custom IBIS Models with the IBIS Writer . 7-9

Design Simulation Using the Mentor Graphics HyperLynx Software . 7-10
Configuring LineSim to Use Altera IBIS Models . 7-12
Integrating Altera IBIS Models into LineSim Simulations . 7-14
Running and Interpreting LineSim Simulations . 7-15

Contents ix

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Simulation with HSPICE Models . 7-17
Supported Devices and Signaling . 7-17
Accessing HSPICE Simulation Kits . 7-18
The Double Counting Problem in HSPICE Simulations . 7-18

Defining the Double Counting Problem . 7-18
The Solution to Double Counting . 7-19

HSPICE Writer Tool Flow . 7-20
Applying I/O Assignments . 7-20
Enabling HSPICE Writer . 7-20
Enabling HSPICE Writer Using Assignments . 7-21
Naming Conventions for HSPICE Files . 7-21
Invoking HSPICE Writer . 7-22
Invoking HSPICE Writer from the Command Line . 7-22
Customizing Automatically Generated HSPICE Decks . 7-22

Running an HSPICE Simulation . 7-23
Interpreting the Results of an Output Simulation . 7-24
Interpreting the Results of an Input Simulation . 7-24
Viewing and Interpreting Tabular Simulation Results . 7-24
Viewing Graphical Simulation Results . 7-24
Making Design Adjustments Based on HSPICE Simulations . 7-26
Sample Input for I/O HSPICE Simulation Deck . 7-28

Header Comment . 7-28
Simulation Conditions . 7-29
Simulation Options . 7-29
Constant Definition . 7-30
Buffer Netlist . 7-30
Drive Strength . 7-31
I/O Buffer Instantiation . 7-31
Board Trace and Termination . 7-32
Stimulus Model . 7-32
Simulation Analysis . 7-32

Sample Output for I/O HSPICE Simulation Deck . 7-32
Header Comment . 7-33
Simulation Conditions . 7-34
Simulation Options . 7-35
Constraint Definition . 7-35
I/O Buffer Netlist . 7-36
Drive Strength . 7-36
Slew Rate and Delay Chain . 7-37
I/O Buffer Instantiation . 7-37
Board and Trace Termination . 7-38
Double-Counting Compensation Circuitry . 7-38
Simulation Analysis . 7-39

Advanced Topics . 7-40
PVT Simulations . 7-40
Hold Time Analysis . 7-41
I/O Voltage Variations . 7-41
Correlation Report . 7-41

Conclusion . 7-41
Referenced Documents . 7-42
Document Revision History . 7-42

Chapter 8. Mentor Graphics PCB Design Tools Support
Interoduction . 8-1

x Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

FPGA-to-PCB Design Flow . 8-2
Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA . 8-3

Setting Up the Quartus II Software . 8-4
Generating a .pin . 8-5
Generating an .fx . 8-6
Creating a Backup .qsf . 8-7

FPGA-to-Board Integration with the I/O Designer Software . 8-7
I/O Designer Database Wizard . 8-8
Updating Pin Assignments from the Quartus II Software . 8-12
Sending Pin Assignment Changes to the Quartus II Software . 8-15

Protecting Assignments in the Quartus II Software . 8-17
Generating Symbols for the DxDesigner Software . 8-17

Setting Up the I/O Designer Software to Work with the DxDesigner Software 8-18
Create Symbols with the Symbol Wizard . 8-19
Export Symbols to the DxDesigner Software . 8-21

Scripting Support . 8-22
FPGA-to-Board Integration with the DxDesigner Software . 8-22

DxDesigner Project Settings . 8-23
DxDesigner Symbol Wizard . 8-25

Conclusion . 8-27
Referenced Documents . 8-27
Document Revision History . 8-28

Chapter 9. Cadence PCB Design Tools Support
Introduction . 9-1
Product Comparison . 9-2
FPGA-to-PCB Design Flow . 9-3

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA . 9-5
Setting Up the Quartus II Software . 9-5

Generating a .pin . 9-6
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software 9-6

Symbol Creation . 9-6
Cadence Allegro PCB Librarian Part Developer Tool . 9-7

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software 9-13
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software 9-13

Cadence Allegro Design Entry CIS Project Creation . 9-14
Generate Part . 9-14
Split Part . 9-16
Instantiate Symbol in Design Entry CIS Schematic . 9-18
Altera Libraries for the Cadence Allegro Design Entry CIS Software . 9-18

Conclusion . 9-20
Referenced Document . 9-20
Document Revision History . 9-20

Section III. Area, Timing and Power Optimization
Introduction . III-1
Physical Implementation . III-1

Trade Offs and Limitations . III-1
Preserving Results and Enabling Teamwork . III-2
Reducing Area . III-2
Reducing Critical Path Delay . III-2
Reduce Power Consumption . III-3
Reducing Runtime . III-3

Using Quartus II Tools . III-3

Contents xi

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Design Analysis . III-3
Advisors . III-4
Design Space Explorer . III-4

Further Reading . III-4

Chapter 10. Area and Timing Optimization
Introduction . 10-1

Optimizing Your Design . 10-2
Initial Compilation: Required Settings . 10-3

Device Settings . 10-3
I/O Assignments . 10-3
Timing Requirement Settings . 10-4

Timing Constraint Check—Report Unconstrained Paths . 10-5
Device Migration Settings . 10-5
Partitions and Floorplan Assignments for Incremental Compilation . 10-5

Initial Compilation: Optional Settings . 10-6
Design Assistant . 10-6
Smart Compilation Setting . 10-7
Early Timing Estimation . 10-7
Optimize Hold Timing . 10-8
Asynchronous Control Signal Recovery/Removal Analysis . 10-8
Limit to One Fitting Attempt . 10-9
Optimize Multi-Corner Timing . 10-9
Fitter Effort Setting . 10-10

Auto Fit . 10-10
Standard Fit . 10-11
Fast Fit . 10-11

Design Analysis . 10-11
Error and Warning Messages . 10-12
Ignored Timing Constraints . 10-12
Resource Utilization . 10-12
I/O Timing (Including tPD) . 10-13
Register-to-Register Timing . 10-14

Timing Analysis with the TimeQuest Timing Analyzer . 10-14
Timing Analysis with the Classic Timing Analyzer . 10-15
Tips for Analyzing Failing Paths . 10-16
Tips for Analyzing Failing Clock Paths that Cross Clock Domains . 10-17

Global Routing Resources . 10-18
Compilation Time . 10-18

Resource Utilization Optimization Techniques (LUT-Based Devices) . 10-19
Using the Resource Optimization Advisor . 10-19
Resolving Resource Utilization Issues Summary . 10-19
I/O Pin Utilization or Placement . 10-20

Use I/O Assignment Analysis . 10-20
Modify Pin Assignments or Choose a Larger Package . 10-20

Logic Utilization or Placement . 10-20
Optimize Synthesis for Area, Not Speed . 10-21
Restructure Multiplexers . 10-21
Perform WYSIWYG Resynthesis with Balanced or Area Setting . 10-22
Use Register Packing . 10-22
Remove Fitter Constraints . 10-24
Change State Machine Encoding . 10-24
Flatten the Hierarchy During Synthesis . 10-25
Retarget Memory Blocks . 10-25

xii Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Use Physical Synthesis Options to Reduce Area . 10-26
Retarget or Balance DSP Blocks . 10-27
Optimize Source Code . 10-28
Use a Larger Device . 10-28

Routing . 10-28
Set Auto Register Packing to Sparse or Sparse Auto . 10-29
Set Fitter Aggressive Routability Optimizations to Always . 10-29
Increase Placement Effort Multiplier . 10-30
Increase Router Effort Multiplier . 10-30
Remove Fitter Constraints . 10-30
Optimize Synthesis for Area, Not Speed . 10-31
Optimize Source Code . 10-32
Use a Larger Device . 10-32

Timing Optimization Techniques (LUT-Based Devices) . 10-32
Timing Optimization Advisor . 10-32
Metastability Analysis and Optimization Techniques . 10-32
I/O Timing Optimization . 10-33

Improving Setup and Clock-to-Output Times Summary . 10-34
Timing-Driven Compilation . 10-35
Fast Input, Output, and Output Enable Registers . 10-35
Programmable Delays . 10-36
Use PLLs to Shift Clock Edges . 10-38
Use Fast Regional Clock Networks and Regional Clocks Networks . 10-39
Change How Hold Times are Optimized for MAX II Devices . 10-39

Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 10-39
Improving Register-to-Register Timing Summary . 10-40
Physical Synthesis Optimizations . 10-40
Turn Off Extra-Effort Power Optimization Settings . 10-43
Optimize Synthesis for Speed, Not Area . 10-43
Flatten the Hierarchy During Synthesis . 10-44
Set the Synthesis Effort to High . 10-44
Change State Machine Encoding . 10-44
Duplicate Logic for Fan-Out Control . 10-45
Prevent Shift Register Inference . 10-46
Use Other Synthesis Options Available in Your Synthesis Tool . 10-46
Fitter Seed . 10-46
Set Maximum Router Timing Optimization Level . 10-47
Enable Beneficial Skew Optimization . 10-47
Optimize Source Code . 10-48

LogicLock Assignments . 10-48
Hierarchy Assignments . 10-49
Path Assignments . 10-50

Location Assignments and Back-Annotation . 10-51
Custom Regions . 10-51
Back-Annotation and Manual Placement . 10-51

Optimizing Placement for Stratix, Stratix II, Arria GX, and Cyclone II Devices 10-53
Optimizing Placement for Cyclone Devices . 10-54

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs) . 10-54
Use Dedicated Inputs for Global Control Signals . 10-54
Reserve Device Resources . 10-55
Pin Assignment Guidelines and Procedures . 10-55

Control Signal Pin Assignments . 10-55
Output Enable Pin Assignments . 10-56
Estimate Fan-In When Assigning Output Pins . 10-56

Contents xiii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Outputs Using Parallel Expander Pin Assignments . 10-56
Resolving Resource Utilization Problems . 10-57

Resolving Macrocell Usage Issues . 10-57
Resolving Routing Issues . 10-58
Using LCELL Buffers to Reduce Required Resources . 10-59

Timing Optimization Techniques (Macrocell-Based CPLDs) . 10-60
Improving Setup Time . 10-61
Improving Clock-to-Output Time . 10-61
Improving Propagation Delay (tPD) . 10-62
Improving Maximum Frequency (fMAX) . 10-63
Optimizing Source Code—Pipelining for Complex Register Logic . 10-63

Compilation-Time Optimization Techniques . 10-64
Incremental Compilation . 10-64
Use Multiple Processors for Parallel Compilation . 10-65
Reduce Synthesis Time and Synthesis Netlist Optimization Time . 10-66

Synthesis Netlist Optimizations . 10-67
Check Early Timing Estimation Before Fitting . 10-67
Reduce Placement Time . 10-67

Fitter Effort Setting . 10-67
Placement Effort Multiplier Settings . 10-68
Final Placement Optimization Levels . 10-68
Physical Synthesis Effort Settings . 10-68
Limit to One Fitting Attempt . 10-68
Preserving Placement, Incremental Compilation, and LogicLock Regions 10-69

Reduce Routing Time . 10-69
Identify Routing Congestion in the Chip Planner . 10-69
Identify Routing Congestion in the Timing Closure Floorplan for Legacy Devices 10-69
Placement Effort Multiplier Setting . 10-69
Preserve Routing Incremental Compilation and LogicLock Regions . 10-70

Setting Process Priority . 10-70
Other Optimization Resources . 10-70

Design Space Explorer . 10-70
Other Optimization Advisors . 10-70

Scripting Support . 10-71
Initial Compilation Settings . 10-71
Resource Utilization Optimization Techniques (LUT-Based Devices) . 10-72
I/O Timing Optimization Techniques (LUT-Based Devices) . 10-73
Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 10-73

Duplicate Logic for Fan-Out Control . 10-74
Conclusion . 10-74
Referenced Documents . 10-74
Document Revision History . 10-76

Chapter 11. Power Optimization
Introduction . 11-1
Power Dissipation . 11-2
Design Space Explorer . 11-3
Power-Driven Compilation . 11-4

Power-Driven Synthesis . 11-4
Power-Driven Fitter . 11-8

Recommended Flow for Power-Driven Compilation . 11-10
Area-Driven Synthesis . 11-10
Gate-Level Register Retiming . 11-11

Design Guidelines . 11-12

xiv Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Clock Power Management . 11-12
LAB-Wide Clock Enable Example . 11-13

Reducing Memory Power Consumption . 11-14
Memory Power Reduction Example . 11-16

Pipelining and Retiming . 11-17
Architectural Optimization . 11-18
I/O Power Guidelines . 11-19
Dynamically-Controlled On-Chip Terminations . 11-20
Power Optimization Advisor . 11-21

Power Optimization Advisor Example . 11-21
Conclusion . 11-24

Referenced Documents . 11-24
Document Revision History . 11-25

Chapter 12. Analyzing and Optimizing the Design Floorplan
Introduction . 12-1
Chip Planner Overview . 12-2

Starting the Chip Planner . 12-3
Chip Planner Toolbar . 12-3
Chip Planner Tasks and Layers . 12-4

LogicLock Regions . 12-6
Creating LogicLock Regions . 12-7

Creating LogicLock Regions from the Quartus II User Interface . 12-7
Placing LogicLock Regions . 12-7
Placing Device Features into LogicLock Regions . 12-8
LogicLock Regions Window . 12-8
Creating LogicLock Regions with the Chip Planner . 12-9
Assigning LogicLock Region Content . 12-9
Hierarchical (Parent and Child) LogicLock Regions . 12-10
Reserved LogicLock Region . 12-11
Creating Non-Rectangular LogicLock Regions . 12-11

Creating Non-Rectangular LogicLock Regions Using the Merge Command 12-11
Creating Non-Rectangular Regions Using Reserved LogicLock Regions 12-12

Examples of Non-Rectangular LogicLock Regions Using Reserved Property 12-13
Example 1: Creating an L-Shaped Region . 12-13
Example 2: Region with Disjoint Areas . 12-15

Excluded Resources . 12-17
Additional Quartus II LogicLock Design Features . 12-17

Tooltips . 12-17
Analysis and Synthesis Resource Utilization by Entity . 12-17
Path-Based Assignments . 12-17
Quartus II Revisions Feature . 12-18
LogicLock Assignment Precedence . 12-18
Virtual Pins . 12-19

Using LogicLock Regions in the Chip Planner . 12-20
Viewing Connections Between LogicLock Regions in the Chip Planner . 12-20

Design Floorplan Analysis Using the Chip Planner . 12-20
Chip Planner Floorplan Views . 12-21

First-Level View . 12-21
Second-Level View . 12-22
Third-Level View . 12-23
Bird’s Eye View . 12-24
Selected Elements Window . 12-25

Viewing Architecture-Specific Design Information . 12-25

Contents xv

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Viewing Available Clock Networks in the Device . 12-26
Viewing Critical Paths . 12-27
Viewing Physical Timing Estimates . 12-29
Viewing Routing Congestion . 12-31
Viewing I/O Banks . 12-32
Generating Fan-In and Fan-Out Connections . 12-33
Generating Immediate Fan-In and Fan-Out Connections . 12-34
Highlight Routing . 12-35
Show Delays . 12-36
Exploring Paths in the Chip Planner . 12-37

Locate Path from the Timing Analysis Report to the Chip Planner . 12-37
Analyzing Connections for a Path . 12-38

Viewing Assignments in the Chip Planner . 12-39
Viewing Routing Channels for a Path in the Chip Planner . 12-39
Cell Delay Table . 12-40
Viewing High-Speed and Low-Power Tiles in Stratix III Devices in the Chip Planner 12-41

Design Analysis Using the Timing Closure Floorplan . 12-42
Timing Closure Floorplan Views . 12-43

Field View . 12-43
Other Views . 12-44

Viewing Assignments . 12-44
Viewing Critical Paths . 12-45
Viewing Routing Congestion . 12-47

Scripting Support . 12-48
Initializing and Uninitializing a LogicLock Region . 12-49
Creating or Modifying LogicLock Regions . 12-49
Obtaining LogicLock Region Properties . 12-49
Assigning LogicLock Region Content . 12-49
Save a Node-Level Netlist for the Entire Design into a Persistent Source File 12-50
Setting LogicLock Assignment Priority . 12-50
Assigning Virtual Pins . 12-50

Conclusion . 12-50
Referenced Documents . 12-51
Document Revision History . 12-51

Chapter 13. Netlist Optimizations and Physical Synthesis
Introduction . 13-1
WYSIWYG Primitive Resynthesis . 13-1
Performing Physical Synthesis Optimizations . 13-3

Automatic Asynchronous Signal Pipelining . 13-5
Physical Synthesis for Combinational Logic . 13-6
Physical Synthesis for Registers—Register Duplication . 13-7
Physical Synthesis for Registers—Register Retiming . 13-8

Preserving Your Physical Synthesis Results . 13-11
Physical Synthesis Options for Fitting . 13-12

Applying Netlist Optimization Options . 13-13
Scripting Support . 13-13

Synthesis Netlist Optimizations . 13-14
Physical Synthesis Optimizations . 13-14
Incremental Compilation . 13-15
Back-Annotating Assignments . 13-15

Conclusion . 13-15
Referenced Documents . 13-16
Document Revision History . 13-16

xvi Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Chapter 14. Design Space Explorer
DSE Concepts . 14-1

Exploration Space and Exploration Point . 14-1
Seed and Seed Sweeping . 14-1
DSE Exploration . 14-2

DSE Support for Altera Device Families . 14-2
Timing Analyzer Support . 14-2

Running DSE . 14-2
Using DSE from a Command Line . 14-2
Using the DSE Graphical User Interface . 14-3

DSE Configuration File . 14-4
DSE Flow . 14-4

DSE Project Settings . 14-5
Setting Up the DSE Work Environment . 14-5
Specifying the Revision . 14-5
Setting the Initial Seed . 14-5
Project Uses Quartus II Integrated Synthesis . 14-5
Restructuring LogicLock Regions . 14-6

DSE Exploration Settings . 14-6
Using DSE to Search for the Best Area . 14-6
Using DSE to Search for the Best Performance . 14-6
Using DSE to Search for the Lowest Power . 14-8

DSE Flow Options . 14-8
Continue Exploration Even If Base Compilation Fails . 14-9
Skip Base Analysis and Compilation If Possible . 14-9
Stop Flow When Zero Failing Paths are Achieved . 14-9
Stop Flow After Time . 14-9
Report all Resource Usage Information . 14-9
Archive All Compilations . 14-9
Create Revisions Without Compiling . 14-10
Run Quartus II PowerPlay Power Analyzer During Exploration . 14-10
Show Full Path to Project in Title Bar . 14-10

DSE Processing Commands . 14-10
Explore Space . 14-10
View Last DSE Report for Project . 14-10
Create a Revision from a DSE Point . 14-10
Open Project in TimeQuest Timing Analyzer . 14-10
Open Project in Quartus II . 14-11

Parallel DSE Information . 14-11
Computer Load Sharing Using Parallel DSE . 14-11

Parallel DSE Using LSF Resources . 14-11
Parallel DSE Using a Quartus II Master Process . 14-11

Concurrent Local Compilations . 14-12
Referenced Documents . 14-13
Document Revision History . 14-14

Section IV. Engineering Change Management

Chapter 15. Engineering Change Management with the Chip Planner
Introduction . 15-1
Engineering Change Orders . 15-2

Performance . 15-2
Compilation Time . 15-3

Contents xvii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Verification . 15-3
Documentation . 15-3

ECO Design Flow . 15-4
The Chip Planner Overview . 15-5

Opening the Chip Planner . 15-5
The Chip Planner Tasks and Layers . 15-6
The Chip Planner Floorplan Views . 15-7
First-Level View . 15-7
Second-Level View . 15-8
Third-Level View . 15-9
Bird’s Eye View . 15-9

Performing ECOs with the Chip Planner (Floorplan View) . 15-11
Creating Atoms . 15-11

Creating ALM Atoms . 15-11
Creating Logic Element Atoms . 15-13

Deleting Atoms . 15-15
Moving Atoms . 15-15
Check and Save Netlist Changes . 15-15

Resource Property Editor . 15-15
Logic Element . 15-16

Logic Element Schematic View . 15-16
LE Properties . 15-17
Modes of Operation . 15-17
Sum and Carry Equations . 15-17
sload and sclr Signals . 15-17
Register Cascade Mode . 15-18
Cell Delay Table . 15-18
LE Connections . 15-18
Delete an LE . 15-18

Adaptive Logic Module . 15-18
ALM Schematic . 15-19
ALM Properties . 15-20
ALM Connections . 15-20

FPGA I/O Elements . 15-20
Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements . 15-21
Stratix III I/O Element . 15-22
Cyclone and Cyclone II I/O Elements . 15-23
Cyclone III I/O Elements . 15-24
MAX II I/O Elements . 15-26

FPGA RAM Blocks . 15-26
FPGA DSP Blocks . 15-27

Change Manager . 15-28
Complex Changes in the Change Manager . 15-30
Managing SignalProbe Signals . 15-30
Exporting Changes . 15-30

Using Incremental Compilation in the ECO Flow . 15-31
ECO Flow without Quartus II Incremental Compilation . 15-32

Scripting Support . 15-32
Common ECO Applications . 15-32

Adjust the Drive Strength of an I/O with the Chip Planner . 15-32
Modify the PLL Properties Using the Chip Planner . 15-33
PLL Properties . 15-34

Adjusting the Duty Cycle . 15-35
Adjusting the Phase Shift . 15-35

xviii Contents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Adjusting the Output Clock Frequency . 15-36
Adjusting the Spread Spectrum . 15-36

Modify the Connectivity between Resource Atoms . 15-36
Post ECO Steps . 15-37

Performing Static Timing Analysis . 15-37
Conclusion . 15-37
Referenced Documents . 15-38
Document Revision History . 15-39

Additional Information
About this Handbook . Info-1
How to Contact Altera . Info-1
Third-Party Software Product Information . Info-1
Typographic Conventions . Info-2

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Chapter Revision Dates

The chapters in this book, Quartus II Handbook Version 9.1 Volume 2: Design
Implementation and Optimization, were revised on the following dates. Where chapters
or groups of chapters are available separately, part numbers are listed.

Chapter 1 Assignment Editor
Revised: November 2009
Part Number: QII52001-9.1.0

Chapter 2 Command-Line Scripting
Revised: November 2009
Part Number: QII52002-9.1.0

Chapter 3 Tcl Scripting
Revised: November 2009
Part Number: QII52003-9.1.0

Chapter 4 Managing Quartus II Projects
Revised: November 2009
Part Number: QII52012-9.1.0

Chapter 5 I/O Management
Revised: November 2009
Part Number: QII52013-9.1.0

Chapter 6 Simultaneous Switching Noise (SSN) Analysis and Optimizations
Revised: November 2009
Part Number: QII52018-9.1.0

Chapter 7 Signal Integrity Analysis with Third-Party Tools
Revised: November 2009
Part Number: QII53020-9.1.0

Chapter 8 Mentor Graphics PCB Design Tools Support
Revised: November 2009
Part Number: QII52015-9.1.0

Chapter 9 Cadence PCB Design Tools Support
Revised: November 2009
Part Number: QII52014-9.1.0

Chapter 10 Area and Timing Optimization
Revised: November 2009
Part Number: QII52005-9.1.0

Chapter 11 Power Optimization
Revised: November 2009
Part Number: QII52016-9.1.0

xx Chapter Revision Dates

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Chapter 12 Analyzing and Optimizing the Design Floorplan
Revised: November 2009
Part Number: QII52006-9.1.0

Chapter 13 Netlist Optimizations and Physical Synthesis
Revised: November 2009
Part Number: QII52007-9.1.0

Chapter 14 Design Space Explorer
Revised: November 2009
Part Number: QII52008-9.1.0

Chapter 15 Engineering Change Management with the Chip Planner
Revised: November 2009
Part Number: QII52017-9.1.0

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Section I. Scripting and Constraint Entry

As a result of the increasing complexity of today’s FPGA designs and the demand for
higher performance, designers must make a large number of complex timing and
logic constraints to meet their performance requirements. After you create a project
and design, you can use the Quartus® II software Assignment Editor and other GUI
features to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to enter constraints in the Quartus II software, how to take
advantage of Quartus II modular executables, how to develop and run Tcl scripts to
perform a wide range of functions, and how to manage the Quartus II project for your
design.

This section includes the following chapters:

■ Chapter 1, Assignment Editor

This chapter discusses the Assignment Editor, which is a spreadsheet interface
designed to make the process of creating, changing, and managing a large number
of timing and logic assignments as easy as possible.

Use this chapter to make assignments and to help reduce mistakes while making
assignments throughout the design cycle.

■ Chapter 2, Command-Line Scripting

This chapter discusses Quartus II command-line executables, which provide
command-line control over each step of the design flow. Each executable includes
options to control commonly used software settings. Each executable also
provides detailed, built-in help describing its function, available options, and
settings.

Use this chapter to take advantage of Quartus II command-line executables and
scripts that automate different segments of the FPGA design flow.

■ Chapter 3, Tcl Scripting

This chapter discusses developing and running Tcl scripts in the Quartus II
software to allow you to perform a wide range of functions, such as compiling a
design or automating common tasks. This chapter includes sample Tcl scripts for
automating the Quartus II software. You can modify these example scripts for use
with your own designs.

Use this chapter to manage a Quartus II project, make assignments, define design
constraints, make device assignments, run compilations, perform timing analysis,
import LogicLock™ region assignments, use the Quartus II Chip Editor, and
access reports with Tcl scripts.

I–2 Section I: Scripting and Constraint Entry

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Chapter 4, Managing Quartus II Projects

This chapter discuss the Quartus II software project management features. The
Version Compatible Database allows Quartus II databases to be compatible across
different versions of the Quartus II software for the ease of project migration. In
this chapter, you can learn how to archive project files using the appropriate file
sets and how to import or export a database. These features save valuable design
time by avoiding unnecessary compilations. This chapter also discusses how to
migrate your projects from one computing platform to another, create and
compare revisions, copy, archive and restore projects, scripting options and
managing Quartus II messages.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1. Assignment Editor

This chapter describes how you can use the Assignment Editor to quickly create and
view design assignments.

Introduction
The complexity of today’s FPGA designs is compounded by the increasing density
and associated pin counts of current FPGAs. It requires you to make a large number of
pin assignments that include the pin locations and I/O standards to successfully
implement a complex design in the latest generation of FPGAs.

To facilitate the process of entering these pin assignments, Altera has developed an
intuitive, spreadsheet interface called the Assignment Editor (sometimes referred to
as the editor in this chapter). The Assignment Editor is designed to make the process
of creating, changing, and managing a large number of assignments as easy as
possible.

This chapter discusses the following topics:

■ “Overview of the Assignment Editor”

■ “User Interface” on page 1–3

■ “Navigating the Assignment Editor Spreadsheet” on page 1–5

■ “Exporting and Importing Assignments” on page 1–8

■ “Creating Timing Constraints Using the Assignment Editor” on page 1–10

■ “Tcl Interface” on page 1–11

■ “Probing to Source Design Files and Other Quartus II Windows” on page 1–11

Overview of the Assignment Editor
You can use the Assignment Editor to make Classic Timing Analyzer timing or logic
assignments. Altera recommends using the Assignment Editor to help reduce
mistakes while making assignments. With the editor’s dynamic syntax-checking
capability, illegal assignments or incorrect settings can be avoided. You can also use
the Assignment Editor to view, filter, and sort assignments based on node name or
assignment type.

1 Although the Assignment Editor allows you to make pin assignments, Altera
recommends using the Pin Planner instead. You can use the Assignment Editor to
view and verify the pin assignments that you make.

The Assignment Editor is a resizable window. This scalability makes it easy to view or
edit your assignments right next to your design files. To open the Assignment Editor,
click the Assignment Editor icon in the toolbar, or click Assignment Editor on the
Assignments menu.

QII52001-9.1.0

1–2 Chapter 1: Assignment Editor
Overview of the Assignment Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 You can also launch the Assignment Editor by pressing Ctrl+Shift+A in the
Quartus® II software.

The assignments made in the Assignment Editor are saved in the Quartus II Settings
File (.qsf), which is located in the project directory. A separate .qsf file exists for each
individual revision. Every new assignment is placed on a new line at the end of the
.qsf file. Refer to the Quartus II Help for the syntax of the .qsf file. Refer to “Viewing
and Saving Assignments in the Assignment Editor” for more details about how the
Assignment Editor handles your assignments.

Every time an assignment is created or updated, the Quartus II software displays the
equivalent Tcl command in the System tab of the Messages window. You can use the
displayed messages as references when making assignments using Tcl commands.

For information about exporting your assignments to a Tcl file, refer to “Tcl Interface”
on page 1–11.

Dynamic Syntax Checking
As you enter assignments, the Assignment Editor checks for basic legality and syntax.
This checking is not as thorough as the checks performed during compilation, but it
rejects incorrect settings.

If there are incomplete assignments when you click Save on the File menu, a prompt
gives you the choice to either save the file and lose incomplete assignments or cancel
the save operation.

The legality status of the assignments is color coded. The color of the text in each row
indicates if the assignment is incomplete, disabled, non-editable, or contains errors or
warnings (Table 1–1). To customize the colors used in the Assignment Editor, on the
Tools menu, click Options.

Viewing and Saving Assignments in the Assignment Editor
Although the Assignment Editor is the most common method of entering and
modifying assignments, there are other methods you can use. For this reason, you can
refresh the Assignment Editor after you add, remove, or change an assignment
outside the Assignment Editor.

All assignments made in the Quartus II software are first stored in memory, then to
the .qsf file on the disk after you start a processing task, or if you save or close your
project. Saving assignments to memory avoids reading and writing to your disk drive
and improves the performance of the software.

Table 1–1. Description of the Color Codes in the Spreadsheet

Text Color Description

Green A new assignment can be created

Dark Yellow The assignment contains warnings, such as unknown node name

Dark Red The assignment is incomplete

Red The assignment has an error, such as an illegal value

Light Gray The assignment is disabled or turned off

Gray The assignment is non-editable or read-only

Chapter 1: Assignment Editor 1–3
User Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

After making assignments in the Assignment Editor, on the File menu, click Save to
save your assignments and update the .qsf file.

f For more information about how the Quartus II software writes to the .qsf file, refer to
the Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

You can refresh the Assignment Editor window by clicking Refresh on the View
menu. If you make an assignment using the Tcl console, Pin Planner, or directly
modify the .qsf file outside the Assignment Editor, you must click Refresh to update
the Assignment Editor spreadsheet.

1 If the .qsf file is edited while the project is open, on the File menu, click Save Project
to ensure that you are editing the latest .qsf file.

Each time the Assignment Editor is refreshed, the following message is displayed in
the System tab of the Messages window:

Info: Assignments reloaded -- assignments updated outside Assignment
Editor

User Interface
The Assignment Editor window consists of four bars and a spreadsheet (Figure 1–1).
You can view and edit assignments in the spreadsheet, and use the bars to filter, edit,
or get detailed information about the assignments.

You can hide all four bars in the View menu if desired, or you can collapse all the bars
for a better view of the spreadsheet. Table 1–2 provides a brief description of each bar.

Figure 1–1. Assignment Editor Window

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

1–4 Chapter 1: Assignment Editor
User Interface

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Category Bar
The Category bar lists all assignment categories available for the selected device. You
can use the Category bar to select a particular type of assignment and filter all other
assignments, making the spreadsheet show only the applicable assignments. For
example, to view all tSU (setup time) assignments in your project, select tsu in the
Category list. If you select All in the Category list, the Assignment Editor displays all
assignments.

When you collapse the Category bar, three buttons are displayed that allow you to
select from various preset categories. For example, clicking the Timing button
changes the spreadsheet to show only the timing-related assignments of your project.

Node Filter Bar
You can use the Node Filter bar when you want the spreadsheet to show only
assignments for specific nodes based on the list of selected node filters. The bar
provides flexibility in how you view and make your settings.

For example, when Show assignments for specific nodes is turned on, the
spreadsheet shows only assignments for nodes that match the selected node filter. You
can create a new node filter by using the Node Finder to select a node name or by
typing the node name. The node name filter can be a node name or assignment group,
and can include wildcard symbols (* and ?). The wildcards symbols are used to filter a
selection of nodes with only one entry in the Node Filter. For more information about
wildcard symbols and assignment groups, refer to “Navigating the Assignment
Editor Spreadsheet” on page 1–5.

Information Bar
The Information bar provides a brief description of the currently selected cell and
what information you should enter into the cell. For example, the Information bar
describes whether a cell should contain a node name or a number value.

Edit Bar
You can use the Edit bar to enter a value into one or more spreadsheet cells. To change
the contents of multiple cells at the same time, select the cells in the spreadsheet, then
type or choose the new value in the Edit field in the Edit bar.

Table 1–2. Assignment Editor Bar Descriptions

Bar Name Description

Category Lists the types of available assignments

Node Filter Lists a selection of design nodes to be viewed or assigned

Information Displays a description of the selected assignment

Edit Allows you to edit the text in the selected cell(s)

Chapter 1: Assignment Editor 1–5
Navigating the Assignment Editor Spreadsheet

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Assignment Spreadsheet
The spreadsheet displays the assignments of your project. You can sort columns, use
pull-down list boxes to view available options, and copy and paste multiple cells into
the Assignment Editor. Refer to “Entering Values into the Spreadsheet” on page 1–5
for details about ways to make assignments in the spreadsheet.

When you enter an assignment, the font color of the row changes to indicate the status
of the assignment. For more information, refer to “Dynamic Syntax Checking” on
page 1–2.

The spreadsheet allows you to show, hide, and arrange columns. For more
information, refer to “Customizing the Spreadsheet Columns” on page 1–7.

Toolbar
The Assignment Editor’s toolbar contains shortcut buttons for easy access to the
editor’s features. Figure 1–2 describes the buttons on the toolbar.

Navigating the Assignment Editor Spreadsheet
This section describes methods for navigating the spreadsheet.

Entering Values into the Spreadsheet
There are several ways to select or enter nodes into the spreadsheet, including using
the Node Finder, the Node Filter bar, the Edit bar, or by directly typing the node name
into a cell in the spreadsheet.

Figure 1–2. Description of Icons in the Toolbar

Detach the Assignment Editor window

Clear value in selected cells

Delete selected rows from the spreadsheet

Refresh the spreadsheet

Full screen view

Open the Customize Columns dialog box

Show all assignable pin numbers

Show all known pin names

Hide or show Category bar

Hide or show Node Filter bar

Hide or show Information bar

Hide or show Edit bar

Move cursor to the last row for new entry

1–6 Chapter 1: Assignment Editor
Navigating the Assignment Editor Spreadsheet

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To open the Node Finder, click Node Finder in the Edit menu, or right-click any cell in
the spreadsheet or the Node Filter bar and click Node Finder. Alternatively, you can
click Node Finder in the pull-down menu of the To and From columns in the
spreadsheet. If you are making a single-point assignment and type the node name
into the From column instead of the To column, the Assignment Editor automatically
moves the node name to the To column.

A node type icon is shown beside each node name and filter to identify its type.
Table 1–3 lists and describes the different icons.

Wildcards
To simplify the tasks of making many node assignments, the Quartus II software
accepts the * and ? wildcard characters. Use these wildcard characters to reduce the
number of individual assignments you need to make for your design. Assignment to a
specific node overrides any assignment to that node specified using wildcard
characters.

The * wildcard character matches any string. For example, given an assignment made
to a node specified as reg*, the Assignment Editor applies the assignment to all
design nodes that match the prefix reg with none, one, or several characters
following the prefix, such as reg, reg1, reg[2], regbank, and reg12bank.

Table 1–3. Node Type Icons

Node Type Icon Description

Input pin

Output pin

Bidirectional pin

Register

Combinational logic

Assignment group

Node name or filter that contains wildcard symbols

Instance

Missing information—probably caused by incorrect node name, or if
Analysis and Synthesis has not been performed

Chapter 1: Assignment Editor 1–7
Navigating the Assignment Editor Spreadsheet

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The ? wildcard character matches any single character. For example, given an
assignment made to a node specified as reg?, the Assignment Editor applies the
assignment to all design nodes that match the prefix reg and any single character
following, such as reg1, rega, and reg4.

1 All assignments that support wildcards are shown in the pull-down list under the
Assignment Name column of the Assignment Editor with “(Accepts
wildcards/groups)” displayed beside it.

Assignment Groups
An assignment group, also known as a time group, is a collection of design nodes
grouped together and represented as a single unit for the purpose of making
assignments to the collection. Using assignment groups with the Assignment Editor
provides the flexibility required for making complex assignments to a large number of
nodes. You can also exclude specific nodes, wildcards, and assignments from an
assignment group.

To create an assignment group, on the Assignments menu, click Assignment (Time)
Groups. The Assignment Groups dialog box appears. You can add or delete
members of each assignment group using wildcards in the Node Finder.

f For more information about using Assignment Groups for timing analysis, refer to the
Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Customizing the Spreadsheet Columns
To provide more control over the display of information in the spreadsheet, the
Assignment Editor allows you to customize its columns. You can move columns, sort
them in ascending or descending order, show or hide individual columns, and align
the content of the column left, center, or right for improved readability.

When the Quartus II software starts for the first time, you see a pre-selected set of
columns. For example, when the Quartus II software is first started, the Comment
column is hidden. To show or hide any of the available columns, on the View menu,
click Customize Columns. When you restart the Quartus II software, your column
settings are maintained.

You can add comments to an assignment by showing the Comment column, and you
can view the .qsf file in which the assignment appears by showing the Settings File
column. You can also use the Enabled column to disable any assignment without
deleting it. This feature is useful when performing multiple compilations with
different timing constraints or logic optimizations.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

1–8 Chapter 1: Assignment Editor
Exporting and Importing Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Exporting and Importing Assignments
Designs that use the LogicLock™ hierarchical design methodology use the Import
Assignments command to import assignments into the current project. You can also
use the Export Assignments command to save all the assignments in your project to a
file to be used for archiving or to transfer assignments from one project to another.

On the Assignments menu, click Export Assignments or Import Assignments to do
the following:

■ Export your Quartus II assignments to a .qsf file.

■ Import assignments from a Quartus II Entity Settings File (.esf), a MAX+PLUS® II
Assignment and Configuration File (.acf), a Synplify Design Constraint (.sdc) file,
a text file (.txt), or a Comma Separated Value (.csv) file.

1 The .sdc file that is defined in the industry-standard Synopsys Design Constraints
format is different from the Synplify Design Constraints format, even though both
files share the same file extension.

In addition to the Export Assignments and Import Assignments dialog boxes, the
Export command on the File menu allows you to export your assignments to a .tcl file
or a .csv file.

You can use these file formats for many different aspects of your project. For example,
you can use a .csv file for documentation purposes or to transfer pin-related
information to board layout tools. The .tcl file makes it easy to apply assignments in a
scripted design flow. The LogicLock design flow uses the .qsf file to transfer your
LogicLock region settings.

Exporting Assignments
You can use the Export Assignments dialog box to export your Quartus II software
assignments into a .qsf file, generate a node-level netlist file, and export
back-annotated routing information as a Routing Constraints File (.rcf).

To export assignments from any of the supported assignment files, perform the
following steps:

1. On the Assignments menu, click Export Assignments. The Export Assignments
dialog box appears (Figure 1–3).

1 The LogicLock design flow also uses this dialog box to export LogicLock regions.

Chapter 1: Assignment Editor 1–9
Exporting and Importing Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

2. In the File name text-entry box, type the file name or browse to the assignment
file.

3. Turn on Export back-annotated routing and Save a node-level netlist of the
entire design into a persistent source file if these options are desired.

4. Click OK.

f For more information about using the Export Assignments dialog box to export
LogicLock regions, refer to the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

On the File menu, click Export to export all assignments to a .tcl file or export a set of
assignments to a .csv file. When you export assignments to a .tcl file, only user-created
assignments are written to the Tcl script file; default assignments are not exported.

When assignments are exported to a .csv file, only the assignments displayed in the
current view of the Assignment Editor are exported.

Importing Assignments
The Import Assignments dialog box allows you to import Quartus II assignments
from a .qsf file, an .esf file, an .acf file, or a .csv file (Figure 1–4).

To import assignments from any of the supported assignment files, perform the
following steps:

1. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears (Figure 1–4).

Figure 1–3. Export Assignments Dialog Box

Figure 1–4. Import Assignments Dialog Box

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

1–10 Chapter 1: Assignment Editor
Creating Timing Constraints Using the Assignment Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

2. In the File name text-entry box, type the file name or browse to the assignment file
and click OK. The Select File dialog box appears.

3. In the Select File dialog box, select the file and click Open.

4. Click OK.

1 When you import a .csv file, the first uncommented row of the file must be in the
exact format as it was when exported.

You can create a backup copy of your assignments before importing new assignments
by turning on the Copy existing assignments into <revision name>.qsf.bak before
importing option.

When importing assignments from a file, you can choose which assignment categories
to import by performing the following steps:

1. Click Categories in the Import Assignments dialog box.

2. Turn on the categories you want to import from the Assignment categories list.

To select specific types of assignments to import, in the Import Assignments dialog
box, click Advanced. The Advanced Import Settings dialog box appears. You can
choose to import instance, entity, or global assignments and select various assignment
types to import.

f For more information about these options, refer to the Quartus II Help.

Creating Timing Constraints Using the Assignment Editor
Accurate timing constraints guide the place-and-route engine in the Quartus II
software to help optimize your design into the FPGA. After completing a
place-and-route, perform a static timing analysis using the Quartus II Classic Timing
Analyzer or the Quartus II TimeQuest Timing Analyzer to analyze slack and critical
paths in your design.

If you are using the Quartus II Classic Timing Analyzer, create timing constraints
using the Assignment Editor. In the Assignment Editor, select Timing in the Category
list to show all timing-related settings and make the desired timing assignments in the
editor’s spreadsheet.

f For more information about the Quartus II Classic Timing Analyzer, refer to the
Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

If you are using the Quartus II TimeQuest Timing Analyzer, the TimeQuest Timing
Analyzer uses timing assignments from a Synopsys Design Constraint (.sdc) file.
Therefore, you must convert assignments from the .qsf format to the .sdc format
before you can proceed with the timing analysis.

f For information about converting the timing assignments in your .qsf file to an .sdc
file, refer to the Switching to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

f For more information about the Quartus II TimeQuest Timing Analyzer, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 1: Assignment Editor 1–11
Tcl Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Tcl Interface
Whether you use the Assignment Editor or another tool to create your design
assignments, you can export them to a Tcl (.tcl) file. You can then use the .tcl file to
reapply the settings or to archive your assignments. On the File menu, click Export to
export your saved assignments to a .tcl file.

You can also generate a .tcl file that sets up your project and applies all the
assignments to it. On the Project menu, click Generate Tcl File for Project to generate
the file.

In addition, as you use the Assignment Editor to enter assignments, the equivalent Tcl
commands are shown in the System tab of the Messages window. You can reference
these Tcl commands to create a customized .tcl file. To copy a Tcl command from the
System tab of the Messages window, right-click the message and click Copy.

f For more information about Tcl scripting with the Quartus II software, refer to the Tcl
Scripting chapter in volume 2 of the Quartus II Handbook.

Probing to Source Design Files and Other Quartus II Windows
The Assignment Editor lets you probe to the source design file and to other windows
within the Quartus II software. You can select a cell in the Assignment Editor
spreadsheet and locate the corresponding item in another applicable Quartus II
software window. To locate an item from the Assignment Editor in another window,
right-click the items of interest in the spreadsheet, point to Locate, and click the
appropriate command. The following commands are available:

■ Assignment Editor

■ Pin Planner

■ Timing Closure Floorplan

■ Chip Planner (Floorplan & Chip Editor)

■ Resource Property Editor

■ Technology Map Viewer

■ RTL Viewer

■ Design File

Probing to the Assignment Editor from Other Quartus II Windows
You can cross-probe to the Assignment Editor from other windows within the
Quartus II software. You can select one or more nodes or nets in another window and
locate them in the Assignment Editor spreadsheet. This is useful when you want to
see all assignments related to specific nodes.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

1–12 Chapter 1: Assignment Editor
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can locate nodes in the Assignment Editor from all windows within the
Quartus II software. To locate assignments related to an element in the Assignment
Editor from other Quartus II windows, select the node or nodes in the appropriate
window. For example, select an entity in the Entity list on the Hierarchy tab in the
Project Navigator, or select nodes in the Timing Closure Floorplan. Next, right-click
the selected object, point to Locate, and click Locate in Assignment Editor. The
Assignment Editor opens, or it is brought to the foreground if it is already open.

Conclusion
As FPGAs continue to increase in density and pin count, it is essential to be able to
quickly create and view design assignments. The Assignment Editor provides an
intuitive and effective way of making assignments. With the spreadsheet interface
and the Category, Node Filter, Information, and Edit bars, the Assignment Editor
provides an efficient assignment entry solution for FPGA designers.

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 1: Assignment Editor 1–13
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Document Revision History
Table 1–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 1–4. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Added two notes.

■ Minor text edits.

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

■ Revised and reorganized the entire chapter.

■ Added section “Probing to Source Design Files and Other
Quartus II Windows” on page 1–11.

■ Added description of node type icons (Table 1–3).

■ Added explanation of wildcard characters.

Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

Changed to 8½” × 11” page size. No change to content. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

Updated Quartus II software 8.0 revision and date. Updated references.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

1–14 Chapter 1: Assignment Editor
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

2. Command-Line Scripting

Introduction
FPGA design software that easily integrates into your design flow saves time and
improves productivity. The Altera® Quartus® II software provides you with a
command-line executable for each step of the FPGA design flow to make the design
process customizable and flexible.

The benefits provided by command-line executables include:

■ Command-line control over each step of the design flow

■ Easy integration with scripted design flows including makefiles

■ Reduced memory requirements

■ Improved performance

The command-line executables are also completely compatible with the Quartus II
GUI, allowing you to use the exact combination of tools that you prefer.

This chapter describes how to take advantage of Quartus II command-line
executables, and provides several examples of scripts that automate different
segments of the FPGA design flow, including the following topics:

■ “The Benefits of Command-Line Executables”

■ “Introductory Example” on page 2–2

■ “Command-Line Executables” on page 2–3

■ “Design Flow” on page 2–9

■ “The MegaWizard Plug-In Manager” on page 2–13

■ “Command-Line Scripting Examples” on page 2–19

The Benefits of Command-Line Executables
The Quartus II command-line executables provide command-line control over each
step of the design flow. Each executable includes options to control commonly used
software settings. Each executable also provides detailed, built-in help describing its
function, available options, and settings.

Command-line executables allow for easy integration with scripted design flows. You
can easily create scripts in any language with a series of commands. These scripts can
be batch-processed, allowing for integration with distributed computing in server
farms. You can also integrate the Quartus II command-line executables in
makefile-based design flows. These features enhance the ease of integration between
the Quartus II software and other EDA synthesis, simulation, and verification
software.

QII52002-9.1.0

2–2 Chapter 2: Command-Line Scripting
Introductory Example

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Command-line executables add integration and scripting flexibility without
sacrificing the ease-of-use of the Quartus II GUI. You can use the Quartus II GUI and
command-line executables at different stages in the design flow. For example, you
might use the Quartus II GUI to edit the floorplan for the design, use the
command-line executables to perform place-and-route, and return to the Quartus II
GUI to perform debugging with the Chip Editor.

Command-line executables reduce the amount of memory required during each step
in the design flow. Because each executable targets only one step in the design flow, it
is relatively compact, both in file size and the amount of memory used when running.
This memory reduction improves performance, and is particularly beneficial in
design environments where computer networks or workstations are heavily used
with reduced memory.

Introductory Example
The following introduction to design flow with command-line executables shows
how to create a project, fit the design, perform timing analysis, and generate
programming files.

The tutorial design included with the Quartus II software is used to demonstrate this
functionality. If installed, the tutorial design is found in the
<Quartus II irectory>/qdesigns/fir_filter directory.

Before making changes, copy the tutorial directory and type the four commands
shown in Example 2–1 at a command prompt in the new project directory:

1 The <Quartus II directory>/quartus/bin directory must be in your PATH environment
variable.

The quartus_map filtref --source=filtref.bdf --family=CYCLONE
command creates a new Quartus II project called filtref with filtref.bdf as the
top-level file. It targets the Cyclone® device family and performs logic synthesis and
technology mapping on the design files.

The quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz
--tsu=8ns command performs fitting on the filtref project. This command specifies
an EP1C12Q240C6 device and the Fitter attempts to meet a global fMAX requirement of
80 MHz and a global tSU requirement of 8 ns.

The quartus_asm filtref command creates programming files for the filtref
project.

The quartus_tan filtref command performs timing analysis on the filtref
project using the Quartus II Classic Timing Analyzer, to determine whether the design
meets the timing requirements that were specified to the quartus_fit executable.

Example 2–1. Introductory Example

quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12F256C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
quartus_tan filtref r

Chapter 2: Command-Line Scripting 2–3
Command-Line Executables

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can put the four commands from Example 2–1 into a batch file or script file, and
run them. For example, you can create a simple UNIX shell script called compile.sh,
which includes the code shown in Example 2–2.

Edit the script as necessary and compile your project.

Command-Line Executables
Table 2–1 lists the command-line executables and their respective descriptions.

Example 2–2. UNIX Shell Script: compile.sh

#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=Cyclone
PART=EP1C12F256C6
FMAX=80MHz
--TSU=8ns
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --fmax=$FMAX --tsu=$TSU
quartus_asm $PROJECT
quartus_tan $PROJECT

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 1 of 3)

Executable Description

Analysis and Synthesis
quartus_map

Quartus II Analysis and Synthesis builds a single project database that integrates all the
design files in a design entity or project hierarchy, performs logic synthesis to minimize the
logic of the design, and performs technology mapping to implement the design logic using
device resources such as logic elements.

Fitter
quartus_fit

The Quartus II Fitter performs place-and-route by fitting the logic of a design into a device.
The Fitter selects appropriate interconnection paths, pin assignments, and logic cell
assignments.

Analysis and Synthesis must be run successfully before running the Fitter.

Assembler
quartus_asm

The Quartus II Assembler generates a device programming image, in the form of one or
more of the following from a successful fit (that is, place-and-route).

■ Programmer Object Files (.pof)

■ SRAM Object Files (.sof)

■ Hexadecimal (Intel-Format) Output Files (.hexout)

■ Tabular Text Files (.ttf)

■ Raw Binary Files (.rbf)

The .pof and .sof files are then processed by the Quartus II Programmer and downloaded to
the device with the MasterBlasterTM or the ByteBlasterTM II download cable, or the Altera
Programming Unit (APU). The .hexout files, .ttf files, and .rbf files are used by other
programming hardware manufacturers that provide support for Altera devices.

The Fitter must be run successfully before running the Assembler.

2–4 Chapter 2: Command-Line Scripting
Command-Line Executables

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Classic Timing Analyzer
quartus_tan

The Quartus II Classic Timing Analyzer computes delays for the given design and device, and
annotates them on the netlist. Then, the Classic timing analyzer performs timing analysis,
allowing you to analyze the performance of all logic in your design. The quartus_tan
executable includes Tcl support.

Analysis and Synthesis or the Fitter must be run successfully before running the Classic
timing analyzer.

TimeQuest Timing Analyzer
quartus_sta

The Quartus II TimeQuest Timing Analyzer computes delays for the given design and device,
and annotates them on the netlist. Next, the TimeQuest timing analyzer performs timing
analysis, allowing you to analyze the performance of all logic in your design. The
quartus_sta executable includes Tcl support and SDC support.

Analysis and Synthesis or the Fitter must be run successfully before running the TimeQuest
timing analyzer.

Design Assistant
quartus_drc

The Quartus II Design Assistant checks the reliability of a design based on a set of design
rules. The Design Assistant is especially useful for checking the reliability of a design before
converting the design for HardCopy® devices. The Design Assistant supports designs that
target any Altera device supported by the Quartus II software, except MAX® 3000 and
MAX 7000 devices.

Analysis and Synthesis or the Fitter must be run successfully before running the Design
Assistant.

Compiler Database Interface
quartus_cdb

The Quartus II Compiler Database Interface generates incremental netlists for use with
LogicLockTM back-annotation, or back-annotates device and resource assignments to
preserve the fit for future compilations. The quartus_cdb executable includes Tcl
support.

Analysis and Synthesis must be run successfully before running the Compiler Database
Interface.

EDA Netlist Writer
quartus_eda

The Quartus II EDA Netlist Writer generates netlist and other output files for use with other
EDA tools.

Analysis and Synthesis, the Fitter, or Timing Analyzer must be run successfully before
running the EDA Netlist Writer, depending on the arguments used.

Simulator
quartus_sim

The Quartus II Simulator tests and debugs the logical operation and internal timing of the
design entities in a project. The Simulator can perform two types of simulation: functional
simulation and timing simulation. The quartus_sim executable includes Tcl support.

Quartus II Analysis and Synthesis must be run successfully before running a functional
simulation.

Timing analysis must be run successfully before running a timing simulation.

Power Analyzer
quartus_pow

The Quartus II PowerPlay Power Analyzer estimates the thermal dynamic power and the
thermal static power consumed by the design. For newer families such as Stratix® II and
MAX II, the power drawn from each power supply is also estimated.

Analysis and Synthesis or the Fitter must be run successfully before running the PowerPlay
Power Analyzer.

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 2 of 3)

Executable Description

Chapter 2: Command-Line Scripting 2–5
Command-Line Executables

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Command-Line Scripting Help
Help on command-line executables is available through different methods. You can
access help built in to the executables with command-line options. You can use the
Quartus II Command-Line and Tcl API Help browser for an easy graphical view of
the help information. Additionally, you can refer to the Quartus II Scripting Reference
Manual on the Quartus II literature page of the Altera website, which has the same
information in PDF format.

To use the Quartus II Command-Line and Tcl API Help browser, type the following:

quartus_sh --qhelp r
This command starts the Quartus II Command-Line and Tcl API Help browser, a
viewer for information about the Quartus II Command-Line executables and Tcl API
(Figure 2–1).

Use the -h option with any of the Quartus II Command-Line executables to get a
description and list of supported options. Use the --help=<option name> option for
detailed information about each option.

Programmer
quartus_pgm

The Quartus II Programmer programs Altera devices. The Programmer uses one of the
supported file formats:

■ .pof

■ .sof

■ Jam File (.jam)

■ Jam Byte-Code File (.jbc)

Make sure you specify a valid programming mode, programming cable, and operation for a
specified device.

Convert Programming File
quartus_cpf

The Quartus II Convert Programming File module converts one programing file format to a
different possible format.

Make sure you specify valid options and an input programming file to generate the new
requested programming file format.

Quartus Shell
quartus_sh

The Quartus II Shell acts as a simple Quartus II Tcl interpreter. The Shell has a smaller
memory footprint than the other command-line executables that support Tcl. The Shell may
be started as an interactive Tcl interpreter (shell), used to run a Tcl script, or used as a quick
Tcl command evaluator, evaluating the remaining command-line arguments as one or more
Tcl commands.

Quartus JAM STAPL Player
quartus_jli

The Quartus II JAM™ STAPL Player reads and executes .jam files in the STAPL format. A
single Jam file can perform several functions, such as programming, configuring, verifying,
erasing, and blank-checking a programmable device.

Quartus JAM Compiler
quartus_jbcc

The Quartus II JAM Compiler converts .jam files to .jbc files which store data for
programming, configuring, verifying, and blank-checking one or more devices in a JTAG
chain.

TimeQuest Timing Analyzer
GUI
quartus_staw

This executable opens the Quartus II TimeQuest timing analyzer GUI. This is helpful because
you do not have to open the entire Quartus II GUI for certain operations.

Programmer GUI
quartus_pgmw

This executable opens up the programmer—a GUI to the quartus_pgm executable. This
is helpful because users do not have to open the entire Quartus II GUI for certain operations

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 3 of 3)

Executable Description

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

2–6 Chapter 2: Command-Line Scripting
Command-Line Executables

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Command-Line Option Details
Command-line options are provided for many common global project settings and
performing common tasks. You can use either of two methods to make assignments to
an individual entity. If the project exists, open the project in the Quartus II GUI,
change the assignment, and close the project. The changed assignment is updated in
the Quartus II Settings File. Any command-line executables that are run after this
update use the updated assignment. For more information refer to “Option
Precedence” on page 2–7. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II project,
choose this method.

f For more information on the Quartus II Tcl scripting API, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information on Quartus II
project settings and assignments is located refer to the QSF Reference Manual.

Figure 2–1. Quartus II Command-Line and Tcl API Help Browser

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Command-Line Scripting 2–7
Command-Line Executables

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Option Precedence
If you use command-line executables, you must be aware of the precedence of various
project assignments and how to control the precedence. Assignments for a particular
project exist in the Quartus II Settings File for the project. Assignments for a project
can also be made with command-line options. Project assignments are reflected in
compiler database files that hold intermediate compilation results and reflect
assignments made in the previous project compilation.

All command-line options override any conflicting assignments found in the
Quartus II Settings File or the compiler database files. There are two command-line
options to specify whether the Quartus II Settings File or compiler database files take
precedence for any assignments not specified as command-line options.

1 Any assignment not specified as a command-line option or found in the Quartus II
Settings File or compiler database file is set to its default value.

The file precedence command-line options are --read_settings_files and
--write_settings_files.

By default, the --read_settings_files and --write_settings_files
options are turned on. Turning on the --read_settings_files option causes a
command-line executable to read assignments from the Quartus II Settings File
instead of from the compiler database files. Turning on the
--write_settings_files option causes a command-line executable to update the
Quartus II Settings File to reflect any specified options, as happens when you close a
project in the Quartus II GUI.

If you use command-line executables, you must be aware of the precedence of various
project assignments and how to control the precedence. Assignments for a particular
project can exist in three places:

■ The Quartus II Settings File for the project

■ The result of the last compilation, in the \db directory, which reflects the
assignments that existed when the project was compiled

■ Command-line options

Table 2–2 lists the precedence for reading assignments depending on the value of the
--read_settings_files option.

Table 2–2. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)

1. Command-line options

2. Quartus II Settings File

3. Project database (db directory, if it exists)

4. Quartus II software defaults

--read_settings_files = off 1. Command-line options

2. Project database (db directory, if it exists)

3. Quartus II software defaults

2–8 Chapter 2: Command-Line Scripting
Command-Line Executables

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Table 2–3 lists the locations to which assignments are written, depending on the value
of the --write_settings_files command-line option.

Example 2–3 assumes that a project named fir_filter exists, and that the analysis and
synthesis step has been performed (using the quartus_map executable).

The first command, quartus_fit fir_filter --fmax=80MHz, runs the
quartus_fit executable and specifies a global fMAX requirement of 80 MHz.

The second command, quartus_tan fir_filter, runs timing analysis for the
results of the previous fit.

The third command reruns timing analysis with a global fMAX requirement of 100 MHz
and saves the result in a file called timing_result-100.tao. By specifying the
--write_settings_files=off option, the command-line executable does not
update the Quartus II Settings File to reflect the changed fMAX requirement. The
compiler database files reflect the changed fMAX requirement. If the
--write_settings_files=off option is not specified, the command-line
executable updates the Quartus II Settings File to reflect the 100-MHz global fMAX
requirement.

Use the options --read_settings_files=off and
--write_settings_files=off (where appropriate) to optimize the way that the
Quartus II software reads and updates settings files. Example 2–4 shows how to avoid
unnecessary reading and writing.

The quartus_tan and quartus_asm executables do not read or write settings files
because they do not change any settings in the project.

Table 2–3. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on
(Default)

Quartus II Settings File and compiler database

--write_settings_files = off Compiler database

Example 2–3. Write Settings Files

quartus_fit fir_filter --fmax=80MHz r
quartus_tan fir_filter r
quartus_tan fir_filter --fmax=100MHz --tao=timing_result-100.tao

--write_settings_files=off r

Example 2–4. Avoiding Unnecessary Reading and Writing

quartus_map filtref --source=filtref --part=EP1C12F256C6 r
quartus_fit filtref --fmax=100MHz --read_settings_files=off r
quartus_tan filtref --read_settings_files=off --write_settings_files=off r
quartus_asm filtref --read_settings_files=off --write_settings_files=off r

Chapter 2: Command-Line Scripting 2–9
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Design Flow
Figure 2–2 shows a typical Quartus II FPGA design flow.

Compilation with quartus_sh --flow
Use the quartus_sh executable with the --flow option to perform a complete
compilation flow with a single command. (For information about specialized flows,
type quartus_sh --help=flow r at a command prompt.) The --flow option
supports the smart recompile feature and efficiently sets command-line arguments for
each executable in the flow.

1 If you used the quartus_cmd executable to perform command-line compilations in
earlier versions of the Quartus II software, you should use the quartus_sh --flow
command beginning with the Quartus II software version 3.0.

The following example runs compilation, timing analysis, and programming file
generation with a single command:

quartus_sh --flow compile filtref r

Text-Based Report Files
Each command-line executable creates a text report file when it is run. These files
report success or failure, and contain information about the processing performed by
the executable.

Figure 2–2. Typical Design Flow

Quartus II Shell

Synthesis

Fitter

Timing Analysis

Netlist Writers

.vo, .vho Files

Power Analyzer

Assembler

Programmer

Simulator

Design Entry
(.tdf, .bdf, .vqm, Verilog HDL,

VHDL, EDIF Netlist files)

2–10 Chapter 2: Command-Line Scripting
Design Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Report file names contain the revision name and the short-form name of the
executable that generated the report file: <revision>.<executable>.rpt. For example,
using the quartus_fit executable to place and route a project with the revision
name design_top generates a report file named design_top.fit.rpt. Similarly, using
the quartus_sta executable to perform timing analysis on a project with the
revision name fir_filter generates a report file named fir_filter.sta.rpt.

As an alternative to parsing text-based report files, you can use the Tcl package called
::quartus::report. For more information about this package, refer to “Command-Line
Scripting Help” on page 2–5.

You can use command-line executables in scripts that control a design flow that uses
other software in addition to the Quartus II software. For example, if your design flow
uses other synthesis or simulation software, and you can run the other software at a
system command prompt, you can include it in a single script. The Quartus II
command-line executables include options for common global project settings and
operations, but you must use a Tcl script or the Quartus II GUI to set up a new project
and apply individual constraints, such as pin location assignments and timing
requirements. Command-line executables are very useful for working with existing
projects, for making common global settings, and for performing common operations.
For more flexibility in a flow, use a Tcl script, which makes it easier to pass data
between different stages of the design flow and have more control during the flow.

f For more information about Tcl scripts, refer to the Tcl Scripting chapter in volume 2 of
the Quartus II Handbook, or the Quartus II Scripting Reference Manual.

For example, your script could run other synthesis software, then place-and-route the
design in the Quartus II software, then generate output netlists for other simulation
software. Example 2–5 shows how to do this with a UNIX shell script for a design that
targets a Cyclone II device.

Example 2–5. Script for End-to-End Flow (Part 1 of 2)

#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl

If your Quartus II project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject

Use the quartus_tan executable to do best and worst case
timing analysis
quartus_tan myproject --tao=worst_case
quartus_tan myproject --fast_model --tao=best_case

Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim --format=verilog

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 2: Command-Line Scripting 2–11
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Makefile Implementation
You can use the Quartus II command-line executables in conjunction with the make
utility to automatically update files when other files they depend on change. The file
dependencies and commands used to update files are specified in a text file called a
makefile.

To facilitate easier development of efficient makefiles, the following “smart action”
scripting command is provided with the Quartus II software:

quartus_sh --determine_smart_action r
Because assignments for a Quartus II project are stored in the Quartus II Settings File
(.qsf), including it in every rule results in unnecessary processing steps. For example,
updating a setting related to programming file generation (which requires re-running
only quartus_asm) modifies the Quartus II Settings File, requiring a complete
recompilation if the Quartus II Settings File is included in every rule.

The smart action command determines the earliest command-line executable in the
compilation flow that must be run based on the current Quartus II Settings File, and
generates a change file corresponding to that executable. For a given command-line
executable named quartus_<executable>, the change file is named with the format
<executable>.chg. For example, if quartus_map must be re-run, the smart action
command creates or updates a file named map.chg. Thus, rather than including the
Quartus II Settings File in each makefile rule, include only the appropriate change file.

Example 2–6 uses change files and the smart action command. You can copy and
modify it for your own use. A copy of this example is included in the help for the
makefile option, which is available by typing:

quartus_sh --help=makefiles r

Perform the simulation with the ModelSim software
vlib cycloneii_ver
vlog -work cycloneii_ver /opt/quartusii/eda/sim_lib/cycloneii_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneii_ver -t 1ps work.my_project

Example 2–5. Script for End-to-End Flow (Part 2 of 2)

Example 2–6. Sample Makefile (Part 1 of 2)

###
Project Configuration:

Specify the name of the design (project), the Quartus II Settings
File (.qsf), and the list of source files used.
###

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

###
Main Targets
#
all: build everything
clean: remove output files and database
###

2–12 Chapter 2: Command-Line Scripting
Design Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

all: smart.log $(PROJECT).asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

###
Executable Configuration
###

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
TAN_ARGS =

###
Target implementations
###

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
$(STAMP) asm.chg
$(STAMP) tan.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

###
Project initialization
###

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:
$(STAMP) fit.chg

tan.chg:
$(STAMP) tan.chg

asm.chg:
$(STAMP) asm.chg

Example 2–6. Sample Makefile (Part 2 of 2)

Chapter 2: Command-Line Scripting 2–13
The MegaWizard Plug-In Manager

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

A Tcl script is provided with the Quartus II software to create or modify files that are
specified as dependencies in the make rules, assisting you in makefile development.
Complete information about this Tcl script and how to integrate it with makefiles is
available by running the following command:

quartus_sh --help=determine_smart_action r

The MegaWizard Plug-In Manager
The MegaWizard™ Plug-In Manager and associated MegaWizard Plug-Ins provide a
GUI-based flow to configure variation files. However, you can use command-line
options to modify, update, or create variation files without using the GUI. This
capability is useful in a fully scripted design flow, or in cases where you want to
generate variation files without using the wizard GUI flow.

The MegaWizard Plug-In Manager has three functions:

■ Providing an interface for you to select the output file or files

■ Running a specific MegaWizard Plug-In

■ Creating output files (such as variation files, symbol files, and simulation netlist
files)

Each MegaWizard Plug-In provides a user interface you use to configure the Plug-In
variation, and performs validation and error-checking of your selected ports and
parameters.

When you create or update a Plug-In variation in the GUI, the parameters and values
are entered through the GUI provided by the Plug-In. The MegaWizard Plug-In
Manager then generates the required files. When you create a Plug-In variation with
the command line, you provide the parameters and values as command-line options.

The MegaWizard Plug-In Manager command-line executable is qmegawiz.
Example 2–7 shows how to create a new variation file.

When you use qmegawiz to update an existing variation file, the module or wizard
name is not required.

If a megafunction changes between software versions, the variation files must be
updated. To do this, run qmegawiz -silent <variation file name>.

Table 2–4 describes the supported options.

Example 2–7. MegaWizard Plug-In Manager Command-Line Executable

qmegawiz [options] [module=<module name>|wizard=<wizard name>] [<param>=<value> ...
<port>=<used|unused> ...] [OPTIONAL_FILES=<optional files>] <variation file name>

Table 2–4. qmegawiz Options

Option Description

-silent Run the MegaWizard Plug-In Manager in command-line mode, without displaying the
GUI.

-f:<param file> A file that contains all options for the qmegawiz command. Refer to “Parameter File”
on page 2–18.

-p:<working directory> Sets the default working directory. Refer to“Working Directory” on page 2–18.

2–14 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

For information about specifying the module name or wizard name, refer to “Module
and Wizard Names” on page 2–15 f

For information about specifying ports and parameters, refer to “Ports and
Parameters” on page 2–15.

For information about generating optional files, refer to “Optional Files” on
page 2–16.

For information about specifying the variation file name, refer to “Variation File
Name” on page 2–18.

Command-Line Support
Only the MegaWizard Plug-Ins listed in Table 2–5 support creation and update with
the command-line mode. For Plug-Ins not listed in the table, you must use the
MegaWizard Plug-In Manager GUI for creation and update.

Table 2–5. MegaWizard Plug-Ins with Command Line Support (Part 1 of 2)

MegaWizard Plug-In Wizard Name Module Name

alt2gxb ALT2GXB alt2gxb

alt4gxb ALTGX alt4gxb

altclkctrl ALTCLKCTRL altclkctrl

altddio_bidir ALTDDIO_BIDIR altddio_bidir

altddio_in ALTDDIO_IN altddio_in

altddio_out ALTDDIO_OUT altddio_out

altecc_decoder
ALTECC

altecc_decoder

altecc_encoder altecc_encoder

altfp_add_sub ALTFP_ADD_SUB altfp_add_sub

altfp_compare ALTFP_COMPARE altfp_compare

altfp_convert ALTFP_CONVERT altfp_convert

altfp_div ALTFP_DIV altfp_div

altfp_mult ALTFP_MULT altfp_mult

altfp_sqrt ALTFP_SQRT altfp_sqrt

altiobuf_bidir

ALTIOBUF

altiobuf_bidir

altiobuf_in altiobuf_in

altiobuf_out altiobuf_out

altlvds_rx
ALTLVDS

altlvds_rx

altlvds_tx altlvds_tx

altmult_accum ALTMULT_ACCUM (MAC) altmult_accum

altmult_complex ALTMULT_COMPLEX altmult_complex

altpll_reconfig ALTPLL_RECONFIG altpll_reconfig

altpll ALTPLL altpll

altsyncram

RAM: 2-PORT

altsyncramRAM: 1-PORT

ROM: 1-PORT

Chapter 2: Command-Line Scripting 2–15
The MegaWizard Plug-In Manager

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Module and Wizard Names
You must specify the wizard or module name, shown in Table 2–5, as a command-line
option when you create a variation file. Use the option module=<module name> to
specify the module, or use the option wizard=<wizard name> to specify the
wizard. If there are spaces in the wizard or module name, enclose the name in double
quotes, for example:

wizard="RAM: 2-PORT"

When there is a one-to-one mapping between the MegaWizard Plug-In and the
wizard name and the module name, you can use either the wizard option or the
module option.

When there are multiple wizard names that correspond to one module name, you
should use the wizard option to specify one wizard.

When there are multiple module names that correspond to one wizard name, you
should use the module option to specify one module. For example, use the module
option if you create a FIFO because one wizard is common to both modules. However,
you should use the wizard option if you create a RAM, because one module is
common to three wizards.

If you edit or update an existing variation file, the wizard or module option is not
necessary, because information about the wizard or module is already in the variation
file.

Ports and Parameters
Ports and parameters for each MegaWizard Plug-In are described in Quartus II Help,
and in the Megafunction User Guides on the Altera website. You should use these
references to determine appropriate values for each port and parameter required for a
particular variation configuration. Refer to “Strategies to Determine Port and
Parameter Values” for more information. You do not have to specify every port and
parameter supported by a Plug-In. The MegaWizard Plug-In Manager uses default
values for any port or parameter you do not specify.

Specify ports as used or unused, for example:

<port>=used
<port>=unused

You can specify port names in any order. Grouping does not matter. Separate port
configuration options from each other with spaces.

Specify a value for a parameter with the equal sign, for example:

<parameter>=<value>

You can specify parameters in any order. Grouping does not matter. Separate
parameter configuration options from each other with spaces. You can specify port
names and parameter names in upper or lower case; case does not matter.

dcfifo
FIFO

dcfifo

scfifo scfifo

Table 2–5. MegaWizard Plug-Ins with Command Line Support (Part 2 of 2)

MegaWizard Plug-In Wizard Name Module Name

http://www.altera.com/literature/lit-ip.jsp

2–16 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

All MegaWizard Plug-Ins allow you to specify the target device family with the
INTENDED_DEVICE_FAMILY parameter as shown in the following example:

qmegawiz wizard=<wizard> INTENDED_DEVICE_FAMILY="Cyclone III" <file>

You must specify enough ports and parameters to create a legal configuration of the
Plug-In. When you use the GUI flow, each MegaWizard Plug-In performs validation
and error checking for the particular ports and parameters you choose. When you use
command-line options to specify ports and parameters, you must ensure that the
ports and parameters you use are complete and valid for your particular
configuration.

For example, when you use a RAM Plug-In to configure a RAM to be 32 words deep,
the Plug-In automatically configures an address port that is five bits wide. If you use
the command-line flow to configure a RAM that is 32 words deep, you must use one
option to specify the depth of the RAM, then calculate the width of the address port
and specify that width with another option.

Invalid Configurations
If the combination of default and specified ports and parameters is not complete to
create a legal configuration of the Plug-In, qmegawiz generates an error message that
indicates what is missing and what values are supported. If the combination of
default and specified ports and parameters results in an illegal configuration of the
Plug-In, qmegawiz generates an error message that indicates what is illegal, and
displays the legal values.

Strategies to Determine Port and Parameter Values
For simple Plug-In variations, it is often easy to determine appropriate port and
parameter values with the information in Quartus II Help and other megafunction
documentation. For example, determining that a 32-word-deep RAM requires an
address port that is five bits wide is straightforward. For complex Plug-In variations,
an option in the GUI might affect multiple port and parameter settings, so it can be
difficult to determine a complete set of ports and parameters. In this case, you should
use the GUI to generate a variation file which includes the ports and parameters for
your desired configuration. Open the variation file in a text editor and use the port
and parameter values in the variation file as command-line options.

Optional Files
In addition to the variation file, the MegaWizard Plug-In Manager can generate other
files, such as instantiation templates, simulation netlists, and symbols for graphic
design entry. Use the OPTIONAL_FILES parameter to control whether the
MegaWizard Plug-In Manager generates optional files. Table 2–6 lists valid arguments
for the OPTIONAL_FILES parameter.

Table 2–6. Arguments for the OPTIONAL_FILES Parameter (Part 1 of 2)

Argument Description

INST Controls the generation of the <variation>_inst.v file.

INC Controls the generation of the <variation>.inc file.

CMP Controls the generation of the <variation>.cmp file.

BSF Controls the generation of the <variation>.bsf file.

Chapter 2: Command-Line Scripting 2–17
The MegaWizard Plug-In Manager

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Specify a single optional file, for example:

OPTIONAL_FILES=<argument>

Specify multiple optional files separated by a vertical bar character, for example:

OPTIONAL_FILES=<argument 1>|...|<argument n>

If you prefix an argument with a dash (for example, -BB), it is excluded from the
generated optional files. If any of the optional files exist when you run qmegawiz and
they are excluded in the OPTIONAL_FILES parameter (with the NONE argument, or
prefixed with a dash), they are deleted.

You can combine the ALL argument with other excluded arguments to generate “all
files except <excluded files>.” You can combine the NONE argument with other
included arguments to generate “no files except <files>.”

When you combine multiple arguments, they are processed from left to right, and
arguments evaluated later have precedence over arguments evaluated earlier.
Therefore, the ALL or NONE argument should be the first in a combination of multiple
arguments. When ALL is the first argument, all optional files are generated before
exclusions are processed (deleted). When NONE is the first argument, none of the
optional files are generated (in other words, any that exist are deleted), then any files
you subsequently specify are generated.

Table 2–7 shows examples for the OPTIONAL_FILES parameter and describes the
result of each example.

BB Controls the generation of the <variation>_bb.v file.

SIM_NETLIST Controls the generation of simulation netlist file, wherever there is wizard support.

SYNTH_NETLIST Controls the generation of the synthesis netlist file, wherever there is wizard support.

ALL Generates all applicable optional files.

NONE Disables the generation of all optional files.

Table 2–6. Arguments for the OPTIONAL_FILES Parameter (Part 2 of 2)

Argument Description

Table 2–7. Examples of Different Optional File Arguments

Example Values for
OPTIONAL_FILES Description

BB The optional file <variation>_bb.v is generated, and no optional files are deleted

BB|INST The optional file <variation>_bb.v is generated, then the optional file <variation>_inst.v is
generated, and no optional files are deleted.

NONE No optional files are generated, and any existing optional files are deleted.

NONE|INC|BSF Any existing optional files are deleted, then the optional file <variation>.inc is generated, then
the optional file <variation>.bsf is generated.

ALL|-INST All optional files are generated, then <variation>_inst.v is deleted if it exists.

-BB The optional file <variation>_bb.v is deleted if it exists

-BB|INST The optional file <variation>_bb.v is deleted if it exists, then the optional file <variation>_inst.v
is generated.

2–18 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The qmegawiz command accepts the ALL argument combined with other included
file arguments, for example, ALL|BB, but that combination is equivalent to ALL
because first all optional files are generated, then the file <variation>_bb.v is
generated (again). Additionally, the software accepts the NONE argument combined
with other excluded file arguments, for example, NONE|-BB, but that combination is
equivalent to NONE because no optional files are generated (any that exist are deleted),
then the file <variation>_bb.v is deleted if it exists.

Parameter File
You can put all the parameter values and port values in a file, and pass the file name
as an argument to qmegawiz with the -f:<parameter file> option. For example, the
following command specifies a parameter file named rom_params.txt:

qmegawiz -silent module=altsyncram -f:rom_params.txt myrom.v r
The rom_params.txt paramter file can include options similar to the following:

RAM_BLOCK_TYPE=M4K DEVICE_FAMILY=Stratix WIDTH_A=5 WIDTHAD_A=5
NUMWORDS_A=32 INIT_FILE=rom.hex OPERATION_MODE=ROM

Working Directory
You can change the working directory that qmegawiz uses when it generates files. By
default, the working directory is the current directory when you execute the
qmegawiz command. Use the -p option to specify a different working directory, for
example:

-p:<working directory>

You can specify the working directory with an absolute or relative path. Specify an
alternative working directory any time you do not want files generated in the current
directory. The alternative working directory can be useful if you generate multiple
variations in a batch script, and keep generated files for the different Plug-In
variations in separate directories.

Variation File Name
The language used for a variation file depends on the file extension of the variation
file name. The MegaWizard Plug-In Manager creates HDL output files in a language
based on the file name extension. Therefore, you must always specify a complete file
name, including file extension, as the last argument to the qmegawiz command.
Table 2–8 shows the file extension that corresponds to supported HDL types.

Table 2–8. Variation File Extensions

Variation File HDL Type Required File Extension

Verilog HDL .v

VHDL .vhd

AHDL .tdf

Chapter 2: Command-Line Scripting 2–19
Command-Line Scripting Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Command-Line Scripting Examples
This section of the chapter presents various examples of command-line executable
use.

Create a Project and Apply Constraints
The command-line executables include options for common global project settings
and commands. To apply constraints such as pin locations and timing assignments,
run a Tcl script with the constraints in it. You can write a Tcl constraint file from
scratch, or generate one for an existing project. From the Project menu, click Generate
Tcl File for Project.

Example 2–8 creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Quartus II installation directory>/qdesigns/fir_filter/
directory.

Save the script in a file called setup_proj.tcl and type the commands illustrated in
Example 2–9 at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files.

You can use the following two commands to create the design, apply constraints, and
compile the design:

quartus_sh -t setup_proj.tcl r
quartus_sh --flow compile filtref r
The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

Example 2–8. Tcl Script to Create Project and Apply Constraints

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other pin assignments could follow
Create timing assignments
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 -offset "500 ps" -target clkx2 clockb
set_multicycle_assignment -from clk -to clkx2 2
Other timing assignments could follow
project_close

Example 2–9. Script to Create and Compile a Project

quartus_sh -t setup_proj.tcl r
quartus_map filtref r
quartus_fit filtref r
quartus_asm filtref r
quartus_tan filtref --fast_model --tao=min.tao --export_settings=off r
quartus_tan filtref --tao=max.tao --export_settings=off r

2–20 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Check Design File Syntax
The UNIX shell script example shown in Example 2–10 assumes that the Quartus II
software fir_filter tutorial project exists in the current directory. You can find the
fir_filter project in the <Quartus II directory>/qdesigns/fir_filter directory unless the
Quartus II software tutorial files are not installed.

The --analyze_file option performs a syntax check on each file. The script checks
the exit code of the quartus_map executable to determine whether there is an error
during the syntax check. Files with syntax errors are added to the
FILES_WITH_ERRORS variable, and when all files are checked, the script prints a
message indicating syntax errors. When options are not specified, the executable uses
the project database values. If not specified in the project database, the executable uses
the Quartus II software default values. For example, the fir_filter project is set to
target the Cyclone device family, so it is not necessary to specify the --family
option.

Create a Project and Synthesize a Netlist Using Netlist Optimizations
This example creates a new Quartus II project with a file top.edf as the top-level
entity. The --enable_register_retiming=on and
--enable_wysiwyg_resynthesis=on options allow the technology mapper to
optimize the design using gate-level register retiming and technology remapping.

f For more details about register retiming, WYSIWYG primitive resynthesis, and other
netlist optimization options, refer to the Quartus II Help.

The --part option tells the technology mapper to target an EP20K600EBC652-1X
device. To create the project and synthesize it using the netlist optimizations described
above, type the command shown in Example 2–11 at a command prompt.

Example 2–10. Shell Script to Check Design File Syntax

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done
if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Chapter 2: Command-Line Scripting 2–21
Command-Line Scripting Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Archive and Restore Projects
You can archive or restore a Quartus II project with a single command. This makes it
easy to take snapshots of projects when you use batch files or shell scripts for
compilation and project management. Use the --archive or --restore options for
quartus_sh as appropriate. Type the command shown in Example 2–12 at a system
command prompt to archive your project.

The archive file is automatically named <project name>.qar. If you want to use a
different name, rename the archive after it has been created. This command
overwrites any existing archive with the same name.

To restore a project archive, type the command shown in Example 2–13 at a system
command prompt.

The command restores the project archive to the current directory and overwrites
existing files.

f For more information about archiving and restoring projects, refer to the Managing
Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

Perform I/O Assignment Analysis
You can perform I/O assignment analysis with a single command. I/O assignment
analysis checks pin assignments to ensure they do not violate board layout guidelines.
I/O assignment analysis does not require a complete place and route, so it is a quick
way to ensure your pin assignments are correct. The command shown in
Example 2–14 performs I/O assignment analysis for the specified project and
revision.

Update Memory Contents Without Recompiling
You can use two simple commands to update the contents of memory blocks in your
design without recompiling. Use the quartus_cdb executable with the
--update_mif option to update memory contents from .mif or .hexout files. Then
re-run the assembler with the quartus_asm executable to regenerate the .sof, .pof,
and any other programming files.

Example 2–11. Creating a Project and Synthesizing a Netlist Using Netlist Optimizations

quartus_map top --source=top.edf --enable_register_retiming=on
--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1X r

Example 2–12. Archiving a Project

quartus_sh --archive <project name> r

Example 2–13. Restoring a Project Archive

quartus_sh --restore <archive name> r

Example 2–14. Performing I/O Assignment Analysis

quartus_fit --check_ios <project name> --rev=<revision name> r

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

2–22 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Example 2–15 shows these two commands.

Example 2–16 shows the commands for a DOS batch file for this example. You can
paste the following lines into a DOS batch file called update_memory.bat.

Type the following command at a system command prompt:

update_memory.bat <project name> <revision name> r

Create a Compressed Configuration File
You can create a compressed configuration file in two ways. The first way is to run
quartus_cpf with an option file that turns on compression. The second way is to
run quartus_cpf with a Conversion Setup File (.cof).

To create an option file that turns on compression, type the following command at a
system command prompt:

quartus_cpf -w <filename>.opt r
This interactive command walks you through some questions, including
compression, then creates an option file based on your answers. Use the --option
option to quartus_cpf to specify the option file you just created. For example, the
following command creates a compressed .pof that targets an EPCS64 device:

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 <file>.sof <file>.pof r
Alternatively, you can use the Convert Programming Files utility in the Quartus II
software to create a conversion setup file. Configure any options you want, including
compression, then save the conversion setup. Use the following command to run the
conversion setup you specified:

quartus_cpf <file>.cof r

Fit a Design as Quickly as Possible
This example assumes that a project called top exists in the current directory, and that
the name of the top-level entity is top. The --effort=fast option causes the Fitter
to use the fast fit algorithm to increase compilation speed, possibly at the expense of
reduced fMAX performance. The --one_fit_attempt=on option restricts the Fitter
to only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the command
shown in Example 2–17 at a command prompt.

Example 2–15. Commands to Update Memory Contents Without Recompiling

quartus_cdb --update_mif <project name> [--rev=<revision name>]r
quartus_asm <project name> [--rev=<revision name>]r

Example 2–16. Batch file to Update Memory Contents Without Recompiling

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

Example 2–17. Fitting a Project Quickly

quartus_fit top --effort=fast --one_fit_attempt=on r

Chapter 2: Command-Line Scripting 2–23
Command-Line Scripting Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Fit a Design Using Multiple Seeds
This shell script example assumes that the Quartus II software tutorial project called
fir_filter exists in the current directory (defined in the file fir_filter.qpf). If the tutorial
files are installed on your system, this project exists in the <Quartus II
directory>/qdesigns<quartus_version_number> /fir_filter directory. Because the
top-level entity in the project does not have the same name as the project, you must
specify the revision name for the top-level entity with the --rev option. The --seed
option specifies the seeds to use for fitting.

A seed is a parameter that affects the random initial placement of the Quartus II Fitter.
Varying the seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each
fitting attempt and copies the complete project to the new directory so that the results
are available for viewing and debugging after the script has completed.

Example 2–18 is designed for use on UNIX systems using sh (the shell).

1 Use the Design Space Explorer (DSE) included with the Quartus II software script (by
typing quartus_sh --dse r at a command prompt) to improve design
performance by performing automated seed sweeping.

f For more information about the DSE, type quartus_sh --help=dse r at the
command prompt, or refer to the Design Space Explorer chapter in volume 2 of the
Quartus II Handbook, or see the Quartus II Help.

Example 2–18. Shell Script to Fit a Design Using Multiple Seeds

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

else
ERROR_SEEDS="$ERROR_SEEDS $seed"

fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

2–24 Chapter 2: Command-Line Scripting
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The QFlow Script
A Tcl/Tk-based graphical interface called QFlow is included with the command-line
executables. You can use the QFlow interface to open projects, launch some of the
command-line executables, view report files, and make some global project
assignments. The QFlow interface can run the following command-line executables:

■ quartus_map (Analysis and Synthesis)

■ quartus_fit (Fitter)

■ quartus_tan (Timing Analysis)

■ quartus_asm (Assembler)

■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Quartus II
software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g r
Figure 2–3 shows the QFlow interface.

1 The QFlow script is located in the <Quartus II directory>/common/tcl/apps/qflow/
directory.

Referenced Documents
This chapter references the following documents:

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

Figure 2–3. QFlow Interface

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 2: Command-Line Scripting 2–25
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Document Revision History
Table 2–9 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 2–9. Document Revision History

Date / Version Changes Made Summary of Changes

November 2009
v9.1.0

Updated Table 2–1 to add quartus_jli and quartus_jbcc
executables and descriptions, and other minor updates
throughout document.

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

No change to content. Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

Added the following sections:

■ “The MegaWizard Plug-In Manager” on page 2–13

■ “Command-Line Support” on page 2–14

■ “Module and Wizard Names” on page 2–15

■ “Ports and Parameters” on page 2–15

■ “Invalid Configurations” on page 2–16

■ “Strategies to Determine Port and Parameter Values” on
page 2–16

■ “Optional Files” on page 2–16

■ “Parameter File” on page 2–18

■ “Working Directory” on page 2–18

■ “Variation File Name” on page 2–18

■ “Create a Compressed Configuration File” on page 2–22

Updated “Option Precedence” on page 2–7 to clarify how to
control precedence

Corrected Example 2–5 on page 2–10

Changed Example 2–1, Example 2–2, Example 2–4, and
Example 2–7 to use the EP1C12F256C6 device

Minor editorial updates

Updated entire chapter using 8½” × 11” chapter template

Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

Updated “Referenced Documents” on page 2–20.

Updated references in document.

Updated for the Quartus II
software version 8.0.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

2–26 Chapter 2: Command-Line Scripting
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

3. Tcl Scripting

Introduction
Developing and running Tcl scripts to control the Altera® Quartus® II software allows
you to perform a wide range of functions, such as compiling a design or writing
procedures to automate common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments, define
design constraints, make device assignments, run compilations, perform timing
analysis, import LogicLock™ region assignments, use the Quartus II Chip Editor, and
access reports. You can automate your Quartus II assignments using Tcl scripts so that
you do not have to create them individually. Tcl scripts also facilitate project or
assignment migration. For example, when using the same prototype or development
board for different projects, you can automate reassignment of pin locations in each
new project. The Quartus II software can also generate a Tcl script based on all the
current assignments in the project, which aids in switching assignments to another
project.

The Quartus II software Tcl commands follow the EDA industry Tcl application
programming interface (API) standards for using command-line options to specify
arguments. This simplifies learning and using Tcl commands. If you encounter an
error using a command argument, the Tcl interpreter gives help information showing
correct usage.

This chapter includes sample Tcl scripts for automating the Quartus II software. You
can modify these example scripts for use with your own designs. You can find more
Tcl scripts in the Design Examples section of the Support area of Altera’s website.

This chapter includes the following topics:

■ “Quartus II Tcl Packages” on page 3–2

■ “Quartus II Tcl API Help” on page 3–4

■ “Executables Supporting Tcl” on page 3–7

■ “End-to-End Design Flows” on page 3–9

■ “Creating Projects and Making Assignments” on page 3–10

■ “Compiling Designs” on page 3–11

■ “Reporting” on page 3–12

■ “Timing Analysis” on page 3–14

■ “Automating Script Execution” on page 3–18

■ “Other Scripting Features” on page 3–21

■ “Using the Quartus II Tcl Shell in Interactive Mode” on page 3–25

■ “Quartus II Legacy Tcl Support” on page 3–28

■ “Using the tclsh Shell” on page 3–28

■ “Tcl Scripting Basics” on page 3–29

QII52003-9.1.0

3–2 Chapter 3: Tcl Scripting
Quartus II Tcl Packages

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

What is Tcl?
Tcl (pronounced “tickle”) is a popular scripting language that is similar to many shell
scripting and high-level programming languages. It provides support for control
structures, variables, network socket access, and APIs. Tcl is the EDA
industry-standard scripting language used by Synopsys, Mentor Graphics®, and
Altera software. It allows you to create custom commands and works seamlessly
across most development platforms. For a list of recommended literature on Tcl, refer
to “External References” on page 3–35.

You can create your own procedures by writing scripts containing basic Tcl
commands, user-defined procedures, and Quartus II API functions. You can then
automate your design flow, run the Quartus II software in batch mode, or execute the
individual Tcl commands interactively in the Quartus II Tcl interactive shell.

If you’re unfamiliar with Tcl scripting, or are a Tcl beginner, refer to “Tcl Scripting
Basics” on page 3–29 for an introduction to Tcl scripting.

The Quartus II software, beginning with version 4.1, supports Tcl/Tk version 8.4,
supplied by the Tcl DeveloperXchange at tcl.activestate.com.

Quartus II Tcl Packages
The Quartus II Tcl commands are grouped in packages by function. Table 3–1
describes each Tcl package.

Table 3–1. Tcl Packages (Part 1 of 2)

Package Name Package Description

advanced_timing Traverse the timing netlist and get information about timing nodes

backannotate Back annotate assignments

chip_planner Identify and modify resource usage and routing with the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device database

flow Compile a project, run command-line executables and other common flows

insystem_memory_edit Read and edit memory contents in Altera devices

insystem_source_probe interact with the In-System Sources and Probes tool in an Altera device

jtag Control the JTAG chain

logic_analyzer_interface Query and modify the logic analyzer interface output pin state

misc Perform miscellaneous tasks

project Create and manage projects and revisions, make any project assignments including timing
assignments

report Get information from report tables, create custom reports

rtl Traversing and querying the RTL netlist of your design

sdc Specifies constraints and exceptions to the TimeQuest Timing Analyzer

simulator Configure and perform simulations

sta Contains the set of Tcl functions for obtaining advanced information from the Quartus II
TimeQuest Timing Analyzer

stp Run the SignalTap® II Logic Analyzer

http://tcl.activestate.com/

Chapter 3: Tcl Scripting 3–3
Quartus II Tcl Packages

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

By default, only the minimum number of packages is loaded automatically with each
Quartus II executable. This keeps the memory requirement for each executable as low
as possible. Because the minimum number of packages is automatically loaded, you
must load other packages before you can run commands in those packages.

Table 3–2 lists the Quartus II Tcl packages available with Quartus II executables and
indicates whether a package is loaded by default () or is available to be loaded as
necessary (). A white circle () means that the package is not available in that
executable.

timing Annotate timing netlist with delay information, compute and report timing paths

timing_assignment Contains the set of Tcl functions for making project-wide timing assignments, including clock
assignments; all Tcl commands designed to process Quartus II Classic Timing Analyzer
assignments have been moved to this package

timing_report List timing paths

sdc_ext Altera-specific SDC commands

Table 3–1. Tcl Packages (Part 2 of 2)

Package Name Package Description

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 1 of 2)

Packages

Quartus II Executable

quartus_sh quartus_map quartus_tan quartus_cdb quartus_sim quartus_stp
quartus_sta

quartus_staw
Tcl

Console

advanced_timing

backannotate

chip_planner

device

flow

incremental_
compilation

insystem_memory_
edit

insystem_source_
probe

jtag

logic_analyzer_
interface

misc

old_api

project

report

rtl

sdc

3–4 Chapter 3: Tcl Scripting
Quartus II Tcl API Help

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Because different packages are available in different executables, you must run your
scripts with executables that include the packages you use in the scripts. For example,
if you use commands in the timing package, you must use the quartus_tan
executable to run the script because the quartus_tan executable is the only one with
support for the timing package.

Loading Packages
To load a Quartus II Tcl package, use the load_package command as follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described in
Table 3–3 on page 3–5), but you can easily alternate between different versions of a
Quartus II Tcl package with the load_package command.

f For additional information about these and other Quartus II command-line
executables, refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

Quartus II Tcl API Help
Access the Quartus II Tcl API Help reference by typing the following command at a
system command prompt:

quartus_sh --qhelp r
This command runs the Quartus II Command-Line and Tcl API help browser, which
documents all commands and options in the Quartus II Tcl API. It includes detailed
descriptions and examples for each command.

sdc_ext

simulator

sta

stp

timing

timing_assignment

timing_report

Notes to Table 3–2:
(1) A dark circle () indicates that the package is loaded automatically.
(2) A half-circle () means that the package is available but not loaded automatically.
(3) A white circle () means that the package is not available for that executable.

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 2 of 2)

Packages

Quartus II Executable

quartus_sh quartus_map quartus_tan quartus_cdb quartus_sim quartus_stp
quartus_sta

quartus_staw
Tcl

Console

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 3: Tcl Scripting 3–5
Quartus II Tcl API Help

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f In addition, the information in the Tcl API help is available in the Quartus II Scripting
Reference Manual.

Quartus II Tcl help allows easy access to information about the Quartus II Tcl
commands. To access the help information, type help at a Tcl prompt, as shown in
Example 3–1.

Using the -tcl option with help displays an introduction to the Quartus II Tcl API
that focuses on how to get help for Tcl commands (short help and long help) and Tcl
packages.

f The Tcl API help is also available in Quartus II online help. Search for the command or
package name to find details about that command or package.

Table 3–3 summarizes the help options available in the Tcl environment.

Example 3–1. Help Output

tcl> help
--

Available Quartus II Tcl Packages:

Loaded Not Loaded
---------------------------- -----------------------
::quartus::misc ::quartus::device
::quartus::old_api ::quartus::backannotate
::quartus::project ::quartus::flow
::quartus::timing_assignment ::quartus::logiclock
::quartus::timing_report ::quartus::report

* Type "help -tcl"
to get an overview on Quartus II Tcl usages.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not loaded.

help -tcl To view a list of commands used to load Tcl packages and access command-line
help.

help -pkg <package_name>
[-version <version
number>]

To view help for a specified Quartus II package that includes the list of available
Tcl commands. For convenience, you can omit the ::quartus:: package
prefix, and type help -pkg <package name> r.

If you do not specify the -version option, help for the currently loaded
package is displayed by default. If the package for which you want help is not
loaded, help for the latest version of the package is displayed by default.

Examples:

help -pkg ::quartus::project r
help -pkg project r
help -pkg project -version 1.0 r

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

3–6 Chapter 3: Tcl Scripting
Quartus II Tcl API Help

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

<command_name> -h

or

<command_name> -help

To view short help for a Quartus II Tcl command for which the package is loaded.

Examples:

project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If <version> is not
specified, the latest version of the package is loaded by default.

Example:

package require ::quartus::project 1.0 r
This command is similar to the load_package command.

The advantage of using load_package is that you can alternate freely between
different versions of the same package.

Type <package name> [-version <version number>]r to load a Quartus II
Tcl package with the specified version. If the -version option is not specified,
the latest version of the package is loaded by default.

Example:

load_package ::quartus::project -version 1.0 r

help -cmd <command name>
[-version <version
number>]

or

<command name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help requires that the associated Tcl package is
loaded.

If you do not specify the -version option, help for the currently loaded
package is displayed by default.

If the package for which you want help is not loaded, help for the latest version of
the package is displayed by default.

Examples:

project_open -long_help r

help -cmd project_open r

help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus To view help on the predefined global Tcl array that can be accessed to view
information about the Quartus II executable that is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus II command-line help and display help for the
command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 3: Tcl Scripting 3–7
Executables Supporting Tcl

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Executables Supporting Tcl
Some of the Quartus II command-line executables support Tcl scripting (refer to
Table 3–4). Each executable supports different sets of Tcl packages. Refer to Table 3–4
to determine the appropriate executable to run your script.

The quartus_tan and quartus_cdb executables support supersets of the packages
supported by the quartus_sh executable. Use the quartus_sh executable if you
run Tcl scripts with only project management and assignment commands, or if you
require a Quartus II command-line executable with a small memory footprint.

f For more information about these command-line executables, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

Command-Line Options: -t, -s, and --tcl_eval
Table 3–5 lists three command-line options you can use with executables that support
Tcl.

Run a Tcl Script
Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus II directory>/common/tcl/packages
directory.

Table 3–4. Command-Line Executables Supporting Tcl Scripting

Executable Name Executable Description

quartus_sh The Quartus II Shell is a simple Tcl scripting shell, useful for making assignments, general reporting,
and compiling.

quartus_tan Use the Quartus II Classic Timing Analyzer to perform simple timing reporting and advanced timing
analysis.

quartus_map Quartus II Analysis and Synthesis analyzes, elaborates and creates an RTL netlist of your design.

quartus_cdb The Quartus II Compiler Database supports back annotation, LogicLock region operations, and Chip
Editor functions.

quartus_sim The Quartus II Simulator supports the automation of design simulation.

quartus_sta

quartus_staw

The Quartus II TimeQuest Timing Analyzer supports SDC terminology for constraint entry and
reporting.

quartus_stp The Quartus II SignalTap II executable supports in-system debugging tools.

Table 3–5. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

-t <script file> [<script args>] Run the specified Tcl script with optional arguments.

-s Open the executable in the interactive Tcl shell mode.

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–8 Chapter 3: Tcl Scripting
Executables Supporting Tcl

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

For example, to run a script called myscript.tcl with one argument, Stratix, type the
following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix r

1 Beginning with version 4.1, the Quartus II software supports the argv variable. In
previous software versions, script arguments are accessed in the quartus(args)
global variable.

Refer to “Accessing Command-Line Arguments” on page 3–23 for more information.

Interactive Shell Mode
Running an executable with the -s option starts an interactive Tcl shell that displays
a tcl> prompt. For example, type quartus_tan -s r at a system command
prompt to open the Quartus II Classic Timing Analyzer executable in interactive shell
mode. Commands you type in the Tcl shell are interpreted when you click Enter. You
can run a Tcl script in the interactive shell with the following command:

source <script name> r
If a command is not recognized by the shell, it is assumed to be an external command
and executed with the exec command.

Evaluate as Tcl
Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl_eval help -pkg project r

Using the Quartus II Tcl Console Window
You can run Tcl commands directly in the Quartus II Tcl Console window. On the
View menu, click Utility Windows. By default, the Tcl Console window is docked in
the bottom-right corner of the Quartus II GUI. Everything typed in the Tcl Console is
interpreted by the Quartus II Tcl shell.

1 The Quartus II Tcl Console window supports the Tcl API used in the Quartus II
software version 3.0 and earlier for backward compatibility with older designs and
EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Quartus II Tcl Console window.

You can do limited timing analysis in the Tcl console in the Quartus II GUI. With the
timing_report package, you can use the list_path command to get details on paths
listed in the timing report. However, if you want to get information about timing
paths that are not listed in the timing report, you must use the quartus_tan
executable in shell mode or run a script that reports on the paths in which you are
interested.

Chapter 3: Tcl Scripting 3–9
End-to-End Design Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If your design uses the Quartus II TimeQuest Timing Analyzer, you should perform
scripted timing analysis in the TimeQuest Tcl console.

As Table 3–2 shows, the Tcl console in the Quartus II GUI does not include support for
every package, so you cannot run scripts that use commands in packages that are not
supported.

End-to-End Design Flows
You can use Tcl scripts to control all aspects of the design flow, including controlling
other software if it includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Quartus II Tcl interpreter
supports all core Tcl commands, and adds numerous commands specific to the
Quartus II software. You can include commands in one Tcl script to run another script,
which allows you to combine or chain together scripts to control different tools.
Because scripts for different tools must be executed with different Tcl interpreters, it is
difficult to pass information between the scripts unless one script writes information
into a file and another script reads it.

Within the Quartus II software, you can perform many different operations in a
design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable. For
example, you cannot write a single script that performs simulation with commands in
the simulator package while using commands in the advanced_timing package;
those two packages are not available in the same executable. In a case where you
wanted to include Tcl simulation and advanced timing analysis commands, you must
write two scripts.

There are no limitations on running flows from any executable. Flows include
operations found in the Start section of the Processing menu in the Quartus II GUI,
and are also documented with the execute_flow Tcl command. If you can make
settings in the Quartus II software and run a flow to get your desired result, you can
make the same settings and run the same flow in any command-line executable.

To revisit the example with simulation and timing analysis, you could write one script
that includes settings that configure a simulation, with settings that configure timing
analysis. Then, run the simulation and timing analysis flows with the execute_flow
command.

Configuring a simulation includes specifying settings such as name and location of
the stimulus file, the duration of the simulation, whether to perform glitch detection
or not, and more. Configuring timing analysis includes specifying settings such as the
required clock frequency, the number of paths to report, and which timing model to
use. You can make the settings, then run the flows with the execute_flow
command, in any Quartus II command-line executable.

3–10 Chapter 3: Tcl Scripting
Creating Projects and Making Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Creating Projects and Making Assignments
A benefit of the Tcl scripting API is that you can easily create a script that makes all
the assignments for an existing project. You can use the script at any time to restore
your project settings to a known state. From the Project menu, click Generate Tcl File
for Project to automatically generate a .tcl file with all of your assignments. You can
source this file to recreate your project, and you can edit the file to add other
commands, such as compiling the design. The file is a good starting point to learn
about project management commands and assignment commands.

f Refer to “Interactive Shell Mode” on page 3–8 for information about sourcing a script.
Scripting information for all Quartus II project settings and assignments is located in
the QSF Reference Manual.

Example 3–2 shows how to create a project, make assignments, and compile the
project. It uses the fir_filter tutorial design files in the qdesigns installation directory.
Use the quartus_sh executable to run this Tcl script.

1 The assignments created or modified while a project is open are not committed to the
Quartus II Settings Files (.qsf) unless you explicitly call export_assignments or
project_close (unless -dont_export_assignments is specified). In some
cases, such as when running execute_flow, the Quartus II software automatically
commits the changes.

HardCopy Device Design

f For information about using a scripted design flow for HardCopy II designs, refer to
the Script-Based Design for HardCopy II Devices chapter of the HardCopy Handbook. It
contains sample scripts and recommendations to make your HardCopy II design flow
easy.

Example 3–2. Create and Compile a Project

load_package flow

Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
Create a base clock and a derived clock
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 \

-offset "500 ps" -target clkx2 clockb
Create a multicycle assignment of 2 between
the two clock domains in the design.
set_multicycle_assignment -from clk -to clkx2 2
execute_flow -compile
project_close

http://www.altera.com/literature/hb/hrd/hc_h51025.pdf

Chapter 3: Tcl Scripting 3–11
Compiling Designs

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

A separate chapter in the HardCopy Handbook called Timing Constraints for HardCopy II
Devices also contains information about script-based design for HardCopy II devices,
with an emphasis on timing constraints.

Compiling Designs
You can run the Quartus II command-line executables from Tcl scripts. Use the
included flow package to run various Quartus II compilation flows, or run each
executable directly.

The flow Package
The flow package includes two commands for running Quartus II command-line
executables, either individually or together in standard compilation sequence. The
execute_module command allows you to run an individual Quartus II
command-line executable. The execute_flow command allows you to run some or
all of the modules in commonly-used combinations.

Altera recommends using the flow package instead of using system calls to run
compiler executables.

Another way to run a Quartus II command-line executable from the Tcl environment
is by using the qexec Tcl command, a Quartus II implementation of the Tcl exec
command. For example, to run the Quartus II technology mapper on a given project,
type:

qexec "quartus_map <project_name>" r
When you use the qexec command to compile a design, assignments made in the Tcl
script (or from the Tcl shell) are not exported to the project database and settings file
before compilation. Use the export_assignments command or compile the project
with commands in the flow package to ensure assignments are exported to the project
database and settings file.

1 You should use the qexec command to make system calls.

You can also run executables directly in a Tcl shell, using the same syntax as at the
system command prompt. For example, to run the Quartus II technology mapper on a
given project, type the following at the Tcl shell prompt:

quartus_map <project_name> r

Compile All Revisions
You can use a simple Tcl script to compile all revisions in your project. Save the script
shown in Example 3–3 in a file called compile_revisions.tcl and type the following to
run it:

quartus_sh -t compile_revisions.tcl <project name> r

http://www.altera.com/literature/hb/hrd/hc_h51028.pdf
http://www.altera.com/literature/hb/hrd/hc_h51028.pdf

3–12 Chapter 3: Tcl Scripting
Reporting

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Reporting
It is sometimes necessary to extract information from the report to evaluate the results
when compilation is complete. For example, you might have to know how many
device resources the design uses, or whether it meets your performance requirements.
The Quartus II Tcl API provides easy access to report data so you do not have to write
scripts to parse the text report files.

Use the commands that access report data one row at a time, or one cell at a time. If
you know the exact cell or cells you want to access, use the
get_report_panel_data command and specify the row and column names (or x
and y coordinates) and the name of the appropriate report panel. You can often search
for data in a report panel. To do this, use a loop that reads the report one row at a time
with the get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, you can start with row 1 to skip the row with column headings. The
get_number_of_rows command returns the number of rows in the report panel,
including the column heading row. Because the number of rows includes the column
heading row, your loop should continue as long as the loop index is less than the
number of rows, as illustrated in Example 3–5.

Report panels are hierarchically arranged and each level of hierarchy is denoted by
the string “||“ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter||Fitter Settings because it is in the Fitter folder. Panels at the highest
hierarchy level do not use the “||” string. For example, the Flow Settings report panel
is named Flow Settings.

The code in Example 3–4 prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Example 3–3. Compile All Revisions

load_package flow
project_open [lindex $quartus(args) 0]
set original_revision [get_current_revision]
foreach revision [get_project_revisions] {

set_current_revision $revision
execute flow -compile

}
set_current_revision $original_revision
project_close

Example 3–4. Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

Chapter 3: Tcl Scripting 3–13
Reporting

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Example 3–5 prints the number of failing paths in each clock domain in your design.
It uses a loop to access each row of the Timing Analyzer Summary report panel. Clock
domains are listed in the column named Type with the format Clock Setup:'<clock
name>'. Other summary information is listed in the Type column as well. If the Type
column matches the pattern “Clock Setup*”, the script prints the number of failing
paths listed in the column named Failed Paths. You can run this script example with
any executable that supports the report package.

Creating .csv Files for Excel
The Microsoft Excel software is sometimes used to view or manipulate timing
analysis results. You can create a .csv file to import into Excel with data from any
Quartus II report. Example 3–6 shows a simple way to create a .csv file with data from
a timing analysis panel in the report. You could modify the script to use
command-line arguments to pass in the name of the project, report panel, and output
file to use. You can run this script example with any executable that supports the
report package.

Example 3–5. Print Number of Failing Paths per Clock

load_package report
project_open my-project
load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]

Get the column indices for the Type and Failed Paths columns
set type_column [get_report_panel_column_index -name \

$report_panel_name "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]

Go through each line in the report panel
for {set i 1} {$i < $num_rows} {incr i} {

Get the row of data, then the type of summary
information in the row, and the number of failed paths
set report_row [get_report_panel_row -name \
$report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report

3–14 Chapter 3: Tcl Scripting
Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Timing Analysis
The Quartus II software includes comprehensive Tcl APIs for both the Classic and
TimeQuest Timing Analyzers. This section includes simple and advanced script
examples for the Classic Timing Analyzer and introductory scripting information
about the TimeQuest Tcl API.

Classic Timing Analysis
The following example script uses the quartus_tan executable to perform a timing
analysis on the fir_filter tutorial design.

The fir_filter design is a two-clock design that requires a base clock and a relative
clock relationship for timing analysis. This script first does an analysis of the
two-clock relationship and checks for tSU slack between clk and clkx2. The first pass
of timing analysis discovers a negative slack for one of the clocks. The second part of
the script adds a multicycle assignment from clk to clkx2 and re-analyzes the
design as a multi-clock, multicycle design.

The script does not recompile the design with the new timing assignments, and the
timing-driven compilation is not used in the synthesis and placement of this design.
New timing assignments are added only for the timing analyzer to analyze the design
with the create_timing_netlist and report_timing Tcl commands.

1 You must compile the project before running the script example shown in
Example 3–7.

Example 3–6. Create .csv Files from Reports

load_package report
project_open my-project

load_report

This is the name of the report panel to save as a CSV file
set panel_name "Timing Analyzer||Clock Setup: 'clk'"
set csv_file "output.csv"

set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {

set row_data [get_report_panel_row -name $panel_name \
-row $i]

puts $fh [join $row_data ","]
}

close $fh
unload_report

Chapter 3: Tcl Scripting 3–15
Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Example 3–7. Classic Timing Analysis

This Tcl file is to be used with quartus_tan.exe
This Tcl file will do the Quartus II tutorial fir_filter design
timing analysis portion by making a global timing assignment and
creating multi-clock assignments and run timing analysis
for a multi-clock, multi-cycle design
set the project_name to fir_filter
set the revision_name to filtref
set project_name fir_filter
set revision_name filtref
open the project
project_name is the project name
project_open -revision $revision_name $project_name;
Doing TAN tutorial steps this section re-runs the timing
analysis module with multi-clock and multi-cycle settings
#------ Make timing assignments ------#
#Specifying a global FMAX requirement (tan tutorial)
set_global_assignment -name FMAX_REQUIREMENT 45.0MHz
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON
create a base reference clock "clocka" and specifies the
following:
BASED_ON_CLOCK_SETTINGS = clocka;
INCLUDE_EXTERNAL_PIN_DELAYS_IN_FMAX_CALCULATIONS = OFF;
FMAX_REQUIREMENT = 50MHZ;
DUTY_CYCLE = 50;
Assigns the reference clocka to the pin "clk"
create_base_clock -fmax 50MHZ -duty_cycle 50 clocka -target clk
creates a relative clock "clockb" based on reference clock
"clocka" with the following settings:
BASED_ON_CLOCK_SETTINGS = clocka;
MULTIPLY_BASE_CLOCK_PERIOD_BY = 1;
DIVIDE_BASE_CLOCK_PERIOD_BY = 2;clock period is half the base clk
DUTY_CYCLE = 50;
OFFSET_FROM_BASE_CLOCK = 500ps;The offset is .5 ns (or 500 ps)
INVERT_BASE_CLOCK = OFF;
Assigns the reference clock to pin "clkx2"
create_relative_clock -base_clock clocka -duty_cycle 50\
-divide 2 -offset 500ps -target clkx2 clockb
create new timing netlist based on new timing settings
create_timing_netlist
does an analysis for clkx2
Limits path listing to 1 path
Does clock setup analysis for clkx2
report_timing -npaths 1 -clock_setup -file setup_multiclock.tao
The output file will show a negative slack for clkx2 when only
specifying a multi-clock design. The negative slack was created
by the 500 ps offset from the base clock
removes old timing netlist to allow for creation of a new timing
netlist for analysis by report_timing
delete_timing_netlist
adding a multi-cycle setting corrects the negative slack by adding a
multicycle assignment to clkx2 to allow for more set-up time
set_multicycle_assignment 2 -from clk -to clkx2
create a new timing netlist based on additional timing
assignments create_timing_netlist
outputs the result to a file for clkx2 only
report_timing -npaths 1 -clock_setup -clock_filter clkx2 \
-file clkx2_setup_multicycle.tao
The new output file will show a positive slack for the clkx2
project_close

3–16 Chapter 3: Tcl Scripting
Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Advanced Classic Timing Analysis
There might be times when the commands available for timing analysis reporting do
not provide access to specific data you require. The advanced_timing package
provides commands to access the data structures representing the timing netlist for
your design. These commands provide low-level details about timing delays, node
fan-in and fan-out, and timing data. Writing procedures to traverse the timing netlist
and extract information gives you the most control to get exactly the data you require.

The timing netlist is represented with a graph, which is a collection of nodes and
edges. Nodes represent elements in your design such as registers, combinational
nodes, pins, and clocks. Edges connect the nodes and represent the connections
between the logic in your design. Edges and nodes have unique positive integer IDs
that identify them in the timing netlist. All the commands for getting information
about the timing netlist use node and edge IDs instead of text-based names.

As an example of how to use the advanced_timing package, Example 3–8 shows one
way to show the register-to-pin delays from all registers that drive the pins of an
output bus. Specify the name of an output bus (for example, address), and the script
prints out the names of all registers driving the pins of the bus and the delays from
registers to pins. Use the quartus_tan executable to run this example.

Chapter 3: Tcl Scripting 3–17
Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Type the command shown in Example 3–9 at a system command prompt to run this
script.

Example 3–8. Report Register-to-Pin Delays

load_package advanced_timing
package require cmdline

This procedure returns a list of IDs for pins with names
that match the bus name passed in
proc find { bus_name } {

set to_return [list]

foreach_in_collection node_id [get_timing_nodes -type pin] {
set node_name [get_timing_node_info -info name $node_id]
if { [string match $bus_name* $node_name] } {

lappend to_return $node_id
}

}
return $to_return

}

Required arguments for the script are the name of the project and
revision, as well as the name of the bus to analyze
set options {\

{ "project.arg" "" "Project name" } \
{ "revision.arg" "" "Revision name" } \
{ "bus_name.arg" "" "Name of the bus to get timing data for" } \

}
array set opts [::cmdline::getoptions quartus(args) $options]

project_open $opts(project) -revision $opts(revision)

The timing netlist must be created before accessing it.
create_timing_netlist

This creates a data structure with additional timing data
create_p2p_delays

Walk through each pin in the specified bus
foreach pin_id [find $opts(bus_name)] {

set pin_name [get_timing_node_info -info name $pin_id]
puts "$pin_name source registers and delays"
The get_delays_from_keepers command returns a list of all the
non-combinational nodes in the design that fan in to the
specified timing node, with the associated delays.
foreach data [get_delays_from_keepers $pin_id] {

set source_node [lindex $data 0]
set max_delay [lindex $data 1]
set source_node_name \

[get_timing_node_info -info name $source_node]
puts " $source_node_name $max_delay"

}
}
project_close

Example 3–9.

quartus_tan -t script.tcl -project fir_filter -revision filtref -bus_name yn_out r

3–18 Chapter 3: Tcl Scripting
Automating Script Execution

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

TimeQuest Timing Analysis
The Quartus II TimeQuest Timing Analyzer includes support for SDC commands in
the sdc package.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook for detailed information about how to perform timing analysis with the
Quartus II TimeQuest Timing Analyzer.

TimeQuest Scripting
In versions of the Quartus II software before 6.0, the project Tcl package contains the
following SDC-like commands for making timing assignments:

■ create_base_clock

■ create_relative_clock

■ get_clocks

■ set_clock_latency

■ set_clock_uncertainty

■ set_input_delay

■ set_multicycle_assignment

■ set_output_delay

■ set_timing_cut_assignment

These commands are not SDC-compliant. Beginning with version 6.0, these
commands are in a new package named ::quartus::timing_assignment. To ensure
backwards compatibility with existing Tcl scripts, the ::quartus::timing_assignment
package is loaded by default in the following executables:

■ quartus

■ quartus_sh

■ quartus_cdb

■ quartus_sim

■ quartus_stp

■ quartus_tan

The timing_assignment package is not loaded by default in the quartus_sta
executable. The sdc Tcl package includes SDC-compliant versions of the commands
listed above. The package is available only in the quartus_sta executable and it is
loaded by default.

Automating Script Execution
You can configure scripts to run automatically at various points during compilation
(Beginning with the Quartus II software version 4.0). Use this capability to
automatically run scripts that perform custom reporting, make specific assignments,
and perform many other tasks.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 3: Tcl Scripting 3–19
Automating Script Execution

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The following three global assignments control when a script is run automatically:

■ PRE_FLOW_SCRIPT_FILE —before a flow starts

■ POST_MODULE_SCRIPT_FILE —after a module finishes

■ POST_FLOW_SCRIPT_FILE —after a flow finishes

The POST_FLOW_SCRIPT_FILE and POST_MODULE_SCRIPT_FILE assignments are
supported beginning in version 4.0, and the PRE_FLOW_SCRIPT_FILE assignment is
supported beginning in version 4.1.

A module is a Quartus II executable that performs one step in a flow. For example,
two modules are Analysis and Synthesis (quartus_map), and timing analysis
(quartus_tan).

A flow is a series of modules that the Quartus II software runs with predefined
options. For example, compiling a design is a flow that typically consists of the
following steps (performed by the indicated module):

1. Analysis and synthesis (quartus_map)

2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_tan or quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In
addition, many commands in the Processing menu of the Quartus II GUI correspond
to this design flow.

Making the Assignment
To make an assignment automatically run a script, add an assignment with the
following form to your project’s .qsf file:

set_global_assignment -name <assignment name> <executable>:<script name>

The assignment name is one of the following:

■ PRE_FLOW_SCRIPT_FILE

■ POST_MODULE_SCRIPT_FILE

■ POST_FLOW_SCRIPT_FILE

The executable is the name of a Quartus II command-line executable that includes a
Tcl interpreter.

■ quartus_cdb

■ quartus_sh

■ quartus_map

■ quartus_sim

■ quartus_sta

■ quartus_stp

■ quartus_tan

The script name is the name of your Tcl script.

3–20 Chapter 3: Tcl Scripting
Automating Script Execution

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Script Execution
The Quartus II software runs the scripts as shown in Example 3–10.

The first argument passed in the argv variable (or quartus(args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name of
the revision.

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

Execution Example
Example 3–11 illustrates how automatic script execution works in a complete flow,
assuming you have a project called top with a current revision called rev_1, and you
have the following assignments in the .qsf file for your project.

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes
the following command to be run before compilation begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus II software starts compilation with analysis and synthesis,
performed by the quartus_map executable. After the analysis and synthesis finishes,
the POST_MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Quartus II software continues compilation with the Fitter, performed by the
quartus_fit executable. After the Fitter finishes, the
POST_MODULE_SCRIPT_FILE assignment runs the following command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev_1

Example 3–10.

<executable> -t <script name> <flow or module name> <project name> <revision name>

Example 3–11.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

Chapter 3: Tcl Scripting 3–21
Other Scripting Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Controlling Processing
The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every
module. Because the same script is run after every module, you might have to include
some conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, you should include
a conditional test like the one shown in Example 3–12. It checks the flow or module
name passed as the first argument to the script and executes code when the module is
quartus_tan.

Displaying Messages
Because of the way the Quartus II software runs the scripts automatically, you must
use the post_message command to display messages, instead of the puts
command. This requirement applies only to scripts that are run by the three
assignments listed in “Automating Script Execution” on page 3–18.

1 Refer to “Using the post_message Command” on page 3–23 for more information
about this command.

Other Scripting Features
The Quartus II Tcl API includes other general-purpose commands and features
described in this section.

Natural Bus Naming
Beginning with version 4.2, the Quartus II software supports natural bus naming.
Natural bus naming means that square brackets used to specify bus indexes in HDL
do not have to be escaped to prevent Tcl from interpreting them as commands. For
example, one signal in a bus named address can be identified as address[0] instead
of address\[0\]. You can take advantage of natural bus naming when making
assignments, as in Example 3–13.

Example 3–12. Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]

if [string match "quartus_tan" $module] {

Include commands here that are run
after timing analysis
Use the post-message command to display
messages
post_message "Running after timing analysis"

}

Example 3–13. Natural Bus Naming

set_location_assignment -to address[10] Pin_M20

3–22 Chapter 3: Tcl Scripting
Other Scripting Features

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Quartus II software defaults to natural bus naming. You can turn off natural bus
naming with the disable_natural_bus_naming command. For more information
about natural bus naming, type the following at a Quartus II Tcl prompt:

enable_natural_bus_naming -h r

Short Option Names
Beginning with version 6.0 of the Quartus II software, you can use short versions of
command options, as long as they distinguish between the command’s options. For
example, the project_open command supports two options:
-current_revision and -revision. You can use any of the following shortened
versions of the -revision option: -r, -re, -rev, -revi, -revis, and -revisio.
You can use an option as short as -r because no other option starts with the same
letters as revision. However, the report_timing command includes the options
-recovery and -removal. You cannot use -r or -re to shorten either of those
options, because they do not uniquely distinguish between the two options. You
could use -rec or -rem.

Using Collection Commands
Some Quartus II Tcl functions return very large sets of data that would be inefficient
as Tcl lists. These data structures are referred to as collections and the Quartus II Tcl
API uses a collection ID to access the collection. There are two Quartus II Tcl
commands for working with collections, foreach_in_collection and
get_collection_size. Use the set command to assign a collection ID to a
variable.

f For information about which Quartus II Tcl commands return collection IDs, see the
Quartus II Help and search for the foreach_in_collection command.

The foreach_in_collection Command
The foreach_in_collection command is similar to the foreach Tcl command.
Use it to iterate through all elements in a collection. Example 3–14 prints all instance
assignments in an open project.

The get_collection_size Command
Use the get_collection_size command to get the number of elements in a
collection. Example 3–15 prints the number of global assignments in an open project.

Example 3–14. Using Collection Commands

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

Information about each assignment is
returned in a list. For information
about the list elements, refer to Help
for the get-all-instance-assignments command.
set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

Chapter 3: Tcl Scripting 3–23
Other Scripting Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using the post_message Command
To print messages that are formatted like Quartus II software messages, use the
post_message command. Messages printed by the post_message command
appear in the System tab of the Messages window in the Quartus II GUI, and are
written to standard at when scripts are run. Arguments for the post_message
command include an optional message type and a required message string.

The message type can be one of the following:

■ info (default)

■ extra_info

■ warning

■ critical_warning

■ error

If you do not specify a type, Quartus II software defaults to info.

When you are using the Quartus II software in Windows, you can color code
messages displayed at the system command prompt with the post_message
command. Add the following line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

Example 3–16 shows how to use the post_message command.

Accessing Command-Line Arguments
Many Tcl scripts are designed to accept command-line arguments, such as the name of
a project or revision. The global variable quartus(args) is a list of the arguments
typed on the command-line following the name of the Tcl script. Example 3–17 shows
code that prints all of the arguments in the quartus(args) variable.

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the command shown in Example 3–18
at a command prompt.

Example 3–15. get_collection_size Command

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

Example 3–16. post_message command

post_message -type warning "Design has gated clocks"

Example 3–17. Simple Command-Line Argument Access

set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

3–24 Chapter 3: Tcl Scripting
Other Scripting Features

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Beginning with version 4.1, the Quartus II software supports the Tcl variables argv,
argc, and argv0 for command-line argument access. Table 3–6 shows equivalent
information for earlier versions of the software.

Using the cmdline Package
You can use the cmdline package included with the Quartus II software for more
robust and self-documenting command-line argument passing. The cmdline package
supports command-line arguments with the form -<option> <value>.

Example 3–19 uses the cmdline package.

If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the command shown in Example 3–29 at a command
prompt.

Virtually all Quartus II Tcl scripts must open a project. Example 3–21 opens a project,
and you can optionally specify a revision name. The example checks whether the
specified project exists. If it does, the example opens the current revision, or the
revision you specify.

Example 3–18. Passing Command-Line Arguments to Scripts

quartus_sh -t print_args.tcl my_project 100MHz r
The value at index 0 is <my_project>
The value at index 1 is 100MHz

Table 3–6. Quartus II Support for Tcl Variables

Beginning with Version 4.1 Equivalent Support in Previous Software Versions

argc llength $quartus(args)

argv quartus(args)

argv0 info nameofexecutable

Example 3–19. cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {

{ "project.arg" "" "Project name" }
{ "frequency.arg" "" "Frequency" }

}
set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

Example 3–20. Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz r
The project name is my_project
The frequency is 100MHz

Chapter 3: Tcl Scripting 3–25
Using the Quartus II Tcl Shell in Interactive Mode

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3–22.

f For more information about the cmdline package, refer to the documentation for the
package at <Quartus II installation directory> /common/tcl/packages.

Using the Quartus II Tcl Shell in Interactive Mode
This section presents an example of using the quartus_sh interactive shell to make
some project assignments and compile the finite impulse response (FIR) filter tutorial
project. This example assumes that you already have the FIR filter tutorial design files
in a project directory.

To begin, run the interactive Tcl shell. The command and initial output are shown in
Example 3–23.

Example 3–21. Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]

Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {

if {[string equal "" $optshash(revision)]} {

There is no revision name specified, so default
to the current revision
project_open $optshash(project) -current_revision

} else {

There is a revision name specified, so open the
project with that revision
project_open $optshash(project) -revision \

$optshash(revision)
}

} else {
puts "Project $optshash(project) does not exist"
exit 1

}
The rest of your script goes here

Example 3–22. Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name

3–26 Chapter 3: Tcl Scripting
Using the Quartus II Tcl Shell in Interactive Mode

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Create a new project called fir_filter, with a revision called filtref by typing the
following command at a Tcl prompt:

project_new -revision filtref fir_filter r

1 If the project file and project name are the same, the Quartus II software gives the
revision the same name as the project.

Because the revision named filtref matches the top-level file, all design files are
automatically picked up from the hierarchy tree.

Next, set a global assignment for the device with the following command:

set_global_assignment -name family Cyclone r

f To learn more about assignment names that you can use with the -name option, refer
to the Quartus II Help.

1 For assignment values that contain spaces, the value should be enclosed in quotation
marks.

Example 3–23. Interactive Tcl Shell

tcl> quartus_sh -s
tcl> Info:

Info: Running Quartus II Shell
Info: Version 8.1 Full Version
Info: Copyright (C) 1991-2007 Altera Corporation. All rights reserved.
Info: Your use of Altera Corporation's design tools, logic functions
Info: and other software and tools, and its AMPP partner logic
Info: functions, and any output files any of the foregoing
Info: (including device programming or simulation files), and any
Info: associated documentation or information are expressly subject
Info: to the terms and conditions of the Altera Program License
Info: Subscription Agreement, Altera MegaCore Function License
Info: Agreement, or other applicable license agreement, including,
Info: without limitation, that your use is for the sole purpose of
Info: programming logic devices manufactured by Altera and sold by
Info: Altera or its authorized distributors. Please refer to the
Info: applicable agreement for further details.
Info: Processing started: <date>
Info:

Info: The Quartus II Shell supports all TCL commands in addition
Info: to Quartus II Tcl commands. All unrecognized commands are
Info: assumed to be external and are run using Tcl's "exec"
Info: command.
Info: - Type "exit" to exit.
Info: - Type "help" to view a list of Quartus II Tcl packages.
Info: - Type "help <package name>" to view a list of Tcl commands
Info: available for the specified Quartus II Tcl package.
Info: - Type "help -tcl" to get an overview on Quartus II Tcl usages.
Info:

tcl>

Chapter 3: Tcl Scripting 3–27
Using the Quartus II Tcl Shell in Interactive Mode

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To quickly compile a design, use the ::quartus::flow package, which properly
exports the new project assignments and compiles the design using the proper
sequence of the command-line executables. First, load the package:

load_package flow r
It returns the following:

1.0

For additional help on the ::quartus::flow package, view the command-line help
at the Tcl prompt by typing:

help -pkg ::quartus::flow r
Example 3–24 shows an alternative command and the resulting output.

This help display gives information about the flow package and the commands that
are available with the package.To learn about the options available for the
execute_flow Tcl command, type the following command at a Tcl prompt:

execute_flow -h r
To view additional information and example usage type the following command at a
Tcl prompt:

execute_flow -long_help r
or

help -cmd execute_flow r
To perform a full compilation of the FIR filter design, use the execute_flow
command with the -compile option, as shown in Example 3–25.

Example 3–24. Help Output

tcl> help -pkg flow
--

Tcl Package and Version:

::quartus::flow 1.0

Description:

This package contains the set of Tcl functions
for running flows or command-line executables.

Tcl Commands:

execute_flow
execute_module
--

3–28 Chapter 3: Tcl Scripting
Quartus II Legacy Tcl Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

This script compiles the FIR filter tutorial project, exporting the project assignments
and running quartus_map, quartus_fit, quartus_asm, and quartus_tan.
This sequence of events is the same as selecting Start Compilation from the
Processing menu in the Quartus II GUI.

When you are finished with a project, close it using the project_close command
as shown in Example 3–26.

Exit the interactive Tcl shell, type exit r at a Tcl prompt.

Quartus II Legacy Tcl Support
Beginning with the Quartus II software version 3.0, command-line executables do not
support the Tcl commands used in previous versions of the Quartus II software. These
commands are supported in the GUI with the Quartus II Tcl console or by using the
quartus_cmd executable at the system command prompt. If you source Tcl scripts
developed for an earlier version of the Quartus II software using either of these
methods, the project assignments are ported to the project database and settings file.
You can then use the command-line executables to process the resulting project. This
might be necessary if you create a .tcl file using EDA tools that do not generate Tcl
scripts for the most recent version of the Quartus II software.

1 You should create all new projects and Tcl scripts with the latest version of the
Quartus II Tcl API.

Using the tclsh Shell
On the UNIX and Linux operating systems, the tclsh shell included with the
Quartus II software is initialized with a minimal PATH environment variable. As a
result, system commands may not be available within the tclsh shell because certain
directories are not in the PATH environment variable. To include other directories in
the path searched by the tclsh shell, set the QUARTUS_INIT_PATH environment
variable before running the tclsh shell. Directories in the QUARTUS_INIT_PATH
environment variable are searched by the tclsh shell when you execute a system
command.

Example 3–25.

tcl> execute_flow -compile r
Info:***
Info: Running Quartus II Analysis & Synthesis
Info: Version 6.0 SJ Full Version
Info: Processing started: <date><time>
Info: Command: quartus_map --import_settings_files=on --export_settings_files=of
fir_filter -c filtref
.
.
.
Info: Writing report file filtref.tan.rpt
tcl>

Example 3–26.

project_close r

Chapter 3: Tcl Scripting 3–29
Tcl Scripting Basics

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Tcl Scripting Basics
The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical
interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including this chapter’s examples) as files and run them
with a Tcl interpreter. A Tcl script does not require any special headers.

To start an interactive Tcl interpreter, type quartus_sh -s r at a command prompt.
The commands you type are executed immediately at the interpreter prompt. If you
save a series of Tcl commands in a file, you can run it with a Tcl interpreter. To run a
script named myscript.tcl, type quartus_sh -t myscript.tcl r at a command
prompt.

Hello World Example
The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can
be simple variable substitutions, or the result of running a nested command,
described in “Substitutions” on page 3–29. Use curly braces {} for grouping when
you want to prevent substitutions.

Variables
Use the set command to assign a value to a variable. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive. Example 3–27 assigns
the value 1 to the variable named a.

To access the contents of a variable, use a dollar sign before the variable name.
Example 3–28 prints "Hello world" in a different way.

Substitutions
Tcl performs three types of substitution:

■ Variable value substitution

■ Nested command substitution

■ Backslash substitution

Example 3–27. Assigning Variables

set a 1

Example 3–28. Accessing Variables

set a Hello
set b world
puts "$a $b"

3–30 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Variable Value Substitution
Variable value substitution, as shown in Example 3–28, refers to accessing the value
stored in a variable by using a dollar sign (“$”) before the variable name.

Nested Command Substitution
Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.
Example 3–29 sets a to the length of the string foo.

Backlash Substitution
Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[]”). You can also specify other special ASCII characters
like tabs and new lines with backslash substitutions. The backslash character is the Tcl
line continuation character, used when a Tcl command wraps to more than one line.
Example 3–30 shows how to use the backslash character for line continuation.

Arithmetic
Use the expr command to perform arithmetic calculations. Using curly braces
(“{ }”) to group the arguments of this command makes arithmetic calculations more
efficient and preserves numeric precision. Example 3–31 sets b to the sum of the value
in the variable a and the square root of 2.

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT), and
comparison operators such as < (less than), > (greater than), and == (equal to).

Lists
A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more. Example 3–32 sets a to a list with three numbers in it.

Example 3–29. Command Substitution

set a [string length foo]

Example 3–30. Backslash Substitution

set this_is_a_long_variable_name [string length "Hello \
world."]

Example 3–31. Arithmetic with the expr Command

set a 5
set b [expr { $a + sqrt(2) }]

Example 3–32. Creating Simple Lists

set a { 1 2 3 }

Chapter 3: Tcl Scripting 3–31
Tcl Scripting Basics

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. Example 3–33 prints the
second element (at index 1) in the list stored in a.

The llength command returns the length of a list. Example 3–34 prints the length of
the list stored in a.

The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign.
Example 3–35 appends some elements to the list stored in a.

Arrays
Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or by using the array set command. To set an element with an index
of Mon to a value of Monday in an array called days, use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

Example 3–36 shows how to access the value for a particular index.

Use the array names command to get a list of all the indexes in a particular array.
The index values are not returned in any specified order. Example 3–37 shows one
way to iterate over all the values in an array.

Example 3–33. Accessing List Elements

puts [lindex $a 1]

Example 3–34. List Length

puts [llength $a]

Example 3–35. Appending to a List

lappend a 4 5 6

Example 3–36. Accessing Array Elements

set day_abbreviation Mon
puts $days($day_abbreviation)

Example 3–37. Iterating Over Arrays

foreach day [array names days] {
puts "The abbreviation $day corresponds to the day \

name $days($day)"
}

3–32 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Arrays are a very flexible way of storing information in a Tcl script and are a good
way to build complex data structures.

Control Structures
Tcl supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the
following examples ensures the control structure commands are executed efficiently
and correctly. Example 3–38 prints whether the value of variable a positive, negative,
or zero.

Example 3–39 uses a for loop to print each element in a list.

Example 3–40 uses a foreach loop to print each element in a list.

Example 3–41 uses a while loop to print each element in a list.

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

Example 3–38. If-Then-Else Structure

if { $a > 0 } {
puts "The value is positive"

} elseif { $a < 0 } {
puts "The value is negative"

} else {
puts "The value is zero"

}

Example 3–39. For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a $i]"
}

Example 3–40. foreach Loop

set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Example 3–41. while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

Chapter 3: Tcl Scripting 3–33
Tcl Scripting Basics

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Procedures
Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command
to return the value from the procedure. Example 3–42 defines a procedure that
multiplies two numbers and returns the result.

Example 3–43 shows how to use the multiply procedure in your code. You must
define a procedure before your script calls it.

You should define procedures near the beginning of a script. If you want to access
global variables in a procedure, use the global command in each procedure that uses
a global variable. Example 3–44 defines a procedure that prints an element in a global
list of numbers, then calls the procedure.

File I/O
Tcl includes commands to read from and write to files. You must open a file before
you can read from or write to it, and close it when the read and write operations are
done. To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode
as shown in Example 3–45.

Example 3–42. Simple Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}

Example 3–43. Using a Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

Example 3–44. Accessing Global Variables

proc print_global_list_element { i } {
global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

Example 3–45. Open a File for Writing

set output [open myfile.txt w]

3–34 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a filehandle, as shown in
Example 3–46.

You can read a file one line at a time with the gets command. Example 3–47 uses the
gets command to read each line of the file and then prints it out with its line number.

Syntax and Comments
Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. As shown in “Substitutions” on
page 3–29, you must use backslashes when a Tcl command extends more than one
line.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character.
Example 3–48 is a valid line of code that includes a set command and a comment.

Without the semicolon, it would be an invalid command because the set command
would not terminate until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. Example 3–49 causes an error because of unbalanced curly
braces.

Example 3–46. Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

Example 3–47. Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {

Process the line of text here
puts "$line_num: $line"
incr line_num

}
close $input

Example 3–48. Comments

set a 1;# Initializes a

Example 3–49. Unbalanced Braces in Comments

if { $x > 0 } {
if { $y > 0 } {

code here
}

Chapter 3: Tcl Scripting 3–35
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

External References

f For more information about using Tcl, refer to the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch

■ Tcl and the TK Toolkit, John Ousterhout

■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison

■ Quartus II Tcl example scripts at www.altera.com/support/examples/tcl/tcl.html

■ Tcl Developer Xchange at tcl.activestate.com

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Script-Based Design for HardCopy Devices chapter of the HardCopy Handbook

■ Section I. Simulation in volume 1 of the Quartus II Handbook

Document Revision History
Table 3–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 3–7. Document Revision History

Date / Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed LogicLock example.

■ Added the incremental_compilation, insystem_source_probe,
and rtl packages to Table 3-1 and Table 3-2.

■ Added quartus_map to table 3-2.

Updated for the Quartus II software
version 9.1.

March 2009
v9.0.0

■ Removed the “EDA Tool Assignments” section

■ Added the section “Compile All Revisions” on page 3–11

■ Added the section “Using the tclsh Shell” on page 3–28

Updated for the Quartus II software
version 9.0.

November 2008
v8.1.0

Changed to 8½” × 11” page size. No change to content. Updated for the Quartus II software
version 8.1.

May 2008
v8.0.0

Updated references. Updated for the Quartus II software
version 8.0.

http://tcl.activestate.com/
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/hrd/hc_h51025.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/support/examples/tcl/tcl.html
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3–36 Chapter 3: Tcl Scripting
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

4. Managing Quartus II Projects

This chapter discusses how to migrate your projects from one computing platform to
another, as well as message suppression.

Introduction
Today’s larger and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project. To ensure efficient
design coordination, designers must track their project changes.

To help you manage your FPGA designs, the Quartus® II software provides tools that
allow you to perform the following tasks:

■ Create revisions

■ Copy and archive projects

■ Create a version-compatible database

■ Control message suppression

■ Import and export a project database or design partitions

■ Optimize compilation time

In the Quartus II software, a revision is a set of assignments and settings. A project
may have multiple revisions, and each revision has its own set of assignments and
settings. You can create multiple revisions in a project, and you can create a unique
revision based on an existing revision. Creating a unique revision allows you to
optimize a design for different results; creating a revision based on an existing
revision allows you to try new settings and assignments and then compare the
revisions.

A version is a Quartus II project that includes one set of design files and one or more
revisions. The Quartus II software has a Copy Project command that allows you to
create multiple versions of a project. Creating a new version of your project allows
you to edit a copy of your design files while preserving the original functionality of
your design in another copy.

Version-compatible database files are files generated by the Quartus II software that
are a representation of the internal database files. Creating version-compatible
database files with the Quartus II software allows your project databases to be
compatible across different versions of the Quartus II software. Using version-
compatible databases allows you to continue to use your same project database when
you upgrade to a newer version of the Quartus II software, eliminating the need to
recompile your project, which saves design time.

Figure 4–1 shows the Quartus II software version-compatible database structure.

QII52012-9.1.0

4–2 Chapter 4: Managing Quartus II Projects
Quartus II Text Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Quartus II Text Editor
The Quartus II Text Editor is a flexible tool for entering text-based designs in the
AHDL, VHDL, and Verilog HDL design languages, and the Tcl scripting language
that are integrated into the Quartus II software. You can associate any text editor with
the Quartus II software; however, the Quartus II Text Editor allows you to take
advantage of features available only in the Quartus II software, including syntax
coloring, error location, and predefined templates to assist you with coding.

Using templates can increase the speed and accuracy of your design entry. The
templates provided with the Quartus II software allow you to insert predefined code
directly into your design file; you can choose from several design languages, and you
also can directly add TimeQuest Timing Analyzer design constraints and
megafunction information. You can also create and save your own templates for
future use.

For more information about the language template, refer to “Using the Quartus II Text
Editor”. For more information about the Quartus II Text Editor options, refer to
“Setting the Quartus II Text Editor Options”. For more information about your
preferred text editor, refer to “Setting a Preferred Text Editor”.

f For more information about text editors, refer to the Quartus II Help.

Setting the Quartus II Text Editor Options
The Quartus II software allows you to set the default text editor to open, create, or
modify your design files. On the Tools menu, click Options and select Text Editor.
You can specify the Quartus II Text Editor options. You can also specify the directory
in which you want to save the user templates that you create or customized in the
Insert Template dialog box in the User Template Library Directory. To change the
color and font settings for the text editor, select Colors or Fonts in the Options list.

Figure 4–1. Quartus II Version Compatible Database Structure

Quartus II Project (Version 1)

Quartus II Project (Revision A) Settings A

Quartus II Project (Revision B) Settings B

Quartus II Project (Version 2)

Quartus II Project (Revision A) Settings C

Quartus II Project (Revision B) Settings D

Quartus II Project

filtref.v
filtref.vwf
filtref.asf

filtref.v
filtref_2.vwf
filtref_2.qsf

Chapter 4: Managing Quartus II Projects 4–3
Creating a New Project

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using the Quartus II Text Editor
The Quartus II Text Editor is selected by default. You can create a new text file by
selecting New on the File menu. Then, select Text File under Other Files. The
Quartus II Text Editor shows a new text file in which you can insert your code into the
text area. To insert language templates into your design files to help coding, on the
Edit menu, select Insert Template to open the Insert Template dialog box.

The language template feature allows you to insert a Verilog HDL, SystemVerilog,
VHDL, AHDL, Quartus II Tcl, Tcl, TimeQuest design constraints, or Megafunction
template in a text file at the current insertion point or in place of selected text. You can
also use the template to create Synopsys Design Constraints (SDC) templates. The
Preview pane in the Insert Template dialog box allows you to preview the language
templates before inserting them into the active text file.

1 The language template feature is not supported in external text editors.

f For more information about the Quartus II language template feature, refer to the
“Quartus II Language Templates” section in the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

Setting a Preferred Text Editor
The Quartus II software also allows you to use an alternate text editor to manage your
design files. You can specify your preferred text editor in the Options dialog box. For
the Text Editor option, specify the direct path and name of the text editor application
you want to use in the Text editor location box. You must specify the command-line
options recognized by the text editor to specify a line number of a text file at the
Command-line options. This enables the external text editor to locate the line number
in the text file in which the source message is located.

1 Other settings related to the external text editor are not controlled in the Quartus II
software. You must specify the settings in the text editor.

Creating a New Project
A Quartus II project contains all your design files, settings files, and other files
necessary for the successful compilation of your design. To create a new project, use
the New Project wizard. When you create a new project, you can add all of your
design files, set up your top-level design entity, specify a target device, add any user
libraries, and specify an EDA tool setting. For more information about user libraries,
refer to “Specifying Libraries” on page 4–14 and “Specifying Libraries Using Scripts”
on page 4–28.

1 On the General page of the Options dialog box, you can also specify a default
directory where all files added to your project are stored automatically.

After you create a new project, the Quartus II software automatically generates
several settings files necessary for successful compilation, including:

■ Quartus II Project File (.qpf)—Contains the name of your project and all revisions
of your project. For more information about the .qpf, refer to “Using Revisions
with Your Design” on page 4–4.

www.altera.com/literature/hb/qts/qts_qii51007.pdf

4–4 Chapter 4: Managing Quartus II Projects
Using Revisions with Your Design

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Quartus II Settings File (.qsf)—Contains all assignments applied to your design,
including assignments to help fit your design and meet performance
requirements. For more information about the .qsf, refer to “Quartus II Settings
File” on page 4–24.

If you create timing commands with the TimeQuest Timing Analyzer or with Tcl
commands, the Quartus II software creates a Synopsys Design Constraints File (.sdc)
that contains your SDC commands.

f For more information about SDC constraints, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Using Revisions with Your Design
Creating a revision of your design allows you to create a new set of assignments and
settings for a set of design files without losing your previous assignments and
settings. You can use revisions to do the following:

■ Create a unique revision not based on a previous revision. Creating a unique
revision allows you to optimize a design for different fundamental reasons, such
as to optimize by area in one revision and then optimize for fMAX in another
revision. When you create a unique revision, all default settings are turned on.

■ Create a revision based on an existing revision, but try new settings and
assignments in the new revision. A new revision includes all the assignments and
settings in the existing revision. If you are not satisfied with the results in the new
revision, you can revert to the original revision. You can compare revisions
manually, or with features in the Quartus II software.

Creating and Deleting Revisions
All Quartus II software assignments and settings are stored in the .qsf. Each time you
create a new revision of a project, the Quartus II software creates a new .qsf and adds
the name of the new revision to the list of revisions in the .qsf.

1 The name of a new .qsf matches the revision name.

You can manage revisions with the Revisions dialog box, which allows you to set the
current revision and perform the following tasks:

■ “Create a Revision”

■ “Delete a Revision”

■ “Compare Revisions”

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 4: Managing Quartus II Projects 4–5
Creating and Deleting Revisions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Create a Revision
To create a revision, perform the following steps:

1. On the Project menu, click Revisions.

2. To base the new revision on an existing revision for the current design, select the
existing revision in the Revisions list.

3. Click Create.

4. In the Create Revision dialog box, type the name of the new revision in the
Revisions name box.

5. To base the new revision on an existing revision for the current design, if you did
not select the correct revision in Step 2, select the revision in the Based on revision
list. To create a unique revision that is not based on an existing revision of the
current design, select the “blank entry” in the Based on revision list.

6. Optionally, edit the description of the revision in the Description box.

7. Turn off the Copy database option if you do not want the new revision to contain
the database information from the existing revision. The Copy database option is
on by default.

1 Copying the database allows you to view the results from the previous
compilation while you are making changes to the settings of the new
revision.

8. If you do not want to use the new revision immediately, turn off the Set as current
revision option. The Set as current revision option is turned on by default.

9. Click OK.

Delete a Revision
To delete a revision, perform the following steps:

1. On the Project menu, click Revisions.

2. In the Revisions list, select the revision you want to delete and click Delete.

1 You cannot delete the current revision when it is active; you must first open
another revision. For example, if revision A is currently active, you must
create (if the revision does not exist) and open revision B before you delete
revision A.

4–6 Chapter 4: Managing Quartus II Projects
Creating and Deleting Revisions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Compare Revisions
You can compare the compilation results of multiple revisions side by side with the
Compare Revisions (Figure 4–2) dialog box.

1. On the Project menu, click Revisions.

2. In the Revisions dialog box, click Compare to compare the compilation results of
all revisions in a single window.

The Compare Revisions dialog box compares the compilation results of each revision
in three assignment categories: Analysis & Synthesis, Fitter, and Timing Analyzer.

In addition to viewing the compilation results of each revision, you can also view the
assignments for each revision. Viewing the compilation results and the assignments
for each revision allows you to gain a better understanding of how different
optimization options affect your design.

To view all assignments applied to each revision (Figure 4–2), click the Assignments
tab in the Compare Revisions dialog box. To export both results and assignments for
your revisions as a Comma-Separated Value File (.csv), click Export, and then specify
the name of the file.

Figure 4–2. Compare Revisions Dialog Box

Chapter 4: Managing Quartus II Projects 4–7
Creating New Copies of Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Creating New Copies of Your Design
Managing different copies of design files in a large project can be difficult. To assist
you in this task, the Quartus II software provides utilities to copy and save different
copies of your project. Creating a copy of your project with the Copy Project
command directs the Quartus II software to copy all your design files, your .qsf, and
all your associated revisions (all assignments and settings).

If your design requires that you have two separate copies of your project, rather than
just a separate revision, you can create a second copy of your project with the Copy
Project command. For example, if you have a design that is compatible with a 32-bit
data bus and you require a new copy of your design to interface with a 64-bit data
bus, you may want a completely separate copy of the project. To create a new copy of
your project, perform the following steps:

1. On the Project menu, click Copy Project. The Copy Project dialog box appears
(Figure 4–3).

2. Specify the path to your new project in the Destination directory box.

3. Type the new project name in the New project name box.

4. To open the new project immediately, turn on the
Open new project. This option closes the current project option.

5. Click OK.

If you are creating a new copy of a project that contains an EDIF Input File (.edf) or a
Verilog Quartus Mapping File (.vqm) from a third-party EDA synthesis tool, first
create a copy of your project and then replace any .edf or .vqm files with the newly
generated .edf or .vqm.

Archiving Projects
A single project can contain hundreds of files in many directories, which can make
transferring a project between engineers difficult. To more easily share projects
between engineers or to transfer your project to a new version of the Quartus II
software, you can use the tools in the Quartus II software to archive your project.
Archiving your project creates a single compressed Quartus II Archive File (.qar) that
contains all your design, project, and settings files. The .qar contains all the files,
including the Quartus II Default Settings File (.qdf), required to successfully compile
your design and restore the original compilation results. The .qdf contains all the
project and assignment default settings from the current version of the Quartus II
software and must be included in the archive to preserve your results when you
restore the archive in a different version of the Quartus II software. For more
information about the .qdf, refer to “Quartus II Default Settings File” on page 4–25.

Figure 4–3. Copy Project Dialog Box

4–8 Chapter 4: Managing Quartus II Projects
Creating New Copies of Your Design

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Archive a Project
To archive a project, perform the following steps:

1. If you have not performed Analysis and Elaboration, on the Processing menu,
point to Start, and then click Start Analysis & Elaboration.

1 Altera‚ recommends that you perform Analysis and Elaboration before
archiving a project to ensure that all design files are located and archived.

2. On the Project menu, click Archive Project.

3. In the Archive file name box, specify the name of the .qar.

4. Click the Advanced button for more archiving options. You can choose the type of
files you want to archive by selecting the file set from the list in the Advanced
Archive Settings dialog box (Figure 4–4). The default Source control file set
includes all project source files and settings files. The default archive does not
include the compilation results, or post-compilation netlists for incremental
compilation. However, the imported Quartus II Exported Partition Files (.qxp) are
included by default for all file set options if you perform incremental compilation.

1 Altera recommends that you include all source files in your Quartus II
project rather than directing the Compiler to find them. Include all your
source files in the .qsf. If all source files are not specified in your project,
you can add them manually to the archive.

5. Click OK.

6. Click Archive.

Figure 4–4. Advanced Archive Settings Dialog Box

Note to Figure 4–4:

(1) For more information about file set options, refer to Table 4–1 on page 4–9.

File subset options for
the selected file set.
Some options are
selected by default for
every file set. You can
view the description in
the Description box

Describes the selected
file subset option

File set options (1)

List of files that are
archived for the
selected file set

Chapter 4: Managing Quartus II Projects 4–9
Creating New Copies of Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 Beginning with the Quartus II software version 9.0, the Quartus II software does not
support archiving a full database (\db) folder.

If you are using a new device family with advanced support, a version-compatible
database might not be available and the archive option will not include a full
compilation database. To archive your Quartus II project so that you can reproduce
the compilation results in the same Quartus II version, use the following
command-line option to archive a full database:

quartus_sh --archive -use_file_set full_db [-revision <revision

name>] <project name> r

Table 4–1 shows the predefined file sets available for archiving.

Table 4–1. File Sets (Part 1 of 2)

File Set Description

Source control This is the default setting for the Quartus II software archive feature. This
file set includes project source files specified in the .qsf and all
automatically detected source files.

The file set also includes any imported .qxp files for incremental
compilation, because top-level projects do not include source files for
imported partitions.

Source control with
incremental
compilation database

This file set includes files from the Source control settings, plus the
incremental compilation database files when you compile your design with
the Full incremental compilation option turned on. This file set includes
the incremental compilation results, so you can preserve post-synthesis or
post-fitting netlists from the original project database. When you restore
an archive containing these post-compilation netlists, the subsequent
compilation is much faster because the compilation only stitches the
netlist partitions. Performing a compilation is necessary to analyze or view
full compilation results in tools such as the Chip Planner.

However, the archived file for this setting is larger in size. If the Full
incremental compilation option is turned off, this file subset does not
archive any files.

Service request This file set includes files from the Source control settings, the report
files, and the programming output files. This file set is useful when you
attach your design files to a service request with Altera technical support,
and for debugging purposes.

4–10 Chapter 4: Managing Quartus II Projects
Creating New Copies of Your Design

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 If you use external version control tools, you can refer to the Source control file set to
determine the files required for a full compilation. If you want to add additional files
to or exclude certain files from the archive, use the Add and Remove buttons in the
Advanced Archive Settings dialog box. You can also modify the files added to the
archive with the following command:

quartus_sh --archive -list_files [-ascii <output file name>]

-revision <revision> <project name> r
1 The -ascii option is needed if you want to output the file list to a file

other than the standard output file. Use the -ascii option followed by a
file name to write a list of the contents to a file.

For Quartus II Help details about archiving or restoring a project, you can use the
following commands:

quartus_sh –help=archive r
quartus_sh –help=restore r

Restore an Archived Project
To restore an archived project, perform the following steps:

1. On the Project menu, click Restore Archived Project.

2. In the Archive file name box, specify the .qar you wish to restore.

3. In the Destination folder box, specify the directory path in which you will restore
the contents of the .qar.

4. Click Show log to view the Quartus II Archive Log File (.qarlog) for the project
you are restoring from the .qar (optional).

5. Click OK.

Service request with
incremental
compilation database

This file set includes files from the Service request settings, plus the
incremental compilation database files when you compile your design with
the Full incremental compilation option turned on. This file set includes
the incremental compilation results, so you can preserve post-synthesis or
post-fitting netlists from the original project database. When you restore
an archive containing these post-compilation netlists, the subsequent
compilation is much faster because the compilation only stitches the
netlist partitions. Performing a compilation is necessary to analyze or view
full compilation results in tools such as the Chip Planner.

However, the archived file for this setting is larger in size. If the Full
incremental compilation option is turned off, this file subset does not
archive any files.

Custom Use this file set to select the types of files that you want to include in the
archive from the file subset list. When you add or remove file subsets from
one predefined file set, the file set selection automatically changes to
Custom.

Table 4–1. File Sets (Part 2 of 2)

File Set Description

Chapter 4: Managing Quartus II Projects 4–11
Version-Compatible Databases

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

6. If you did not include the compilation database files in the project archive,
recompile the project.

1 Altera recommends that you recompile the project if the Project Navigator
does not display the correct source-file paths for a restored project.

7. To remove any unwanted restored megafunction files from your project, perform
the following steps:

a. Delete the megafunction files located in the
<drive>:<restored_project>/megafunctions directory.

b. Delete the *.cbx.xml file located in the
<drive>:<restored_project> directory. The *.cbx.xml files are revision-based.
Altera uses the XML format to describe data in different file types, including
revision reports, design metadata, component declarations, ports and nodes
assignments, and device utilization.

1 If you want to view the content of the .qar without restoring the archived file, type the
following command:

quartus_sh --restore -content <.qar name> r

Version-Compatible Databases
The version-compatible database feature allows you to export a version-compatible
database and import it into a later version. For example, using one set of design files,
you can export a database generated from the Quartus II software version 7.2 and
import it into the Quartus II software version 8.0 and later without recompiling your
design. Using the version-compatible database feature eliminates unnecessary
compilation time.

1 The version-compatible database feature is not supported immediately for new
device families added to the Quartus II software, because some device information
might still be preliminary. Version-compatible database support is added for each new
device family in a later software release after the device family introduction.

1 For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II software version, you can use the command-line option to archive a full
database. For more information, refer to “Archiving Projects” on page 4–7.

Migrate to a New Version
If you want to migrate a design from one Quartus II software version to a newer
version, perform the following steps:

1. On the File menu, open the older version of the Quartus II software project by
clicking Open Project and browsing to select the Quartus II project file.

2. On the Project menu, click Copy Project to create a new copy of the project. The
older version closes and the copied project opens.

4–12 Chapter 4: Managing Quartus II Projects
Quartus II Project Platform Migration

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

3. If you have not run Analysis and Synthesis for the new version, you must do so
before exporting the database. On the Project menu, click Export Database. By
default, the database is exported to the export_db directory of the copied project.
If necessary, a new directory can be created.

4. Open the copied project from the new version of the Quartus II software. The
Quartus II software deletes the existing database but not the exported database.

5. On the Project menu, click Import Database. By default, the directory of the
database you just exported is selected. Select the exported database and the
Quartus II software imports the version-compatible database files.

Save the Database in a Version-Compatible Format
To save the database in a version-compatible format during a full compilation,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on the Export version compatible database option.

4. Browse to the directory in which you want to save the database.

5. Click OK.

Quartus II Project Platform Migration
When moving your project from one computing platform to another, you must
consider the following cross-platform issues:

■ “Filenames and Hierarchies”

■ “Specifying Libraries”

■ “Quartus II Search Path Precedence Rules”

■ “Quartus II-Generated Files for Third-Party EDA Tools”

■ “Migrating Database Files Between Platforms”

Filenames and Hierarchies
To ensure a successful migration across platforms, you must consider a few basic
differences between operating systems when naming source files, especially when
interacting with these from the command prompt or a Tcl script:

■ Some operating system file systems are case-sensitive. When writing scripts,
ensure you specify paths exactly, even if the current operating system is not
case-sensitive. For best results, use lowercase letters when naming files.

■ Use a character set common to all the used platforms.

■ Do not convert the forward-slash (/) and back-slash (\) path separators in the
.qsf because the Quartus II software changes all back-slash (\) path separators to
forward-slashes (/).

Chapter 4: Managing Quartus II Projects 4–13
Filenames and Hierarchies

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Observe the shortest file name length limit of the different operating systems you
are using.

1 Altera recommends that you avoid using spaces in the name of the project
directory. You can rename the directory using a symbol such as the
underscore (_) as a place holder instead of spaces (for example,
“my_design” instead of “my design”).

You can specify files and directories inside a Quartus II project as paths relative to the
project directory. For instance, for a project titled foo_design with a directory
structure shown in Figure 4–5, specify the source files as: top.v, foo_folder/foo1.v,
foo_folder/foo2.v, and foo_folder/bar_folder/bar1.vhdl.

If the .qsf is in a directory that is separate from the source files, you can specify paths
using the following options:

■ Relative paths

■ Absolute paths

■ Libraries

Relative Paths
If the source files are very near to the Quartus II project directory, you can express
relative paths using the .. notation. For example, in the directory structure shown in
Figure 4–6, you can specify top.v as ../source/top.v and foo1.v as
../source/foo_folder/foo1.v.

Figure 4–5. All-Inclusive Project Directory Structure

foo_design

foo1.v

bar_folder

bar1.vhdl

foo_design.qsf

top.v

foo_folder

foo2.v

4–14 Chapter 4: Managing Quartus II Projects
Filenames and Hierarchies

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 When you copy a directory structure to a different platform, ensure that any
subdirectories are in the same hierarchical structure and relative path as in the
original platform.

Specifying Libraries
You also can specify the directory (or directories) containing source files as a library
that the Quartus II software searches when you compile your project. A Quartus II
library is a directory containing design files used by your Quartus II project. You can
specify the following two kinds of libraries in the Quartus II software:

■ User libraries, which apply to a specific project

■ Global libraries, which all projects use

Use the procedures in this section to specify user or global libraries.

All files in the directories specified as libraries are relative to the libraries. For
example, if you want to include the file /user_lib1/foo1.v and the user_lib1 directory
is specified as a user library in the project, the foo1.v file can be specified in the .qsf as
foo1.v. The Quartus II software searches directories that are specified as libraries and
finds the file.

Specifying User Libraries
To specify user libraries from the GUI, on the Assignments menu, click Settings and
select Libraries. Type the name of the directory in the Project Library name box, or
browse to the name of the directory. User libraries are stored in the .qsf of the current
revision.

Figure 4–6. Quartus II Project Directory Separate from Design Files

foo_design

foo_design.qsf

top.v

foo1.v

bar_folder

bar1.vhdl

quartus

source

foo_folder

foo2.v

Chapter 4: Managing Quartus II Projects 4–15
Quartus II Search Path Precedence Rules

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Specifying Global Libraries
To specify global libraries from the GUI, on the Tools menu, click Options and select
Global User Libraries (All Project). Type the name of the directory in the Library
name box, or browse to the name of the directory. Global libraries are stored in the
quartus2.ini file.

The Quartus II software searches for the quartus2.ini file in the following order:

■ USERPROFILE, for example, C:\Documents and Settings\<user name>

■ Directory specified by the TMP environmental variable

■ Directory specified by the TEMP environmental variable

■ Root directory, for example, C:

For UNIX and Linux users, the file is created in the altera.quartus directory under the
<home> directory, if the altera.quartus directory exists. If the altera.quartus directory
does not exist, the file is created in the <home> directory.

1 Whenever you specify a directory name in the GUI or in Tcl, the name you use is
maintained verbatim in the .qsf rather than resolved to an absolute path.

If the directory is outside of the project directory, the path returned in the dialog box is
an absolute path. You can use the Browse button in either the Settings dialog box or
the Options dialog box to select a directory. You can change the absolute path to a
relative path by editing the absolute path displayed in the library name field to create
a relative path before you click Add to put the directory in the Libraries list or select
from the Libraries list and double-click to edit the path.

When copying projects that specify user libraries, you must either copy your user
library files along with the project directory or ensure that your user library files exist
in the target platform.

Quartus II Search Path Precedence Rules
If two files have the same file name, the file found is determined by the Quartus II
software’s search path precedence rules. The Quartus II software resolves relative
paths by searching for the file in the following directories and order:

1. The project directory, which is the directory containing the .qsf.

2. The project’s database (db) directory.

3. User libraries are searched in the order specified by the SEARCH_PATH setting of
the .qsf for the current revision.

4. Global user libraries are searched in the order specified by the SEARCH_PATH
setting on the Global User Libraries page in the Options dialog box.

1 Beginning with the Quartus II software version 9.0, Altera recommends
that you use the SEARCH_PATH assignment to define the user libraries.
You can have multiple SEARCH_PATH assignments. However, you can
specify only one source directory for each SEARCH_PATH assignment. For
more information about SEARCH_PATH assignments, refer to
Example 4–5 on page 4–28.

4–16 Chapter 4: Managing Quartus II Projects
Quartus II-Generated Files for Third-Party EDA Tools

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

5. The Quartus II software libraries directory, for example,
<Quartus II Software Installation directory>\libraries. For more information about
libraries, refer to “Specifying Libraries Using Scripts” on page 4–28.

Quartus II-Generated Files for Third-Party EDA Tools
The project archive and copy feature in the Quartus II software does not include
Quartus II generated files for third-party EDA tools such as the Verilog Output Files
(.vo), VHDL Output Files (.vho), Standard Delay Format Output Files (.sdo) output
netlist files, Stamp model files, PartMiner XML-Format Files (.xml), and IBIS Output
Files (.ibs). When you archive your design project, you can save the database in a
version-compatible format during a full compilation and include the
version-compatible database files in your project archive.

1 For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II software version, you can use the command-line option to archive a full
database. For more information, refer to “Archiving Projects” on page 4–7.

For more information about saving the database in a version-compatible format and
archiving projects, refer to “Save the Database in a Version-Compatible Format” on
page 4–12 and “Archiving Projects” on page 4–26.

If you want to copy your project to another platform, you can regenerate the output
netlist or output files by performing the following steps:

1. Import the version-compatible database (for more information, refer to “Migrate
to a New Version” on page 4–11).

2. Run the Classic Timing Analyzer or the TimeQuest Timing Analyzer from the
Processing menu, followed by the EDA Netlist Writer.

If you want to restore your project, you can regenerate the output netlist or output
files by performing the following steps:

1. Restore your design project. For more information about restoring an archived
project, refer to “Restore an Archived Project” on page 4–10.

2. Import the version-compatible database. For more information about migrating to
a new version, refer to “Migrate to a New Version” on page 4–11.

3. Run the Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
from the Processing menu, followed by the EDA Netlist Writer.

1 When you create version-compatible databases, you do not need to
recompile your design as you move across platforms.

Chapter 4: Managing Quartus II Projects 4–17
Migrating Database Files Between Platforms

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Migrating Database Files Between Platforms
There is nothing inherent in the file format and syntax of the exported
version-compatible database files that might cause problems when migrating the files
to other platforms. However, the contents of the database can cause problems for
platform migration. For example, using the absolute paths in version-compatible
database files generated by the Quartus II software can cause problems for migration.
Altera recommends that you change the absolute paths to relative paths before
migrating files whenever possible.

Working with Messages
The Quartus II software generates various types of messages, including Information,
Warning, and Error messages. Some messages include information about software
status during a compilation and alert you to possible problems with your design.
Messages are displayed in the Messages box in the Quartus II GUI (Figure 4–7), and
written to stdout when you use command-line executables. In both cases, messages
are written to Quartus II report files.

Figure 4–7. Viewing Quartus II Messages

Message Column

Warning Message

Message ID for
HDL-related
messages

Expandable info Message
to display submessages

Critical Warning Message

Info Message

Message Tab

Message Count

Message
Console

Flagged
Message

Navigate to Previous
or Next Message

Number of
messages

Location of source file

Line number of source file

Locates the
source of a
message if the
source is
available using
appropriate
tools

Message ID
for HDL-
related
messages

Partition that generates
the message

4–18 Chapter 4: Managing Quartus II Projects
Working with Messages

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can right-click a message in the Message window to get help for the message,
locate the source of the message of your design, and manage messages.

Messages provide useful information if you take time to review them after each
compilation. However, it can be tedious if there are thousands of them. The Quartus II
software includes features to help you manage messages. These are described in the
following sections.

Messages Window
The Messages window displays nine message tabs (Table 4–2), which makes it easy to
review all messages of a certain type.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display messages
grouped by type.

A Message ID appears in parentheses at the beginning of some HDL-related
messages, which you can use to enable or disable the specific messages. The Message
Status box indicates the number of the message currently selected and the total
number of messages. The Message Location list indicates the line number in the
source file or files in which the message originates. For each compilation, any number
of messages can be flagged and you can later choose to export or import flagged
messages to or from another Quartus II project.

You can control which tabs are displayed by setting the options on the Messages page
in the Options dialog box on the Tools menu (Figure 4–8). You can select the message
suppression settings on the Messages page in the Options dialog box (see Figure 4–9
on page 4–20), or you can create suppression rules to suppress any set of non-critical
messages with the Message Suppression Manager dialog box.

Table 4–2. Quartus II Message Tabs

Message Tab Icon Description

System — Displays messages that are unrelated to processing your design. For example:
messages generated during programming are displayed in the System tab.

Processing — Displays messages generated when the Quartus II software processes your most
recent compilation and simulation; timing analysis messages appear as part of the
compilation messages.

Info Displays general informational messages generated during a compilation, and
simulation; for example, legality messages and successful compilation messages.

Extra Info Displays detailed informational messages for designers; for example, extra fitting
information.

Warning Displays strong warning messages generated during a compilation or simulation.

Critical
Warning

Displays critical warning messages generated during a compilation or simulation.

Error Displays processing and compilation error messages generated during a
compilation or simulation. Error messages can sometimes stop processing and
cannot be disabled.

Suppressed Displays suppressed messages during the last processing operation.

Flag Displays flagged messages. In any tab, a flag icon appears in the optional Flag
column to indicate a flagged message.

Chapter 4: Managing Quartus II Projects 4–19
Working with Messages

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

For more information about Message Suppression and the Message Suppression
Manager, refer to “Message Suppression” on page 4–20 and “Message Suppression
Manager” on page 4–22.

Hiding Messages
In the Messages window, you can hide all messages of a particular type. For example,
to hide Critical Warning messages, perform the following steps:

1. On the Processing tab, right-click in the Processing message dialog box and click
the Hide option.

2. Select the Hide options type (for example, point to Hide and click Hide Critical
Warning Messages).

All messages of the specified type are removed from the list of messages in the
Processing tab, although they are still included in the separate tabs corresponding to
the message type. For example, if you hide Info messages, no Info messages are
shown in the Processing message dialog box, but all the Info messages are shown in
the Info messages window.

Figure 4–8. Message Tab Options

Specify general
message console
settings

Specify message tabs
settings

Specify message
columns settings

4–20 Chapter 4: Managing Quartus II Projects
Message Suppression

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Message Suppression
You can use message suppression to reduce the number of messages to be reviewed
after a compilation by preventing individual messages and entire categories of
messages from being displayed. For example, if you review a particular message and
determine that it is not caused by something in your design that needs to be changed
or fixed, you can suppress the message so that it is not displayed during subsequent
compilations. This saves time because you see only new messages during subsequent
compilations.

Every time you add a message to be suppressed, a suppression rule is created.
Suppressing exact selected messages adds patterns that are exact strings to the
suppression rules. Suppressing all similar messages adds patterns with wildcards to
the suppression rules.

Furthermore, you can suppress all messages of a particular type in a particular stage
of the compilation flow. On the Tools menu, click Options. In the Category list, select
Suppression in the Messages section (Figure 4–9).

Suppressing individual messages is controlled in two locations in the Quartus II GUI.
You can right-click on a message in the Messages window and choose commands in
the Suppress sub-menu entry. To open the Message Suppression Manager, right-click
in the Messages window. From the Suppress sub-menu, click Message Suppression
Manager. For more information about the Message Suppression Manager, refer to
“Message Suppression Manager” on page 4–22.

Figure 4–9. Controlling Suppression Messages

Chapter 4: Managing Quartus II Projects 4–21
Message Suppression

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Message Suppression Methods
There are three methods that you can use to create suppression rules:

■ Suppress Exact Selected Messages

■ Suppress All Similar Messages

■ Suppress All Flagged Messages

If you suppress a message with the Suppress Exact Selected Messages option, only
messages that match the exact text are suppressed during subsequent compilations.
The Suppress All Similar Messages option behaves like a wildcard pattern on
variable fields in messages and the Suppress All Flagged Messages option only
suppresses flagged messages.

The following message is an example of suppressing all similar messages:

Info: Found 1 design units, including 1 entities, in source file mult.v.

This type of message is common during synthesis and is displayed for each source file
that is processed with varying information about the number of design units, entities,
and source file name.

Help for this message shows it is in the following form:

Found <number> design units, including <number> entities, in source file
<name>.

Choosing to suppress all similar messages effectively replaces the variable parts of
that message (<number>, <number>, and <name>) with wildcards, resulting in the
following suppression rule:

Info: Found * design units, including * entities, in source file *.

As a result, all similar messages (ones that match the pattern) are suppressed.

Message Suppression Details and Limitations
The following rules describe which messages can be suppressed and how to suppress
them:

■ You cannot suppress error messages or messages with information about Altera
legal agreements.

■ Suppressing a message also suppresses all its submessages, if any.

■ Suppressing a submessage causes matching submessages to be suppressed only if
the parent messages are the same.

■ You cannot create your own custom wildcards to suppress messages.

■ You must use the Quartus II GUI to manage message suppression, including
choosing messages to suppress. These messages are suppressed during
compilation in the GUI and when using command-line executables.

■ Messages are suppressed on a per-revision basis, not for an entire project.
Information about which messages to suppress is stored in a file called
<revision>.srf. If you create a revision based on a revision for which messages are
suppressed, the suppression rules file is copied to the new revision. You cannot
make all revisions in one project using the same suppression rules file.

4–22 Chapter 4: Managing Quartus II Projects
Message Suppression

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ You cannot remove messages or modify message suppression rules while a
compilation is running.

Message Suppression Manager
You can use the Message Suppression Manager to view and suppress messages, view
and delete suppression rules, and view suppressed messages.

Right-click in the Messages window and click Message Suppression Manager from
the Suppress sub-menu. The Message Suppression Manager has three tabs labeled
Suppressible Messages, Suppression Rules, and Suppressed Messages
(Figure 4–10).

Suppressible Messages
Messages that are listed in the Suppressible Messages tab are messages that were not
suppressed during the last compilation. These messages can be suppressed. The
Select All Similar Messages option in the right-click menu selects messages
according to the example described in the “Message Suppression Methods” on
page 4–21. You can select all similar messages to see which messages are suppressed if
you choose to suppress all similar messages.

Suppression Rules
Items listed in the Suppression Rules tab are the patterns that the
Quartus II software uses to determine whether to suppress a message. Messages
matching any of the items listed in the Suppression Rules tab are suppressed during
compilations (Figure 4–11). On this tab, you can also perform the following actions:

■ Delete—Remove selected rules from the Suppression Rules tab

■ Import—Open the Import Message Suppression Rule File dialog box. This
allows you to import suppression rules from another project or a revision of the
current project with the Quartus II Message Suppression Rule File (.srf).

■ Export—Open the Export Message Suppression Rule File dialog box and create
an .srf containing the suppression rules listed in the Suppression Rules tab for the
current revision

Figure 4–10. Message Suppression Manager Dialog Box

Chapter 4: Managing Quartus II Projects 4–23
Message Suppression

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

An entry in the Suppression Rules tab that includes a message with submessages
indicates the submessage is suppressed only when all its parent messages match.

You can stop suppressing messages by deleting the suppression rules that match them
(causing them to be suppressed). Deleting suppression rules does not cause the
formerly suppressed messages to be added to the messages generated during the
previous compilation; you must recompile your design for the changed suppression
rules to take effect.

Suppressed Messages
Messages listed in the Suppressed Messages tab are divided into two sub-tabs:

■ Messages Suppressed During Previous Compilation

■ Messages to Suppress During Next Compilation

The messages listed in the Messages Suppressed During Previous Compilation
sub-tab are all the suppressed messages from the previous compilation (Figure 4–12).

Figure 4–11. Message Suppression Manager

Figure 4–12. Messages Suppressed During Previous Compilation

4–24 Chapter 4: Managing Quartus II Projects
Quartus II Settings File

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

These messages are also listed in the Suppressed tab in the Messages window.
Messages listed in the Messages to Suppress During Next Compilation are messages
that are suppressed during the next compilation that match suppression rules created
after the last compilation finished.

In addition to appearing in the Suppressed tab in the Messages window, suppressed
messages are included in a Suppressed Messages entry in the Quartus II compilation
report, viewable in the GUI. Suppressed messages are not included in the
<revision>.<module>.rpt text files; they are written to a separate text report file called
<revision name>.<module>.smsg.

Quartus II Settings File
All assignments made in the Quartus II software are stored as Tcl commands in the
.qsf. The .qsf is a text-based file containing Tcl commands and comments. The .qsf is
not a Tcl script and does not support the full Tcl scripting language.

As you create assignments in the Quartus II software, the assignments are either
stored temporarily in memory or written out to the .qsf. This is determined by the
Update assignments to disk during design processing only option, which is located
on the Tools menu under Options on the Processing page. If the Update assignments
to disk during design processing only option is turned on, all assignments are stored
in memory and are written to the .qsf when a compilation has started or when you
save or close the project. By saving assignments to memory, the performance of the
software is improved because unnecessary reading and writing to the .qsf on the disk
is not done. This performance improvement is seen more dramatically when the
project files are stored on a remote data disk.

You can add lines of comments in the .qsf, as shown in Example 4–1:

Sourcing another .qsf is supported by the following Tcl command:

source <filename>.qsf r

QSF Format Preservation
The Quartus II software maintains the order of assignments in the .qsf. When you
create new assignments, they are appended to the end of the .qsf. If you modify an
assignment, the corresponding line in the .qsf is modified and the order of
assignments in the .qsf is maintained except when you add and remove project source
files, or when you add, remove, and exclude members from an assignment group. In
these cases, all assignments are moved to the end of the .qsf. For example, if you add
a new design file to the project, the list of all your design files is removed from its
current location in the file and moved to the end of the .qsf.

1 The header at the beginning of the .qsf is written only if the .qsf is newly created.

Example 4–1.

Assignments for input pin clk
Clk is being driven by FPGA 1
set_location_assignment PIN_6 -to clk
set_instance_assignment -name IO_STANDARD "2.5 V" -to clk

Chapter 4: Managing Quartus II Projects 4–25
Quartus II Default Settings File

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Quartus II software preserves all spaces and tabs for all unmodified assignments
and comments. When you create a new assignment or modify an existing assignment,
the assignment is written using the default formatting.

Quartus II Default Settings File
The .qdf contains all the project and assignment default settings from the current
version of the Quartus II software. The assignment_defaults.qdf, located in the bin
directory of the Quartus II installation path, is used to ensure consistent results when
defaults are changed between versions of the Quartus II software.

The Quartus II software reads assignments from various files and stores the
assignments in memory. The Quartus II software reads settings files in the following
order and assignments in subsequent files take precedence over earlier ones:

1. assignment_defaults.qdf from <Quartus II Installation directory>/bin or bin64

2. assignment_defaults.qdf from the project directory

3. <revision name>_assignment_defaults.qdf from the project directory

4. <revision name>.qsf from the project directory

As each new file is read, if an existing assignment from a previous file matches
(following rules of case sensitivity, multi-value fields, as well as other rules), the old
value is removed and replaced by the new value. For example, if the first file has a
non-multi-valued assignment A=1, and the second file has A=2, the assignment A=1,
stored in memory, is replaced by A=2.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For more information about
scripting command options, refer to the Quartus II Command-Line and Tcl API Help
browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in Portable
Document Format (.pdf) format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

4–26 Chapter 4: Managing Quartus II Projects
Archiving Projects

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Managing Revisions
You can use the following commands to create and manage revisions. For more
information about managing revisions, including creating and deleting revisions,
setting the current revision, and getting a list of revisions, refer to “Creating and
Deleting Revisions” on page 4–4.

Creating Revisions
The -based_on and -set_current options are optional. You can also use
-copy_results option to copy results from the “based_on” revision. The following
Tcl command creates a new revision called speed_ch, based on a revision called
chiptrip, and sets the new revision as the current revision:

create_revision speed_ch -based_on chiptrip -set_current r

Setting the Current Revision
The -force option enables you to open the revision that you specify under revision
name and overwrite the compilation database if the database version is incompatible.
Type the following Tcl command to specify the current revision:

set_current_revision -force <revision name> r

Getting a List of Revisions
Type the following Tcl command to get a list of revisions in the opened project:

get_project_revisions <project_name> r

Deleting Revisions
Type the following Tcl command to delete a revision:

delete_revision <revision name> r

Archiving Projects
You can archive projects with a Tcl command or with a command run at the system
command prompt.

The following Tcl command creates a project archive with the default settings and
overwrites the specified archived file if it exists:

project_archive archive.qar -overwrite r
You can change default settings with the project_archive command with options
such as -all_revisions, -include_libraries, -include_outputs,
-use_file_set <file_set> and -version_compatible_database.

1 For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II software version, you can use the -use_file_set full_db
command-line option to archive a full database. For more information, refer to
“Archiving Projects” on page 4–7.

Chapter 4: Managing Quartus II Projects 4–27
Restoring Archived Projects

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Type the following command at a command prompt to create a project archive called
top:

quartus_sh --archive top r
You can use the -overwrite option to overwrite the existing archive file.

Restoring Archived Projects
You can restore archived projects with a Tcl command or with a command run at a
command prompt. For more information about restoring archived projects, refer to
“Restore an Archived Project” on page 4–10.

The following Tcl command restores the project archive named archive.qar in the
restored subdirectory and overwrites existing files:

project_restore archive.qar -destination restored -overwrite r
Type the following command at a command prompt to restore a project archive:

quartus_sh --restore archive.qar r

Importing and Exporting Version-Compatible Databases
You can import and export version-compatible databases with either a Tcl command
or a command run at a command prompt. For more information about importing and
exporting version-compatible databases, refer to “Version-Compatible Databases” on
page 4–11.

1 The flow and database_manager packages contain commands to manage
version-compatible databases.

Type the following Tcl commands from the database_manager package to import
or export version-compatible databases.

export_database <directory> r
import_database <directory> r
Example 4–2 shows the Tcl commands from the flow package to import or export
version-compatible databases. If you use the flow package, you must specify the
database directory variable name.

Example 4–2.

set_global_assignment -name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database

4–28 Chapter 4: Managing Quartus II Projects
Importing and Exporting Version-Compatible Databases

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Example 4–3 shows Tcl commands to automatically generate version-compatible
databases after every compilation.

The quartus_cdb and the quartus_sh executables provide commands to manage
version-compatible databases (Example 4–4).

Specifying Libraries Using Scripts
In Tcl, use commands in the ::quartus::project package to specify user libraries.
To specify user libraries, use the set_global_assignment command. To specify
global libraries, use the set_user_option command. Example 4–5 shows the
typical usage of the set_global_assignment and set_user_option
commands.

To report any user libraries specified for a project and any global libraries specified for
the current installation of the Quartus II software, use the
get_global_assignment and get_user_option Tcl commands. In Example 4–6,
the Tcl script outputs the user paths and global libraries for an open Quartus II
project.

Example 4–3.

set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB ON
set_global_assignment-name VER_COMPATIBLE_DB_DIR <directory>

Example 4–4.

quartus_cdb <project> -c <revision>--export_database=<directory> r
quartus_cdb <project> -c <revision> --import_database=<directory>r
quartus_sh –flow export_database <project> -c \ <revision> r
quartus_sh –flow import_database <project> -c \ <revision> r

Example 4–5. Commands to Specify User Libraries using the SEARCH_PATH Assignment

set_global_assignment -name SEARCH_PATH "../other_dir/library1"
set_global_assignment -name SEARCH_PATH "../other_dir/library2"
set_global_assignment -name SEARCH_PATH "../other_dir/library3"
set_user_option -name SEARCH_PATH "../other_dir/library1"
set_user_option -name SEARCH_PATH "../other_dir/library2"
set_user_option -name SEARCH_PATH "../other_dir/library3"

Example 4–6. Commands to Report Specified User Libraries

get_global_assignment -name SEARCH_PATH
get_user_option -name SEARCH_PATH

Chapter 4: Managing Quartus II Projects 4–29
Reducing Compilation Time

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Reducing Compilation Time
There are several settings and tools in the Quartus II software that you can use to
reduce the overall compilation time for your design; however, not all settings and
tools are guaranteed to reduce compilation time, and some may compromise the
overall quality of results for your design.

The Compilation Time Advisor in the Quartus II software provides systematic
recommendations for reducing the compilation time of your design in the Analysis
and Synthesis, Fitter, and TimeQuest Timing Analysis modules. You can take
advantage of the Compilation Time Advisor if you want to analyze the compilation
time of your entire design. If you want the Quartus II software to run several
executables in parallel with extra processors on your machine, you can use the
parallel compilation feature. Parallel compilation is turned on by default and the
Quartus II software can detect if multiple processors are available on the machine
used to compile your design.

f For more information about using parallel compilation and the Compilation Time
Advisor, refer to the “Compilation-Time Optimization Techniques” section in the Area
and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

You can also specify the number of concurrent local compilations (up to six) you want
the Design Space Explorer (DSE) to perform during exploration. The DSE can compile
multiple exploration points concurrently.

f For more information about Design Space Explorer and concurrent local
compilations, refer to the “Concurrent Local Compilations” section in the Design Space
Explorer chapter in volume 2 of the Quartus II Handbook.

Conclusion
Designers often try different settings and versions of their designs throughout the
development process. The Quartus II project revisions facilitate the creation and
management of different assignments and settings. Project archives are useful to save
your results, or pass designs between different members of a team. In addition,
understanding how to smoothly migrate your projects from one computing platform
to another, controlling messages, and reducing compilation time are important as
well. The Quartus II software facilitates efficient management of your design to
accommodate today’s sophisticated FPGA designs.

www.altera.com/literature/hb/qts/qts_qii52005.pdf
www.altera.com/literature/hb/qts/qts_qii52005.pdf
www.altera.com/literature/hb/qts/qts_qii52008.pdf
www.altera.com/literature/hb/qts/qts_qii52008.pdf

4–30 Chapter 4: Managing Quartus II Projects
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 4–3 shows the revision history for this chapter.

Table 4–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated “Creating a New Project” on page 4–3, “Archive a Project” on
page 4–8, “Restore an Archived Project” on page 4–10.

■ Added “Quartus II Text Editor” on page 4–2, “Reducing Compilation
Time” on page 4–29.

■ Updated Table 4–1 on page 4–9,Table 4–2 on page 4–18.

■ Updated Figure 4–4 on page 4–8, Figure 4–7 on page 4–17.

Updated for the
Quartus II software
version 9.1 release.

April 2009
v9.0.1

Updated to fix “Document Revision History” for version 9.0.0. —

March 2009
v9.0.0

■ Updated “Managing Quartus II Projects” on page 4–1, “Creating a New
Project” on page 4–2, “Using Revisions with Your Design” on page 4–3,
“Creating and Deleting Revisions” on page 4–4, “Creating New Copies of
Your Design” on page 4–6, “Version-Compatible Databases” on
page 4–11, “Quartus II Project Platform Migration” on page 4–12,
“Filenames and Hierarchies” on page 4–12, “Quartus II Search Path
Precedence Rules” on page 4–15, “Quartus II-Generated Files for
Third-Party EDA Tools” on page 4–15, “Migrating Database Files
between Platforms” on page 4–16, “Message Suppression” on
page 4–20, “Quartus II Settings File” on page 4–24, “Quartus II Default
Settings File” on page 4–25, “Managing Revisions” on page 4–26,
“Archiving Projects” on page 4–26 and “Archiving Projects with the
Quartus II Archive Project Feature” on page 4–7, “Importing and
Exporting Version-Compatible Databases” on page 4–27, “Specifying
Libraries Using Scripts” on page 4–28, “Conclusion” on page 4–30.

■ Updated Figure 4–1, Figure 4–7, Figure 4–8, and Figure 4–11.

■ Updated Table 4–1 and Table 4–2.

■ Updated Example 4–3, Example 4–4, Example 4–5, and Example 4–6.

Updated for the
Quartus II software
version 9.0.

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 4: Managing Quartus II Projects 4–31
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

Changed to 8½” × 11” page size. No change to content. Updated for the
Quartus II software
version 8.1.

May 2008
v8.0.0

Updated references. Updated for the
Quartus II software
version 8.0.

Table 4–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

4–32 Chapter 4: Managing Quartus II Projects
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Section II. I/O and PCB Tools

This section provides an overview of the I/O planning process, Altera’s FPGA pin
terminology, as well as the various methods for importing, exporting, creating, and
validating pin-related assignments using the Quartus® II software. This section also
describes the design flow that includes making and analyzing pin assignments using
the Start I/O Assignment Analysis command in the Quartus II software, during and
after the development of your HDL design. It also describes interfaces with
third-party PCB design tools

This section includes the following chapters:

■ Chapter 5, I/O Management

This chapter provides an overview of the I/O planning process, Altera FPGA pin
terminology, and the various methods for importing, exporting, creating, and
validating pin-related assignments.

■ Chapter 6, Simultaneous Switching Noise (SSN) Analysis and Optimizations

This chapter describes the tools in the Quartus II software that allow you to
estimate the SSN performance of your FPGA both early in the design cycle and
when your PCB is complete. The SSN methodology discussed in this chapter gives
you confidence that your FPGA design meets your SSN requirements.

■ Chapter 7, Signal Integrity Analysis with Third-Party Tools

This chapter is intended for FPGA and board designers, and includes details
about the concepts and steps involved in getting designs simulated and how to
adjust designs to improve board-level timing and signal integrity. Also included is
information about how to create accurate models from the Quartus II software and
how to use those models in simulation software.

■ Chapter 8, Mentor Graphics PCB Design Tools Support

This chapter discusses how the Quartus II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide a
completely cyclical FPGA-to-board integration design workflow.

■ Chapter 9, Cadence PCB Design Tools Support

This chapter addresses how the Quartus II software interacts with the Cadence
Allegro Design Entry HDL software and the Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS)
to provide a complete FPGA-to-board integration design workflow.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

II–2 Section II: I/O and PCB Tools

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

5. I/O Management

Introduction
The process of managing I/Os for FPGA devices involves more than just fitting
design pins into a package. The increasing complexity of I/O standards and pin
placement guidelines are just some of the factors that influence pin-related
assignments. Both I/O capabilities of the FPGA device and board layout guidelines
influence pin location and other types of assignments. Therefore, it is necessary to
begin I/O planning and PCB development even before starting the FPGA design.

Altera provides many resources for I/O planning. This chapter provides information
on how to make pin assignments, how to enter I/O interface information in the Pin
Planner, how to create I/O-based top-level HDL files, how to validate your pin
assignments, and how to generate a valid pin-out file for use with third-party PCB
tools. You can consult the device-specific pin connection guidelines available on the
Altera® website for your board layout. You can also benefit from the Pin Advisors
available in the Quartus II software.

f To get updated information about the Altera resources available for I/O planning,
refer to the I/O Managment, Board Development Support, and Signal Integrity Analysis
Resource Center on the Altera website.

f For guidelines about PCB designs for Altera high-speed FPGAs, refer to AN 315:
Guidelines for Designing High-Speed FPGA PCBs, and the Board Design Resource Center
on the Altera website.

This chapter includes the following topics:

■ “Understanding Altera FPGA Pin Terminology” on page 5–2

■ “I/O Planning Overview” on page 5–5

■ “Device Selection” on page 5–7

■ “Early I/O Planning Using the Pin Planner” on page 5–7

■ “Importing and Exporting Pin Assignments” on page 5–12

■ “Creating Pin-Related Assignments” on page 5–13

■ “Creating Pin Assignments Using the Pin Planner” on page 5–14

■ “Creating Pin Assignments with Tcl” on page 5–21

■ “Creating Pin Assignments with the Chip Planner” on page 5–22

■ “Creating Pin Assignments in HDL” on page 5–22

■ “Creating Pin Assignments with Low-Level I/O Primitives” on page 5–24

■ “Validating Pin Assignments” on page 5–24

■ “Validating Pin Assignments after Full Compilation” on page 5–39

■ “I/O Timing Analysis” on page 5–40

QII52013-9.1.0

http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/technology/signal/board-design-guidelines/sgl-bdg-index.html
http://www.altera.com/support/software/io-board/sof-qts-io.html
http://www.altera.com/support/software/io-board/sof-qts-io.html

5–2 Chapter 5: I/O Management
Understanding Altera FPGA Pin Terminology

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ “Incorporating PCB Design Tools” on page 5–48

Understanding Altera FPGA Pin Terminology
Altera FPGA devices are available in a variety of package types. To describe Altera
FPGA pin terminology, this chapter uses a wire bond ball grid array (BGA) package in
its examples. On the top surface of the silicon die, there is a ring of bond pads that
connect to the silicon to the I/O pins. In a wire bond BGA package, the device is
placed in the package and copper wires connect the bond pads to the solder balls of
the package. Figure 5–1 shows a cross section of a wire bond BGA package.

f For a list of all BGA packages available for each Altera FPGA device, refer to the Altera
Device Package Information Data Sheet.

Package Pins
The pins of a BGA package are small solder balls arranged in a grid pattern on the
bottom of the package. In the Quartus II software, the package pins are identified with
pin numbers. The pin numbers are determined by pin locations using a coordinate
system, with letters and numbers identifying the row and column of the pins,
respectively.

The upper-most row of pins is labeled “A” and continues alphabetically as you move
downward (Figure 5–2). The left-most column of pins is labeled “1” and continues
with increments of 1 as you move to the right. For example, pin number “B4”
represents row “B” and column “4.”

The letters I, O, Q, S, X, and Z are never used in pin numbers. If there are more rows
than letters of the alphabet, the alphabet is repeated, prefixed with the letter “A.”

f For more information about the pin numbers for your Altera device, refer to the
device pin-out information available on the Altera website at www.altera.com.

Figure 5–1. Wire Bond BGA

Solder Ball Layer

Package

Wire Silicon Die Bond Pad

Figure 5–2. Row and Column Labeling

1 2 3 4 5 6 7 ...

...

A
B
C
D
E
F
G

Altera
Device Package

(Top View)

Column

Row

http://www.altera.com/literature/ds/dspkg.pdf
http://www.altera.com/literature/ds/dspkg.pdf
http://www.altera.com

Chapter 5: I/O Management 5–3
Understanding Altera FPGA Pin Terminology

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Pads
Package pins are connected to pads located on the perimeter of the top metal layer of
the silicon die (Figure 5–1). Each pad is identified by a pad ID, which is numbered
starting at 0, incrementing by 1 in a counterclockwise direction (Figure 5–3).

To prevent signal integrity issues, the Quartus II software uses pin placement rules to
validate your pin placements and pin-related assignments. It is important that you
understand which pad locations your pins were assigned to, because some pin
placement rules describe pad placement restrictions. For example, in certain devices,
there is a restriction on the number of I/O pins supported by a VREF pad to ensure
signal integrity. There are also restrictions on the number of pads between
single-ended input or output pins and a differential pin. The Quartus II software
performs pin placement analysis, and if pins are not placed according to pin
placement rules, the design compilation fails and the Quartus II software reports an
error.

f For more information about pin placement guidelines, refer to the Selectable I/O
Standards chapter in volume 1 of the appropriate device handbook.

I/O Banks
I/O pins are organized into I/O banks designed to facilitate various supported I/O
standards. Each I/O bank is numbered and has its own voltage source pins, called
VCCIO, to offer the highest I/O performance. Depending on the device and I/O
standards for the pins within the I/O bank, the specified voltage of the VCCIO pin is
between 1.5 V and 3.3 V. Each I/O bank can support multiple pins with different I/O
standards that share the same VCCIO.

It is important to refer to the appropriate device handbook to determine the
capabilities of each I/O bank. For example, the pins in the I/O banks on the left and
right side of a Stratix® II device support high-speed I/O standards such as LVDS,
whereas the pins on the top and bottom I/O banks support all single-ended I/O
standards, including data strobe signaling (DQS) (Figure 5–4). Pins belonging to the
same I/O bank must use the same VCCIO signal.

Figure 5–3. Pad Number Ordering

29 28 27 ...

...

0

1

2

3

Altera
Silicon Die

5–4 Chapter 5: I/O Management
Understanding Altera FPGA Pin Terminology

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

VREF Groups
A VREF group is a group of pins that includes one dedicated VREF pin as required by
voltage-referenced I/O standards. A VREF group is made up of a small number of
pins, as compared to the I/O bank, to maintain the signal integrity of the VREF pin.
One or more VREF group(s) exist in an I/O bank. The pins in a VREF group share the
same VCCIO and VREF voltages.

f For more information about I/O banks, VREF groups, and supported I/O standards,
refer to the Architecture and Selectable I/O Standards chapters in the appropriate device
handbook.

Figure 5–4. Stratix II I/O Banks (Note 1),(2), (3), (4)

Notes to Figure 5–4:

(1) This figure shows a top view of the silicon die that corresponds to a reverse view for flip chip packages. It is a graph-
ical representation only.

(2) Depending on the size of the device, different device members have a different number of VREF groups. Refer to the
pin list and the Quartus II software for exact locations.

(3) Banks 9 through 12 are enhanced phase-locked loop (PLL) external clock output banks.
(4) Horizontal I/O banks feature serializer/deserializer (SERDES) and dynamic phase alignment (DPA) circuitry for

high-speed differential I/O standards. For more information about differential I/O standards, refer to the High-Speed
Differential I/O Interfaces with DPA in Stratix II and Stratix II GX Devices chapter in volume 2 of the Stratix II Device
Handbook.

Bank 3 Bank 4Bank 11 Bank 9

PLL11 PLL5

PLL7

PLL1

PLL2

PLL4

PLL3

PLL10

I/O banks 3, 4, 9 & 11 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 9 & 11.

I/O banks 7, 8, 10 & 12 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 10 & 12.

I/O banks 1, 2, 5 & 6 support LVTTL, LVCMOS,
2.5-V, 1.8-V, 1.5-V, SSTL-2, SSTL-18 Class I, LVDS,

HyperTransport, differential SSTL-2 and differential
SSTL-18 Class I standards for both input and output

operations. HSTL, SSTL-18 Class II, differential

HSTL and differential SSTL-18 Class II standards are
only supported for input operations.

VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3 VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4

Bank 8 Bank 7Bank 12 Bank 10

PLL12 PLL6

PLL8 PLL9
VREF4B8 VREF3B8 VREF2B8 VREF1B8 VREF0B8 VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7

V
R

E
F

3
B

2
V

R
E

F
2

B
2

V
R

E
F

1
B

2
V

R
E

F
0

B
2

B
a

nk
 2

V
R

E
F

3
B

1
V

R
E

F
2

B
1

V
R

E
F

1
B

1
V

R
E

F
0

B
1

B
an

k
1

V
R

E
F

1
B

5
V

R
E

F
2

B
5

V
R

E
F

3
B

5
V

R
E

F
4

B
5

B
a

nk
 5

V
R

E
F

1
B

6
V

R
E

F
2

B
6

V
R

E
F

3
B

6
V

R
E

F
4

B
6

B
an

k
6

V
R

E
F

4
B

2

V
R

E
F

0
B

5

V
R

E
F

4
B

1

V
R

E
F

0
B

6

DQS4T DQS3T DQS2T DQS1T DQS0T

DQS4B DQS3B DQS2B DQS1B DQS0BDQS8B DQS7B DQS6B DQS5B

DQS8T DQS7T DQS6T DQS5T

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.

Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports

LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and
differential SSTL standards

are supported for both input
and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

http://www.altera.com/literature/hb/stx2/stx2_sii52005.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52005.pdf

Chapter 5: I/O Management 5–5
I/O Planning Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

I/O Planning Overview
I/O planning of your FPGA design in Quartus II software can include:

■ Selecting a device that meets your logic and I/O requirements, based on the
device’s supported I/O standards, I/O bank structure, supply voltage
requirements such as VREF and VCCIO requirements in I/O banks, available pins
for user I/O, power supply requirements, and more.

■ Getting your design files ready. The design files contain the top-level ports or
top-level interface information. If you do not have the design files, you can use the
Early I/O Planning flow to generate a top-level HDL wrapper file.

■ Importing any existing assignments from a Tcl script, .csv, or .qsf file.

■ Creating, modifying, and completing all pin-related assignments that include pin
location assignments, I/O standards, output loading assignments for output and
bidirectional pins, slew rates, current strengths, and more.

■ Validating your pin-related assignments while creating them by using the Live
I/O Check feature, then running I/O assignment analysis, and finally running the
Fitter with timing constraints.

■ Generating a validated *.pin file for third-party PCB tools.

The method you use to create pin assignments depends on your requirements. If you
have not yet designed the PCB, create and validate your I/O assignments in the
Quartus II software, then export them to the PCB tool (Figure 5–5). This is the
recommended design flow for creating I/O assignments for an FPGA design.

5–6 Chapter 5: I/O Management
I/O Planning Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 5–5. Quartus II Software I/O Planning Flow

Notes to Figure 5–5:

(1) Use the Live I/O Check feature in the Pin Planner to validate pin assignments as you create them.
(2) To create the FPGA Xchange file (.fx), on the Processing menu, point to Start and click EDA Netlist Writer. The .pin file is created at the

<project_dir> level. The .fx file is created at the <project_dir/board/.../> level.
(3) Your design files and constraints must be complete before you begin full compilation. To learn how to create I/O timing constraints, refer to the

TimeQuest Timing Analyzer and Classic Timing Analyzer chapters in the Timing Analysis section in volume 3 of the Quartus II Handbook.
(4) Refer to the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Pin-Out File

.pin

Run I/O Assignment Analysis

Import Pin
Assignment

Create Quartus II Project, Select Device,
and Perform Analysis & Synthesis

Create and Modify Pin-Related Assignments

Early I/O Planning

Validate
Assignments?

Run Full
Compilation?

Yes

Yes

No No (2)

No No

No

PCB Tool

Pin Planner
(Recommended)

 (1)

Tcl Floorplan
Editor

Pin Assignments
Fully Validated

Run full compilation
(Fitter) with I/O Timing

constraints to verify
I/O Timing (3)

Perform Timing
Optimization (4)

.fx

Design Files (if Available)

In Pin Planner, Create, Import, or
Edit Megafunctions or

IP MegaCores

Analyze, Synthesize,
and Merge Partitions

Configure Megafunction or
IP MegaCore Nodes
and/or User Nodes

Create Top-Level Design File

Assignment
Editor

Early I/O
Planning

Flow?

No

Import
Assignments?

Use Import menu
to import .qsf, .tcl,

and .csv files

Yes

Yes

Yes

Timing
Passed?

Yes

Change Pin
Assignments?

Yes

http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 5: I/O Management 5–7
Device Selection

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If your PCB is partially designed, create your FPGA assignments in your PCB tool and
import them into the Quartus II software for validation (Figure 5–6).

1 Currently, only the Mentor Graphics® I/O Designer PCB tool and the Cadence Allegro
PCB tool are supported in this reverse I/O planning flow.

In the Quartus II software design flow, the most important step in I/O planning is to
create, modify, complete, and validate pin-related assignments. The Quartus II
software includes the Pin Planner and I/O Assignment Analysis to assist you in
I/O planning.

Device Selection
Before you begin pin planning or I/O assignment analysis in the Quartus II software,
refer to the device handbooks at www.altera.com to understand the I/O structure,
supported I/O standards, available pins for user I/O, clocking schemes and options,
and I/O bank structure for different devices. Then, choose an appropriate device from
a supported device family for your design.

f For more information on selecting a device in the Quartus II software, refer to Setting
Up and Running a Compilation in Quartus II Help.

Early I/O Planning Using the Pin Planner
In a typical design methodology, you create design elements in a hardware
description language (Verilog or VHDL) or in a schematic editor like the Quartus II
Block editor.

Central to the design is a top-level file that instantiates the next level of hierarchy and
includes port names and their direction. For example the Verilog HDL file shown
below shows an example of a top level file listing input and output ports.

Figure 5–6. I/O Planning Flow Using an FPGA Xchange File from a PCB Tool

Create &
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Altera
Quartus II Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

www.altera.com
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm

5–8 Chapter 5: I/O Management
Early I/O Planning Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Top-level files for FPGA designs often contain interfaces for memory, high-speed I/O,
device configuration, and debugging tools. Listing the ports in HDL or drawing them
in the schematic can be extremely time-consuming.

You can use the Pin Planner to create a top-level design file if the design files for the
entire project are not available or complete. The interfaces between your FPGA and
other devices are typically determined and documented in design specifications. By
adding those interfaces required to connect your FPGA with these other devices in the
Pin Planner, you can plan your FPGA I/Os efficiently without design files, and
generate a top-level module in Verilog HDL or VHDL. By importing and/or creating
any Altera IP MegaCore® functions or Altera megafunctions in the Pin Planner, as
well as creating or adding additional top-level I/O information, the generated
top-level design file accurately anticipates the rest of the HDL to come.

The following sections describe the typical steps of the early I/O planning flow:

■ “Create or Import a Megafunction or IP MegaCore Variation from the Pin Planner”

■ “Connecting Nodes Before Creating Your Top-Level Design File” on page 5–9

■ “Setting Up and Creating the Top-Level File” on page 5–10

Create or Import a Megafunction or IP MegaCore Variation from the Pin Planner
You can use the MegaWizard™ Plug-In Manager, from within the Pin Planner to create
or import custom megafunctions and intellectual property (IP) cores from the
perspective of device I/O. Adding interface information allows you to assign
required pins without manually creating each pin individually in the Pin Planner.

You can create complex interfaces from within the Pin Planner. The megafunctions
ddio_in and ddio_out in the schematic shown in Figure 5–7, are created by invoking
the MegaWizard Plug In Manager tool from the Pin Planner. In the Set Up Top Level
File window you can declare a port to be internal or external. Internal ports (gray) are
connected later in the design.

Example 5–1. Top-Level Design File

module top (clk_in,
 rst,

 a,
 z,
 b,
 c_in,
 d,
 e);

input clk_in;
input rst_;
input a;
input z;
input [7:0] b;
input [7:0] c_in;
input [7:0] d;
output reg [7:0] e;

/* Instantiations of sub blocks */

endmodule

Chapter 5: I/O Management 5–9
Early I/O Planning Using the Pin Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information on creating or customizing megafunction variations from
within the Pin Planner, refer to Managing Pins and Groups in the Pin Planner and
Create/Import Megafunction Dialog Box in Quartus II Help.

Connecting Nodes Before Creating Your Top-Level Design File
Before you create a top-level design file, you must first connect the user ports,
megafunction nodes, and IP MegaCore function nodes to each other and to the rest of
the design.

f For more information on connecting nodes from Megafunction variations, refer to
Generating a Top-Level Design File Based on Pin Planner Megafunctions and User Nodes in
Quartus II Help.

Adding User Nodes
You can add nodes in the Set Up Top Level File window. When you generate the
top-level file in HDL, the new or additional nodes appear as ports in your HDL file.
When you enter new node names in this window, the All Pins list and Groups list in
the Pin Planner are also updated.

To make the user node connetion between the reset signal and the megafunction reset
input port shown in Figure 5–7, in the Node Name column, select reset, as shown in
Figure 5–8.

Figure 5–7. Connections between Input and Output Megafunctions and User Nodes

ddio
input

ddio
output

power up
low

power up
low

ddio_out

ddio_in

inst7

inst8

INPUTinput_data[7:0]

INPUTclk

INPUTddio_out_data_h[7..0]

INPUTddio_out_data_I[7..0]

INPUTreset

OUTPUT

OUTPUT

ddio_in_data_h[7..0]

ddio_in_data_I[7..0]

OUTPUT
 output_dataout[7:0]

datain[7..0]

inclock

aclr

datain_h[7..0]

datain_i[7..0]

outclock

aclr

dataout_h[7..0]

dataout_i[7..0]

dataout[7..0]

http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_pro_manage.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_com_create_mega.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_pro_generate_toplevel_file.htm

5–10 Chapter 5: I/O Management
Early I/O Planning Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Setting Up and Creating the Top-Level File
You can create a top-level design file after you add or modify user ports,
megafunction nodes, or IP MegaCore function nodes in your project with the Pin
Planner. If the the internal logic is incomplete, the top-level design file enables you to
validate your I/O assignments and provides a base on which to build the rest of your
design.

f For more information on generating a top-level design file, refer to Create Top-Level
Design File Dialog Box in Quartus II Help.

To generate a top-level design file, right-click in the Package View and click Create
Top-Level Design File. You can also generate a top-level file on the File menu by
pointing to Create/Update and clicking Create Top-Level Design File From Pin
Planner. The Create Top-Level Design File dialog box appears. Enter a name and
select an HDL format (Verilog HDL or VHDL). If the file already exists, you can
choose to create a backup of the original file.

Example 5–2 shows a sample of an top-level HDL wrapper file representing the
design in Figure 5–7.

Figure 5–8. Connecting a User Node to a Megafunction Port

http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_com_create_toplevel_file.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_com_create_toplevel_file.htm

Chapter 5: I/O Management 5–11
Early I/O Planning Using the Pin Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The IP nodes you declared interal in the Set UpTop-Level Design File dialog box are
declared virtual pins. The Pin Planner makes virtual pin assignments to internal
nodes so that internal nodes are not assigned to device pins during compilation.
These virtual pins are not shown in the All Pins list or Groups in the Pin Planner
because they are not actual external ports of the design.

1 The top-level design file must be updated whenever changes are made to the design’s
top-level ports, including any node changes made in the Set Up Top-Level Design
File window.

After you generate the top-level file and compile the design, use I/O assignment
analysis as described in “Using I/O Assignment Analysis to Validate Pin
Assignments” on page 5–27 and continue with your design flow by modifying or
creating pin assignments using the Pin Planner.

Example 5–2. HDL Wrapper File Generated with the Early I/O Planning Flow

module top
(

reset,
input_data,
clk,
output_data,
ddio_in_dataout_h, // Internal
ddio_in_dataout_l, // Internal
ddio_out_datain_h, // Internal
ddio_out_datain_l // Internal

);

input reset;
input[7:0]input_data;
input clk;
output[7:0]output_data;

output[7:0]ddio_in_dataout_h /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
output[7:0]ddio_in_dataout_l /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
input[7:0]ddio_out_datain_h /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
input[7:0]ddio_out_datain_l /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;

ddio_in ddio_in_inst
(

.aclr(reset),

.datain(input_data),

.inclock(clk),

.dataout_h(ddio_in_dataout_h),

.dataout_l(ddio_in_dataout_l)
);

ddio_out ddio_out_inst
(

.aclr(reset),

.datain_h(ddio_out_datain_h),

.datain_l(ddio_out_datain_l),

.outclock(clk),

.dataout(output_data)
);

endmodule

5–12 Chapter 5: I/O Management
Importing and Exporting Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Importing and Exporting Pin Assignments
If you have existing pin assignments from a different Quartus II project or from
third-party PCB tools, you can transfer these assignments between the Quartus II
software and other tools in the following file formats: Tcl (.tcl) files, Comma Separated
Value (.csv) files, Quartus II Settings Files (.qsf), , FPGA Xchange (.fx) files, and
Pin-Out (.pin) files.

Tcl Scripts and .csv Files
You can export and import pin-related assignments contained in .csv files and Tcl
scripts. A .csv file consists of a row of column headings followed by rows of
comma-separated data. The row of column headings in the exported file is in the same
order and format as the columns displayed in the All Pins list in the Pin Planner. Do
not modify the row of column headings if you plan to import the .csv file later.

When you export pin-related assignments as Tcl commands in a Tcl script, you create
a script which you can later run to add these assignments as part of a scripted
compilation flow.

f For more information on importing and exporting pin related asssignments as Tcl
scripts and .csv files, refer to Assigning Pins in Quartus II Help.

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook.

1 The All Pins list in the Quartus II Pin Planner, the Pin category in the Quartus II
Assignment Editor, and the device .pin files all display detailed properties about each
pin of the device, in addition to the pin name and pin number. The device .pin files
are available on the Altera website at www.altera.com.

Quartus II Settings Files
When you make pin assignments with the Pin Planner or the Assignment Editor in
the Quartus II software, all your pin-related assignments are written to the Quartus II
Settings File (.qsf). You can also export pin-related assignments to a .qsf file. The
pin-related assignments, and all other design assignments, are stored as Tcl
commands in the .qsf file.

f For more information about .qsf files, refer to the Managing Quartus II Projects chapter
in volume 2 of the Quartus II Handbook.

FPGA Xchange File
An .fx file contains device and pin-related information that allows you to transfer
information between the Quartus II software and the Mentor Graphics I/O Designer
software. Importing an .fx file into the I/O Designer software requires both the .fx file
and *.pin file produced from Quartus II software. However, the Quartus II software
requires only the .fx file to import back from the I/O Designer.

http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 5: I/O Management 5–13
Creating Pin-Related Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f To learn more about the I/O Designer and the DxDesigner interface and support,
refer to Mentor Graphics PCB Tools Support chapter in volume 2 of the Quartus II
Handbook.

f To import or export pin-related asssignments in .qsf files and .fx files, refer to
Importing and Exporting Assignments in Quartus II Help.

.pin Files
A .pin file is an ASCII text file containing pin locations and other pin information. Use
the .pin file to transfer your project’s pin information into third-party PCB tools for
board development. Table 5–1 describes the columns in a .pin file.

f For more information about Pin Name/Usage, refer to the Device Pin-Out tables for
the targeted device, available on the Altera website at www.altera.com.

Creating Pin-Related Assignments
A pin-related assignment is any assignment applied to a top-level pin. For example, a
pin location assignment assigns a top-level port or node to a pin number (location) on
the targeted device. Other examples of pin-related assignments include assigning an
I/O standard, assigning current drive strength, or assigning a slew rate to a pin.

If when making pin assignments you do not have complete information for all the
top-level pins, you can reserve certain device pins to temporarily represent your
top-level design I/O pins until the I/O pins are defined in your design files. Reserved
pins are intended for future use but do not currently perform a function in your
design. Reserved pins require a unique pin name and pin location. Using reserved
pins as place holders for future design pins increases the accuracy of I/O assignment
analysis.

The Quartus II software offers many tools and features for creating reserved pins and
other pin-related assignments (Table 5–2). Each tool and feature is described in more
detail in the following sections.

Table 5–1. .pin File Header Description

Column Name Description

Pin Name/Usage The name of a design pin, ground, or power

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to this pin

I/O Bank The I/O bank number that the pin belongs to

User Assignment Y or N indicating if the location assignment for the design pin was user
assigned (Y) or assigned by the Fitter (N)

http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_pro_logiclock_import.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_pro_logiclock_import.htm
http://www.altera.com

5–14 Chapter 5: I/O Management
Creating Pin Assignments Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Creating Pin Assignments Using the Pin Planner
The Pin Planner is an interface for creating and editing pin-related assignments
(Figure 5–9). With the Pin Planner, you can identify I/O banks, VREF groups, and
differential pin pairings to help you through the I/O planning process.

When planning your I/Os, it can be cumbersome to try to correlate pin numbers with
their relative location on the package and their pin properties. The Pin Planner
provides an intuitive graphical representation of the targeted device, also known as
the Package View, that makes it easy to plan your I/Os, create reserved pins, and
make pin location assignments. When deciding on a pin location, use the Pin Planner
to gather information about available resources, as well as the functionality of each
individual pin, I/O bank, and VREF group. You can assign locations to design I/O
nodes by dragging and dropping each node onto a pin in the Package View.

Table 5–2. Overview of Quartus II Tools and Features to Create Pin-Related Assignments

Feature Overview

Pin Planner ■ Make pin location assignments to one or more node names by dragging and dropping unassigned
pins into the Package View

■ Edit pin location assignments for one or more node names by dragging and dropping groups of pins
within the Package View

■ Visually analyze pin resources in the Package View

■ Display I/O banks and VREF groups

■ View the function of package pins using the pin legend

■ Make correct pin location decisions by referring to the Pad View window

■ Create, import, and edit megafunctions and IP MegaCore functions for early I/O planning

■ Generate a top-level wrapper file without design files based on early I/O assignments

■ Configure board trace models of selected pins for use in “board-aware” signal integrity reports
generated with the Enable Advanced I/O Timing option

Tcl Scripts ■ Create any pin-related assignments for multiple pins

■ Store and reapply all pin-related assignments with Tcl scripts

■ Make assignments from the command line

Chip Planner ■ Create and change pin locations by dragging and dropping pins into the floorplan

■ Make correct pin location decisions by referring to the pad ID number and spacing

■ Display I/O banks, VREF groups, and differential pin pairing information

Synthesis
Attributes

■ Embed pin-related assignments using attributes in the design files to pass assignments to the
Quartus II software

Chapter 5: I/O Management 5–15
Creating Pin Assignments Using the Pin Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

When you select a pin in one view the Pin Planner highlights the pin in all of the other
views. For example, if you select a pin in the Package View of the Pin Planner, the
corresponding pad in the Pad View window is highlighted. If the pin has an assigned
node name, the node name in the All Pins list and the Groups list is highlighted.

For information on how to create pin assignments using the Pin Planner, refer to
Assigning Pins in Quartus II help.

Pin Migration
Selecting a migration device allows you to either vertically migrate to a different
density, while using the same package, or to migrate between packages with different
densities and ball counts. If a migration device is selected, the Pin Planner shows only
pins that are available in both the current device and the migration device.

The Pin Migration View in the Pin Planner shows the pins that change function in a
migration device if you select one or more migration devices for your project.

Figure 5–9. Pin Planner

All Pins List

Groups List Package View

http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

5–16 Chapter 5: I/O Management
Creating Pin Assignments Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Pin Migration View helps you identify the difference in pins that can exist
between migration devices. For example, in Figure 5–10, the highlighted pin AC24
existed in the original EP2S30 device selected, but does not exist in one of the
migration devices. Therefore, the migration result is a No Connect (NC). If you select
your migration devices after you have successfully compiled a design and these
migration devices have certain differences, an error occurs if you try to recompile
your design.

There may be assignments for I/O nodes in your original design, that do not have
corresponding pins in a migration device. When you select migration devices early in
the design process, only the pins that exist in all migration devices are available in the
Pin Planner. If you select migration devices later in your design cycle for which the
pin assignment cannot be honored, an error occurs when you try to recompile.

Notice that for PIN_AC23, the Migration Result for Pin Function is not an NC but a
voltage reference VREFB1N2. This is because it is an NC in one of the migration
devices, but a VREFB1N2 in the other migration device. In this type of result, VREF
standards have a higher priority than an NC. You might not be making use of that pin
for a port connection in your design, but you must use the VREF standard for I/O
standards that require it on the actual board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and
these same pins are I/O pins on a different device in the migration path, the Quartus
II software ensures these pins are not used for I/O. Ensure that these pins are
connected to the correct PCB plane.

Figure 5–10. Pin Migration View

Chapter 5: I/O Management 5–17
Creating Pin Assignments Using the Pin Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

When migrating between two devices in the same package, pins that are not
connected to the smaller die may be intended to connect to VCC or GND on the larger
die. In this case, to facilitate migration, you can connect these pins to VCC or GND in
your original design, because there the pins are not physically connected to the
smaller die.

f For more information about migration, refer to AN90: SameFrame Pin-Out Design for
FineLine BGA Packages. For more information about designing for HardCopy II
devices, refer to the Quartus II Support for HardCopy Series Devices chapter in volume 1
of the Quartus II Handbook. For more information about the Pin Migration view in the
Pin Planner, refer to About Device Migration in Quartus II Help.

Using the Pin Finder to Find Compatible Pin Locations
As FPGA pin-counts and I/O capabilities continue to increase, it becomes more
difficult to understand the capabilities of each I/O pin and to correctly assign your
design I/Os. To help you address this problem, the Pin Planner highlights all pins that
match the list of conditions that you enter.

f For more information about the Pin Finder, refer to Pin Finder Dialog Box in Quartus II
Help.

SSN Visualization View
In the Quartus II software version 9.0 and later, you can view the simultaneous
switching noise (SSN) visualization in the Pin Planner by right-clicking in the Package
View and selecting Show SSN Analyzer results. The SSN Analyzer estimates SSN for
pins of your FPGA device. Refer to the Quartus II Help to find out the devices
supported for SSN analysis. The integration of the SSN Analyzer and Pin Planner in
the Quartus II software allows you to perform SSN analysis while planning your I/O
pins.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimization chapter in volume 2 of the Quartus II Handbook.

Creating Exclusive Group Assignments
In the Quartus II software version 9.0 and later, you can create exclusive groups
comprised of pins by using the following assignment:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

When you create exclusive I/O group(s) in your FPGA design and use the Quartus II
software to map the signals onto device pins, the Fitter does not place the I/O pins
belonging to one exclusive group in an I/O bank if the pins belong to another
exclusive I/O group. To understand this, consider an example in which you have a set
of signals assigned exclusively to a group called group_a, and another set of signals
assigned to group_b. In both exclusive groups you might have pins with different
I/O standards. When you create these groups, the Quartus II software maps the pins
of both groups in such a way that they are placed in different I/O banks.

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/comp/migrate/comp_view_migration.htm
http://quartushelp.altera.com/9.1/master.htm#mergedProjects/assign/asd/asd_com_pin_finder.htm
http://www.altera.com/literature/an/an090.pdf
http://www.altera.com/literature/an/an090.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

5–18 Chapter 5: I/O Management
Creating Pin Assignments Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Assigning Locations for Differential Pins
When you assign the top-level pins of your design as differential pins in the Pin
Planner, it is important to understand the process for creating differential pins in your
design. If your design has top-level pins that are single ended, you can use the Pin
Planner to assign the required differential standard to those pins. The Quartus II
software automatically creates the negative pin of the differential standard. For
example, if you have a top-level pin defined as lvds_in in your design, the
Quartus II software creates a lvds_in(n) pin when you assign a differential
standard to lvds_in, as shown in Figure 5–11.

For the Cyclone® III, Stratix III, and Stratix IV device families, you can use low-level
I/O differential primitives to define both positive and negative pins of a differential
pair in your design’s HDL code.

f For more information about supported I/O primitives and details about their
assignments, refer to the Designing with Low-Level Primitives Users Guide or Primitives
in Quartus II Help.

When you use low-level I/O primitives to define various pin-related assignments for
I/Os, the assignments are honored after you perform full compilation. These
assignments are not shown in the Pin Planner after analysis and synthesis. After a full
compilation, you can populate these assignments in the Pin Planner by
back-annotating pin assignments. To back annotate your pin assignments, on the
Assignments menu, click Back-Annotate Assignments.

To identify and assign differential pins using the Pin Planner, perform the following
steps:

1. On the View menu, click Show Differential Pin Pair Connections.

A red line connects the positive and negative pins of the differential pin pairing.
The positive and negative pins are labeled in the Package View with the letters “p”
and “n”, respectively (Figure 5–12).

2. Use the tool tips to identify LVDS-compatible pin locations by holding the mouse
pointer over a differential pin in the Package View (Figure 5–12).

Figure 5–11. Creating a Differential Pin Pair in the Pin Planner

http://www.altera.com/literature/ug/ug_low_level.pdf
http://quartushelp.altera.com/9.1/mergedProjects/hdl/prim/prim_list.htm

Chapter 5: I/O Management 5–19
Creating Pin Assignments Using the Pin Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The tool tip shows the design pin name and pin number, as well as its general and
special functions.

f For more information about the general and special functions of pins displayed by the
tool tip, refer to Pin-Out Files for Altera Devices.

3. From the All Pins list or Groups list, drag-and-drop the selected pin of the
differential pair to a differential pin location in the Package View.

1 Pay attention when you drag the positive or negative pin of the differential
pin pair to the Package View. Connect the positive pin to the “p” pin on the
device and negative pin to the “n” pin on the device. An error appears in
the Quartus II software if you do not connect the differential pins properly.

Optionally, before you drag-and-drop your pins, you can use the Pin Finder to
locate pin locations that support your selected pins. When creating a query in
the Pin Finder, add an assignment condition set to Unassigned and an I/O
standard condition set to your differential I/O standard.

The Quartus II software recognizes the negative pin as part of the differential
pin pair assignment. The location assignment for the negative pin pair is
written to the .qsf file. However, the assignment I/O standard is not entered in
the .qsf file for the negative pin of the differential pair.

If you have a single-ended clock that feeds a PLL, assign the pin only to the
positive clock pin of a differential pair in the targeted device. Single-ended pins
that feed a PLL and are assigned to the negative clock pin in the targeted
device cause the design to not fit.

Changing the Slew Rate and Current Drive Strength in Pin Planner
Current strength is an important property of an I/O pin. It affects the integrity of the
signal going out of the device. You can set the current strengths as part of the I/O
planning flow in the Pin Planner. You can also change the current strength after the
compilation of your design. In the Pin Planner’s All Pins list, you can view or edit the
current strengths for each of the output and bidirectional pins in the Current Strength
column. If the Current Strength column is not visible in All Pins list, right-click in the
All Pins list and use the Customize Columns dialog box to add the Current Strength
column. The settings you make in Pin Planner are honored during Live I/O Check,
I/O Assignment analysis, and full compilation.

Figure 5–12. Tool Tip of a Differential Pin

http://www.altera.com/literature/lit-dp.jsp

5–20 Chapter 5: I/O Management
Creating Pin Assignments Using the Pin Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To make changes to the current drive strength after compilation has finished, you can
perform engineering change orders (ECOs). To perform ECOs, use the Resource
Property Editor (RPE) tool in the Quartus II software. Performing ECO compilation
does not recompile the whole design, but compiles only the changes.

f For more information about ECOs, refer to the Quartus II Help or the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

The slew rate is another important property of an I/O pin that affects the outgoing
signal integrity of the device. Slew rate options are not supported for all device
families. To learn more about the supported families for slew rates, refer to the specific
device handbooks. You can set the slew rate as part of the I/O planning flow in the
Pin Planner. You can also change the slew rate setting after compiling your design.

In the Pin Planner’s All Pins list, you can view or edit the slew rate for each of the
output and bidirectional pins in the Slew Rate column. If the Slew Rate column is not
visible in the All Pins list, right-click in the All Pins list and use the Customize
Columns dialog box to add the Slew Rate column. The settings you make in Pin
Planner are honored during Live I/O Check, I/O Assignment Analysis, and full
compilation. To change the slew rate after compilation has finished, you can perform
an ECO by using the RPE tool in the Quartus II software. Performing ECO
compilation does not perform place-and-route on the whole design, but only on the
changes.

You can also set the current drive strength and slew rate settings by using the
following Tcl assignments in the .qsf file:

set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

f For more information about the effect of I/O settings on signal integrity on the board
for Stratix III devices, refer to AN 476: Impact of I/O Settings on Signal Integrity in
Stratix III Devices.

I/O Error Checking Capability
The Pin Planner has basic pin placement checking capability, preventing pin
placements that violate the fitting rules. The following checks are performed by the
Pin Planner as you make pin-related assignments:

■ An I/O bank or VREF group is an unassignable location if there are no available
pins in the I/O bank or VREF group.

■ The negative pin of a differential pair is unassignable if the positive pin of the
differential pair has been assigned with a node name with a differential I/O
standard.

■ Dedicated input pins (for example, dedicated clock pins) are an unassignable
location if you attempt to assign an output or bidirectional node name.

■ Pin locations that do not support the I/O standard assigned to the selected node
name become unassignable.

■ All nodes in the same VREF group must have the same VREF voltage. Apply this
only to HSTL- and SSTL-type I/O standards.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/an/AN476.pdf
http://www.altera.com/literature/an/AN476.pdf

Chapter 5: I/O Management 5–21
Creating Pin Assignments with Tcl

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

After creating a pin location, the Location, I/O Bank, and VREF Group columns are
populated in both the in both the All Pins list and the Group list. In the Package View,
the occupied pins are filled with a dark brown color.

f For more information about assignment analysis, refer to “Using I/O Assignment
Analysis to Validate Pin Assignments” on page 5–27. To display live information
about the warnings and errors in your pin-related assignments, enable the live I/O
check feature in the Quartus II software. For more information about the live I/O
check feature, refer to the section “Using the Live I/O Check Feature to Validate Pin
Assignments” on page 5–25.

Displaying and Accepting Fitter Placements
The Fitter provides optimal placement to unassigned pins based on design constraints
when you perform a compilation or an I/O Assignment Analysis. To display these
pins, on the View menu, point to Show and click Show Fitter Placements. When you
choose Show Fitter Placements, the Fitter-placed pins are shown in green in the
Package View. You can create a copy of the Fitter placements in your project .qsf file
using the Back-Annotate Assignments command.

Altera recommends you use the Pin Planner to create and edit pin-related
assignments. However, you might find some of the other tools provided for use with
the Quartus II software to be useful for working with pin-related assignments. The
following sections describe these tools.

Creating Pin Assignments with Tcl
You can use Tcl to create pin-related assignments as part of a script-based compilation
flow. To run a Tcl script with the Quartus II software, type the following command at
a system prompt:

quartus_sh -t my_tcl_script.tcl r
You can also type individual Tcl commands into the Tcl console window. To use the
Tcl console, on the View menu, point to Utility Windows and click Tcl Console. In the
Tcl Console window, type your Tcl commands. Example 5–3 shows a list of Tcl
commands that creates pin-related assignments to the input pin address[10].

When you make an assignment in the Assignment Editor or the Pin Planner, display
the equivalent Tcl command in the Messages window by performing the following
steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select Assignment Editor. The Assignment Editor page
opens.

3. Turn on Echo Tcl Commands.

4. Click OK.

Example 5–3. Tcl Commands to Create Pin-Related Assignments

set_location_assignment PIN M20 -to address[10] -comment"Address pin to Second FPGA"
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

5–22 Chapter 5: I/O Management
Creating Pin Assignments with the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about using Tcl scripts to create pin-related assignments, refer
to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook and to the Quartus II
Scripting Reference Manual.

Creating Pin Assignments with the Chip Planner
The floorplan of the device shows the pins in the same order as the pads of the device.
Understanding the relative distance between a pad and related logic can help you
meet your timing requirements. You can view the floorplan of the device in the Chip
Planner and determine the distances between user I/O pads and VCC, GND, and
VREF pads to avoid signal integrity issues.

You can create a pin location assignment by selecting a pin and selecting a desired
location. To do this, perform the following steps:

1. To open the Chip Planner, on the Tools menu, click Chip Planner (Floorplan &
Chip Editor).

2. On the View Chip Planner, point to Utility Windows and click Node Finder. The
Node Finder dialog box appears.

3. In the Filter list, select Pins: all and click List to see all the nodes in the design.

4. Select a node from the Nodes Found list and drag the selection into a pin location
in the floorplan.

f For more information about pin placement guidelines, refer to the Selectable I/O
Standards chapter of the appropriate device handbook. For more information about
supported device families in the Chip Planner, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Creating Pin Assignments in HDL
You can use synthesis attributes or I/O primitives to embed pin-related assignments
in your HDL code directly. When you analyze and synthesize your HDL code, the
information in the HDL code is converted into appropriate assignments. There are
two ways to specify pin related assignments using HDL:

■ Using synthesis attributes for signal names that are top-level pins

■ Using low-level I/O primitives such as ALT_BUF_IN to specify input, output, and
differential buffers, and setting their parameters or attributes

The following sections explain how to use synthesis attributes and I/O primitives for
your top-level pins.

Synthesis Attributes
Synthesis attributes allow you to embed assignments in your HDL code. The
Quartus II software reads these synthesis attributes and translates them into
assignments. The Quartus II integrated synthesis supports chip_pin, useioff, and
altera_attribute synthesis attributes.

f For more information about integrated synthesis, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 5: I/O Management 5–23
Creating Pin Assignments in HDL

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

For synthesis attributes support by third-party synthesis tools, contact your vendor.

chip_pin and useioff
You can use the chip_pin and useioff synthesis attributes to embed pin location
and fast output and input register assignments, respectively. For all other
assignments, including pin-related assignments, use the altera_attribute
synthesis attribute as discussed in the “altera_attribute” section.

Example 5–4 and Example 5–5 embed a location and fast input assignment into both a
Verilog HDL and VHDL design file using the chip_pin and useioff synthesis
attributes.

altera_attribute
To create other pin-related assignments, use the altera_attribute attribute. The
altera_attribute attribute is understood only by Quartus II integrated synthesis
and supports all types of instance assignments. Example 5–6 and Example 5–7 use
altera_attribute to embed the fast input register and I/O standard assignments
into both a Verilog HDL and a VHDL design file.

Example 5–4. Verilog HDL Example

input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

Example 5–5. VHDL Example

entity my_entity is
port(

my_pin1: in std_logic
);

end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;

Example 5–6. Verilog HDL Example

input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER ON; -name
IO_STANDARD \"2.5 V\" " */ ;

5–24 Chapter 5: I/O Management
Creating Pin Assignments with Low-Level I/O Primitives

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

In Quartus II software version 8.0 and later, the pin-related assignments made using
synthesis attributes are shown in Pin Planner’s All Pins list and Package views. When
you modify or delete these pin assignments in the Pin Planner, you get an
informational message suggesting that the pin-related assignments have been
changed. If you recompile your project, your pin-related assignment in the Pin
Planner, which is contained in your .qsf file, has precedence over the assignments you
made using synthesis attributes in your HDL file.

f For detailed information about synthesis attributes and their usage syntax, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook or the
Quartus II Help.

Creating Pin Assignments with Low-Level I/O Primitives
You can make pin related assignments for your top-level nodes using low-level
primitives, which allow you to create pin location assignments, and set I/O
standards, current drive strengths, slew rates, and on-chip termination (OCT).

f For more information about using low-level I/O primitives in your design, refer to
Designing with Low-Level Primitives User Guide or the Quartus II Help.

The pin-related assignments made using primitives do not appear in the Pin Planner.

During and after pin-related assignments creation, you must validate your pin-related
assignments using the Enable Live I/O Check option and running I/O Assignment
Analysis.

Validating Pin Assignments
The Quartus II software includes built-in I/O rules to guide you in pin placement.
The Quartus II software checks your pin-related assignments against these rules
during pin planning. You must validate all pin-related assignments in your design.
You can enable the live I/O check feature and must use I/O Assignment Analysis to
validate pin-related assignments against the predefined I/O rules encoded in the
Quartus II software. To fully validate these assignments against all the I/O timing
checks, you must perform full compilation.

Example 5–7. VHDL Example

entity my_entity is
port(

my_pin1: in std_logic
);

end my_entity;
architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER ON;
-- The architecture body
end rtl;

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

Chapter 5: I/O Management 5–25
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using the Live I/O Check Feature to Validate Pin Assignments
In Quartus II software version 7.2 and later, the live I/O check feature provides live
I/O rules checking capability. When the live I/O check feature is enabled, pin-related
assignment error and warning messages appear immediately in the Quartus II
Messages window as you create pin-related assignments in the Pin Planner. This
feature enhances your productivity by showing you warnings and errors as you
create pin-related assignments, before you proceed to the next step in your design
flow.

The most basic I/O rules are the I/O buffer rules. The I/O buffer rules checked by the
live I/O Check feature include:

■ VCCIO voltage compatibility rules

■ VREF voltage compatibility rules

■ Electromigration (current density rules)

■ Simultaneous Switching Output (SSO) rules

■ I/O properties compatibility rules such as drive strength compatibility, I/O
standard compatibility, PCI_IO clamp diode compatibility, and I/O direction
compatibility

An additional category of I/O rules is the set of I/O system rules. These rules can be
checked only after you generate a synthesized (mapped) netlist of your design. The
I/O system rules are checked when you perform I/O assignment analysis as
described in “Using I/O Assignment Analysis to Validate Pin Assignments” on
page 5–27.

You can enable or disable the live I/O check feature at any time. By default, the live
I/O check feature is turned off.

To enable or disable the live I/O check feature in the Quartus II user interface:

1. Verify the Pin Planner tool in the Quartus II software is active.

2. In the Quartus II View menu, select Live I/O Check, or, in the Pin Planner, click on
the Live I/O Check icon.

While the live I/O check feature is enabled, the Quartus II software immediately
checks whether your new pin-related assignments and revisions pass the basic I/O
buffer rules. The detailed messages are printed in the Messages window of the
Quartus II software and shown in Package View (Figure 5–13).

5–26 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Live I/O Check Status window displays the total numbers of errors and warnings
while you create and edit pin-related assignments. To open the Live I/O Check Status
window, shown in Figure 5–14, in the Quartus II View menu, click Live I/O Check
Status.

f For details about a specific message, refer to the Quartus II Help.

Figure 5–13. Live I/O Check Results in Package View

Chapter 5: I/O Management 5–27
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Though the live I/O check feature checks all the basic I/O buffer rules, you must run
I/O assignment analysis to validate your pin-related assignments against the
complete set of I/O system rules. All rules including the basic I/O buffer rules and
I/O system rules can be found in Table 5–3 on page 5–37 and Table 5–4 on page 5–38.

Using I/O Assignment Analysis to Validate Pin Assignments
This section describes a design flow that includes making and analyzing pin
assignments with the Start I/O Assignment Analysis command in the Quartus II
software during and after the development of your HDL design.

The Start I/O Assignment Analysis command allows you to check your I/O
assignments early in the design process. With this command, you can check the
legality of pin assignments before, during, or after you compile your design. If design
files are available, you can use this command to perform more thorough legality
checks on your design’s I/O pins and surrounding logic. These checks include proper
reference voltage pin usage, valid pin location assignments, and acceptable mixed
I/O standards.

1 The Start I/O Assignment Analysis command can be used for designs that target
Stratix series, Cyclone series, and MAX® II device families.

I/O Assignment Analysis Design Flows
The I/O assignment analysis design flows depend on whether your project contains
design files. The following examples show two different circumstances in which I/O
Assignment Analysis can be used:

■ Use the flow shown in Figure 5–15 on page 5–29 if the board layout must be
complete before starting the FPGA design. This flow does not require design files
and checks the legality of your pin assignments.

■ With a complete design, use the flow shown in Figure 5–17 on page 5–31. This
flow thoroughly checks the legality of your pin assignments against any design
files provided.

Each flow involves creating pin assignments, running analysis, and reviewing the
report file.

Figure 5–14. Live I/O Check Status Window in the Quartus II Software

5–28 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You should run the analysis each time you add or modify a pin-related assignment.
You can use the Start I/O Assignment Analysis command frequently because it
completes quickly.

The analysis checks pin assignments and surrounding logic for illegal assignments
and violations of board layout rules. For example, the analysis checks whether your
pin location supports the assigned I/O standard, current strength, supported VREF
voltages, and whether a PCI diode is permitted.

Along with the pin-related assignments, the Start I/O Assignment Analysis
command also checks blocks that directly feed or are fed by resources such as a PLLs,
LVDS, or gigabit transceiver blocks.

I/O Assignment Analysis without Design Files
During the early stages of developing an FPGA device, board layout engineers might
request preliminary or final pin-outs. It is time consuming to manually check whether
the pin-outs violate any design rules. Instead, use the Start I/O Assignment Analysis
command to quickly perform basic checks on the legality of your pin assignments.

1 Without a complete design, the analysis performs limited checks and cannot
guarantee that your assignments do not violate design rules.

The I/O Assignment Analysis command can perform limited checks on pin
assignments made in a Quartus II project that has a device specified, but might not yet
include any HDL design files. For example, you can create a Quartus II project with
only a target device specified and create pin-related assignments based on circuit
board layout considerations that are already determined. Even though the Quartus II
project does not yet contain any design files, you can reserve input and output pins
and make pin-related assignments for each pin using the Pin Planner or Assignment
Editor. After you assign an I/O standard to each reserved pin, run the I/O
Assignment Analysis to ensure that there are no I/O standard conflicts in each I/O
bank. Figure 5–15 shows the work flow for assigning and analyzing pin-outs without
design files.

Chapter 5: I/O Management 5–29
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To assign and analyze pin-outs using the Start I/O Assignment Analysis command
without design files, perform the following steps:

1. In the Quartus II software, create a project.

2. Use the Pin Planner or a Tcl script to create pin locations and related assignments.
For I/O Assignment Analysis to determine the type of pin, you must reserve your
I/O pins. To create a reserved pin in the Pin Planner PackageView, right-click an
available pin, point to Reserve and click one of the available configurations.

1 If you make pin-related assignments in Mentor Graphics I/O Designer
software, you can import an .fx file into the Quartus II software.

3. To start the analysis, on the Processing menu, point to Start and click Start I/O
Assignment Analysis.

1 For information about using a Tcl script or command prompt to start the
analysis, refer to “Scripting Support” on page 5–48.

4. View the messages in the Compilation Report window, Fitter report file (<project
name>.fit.rpt), or in the Messages window.

5. Correct any errors and violations reported by the I/O Assignment Analysis.

Repeat steps 1 through 5 until all of the errors are corrected.

I/O Assignment Analysis with Design Files
During a full compilation, the Quartus II software does not report illegal pin
assignments until the Fitter stage. To validate pin assignments sooner, run the Start
I/O Assignment Analysis command after performing analysis and synthesis and
before performing a full compilation. Typically, the analysis runs quickly. Figure 5–16
shows the benefits of using the Start I/O Assignment Analysis command.

Figure 5–15. Assigning and Analyzing Pin-Outs without Design Files

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus II Project

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

5–30 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The rules that are checked by the I/O assignment analysis depend on the
completeness of the design. With a complete design, the Start I/O Assignment
Analysis command thoroughly checks the legality of all pin-related assignments.
With a partial design, which can be just the top-level wrapper file, the Start I/O
Assignment Analysis command checks the legality of those pin-related assignments
for which it has enough information.

For example, you might assign a clock to a user I/O pin instead of assigning it to a
dedicated clock pin, or design the clock to drive a PLL that has not yet been
instantiated in the design. Because the Start I/O Assignment Analysis command
does not account for the logic that the pin drives, it is not able to check that only a
dedicated clock input pin can drive the clock port of a PLL.

To obtain better coverage, analyze as much of the design as possible, especially logic
that connects to pins. For example, if your design includes PLLs or LVDS blocks, you
should include these MegaWizard Plug-In Manager-generated files in your project for
analysis (Figure 5–17).

Figure 5–16. Saving Compilation Time with the Start I/O Assignment Analysis Command

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time

Chapter 5: I/O Management 5–31
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To assign and analyze pin-outs using the Start I/O Assignment Analysis command
with design files, perform the following steps:

1. Create a project including your design files.

2. Create pin-related assignments with the Pin Planner or Assignment Editor.

1 You can also create pin-related assignments by importing them from a .csv
or .fx file, executing Tcl commands, or editing the .qsf file directly. On the
Processing menu, point to Start and click Start Analysis & Synthesis to
generate an internal mapped netlist.

For information about using a Tcl script or the command prompt to start the
analysis, refer to “Scripting Support” on page 5–48.

3. On the Processing menu, point to Start and click Start I/O Assignment Analysis
to start the analysis.

4. View the messages in the Compilation Report or in the Messages window.

5. Use the Pin Planner or Assignment Editor to correct any errors and violations
reported.

6. Use the Start I/O Assignment Analysis command until all the errors are corrected.

Figure 5–17. Assigning and Analyzing Pin-Outs with Design Files

Modify & Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open a Quartus II Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus II Project & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf

5–32 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Inputs for I/O Assignment Analysis
The Start I/O Assignment Analysis command reads the following inputs:

■ Internal mapped netlist

■ .qsf file

The internal mapped netlist is used when you have a partial or complete design. The
.qsf file is always used to read all pin-related assignments for analysis.

Generating a Mapped Netlist

The Start I/O Assignment Analysis command uses a mapped netlist, if available, to
identify the pin type and the surrounding logic. The mapped netlist is stored
internally in the Quartus II software database.

To generate a mapped netlist, on the Processing menu, point to Start and click Start
Analysis & Synthesis.

To use the quartus_map executable to run analysis and synthesis, type the following
command at a system command prompt:

quartus_map <project name> r

Creating Pin-Related Assignments

The I/O Assignment Analysis command reads a .qsf file containing all of your
pin-related assignments. These pin-related assignments include pin settings such as
I/O standards, drive strength, and location assignments. The following sections
highlight some of the location assignments you can make.

Reserving Pins

If you do not have any design files, you can still reserve pin locations and create
pin-related assignments. Reserving pins is necessary so that the Start I/O Assignment
Analysis command has information about the pin and the pin type (input, output, or
bidirectional) to correctly analyze the pins.

To reserve a pin, on the Assignments menu, click Assignment Editor. In the Category
list, click Pin to open the Pin assignment category. Double-click the cell in the
Reserved column that corresponds to the pin that you want to reserve. Use the
drop-down arrow to select from the reserved pin options (Figure 5–18).

f For more information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

Figure 5–18. Reserving an Input Pin with the Assignment Editor

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 5: I/O Management 5–33
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Location Assignments

You can create the following types of location assignments for your design and its
reserved pins:

■ Pin number

■ I/O bank

■ VREF group

■ Edge

1 I/O bank, VREF group, and Edge location assignments are supported only for Stratix
and Cyclone series device families.

You can assign a location to your pins using the Pin Planner or the Assignment Editor.
To make a pin location assignment using the Assignment Editor, on the Assignments
menu, click Assignment Editor and select the Pin category from the Category list.
Type the pin name and select a location from the Location list.

It is common to place a group of pins (or bus) with compatible I/O standards in the
same I/O bank or VREF group. For example, two buses with two compatible I/O
standards, such as 2.5 V and SSTL-II, can be placed in the same I/O bank.

An easy way to place large buses that exceed the pins available in a particular I/O
bank is to use edge location assignments. Edge location assignments improve the
circuit board routing ability of large buses, because they are close together near an
edge. Figure 5–19 shows Altera device package edges.

Suggested and Partial Placement

The Start I/O Assignment Analysis command automatically assigns suggested pin
locations to unassigned pins in your design so it can perform pin legality checks. For
example, if you assign an edge location to a group of LVDS pins, the I/O Assignment
Analysis command assigns pin locations for each LVDS pin in the specified edge
location and then performs legality checks.

To accept these suggested pin locations, on the Assignments menu, click
Back-Annotate Assignments, select Pin & device assignments, and click OK.
Back-annotation saves your pin and device assignments in the .qsf file.

Figure 5–19. Die View and Package View of the Four Edges on an Altera Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

5–34 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Understanding the I/O Assignment Analysis Report and Messages
The Start I/O Assignment Analysis command generates detailed analysis reports and
a .pin file. The detailed messages in the reports help you quickly understand and
resolve pin assignment errors. Each message includes a related node name and a
description of the problem.

To view the report file, on the Project menu, click Compilation Report. The Fitter
section of the Compilation Report contains the following sections:

■ Summary

■ Settings

■ Resource Section

■ I/O Rules Section

■ Device Options

■ Advanced Fitter Data

■ Pin-Out File

■ Fitter Messages

The Resource Section categorizes the pins as Input Pins, Output Pins, and Bidir Pins.
View the utilization of each I/O bank in your device in the I/O Bank Usage section
(Figure 5–20).

The I/O Rules Section includes detailed information about the I/O rules tested
during I/O Assignment Analysis, in three sub-reports. The I/O Rules Summary
report provides a quick summary of the number of I/O rules tested and how many
applicable rules passed, how many failed, and how many were unchecked because of
other failing rules (Figure 5–21).

Figure 5–20. I/O Bank Usage Summary in the I/O Assignment Analysis Report

Chapter 5: I/O Management 5–35
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The I/O Rules Details report provides detailed information on all I/O rules.
Applicable rules indicate whether they passed, failed, or could not be checked
(Figure 5–22). All rules are given a level of severity from Low to Critical to indicate
their level of importance for an effective analysis.

The I/O Rules Matrix shows how each I/O rule was tested on each pin in the design
(Figure 5–23). Applicable rules that could be checked either pass or fail for each pin.

Figure 5–21. I/O Rules Summary Report

Figure 5–22. I/O Rules Details Report

5–36 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To find and make pin assignment adjustments on a pin that fails an I/O rule,
right-click the pin name. Point to Locate and select a location where the pin exists,
such as the Pin Planner. Make appropriate changes to fix the pin assignments and
rerun I/O Assignment Analysis. Check the resulting I/O Rules Matrix to verify that
your changes fixed the problem and allowed the failing pin assignment to pass. To
rerun I/O rule analysis, on the Processing menu, point to Start and click Start I/O
Assignment Analysis.

The Fitter Messages page stores all messages including errors, warnings, and
information messages.

You can view the detailed messages in the Fitter Messages page in the Compilation
Report and in the Processing tab in the Messages window. To open the Messages
window, on the View menu, point to Utility windows and click Messages.

Use the Location box to help resolve error messages. Select from the Location list and
click Locate.

Figure 5–24 shows an example of error messages reported by I/O Assignment
Analysis.

ou can correct the I/O Assignment Analysis failure shown for the pin in Figure 5–24
by setting the proper current drive strength for the I/O standard assigned for that pin.
Current drive strength can be set in the Assignment Editor using the “Current Drive
Strength” assignment.

f For more information about the Assignment Editor, refer to the Assignment Editor
chapter in volume 2 of the Quartus II Handbook.

Figure 5–23. I/O Rules Matrix

Figure 5–24. Error Message Report by I/O Assignment Analysis

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 5: I/O Management 5–37
Validating Pin Assignments

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The effectiveness of I/O Assignment Analysis is relative to the completeness of your
pin-related assignments and design. To ensure your design functions correctly,
include all pin-related assignments and as many design files as possible in your
Quartus II project.

Table 5–3 on page 5–37 and Table 5–4 on page 5–38 list a subset of the I/O rule checks
performed when you run I/O Assignment Analysis with and without design files.

f For more detailed information about each I/O rule, refer to the appropriate device
handbook.

Table 5–3. Examples of I/O Rule Checks (Note 1)

Rule Description
Device

Families
HDL

Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank against the
number of pins allowed in the I/O bank.

All No

I/O bank VCCIO voltage
compatibility

Checks that no more than one VCCIO is required for the pins
assigned to the I/O bank.

All No

I/O bank VREF voltage
compatibility

Checks that no more than one VREF is required for the pins
assigned to the I/O bank.

All No

I/O standard and location
conflicts

Checks whether the pin location supports the assigned I/O
standard.

All No

I/O standard and signal
direction conflicts

Checks whether the pin location supports the assigned I/O
standard and direction. For example, certain I/O standards on a
particular pin location can only support output pins.

All No

Differential I/O standards
cannot have open drain
turned on

Checks that open drain is turned off for all pins with a differential
I/O standard.

All No

I/O standard and drive
strength conflicts

Checks whether the drive strength assignments are within the
specifications of the I/O standard.

All No

Drive strength and location
conflicts

Checks whether the pin location supports the assigned drive
strength.

All No

BUSHOLD and location
conflicts

Checks whether the pin location supports BUSHOLD. For
example, dedicated clock pins do not support BUSHOLD.

All No

WEAK_PULLUP and
location conflicts

Checks whether the pin location supports WEAK_PULLUP (for
example, dedicated clock pins do not support WEAK_PULLUP)

All No

Electromigration check Checks whether combined drive strength of consecutive pads
exceeds a certain limit. For example, the total current drive for 10
consecutive pads on a Stratix II device cannot exceed 200 mA.

All No

PCI_IO clamp diode,
location, and I/O standard
conflicts

Checks whether the pin location along with the I/O standard
assigned supports PCI_IO clamp diode.

All No

SERDES and I/O pin location
compatibility check

Checks that all pins connected to a SERDES in your design are
assigned to dedicated SERDES pin locations.

All Yes

PLL and I/O pin location
compatibility check

Checks whether pins connected to a PLL are assigned to the
dedicated PLL pin locations.

All Yes

Note to Table 5–3:

(1) The supported device families are: Arria® II GX, Arria GX, Cyclone, Cyclone II, Cyclone III, HardCopy, Stratix, Stratix II, Stratix II GX, Stratix III,
Stratix IV, Stratix GX, and MAX II devices.

5–38 Chapter 5: I/O Management
Validating Pin Assignments

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Using Output Enable Group Logic Option Assignments with I/O Assignment Analysis
Each device has a certain number of VREF pins, and each VREF pin supports a certain
number of I/O pins. Check the device pin-outs to locate the VREF pins and their
associated I/O pins. A VREF pin and its supported I/O pins are called a VREF bank.
The VREF pins are only used for VREF I/O standards; for example, SSTL and HSTL
input pins. VREF outputs do not require the VREF pin. When a voltage-referenced
input is present in a VREF bank, only a certain number of outputs can be present in
that VREF bank. For the Stratix II flip chip package, only 20 outputs can be present in
a VREF bank when a VREF I/O standard input is present in that bank.

For interfaces that use bidirectional VREF I/O pins, the VREF restriction must be met
when the pins are driving in either direction. If a set of bidirectional signals are
controlled by different output enables, the I/O Assignment Analysis command treats
these as independent output enables. Use the output enable group logic option
assignment to treat the set of bidirectional signals as a single output enable. This is
important in the case of external memory interfaces.

For example, in the case of a DDR2 interface in a Stratix II device, a Stratix II device
can have 30 pins in a VREF group. Each byte lane for a ×8 DDR2 interfaces has 1 DQS
pin and 8 DQ pins, for a total of 9 pins per byte lane. DDR2 uses SSTL18 as its I/O
standard, which is a VREF I/O standard. In typical interfaces, each byte lane has its
own output enable. In this example, the DDR2 interface has 4 byte lanes. Using 30 I/O
pins in a VREF group, there are 3 byte lanes and an extra byte lane that supports the 3

Table 5–4. SSN-Related Rules

Rule Description

Device
Families

(1)
HDL

Required?

I/O bank can not have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in the
same I/O bank as a DPA.

Stratix II

Stratix GX

No

A PLL I/O bank does not support both a
single-ended I/O and a differential signal
simultaneously

Checks that there are no single-ended I/O pins
present in the PLL I/O Bank when a differential
signal exists.

Stratix II No

Single-ended output is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended output pins are a
certain distance away from a differential I/O pin.

All No

Single-ended output has to be a certain
distance away from a VREF pad

Checks whether single-ended output pins are a
certain distance away from a VREF pad.

Cyclone II

Cyclone

No

Single-ended input is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended input pins are a
certain distance away from a differential I/O pin.

Cyclone II

Cyclone

No

Too many outputs or bidirectional pins in a
VREFGROUP when a VREF is used

Checks that there are no more than a certain
number of outputs or bidirectional pins in a
VREFGROUP when a VREF is used.

All No

Too many outputs in a VREFGROUP Checks whether too many outputs are in a
VREFGROUP.

All No

Note to Table 5–4:

(1) “All” includes the following device families: Arria II GX, Arria GX, Cyclone, Cyclone II, Cyclone III, HardCopy, Stratix, Stratix II, Stratix II GX,
Stratix III, Stratix IV, Stratix GX, and MAX II devices.

Chapter 5: I/O Management 5–39
Validating Pin Assignments after Full Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

remaining pins. If you do not use the output enable group logic option assignment,
the I/O Assignment Analysis command analyzes each byte lane as an independent
group driven by a unique output enable. With this arrangement, the worst-case
scenario is when the 3 pins are inputs, and the other 27 pins are outputs. In this case,
the 27 output pins violate the 20-output pin limit.

In a DDR2 interface, all DQS and DQ pins are always driven in the same direction.
Therefore, the I/O Assignment Analysis reports an error that is not applicable to your
design. Assigning an output enable group logic option assignment to the DQS and
DQ pins forces the I/O Assignment Analyzer to check these pins as a group driven by
a common output enable. When using the output enable group logic option
assignment, the DQS and DQ pins are checked as all input pins or all output pins.
This does not violate the rules described in Table 5–3 on page 5–37 and Table 5–4 on
page 5–38.

The value for the output enable group logic option assignment should be an integer
value. All sets of signals that are driving in the same direction should be given the
same integer value. You can also use the output enable group logic option assignment
with pins that are driven only at certain times. For example, the data mask signal in
DDR2 interfaces is an output signal, but it is driven only when the DDR2 is writing
(bidirectional signals are outputs). Therefore, an output enable group logic option
assignment should assign to the data mask the same value as to the DQ and DQS
signals.

Output enable groups can also be used on VREF input pins. If the VREF input pins are
not active during the time the outputs are driving, add the VREF input pins to the
output enable group. This procedure removes the VREF input pins from the VREF
analysis. For example, the QVLD signal for RLDRAM II is only active during a read.
During a write, the QVLD pin is not active and so it does not count as an active VREF
input pin within the VREF group. The QVLD pins can be placed in the same output
enable group as the RLDRAM II data pins.

Validating Pin Assignments after Full Compilation
If you used the Live I/O check feature during pin placements, many of the I/O
assignments have been verified immediately as you made the assignment. There are
some placement rules that are checked only during I/O assignment analysis and full
compilation of your design. The Quartus II software validates I/O assignments at
three levels. The first level checking is done with the Live I/O check feature ON. A
more comprehensive level of checking is performed with I/O Assignments Analysis.
The final I/O timing check is done when you fully compile your design. (To better
understand I/O timing analysis, refer to “I/O Timing Analysis” on page 5–40.)

To avoid costly board re-spins, you must perform full validation with full compilation
with complete design files and constraints. With timing information, the Quartus II
Fitter makes intelligent placements and routing to achieve optimal timing
performance in your design. Use the TimeQuest SDC editor to create timing
constraints for inputs, outputs, and bidirectional pins. If you are using the Quartus II
Classic Timing Analyzer, specify timing constraints on the Classic Timing Analyzer
Settings page of the Settings dialog box.

5–40 Chapter 5: I/O Management
I/O Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about the Quartus II TimeQuest Timing Analyzer and the
Classic Timing Analyzer, refer to the Timing Analysis section of volume 3 of the
Quartus II Handbook.

I/O Timing Analysis
Timing analysis is usually run during a full compilation of your design or with early
timing estimate runs. You can also run timing analysis independently after full
compilation from the Processing menu. For example, if you change the slew rates or
current strengths of some I/O pins as ECOs, you do not have to recompile the entire
design, but only run timing analysis to verify the timing of your design.

As part of I/O planning, especially with high-speed designs, you should take
board-level signal integrity and timing into account. When adding an FPGA device
with high-speed interfaces to a board design, the quality of the signal at the far end of
the board route, as well as the propagation delay in getting there, is vital for proper
system operation

As part of I/O planning in your FPGA design, you must understand I/O timing
results in the Quartus II software that are reported after performing timing analysis
on your design. If you have all your design files complete and have completed full
compilation, all the timing checks related to I/O timing are covered during timing
analysis of your design. Static timing analysis is performed when you compile your
design in the Quartus II software. You must understand I/O timing and what factors
affect I/O timing paths in your design. One important factor that counts greatly in
I/O timing results is how accurately you specify the output loads at the output and
bidirectional pins in your FPGA design. Incomplete I/O constraints can affect your
I/O timing results.

The Quartus II software supports three different methods of I/O timing analysis:

■ I/O timing using a default or user-specified capacitive load with no signal
integrity analysis (default)

The Quartus II TimeQuest Timing Analyzer and the Quartus II Classic Timing
Analyzer create timing reports that measure tCO to an I/O pin using a default or
user-specified value for a capacitive load.

■ The Quartus II software Enable Advanced I/O Timing option utilizing a
user-defined board trace model to produce enhanced timing reports from
accurate, “board-aware” simulation models

The Quartus II software Enable Advanced I/O Timing option enables you to
configure a complete board trace model for each I/O standard or pin used in your
design. With Enable Advanced I/O Timing turned on, the Quartus II TimeQuest
Timing Analyzer uses the results of simulations of the I/O buffer, package, and
board trace model to generate more accurate I/O delays and extra reports to give
insight into signal behavior at the system level. You can use these advanced timing
reports as a guide to make changes to your I/O assignments and board design to
improve timing and signal integrity.

http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf

Chapter 5: I/O Management 5–41
I/O Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Full board routing simulation in third-party tools using Altera-provided or
Quartus II software generated IBIS or HSPICE I/O models

The creation of simulation model files for use by third-party board simulation
tools is achieved with the IBIS and HSPICE Writers. The IBIS and HSPICE Writers
in the Quartus II software can export accurate simulation models for use in
applications such as Mentor Graphics HyperLynx and Synopsys HSPICE.

This section describes the first and second methods.

1 I/O timing using a default or user-specified capacitive load is not supported for
Cyclone III, Stratix III, and Stratix IV devices. Use the Enable Advanced I/O Timing
option for Cyclone II, Stratix III, and Stratix IV devices.

f For information about creating IBIS and HSPICE models with the Quartus II software
and integrating those models into HyperLynx and HSPICE simulations, refer to the
Signal Integrity Analysis with Third Party Tools chapter in volume 2 of the Quartus II
Handbook.

I/O Timing and Power with Capacitive Loading
When calculating tCO and power for output and bidirectional pins, the Quartus II
TimeQuest Timing Analyzer and the PowerPlay Power Analyzer use a bulk
capacitive load. This is the default method for these pins. You can adjust the value of
the capacitive load per I/O standard to get tCO and power measurements that more
accurately reflect the behavior of the output or bidirectional net on your PCB. Input
pins ignore this setting. To adjust the value of the capacitive load, on the Assignments
menu, click Device. Click Device & Pin Options and click the Capacitive Loading
tab (Figure 5–25).

Figure 5–25. Capacitive Tab of the Device and Pin Options Dialog Box

http://www.altera.com/literature/hb/qts/qts_qii53020.pdf

5–42 Chapter 5: I/O Management
I/O Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

All of the available I/O standards for your selected device are listed with their default
loading values in picofarads (pF). Adjust the loading values as desired for the I/O
standards used in your design. Power and tCO measurements in the Compilation
Report are adjusted based on the settings.

You can also adjust the load on any individual pin in the Groups list or All Pins list in
the Pin Planner by adding the Output Pin Load column. Right-click anywhere in
either list and select Customize Columns. Select Output Pin Load from the list of
available custom columns and add it to the list of visible columns. You can customize
the load for individual pins or multiple pins with different I/O standards.

f For more information about capacitive loading, the devices that support it, and how
tCO and power are adjusted based on the setting, refer to the Quartus II Help.

Enabling and Configuring Advanced I/O Timing
With the Quartus II software Enable Advanced I/O Timing option turned on, you can
expand upon the basic timing and power measurements made with the Capacitive
Loading settings. The Enable Advanced I/O Timing option gives you the ability to
fully define not only the capacitive load, but also any termination components and
trace impedances in the board routing for any output pin or bidirectional pin in
output mode. You can configure an overall board trace model for each I/O standard
as well as customize the model for specific pins using a graphical interface.

When the Enable Advanced I/O Timing option is turned on, the board trace model
replaces the Capacitive Loading tab settings because the load is included in the
model. For timing measurements, the entire board trace model is taken into account
when calculating I/O delays. For power measurements, an effective capacitive load is
used based on the sum of the capacitive elements in the model. This includes the Near
capacitance, Far capacitance, and Transmission line distributed capacitance
elements of the model.

1 For Cyclone III and Stratix IV devices, advanced I/O timing is the only way to
measure I/O timing. Advanced I/O timing is supported for Stratix II devices also. All
other devices use capacitive loading for I/O tCO and power measurements. Check the
Altera website at www.altera.com to determine which devices are supported in newer
versions of the Quartus II software. For Cyclone III and Stratix III devices, the Enable
Advanced I/O Timing option is turned on by default and is always performed when
you run the Quartus II TimeQuest timing analyzer.

Before you configure a board trace model for advanced I/O timing, you must turn on
Enable Advanced I/O Timing if your selected device supports it. All devices in each
supported family work with advanced I/O timing. If the Settings dialog box is not
currently open, on the Assignments menu, click Settings. In the Category list, click
the “+” icon to expand Timing Analysis Settings. Select TimeQuest Timing
Analyzer. The TimeQuest Timing Analysis page appears. Turn on Enable Advanced
I/O Timing.

http://www.altera.com/literature

Chapter 5: I/O Management 5–43
I/O Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Define Overall Board Trace Models
You can now define an overall board trace model for each I/O standard in your
design. This is the default model for all pins that use a particular I/O standard. After
configuring the overall board trace model, customize the model for specific pins using
the Board Trace Model view in the Pin Planner.

With the Settings dialog box open, in the Category list, click Device. Click Device &
Pin Options and click the Board Trace Model tab (Figure 5–26).

1 You can still click the Capacitive Loading tab. However, because you can configure all
capacitive loading settings as part of the board trace model, the tab indicates that you
must use the settings in the Board Trace Model tab.

All of the I/O standards available to the device are listed. Select any I/O standard
from the list. The Board trace model list displays the names and values of all
configurable components of the board trace for the selected I/O standard.
Components of the model are initially set to short, open, or a numeric value
depending on the component. The default settings for components in the model for
each I/O standard are device-specific and match the default test model used for
calculating delay when the Enable Advanced I/O Timing option is turned off. In this
way, default delay measurements are the same whether or not the Enable Advanced
I/O Timing option is used.

f For information about the default models used for measuring I/O delay, refer to the
DC & Switching Characteristics chapter in the relevant device handbook.

Figure 5–26. Board Trace Model Tab of the Device and Pin Options Dialog Box

5–44 Chapter 5: I/O Management
I/O Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

All of the component values listed in Figure 5–26 are adjustable. For differential I/O
standards, the component values you set are used for both the positive and negative
signals of a differential pair. An additional component, Far differential resistance, is
also included. To reset individual settings to their defaults, leave the setting blank. If
you want all the settings for an I/O standard to revert to their original settings, click
Reset. Click OK to close the Device & Pin Options dialog box. Click OK again to
close the Settings dialog box.

1 Any component value changes made in the Board Trace Model tab for a particular
I/O standard are reflected in the Board Trace Model view in the Pin Planner of all pins
assigned with the same I/O standard (described in “Customize the Board Trace
Model in the Pin Planner”). However, custom component value changes made to
selected pins in the Board Trace Model view in the Pin Planner take priority and are
not affected by changes made to an I/O standard in the Board Trace Model tab.

Customize the Board Trace Model in the Pin Planner
In addition to the views available in the Package View in the Pin Planner, you can also
view a graphical representation of the board trace model you have configured using
the Board Trace Model view. To open the Board Trace Model view, right-click on an
output or bidirectional pin in the Groups list, All Pins list, or Package View and click
Board Trace Model. The Board Trace Model view opens in a floating window
(Figure 5–27).

For differential signals, the Board Trace Model view displays the routing and
components for both the positive and negative signals of the differential pair
(Figure 5–28).

Figure 5–27. Board Trace Model View

Chapter 5: I/O Management 5–45
I/O Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 Any changes made to the Board Trace Model view for a differential signal pair must
be performed on the positive signal of the pair. The settings must match between the
positive and negative signals of a differential pair, so the changes are automatically
reflected in the settings for the negative signal.

Double-click a component value to edit it. For numerical values, use standard unit
prefixes such as p, n, and k to represent pico, nano, and kilo, respectively. To short a
series component or have an open circuit for a parallel component, double-click the
component value and select short or open from the list.

All the assignments for board trace models you specify in the schematic are saved to
the Quartus II Settings File (.qsf). You can also enter these Tcl assignment commands
in the .qsf to specify the board trace parameters for an output or bidirectional pin. The
examples in Example 5–8 use Tcl assignments to specify board trace models.

f For more details about configuring component values for a board trace model,
including a complete list of the supported unit prefixes and setting the values using
Tcl scripts, refer to the Quartus II Help.

Figure 5–28. Differential Board Trace Model View

Example 5–8. Specifying Board Trace Models

setting the near end series resistance model of sel_p output pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to se1_p
Settting the far end capacitance model for sel_p output signal to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p

5–46 Chapter 5: I/O Management
I/O Timing Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To view a display of the model for a particular pin, in the Package View, Groups list,
or All Pins list, click on the pin. This changes the Board Trace Model view to display
the model of the pin. To select multiple pins that share the same I/O standard, open
the Board Trace Model view and edit the model for all of the selected pins. If an input
pin or multiple pins with different I/O standards are selected, the Board Trace Model
view window indicates that it cannot display the model for the selected pin or pins.

The components in the Board Trace Model view correspond to the components listed
in the Board Trace Model tab directly and the settings match initially. You can click
and edit any value in the Board Trace Model view to customize the model for the
selected pin or pins. Changes made in the Board Trace Model view do not affect the
settings in the Board Trace Model tab.

Configuring Board Trace Models
The Quartus II software provides board trace model templates for various I/O
standards where you can fill in various parameters. Figure 5–27 shows the template
for a 2.5-V I/O standard. This model consists of near-end and far-end board
component parameters. Each parameter is configurable in the Board Trace Model tab
of the Device & Pin Options window.

To configure board trace models for the pins in your design, define the model for each
I/O standard in the Board Trace Model tab. With the overall model defined, use the
Board Trace Model view in the Pin Planner to customize individual pins as required.
These customizations take priority over the global settings in the Board Trace Model
tab on a per-pin and per-model component basis.

Modeling of the near-end of the board trace includes the elements which are close to
the FPGA and modeling of the far-end includes the elements which are at the receiver
end of the link, closer to the receiving device. The topology represented in the
Quartus II board trace model is conceptual and does not necessarily match the board
trace component for component. For example near-end model parameters can
represent FPGA-end discrete termination and breakout traces. Far-end modeling can
represent the bulk of the board trace to discrete external memory components, and the
far end termination network. The same circuit can be analyzed with near-end
modeling of the entire board, including memory component termination, and far-end
modeling of the actual memory component.

The far-end capacitance (Cf) shown in Figure 5–28 represents the external-device or
multiple-device capacitive load. If you have mulitple devices on the far-end, you need
to find the equivalent capacitance at the far-end, taking into account all receiver
capacitances. The far end capacitance Cf is can be the sum of all the receiver
capacitances. Specifications for external device capacitance values can be found in the
datasheet for the receiving device or devices.

The Quartus II software models lossless transmission lines, and does not require a
transmission-line resistance value. Only distributed inductance (L) and capacitance
(C) values are needed. The distributed L and C values of transimission lines must be
entered on a per-inch basis, and can be obtained from the PCB vendor or
manufacturer, the CAD Design tool, or a signal integrity tool like Mentor Graphics
Hyperlynx.

Chapter 5: I/O Management 5–47
I/O Timing Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Near-End vs Far-End Timing Analysis
With advanced I/O timing analysis, you have the option of selecting a near-end or
far-end point for your I/O timing. This option can be selected on the I/O Timing tab
as shown in Figure 5–26. With near-end timing, the timing is analyzed to the FPGA
pin, ending at the verticle dashed line shown in Figure 5–27 seperating the FPGA I/O
pin and off-chip components.

By default, advanced I/O timing analysis analyzes output I/O timing to the FPGA
pin. When you use the near-end option, you can use a set_output_delay SDC
timing constraint to account for the delay across the board. However, when a far-end
I/O timing endpoint is chosen, then advanced I/O timing analysis analyzes timing to
the external device input, at the far end of the board trace. Whether you choose a
near-end or far-end timing endpoint, the board trace models are taken into account
while performing timing analysis.

Create Signal Integrity Result Reports
After you have turned on Enable Advanced I/O Timing and configured board trace
models for the pins you want to analyze, compile your project or run the Quartus II
TimeQuest Timing Analyzer after a full compilation. The Enable Advanced I/O
Timing option creates signal integrity subreports under TimeQuest Timing Analyzer
in the Compilation Report window.

The Board Trace Model Assignments report (Figure 5–29) summarizes the board trace
model component settings for each output and bidirectional signal.

The Signal Integrity Metrics subfolder contains detailed reports listing all of the
metrics calculated by the Enable Advanced I/O Timing option (Figure 5–30).

Figure 5–29. Board Trace Model Assignments Report

Figure 5–30. Example of Slow-Corner Signal Integrity Metrics Report

5–48 Chapter 5: I/O Management
Incorporating PCB Design Tools

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Slow- and Fast-Corner Signal Integrity Metrics reports are generated by the
Enable Advanced I/O Timing option. They list, in tabular format, all of the signal
integrity metrics calculated by the Enable Advanced I/O Timing option, based on the
board trace model settings for each output or bidirectional pin. The reports contain
many metrics, including measurements at both the FPGA and at the far-end load of
board delay, steady state voltages, and rise and fall times.

The Slow- or Fast-Corner Signal Integrity Metrics reports are generated depending on
the Timing Netlist option in the Quartus II TimeQuest Timing Analyzer. To select
whether to create a slow- or a fast-corner report, in the TimeQuest Timing Analyzer
on the Netlist menu, click Create Timing Netlist. Under Delay model, select Slow
corner or Fast corner to create reports of that type.

For complete descriptions of all of the metrics calculated when the Enable Advanced
I/O Timing option is turned on and diagrams illustrating the metrics on output
waveforms, refer to Signal Integrity Metrics in Quartus II Help. For more information
about board-level signal integrity and tips on how to improve signal integrity in your
high-speed designs, refer to the Altera Signal Integrity Center.

f For information about the configuration and use of the Quartus II TimeQuest Timing
Analyzer, refer to the Quartus II Help or Section III: Timing Analysis in volume 3 of the
Quartus II Handbook.

Incorporating PCB Design Tools
Signal and pin assignments are initially made by the FPGA or ASIC designer and it is
up to the board designer to transfer these assignments to the symbols used in their
system circuit schematics and board layout correctly. As the board design progresses,
pin reassignments might be requested or required to optimize the layout. These
reassignments must in turn be relayed to the FPGA designer, so that the new
assignments can be validated with the I/O Assignment Analyzer and processed
through an updated place-and-route of the FPGA.

The Quartus II software interacts with board layout tools by importing and exporting
pin information files, including the .qsf, .pin, and .fx files.

f For more information about incorporating PCB design tools, refer to the Cadence PCB
Design Tools Support and Mentor Graphics PCB Design Tools Support chapters in
volume 2 of the Quartus II Handbook.

Scripting Support
A Tcl script allows you to run procedures and determine settings described in this
chapter. You can also run some of these procedures at a command prompt.

For detailed information about specific scripting command options and Tcl API
packages, type the following command at a system command prompt to run the
Quartus II Command-Line and Tcl API Help browser:

quartus_sh --qhelp r

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook.

http://preview:9200/9.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_sig_int_metrics_report.htm
http://preview:9200/9.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_sig_int_metrics_report.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf

Chapter 5: I/O Management 5–49
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Running the I/O Assignment Analysis
You can run I/O Assignment Analysis with a Tcl command or with a command run at
a command prompt. For more information about running the I/O Assignment
Analysis, refer to “Understanding the I/O Assignment Analysis Report and
Messages” on page 5–34.

Enter the following in a Tcl console or script:

execute_flow -check_ios r
Type the following at a (non-Tcl) system command prompt:

quartus_fit <project name> --check_ios r

Generating a Mapped Netlist
You can generate a mapped netlist with a Tcl command or with a command-line
command. For more information about generating a mapped netlist, refer to
“Generating a Mapped Netlist” on page 5–32.

Enter the following in the Tcl console or in a script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name> r

Reserving Pins
Use the following Tcl command to reserve a pin:

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

For more information about reserving pins, refer to “Reserving Pins” on page 5–32.

Valid values are:

■ "AS BIDIRECTIONAL"

■ "AS INPUT TRI-STATED"

■ "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

■ "AS OUTPUT DRIVING GROUND"

■ "AS SIGNALPROBE OUTPUT"

1 Include the quotes when specifying the value.

Location Assignments
Use the following Tcl command to assign a signal to a pin or device location.

set_location_assignment <location> -to <signal name> r
For more information about location assignments, refer to “Location Assignments” on
page 5–33.

5–50 Chapter 5: I/O Management
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Valid locations are pin location names, such as PIN_A3. The Stratix and Cyclone
series of devices also support edge and I/O bank locations. Edge locations are
EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations
include IOBANK_1 up to IOBANK_n, in which n is the number of I/O banks in a
particular device.

f For more information on I/O banks in your device, refer to the
appropriate device handbook.

Conclusion
The Quartus II software provides many tools and features to help you with the I/O
planning process. The I/O assignment analysis process offers the ability to validate
pin assignments in all design stages, even before the development of the design. The
ability to import and export assignments between the Quartus II software and other
PCB tools also enables you to make iterative changes efficiently. Finally, the ability to
enter a board trace model and create advanced timing reports based on how I/O
signals are routed on a board truly makes the Quartus II software “board-aware.”

Referenced Documents
The following documents were referenced in this chapter:

■ AN 90: SameFrame Pin-Out Design for FineLine BGA Packages

■ AN 315: Guidelines for Designing High-Speed FPGA PCBs

■ AN 366: Understanding I/O Output Timing in Altera Devices

■ AN 476: Impact of I/O Settings on Signal Integrity in Stratix III Devices

■ Altera Device Package Information Datasheet

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Cadence PCB Design Tools Support chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Data (DQ) and Data Strobe (DQS) Megafunction User Guide (ALTDQ and ALTDQS)

■ DC & Switching Characteristics chapter in volume 1 of the Stratix II Device Handbook

■ Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Mentor Graphics PCB Design Tools Support chapter in volume 2 of the Quartus II
Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Support for HardCopy Series Devices chapter in volume 1 of the Quartus II
Handbook

http://www.altera.com/literature/an/an090.pdf
http://www/literature/an/an315.pdf
http://www.altera.com/literature/an/an366.pdf
http://www.altera.com/literature/an/AN476.pdf
http://www.altera.com/literature/ds/dspkg.pdf
http://www/literature/hb/qts/qts_qii52006.pdf
http://www/literature/hb/qts/qts_qii52001.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/ug/ug_altdq_dqs.pdf
http://www/literature/hb/stx2/stx2_sii51005.pdf
http://www/literature/hb/qts/qts_qii52017.pdf
http://www/literature/hb/qts/qts_qii52012.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 5: I/O Management 5–51
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of Quartus II Handbook

■ Signal Integrity Analysis with Third Party Tools chapter in volume 2 of the Quartus II
Handbook

■ Simultaneous Switching Noise Analysis (SSN) and Optimization chapter in volume 2
of the Quartus II Handbook

■ Stratix III Device Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ Section III: Timing Analysis in volume 3 of the Quartus II Handbook

Document Revision History
Table 5–5 shows the revision history for this chapter.

Table 5–5. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Reorganized entire chapter to include links to Quartus II help for
procedural information previously included in the chapter.

■ Added documentation on near-end and far-end advanced I/O timing

Updated for the Quartus II
software version 9.1
release.

March 2009
v9.0.0

■ Updated “Pad View Window” on page 5–20.

■ Added new figures:

Figure 5–15

Figure 5–16

■ Added new section “SSN Visualization View” on page 5–17

■ Added new section “Creating Exclusive Group Assignments” on
page 5–17

Updated for the Quartus II
software version 9.0
release.

November 2008
v8.1.0

■ Changed to 8½” x 11” page size.

■ Reorganized chapter

■ Updated the following sections:

“I/O Planning Overview” on page 5–5

“Early I/O Planning Using the Pin Planner” on page 5–8

“Create or Import a Megafunction or IP MegaCore Variation from
the Pin Planner” on page 5–9

“Configure Nodes” on page 5–10

“I/O Analysis for Designs with Pins Only” on page 5–14

“Using the Pin Planner” on page 5–20

“Validating Pin Assignments after Full Compilation” on page 5–76

“Accepting Fitter Placements—Back-Annotating Assignments” on
page 5–76

“I/O Timing Analysis” on page 5–77

Updated for the Quartus II
software version 8.1
release.

http://www/literature/hb/qts/qts_qii53018.pdf
http://www/literature/hb/qts/qts_qii53020.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii5v3_02.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf

5–52 Chapter 5: I/O Management
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2008
v8.0.0

■ Reorganized chapter

■ Updated links

■ Updated the following sections:

“Importing and Exporting Pin Assignments” on page 5–16

“I/O Planning Overview” on page 5–5

“Creating Pin-Related Assignments” on page 5–19

“Using Hardware Description Language (HDL)” on page 5–54

“Validating Pin Assignments” on page 5–56

“I/O Timing Analysis” on page 5–76

“.pin File” on page 5–18

“Import a Megafunction or IP MegaCore Variation from the Pin
Planner” on page 5–13

“Using the Live I/O Check Feature to Validate Pin Assignments” on
page 5–57

“Pin Migration View” on page 5–30

“altera_attribute” on page 5–55

“Assigning a Location for Differential Pins” on page 5–37

“Synthesis Attributes” on page 5–55

■ Added the following sections:

“Swapping Pin Locations” on page 5–42

“Using Low-Level I/O Primitives” on page 5–56

“Advanced I/O Timing in the Quartus II Software” on page 5–78

“Enabling and Configuring Advanced I/O Timing” on page 5–78

■ Updated figures to reflect updates to the Quartus II software

Updated for the Quartus II
software version 8.0
release.

Table 5–5. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

6. Simultaneous Switching Noise (SSN)
Analysis and Optimizations

Introduction
FPGA design has evolved from small programmable circuits to competing with
multimillion-gate ASICs. At the same time, the I/O counts on FPGAs and logic
density requirements have increased exponentially. Higher-speed interfaces in FPGAs
that include high-speed serial interfaces and memory interfaces require careful
interface design on the PCB. The timing and signal integrity requirements of these
interfaces are pushing designers to address the effects early in the design
development cycle. One example is the effect of simultaneous switching noise (SSN).
SSN is defined as a noise voltage induced onto a victim I/O pin of a device due to the
switching behavior of other aggressor I/O pins in the device. SSN noise often leads to
the degradation of signal integrity by causing signal distortion, thereby reducing the
noise margin of a system.

Today’s complex FPGA system design is incomplete without addressing the integrity
of signals coming in to and out of the FPGA. SSN is one of the signal integrity
problems faced during FPGA design. Altera recommends that you perform SSN
analysis early in your FPGA design and tape out your PCB with complete SSN
analysis of your FPGA in the Quartus® II software. This chapter describes the SSN
Analyzer and Optimization tool introduced in the Quartus II software version 9.0 and
covers the following topics:

■ “Definitions”

■ “Understanding SSN and its Effects” on page 6–2

■ “SSN Estimation Tools from Altera” on page 6–5

■ “Design Factors Affecting SSN Results” on page 6–5

■ “Using the SSN Analyzer in the Quartus II Software” on page 6–5

■ “SSN Analyzer Usage Models” on page 6–16

■ “Scripting Support” on page 6–20

■ “Run Time Considerations in SSN Analysis” on page 6–20

■ “SSN Optimization” on page 6–22

Definitions
The terminology used in this chapter includes:

Aggressor: Output or bidirectional signal that contributes to the noise for a victim.

PDN: Power Distribution Network

QH: Quiet High signal level on a pin

QHN: Quiet High Noise on a pin in volts

QL: Quiet Low signal level on a pin

QLN: Quiet Low Noise on a pin in volts

QII52018-9.1.0

6–2 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN and its Effects

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

SI: Signal Integrity (a superset of SSN covering all noise sources)

SSN: Simultaneous Switching Noise

SSOs: Simultaneous Switching Outputs (which are either the output or bidirectional
pins)

Victim: An input, output, or bidirectional pin that is analyzed during SSN analysis.
During SSN analysis, each pin is analyzed as a victim. If it is an output or bidirectional
pin, the same pin acts as an aggressor for other pins.

Understanding SSN and its Effects
SSN is defined as a noise voltage induced onto a single victim I/O pin in your FPGA
device. The voltage is induced by the switching behavior of other aggressor I/O pins
in the device. SSN can be divided into two types of noise: voltage noise and timing
noise.

Figure 6–1 shows a system with three pins. Two of the pins (A and C) are switching,
while one pin (B) is quiet. If the pins are driven in isolation, the voltage waveforms at
the output of the buffers appear as the solid curves at the left of the figure. However,
when the pins are switched simultaneously, the noise generated by pins A and C
switching is injected onto the other pins, manifesting itself as a voltage noise on pin B
and a timing noise on pins A and C, as shown by the dotted curves in the figure.

Voltage noise is measured as the worst-case change in voltage of a signal due to SSN.
When a signal is quiet high (QH), it is measured as the change in voltage toward 0 V.
When a signal is quiet low (QL), it is measured as the change in voltage toward VCC.

In the Quartus II software, only voltage noise is analyzed. Voltage noise can be caused
by SSOs under two worst-case conditions:

■ Victim pin is high and aggressors (SSOs) are switching from low to high

■ Victim pin is low and aggressors (SSOs) are switching from high to low

For outputs, the noise is computed at the far-end receiver as shown in Figure 6–2 for
pin B.

Figure 6–1. System with Three Pins

A

B
0

1

0

1

0

1

C

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–3
Understanding SSN and its Effects

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

For inputs, the noise is computed at the FPGA bumps as shown in Figure 6–3 for
pin D.

SSN can occur in any system, but the induced noise does not always result in failures.
The voltage functional errors are caused by SSN on quiet victims only when the
voltage values on the quiet pins change by a large enough voltage such that the logic
listening to that signal reads a change in the logic value. For QH signals, noise events
that cause the voltage on those signals to fall below VIH are a voltage functional error.
Similarly, for QL signals, noise events that cause the voltage to rise above VIL are a
voltage functional error (Figure 6–4). Because VIH and VIL are different for different
I/O standards and signals have different quiet voltage values, the absolute amount of
SSN in volts cannot be used to determine if a voltage failure occurs. Instead, to
quantify whether an SSN event will cause a voltage error, the Quartus II software uses
the amount of noise as a percent of signal margin when reporting noise margins in
SSN analysis (Figure 6–4).

Figure 6–2. Quiet High Output Noise Estimation

Figure 6–3. Quiet Low Input Noise Estimation

6–4 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN and its Effects

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 6–4 shows four noise events, two on QH signals and two on QL signals. The
two noise events on the right-side of the figure consume 50% of the signal margin and
do not cause voltage functional errors. However, the two noise events on the left side
of the figure consume 100% of the signal margin and can cause a voltage functional
error.

Another situation where a voltage noise cannot result in an error in your system is
when the voltage noise happens synchronously, as shown in Figure 6–5. If noise or
glitches, caused by aggressors, are synchronously related to the victim and occur
outside of the sampling window of a receiver, the switching time of a victim can be
affected but should not be considered as an input threshold violation failure.

When you perform SSN analysis in the Quartus II software, there are a number of
design factors that affect the noise margins. These design factors are described in
“Design Factors Affecting SSN Results”.

Figure 6–4. Reporting Noise Margins

Figure 6–5. Synchronous Voltage Noise

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–5
SSN Estimation Tools from Altera

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

SSN Estimation Tools from Altera
Not addressing SSN early in your FPGA design and PCB layout could result in a
respin of your board and lost time, which can impact your time to market. Therefore,
the best approach is to address SSN early in your system design. Altera provides
many tools for SSN analysis and estimation, including SSN characterization reports,
an Early SSN Estimator (ESE) tool, and the SSN Analyzer in the Quartus II software.
The ESE tool is available for various device families.

f You can get more information on the spreadsheet tool and device support at Altera’s
Signal Integrity Center.

The SSN Analyzer and Optimization tool is available in the Quartus II software
version 9.0 and later. In the Quartus II software version 9.0, only Stratix® III devices
are supported. To get the latest information on device support for the SSN Analyzer
with the Quartus II software you are using, refer to its help.

The ESE tool is a good starting point with which to estimate SSN in your FPGA
design. To get more accurate results, you must use the SSN Analyzer tool in the
Quartus II software to analyze SSN. Table 6–1 compares some of the differences
between the SSN spreadsheet tool and the SSN Analyzer tool.

Design Factors Affecting SSN Results

f To understand what contributes to SSN voltage noise in your FPGA design, refer to
AN 472: Stratix II GX SSN Design Guidelines and AN 508: Cyclone III Simultaneous
Switching Noise (SSN) Design Guidelines.

Using the SSN Analyzer in the Quartus II Software
The SSN Analyzer introduced in the Quartus II software version 9.0 enables you to
estimate the SSN (QLN and QHN) levels for your FPGA pins. The SSN optimization
feature helps you optimize your design for SSN when you are compiling your design.
The following sections explain the user requirements and how to use the tool to get
the results you want.

Table 6–1. Comparison of SSN Spreadsheet Tool and SSN Analyzer Tool

SSN Spreadsheet Tool SSN Analyzer Tool

Is not integrated with the Quartus II software. Integrated with the Quartus II software, allowing you to
perform what-if analysis for SSN while making I/O
assignment changes in the Quartus II software.

QL and QH levels are computed assuming a worst case
pattern of I/O placements.

QL and QH levels are computed based on the I/O placements
provided by the user or Fitter.

No support for entering board information. Supports board trace models and board layer information
that result in a more accurate SSN analysis.

No visualization feature. Integrated with the Quartus II software Pin Planner, in which
an SSN map shows the QL and QH levels on victim pins.

Good for doing an early SSN estimate. Does not require you
to use the Quartus II software for early SSN estimate.

Requires you to create a Quartus II software project and
provide the top-level port information.

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center
http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/an/AN508.pdf

6–6 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Using the SSN Analyzer in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Tools Overview
The Altera® Quartus II SSN Analyzer gives you much flexibility in precisely defining
the system to obtain accurate SSN results. Because the SSN Analyzer is integrated into
the Quartus II software, it can automatically set up a system topology that matches a
given Quartus II design. The tool accounts for different I/O standards and slew rate
settings for each buffer in the design, as well as modelling different board traces for
each signal. Furthermore, it correctly models the state of the unused pins in the
design. These features leverage the previously existing Quartus II Advanced I/O
Timing (AIOT) assignments that allowed custom board traces to be specified in the
Quartus II software.

The SSN Analyzer tool also models the package and vias in the design. Models for the
different packages that Altera FPGAs support are integrated into the Quartus II
software. With respect to the via models, the tool supports the ability to specify
different layers on which signals break out, each with its own thickness, and then
specify which signal breaks out on which layer.

After automatically constructing the correct circuit topology as shown in Figure 6–6,
the SSN Analyzer uses a simulation-based methodology to determine the SSN for
each victim pin in the design.

I/O Standards Supported in the Quartus II SSN Analyzer
Altera device families support a wide range of I/O standards. To learn more about the
I/O standards, refer to the device handbooks at www.altera.com. The Quartus II SSN
Analyzer supports most I/O standards in a device family, such as LVTTL, LVCMOS,
HSTL, and SSTL. Differential standards, such as LVDS and its variations, are not
supported, because these standards contribute a small amount of SSN, which needs to
be accounted for in your design.

Figure 6–6. Circuit Topology for SSN Analysis

http://www.altera.com/

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–7
Using the SSN Analyzer in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about the I/O standard support with your version of the
Quartus II software, refer to the Quartus II Help.

Tool Inputs
The SSN Analyzer uses circuit models while performing SSN analysis. As shown in
Figure 6–6, the circuit topology is incomplete if board trace information and layer
information are not entered. To compute the SSN accurately in your FPGA device,
you must describe these parameters in your FPGA design. However, if you do not
specify some or all of the board trace parameters and PCB layer information, the
Quartus II software uses default parameters during SSN analysis. These default
parameters are listed in the Confidence Metric report.

For more information about the Confidence Metric Report, refer to “Confidence
Metric Details Report” on page 6–15.

Board Trace Models
The board trace models required for the SSN Analyzer include the board trace
termination resistors, pin loads (capacitance), and transmission line parameters. You
can enter the board circuit models, which are also known as board trace models in the
Quartus II software. The board trace model settings are shared with the models used
during AIOT analysis.

f For more information about AIOT analysis, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

In the Quartus II software, you can specify the board trace models using the board
trace schematic template, the Pin Planner’s All Pins list, or Tcl assignments. For every
I/O standard, there is a built-in template that you can use to fill transmission line
parameters, far and near end resistances, far and near end capacitances, and more. To
open the board trace model schematic, right-click a pin in the Pin Planner’s All Pins
list and click Board Trace Model. Alternatively, you can enter the parameters in the
All Pins list columns. The parameters entered in the board trace model schematic or
the Pin Planner’s columns are saved as Tcl assignments in the .qsf file and are also
used in Advanced I/O Timing analysis (AIOT) with TimeQuest in the Quartus II
software. If you have already specified the board trace models for AIOT, the same
parameters are used during SSN analysis. Following are some examples of Tcl
assignments that are used to specify the transmission line parameters:

set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH "3.041E-7" -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH 0.1391 -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH "1.463E-10" -to e[0]

You can also create or edit the Tcl assignment directly in the .qsf file. If you do not
specify the board trace parameters, the Quartus II software uses default parameters
during SSN analysis. The default parameters used are listed in the Confidence Metric
Details Report.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

6–8 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Using the SSN Analyzer in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The best way to calculate transmission line parameters is to use a 2D-solver to
estimate the line’s inductance per inch and capacitance per inch. The termination
resistor topology information can be obtained from the PCB schematics. The near-end
and far-end pin load (capacitance) values can be obtained from the PCB schematic
and other device data sheets. For example, if you know that an FPGA pin is driving a
DIMM or some other package, you can get the loading information at the far end by
looking at the data sheet of that device.

PCB Layers and PCB Layer Thickness
Every PCB board is fabricated using a number of layers. You can specify the number
of layers and their thickness in the Quartus II software. The PCB layer information is
used only during SSN analysis and is not required in other parts of the Quartus II
software. The SSN Analyzer page in the Settings dialog box contains controls for
setting values for a custom via breakout region (Figure 6–7). You can double-click on
<<new>> to add a new signal layer. When you click on <<new>>, the signal layer
number is automatically entered and you can enter a thickness value. To delete a
layer, press the Delete key.

If a custom PCB breakout region is not described, you can select the default thickness,
causing a single-layer PCB breakout region to be used during SSN analysis. Selecting
the default option disables the maximum layer edit control and the list box.

Figure 6–7. Specifying the Number of Board Layers and Layer Thickness

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–9
Using the SSN Analyzer in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Layers are numbered sequentially, starting from 0 (layer 0 is the top layer). Each layer
has a thickness associated with it. You can specify the thickness on the SSN Analyzer
page in the Settings dialog box. The Unit column shown in Figure 6–7 can be mils or
millimeters (mm). For example, in Figure 6–7, layer 3 has a thickness of 0.6 mm. You
must specify a thickness value greater than 0.

The Quartus II software saves the GUI settings as Tcl assignments in the .qsf file. You
can also create or edit the Tcl assignments in the .qsf file. The number of layers is not
fixed, but the layers must be consecutive. There is no maximum number of layers. For
example, your .qsf file might contain the following assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 0.00055372M -section_id 4
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 5
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 6
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

These statements tell the Quartus II software that there are 7 layers in the design. In
each assignment, the letter M is the unit of thickness and stands for millimeters.

The assignments in the .qsf file must contain thickness information for consecutive
layers. For example, suppose the .qsf file contains only the following assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

The Quartus II software generates the following error message when you start the
SSN Analyzer:

Error: Nonconsecutive board stackup layers have been specified.

Example of Specifying PCB Layers
To remove some of the pessimism from your SSN results, it is recommended to
specify the PCB layers if you have that information with you. In the following
example, figure 6-8 shows the Layout Cross Section of a PCB in Allegro PCB design
environment.

In Figure 6–8 you can find the stackup information of a PCB. Stackup information tells
you the number of layers being used in your PCB. The PCB shown in this example
consists of various signal/circuit layers on which FPGA pins would be routed during
PCB development process. Along with the signal/circuit layers, power and ground
layers are also shown in the stackup. In this example each layer consists of a different
thickness.

6–10 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Using the SSN Analyzer in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

In Figure 6–8, there are four signal layers at depths shown in the Thickness (MIL)
column:

■ Signal Layer 1 is the L4-SIGNAL, at thickness (1.9+3.6+1.2+3+1.2+4=) 14.9 mils

■ Signal Layer 2 is the L5-SIGNAL, at thickness (0.6+6=) 6.6 mils

■ Signal Layer 3 is the L8-SIGNAL, at thickness (0.6+4+1.2+3+1.2+4=) 14 mils

■ Signal Layer 4 is the L9-SIGNAL, at thickness (0.6+6=) 6.6 mils

To specify these signal layers in the Quartus II software, click Use Customized Layer
Thicknesses on the SSN Analyzer page of the Settings dialog box. You can also
specify these signal layers with Tcl assignments. Figure 6–9 shows the SSN Analyzer
page after these PCB signal layers and thicknesses have been entered.

Figure 6–8. Snapshot of Stackup of a PCB shown in the Allegro Board Design Environment

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–11
Using the SSN Analyzer in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The following Tcl assignments specify the same settings as shown in Figure 6–9.

set_global_assignment -name PCB_LAYER_THICKNESS 14.9MIL -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 14MIL -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 4

Signal Breakout Layers
Each user I/O pin in your FPGA device can break out at different layers on your PCB.
In the Quartus II software, you can specify on which layers the I/O pins in your
design break out. This information is only used during SSN analysis and is not
required for other parts of the Quartus II software.

You can use the Pin Planner’s All Pins list or Tcl assignments to specify how pins
break out. In the Pin Planner’s All Pins list, enter the layer number for the
corresponding signal in the PCB Layer column. This action specifies the connection of
that signal to that layer. The number you enter in the All Pins list is stored as a Tcl
assignment in the .qsf file as follows:

set_instance_assignment -name PCB_LAYER 10 -to e[2]
set_instance_assignment -name PCB_LAYER 3 -to e[3]

You can also specify this information directly in the Tcl assignments in the .qsf file. If
you do not specify this information for a pin, the Quartus II software breaks the signal
out at the bottommost layer. While you can specify the number of layers using the
GUI or Tcl assignments, the PCB Layer column in the All Pins list allows you to enter
a layer that you may not yet have defined in the GUI. If there is a .qsf assignment that
specifies a pin to break out at a layer that does not exist, the Quartus II software gives
you a warning that the layer does not exist and it uses the bottommost layer:

Warning: Pin "e[2]" has an invalid assignment "10" made on the board stackup breakout
layer, using the bottommost layer for this pin.

Figure 6–9. PCB Layers Specified in the Quartus II software

6–12 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Using the SSN Analyzer in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

I/O Assignments
The I/O assignments in the Quartus II software are also known as pin assignments.
These assignments are required in FPGA design and are also used during SSN
analysis in the Quartus II software. Each input, output, or bidirectional signal in your
design is assigned a physical pin location on the device using pin location
assignments. Each signal has a physical I/O buffer that has a specific I/O standard,
pin location, current strength, and slew rate.

Altera device families support a wide variety of I/O standards. You can specify the
I/O standard using the Pin Planner, Assignment Editor, or Tcl assignments.

f To learn more about specifying the I/O standard, current strength, slew rate, and pin
location, refer to the Pin Advisor in the Quartus II software, the Quartus II Help, or
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Automatic Aggressor Identification
The Quartus II software looks for the following situations to determine whether a pin
can be an aggressor for a specific victim pin:

■ If the aggressor pin is a complement of the victim pin, it is not considered an
aggressor for the victim. This is the case for pins that have differential standards.

■ If the aggressor pin is a programming or JTAG pin, it does not aggress on any
victim pin because it is not active in user mode.

■ If the victim pin is a bidirectional pin and analyzed for SSN as an input, the pins
that have the same Output Enable (OE) cannot be aggressors, because those other
pins also act as inputs and cannot aggress at the same time. Refer to “Group
Assignments” for information about grouping bidirectional pins.

■ If the victim pin is an output pin and belongs to a synchronous group, the pins
that are specified in the same synchronous group cannot be aggressors for that
victim pin. Refer to “Group Assignments” for information about grouping output
pins.

■ If the pin has the following assignment:
set_instance_assignment -name IO_MAXIMUM_TOGGLE_RATE 0 -to <pin_name>

This assignment is useful if you want to exclude a pin during SSN analysis. With
IO_MAXIMUM_TOGGLE_RATE set to zero, the pin is not considered as an aggressor
during SSN analysis.

f To learn more about the IO_MAXIMUM_TOGGLE_RATE assignment, refer
to the Quartus II Help.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–13
Using the SSN Analyzer in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Group Assignments
In the absence of any specific timing information, SSN analysis must assume
worst-case conditions. Typically, this involves assuming that all pins act as aggressors
on all possible victim pins. Similarly, all aggressor pins are assumed to be switching
with the worst possible timing relationship. In reality, there are many relationships
between I/O pins that make this assumption very pessimistic. The following
relationships can help lessen that pessimism:

■ Common output enable signals—If all the pins in a group are always either
inputs or outputs, it is impossible for an output pin in the group to cause SSN
noise on an input pin in the group. To do so violates the restriction that all pins are
either inputs or outputs.

■ Synchronously related signals—I/O pins that are part of a synchronous group
(signals that switch at the same time) may cause SSN, but do not result in any
failures because the noise glitch occurs during the switching period of the signal.
The noise, therefore, does not occur in the sampling window of that signal.

In some cases, the Quartus II software can detect the grouping for bidirectional pins
by looking at the OE of the bidirectional pins. However, Altera recommends that you
explicitly specify the bidirectional groups and output groups using Tcl assignments
for your design.

You can specify a bidirectional group with the following Tcl assignment in the .qsf
file:

set_instance_assignment -name OUTPUT_ENABLE_GROUP 1 -to DATAINOUT

where DATAINOUT is a bidirectional bus.

You can specify the an output group with the following SYNCHRONOUS_GROUP
assignment:

set_instance_assignment -name SYNCHRONOUS_GROUP 1 -to PCI_AD_io

In this case, the PCI_AD_io bus may have 32 pins that all belong to the same group.
In a real operation, the bus switches at the same time, so any voltage noise induced by
a pin on its groupmate does not matter, because it does not fall in the sampling
window. If this assignment is not used, the other 31 pins can act as aggressors for the
first pin in that group, leading to higher QL and QH noise levels in SSN analysis.
Specifying the correct grouping yields less pessimistic results in your SSN analysis.

You can use the Assignment Editor to make these assignments. You can also use the
Node Finder utility in the Quartus II software to find bidirectional or output buses.

Running the SSN Analyzer
You can start the SSN analysis in several ways:

■ On the Processing menu in the Quartus II software, click SSN Analyzer Tool. The
SSN Analyzer Tool dialog box appears (Figure 6–10).

6–14 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Using the SSN Analyzer in the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ On the Processing menu, point to Start and click Start SSN Analyzer.

■ On the command line, type the following commands:

quartus_si <project revision> r
quartus_si counter r
where counter is the project revision.

On the command line, you can run just one I/O bank, as follows:

quartus_si <project revision> <--bank = bank id> r
quartus_si counter --bank=2A r
To learn more about I/O bank numbering, refer to the package view for the device in
the Pin Planner or refer to the device handbook.

f For more information about the quartus_si package, type -quartus_si -h in the
console window or command prompt, refer to the Quartus II Help, or refer to the
Quartus II Scripting Reference Manual.

Understanding the SSN Reports
At the end of SSN analysis, various reports are printed in the Compilation Report
section. You can view the reports by clicking the Compilation Report button on the
Quartus II toolbar.

Settings Report
The Settings Report states whether or not smart compilation was used. To learn more
about smart compilation, refer to the Quartus II Help.

Summary Report
The Summary Report summarizes the SSN analysis run and gives information such as
whether or not the SSN run was successful, which Quartus II software version was
used, the revision of the project used, and so forth. The report also rates the SSN
Analyzer confidence level as low, medium, or high. The confidence level depends on
how completely you have specified the user assignments described in “Tool Inputs”
on page 6–7.

Figure 6–10. SSN Analyzer Tool Dialog Box

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–15
Using the SSN Analyzer in the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The more assignments you complete, the higher the confidence level. However, the
confidence level does not always contribute to the accuracy of the QL and QH levels
you get on a victim pin. The accuracy of QH and QL noise levels depends on how
accurately you have defined your user assignments.

Input Pins Report
The Input Pins Report lists all of the input pins and bidirectional pins that are treated
as inputs during SSN analysis, their location assignments on the FPGA device, the QL
and QH noise in volts, and what percentage the QL and QH margins are for the I/O
standard used for that signal. The QH and QL noise margins that fall in the critical
range (> 90%) are shown in red. The QH and QL noise margins that fall in the range of
70% to 90% are shown in gray. You cannot change the color settings in this report.

Output Pins Report
The Output Pins Report lists all of the output pins and bidirectional pins that are
treated as output pins during SSN analysis of your design, their location assignments
on the FPGA device, the QL and QH noise in volts, and what percentage the QL and
QH margins are for the I/O standard used for that signal. The QH and QL noise
margins that fall in the critical range (> 90%) are shown in red. The QH and QL noise
margins that fall in the range of 70% to 90% are shown in gray. You cannot change the
color settings in this report.

Confidence Metric Details Report
The SSN Analyzer confidence level is reported in the Summary Report. The
Confidence Metric Details Report lists the I/O, board, and PCB assignments that have
not been specified by the user and the value that was used in its place by the SSN
Analyzer.

Unanalyzed Pins Report
In the Quartus II software version 9.0, not all pins are analyzed for SSN analysis. The
following pins are not analyzed and are reported in the Unanalyzed Pins Report:

■ LVDS pins and any pins that have LVDS variations, such as mini-LVDS

■ Pins created in the migration flow that cover power and supply pins in other
packages

■ The negative terminals of pseudo-differential standards; the noise on differential
standards is reported as the differential noise and is reported on the positive
terminal

Visualizing SSN in the Pin Planner
After SSN analysis finishes, the results can be analyzed in the Quartus II Pin Planner.
You can quickly identify the SSN hotspots in the package view of your device by
using the Pin Planner’s package view. In addition to viewing the QL and QH results
in the reports, you can see the QL and QH noise levels in the Pin Planner. The QL and
QH results for each pin are displayed with a color. This color representation is also
referred to as the SSN map of your FPGA device. Besides the visualization, the
integration of the SSN Analyzer with the Pin Planner provides you a what-if SSN
analysis where you change I/O assignments and board trace information and rerun
the SSN Analyzer.

6–16 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
SSN Analyzer Usage Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Invoking the SSN Map
To view the SSN map of your device pins, right-click in the package window in the
Pin Planner and click Show SSN Analyzer Results, as shown in Figure 6–11.

Along with the SSN map, the SSN toolbar is displayed. The toolbar lets you select
only input pins, only output pins, or both, and to view QH, QL, or both noise levels. It
also lets you change the threshold levels for QH and QL noise voltages. For example,
by default noise levels that consume more than 90% of the signal margin of a pin are
shown in red. Similarly, noise levels that consume 70% to 90% of the signal margin are
shown in yellow and levels below 70% are shown in green. If you change this
threshold, the results are updated in the SSN map. Changing the threshold levels in
the SSN toolbar does not change the threshold levels in the SSN reports. The threshold
levels in the SSN reports are fixed. For example, if you change the critical threshold
level in the Pin Planner to be 80% instead of 90% (which is the default), some pins
might appear as red instead of yellow, but the SSN reports will still show their noise
levels in gray. When you hover your mouse over a pin, the QH and QL noise levels
are displayed, as shown in Figure 6–11.

SSN Analyzer Usage Models
Based on which stage your design cycle is in, you can run the SSN Analyzer at a very
early stage of your design cycle or at a stage where your PCB design is almost
complete. Altera recommends that you start your SSN analysis early in the design (an
early pin-out analysis) and later do a fully constrained SSN analysis with complete
information about your board (a final pin-out analysis).

The basic methodology of early pin-out and final pin-out analysis, shown in
Figure 6–12, assumes conservative design rules initially, then lets you analyze the
design and iteratively apply tighter design rules until SSN analysis indicates a
passable design. You must define a pass criterion for the SSN analysis as a percent of
signal margin for both the early and final analysis. The early pass criterion may be
higher than the final pass criterion, so that you do not spend too much time
optimizing the on-FPGA portions of your design when the SSN metrics for the design
may improve after the design is fully specified.

Figure 6–11. SSN Map

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–17
SSN Analyzer Usage Models

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Early Pin-Out SSN Analysis
Early pin-out SSN analysis occurs before you have placed I/Os in your Quartus II
project. In this SSN analysis, you might not have all the design files ready but you
have the interface information ready. If you know what I/O standards and signaling
standards are to be applied to those interfaces, you can use either the early SSN
spreadsheet tool or the SSN Analyzer in the Quartus II software to perform an initial
SSN evaluation of your design.

Early Pin-Out SSN Analysis Using the Early SSN Estimator Spreadsheet
The Altera Early SSN Estimator (ESE) spreadsheet provides basic early pin-out SSN
analysis using simple equation-based SSN models. To learn more about the SSN
spreadsheet tool, refer to the Signal Integrity Center on the Altera website.

Early Pin-Out SSN Analysis Using the Quartus II SSN Analyzer
The integration of the SSN Analyzer in the Quartus II software enables you to do an
early SSN analysis without having any design files ready. If you have complete
information for your top-level interface, you can enter that information in the
Quartus II software and run the SSN Analyzer to view the early results.

Figure 6–12. Pin-Out Analysis

Note to Figure 6–12:

(1) Pass criteria to be determined by customer requirements.

Create Quartus Project
Add # of I/Os & settings

Define avg breakout depth

Constrain signal via
breakout layers

Constrain pin placement
Define pass criteria

Early < 80%; Final < 50% (1)

Adjust I/O settings
(Drive strength, slew rate

Run Quartus II &
SSN Analyzer

Run Quartus II &
SSN Analyzer

Design PCB & Extract
board parameters

Run Quartus II &
SSN Analyzer

Start

Done

Design is unlikely to
pass final SSN Analysis

No

Yes

No

No

Can we further
constrain PCB?

Yes

Yes

No
Noise < early pass?

Noise < final pass?

Decrease early pass
criteria

Yes

Timing margin available?

Done

No

Yes
Noise < final pass?

Manual optimization

Early pin-out flow Final pin-out flow

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=7&WT.oss_r=1&WT.oss=early%20ssn%20estimator

6–18 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
SSN Analyzer Usage Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

If you plan to use the SSN Analyzer, you must create the Quartus II software project
and have at least the information for all the top-level ports or interfaces of your FPGA
design. Your top-level port information can be entered in the Quartus II software
project in a number of ways. You can use the schematic entry method, or if you have
the top-level design file in HDL, you can use that in the Quartus II software directly. If
you have a top-level file, you can generate a top-level wrapper file in the Quartus II
software in HDL.

f To learn more about how to generate a top-level file in the Quartus II software, refer to
the I/O Management chapter in volume 2 of the Quartus II Handbook.

f To learn more about how to create projects, refer to the Quartus II Help or the
Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

When you have the top-level ports ready in any of these forms, you can analyze and
synthesize your Quartus II project. In an early pin-out analysis, pin location
assignments are assumed not to exist. In the Pin Planner, you can make other I/O
assignments such as I/O standard assignments for the top-level ports.

The SSN Analyzer requires you to run the Fitter. In an early pin-out analysis, you may
not have all the design files and timing constraints complete. You can run I/O
Assignment analysis to place all the I/Os in your FPGA device. During I/O
Assignment analysis, the Fitter places all the unplaced pins on the device, and all the
I/O placement rules are checked. After the I/O Assignment completes successfully,
you are ready to start the SSN analysis.

f The I/O rules and their validation process are discussed in the I/O Management
chapter in volume 2 of the Quartus II Handbook.

In an early pin-out analysis, you might not have all the board information, such as
board trace parameters, layers information, and on which layer the pins break out.
You can run the SSN Analyzer without this information, but the SSN Analyzer
confidence level will be low. At this point the SSN Analyzer can be run and the results
analyzed. If the noise amounts are larger than the early pass criteria, you can check
whether the SSN noise violations are true failures or false failures. Although the
Quartus II SSN Analyzer can sometimes determine whether pins are switching
synchronously and use that information to filter false positives, it may not be able to
determine all the synchronous groups. You can help the SSN Analyzer by entering
assignments that indicate which pins are switching synchronously, such as large
buses, and rerun the SSN Analyzer.

After filtering out false positives, if the SSN results are still larger than the pass
criterion, you can change design settings to improve the design.

If timing margin is available on various signals, those signal edge rates can be slowed
down by changing their drive strength or slew rate setting and rerunning the SSN
Analyzer. If timing margin is not available, you can further constrain the PCB
breakout depth or adjust the pin placements. With an early SSN analysis, you can see
what QL and QH noise levels exist in your FPGA device based on your existing I/O

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–19
SSN Analyzer Usage Models

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

placements and assignments. The integration of the SSN Analyzer with the Quartus II
software allows you to perform a what-if analysis to see how I/O placement changes
and I/O assignment changes vary the QL and QH levels in your FPGA device. This
capability allows you to manage SSN in your device and system early in the PCB
development because you know the noise margin on your FPGA pins.

1 When you change any I/O assignments in the Pin Planner, you must run I/O
Assignment analysis or full compilation before you perform SSN analysis.

SSN Aware Fitter
In the early pin-out SSN analysis, when you perform I/O assignment analysis or full
compilation, if you have not assigned physical locations for your I/Os, the Fitter
places the I/Os in various pin locations such that I/O rules are not violated. In the
Quartus II software version 9.0 and later, you can run the I/O assignments analysis or
full compilation in SSN aware mode to provide an I/O placement that reduces SSN.
Refer to “SSN Optimization” on page 6–22 for information about using the SSN aware
Fitter.

You can choose an effort level for SSN aware fitting. The Fitter tries to spread out the
pins to minimize the worst-case SSN-induced noise. If your I/O pin locations are
assigned, the Fitter does not change the pin locations. For the Fitter to spread out the
pins for SSN, you must either not have assignments made or if the assignments exist,
you must delete the pin location assignments from the .qsf file and rerun I/O
assignment analysis or full compilation.

With regard to pin placements, the Quartus II software has an SSN aware Fitter that
automatically adjusts the pin placements to reduce the amount of SSN in the design.
Figure 6–13 shows an example design run through the SSN Analyzer before and after
the SSN aware Fitter is used.

Default Assignments Used in Early SSN Analysis
Early in your design cycle, you may not have any board trace model or board layer
information. When you run SSN analysis without this information, the Quartus II
software uses default board trace models and board layer information. This
information is reported in the Confidence Metric report. After the design has been
optimized such that it passes the early criteria, the PCB can be designed.

Figure 6–13. SSN Results Before and After Using the SSN aware Fitter

6–20 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Scripting Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Final Pin-Out Analysis: Fully Constrained Design SSN Analysis
A final pin-out analysis is performed when you or the Fitter have placed the I/O in
your design and you want to perform an SSN analysis with complete information of
board traces and layers. As a pre-tapeout check for your PCB, the board parameters
can be extracted, including the PCB layer thicknesses, the layers on which different
signals break out, and the board trace topologies and parameters, and reanalyzed by
the SSN Analyzer. If sufficient margin is available, given the early criteria, the
extraction of the PCB parameters is optional and can be skipped.

These parameters should be entered into the Quartus II software using both the
Settings dialog box and the Board Trace Model Settings dialog box, as described in
“Tool Inputs” on page 6–7. The Quartus II software allows for the specification of
near- and far-end loads, near- and far-end pull-up and pull-down resistors, and
near- and far-end series resistors, as well as specifying the parameters of near- and
far-end transmission lines that can model striplines and micro-striplines.

After entering the parameters, you can run the SSN Analyzer again. If the results pass
the final criteria, the design is complete. If the design does not pass the criteria, the
design must be micro-optimized by changing the board and design parameters and
rerunning the SSN Analyzer. After all of these optimizations, if the design still does
not pass the criteria, the early pass criteria should be reduced, and the process
restarted. By reducing the early pass criteria, there is a larger emphasis placed on
reducing the SSN through I/O settings and I/O placement that will then allow the
design to pass the final SSN criteria after the actual PCB board parameters have been
specified.

Scripting Support
To run SSN analysis using the command line, use the quartus_si package that is
provided with the Quartus II software. You can use the Tcl console in the Quartus II
software or type the following command to start the SSN Analyzer:

-quartus_si <project revision> r
The Quartus II software provides several packages to compile your design and run
I/O assignments for analysis and fitting. You can create a custom Tcl script that maps
the design and runs SSN analysis on your design.

f For more information about Tcl scripting, refer to the Quartus II Help or the Tcl
Scripting chapter in volume 2 of the Quartus II Handbook.

Run Time Considerations in SSN Analysis
FPGA designs are getting larger in density, logic, and I/O count. The time it takes to
complete a process of either synthesis or SSN analysis affects your development time.
Faster run times can reduce your design cycle time. Following are some guidelines to
consider when performing SSN analysis to reduce the run time.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–21
Run Time Considerations in SSN Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Running SSN Analyzer with Multi-CPU machines
The Quartus II software has many algorithms that are multi-threaded. The SSN
Analyzer in the Quartus II software is also multi-threaded, and can use two or more
CPUs in a machine. The SSN run time analysis scales down directly with the number
of CPUs used during the analysis.

Running the Complete Design for SSN Analysis after I/O Assignment Analysis
If your design files and constraints are ready but you do not want to run a full
compilation, you can run SSN analysis after performing I/O assignment analysis in
the Quartus II software. This can save you time if you are interested in looking at the
SSN results early in the design and want to perform what-if analysis for your I/O
placements.

Running the Complete Design for SSN Analysis after a Full Fit
When you run full compilation, the Quartus II Fitter runs all the tasks for fitting your
design. You should always perform a full compilation to get complete and accurate
I/O assignments validation and SSN results. However, full compilation of your
design can take more time, depending on the logic density and timing requirements
of your design. You can also choose to run just the Fitter but not the assembler and
timing analysis if you want to run SSN analysis after just the fitting process.

Making ECO Changes and Rerunning SSN Analysis
If you have performed SSN analysis after a full compilation and you want to rerun
SSN analysis to see what happens to QL and QH noise levels after some changes to
the I/O assignments, the best way is to perform ECOs on your design. ECOs do not
compile the whole design. Instead, they compile the design for the new changes only.
This can save a lot of compilation time.

1 For more information about performing ECOs on your design, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Running SSN Analysis for One I/O Bank
You can run SSN analysis on the full design or on one I/O bank only. Figure 6–14
shows how to select a particular I/O bank before running SSN analysis with the SSN
Analyzer tool.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

6–22 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
SSN Optimization

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The following Tcl command line runs SSN analysis for one I/O bank:

quartus_si <project revision> <--bank=bank id>

If you know the problem area for SSN is within one bank and you are performing I/O
placement or assignment changes to only that bank, running SSN analysis for just that
one bank can save you run time.

SSN Optimization
The Quartus II software has a built-in feature to optimize your design for SSN. To
select an effort level for SSN optimization, in the Settings dialog box, select Fitter
Settings from the Category list (Figure 6–15). Click More Settings to bring up the
More Fitter Settings dialog box shown as in Figure 6–16.

Figure 6–14. Selecting an I/O Bank before Running SSN Analysis

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–23
SSN Optimization

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Figure 6–15. Fitter Settings Dialog Box

Figure 6–16. SSN Optimization Settings

6–24 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

In the More Fitter Settings dialog box, set the Signal Integrity Optimization option.
The I/O placements in your design may be affected when you use this feature.
Choosing the Normal compilation level does not affect the fMAX of your design during
compilation. Choosing the Extra effort level might impact the fMAX of your design
during compilation.

In the Quartus II software, you can assign your signal to the pin locations on the
device using the Pin Planner or Assignment Editor. When you assign the pin
locations, the information is saved as pin location assignments in the .qsf file.

1 You must not set any user location assignments for your pins; instead, let the Fitter
place the pins while compiling your design. During compilation, if you have not
made any pin location assignments in your project, the Fitter places the pins to meet
the timing performance of your design. The pins that are placed by the Fitter can be
viewed in the Pin Planner’s package view by selecting Show Fitter Placements. When
the Fitter places the pins automatically, no pin location assignments are created in the
.qsf file unless you back-annotate them.

f There are various optimization options available in the Quartus II software. For more
information about these optimization features, refer to the Quartus II Help or the
Area, Timing and Power Optimization section in volume 2 of the Quartus II Handbook.

You can also specify the effort level by using the following Tcl command:

set_global_assignment -name OPTIMIZE_SIGNAL_INTEGRITY "Normal Compilation"

Back-Annotating the Fitter Results
Back-annotating after the Fitter finishes its task saves the Fitter-placed results in the
.qsf file. There are various options available when back-annotating. When you
back-annotate the Fitter placements, the pin location assignments are saved in the .qsf
file. To learn more about back-annotation, refer to the Quartus II Help.

SSN Optimization in Your System
This chapter discussed various tools available in the Quartus II software to analyze
SSN and optimize SSN with SSN aware Fitter and I/O assignments settings. There are
other optimization techniques to manage SSN in your PCB.

f To learn more about managing SSN in your system, refer to AN 472: Stratix II GX SSN
Design Guidelines, AN 508: Cyclone III Simultaneous Switching Noise (SSN) Design
Guidelines, and high-speed board design guidelines available at www.altera.com.

Conclusion
In the Quartus II software version 9.0 and later, you can estimate SSN in your design
using the fast and accurate SSN Analyzer. There are tools in the Quartus II software
that allow you to estimate the SSN performance of your FPGA both early in the
design cycle and when your PCB is complete. The SSN methodology discussed in this
chapter gives you confidence that your FPGA design meets your SSN requirements.

http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf
http://www.altera.com/

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–25
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Referenced Documents
This chapter references the following documents:

■ AN 472: Stratix II GX SSN Design Guidelines

■ AN 508: Cyclone III Simultaneous Switching Noise (SSN) Design Guidelines

■ Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–2. Document Revision History

Date / Revision Changes Made Summary of Changes

November 2009
v9.1.0

Added “Example of Specifying PCB Layers” on page 6–9 Update for the Quartus II
software 9.1 release

March 2009
v9.0.0

Initial release. —

http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN476.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

6–26 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

7. Signal Integrity Analysis with
Third-Party Tools

Introduction
With the ever-increasing operating speed of interfaces in traditional FPGA design, the
timing and signal integrity margins between the FPGA and other devices on the
board must be within specification and tolerance before a single PCB is built. If the
board trace is designed poorly or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can potentially damage
input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing
margin between the FPGA and other devices on the printed circuit board (PCB) are
important aspects to consider to ensure proper system operation. To avoid
time-consuming redesigns and expensive board respins, the topology and routing of
critical signals must be simulated. The high-speed interfaces available on current
FPGA devices must be modeled accurately and integrated into timing models and
board-level signal integrity simulations. The tools used in the design of an FPGA and
its integration into a PCB must be “board-aware”—able to take into account
properties of the board routing and the connected devices on the board.

This chapter contains the following topics:

■ “I/O Model Selection: IBIS or HSPICE” on page 7–3

■ “FPGA to Board Signal Integrity Analysis Flow” on page 7–3

■ “Simulation with IBIS Models” on page 7–7

■ “Simulation with HSPICE Models” on page 7–17

The Quartus® II software provides methodologies, resources, and tools to ensure good
signal integrity and timing margin between Altera® FPGA devices and other
components on the board. Three types of analysis are possible with the Quartus II
software:

■ I/O timing with a default or user-specified capacitive load and no signal integrity
analysis (default)

■ The Quartus II Enable Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

■ Full board routing simulation in third-party tools using Altera-provided or
generated Input/Output Buffer Information Specification (IBIS) or HSPICE I/O
models

I/O timing using a specified capacitive test load requires no special configuration
other than setting the size of the load. I/O timing reports from the Quartus II
TimeQuest or the Quartus II Classic Timing Analyzer are generated based only on
point-to-point delays within the I/O buffer and assume the presence of the capacitive
test load with no other details about the board specified. The default size of the load is
based on the I/O standard selected for the pin. Timing is measured to the FPGA pin
with no signal integrity analysis details.

QII53020-9.1.0

7–2 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Introduction

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

The Enable Advanced I/O Timing option expands the details in I/O timing reports
by taking board topology and termination components into account. A complete
point-to-point board trace model is defined and accounted for in the timing analysis.
This ability to define a board trace model is an example of how the Quartus II
software is “board-aware.”

In this case, timing and signal integrity metrics between the I/O buffer and the
defined far end load are analyzed and reported in enhanced reports generated by the
Quartus II TimeQuest Timing Analyzer.

f For more information about defining capacitive test loads or how to use the Enable
Advanced I/O Timing option to configure a board trace model, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

This chapter focuses on the third type of analysis. The Quartus II software can export
accurate HSPICE models with the built-in HSPICE Writer. You can run signal integrity
simulations with these complete HSPICE models in Synopsys HSPICE. IBIS models of
the FPGA I/O buffers are also created easily with the Quartus II IBIS Writer. You can
integrate IBIS models into any third-party simulation tool that supports them, such as
the Mentor Graphics® Hyperlynx software. With the ability to create
industry-standard model definition files quickly, you can build accurate simulations
that can provide data to help improve board-level signal integrity.

The I/O’s IBIS and HSPICE model creation available in the Quartus II software can
help prevent problems before a costly board respin is required. In general, creating
and running accurate simulations is difficult and time consuming. The tools in the
Quartus II software automate the I/O model setup and creation process by
configuring the models specifically for your design. With these tools, you can set up
and run accurate simulations quickly and acquire data that helps guide your FPGA
and board design.

The information about signal integrity in this chapter refers to board-level signal
integrity based on I/O buffer configuration and board parameters, not simultaneous
switching noise (SSN), also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an overall drop in the
voltage of the chip’s power supply. This can cause temporary glitches in the specified
level of ground or VCC for the device.

f For a more information about SSN and ways to prevent it, refer to AN 315: Guidelines
for Designing High-Speed FPGA PCBs.

This chapter is intended for FPGA and board designers and includes details about the
concepts and steps involved in getting designs simulated and how to adjust designs
to improve board-level timing and signal integrity. Also included is information about
how to create accurate models from the Quartus II software and how to use those
models in simulation software.

The information in this chapter is meant for those who are familiar with the
Quartus II software and basic concepts of signal integrity and the design techniques
and components in good PCB design. Finally, you should know how to set up
simulations and use your selected third-party simulation tool.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/an/an315.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–3
I/O Model Selection: IBIS or HSPICE

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For information about basic signal integrity concepts and signal integrity details
pertaining to Altera FPGA devices, refer to the Altera Signal Integrity Center.

I/O Model Selection: IBIS or HSPICE
The Quartus II software can export two different types of I/O models that are useful
for different simulation situations. IBIS models define the behavior of input or output
buffers through the use of voltage-current (V-I) and voltage-time (V-t) data tables.
HSPICE models, often referred to as HSPICE decks, include complete physical
descriptions of the transistors and parasitic capacitances that make up an I/O buffer
along with all the parameter settings required to run a simulation. The HSPICE decks
generated by the Quartus II software are preconfigured with the I/O standard,
voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on many factors. Table 7–1 shows a detailed
comparison of the two I/O model types and information and examples of situations
in which they might be used.

f For more information about IBIS files created by the Quartus II IBIS Writer and IBIS
files in general, as well as links to websites with detailed information, refer to AN 283:
Simulating Altera Devices with IBIS Models.

FPGA to Board Signal Integrity Analysis Flow
Board signal integrity analysis can take place at any point in the FPGA design process
and is often performed before and after board layout. If it is performed early in the
process as part of a pre-PCB layout analysis, the models used for simulations can be
more generic and can be changed as much as required to see how adjustments
improve timing or signal integrity and help with the design and routing of the PCB.

Table 7–1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a circuit are
described by their physical properties, such as transistor
characteristics and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model
completely describes the I/O buffer and
does not usually have to be customized.

Fully customizable—Unless connected to an arbitrary
board description, the description of the board trace
model must be customized in the model file. All
parameters of the simulation are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly after set up
correctly.

Slow—Simulations take time to set up and take longer to
run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to
the FPGA and/or board design to improve
signal integrity.

Excellent—Simulations are highly accurate, making
HSPICE simulation almost a requirement for any
high-speed design where signal integrity and timing
margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support SPICE
support HSPICE. However, Synopsys HSPICE is required
for simulations of Altera’s encrypted HSPICE models.

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf

7–4 Chapter 7: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Simulations and the resulting changes made at this stage allow you to analyze “what
if” scenarios to plan and implement your design better. To assist with early board
signal integrity analysis, you can download generic IBIS model files for each device
family and obtain HSPICE buffer simulation kits from the “Board Level Tools” section
of the Download center on the Altera website at www.altera.com.

Typically, if board signal integrity analysis is performed late in the design, it is used
for a post-layout verification. The inputs and outputs of the FPGA are defined, and
required board routing topologies and constraints are known. Simulations can help
you find problems that might still exist in the FPGA or board design before fabrication
and assembly. In either case, a simple process flow illustrates how to create accurate
IBIS and HSPICE models from a design in the Quartus II software and transfer them
to third-party simulation tools. Figure 7–1 shows this flow.

1 This chapter is organized around the type of model, IBIS or HSPICE, that you use for
your simulations. When you understand the steps in the analysis flow, refer to the
section of this chapter that corresponds to the model type you are using.

http://www.altera.com/support/software/nativelink/boardlevel/boardlevel.html

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–5
FPGA to Board Signal Integrity Analysis Flow

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Create I/O and Board Trace Model Assignments
If your design uses a Stratix® III, Stratix II, or Cyclone® III device, you can configure a
board trace model for output signals or for bidirectional signals in output mode and
automatically transfer its description to HSPICE decks generated by the HSPICE
Writer. This helps improve simulation accuracy.

Figure 7–1. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus II Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Configure Board Trace Models
in supported devices

(Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No
Make Adjustments to

Models or Simulation Parameters
and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O

required?

Yes

No

7–6 Chapter 7: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

To configure a board trace model, in the Settings dialog box, in the TimeQuest
Timing Analyzer page, turn on the Enable Advanced I/O Timing option and
configure the board trace model assignment settings for each I/O standard used in
your design. You can add series or parallel termination, specify the transmission line
length, and set the value of the far-end capacitive load. You can configure these
parameters either in the Board Trace Model view of the Pin Planner, or click Device
and Pin Options in the Device page of the Settings dialog box.

f For information about how to use the Enable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

The Quartus II software can generate IBIS models and HSPICE decks without having
to configure a board trace model with the Enable Advanced I/O Timing option. In
fact, IBIS models ignore any board trace model settings other than the far-end
capacitive load. If any load value is set other than the default, the delay given by IBIS
models generated by the IBIS Writer cannot be used to account correctly for the
double counting problem. The load value mismatch between the IBIS delay and the
tCO measurement of the Quartus II software prevents the delays from being safely
added together. Warning messages displayed when the EDA Netlist Writer runs
indicate when this mismatch occurs.

Output File Generation
IBIS and HSPICE model files are not generated by the Quartus II software by default.
To generate or update the files automatically during each project compilation, select
the type of file to generate and a location where to save the file in the project settings.
These settings can also be specified with commands in a Tcl script.

The IBIS and HSPICE Writers in the Quartus II software are run as part of the EDA
Netlist Writer during normal project compilation. If either writer is turned on in the
project settings, IBIS or HSPICE files are created and stored in the specified location.
For IBIS, a single file is generated containing information about all assigned pins.
HSPICE file generation creates separate files for each assigned pin. You can run the
EDA Netlist Writer separately from a full compilation in the Quartus II software or at
the command line. However, you must fully compile the project or perform I/O
Assignment Analysis at least once for the IBIS and HSPICE Writers to have
information about the I/O assignments and settings in the design.

Customize the Output Files
The files generated by either the IBIS or HSPICE Writer are text files that you can edit
and customize easily for design or experimentation purposes. IBIS files downloaded
from the Altera website must be customized with the correct RLC values for the
specific device package you have selected for your design. IBIS files generated by the
IBIS Writer do not require this customization because they are configured
automatically with the RLC values for your selected device. HSPICE decks require
modification to include a detailed description of your board. With Enable Advanced
I/O Timing turned on and a board trace model defined in the Quartus II software,
generated HSPICE decks automatically include that model’s parameters. However,
Altera recommends that you replace that model with a more detailed model that

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–7
Simulation with IBIS Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

describes your board design more accurately. A default simulation included in the
generated HSPICE decks measures delay between the FPGA and the far-end device.
You can make additions or adjustments to the default simulation in the generated files
to change the parameters of the default simulation or to perform additional
measurements.

Set Up and Run Simulations in Third-Party Tools
When you have generated the files, you can use them to perform simulations in your
selected simulation tool. With IBIS models, you can apply them to input, output, or
bidirectional buffer entities and quickly set up and run simulations. For HSPICE
decks, the simulation parameters are included in the files. Open the files in Synopsys
HSPICE and run simulations for each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem
is accounted for, which ensures that your simulations are accurate. Simulations that
involve IBIS models created with anything other than the default loading settings in
the Quartus II software must take the change in the size of the load between the IBIS
delay and the Quartus II tCO measurement into account. Warning messages during
compilation alert you to this change.

Interpret Simulation Results
If you encounter timing or signal integrity issues with your high-speed signals after
running simulations, you can make adjustments to I/O assignment settings in the
Quartus II software. These could include such things as drive strength or I/O
standard, or making changes to your board routing or topology. After regenerating
models in the Quartus II software based on the changes you have made, rerun the
simulations to check whether your changes corrected the problem.

Simulation with IBIS Models
IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS
models describe the behavior of I/O buffers with voltage-current and voltage-time
data curves. Because of their behavioral nature, IBIS models do not have to include
any information about the internal circuit design of the I/O buffer. Most component
manufacturers, including Altera, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic device family
IBIS models from the Altera website for early design simulation or use the IBIS Writer
to create custom IBIS models for your existing design.

Elements of an IBIS Model
An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer
across minimum, typical, and maximum temperature and voltage ranges with a
specified test load. The tables and values specified in the IBIS file describe five basic
elements of the I/O buffer. Figure 7–2 highlights each of these elements in the I/O
buffer model.

7–8 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

The following elements correspond to each numbered block in Figure 7–2.

1. Pulldown—A voltage-current table describes the current when the buffer is
driven low based on a pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven
high based on a pull-up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when
clamping diodes for electrostatic discharge (ESD) are present. The ground clamp
voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes the
rise and fall time of the buffer during a logic transition. Optional rising and falling
waveform tables can be added to more accurately describe the characteristics of
the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance
includes the parasitic capacitances of the output pad, clamp diodes (if present),
and input transistors. The package RLC is device package-specific and defines the
resistance, inductance, and capacitance of the bond wire and pin of the I/O.

f For more information about IBIS models and Altera-specific features, including links
to the official IBIS specification, refer to AN 283: Simulating Altera Devices with IBIS
Models.

Creating Accurate IBIS Models
There are two methods to obtain Altera device IBIS files for your board-level signal
integrity simulations. You can download generic IBIS models from the Altera website
or you can use the IBIS writer in the Quartus II software to create design-specific
models.

Download IBIS Models
Altera provides IBIS models for almost all FPGA and FPGA configuration devices.
Check the Download Center at www.altera.com for information about whether
models for your selected device are available. You can use the IBIS models from the
website to perform early simulations of the I/O buffers you expect to use in your
design as part of a pre-layout analysis.

Figure 7–2. Five Basic Elements in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg

1

2

4

3

5

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/support/software/download/ibis/ibs-ibis_index.jsp
http://www.altera.com/

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–9
Simulation with IBIS Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Downloaded IBIS models have the RLC package values set to one particular device in
each device family. To simulate your design with the model accurately, you must
adjust the RLC values in the IBIS model file to match the values for your particular
device package by performing the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family
you are using for your design. The .zip file contains the .ibs file along with an IBIS
model user guide and a model data correlation report.

2. Download the Package RLC Values spreadsheet for the same device family.

3. Open the spreadsheet and locate the row that describes the device package used in
your design.

4. From the package’s I/O row, copy the minimum, maximum, and typical values of
resistance, inductance, and capacitance for your device package.

5. Open the .ibs file in a text editor and locate the [Package] section of the file.

6. Overwrite the listed values copied with the values from the spreadsheet and save
the file.

The .ibs file is now customized for your device package and can be used for any
simulation. IBIS models downloaded and used for simulations in this manner are
generic. They describe only a certain set of models listed for each device on the IBIS
model Download Center page on the Altera website. To create customized models for
your design, use the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer
If you have started your FPGA design and have created custom I/O assignments,
such as drive strength settings or the enabling of clamping diodes for ESD protection,
you can use the Quartus II IBIS Writer to create custom IBIS models to accurately
reflect your assignments. IBIS models created with the IBIS Writer take I/O
assignment settings into account.

If the Enable Advanced I/O Timing option is turned off, the generated .ibs files are
based on the load value setting for each I/O standard on the Capacitive Loading tab
of the Device and Pin Options dialog box in the Device page of the Settings dialog
box. With the Enable Advanced I/O Timing option turned on, IBIS models use an
effective capacitive load based on settings found in the board trace model on the
Board Trace Model tab in the Device and Pin Options dialog box or the Board Trace
Model view in the Pin Planner. The effective capacitive load is based on the sum of
the Near capacitance, Transmission line distributed capacitance, and the Far
capacitance settings in the board trace model. Resistances and transmission line
inductance values are ignored.

1 If you made any changes from the default load settings, the delay in the generated
IBIS model cannot safely be added to the Quartus II tCO measurement to account for
the double counting problem. This is because the load values between the two delay
measurements do not match. When this happens, the Quartus II software displays
warning messages when the EDA Netlist Writer runs to remind you about the load
value mismatch.

http://www.altera.com/support/software/download/ibis/ibs-ibis_index.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=ibis%20download%20center

7–10 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

When the IBIS Writer is enabled in the Settings dialog box (Figure 7–3), it generates a
custom .ibs file whenever the EDA Netlist Writer is run in the Quartus II software.

IBIS models are stored in the <project directory>/board/ibis directory by default. To
change the directory, click the browse button next to the Output directory box, and
browse to the desired location.

If the project has not been compiled, run a full compilation to create a netlist and
establish I/O assignments. On the Processing menu, click Start Compilation. The .ibs
file, named <project name>.ibs, is saved in the specified location.

If the project has been compiled before, you only have to run the EDA Netlist Writer
to create or update the .ibs file. On the Processing menu, point to Start and click Start
EDA Netlist Writer. The .ibs file is created or updated in the specified location.

f For more information about IBIS model generation, refer to the AN 283: Simulating
Altera Devices with IBIS Models or to the Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx Software
You must integrate IBIS models downloaded from the Altera website
(www.altera.com) or created with the Quartus II IBIS Writer into board design
simulations to accurately model timing and signal integrity. The HyperLynx software
from Mentor Graphics is one of the most popular tools for design simulation. The
HyperLynx software makes it easy to integrate IBIS models into simulations.

Figure 7–3. Enabling IBIS Model Generation in the Settings Dialog Box

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–11
Simulation with IBIS Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The HyperLynx software is a PCB analysis and simulation tool for high-speed
designs, consisting of two products, LineSim and BoardSim. LineSim is an early
simulation tool. Before any board routing takes place, LineSim is used to simulate
“what if” scenarios to assist in creating routing rules and defining board parameters.
BoardSim is a post-layout tool used to analyze existing board routing. Specific nets are
selected from a board layout file and simulated in a manner similar to LineSim. With
board and routing parameters, and surrounding signal routing known, highly
accurate simulations of the final fabricated PCB are possible. This section focuses on
LineSim. Because the process of creating and running simulations is very similar for
both LineSim and BoardSim, the details of IBIS model use in LineSim applies to
simulations in BoardSim.

Simulations in LineSim are configured using a schematic GUI to create connections
and topologies between I/O buffers, route trace segments, and termination
components. LineSim provides two methods for creating routing schematics:
cell-based and free-form. Cell-based schematics are based on fixed cells consisting of
typical placements of buffers, trace impedances, and components. Parts of the
grid-based cells are filled with the desired objects to create the topology. A topology in
a cell-based schematic is limited by the available connections within and between the
cells.

A more robust and expandable way to create a circuit schematic for simulation is to
use the free-form schematic format in LineSim as shown in Figure 7–4. The free-form
schematic format makes it easy to place parts into any configuration and edit them as
required. This section describes the use of IBIS models with free-form schematics, but
the process is nearly identical for cell-based schematics.

Figure 7–4. HyperLynx LineSim Free-Form Schematic Editor

7–12 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

When you use HyperLynx software to perform simulations, you typically perform the
following steps:

1. Create a new LineSim free-form schematic document and set up the board stackup
for your PCB using the Stackup Editor. In this editor, specify board layer
properties including layer thickness, dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic
represents all the parts of the routed net including source and destination I/O
buffers, termination components, transmission line segments, and representations
of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their
behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in
the circuit that you want to monitor during simulation. Typically, at least one
probe is attached to the pin of a destination I/O buffer. For differential signals, you
can attach a differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and
test the circuit under different drive strength conditions.

6. Interpret the results and make adjustments. Based on the waveforms captured in
the digital oscilloscope, you can adjust anything in the circuit schematic to correct
any signal integrity issues, such as overshoot or ringing. If necessary, you can
make I/O assignment changes in the Quartus II software, regenerate the IBIS file
with the IBIS Writer, and apply the updated IBIS model to the buffers in your
HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the
results. When the operation of the net meets your design requirements, implement
changes to your I/O assignments in the Quartus II software and/or adjust your
board routing constraints, component values, and placement to match the
simulation.

f For more information about HyperLynx software, including schematic creation,
simulation setup, model usage, product support, licensing, and training, refer to
HyperLynx Help or the Mentor Graphics website at www.mentor.com.

Configuring LineSim to Use Altera IBIS Models
You must configure LineSim to find and use the downloaded or generated IBIS
models for your design. To do this, add the location of your .ibs file or files to the
LineSim Model Library search path. Then you apply a selected model to a buffer in
your schematic.

To add the Quartus II software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search path, perform
the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box appears
(Figure 7–5). The Model-library file path(s) list displays the order in which
LineSim searches file directories for model files.

http://www.mentor.com/

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–13
Simulation with IBIS Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

2. Click Edit. A dialog box appears where you can add directories and adjust the
order in which LineSim searches them (Figure 7–6).

3. Click Add

4. Browse to the default IBIS model location, <project directory>/board/ibis. Click OK.

5. Click Up to move the IBIS model directory to the top of the list. Click Generate
Model Index to update LineSim’s model database with the models found in the
added directory.

6. Click OK. The IBIS model directory for your project is added to the top of the
Model-library file path(s) list.

7. To close the Set Directories dialog box, click OK.

Figure 7–5. LineSim Set Directories Dialog Box

Figure 7–6. LineSim Select Directories Dialog Box

7–14 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Integrating Altera IBIS Models into LineSim Simulations
When the location for IBIS files has been set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this, perform the
following steps:

1. Double-click a buffer symbol in your schematic to open the Assign Models dialog
box (Figure 7–7). You can also click Assign Models from the buffer symbol’s
right-click menu.

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If
you want to assign a model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears (Figure 7–8).

Figure 7–7. LineSim Assign Model Dialog Box

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–15
Simulation with IBIS Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

4. To filter the list of available libraries to display only IBIS models, select .IBS. Scroll
through the Libraries list, and click the name of the library for your design. By
default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the Devices list.
If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can
also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as required for the
simulation.

9. Select and configure other buffer pins from the Pins list in the same manner.

10. Click OK when all I/O models are assigned.

Running and Interpreting LineSim Simulations
You can now run any desired simulations and make adjustments to the I/O
assignments or simulation parameters as required. For example, if you see too much
overshoot in the simulated signal at the destination buffer after running a simulation
(as shown in Figure 7–9), you could adjust the drive strength I/O assignment setting
to a lower value. Regenerate the .ibs file, and run the simulation again to verify
whether the change fixed the problem.

Figure 7–8. LineSim Select IC Model Dialog Box

7–16 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

If you see a discontinuity or other anomalies at the destination, such as slow rise and
fall times (as shown in Figure 7–10), adjust the termination scheme or termination
component values. After making these changes, rerun the simulation to check
whether your adjustments solved the problem. In this case, it is not necessary to
regenerate the .ibs file.

f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your design, visit the Altera Signal Integrity Center.

Figure 7–9. Example of Overshoot in HyperLynx with IBIS Models

Figure 7–10. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20center

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–17
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Simulation with HSPICE Models
HSPICE decks are used to perform highly accurate simulations by describing the
physical properties of all aspects of a circuit precisely. HSPICE decks describe I/O
buffers, board components, and all of the connections between them, as well as
defining the parameters of the simulation to be run. By their nature, to be effective,
HSPICE decks are highly customizable and require a detailed description of the
circuit under simulation. For devices that support advanced I/O timing, when Enable
Advanced I/O Timing is turned on, the HSPICE decks generated by the Quartus II
HSPICE Writer automatically include board components and topology defined in the
Board Trace Model. Configure the board components and topology in the Pin Planner
or in the Board Trace Model tab of the Device and Pin Options dialog box. All
HSPICE decks generated by the Quartus II software include compensation for the
double count problem. For more information about the double count problem, refer to
“The Double Counting Problem in HSPICE Simulations” on page 7–18. You can
simulate with the default simulation parameters built in to the generated HSPICE
decks or make adjustments to customize your simulation.

Supported Devices and Signaling
Beginning with Quartus II software version 6.1 and later, the HSPICE Writer supports
the devices and signaling defined in Table 7–2. Only Stratix III, Stratix II, and
Cyclone III devices support the creation of a board trace model in the Quartus II
software for automatic inclusion in an HSPICE deck. Other devices require the board
description to be manually added to the HSPICE file.

If you are using a Stratix II device for your design, you can turn on Enable Advanced
I/O Timing and configure the board trace model for each I/O standard used in your
design. Newer families have this feature turned on by default and it cannot be turned
off. The HSPICE files include the board trace description you create in the Board Trace
Model view in the Pin Planner or the Board Trace Model tab in the Device and Pin
Options dialog box.

f For more information about the Enable Advanced I/O Timing option and
configuring board trace models for the I/O standards in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Table 7–2. HSPICE Writer Device and Signaling Support

Device Input Output Single-Ended Differential
Automatic Board Trace

Model Description

Stratix III v v v v v
Stratix II GX
(non-HSSI pins)

v v v v —

Stratix II v v v v v
HardCopy® II v v v v —

Cyclone III v v v v v

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

7–18 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Accessing HSPICE Simulation Kits
You can access the available HSPICE models at the SPICE Models for Altera Devices
web page and also with the Quartus II software’s HSPICE Writer tool. The Quartus II
software HSPICE Writer tool removes many common sources of user error from the
I/O simulation process. The HSPICE Writer tool automatically creates preconfigured
I/O simulation spice decks that only require the addition of a user board model. All
the difficult tasks required to configure the I/O modes and interpret the timing results
are handled automatically by the HSPICE Writer tool.

The Double Counting Problem in HSPICE Simulations
Simulating I/Os using accurate models is extremely helpful for finding and fixing
FPGA I/O timing and board signal integrity issues before any boards are built.
However, the usefulness of such simulations is directly related to the accuracy of the
models used and whether the simulations are set up and performed correctly. To
ensure accuracy in models and simulations created for FPGA output signals, the
timing hand-off between tCO timing in the Quartus II software and simulation-based
board delay must be taken into account. If this hand-off is not handled correctly, the
calculated delay could either count some of the delay twice or even miss counting
some of the delay entirely.

Defining the Double Counting Problem
The double counting problem is inherent to the method output timing is analyzed
versus the method used for HSPICE models. The timing analyzer tools in the
Quartus II software measure delay timing for an output signal from the core logic of
the FPGA design through the output buffer ending at the FPGA pin with a default
capacitive load or a specified value for the selected I/O standard. This measurement
is the tCO timing variable as shown in Figure 7–11.

Figure 7–11. Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus II tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

http://www.altera.com/support/software/download/hspice/hsp-index.html

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–19
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

HSPICE models for board simulation measure tPD (propagation delay) from an
arbitrary reference point in the output buffer, through the device pin, out along the
board routing, and ending at the signal destination.

It is apparent immediately that if these two delays were simply added together, the
delay between the output buffer and the device pin would be counted twice in the
calculation. A model or simulation that does not account for this double count would
create overly pessimistic simulation results, because the double-counted delay can
limit I/O performance artificially. To fix the problem, it might seem that simply
subtracting the overlap between tCO and tPD would account for the double count.
However, this adjustment would not be accurate because each measurement is based
on a different load.

1 Input signals do not exhibit this problem because the HSPICE models for inputs stop
at the FPGA pin instead of at the input buffer. In this case, simply adding the delays
together produces an accurate measurement of delay timing.

The Solution to Double Counting
To adjust the measurements to account for the double-counting, the delay between the
arbitrary point in the output buffer selected by the HSPICE model and the FPGA pin
must be subtracted from either tCO or tPD before adding the results together. The
subtracted delay must also be based on a common load between the two
measurements. This is done by repeating the HSPICE model measurement, but with
the same load used by the Quartus II software for the tCO measurement. This second
measurement, called tTESTLOAD, is illustrated with the top circuit in Figure 7–12.

Figure 7–12. Common Test Loads Used for Output Timing

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus
Test Load

HSPICE Netlist with
Quartus Test Load

HSPICE tPD
 with User

Specified Board Trace Model

Quartus II tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

7–20 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

With tTESTLOAD known, the total delay for the output signal from the FPGA logic to the
signal destination on the board, accounting for the double count, is calculated as
shown in Equation 7–1.

The preconfigured simulation files generated by the HSPICE Writer in the Quartus II
software are designed to account for the double-counting problem based on this
calculation automatically. Performing accurate timing simulations is easy without
having to make adjustments for double counting manually.

HSPICE Writer Tool Flow
This section includes information to help you get started using the Quartus II
software HSPICE Writer tool. The information in this section assumes you have a
basic knowledge of the standard Quartus II software design flow, such as project and
assignment creation, compilation, and timing analysis.

f For additional information about standard design flows, refer to the appropriate
sections of the Quartus II Handbook.

Applying I/O Assignments
The first step in the HSPICE Writer tool flow is to configure the I/O standards and
modes for each of the pins in your design properly. In the Quartus II software, these
settings are represented by assignments that map I/O settings, such as pin selection,
and I/O standard and drive strength, to corresponding signals in your design.

The Quartus II software provides multiple methods for creating these assignments:

■ Using the Pin Planner

■ Using the assignment editor

■ Manually editing the .qsf file

■ By making assignments in a scripted Quartus II flow using Tcl

Enabling HSPICE Writer
You must enable the HSPICE Writer in the Settings dialog box of the Quartus II
software (Figure 7–13) to generate the HSPICE decks from the Quartus II software.

Equation 7–1.

tdelay tCO tPD tTE STL OAD– +=

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–21
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Enabling HSPICE Writer Using Assignments
You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable
HSPICE Writer during a full compile, include the lines shown in Example 7–1 in your
Tcl script.

As with command-line invocation, specifying the output directory is optional. If not
specified, the output directory defaults to board/hspice.

Naming Conventions for HSPICE Files
HSPICE Writer automatically generates simulation files and names them using the
following naming convention:

<device>_<pin #>_<pin_name>_<in/out>.sp

For bidirectional pins, two spice decks are produced; one with the I/O buffer
configured as an input, and the other with the I/O buffer configured as an output.

The Quartus II software supports alphanumeric pin names that contain the
underscore (_) and dash (-) characters. Any illegal characters used in file names are
converted automatically to underscores.

Figure 7–13. EDA Tool Settings: Board Level Options Dialog Box

Example 7–1. Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_id eda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

7–22 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

The contents of the HSPICE files are described in detail in “Sample Output for I/O
HSPICE Simulation Deck” on page 7–32 and “Sample Input for I/O HSPICE
Simulation Deck” on page 7–28.

Invoking HSPICE Writer
After HSPICE Writer is enabled, the HSPICE simulation files are generated
automatically each time the project is completely compiled. The Quartus II software
also provides an option to generate a new set of simulation files without having to
recompile manually. In the Processing menu, click Start EDA Netlist Writer to
generate new simulation files automatically.

1 You must perform both Analysis & Synthesis and Fitting on a design before invoking
the HSPICE Writer tool.

Invoking HSPICE Writer from the Command Line
If you use a script-based flow to compile your project, you can create HSPICE model
files by including the commands shown in Example 7–2 in your Tcl script (.tcl file).

The <output_directory> option specifies the location where HSPICE model files are
saved. By default, the <project directory>/board/hspice directory is used.

To invoke the HSPICE Writer tool through the command line, type the syntax shown
in Example 7–3.

<output_directory> specifies the location where the generated spice decks will be
written (relative to the design directory). This is an optional parameter and defaults to
board/hspice.

Customizing Automatically Generated HSPICE Decks
HSPICE models generated by the HSPICE Writer can be used for simulation as
generated. A default board description is included, and a default simulation is set up
to measure rise and fall delays for both input and output simulations, which
compensates for the double counting problem. However, Altera recommends that you
customize the board description to more accurately represent your routing and
termination scheme.

Example 7–2. Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_ideda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

Example 7–3. Invoke HSPICE Writer

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–23
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The sample board trace loading in the generated HSPICE model files must be
replaced by your actual trace model before you can run a correct simulation. To do
this, open the generated HSPICE model files for all pins you want to simulate and
locate the section shown in Example 7–4.

You must replace the example load with a load that matches the design of your PCB
board. This includes a trace model, termination resistors, and, for output simulations,
a receiver model. The spice circuit node that represents the pin of the FPGA package is
called pin. The node that represents the far pin of the external device is called load-in
(for output SPICE decks) and source-in (for input SPICE decks).

For an input simulation, you must also modify the stimulus portion of the spice file.
The section of the file that must be modified is indicated in the comment block shown
in Example 7–5.

Replace the sample stimulus model with a model for the device that will drive the
FPGA.

Running an HSPICE Simulation
Because simulation parameters are configured directly in the HSPICE model files,
running a simulation requires only that you open an HSPICE file in the HSPICE user
interface and start the simulation. The HSPICE user interface window is shown in
Figure 7–14.

Click Open and browse to the location of the HSPICE model files generated by the
Quartus II HSPICE Writer. The default location for HSPICE model files is <project
directory>/board/hspice. Select the .sp file generated by the HSPICE Writer for the
signal you want to simulate. Click OK.

Example 7–4. Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

Example 7–5. Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Figure 7–14. HSPICE User Interface Window

7–24 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

To run the simulation, click Simulate. The status of the simulation is displayed in the
window and saved in an .lis file with the same name as the .sp file when the
simulation is complete. Check the .lis file if an error occurs during the simulation
requiring a change in the .sp file to fix.

Interpreting the Results of an Output Simulation
By default, the automatically generated output simulation spice decks are set up to
measure three delays for both rising and falling transitions. Two of the measurements,
tpd_rise and tpd_fall, measure the double-counting corrected delay from the FPGA
pin to the load pin. To determine the complete clock-edge to load-pin delay, add these
numbers to the Quartus II software reported default loading tCO delay.

The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are required for the double-counting compensation
process and are not required for further timing usage. Refer to “Simulation Analysis”
on page 7–32 for a description of these measurements.

Interpreting the Results of an Input Simulation
By default, the automatically generated input simulation SPICE decks are set up to
measure delays from the source’s driver pin to the FPGA’s input pin for both rising
and falling transitions. The propagation delay is reported by HSPICE measure
statements as tpd_rise and tpd_fall. To determine the complete source driver
pin-to-FPGA register delay, add these numbers to the Quartus II software reported TH
and TSU input timing numbers.

Viewing and Interpreting Tabular Simulation Results
The .lis file stores the collected simulation data in tabular form. The default
simulation configured by the HSPICE Writer produces delay measurements for rising
and falling transitions on both input and output simulations. These measurements are
found in the .lis file and named tpd_rise and tpd_fall. For output simulations,
these values are already adjusted for the double count. To determine the complete
delay from the FPGA logic to the load pin, add either of these measurements to the
Quartus II tCO delay. For input simulations, add either of these measurements to the
Quartus II tSU and tH delay values to calculate the complete delay from the far end
stimulus to the FPGA logic. Other values found in the .lis file, such as
tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and t_dblcnt_fall,
are parts of the double count compensation calculation. These values are not
necessary for further analysis.

Viewing Graphical Simulation Results
You can view the results of the simulation quickly as a graphical waveform display
using the AvanWaves viewer included with HSPICE. With the default simulation
configured by the HSPICE Writer, you can view the simulated waveforms at both the
source and destination in input and output simulations.

To see the waveforms for the simulation, in the HSPICE user interface window, click
AvanWaves. The AvanWaves viewer opens and displays the Results Browser as
shown in Figure 7–15.

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–25
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Results Browser lets you select which waveform to view quickly in the main
viewing window. If multiple simulations are run on the same signal, the list at the top
of the Results Browser displays the results of each simulation. Click the simulation
description to select which simulation to view. By default, the descriptions are
derived from the first line of the HSPICE file, so the description might appear as a line
of asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the
Types list, select Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform
appears in the main viewing window.

You can zoom in and out and adjust the view as desired (Figure 7–16).

Figure 7–15. HSPICE AvanWaves Results Browser

7–26 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Making Design Adjustments Based on HSPICE Simulations
Based on the results of your simulations, you can make adjustments to the I/O
assignments or simulation parameters if required. For example, after you run a
simulation and see overshoot or ringing in the simulated signal at the destination
buffer as shown in the example in Figure 7–17, you can adjust the drive strength I/O
assignment setting to a lower value. Regenerate the HSPICE deck, and run the
simulation again to verify that the change fixed the problem.

Figure 7–16. AvanWaves Waveform Viewer

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–27
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If there is a discontinuity or any other anomalies at the destination as shown in the
example in Figure 7–18, adjust the board description in the Quartus II Board Trace
Model (for Stratix II, Stratix III, or Cyclone III devices) or in the generated HSPICE
model files to change the termination scheme or adjust termination component
values. After making these changes, regenerate the HSPICE files if necessary, and
rerun the simulation to verify whether your adjustments solved the problem.

Figure 7–17. Example of Overshoot in the AvanWaves Waveform Viewer

7–28 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your FPGA design, refer to the Altera Signal
Integrity Center.

Sample Input for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation spice deck for an I/O of
type input. Each section presents the simulation file one block at a time.

Header Comment
The first block of an input simulation spice deck is the header comment. The purpose
of this block is to provide an easily readable summary of how the simulation file has
been automatically configured by the Quartus II software.

This block has two main components: The first component summarizes the I/O
configuration relevant information such as device, speed grade, and so on. The
second component specifies the exact test condition that the Quartus II software
assumes for the given I/O standard. Example 7–6 shows a header comment block.

Figure 7–18. Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–29
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Simulation Conditions
The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and is
modified only if other simulation corners are desired. Example 7–7 shows a
simulation conditions block.

Simulation Options
The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options. Example 7–8 shows a simulation options
block.

Example 7–6. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck*

* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus II’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

Example 7–7. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * TT process corner

7–30 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

f For a detailed description of these options, consult your HSPICE manual.

Constant Definition
The constant definition block of the simulation file instantiates the voltage sources
that controls the configuration modes of the I/O buffer. Example 7–9 shows a constant
definition block.

Buffer Netlist
The buffer netlist block (Example 7–10) of the simulation spice deck loads all the load
models required for the corresponding input pin.

Example 7–8. Simulation Options Block

* Simulation Options

.options brief=0

.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Example 7–9. Constant Definition Block

* Constant Definition

voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

■ Voltage source voeb controls the output enable of the buffer and is set to disabled
for inputs.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ The next 11 voltages sources control the I/O standard of the buffer and are
configured through a later library call.

■ vdin is not used on input pins because it is the data pin for the output buffer.

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–31
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Drive Strength
The drive strength block (Example 7–11) of the simulation SPICE deck loads the
configuration bits necessary to configure the I/O into the proper I/O standard and
drive strengths. Although these settings are not relevant to an input buffer, they are
provided to allow the SPICE deck to be modifiable to support bidirectional
simulations.

I/O Buffer Instantiation
The I/O buffer instantiation block of the simulation SPICE deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

Example 7–12 shows I/O buffer instantiation.

Example 7–10. Buffer Netlist Block

* IO Buffer Netlist

.include ‘vio_buffer.inc’

Example 7–11. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

Example 7–12. I/O Buffer Instantiation

I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf

* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

7–32 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Board Trace and Termination
The board trace and termination block of the simulation SPICE deck is provided only
as an example (shown in Example 7–13). Replace this block with your own board
trace and termination models.

Stimulus Model
The stimulus model block of the simulation spice deck is provided only as a place
holder example (shown in Example 7–14). Replace this block with your own stimulus
model. Options for this include an IBIS or HSPICE model, among others.

Simulation Analysis
The simulation analysis block (Example 7–15) of the simulation file is configured to
measure the propagation delay from the source to the FPGA pin. Both the source and
end point of the delay are referenced against the 50% VCCN crossing point of the
waveform.

Sample Output for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation SPICE deck for an
I/O-type output. Each section presents the simulation file one block at a time.

Example 7–13. Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

Example 7–14. Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)

Example 7–15. Simulation Analysis Block

* Simulation Analysis Setup

* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns

* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point

.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–33
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Header Comment
The first block of an output simulation SPICE deck is the header comment, as shown
in Example 7–16. The purpose of this block is to provide a readable summary of how
the simulation file has been automatically configured by the Quartus II software.

This block has two main components:

■ The first component summarizes the I/O configuration relevant information such
as device, speed grade, and so on.

■ The second component specifies the exact test condition that the Quartus II
software assumes when generating tCO delay numbers. This information is used as
part of the double-counting correction circuitry contained in the simulation file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can
also be used to simulate the fast process corner as well. The fast corner conditions are
listed in the header under the notes section.

The final section of the header comment lists any warning messages that you must
consider when you use the SPICE decks.

7–34 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Simulation Conditions
The simulation conditions block (Example 7–17) loads the appropriate process corner
models for the transistors. This condition is automatically set up for the slow timing
corner and must be modified only if other simulation corners are desired.

1 Two separate corners cannot be simulated at the same time. Instead, simulate the base
case using the Quartus corner as one simulation and then perform a second
simulation using the desired customer corner. The results of the two simulations can
be manually added together.

Example 7–16. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Quartus II for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner
**)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–35
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Simulation Options
The simulation options block (Example 7–18) configures the simulation temperature
and configures HSPICE with typical simulation options.

f For a detailed description of these options, consult your HSPICE manual.

Constraint Definition
The constant definition block (Example 7–19) of the output simulation SPICE deck
instantiates the voltage sources that controls the configuration modes of the I/O
buffer.

Example 7–17. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * typical-typical process corner

Example 7–18. Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

7–36 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

I/O Buffer Netlist
The I/O buffer netlist block (Example 7–20) loads all of the models required for the
corresponding pin. These include a model for the I/O output buffer, as well as any
loads that might be present on the pin.

Drive Strength
The drive strength block (Example 7–21) of the simulation spice deck loads the
configuration bits for configuring the I/O to the proper I/O standard and drive
strength. These options are set by the HSPICE Writer tool and are not changed for
expected use.

Example 7–19. Constant Definition Block

* Constant Definition

voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

■ Voltage source voeb controls the output enable of the buffer.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ vpci controls the PCI clamp.

■ The next ten voltage sources control the I/O standard of the buffer and are configured through a later
library call. Stratix III and Cyclone III devices have more bits and so might have more voltage sources
listed in the constant definition block. They also have slew rate and delay chain settings.

■ vdin is connected to the data input of the I/O buffer.

■ The edge rate of the input stimulus is automatically set to the correct value by the Quartus II software.

Example 7–20. I/O Buffer Netlist Block

*IO Buffer Netlist

.include ‘hio_buffer.inc’

.include ‘lvds_input_load.inc’

.include ‘lvds_oct_load.inc’

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–37
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Slew Rate and Delay Chain
Stratix III and Cyclone III devices have sections for configuring the slew rate and
delay chain settings (Example 7–22).

I/O Buffer Instantiation
The I/O buffer instantiation block (Example 7–23) of the output simulation spice deck
instantiates the necessary power supplies and I/O model components that are
necessary to simulate the given I/O.

Example 7–21. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

Example 7–22. Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings

.lib ‘lib/output_delay_control.lib’ no_delay

* Programmable Slew Rate Control Settings

.lib ‘lib/slew_rate_control.lib’ slow_slow

Example 7–23. I/O Buffer Instantiation Block

* I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf

* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

7–38 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Board and Trace Termination
The board trace and termination block (Example 7–24) of the simulation SPICE deck is
provided only as an example. Replace this block with your specific board loading
models.

Double-Counting Compensation Circuitry
The double-counting compensation circuitry block (Example 7–25) of the simulation
SPICE deck instantiates a second I/O buffer that is used to measure double-counting.
The buffer is configured identically to the user I/O buffer but is connected to the
Quartus II software test load. The simulated delay of this second buffer can be
interpreted as the amount of double-counting between the Quartus II software and
HSPICE Writer simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin,
consider separating the double-counting circuitry from the simulation file. In doing
so, you can perform any number of I/O simulations while referencing the delay only
once. For more information about the double-counting problem, refer to “The Double
Counting Problem in HSPICE Simulations” on page 7–18.

Example 7–24. Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–39
Simulation with HSPICE Models

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Simulation Analysis
The simulation analysis block (Example 7–26) is set up to measure double-counting
corrected delays. This is accomplished by measuring the uncompensated delay of the
I/O buffer when connected to the user load, and when subtracting the simulated
amount of double-counting from the test load I/O buffer.

Example 7–25. Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Quartus II and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner the double counting will be automatically
* compensated by this spice deck. In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you will need to remove this section of code and manually
* account for double counting. A description of Altera’s
* recommended procedure for this process can be found in the
* Quartus II HSPICE Writer AppNote.
*

* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97

* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0
vrpullup_tl rpullup_tl 0 0

* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl

* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf

* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

* Default Altera Test Load
* - 3.3V LVTTL default test condition is an open load

7–40 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

Advanced Topics
The information in this section describes some of the more advanced topics and
methods employed when setting up and running HSPICE simulation files.

PVT Simulations
The automatically generated HSPICE simulation files are set up to simulate the slow
process corner using low voltage, high temperature, and slow transistors. To ensure a
fully robust link, Altera recommends that you run simulations over all process
corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify
the spice decks in a two step process:

1. Remove the double-counting compensation circuitry from the simulation file. This
is required as the amount of double-counting is dependant upon how the
Quartus II software calculates delays and is not based on which PVT corner is
being simulated. By default, the Quartus II software provides timing numbers
using the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE
temperature, changing the supply voltage sources, and loading the correct
transistor models.

A more detailed description of HSPICE process corners can be found in the
family-specific HSPICE model documentation. This document is available online with
the HSPICE models as described in “Accessing HSPICE Simulation Kits” on
page 7–18.

Example 7–26. Simulation Analysis Block

*Simulation Analysis Setup

* Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns

* Measure the propagation delay to the load pin. This value will
* include some double counting with Quartus II’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(load) val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1

* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1

* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–41
Conclusion

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Hold Time Analysis
Altera recommends performing worst-case hold time analysis using the fast corner
models, which use fast transistors, high voltage, and low temperature. This involves
modifying the SPICE decks to select the correct temperature option, change the
supply voltage sources, and load the correct fast transistor models. The values of
these parameters are located in the header comment section of the corresponding
simulation deck files.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results
with the Quartus II software fast timing model. This requires that you change the
double-counting compensation circuitry in the simulations files to also simulate the
fast process corners, as this is what the Quartus II software uses for the fast timing
model.

1 This method of hold time analysis is recommended only for globally synchronous
buses. Do not apply this method of hold-time analysis to source synchronous buses.
This is because the source synchronous clocking scheme is designed to cancel out
some of the PVT timing effects. If this is not taken into account, the timing results will
not be accurate. Proper source synchronous timing analysis is beyond the scope of this
document.

I/O Voltage Variations
Use each of the FPGA family datasheets to verify the recommended operating
conditions for supply voltages. For current FPGA families, the maximum
recommended voltage corresponds to the fast corner, while the minimum
recommended voltage corresponds to the slow corner. These voltage
recommendations are specified at the power pins of the FPGA and are not necessarily
the same voltage that are seen by the I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect
pessimistically by including a 50-mV IR drop on the VCCPD supply when a high drive
strength standard is being used.

Correlation Report
Correlation reports for the HSPICE I/O models are located in the family-specific
HSPICE I/O buffer simulation kits. Refer to “Accessing HSPICE Simulation Kits” on
page 7–18 for additional information.

Conclusion
As FPGA devices are used in more high-speed applications, it becomes increasingly
necessary to perform board-level signal integrity analysis simulations. You must run
such simulations to ensure good signal integrity between the FPGA and any
connected devices. The Quartus II software helps to simplify this process with the
ability to automatically generate I/O buffer description models easily with the IBIS
and HSPICE Writers. IBIS models can be integrated into a third-party signal integrity
analysis workflow using a tool such as Mentor Graphics HyperLynx software,

7–42 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

generating quick and accurate simulation results. HSPICE decks include
preconfigured simulations and only require descriptions of board routing and
stimulus models to create highly accurate simulation results using Synopsys HSPICE.
Either type of simulation helps prevent unnecessary board spins, increasing your
productivity and decreasing your costs.

Referenced Documents
This chapter references the following documents:

■ AN 283: Simulating Altera Devices with IBIS Models

■ AN 315: Guidelines for Designing High-Speed FPGA PCBs

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Quartus II Handbook

Document Revision History
Table 7–3 shows the revision history for this chapter.

Table 7–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

■ No change to content. Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

■ Was volume 3, chapter 12 in the 8.1.0 release.

■ No change to content.

Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added information for Stratix III devices.

■ Input signals for Cyclone III devices are supported.

Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

■ Updated “Introduction” on page 12–1.

■ Updated Figure 12–1.

■ Updated Figure 12–3.

■ Updated Figure 12–13.

■ Updated “Output File Generation” on page 12–6.

■ Updated “Simulation with HSPICE Models” on page 12–17.

■ Updated “Invoking HSPICE Writer from the Command Line” on
page 12–22.

■ Added “Sample Input for I/O HSPICE Simulation Deck” on
page 12–29.

■ Added “Sample Output for I/O HSPICE Simulation Deck” on
page 12–33.

■ Updated “Correlation Report” on page 12–41.

■ Added hyperlinks to referenced documents and websites
throughout the chapter.

■ Made minor editorial updates.

Updated for the Quartus II
software version 8.0.

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–43
Document Revision History

© Novermber 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

7–44 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © Novermber 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

8. Mentor Graphics PCB Design Tools
Support

This chapter discusses how the Quartus® II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide a complete
cyclical FPGA-to-board integration design workflow.

Interoduction
With today’s large, high-pin-count and high-speed FPGA devices, good and correct
PCB design practices are essential for ensuring correct system operation. The PCB
design takes place concurrently with the design and programming of the FPGA.
Signal and pin assignments are initially made by the FPGA or ASIC designer, and the
board designer must correctly transfer these assignments to the symbols used in their
system circuit schematics and board layout. As the board design progresses, pin
reassignments may be needed to optimize the PCB layout. These reassignments must
relay back to the FPGA designer so that the new assignments can be processed
through an updated placement and routing of the FPGA design.

The Mentor Graphics® I/O Designer software allows you to take advantage of the full
FPGA symbol design, creation, editing, and back-annotation flow supported by the
Mentor Graphics tools.

This chapter covers the following topics:

■ General design flow between the Quartus II software, the Mentor Graphics
I/O Designer software, and the DxDesigner software

■ Setting up the Quartus II software to create the design flow files

■ Creating an I/O Designer database project to incorporate the Quartus II software
signal and pin assignment data

■ Updating signal and pin assignment changes between the I/O Designer software
and the Quartus II software

■ Generating symbols in the I/O Designer software

■ Creating symbols in the DxDesigner software from the Quartus II software output
files without the use of the I/O Designer software

This chapter is intended for board design and layout engineers who want to start the
FPGA board integration while the FPGA is still in the design phase. Optionally, the
board designer can plan the FPGA pin-out and routing requirements in the Mentor
Graphics tools and pass the information back to the Quartus II software for placement
and routing. Part librarians can also benefit from this chapter by learning how to use
output from the Quartus II software to create new library parts and symbols.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ DxDesigner software version 2004 or later

■ Mentor Graphics I/O Designer software (optional)

QII52015-9.1.0

8–2 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-PCB Design Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f To obtain and license the Mentor Graphics tools and for product information, support,
and training, refer to the Mentor Graphics website (www.mentor.com).

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera® FPGA design from the Quartus II
software, and a circuit schematic in the DxDesigner software. Figure 8–1 shows the
design flow with and without the I/O Designer software.

Figure 8–1. Design Flow with and Without the I/O Designer Software

Note to Figure 8–1:
(1) The Quartus II software generates the .fx in the output directory you specify in the Board-Level page of the Settings dialog box. However, the

Quartus II software and the I/O Designer software can import pin assignments from an .fx located in any directory. Altera recommends working
with a backup of the .fx to prevent overwriting existing assignments or importing invalid assignments.

No

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File (.fx)

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus II Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–3
FPGA-to-PCB Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To proceed through the design flow shown in Figure 8–1, perform the following tasks:

1. In the Quartus II software, set up the board-level assignment settings to generate
an .fx for symbol generation.

2. Compile your design to generate the .fx and Pin-Out File (.pin), which are located
in the Quartus II project directory.

3. Create a board design with the DxDesigner software and the I/O Designer
software by performing the following steps:

a. Create a new I/O Designer database based on the .fx and the .pin.

b. In the I/O Designer software, make adjustments to signal and pin assignments.

c. Regenerate the .fx in the I/O Designer software to export the I/O Designer
software changes to the Quartus II software.

d. Generate a single or fractured symbol for use in the DxDesigner software.

e. Add the symbol to the sym directory of a DxDesigner project, or specify a new
DxDesigner project with the new symbol.

f. Instantiate the symbol in your DxDesigner schematic and export the design to
the board layout tool.

g. Back-annotate pin changes created in the board layout tool to the DxDesigner
software and back to the I/O Designer software and the Quartus II software.

4. Create a board design with the DxDesigner software without the I/O Designer
software by performing the following steps:

a. Create a new DxBoardLink symbol with the Symbol wizard and reference the
.pin from the Quartus II software in an existing DxDesigner project.

b. Instantiate the symbol in your DxDesigner schematic and export the design to
a board layout tool.

1 Symbols can be updated with design changes with or without the I/O Designer
software. If you use the Mentor Graphics I/O Designer software and you change
symbols with the DxDesigner software, you must reimport the symbols into
I/O Designer to avoid overwriting your symbol changes.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software version 9.0 and later, you can extract pin assignment
data and perform SSN analysis of your FPGA design for the designs that target
Stratix III device family. You can perform SSN analysis to analyze SSN in your FPGA
device early in the board layout stage as part of your overall pin planning process,
however you do not have to perform SSN analysis to generate pin assignment data
from the Quartus II software. You can use the SSN Analyzer tool in the Quartus II
software to optimize the pin assignments for better SSN performance of your FPGA
device.

f To get the latest information on device support for the SSN Analyzer, refer to the
Quartus II Help.

8–4 Chapter 8: Mentor Graphics PCB Design Tools Support
Setting Up the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook.

Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Mentor Graphics tools by generating a .pin and an .fx (refer to Figure 8–2). The .pin is
an output file generated by the Quartus II Fitter that contains pin assignment
information. You can use the Quartus II Pin Planner to set and change the
assignments contained in the .pin and then transfer the assignments to the Mentor
Graphics tools. You cannot, however, import pin assignment changes from the Mentor
Graphics tools into the Quartus II software with the .pin.

The .pin lists all used and unused pins on your selected Altera device. It also provides
the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

The .fx is an input/output file generated by the Quartus II software and the I/O
Designer software that can be imported and exported from both programs. The .fx
generated by the Quartus II software lists only assigned pins and provides the
following advanced information fields for each pin on a device:

■ Pin number

■ I/O bank

■ Signal name

■ Signal direction

■ I/O standard

■ Drive strength (mA)

■ Termination enabling

■ Slew rate

■ IOB delay

■ Swap group

■ Differential pair type

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–5
Setting Up the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The .fx generated by the I/O Designer software lists, all pins, including unused pins.
In addition to the advanced information fields listed above, the .fx generated by the
Mentor Graphics I/O Designer software also includes the following information
fields:

■ Swap group

■ Differential pair type

■ Device pin name

■ Pin set

■ Pin set position

■ Pin set group

■ Super pin set group

■ Super pin set position

f For more information about .pin and .fx, refer to the Quartus II Help.

f For more information about the information fields added by the Mentor Graphics
software, refer to the Mentor Graphics website (www.mentor.com).

The I/O Designer software can also read from or update a Quartus II Settings File
(.qsf). The .qsf is used in the design flow in a similar manner to the .fx, but does not
transfer pin swap group information between the I/O Designer software and the
Quartus II software.

1 Because the .qsf contains additional information about your project that is not used
by the Mentor Graphics I/O Designer software. Altera recommends using the .fx
instead of the .qsf.

f For more information about the .qsf, refer to the Quartus II Settings File Reference
Manual.

Generating a .pin
The Quartus II software automatically generates the .pin when your FPGA design is
fully compiled or when you start I/O assignment analysis. To start I/O assignment
analysis, on the Processing menu, point to Start and then click Start I/O Assignment
Analysis. The file is output by the Quartus II Fitter. The file is generated and placed in
your Quartus II design directory with the name <project name>.pin. The Quartus II
software cannot import assignments from an existing .pin.

www.mentor.com
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

8–6 Chapter 8: Mentor Graphics PCB Design Tools Support
Setting Up the Quartus II Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 8–2 shows how to generate a .pin and an .fx.

1 For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Generating an .fx
The .fx is not automatically generated by the Quartus II software. To set up the
Quartus II software to create the .fx, perform the following steps:

1. On the Assignments menu, click Settings.

2. Under EDA Tool Settings, click Board-Level.

3. Under Board-level symbol, in the Format list, select FPGA Xchange.

4. In the Output directory box, specify the location in which you want to save the .fx.
The default location is <project directory>/symbols/fpgaxchange.

5. Click OK.

6. On the Processing menu, point to Start and then click Start EDA Netlist Writer.

c The Quartus II software and the I/O Designer software can export and import an .fx.
Therefore, it is possible to overwrite the .fx and import incorrect assignments into one
or both programs. To prevent this occurrence from happening, create a backup copy
of the .fx before importing, and import the backup copy instead of the Quartus II
software generated file. The assignments in the Quartus II software can be protected
by performing the steps in “Protecting Assignments in the Quartus II Software” on
page 8–17.

Figure 8–2. Generating a .pin and an .fx (Note 1)

Note to Figure 8–2:
(1) For more information about the full design flow, which includes the I/O Designer software, the DxDesigner software,

and the board layout tool flowchart details, refer to Figure 8–1.

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

.pin

www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–7
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Creating a Backup .qsf
To automatically create a backup .qsf of your current pin assignments, perform the
following steps:

1. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

2. In the Import Assignments dialog box, browse to your project and turn on Copy
existing assignments into <project name>.qsf.bak.

3. Click OK.

f For more information about pin and signal assignment transfer, and files the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the I/O Designer Software
The Mentor Graphics I/O Designer software allows you to integrate your FPGA and
PCB designs. Pin and signal assignment changes can be made anywhere in the design
flow with either the Quartus II Pin Planner or the I/O Designer software. The
I/O Designer software facilitates moving these changes, as well as synthesis,
placement, and routing changes, between the Quartus II software, an external
synthesis tool (if used), and a schematic capture tool such as the DxDesigner software.

This section describes how to use the I/O Designer software to transfer pin and signal
assignment information to and from the Quartus II software with an .fx, and how to
create symbols for the DxDesigner software.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

8–8 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 8–3 shows the design flow using the I/O Designer software.

f For more information about the I/O Designer software, and to obtain usage, support,
and product updates, use the Help menu in the I/O Designer software or refer to the
Mentor Graphics website (www.mentor.com).

I/O Designer Database Wizard
All I/O Designer project information is stored in an .fpc. You can create a new
database that incorporates the .fx and .pin information generated by the Quartus II
software using the I/O Designer Database Wizard. You can also create a new, empty
database and manually add the assignment information. If there is no signal or pin
assignment information currently available, you can create an empty database that
contains only a selection of the target device. This is useful if you know the signals in
your design and the pins you want to assign. You can transfer this information at a
later time to the Quartus II software for placement and routing.

Figure 8–3. Design Flow Using the I/O Designer Software (Note 1)

Notes to Figure 8–3:
(1) For more information about the full design flow including the Quartus II software flowchart details, refer to Figure 8–1

on page 8–2.
(2) These are DxDesigner software-specific steps in the design flow and are not part of the I/O Designer flow.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–9
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

It is possible to create an I/O Designer database with only one type of file or the other.
However, if only a .pin is used, any I/O assignment changes made in the
I/O Designer software cannot be imported back into the Quartus II software without
first generating an .fx. If only an .fx is used to create the I/O Designer database, the
database may not contain all the available I/O assignment information. The .fx
generated by the Quartus II software only lists pins with assigned signals. Because the
.pin lists all device pins—whether signals are assigned to them or not—its use, along
with the .fx, produces the most complete set of information for creating the
I/O Designer database.

To create a new I/O Designer database using the Database wizard, perform the
following steps:

1 If you skip a step in this process, you can complete the skipped step later. To return to
a skipped step, on the Properties menu, click File.

1. Start the I/O Designer software. The Welcome to I/O Designer dialog box
appears. Select Wizard to create new database and click OK.

1 If the Welcome to I/O Designer dialog box is not shown because it was
disabled, you can access the wizard through the menu. To access the
wizard, on the File menu, click Database Wizard.

2. Click Next. The Define HDL source file page appears (Figure 8–4).

f For more information about creating and using HDL files in the Quartus II software,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook, or refer to the I/O Designer Help.

Figure 8–4. Database Wizard HDL File Page

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

8–10 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 If no HDL files are available, or if your signal and pin assignments are
already contained in the .fx, you do not have to complete Step 3 and can
proceed to Step 4.

3. If you have created a Verilog HDL or VHDL file in your Quartus II software
design, you can enter a top-level Verilog HDL or VHDL file. Adding a file allows
you to create functional blocks or get signal names from your design. All physical
pin assignments must be created in I/O Designer if no .fx or .pin is used. Click
Next. The Database Name page appears.

4. In the Database Name page, enter your database file name. Click Next. The
Database Location window appears.

5. Enter a path to the new or an existing database in the Location field, or browse to a
database location. Click Next. The FPGA flow page appears.

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Quartus II 5.0, or a later version of the Quartus II
software.

8. Select the appropriate device family, device, package, and speed (if applicable),
from the corresponding menus. Click Next. The Place and route page appears.

1 The Quartus II software version selections in the Tool/Library menu may
not reflect the version of the Quartus II software currently installed in your
system even if you are using the latest version of the I/O Designer
software. The version number selection in this window is used in the
I/O Designer software to identify the devices that were available or
obsolete in that particular version of the Quartus II software. If you are
unsure of the version to select, use the latest version listed in the menu. If
the device you are targeting does not appear in the device menu after
making this selection, the device may be new and not yet added to the
I/O Designer software. For I/O Designer software updates, contact Mentor
Graphics or refer to their website (www.mentor.com).

9. In the FPGAX file name field, type or browse to the backup copy of the .fx
generated by the Quartus II software.

10. In the Pin report file name field, type or browse to the .pin generated by the
Quartus II software. Click Next.

You can also select a .qsf for update. The I/O Designer software can update the
pin assignment information in the .qsf without affecting any other information in
the file.

1 You can select a .pin without selecting an .fx for import. The I/O Designer
software does not generate a .pin. To transfer assignment information to the
Quartus II software, select an additional file and file type. Altera
recommends selecting an .fx in addition to a .pin for transferring all the
assignment information in the .fx and .pin.

1 In some versions of the I/O Designer software, the standard file picker may
incorrectly look for a .pin instead of an .fx. In this case, select All Files (*.*)
from the Save as type list and select the file from the list.

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–11
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

11. The Synthesis page appears. On the Synthesis page, you can specify an external
synthesis tool and a synthesis constraints file for use with the tool. If you do not
use an external synthesis tool, click Next.

f For more information about third-party synthesis tools, refer to Volume 3:
Verification of the Quartus II Handbook.

12. On the PCB Flow page, you can select an existing schematic project or create a
new project as a symbol information destination.

■ To select an existing project, select Choose existing project and click Browse
after the Project Path field. The Select project dialog box appears. Select the
project.

■ To create a new project, in the Select project dialog box, select Create new
empty project. Enter the project file name in the Name field and browse to the
location where you want to save the file (Figure 8–5). Click OK.

If you have not specified a design tool to which you can send symbol information in
the I/O Designer software, click Advanced in the PCB Flow page and select your
design tool. If the DxDesigner software is selected, you have the option of specifying a
Hierarchical Occurrence Attributes (.oat) file to import into the I/O Designer
software. Click Next, then click Finish to create the database.

1 In I/O Designer version 2005 or later, the Update Wizard dialog box (refer to
Figure 8–9 on page 8–15) appears if you are creating the database with the Database
wizard. Use the Update Wizard dialog box to confirm creation of the I/O Designer
database using the selected .fx and .pin.

Use the I/O Designer software and your newly created database to make pin
assignment changes, create pin swap groups, or adjust signal and pin properties in the
I/O Designer GUI (Figure 8–6).

Figure 8–5. Select Project Dialog Box

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

8–12 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about using the I/O Designer software and the DxDesigner
software, refer to the Mentor Graphics website (www.mentor.com) or refer to the
I/O Designer software or the DxDesigner Help.

Updating Pin Assignments from the Quartus II Software
As the design process continues, the FPGA designer must make changes to the logic
design in the Quartus II software that places signals on different pins after the design
is recompiled, or manually with the Quartus II Pin Planner. These types of changes
must be carried forward to the circuit schematic and board layout tools to ensure that
signals are connected to the correct pins on the FPGA. Updating the .fx and the .pin in
the Quartus II software facilitates this flow (Figure 8–7).

Figure 8–6. Mentor Graphics I/O Designer Main Window

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–13
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To update the .fx and the .pin in the Quartus II software after making changes to the
design, run a full compilation, or on the Start menu, point to Processing and click
Start EDA Netlist Writer. The .fx in your selected output directory and the .pin in
your project directory are updated. You must rerun the I/O Assignment Analyzer
whenever you make I/O changes in the Quartus II software. To rerun the I/O
Assignment Analyzer, on the Processing menu, click Start Compilation, or to run a
full compilation, on the Processing menu, point to Start and click Start I/O
Assignment Analysis.

f For more information about setting up the .fx and running the I/O Assignment
Analyzer, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy of the file, updating the file in the Quartus II software
overwrites any changes made to the file by the I/O Designer software. If there are
I/O Designer assignments in the .fx that you want to preserve, create a backup copy
of the file before updating it in the Quartus II software, and verify that your
I/O Designer database points to the backup copy. To point to the backup copy,
perform the steps in the following section.

Whenever the .fx or the .pin is updated in the Quartus II software, the changes can be
imported into the I/O Designer database. You must set up the locations for the files in
the I/O Designer software.

1. To set up the file locations if they are not already set, on the File menu, click
Properties. The project Properties dialog box appears (Figure 8–8).

Figure 8–7. Updating the I/O Designer Pin Assignments in the Design Flow (Note 1)

Note to Figure 8–7:

(1) For more information about the full design flow, which includes the Quartus II software, the DxDesigner software,
and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

.fx

.pin

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

8–14 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

2. Under FPGA Xchange, click Browse to select the .fx file name and location.

3. To specify a Pin report file, under Place and Route, click Browse to select the .pin
file name and location.

After you have set up these file locations, the I/O Designer software monitors these
files for changes. If the .fx or .pin changes during the design flow, three indicators
flash red in the lower right corner of the I/O Designer GUI (refer to Figure 8–6 on
page 8–12). You can continue working or click on the indicators to open the
I/O Designer Update Wizard dialog box. If you have made changes to your design in
the Quartus II software that result in an updated .fx or .pin and the update indicators
do not flash or you have previously canceled an indicated update, manually open the
Update Wizard dialog box. To open the Update Wizard dialog box, on the File menu,
click Update.

1 The I/O Designer software versions before version 2005 displays a dialog box asking
if you want to open the Update Wizard dialog box, instead of using flashing
indicators.

The I/O Designer Update Wizard dialog box lists the updated files associated with
the database (Figure 8–9).

Figure 8–8. Project Properties Dialog Box

Chapter 8: Mentor Graphics PCB Design Tools Support 8–15
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The paths to the updated files have yellow exclamation points and the Status column
shows Not updated, indicating that the database has not yet been updated with the
newer information contained in the files. A checkmark to the left of any updated file
indicates that the file will update the database. Turn on any files you want to use to
update the I/O Designer database, and click Next. If you are not satisfied with the
database update, on the Edit menu, click Undo.

1 You can update the I/O Designer database using both the .fx and the .pin
simultaneously. Turning on both the .fx and the .pin for update causes the Update
Wizard dialog box to provide options for using assignments from one file or the other
exclusively or merging the assignments contained in both files into the I/O Designer
database. Versions of the I/O Designer software older than version 2005 simply
merge assignments contained in multiple files.

Sending Pin Assignment Changes to the Quartus II Software
In the same way that the FPGA designer can make adjustments that affect the PCB
design, the board designer can make changes to optimize signal routing and layout
that must be applied to the FPGA. The FPGA designer can take these required
changes back into the Quartus II software to refit the logic to match the adjustments to
the pin-out. The I/O Designer software accommodates this reverse flow as shown in
Figure 8–10.

Figure 8–9. Update Wizard Dialog Box

8–16 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Pin assignment changes are made directly in the I/O Designer software, or the
software automatically updates changes made in a board layout tool that are
back-annotated to a schematic entry program such as the DxDesigner software. You
must update the .fx to reflect these updates in the Quartus II software. To perform this
update in the I/O Designer software, on the Generate menu, click FPGA Xchange
File.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy, updating the file from the I/O Designer software overwrites
any changes that may have been made to the file by the Quartus II software. If there
are assignments from the Quartus II software in the file that you want to preserve,
create a backup copy of the file before updating it in the I/O Designer software, and
verify that your I/O Designer database points to the backup copy. To point to the
backup copy, perform the steps in “Updating Pin Assignments from the Quartus II
Software” on page 8–12.

After the .fx is updated, you must import it into the Quartus II software. To import the
file, perform the following steps:

1. Start the Quartus II software and open your project.

2. On the Assignments menu, click Import Assignments.

3. In the File name box, click Browse and from the Files of type list, select FPGA
Xchange Files (*.fx).

4. Select the .fx and click Open.

5. Click OK.

Figure 8–10. Updating the Quartus II Pin Assignments in the Reverse Design Flow

Notes to Figure 8–10:
(1) These are software-specific steps in the design flow and are not necessary for the reverse flow steps of the design.
(2) For more information about the full design flow, which includes the complete I/O Designer software, the DxDesigner

software, and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

(2)

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
.fpc

Generate Symbolrr

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist DD Writerrr

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

(1) (1)

Chapter 8: Mentor Graphics PCB Design Tools Support 8–17
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Protecting Assignments in the Quartus II Software
To protect assignments in the Quartus II software, perform the following steps:

1. Start the Quartus II software.

2. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

3. Turn on Copy existing assignments into <project name>.qsf.bak before importing
before importing the .fx. This action automatically creates a backup copy of the
Quartus II constraints file that contains all your current pin assignments.

Generating Symbols for the DxDesigner Software
Along with circuit simulation, circuit board schematic creation is one of the first tasks
required in the design of a new PCB. Schematics are required to understand how the
PCB works, and to generate a netlist that is passed to a board layout tool for board
design and routing. The I/O Designer software allows you to create schematic
symbols based on the FPGA design exported from the Quartus II software.

Most FPGA devices contain hundreds of pins, requiring large schematic symbols that
may not fit on a single schematic page. Symbol designs in the I/O Designer software
can be split or fractured into several functional blocks, allowing multiple part
fractures on the same schematic page or across multiple pages. In the DxDesigner
software, these part fractures are joined together with the use of the HETERO attribute.

The I/O Designer software can generate symbols for use in several Mentor Graphics
schematic entry tools, and can import changes back-annotated by board layout tools
to update the database and feed updates back to the Quartus II software with the .fx.
This section discusses symbol creation specifically for the DxDesigner software.

Schematic symbols are created in the I/O Designer software in the following ways:

■ Manually

■ Using the I/O Designer Symbol wizard

■ Importing previously created symbols from the DxDesigner software

The I/O Designer Symbol wizard can be used as a design base that allows you to
quickly create a symbol for manual editing at a later time. If you have already created
symbols in a DxDesigner project and want to apply a different FPGA design to them,
you can manually import these symbols from the DxDesigner project. To import the
symbols, open the I/O Designer software, and on the File menu, click Import
Symbol.

f For more information about importing symbols from the DxDesigner software into an
I/O Designer database, refer to the I/O Designer Help.

Symbols created in the I/O Designer software are either functional, physical (PCB), or
a combination of functional and physical. A functional symbol is based on signals
imported into the database, usually from Verilog HDL or VHDL files. No physical
device pins must be associated with the signals to generate a functional symbol. This
section focuses on board-level PCB symbols with signals directly mapped to physical
device pins through assignments in either the Quartus II Pin Planner or in the
I/O Designer database.

8–18 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about manually creating, importing, and editing symbols in the
I/O Designer software, as well as the different types of symbols the software can
generate, refer to the I/O Designer Help.

Setting Up the I/O Designer Software to Work with the DxDesigner Software
If you created your I/O Designer database with the Database wizard, you may
already be set up to export symbols to a DxDesigner project. To verify this, or to
manually set up the I/O Designer software to work with the DxDesigner software,
you must set the path to the DxDesigner executable, set the export type to
DxDesigner, and set the path to a DxDesigner project directory.

To set these options, perform the following steps:

1. Start the I/O Designer software.

2. On the Tools menu, click Preferences. The Preferences dialog box appears.

3. Click Paths, double-click on the DxDesigner executable file path field, and click
Browse to select the location of the DxDesigner application (Figure 8–11).

4. Click Apply.

5. Click Symbol Editor and click Export. In the Export type menu, under General,
select DxDesigner/PADS-Designer (Figure 8–12).

6. Click Apply and click OK.

Figure 8–11. Path Preferences Dialog Box

Chapter 8: Mentor Graphics PCB Design Tools Support 8–19
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

7. On the File menu, click Properties. The project Properties dialog box appears.

8. Click the PCB Flow tab and click Path to a DxDesigner project directory.

9. Click OK.

If you do not have a new DxDesigner project in the Database wizard and a
DxDesigner project, you must create a new database with the DxDesigner software,
and point the I/O Designer software to this new project.

f For more information about creating and working with DxDesigner projects, refer to
the DxDesigner Help.

Create Symbols with the Symbol Wizard
FPGA symbols based on Altera devices can be created, fractured, and edited with the
I/O Designer Symbol wizard. To create a symbol based on a selected Altera FPGA
device, perform the following steps:

1. Start the I/O Designer software.

2. Click Symbol Wizard in the toolbar, or on the Symbol menu, click Symbol
Wizard. The Symbol Wizard (1 of 6) page appears (Figure 8–13).

Figure 8–12. Symbol Editor Export Preferences

8–20 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

3. On page 1 of the Symbol Wizard page, in the Symbol name field, enter the
symbol name. The DEVICE and PKG_TYPE fields are automatically populated
with the device and package information. Under Symbol type, click PCB. Under
Use signals, click All.

4. Click Next. The Symbol Wizard (2 of 6) page appears.

1 If the DEVICE and PKG_TYPE fields are blank or incorrect, cancel the
Symbol wizard and select the correct device information. On the File menu,
click Properties. In the Properties window, click the FPGA Flow tab and
enter the correct device information.

5. On page 2 of the Symbol Wizard page, select fracturing options for your symbol.
If you are using the Symbol wizard to edit a previously created fractured symbol,
you must turn on Reuse existing fractures so that your current fractures are not
altered. Select other options on this page as appropriate for your symbol.

6. Click Next. The Symbol Wizard (3 of 6) page appears.

7. Additional fracturing options are available on page 3 of the Symbol Wizard page.
After selecting the necessary options, click Next. The Symbol Wizard (4 of 6) page
appears.

8. On page 4 of the Symbol Wizard page, select the options for how the symbols will
look. Select the necessary options and click Next. The Symbol Wizard (5 of 6) page
appears.

9. On page 5 of the Symbol Wizard page, define what information will be labeled for
the entire symbol and for individual pins. Select the desired options and click
Next. The Symbol Wizard (6 of 6) page appears.

Figure 8–13. Symbol Wizard

Chapter 8: Mentor Graphics PCB Design Tools Support 8–21
FPGA-to-Board Integration with the I/O Designer Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

10. On the final page of the Symbol Wizard page, add additional signals and pins that
have not already been placed in the symbol. Click Finish when you complete your
selections.

You can view your symbol and any fractures you created with the Symbol Editor
(Figure 8–14). You can edit parts of the symbol, delete fractures, or rerun the Symbol
wizard.

If assignments in the I/O Designer database are updated, the symbols created in the
I/O Designer software automatically reflect these changes. Assignment changes can
be made in the I/O Designer software, with an updated .fx from the Quartus II
software, or from a back-annotated change in your board layout tool.

Export Symbols to the DxDesigner Software
After you have completed your symbols, export the symbols to your DxDesigner
project. To generate all the fractures of a symbol, on the Generate menu, click All
Symbols. To generate a symbol for the currently displayed symbol in Symbol Editor,
click Current Symbol Only. Each symbol in the database is saved as a separate file in
the /sym directory in your DxDesigner project. The symbols can be instantiated in
your DxDesigner schematics.

f For more information about working with DxDesigner projects, refer to the
DxDesigner Help.

Figure 8–14. The I/O Designer Symbol Editor

8–22 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Scripting Support
The I/O Designer software features a command line Tcl interpreter. All commands
issued through the GUI in the I/O Designer software are translated into Tcl
commands run by the tool. You can view the generated Tcl commands and run scripts,
or enter individual commands in the I/O Designer Console window.

The following section includes commands that perform some of the operations
described in this chapter.

If you want to change the .fx from which the I/O Designer software updates
assignments, type the following command at an I/O Designer Tcl prompt:

set_fpga_xchange_file <file name>

You can use the following command to update the I/O Designer database with
assignment updates made in the Quartus II software after the .fx is specified:

update_from_fpga_xchange_file

You can use the following command to update the .fx with changes made to the
assignments in the I/O Designer software for transfer back into the Quartus II
software:

generate_fpga_xchange_file

You can use the following command if you want to import assignment data from a
.pin created by the Quartus II software:

set_pin_report_file -quartus_pin <file name>

You can run the I/O Designer Symbol wizard with the following command:

symbolwizard

You can set the DxDesigner project directory path where symbols are saved with the
following command:

set_dx_designer_project -path <path>

f For more information about Tcl scripting and Tcl scripting with the Quartus II
software, refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook. For
more information about the Tcl scripting capabilities of the I/O Designer software as
well as a list of available commands, refer to the I/O Designer Help.

FPGA-to-Board Integration with the DxDesigner Software
The Mentor Graphics DxDesigner software is a design entry tool for schematic
capture. You can use it to create flat circuit schematics for all the PCB design types.
You can also use the DxDesigner software to create hierarchical schematics that
facilitate design reuse and a team-based design. You can use the DxDesigner software
in the design flow alone or in conjunction with the I/O Designer software. However,
if you use the DxDesigner software without the I/O Designer software, the design
flow is one-way, using only the .pin generated by the Quartus II software.

Signal and pin assignment changes can be made only in the Quartus II software and
are reflected in updated symbols in a DxDesigner schematic. You cannot
back-annotate changes made in a board layout tool or in a DxDesigner symbol to the
Quartus II software. Figure 8–15 shows the design flow when the I/O Designer
software is not used.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–23
FPGA-to-Board Integration with the DxDesigner Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about the DxDesigner software, including usage, support,
training, and product updates, refer to the Mentor Graphics website
(www.mentor.com), or choose Schematic Design Help Topics in the DxDesigner Help.

DxDesigner Project Settings
New projects in the DxDesigner software are already set up to create FPGA symbols
by default. However, for complete support and compatibility with the I/O Designer
software, if it is used with the DxDesigner software, you must enable the
DxBoardLink Flow options.

You can enable the DxBoardLink flow design configuration while creating a new
DxDesigner project or after a project is created.

To enable the DxBoardLink flow design configuration when creating a new
DxDesigner project, perform the following steps:

1. Start the DxDesigner software.

2. On the File menu, click New and click the Project tab. The New dialog box
appears (Figure 8–16).

Figure 8–15. Design Flow Without the I/O Designer Software (Note 1)

Note to Figure 8–15:
(1) For more information about the full design flow, which includes the Quartus II software, the I/O Designer software,

and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

http://www.mentor.com/

8–24 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

3. Click More. Turn on DxBoardLink (Figure 8–16).

1 To enable the DxBoardLink Flow design configuration in an existing
project, click Design Configurations in the Design Configuration toolbar
and turn on DxBoardLink (Figure 8–17).

Figure 8–16. New Project Dialog Box

Figure 8–17. DxBoardLink Design Configuration

Chapter 8: Mentor Graphics PCB Design Tools Support 8–25
FPGA-to-Board Integration with the DxDesigner Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

DxDesigner Symbol Wizard
You can create schematic symbols in the DxDesigner software manually or with the
Symbol wizard. The DxDesigner Symbol wizard is similar to the I/O Designer
Symbol wizard, but with fewer fracturing options.

FPGA symbols based on Altera devices can be created, fractured, and edited with the
DxDesigner Symbol wizard. To start the Symbol wizard, perform the following steps:

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar, or on the File menu, click New. The New
window appears. Click the File tab and create a new file of type Symbol Wizard.

3. Enter the new symbol name in the name field and click OK. The Symbol Wizard
page appears (Figure 8–18).

4. On the Wizard Task Selection page, choose to create a new symbol or modify an
existing symbol. If you are modifying an existing symbol, specify the library path
or alias, and select the existing symbol. If you are creating a new symbol, select
DxBoardLink for the symbol source. The DxDesigner block type defaults to
Module because the FPGA design does not have an underlying DxDesigner
schematic. Choose whether or not to fracture the symbol. After making your
selections, click Next. The New Symbol and Library Name page appears.

5. On the New Symbol and Library Name page, enter a name for the symbol, an
overall part name for all the symbol fractures, and a library name for the new
library created for this symbol. By default, the part and library names are the same
as the symbol name. Click Next. The Symbol Parameters page appears.

Figure 8–18. Wizard Task Selection

8–26 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

6. On the Symbol Parameters page, decide how the generated symbol will look and
how it will match up with the grid you have set in your DxDesigner project
schematic. After making your selections, click Next. The DxBoardLink Pin List
Import page appears (Figure 8–19).

7. On the DxBoardLink Pin List Import page, in the FPGA vendor list, select Altera
Quartus. In the Pin-Out file to import field, browse to and select the .pin from
your Quartus II design project directory. You can also select choices from the
Fracturing Scheme, Bus pin, and Power pin options. After you make your
selections, click Next. The Symbol Attributes page appears.

8. On the Symbol Attributes page, select to create or modify symbol attributes for
use in the DxDesigner software. After you make your selections, click Next. The
Pin Settings page appears.

9. On the Pin Settings page, make any final adjustments to pin and label location
and information. Each tabbed spreadsheet represents a fracture of your symbol.
After you make your selections, click Save Symbol.

After creating the symbol, you can examine and place any fracture of the symbol in
your schematic. When you are finished with the Symbol wizard, all the fractures you
created are saved as separate files in the library you specified or created in the /sym
directory in your DxDesigner project. You can add the symbols to your schematics or
you can manually edit the symbols or with the Symbol wizard.

Figure 8–19. DxBoardLink Pin List Import

Chapter 8: Mentor Graphics PCB Design Tools Support 8–27
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 Symbols created in the DxDesigner software can be edited and updated with newer
versions of the .pin generated by the Quartus II software. However, symbol fracturing
is fixed and cannot be fractured again. To create new fractures for your design, create
a new symbol in the Symbol wizard, and perform the steps in “DxDesigner Symbol
Wizard” on page 8–25.

f For more information about creating, editing, and instantiating component symbols
in DxDesigner, choose Schematic Design Help Topics from the Help menu in the
DxDesigner software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process that can lead to errors in the PCB netlist or
design, especially when multiple engineers are working on different parts of the
project. The design workflow available when the Quartus II software is used in
conjunction with the Mentor Graphics toolset assists the FPGA designer and the
board designer in preventing errors and focusing their attention on the design.

Referenced Documents
This chapter references the following documents:

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ Volume 3: Verification of the Quartus II Handbook

■ Simultaneous Switching Noise (SSN) Analysis and Optimizations chapter in volume 2
of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/quartus2/lit-qts-verification.jsp
www.altera.com/literature/hb/qts/qts_qii52018.pdf

8–28 Chapter 8: Mentor Graphics PCB Design Tools Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Document Revision History
Table 8–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 8–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Added minor information about simultaneous switching
noise (SSN) analysis on “Performing Simultaneous
Switching Noise (SSN) Analysis of Your FPGA” on
page 8–3.

■ General style editing.

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

■ Was chapter 6 in the 8.1.0 release.

■ Removed Figures that were numbered 6-4, 6-6, 6-7, and
6-8 in v8.1.0.

Updated for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

Changed to 8½” × 11” page size. No change to content. Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

Updated references. Updated for the Quartus II software
version 8.0 release.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

9. Cadence PCB Design Tools Support

This chapter addresses how the Quartus® II software interacts with the Cadence
Allegro Design Entry HDL software and the Cadence Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS) to
provide a complete FPGA-to-board integration design workflow.

Introduction
With today’s large, high-pin-count and high-speed FPGA devices, good PCB design
practices are essential to ensure the correct operation of your system. The PCB design
takes place concurrently with the design and programming of the FPGA. An FPGA or
ASIC designer initially creates the signal and pin assignments and the board designer
must correctly transfer these assignments to the symbols used in their system circuit
schematics and board layout. As the board design progresses, pin reassignments are
required to optimize the layout. Pin reassignments must be relayed to the FPGA
designer to ensure the new assignments can be processed through the FPGA with
updated placement and routing.

This chapter provides information about the following topics:

■ Cadence tool description, history, and comparison.

■ The general design flow between the Quartus II software and the Cadence Allegro
Design Entry HDL software and the Cadence Allegro Design Entry CIS software.

■ Generating schematic symbols from your FPGA design for use in the Cadence
Allegro Design Entry HDL software.

■ Updating Design Entry HDL symbols when signal and pin assignment changes
are made in the Quartus II software.

■ Creating schematic symbols in the Cadence Allegro Design Entry CIS software
from your FPGA design.

■ Updating symbols in the Cadence Allegro Design Entry CIS software when signal
and pin assignment changes are made in the Quartus II software.

■ Using Altera-provided device libraries in the Cadence Allegro Design Entry CIS
software.

This chapter is intended for board design and layout engineers who want to begin the
FPGA board integration process while the FPGA is still in the design phase. Part
librarians can also benefit from this chapter by learning the method to use output
from the Quartus II software to create new library parts and symbols.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software version 15.2 or later

■ The OrCAD Capture software with the optional CIS option version 10.3 or later
(optional)

QII52014-9.1.0

9–2 Chapter 9: Cadence PCB Design Tools Support
Product Comparison

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 Because the Cadence Allegro Design Entry CIS software is based on the OrCAD
Capture software, these programs are very similar. This chapter refers to the Cadence
Allegro Design Entry CIS software; however, any procedural information can also
apply to the OrCAD Capture software unless otherwise noted.

f For more information about obtaining and licensing the Cadence tools and for
product information, support, and training, refer to the Cadence website
(www.cadence.com).

f For more information about the OrCAD Capture software and the CIS option, refer to
the Cadence website (www.cadence.com).

f For more information about Cadence and OrCAD support and training, refer to the
EMA Design Automation website (www.ema-eda.com).

Product Comparison
The Cadence and OrCAD design tools have similar functionality, but there are
differences both in their function and location of product information. Table 9–1 lists
the Cadence and OrCAD products described in this chapter and provides information
about changes, product information, and support.

Table 9–1. Cadence and OrCAD Product Comparison

Cadence Allegro
Design Entry HDL

Cadence Allegro
Design Entry CIS OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History

More commonly known by its
former name, Cadence renamed all
board design tools in 2004 under
the Allegro name.

Based directly on OrCAD Capture
CIS, the Cadence Allegro Design
Entry CIS software is still developed
by OrCAD but sold and marketed by
Cadence. EMA provides support and
training.

The basis for Design Entry
CIS is still developed by
OrCAD for continued use by
existing OrCAD customers.
EMA provides support and
training for all OrCAD
products.

Vendor Design
Flow

Cadence Allegro 600 series,
formerly known as the Expert
Series, for high-end, high-speed
design.

Cadence Allegro 200 series,
formerly known as the Studio
Series, for small- to medium-level
design.

—

Information
and Support

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com

www.cadence.com
http://www.cadence.com/us/pages/default.aspx
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

Chapter 9: Cadence PCB Design Tools Support 9–3
FPGA-to-PCB Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera FPGA design from the Quartus II
software through a circuit schematic in the Cadence Allegro Design Entry HDL
software or the Cadence Allegro Design Entry CIS software. Figure 9–1 shows the
design flow with the Cadence Allegro Design Entry HDL software. Figure 9–2 shows
the design flow with the Cadence Allegro Design Entry CIS software.

Figure 9–1. Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design
Start PCB Design

(Allegro Design Entry HDL)

End

Quartus II Software

.pin

Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA

9–4 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-PCB Design Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 9–1 and Figure 9–2 show the possible design flows, depending on your tool
choice. The Cadence PCB Librarian Expert license is required to use the Cadence
Allegro PCB Librarian Part Developer tool to create FPGA symbols. You can update
symbols with changes made to the FPGA design using any of these tools.

To integrate an Altera FPGA design starting in the Quartus II software through to a
circuit schematic in the Cadence Allegro Design Entry HDL software or the Cadence
Allegro Design Entry CIS software, perform the following steps:

1. In the Quartus II software, compile your design to generate a Pin-Out File (.pin) to
transfer the assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your
schematic design, perform the following steps:

a. Open an existing project or create a new project in the Cadence Allegro Project
Manager tool.

b. Construct a new symbol or update an existing symbol using the Cadence
Allegro PCB Librarian Part Developer tool.

c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol
or fracture it into smaller parts (optional).

d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software
schematic and transfer the design to your board layout tool.

–or

Figure 9–2. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout and Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)

Chapter 9: Cadence PCB Design Tools Support 9–5
Setting Up the Quartus II Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If you are using the Cadence Allegro Design Entry CIS software for your
schematic design, perform the following steps:

a. Generate a new part in a new or existing Cadence Allegro Design Entry CIS
project, referencing the .pin output from the Quartus II software. You can also
update an existing symbol with a new .pin.

b. Split the symbol into smaller parts as necessary.

c. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic
and transfer the design to your board layout tool.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software version 9.0 and later, you can extract pin assignment
data and perform SSN analysis of your FPGA design for the designs that target
Stratix III device family. You can perform SSN analysis to analyze SSN in your FPGA
device early in the board layout stage as part of your overall pin planning process,
however you do not have to perform SSN analysis to generate pin assignment data
from the Quartus II software. You can use the SSN Analyzer tool in the Quartus II
software to optimize the pin assignments for better SSN performance of your FPGA
device.

f To get the latest information on device support for the SSN Analyzer, refer to the
Quartus II Help.

For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook.

Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Cadence design tools by generating the Quartus II project .pin. The .pin is an output
file generated by the Quartus II Fitter that contains pin assignment information. You
can use the Quartus II Pin Planner to set and change the assignments contained in the
.pin and then transfer the assignments to the Cadence design tools. You cannot,
however, import pin assignment changes from the Cadence design tools into the
Quartus II software with the .pin.

The .pin lists all used and unused pins on your selected Altera device. It also provides
the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf

9–6 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about using the Quartus II Pin Planner to create or change pin
assignment details, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook.

Generating a .pin
The .pin is automatically generated by the Quartus II Fitter during a full compilation
of your FPGA design, or when you run I/O assignment analysis on the design. The
.pin is located in your Quartus II project directory with the name <project name>.pin.

f For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL
Software

The Cadence Allegro Design Entry HDL software is a high-end schematic capture tool
that is part of the Cadence 600 series design flow. Use the Cadence Allegro Design
Entry HDL software to create flat circuit schematics for all types of PCB design. The
Cadence Allegro Design Entry HDL software can also create hierarchical schematics
to facilitate design reuse and team-based design. With the Cadence Allegro Design
Entry HDL software, the design flow from FPGA-to-board is one-way, using only the
.pin generated by the Quartus II software. Signal and pin assignment changes can
only be made in the Quartus II software and are reflected in updated symbols in a
Cadence Allegro Design Entry HDL project. For more information about the design
flow with the Cadence Allegro Design Entry HDL software, refer to Figure 9–1 on
page 9–3.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry HDL software symbol cannot be back-annotated to the Quartus II
software.

f For more information about the Cadence Allegro Design Entry HDL software and the
Cadence Allegro PCB Librarian Part Developer tool, including licensing, support,
usage, training, and product updates, refer to the Help in the software or to the
Cadence website (www.cadence.com).

Symbol Creation
In addition to circuit simulation, circuit board schematic creation is one of the first
tasks required in the design of a new PCB. Schematics are required to understand how
the PCB works, and to generate a netlist that is passed on to a board layout tool for
board design and routing. The Cadence Allegro PCB Librarian Part Developer tool
allows you to create schematic symbols based on FPGA designs exported from the
Quartus II software.

http://www.cadence.com/us/pages/default.aspx
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 9: Cadence PCB Design Tools Support 9–7
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can create symbols for the Cadence Allegro Design Entry HDL project with the
Cadence Allegro PCB Librarian Part Developer tool, which is available in the Cadence
Allegro Project Manager tool. Altera recommends using the Cadence Allegro PCB
Librarian Part Developer tool to import FPGA designs into the Cadence Allegro
Design Entry HDL software.

You must have a PCB Librarian Expert license from Cadence to run the Cadence
Allegro PCB Librarian Part Developer tool. The Cadence Allegro PCB Librarian Part
Developer tool provides a GUI with many options for creating, editing, fracturing,
and updating symbols. If you do not use the Cadence Allegro PCB Librarian Part
Developer tool, you must create and edit symbols manually in the Symbol Schematic
View in the Cadence Allegro Design Entry HDL software.

1 If you do not have a PCB Librarian Expert license, you can automatically create FPGA
symbols using the programmable IC (PIC) design flow found in the Cadence Allegro
Project Manager tool. For more information about using the PIC design flow, refer to
the Help in the Cadence design tools, or go to the Cadence website
(www.cadence.com).

Before you can create a symbol from an FPGA design, you must first open a Cadence
Allegro Design Entry HDL project with the Cadence Allegro Project Manager tool. If
you do not have an existing Cadence Allegro Design Entry HDL project, you can
create one with the Cadence Allegro Design Entry HDL software. Cadence Allegro
Design Entry HDL projects are stored in your Cadence Allegro Design Entry HDL
project directory with the name <project name>.cpm.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol
fractures as slots, the other tools described in this chapter use different names to refer
to symbol fractures. Table 9–2 lists the symbol fracture naming conventions for each
of the tools addressed in this chapter.

Cadence Allegro PCB Librarian Part Developer Tool
You can create, fracture, and edit schematic symbols for your designs using the
Cadence Allegro PCB Librarian Part Developer tool. Most devices are physically large
with hundreds of pins, requiring large schematic symbols that might not fit on a
single schematic page. Symbols designed in the Cadence Allegro PCB Librarian Part
Developer tool can be split or fractured into several functional blocks called slots,
allowing multiple smaller part fractures to exist on the same schematic page or across
multiple pages. Figure 9–3 shows how the Cadence Allegro PCB Librarian Part
Developer tool fits into the design flow.

Table 9–2. Symbol Fracture Naming

Cadence Allegro PCB
Librarian

Part Developer Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry
CIS Software

During symbol generation Slots — Sections

During symbol schematic instantiation — Versions Parts

http://www.cadence.com/us/pages/default.aspx

9–8 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To run the Cadence Allegro PCB Librarian Part Developer tool, you must have a
Cadence Allegro Design Entry HDL project open in the Cadence Allegro Project
Manager tool. To open the Cadence Allegro PCB Librarian Part Developer tool, on the
Flows menu, click Library Management, and then click Part Developer.

Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import
and Export wizard to import your pin assignments from the Quartus II software. To
access the Import and Export wizard, perform the following steps:

1. On the File menu, click Import and Export.

1 You will receive an error message from the Cadence Allegro PCB Librarian
Part Developer tool when you open the Import and Export wizard if you
are not using your PCB Librarian Expert license file. To point to your PCB
Librarian Expert license file, on the File menu, click Change Product and
then select the correct product license.

2. Select Import ECO-FPGA, and then click Next.

Figure 9–3. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

Notes to Figure 9–3:

(1) For more information about the full design flow flowchart, refer to Figure 9–1 on page 9–3.
(2) Grayed out steps are not part of the FPGA symbol creation or update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Synbol in Schematic

ForwFF ard to Board Laww ya out yy ToolTT

Board Layout Tool

Layout and Route FPGA

(1)

(2)

Chapter 9: Cadence PCB Design Tools Support 9–9
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

3. In the Select Source page of the Import and Export wizard, make the following
settings:

a. In the Vendor list, select Altera.

b. In the PnR Tool list, select quartusII.

c. In the PR File box, browse to select the .pin in your Quartus II project directory.

d. Click Simulation Options to select simulation input files.

e. Click Next.

4. In the Select Destination dialog box, make the following settings:

a. Under Select Component, click Generate Custom Component to create a new
component in a library,

–or

b. Click Use standard component to base your symbol on an existing component.

1 Altera recommends creating a new component if you previously created
generic component for an FPGA device. Generic components can cause
some problem with your design. When you create a new component you
can place your pin and signal assignments from the Quartus II software on
this component and reuse the component as a base when you have a new
FPGA design.

c. In the Library list, select an existing library. You can select from the cells
contained in the selected library. Each cell represents all the symbol versions
and part fractures for that particular part. In the Cell list, select the existing cell
to use as a base for your part.

d. In the Destination Library list, select a destination library for the component.
Click Next.

e. Review and edit the assignments you are importing into the Cadence Allegro
PCB Librarian Part Developer tool based on the data in the .pin and then click
Finish. The location of each pin is not included in the Preview of Import Data
page of the Import and Export wizard, but input pins are placed on the left
side of the created symbol, output pins on the right, power pins on the top, and
ground pins on the bottom.

Edit and Fracture Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer
tool, you can edit the symbol graphics, fracture the symbol into multiple slots, and
add or change package or symbol properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics
of a particular symbol. To edit the symbol graphics, select the symbol in the cell
hierarchy. The Symbol Pins tab appears. You can edit the preview graphic of the
symbol in the Symbol Pins tab.

9–10 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate
symbol slots is useful for FPGA designs. A single symbol for most FPGA packages
might be too large for a single schematic page. Splitting the part into separate slots
allows you to organize parts of the symbol by function, creating cleaner circuit
schematics. For example, you can create one slot for an I/O symbol, a second slot for a
JTAG symbol, and a third slot for a power/ground symbol.

Figure 9–4 shows a part fractured into separate slots.

To fracture a part into separate slots, or to modify the slot locations of pins on parts
that are already fractured in the Cadence Allegro PCB Librarian Part Developer tool,
perform the following steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management.

3. Click Part Developer.

4. Click the name of the package you want to change in the cell hierarchy.

5. Click Functions/Slots. If you are not creating new slots but want to change the slot
location of some pins, proceed to Step 6. If you are creating new slots, click Add. A
dialog box appears, allowing you to add extra symbol slots. Set the number of
extra slots you want to add to the existing symbol, not the total number of desired
slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes in
each column to move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate
Symbol(s).

Figure 9–4. Splitting a Symbol into Multiple Slots (Notes 1), (2)

Notes to Figure 9–4:
(1) Figure 9–4 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices

or other configuration modes may have different sets of configuration pins, but can be fractured in a similar manner.
(2) The power/ground slot shows only a representation of power and ground pins. Because the device contains a large number of power and ground

pins.

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Chapter 9: Cadence PCB Design Tools Support 9–11
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

8. Select whether to create a new symbol or modify an existing symbol in each slot.
Click OK.

The newly generated or modified slot symbols display as separate symbols in the cell
hierarchy. Each of these symbols can be edited individually.

c The Cadence Allegro PCB Librarian Part Developer tool allows you to remap pin
assignments in the Package Pin tab of the main Cadence Allegro PCB Librarian Part
Developer window. If signals are remapped to different pins in the Cadence Allegro
PCB Librarian Part Developer tool, the changes are reflected only in regenerated
symbols for use in your schematics. You cannot transfer pin assignment changes to
the Quartus II software from the Cadence Allegro PCB Librarian Part Developer tool,
which creates a potential mismatch of the schematic symbols and assignments in the
FPGA design. If pin assignment changes are necessary, make the changes in the
Quartus II Pin Planner instead of the Cadence Allegro PCB Librarian Part Developer
tool, and update the symbol as described in the following sections.

f For more information about creating, editing, and organizing component symbols
with the Cadence Allegro PCB Librarian Part Developer tool, refer to the Part
Developer Help.

Update FPGA Symbol

As the design process continues, you must make changes to the logic design in the
Quartus II software, placing signals on different pins after the design is recompiled, or
use the Quartus II Pin Planner to make changes manually. The board designer can
request such changes to improve the board routing and layout. These types of
changes must be carried forward to the circuit schematic and board layout tools to
ensure signals are connected to the correct pins on the FPGA. Updating the .pin in the
Quartus II software facilitates this flow. Figure 9–5 shows this part of the design flow.

9–12 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool
after the .pin is updated, perform the following steps:

1. On the File menu, click Import and Export. The Import and Export wizard
appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The Select
Source dialog box appears.

3. Select the updated source of the FPGA assignment information. In the Vendor list,
select Altera. In the PnR Tool list, select quartusII. In the PR File field, click
browse to specify the updated .pin in your Quartus II project directory. Click
Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To
create a new component based on the updated pin assignment data, select
Generate Custom Component. This replaces the cell listed under the Specify
Library and Cell name header with a new, non-fractured cell. Any symbol edits or
fractures are lost. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination library
for the component and click Next. The Preview of Import Data dialog box
appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages
displays summarizing what changes will be made to the cell. To accept the
changes and update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You
can edit, fracture, and generate the updated symbols as usual from the main
Cadence Allegro PCB Librarian Part Developer window.

Figure 9–5. Updating the FPGA Symbol in the Design Flow

Notes to Figure 9–5:

(1) For more information about the full design flow flowchart, refer to Figure 9–1 on page 9–3.
(2) Grayed out steps are not part of the FPGA symbol update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)

Chapter 9: Cadence PCB Design Tools Support 9–13
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your
PCB Librarian Expert license file, an error message displays in red at the bottom of the
message text window of the Part Developer when you select the Import and Export
command. To point to your PCB Librarian Expert license, on the File menu, click
Change Product, and select the correct product license.

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software
To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after
the new symbol is saved in the Cadence Allegro PCB Librarian Part Developer tool,
perform the following steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.

4. To add the newly created symbol to your schematic, on the Component menu,
click Add. The Add Component dialog box appears.

5. Select the new symbol library location, and select the name of the cell you created
from the list of cells.

The symbol is now “attached” to your cursor for placement in the schematic. If you
fractured the symbol into slots, right-click the symbol and choose Version to select
one of the slots for placement in the schematic.

f For more information about the Cadence Allegro Design Entry HDL software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software or go to the Cadence website (www.cadence.com).

FPGA-to-Board Integration with Cadence Allegro Design Entry CIS
Software

The Cadence Allegro Design Entry CIS software is a mid-level schematic capture tool
(part of the Cadence 200 series design flow based on OrCAD Capture CIS). Use the
Cadence Allegro Design Entry CIS software to create flat circuit schematics for all
types of PCB design. You can also create hierarchical schematics to facilitate design
reuse and team-based design using the Cadence Allegro Design Entry CIS software.
With the Cadence Allegro Design Entry CIS software, the design flow from
FPGA-to-board is unidirectional using only the .pin generated by the Quartus II
software. Signal and pin assignment changes can only be made in the Quartus II
software and are reflected in updated symbols in a Cadence Allegro Design Entry CIS
schematic project. Figure 9–2 on page 9–4 shows the design flow with the Cadence
Allegro Design Entry CIS software.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry CIS symbol cannot be back-annotated to the Quartus II software.

f For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software, go to the Cadence (www.cadence.com) or go to the EMA Design
Automation website (www.ema-eda.com).

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

9–14 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Cadence Allegro Design Entry CIS Project Creation
The Cadence Allegro Design Entry CIS software has built-in support for creating
schematic symbols using pin assignment information imported from the Quartus II
software.

To create a new project in the Cadence Allegro Design Entry CIS software, perform
the following steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the
Programmable Logic wizard, or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part
libraries to use, or select a blank schematic.

The Programmable Logic wizard is used only to build an FPGA logic design in the
Cadence Allegro Design Entry CIS software.

Your new project is created in the specified location and consists of the following files:

■ OrCAD Capture Project File (.opj)

■ Schematic Design File (.dsn)

Generate Part
After you create a new project or open an existing project in the Cadence Allegro
Design Entry CIS software, you can generate a new schematic symbol based on your
Quartus II FPGA design. You can also update an existing symbol if your .pin is
updated in the Quartus II software. The Cadence Allegro Design Entry CIS software
stores component symbols in OrCAD Library File (.olb). When a symbol is placed in a
library attached to a project, it is immediately available for instantiation in the project
schematic.

You can add symbols to an existing library or you can create a new library specifically
for the symbols generated from your FPGA designs. To create a new library, perform
the following steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design
Entry CIS software to create a default library named library1.olb. This library
appears in the Library folder in the Project Manager window of the Cadence
Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library
and select Save As. The library file is not created until you save the new library.

You can now create a new symbol to represent your FPGA design in your schematic.
To generate a schematic symbol, perform the following steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 9–6).

Chapter 9: Cadence PCB Design Tools Support 9–15
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

3. To specify the .pin from your Quartus II design, in the Netlist/source file type
field, click Browse.

4. In the Netlist/source file type list, select Altera Pin File.

5. Enter the new part name.

6. Specify the Destination part library for the symbol. If you do not select an existing
library for the part, a new library is created with a default name that matches the
name of your Cadence Allegro Design Entry CIS project.

7. To create a brand new symbol for this design, select Create new part. If you
updated your .pin in the Quartus II software and want to transfer any assignment
changes to an existing symbol, select Update pins on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The
symbol is for a primitive library part based only on the .pin and does not require
special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

The symbol is generated and placed in the selected library or in a new library found in
the Outputs folder of the design in the Project Manager window (Figure 9–7). Double-
click the name of the new symbol to see its graphical representation and edit it
manually using the tools available in the Cadence Allegro Design Entry CIS software.

Figure 9–6. Generate Part Dialog Box

9–16 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about creating and editing symbols in the Cadence Allegro
Design Entry CIS software, refer to the Help in the software.

Split Part
After a new symbol is saved in a project library, you can fracture the symbol into
multiple parts called sections. Fracturing a part into separate sections is useful for
FPGA designs. A single symbol for most FPGA packages might be too large for a
single schematic page. Splitting the part into separate sections allows you to organize
parts of the symbol by function, creating cleaner circuit schematics. For example, you
can create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot
for a power/ground symbol. Figure 9–8 shows a part fractured into separate sections.

Figure 9–7. Project Manager Window

Figure 9–8. Splitting a Symbol into Multiple Sections (Notes 1), (2)

Notes to Figure 9–8:

(1) Figure 9–8 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices
or other configuration modes might have different sets of configuration pins, but can be fractured in a similar manner.

(2) The power/ground section shows only a representation of power and ground pins. In actuality, the device contains a high number of power and
ground pins.

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Chapter 9: Cadence PCB Design Tools Support 9–17
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 While symbol generation in the Design Entry CIS software refers to symbol fractures
as sections, the other tools described in this chapter use different names to refer to
symbol fractures.

To split a part into sections, select the part in its library in the Project Manager
window of the Cadence Allegro Design Entry CIS software. On the Tools menu, click
Split Part or right-click the part and choose Split Part. The Split Part Section Input
Spreadsheet appears (Figure 9–9).

Each row in the spreadsheet represents a pin in the symbol. The spreadsheet column
labeled Section indicates the section of the symbol to which each pin is assigned. By
default, all pins in a new symbol are located in section 1. Change the values in the
Section column to assign pins to different, new sections of the symbol. You can also
specify the side of a section on which the pin will reside by changing the values in the
Location column. When you are finished, click Split. A new symbol appears in the
same library as the original with the name <original part name>_Split1.

View and edit each section individually. To view the new sections of the part,
double-click the part. The Part Symbol Editor window appears. The first section of the
part is displayed for editing. On the View menu, click Package to view thumbnails of
all the part sections. To edit the section of the symbol, double-click the thumbnail.

f For more information about splitting parts into sections and editing symbol sections
in the Cadence Allegro Design Entry CIS software, refer to the Help in the software.

Figure 9–9. Split Part Section Input Spreadsheet

9–18 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Instantiate Symbol in Design Entry CIS Schematic
After a new symbol is saved in a library in your Cadence Allegro Design Entry CIS
project, you can instantiate it on a page in your schematic. Open a schematic page in
the Project Manager window of the Cadence Allegro Design Entry CIS software. To
add the newly created symbol to your schematic on the schematic page, on the Place
menu, click Part. The Place Part dialog box appears (Figure 9–10).

Select the new symbol library location and the newly created part name. If you select
a part that is split into sections, you can select the section to place from the Part
pop-up menu. Click OK. The symbol is now attached to your cursor for placement in
the schematic. To place the symbol, click on the schematic page.

f For more information about using the Cadence Allegro Design Entry CIS software,
refer to the Help in the software.

Altera Libraries for the Cadence Allegro Design Entry CIS Software
Altera provides downloadable .olb for many of its device packages. You can add
these libraries to your Cadence Allegro Design Entry CIS project and update the
symbols with the pin assignments contained in the .pin generated by the Quartus II
software. This allows you to use the downloaded library symbols as a base for
creating custom schematic symbols with your pin assignments that you can edit or
fracture as desired. This can increase productivity by reducing the amount of time it
takes to create and edit a new symbol.

To use the Altera-provided libraries with your Cadence Allegro Design Entry CIS
project, perform the following steps:

1. Download the library of your target device from the Download Center page found
through the Support page on the Altera website (www.altera.com).

Figure 9–10. Place Part Dialog Box

http://www.altera.com/

Chapter 9: Cadence PCB Design Tools Support 9–19
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

2. Create a copy of the appropriate .olb to ensure that the original symbols are not
altered. Place the copy in a convenient location, such as your Cadence Allegro
Design Entry CIS project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software,
click once on the Library folder to select it. On the Edit menu, click Project or
right-click the Library folder and choose Add File to select the copy of the
downloaded .olb and add it to your project. The new library is added to the list of
part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 9–11).

5. In the Netlist/source file field, click Browse to specify the .pin in your Quartus II
design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For Part name, enter the name of the target device the same as it appears in the
downloaded library file. For example, if you are using a device from the
CYCLONE06.OLB library, enter the part name to match one of the devices in this
library such as ep1c6f256. You can rename the symbol later in the Project
Manager window after the part is updated.

8. Set the Destination part library to the copy of the downloaded library you added
to the project.

9. Select Update pins on existing part in library. Click OK.

10. Click Yes.

Figure 9–11. Generate Part Dialog Box

9–20 Chapter 9: Cadence PCB Design Tools Support
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The symbol is updated with your pin assignments. Double-click the symbol in the
Project Manager window to view and edit the symbol. On the View menu, click
Package if you want to view and edit other sections of the symbol. If the symbol in the
downloaded library is already fractured into sections, as some of the larger packages
are, you can edit each section but you cannot further fracture the part. Generate a new
part without using the downloaded part library if you require additional sections.

f For more information about creating, editing, and fracturing symbols in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process that can lead to errors in the PCB netlist or
design, especially when different engineers are working on different parts of the
project. The design workflow available when the Quartus II software is used with
tools from Cadence assists the FPGA designer and the board designer in preventing
such errors and focusing all attention on the design.

Referenced Document
This chapter references to the following documents:

■ I/O Management chapter in volume 2 of the Quartus II Handbook.

■ Simultaneous Switching Noise (SSN) Analysis and Optimizations chapter in volume 2
of the Quartus II Handbook

Document Revision History
Table 9–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 9–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Added “Performing Simultaneous Switching Noise (SSN)
Analysis of Your FPGA” on page 9–5.

■ General style editing.

■ Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

■ Chapter 9 was previously Chapter 7 in the 8.1 software release.

■ No change to content.

Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

Updated references. Updated for the Quartus II
software version 8.0.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Section III. Area, Timing and Power
Optimization

Introduction
Physical implementation can be an intimidating and challenging phase of the design
process. This section introduces features in Altera’s Quartus® II software that you can
use to achieve the highest design performance when you design for programmable
logic devices (PLDs), especially high density FPGAs. The Quartus II software
provides a comprehensive environment for FPGA designs, delivering unmatched
performance, efficiency, and ease-of-use.

In a typical design flow, you must synthesize your design with Quartus II integrated
synthesis or a third-party tool, place and route your design with the Fitter, and use the
TimeQuest static timing analyzer to ensure your design meets the timing
requirements. With the PowerPlay Power Analyzer, you ensure the design’s power
consumption is within limits. If your design does not meet all of your constraints,
reiterate this process either partially or completely (based on the specific situation).

Refer to “Further Reading” for more information on any particular feature.

Physical Implementation
Most optimization issues are about preserving previous results, reducing area,
reducing critical path delay, reducing power consumption, and reducing runtime. The
Quartus II software includes advisors to address each of these issues and helps you
optimize your design. Run these advisors during physical implementation for advice
about your specific design situation.

You can reduce the time spent on design iterations by following the recommended
design practices for designing with Altera® devices. Design planning is critical for
successful design timing implementation and closure.

Trade Offs and Limitations
Many optimization goals can conflict with one another, so you might be required to
make trade offs between different goals. For example, one major trade-off during
physical implementation is between resource usage and critical path timing, because
certain techniques (such as logic duplication) can improve timing performance at the
cost of increased area. Similarly, a change in power requirements can result in area
and timing trade offs. For example, if you reduce the number of high-speed tiles
available, or if you attempt to shorten high-power nets at the expense of critical path
nets.

In addition, system cost and time-to-market considerations can affect the choice of the
device. For example, a device with a higher speed grade or more clock networks can
facilitate timing closure at the expense of higher power consumption and system cost.

Finally, not all designs can be realized in a hardware circuit with limited resources and
given constraints. If you encounter resource limitation, timing constraints, or power
constraints that cannot be resolved by the Fitter, you might have to consider rewriting
parts of the HDL code.

III–2 Section III: Area, Timing and Power Optimization

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Preserving Results and Enabling Teamwork
Some of the Quartus II Fitter algorithms are pseudo-random in nature, which means
that small changes to the design can have a large impact on the final result. For
example, a critical path delay can change by 10% or more because of seemingly
insignificant changes. If you are close to meeting your timing objectives, you can use
the Fitter algorithm to your advantage by changing the fitter seed, which changes the
pseudo-random result of the Fitter.

Conversely, if you have trouble meeting timing on a portion of your design, you can
partition the troublesome portion and prevent it from recompiling if an unrelated part
of the design is changed. This feature, known as incremental compilation, can reduce
the Fitter runtimes by up to 70% if the design is partitioned, such that only small
portions require recompilation at any one time.

When you use incremental compilation, you can apply design optimization options to
individual design partitions and preserve performance in other partitions by leaving
them untouched. Many of the optimization techniques often result in longer
compilation times, but by applying them only on specific partitions, you can reduce
this impact and complete more iterations per day.

In addition, by physically floorplanning your partitions with LogicLock, you can
enable team-based flows and allow multiple people to work on different portions of
the design.

Reducing Area
By default, the Quartus II Fitter might spread out a design to meet the set timing
constraints. If you prefer to optimize your design to use the smallest area, you can
change this behavior. If you require more area savings, you can enable certain
physical synthesis options to modify your netlist to create more area-efficient
implementation, but at the cost of increased runtime and decreased performance.

Reducing Critical Path Delay
To meet complex timing requirements involving multiple clocks, routing resources,
and area constraints, the Quartus II software offers a close interaction between
synthesis, timing analysis, floorplan editing, and place-and-route processes.

By default, the Quartus II Fitter tries to meet specified timing requirements and stops
trying when the requirements are met. Therefore, using realistic constraints is
important to successfully close timing. If you under-constrain your design, you are
likely to get sub-optimal results. By contrast, if you over-constrain your design, the
Fitter might over-optimize non-critical paths at the expense of true critical paths. In
addition, you might incur an increased area penalty. Compilation time might increase
because of excessively tight constraints.

If your resource use is very high, the Quartus II Fitter might have trouble finding a
legal placement. In such circumstances, the Fitter automatically modifies some of its
settings to try to trade off performance for area.

The Quartus II Fitter offers a number of advanced options that can help in improving
the performance of your design when you properly set constraints. Use the Timing
Optimization Advisor to determine which options are best suited for your design.

Section III: Area, Timing and Power Optimization III–3

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If you use incremental compilation, you can help resolve inter-partition timing
requirements by locking down the results for each partition at a time or by guiding
the placement of the partitions with LogicLock regions. You might be able to improve
the timing on such paths by placing the partitions optimally to reduce the length of
critical paths. Once your inter-partition timing requirements are met, use incremental
compilation to preserve the results and work on partitions that have not met timing
requirements.

In high-density FPGAs, routing accounts for a major part of critical path timing.
Because of this, duplicating or retiming logic can allow the Fitter to shorten critical
paths. The Quartus II software offers push-button netlist optimizations and physical
synthesis options that can improve design performance at the expense of considerable
increases of compilation time and area. Turn on only those options that help you keep
reasonable compilation times. Alternately, you can modify your HDL to manually
duplicate or retime logic.

Reduce Power Consumption
The Quartus II software has features that help reduce design power dissipation. The
PowerPlay power optimization options control the power-driven compilation settings
for Synthesis and Fitter.

Reducing Runtime
Many Fitter settings influence compilation time. Most of the default settings in the
Quartus II software are set for reduced compilation time. You can modify these
settings based on your project requirements.

The Quartus II software supports parallel compilation in computers with multiple
processors. This can reduce compilation times by up to 15% while giving the identical
result as serial compilation.

You can also reduce compilation time with your iterations by using incremental
compilation. Use incremental compilation when you want to change parts of your
design, while keeping most of the remaining logic unchanged.

Using Quartus II Tools

Design Analysis
The Quartus II software provides tools that help with a visual representation of your
design. You can use the RTL Viewer to see a schematic representation of your design
before behavioral simulation, synthesis, and place-and-route. The Technology Map
Viewer provides a schematic representation of the design implementation in the
selected device architecture after synthesis and place-and-route. It can also include
timing information.

III–4 Section III: Area, Timing and Power Optimization

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

With incremental compilation, the Design Partition Planner and the Chip Planner
allow you to partition and layout your design at a higher level. In addition, you can
perform many different tasks with the Chip Planner, including: making floorplan
assignments, implementing engineering change orders (ECOs), and performing
power analysis. Also, you can analyze your design and achieve a faster timing closure
with the Chip Planner. The Chip Planner provides physical timing estimates, critical
path display, and routing congestion view to help guide placement for optimal
performance.

Advisors
The Quartus II software includes several advisors to help you optimize your design.
You can save time by following the recommendations in the timing optimization
advisor, the area optimization advisor, and the power optimization advisor. These
advisors give recommendations based on your project settings and your design
constraints.

Design Space Explorer
Use the Design Space Explorer (DSE) to find optimum settings in the Quartus II
software. DSE automatically tries different combinations of netlist optimizations and
advanced Quartus II software compiler settings, and reports the best settings for your
design. You can try different seeds with the DSE if you are fairly close to meeting
timing requirements. Finally, the DSE can run the different compilations on multiple
computers at once, which shortens the timing closure process.

Further Reading
This section includes the following chapters:

■ Chapter 10, Area and Timing Optimization

■ Chapter 11, Power Optimization

■ Chapter 12, Analyzing and Optimizing the Design Floorplan

■ Chapter 13, Netlist Optimizations and Physical Synthesis

■ Chapter 14, Design Space Explorer

Other supporting documents in volume 1 of the Quartus II Handbook are:

■ Design Planning with the Quartus II Software

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Designs

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant

■ Recommended HDL Coding Styles

■ Section IV. Engineering Change Management

Other documents of interest:

■ AN 584: Timing Closure Methodology for Advanced FPGA Designs

http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_04.pdf
http://www.altera.com/literature/an/an584.pdf

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

10. Area and Timing Optimization

This chapter describes techniques to reduce resource usage, improve timing
performance, and reduce compilation times when designing for Altera® devices.

Introduction
Good optimization techniques are essential for achieving the best results when
designing for programmable logic devices (PLDs). The optimization features
available in the Quartus® II software allow you to meet design requirements by
applying these techniques at multiple points in the design process.

This chapter explains how and when to use some of the features described in other
chapters of the Quartus II Handbook. This introduction describes the various stages in a
design optimization process, and points you to the appropriate sections in the chapter
for area, timing, or compilation time optimization.

Topics in this chapter include:

■ “Initial Compilation: Required Settings” on page 10–3

■ “Initial Compilation: Optional Settings” on page 10–6

■ “Design Analysis” on page 10–11

■ “Resource Utilization Optimization Techniques (LUT-Based Devices)” on
page 10–19

■ “Timing Optimization Techniques (LUT-Based Devices)” on page 10–32

■ “Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)” on
page 10–54

■ “Timing Optimization Techniques (Macrocell-Based CPLDs)” on page 10–60

■ “Compilation-Time Optimization Techniques” on page 10–64

■ “Other Optimization Resources” on page 10–70

■ “Scripting Support” on page 10–71

The application of these techniques varies from design to design. Applying each
technique does not always improve results. Settings and options in the Quartus II
software have default values that generally provide the best trade-off between
compilation time, resource utilization, and timing performance. You can adjust these
settings to determine whether other settings provide better results for your design.

When using advanced optimization settings and tools, it is important to benchmark
their effect on your results and to use them only if they improve results for your
design.

You can use the optimization flow described in this chapter to explore various
compiler settings and determine the techniques that provide the best results.

QII52005-9.1.0

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

10–2 Chapter 10: Area and Timing Optimization
Introduction

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Optimizing Your Design
The first stage in the optimization process is to perform an initial compilation on your
design. “Initial Compilation: Required Settings” on page 10–3 provides guidelines for
some of the settings and assignments that are recommended for your initial
compilation.“Initial Compilation: Optional Settings” on page 10–6 describes settings
that you might turn on based on your design requirements. “Design Analysis” on
page 10–11 explains how to analyze the compilation results.

1 You can use incremental compilation in the optimization process. Incremental
compilation can preserve timing to aid in timing closure, as well as compilation time
reduction; however, it can cause a slight increase in resource utilization.

f For more details about Quartus II incremental compilation flow, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

After you have analyzed the compilation results, perform the optimization stages in
the recommended order, as described in this chapter.

For LUT-based devices (FPGAs, MAX® II series of devices), perform optimizations in
the following order:

1. If your design does not fit, refer to “Resource Utilization Optimization Techniques
(LUT-Based Devices)” on page 10–19 before trying to optimize I/O timing or
register-to-register timing.

2. If your design does not meet the required I/O timing performance, refer to “I/O
Timing Optimization Techniques (LUT-Based Devices)” on page 10–73 before
trying to optimize register-to-register timing.

3. If your design does not meet the required slack on any of the clock domains in the
design, refer to “Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 10–73.

For macrocell-based devices (MAX 7000 and MAX 3000 CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to“Resource Utilization Optimization Techniques
(Macrocell-Based CPLDs)” on page 10–54 before trying to optimize I/O timing or
register-to-register timing.

2. If your timing performance requirements are not met, refer to “Timing
Optimization Techniques (Macrocell-Based CPLDs)” on page 10–60.

3. For device-independent techniques to reduce compilation time, refer to
“Compilation-Time Optimization Techniques” on page 10–64.

You can use all these techniques in the GUI or with Tcl commands. For more
information about scripting techniques, refer to “Scripting Support” on page 10–71.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 10: Area and Timing Optimization 10–3
Initial Compilation: Required Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Initial Compilation: Required Settings
This section describes the basic assignments and settings for your initial compilation.
Check the following compilation assignments before compiling the design in the
Quartus II software. Significantly varied compilation results can occur depending on
the assignments you set.

You should verify the following settings:

■ “Device Settings”

■ “I/O Assignments”

■ “Timing Requirement Settings” on page 10–4

■ “Device Migration Settings” on page 10–5

■ “Partitions and Floorplan Assignments for Incremental Compilation” on
page 10–5

Device Settings
Specific device assignments determine the timing model that the Quartus II software
uses during compilation. Choose the correct speed grade to obtain accurate results
and the best optimization. The device size and the package determine the device
pin-out and the number of resources available in the device.

To select the target device, on the Assignments menu, click Device.

In a Tcl script, use the following command to set the device:

set_global_assignment -name DEVICE <device> r

I/O Assignments
The I/O standards and drive strengths specified for a design affect I/O timing.
Specify I/O assignments so that the Quartus II software uses accurate I/O timing
delays in timing analysis and Fitter optimizations.

The Quartus II software can select pin locations automatically. If your pin locations
are not fixed due to PCB layout requirements, leave pin locations unconstrained. If
your pin locations are already fixed, make pin assignments to constrain the
compilation appropriately.“Resource Utilization Optimization Techniques
(Macrocell-Based CPLDs)” on page 10–54 includes recommendations for making pin
assignments that can have a large effect on your results in smaller macrocell-based
architectures.

Use the Assignment Editor and Pin Planner to assign I/O standards and pin locations.

f For more information about I/O standards and pin constraints, refer to the
appropriate device handbook. For information about planning and checking I/O
assignments, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook. For information about using the Assignment Editor, refer to the Assignment
Editor chapter in volume 2 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

10–4 Chapter 10: Area and Timing Optimization
Initial Compilation: Required Settings

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Timing Requirement Settings
Using comprehensive timing requirement settings is an important step for achieving
the best results for the following reasons:

■ Correct timing assignments allow the software to work hardest to optimize the
performance of the timing-critical parts of the design and make trade-offs for
performance. This optimization can also save area or power utilization in
non-critical parts of the design.

■ The Quartus II software performs physical synthesis optimizations based on
timing requirements (refer to “Physical Synthesis Optimizations” on page 10–40
for more information).

■ Depending on the Fitter Effort setting, the Quartus II Fitter can reduce runtime
considerably if your timing requirements are being met. For a description of the
different effort levels, refer to “Fitter Effort Setting” on page 10–10

Use your real requirements to get the best results. If you apply more demanding
timing requirements than you actually need, increased resource usage, higher power
utilization, increased compilation time, or all of these may result.

The TimeQuest Timing Analyzer checks your design against the timing constraints.
The Compilation Report and timing analysis reporting commands show whether
timing requirements are met and provide detailed timing information about paths
that violate timing requirements.

To create timing constraints for the Quartus II TimeQuest Timing Analyzer, create a
Synopsys Design Constraint (.sdc) file. You can also enter constraints in the
TimeQuest GUI. Use the write_sdc command, or, on the Constraints menu in the
TimeQuest Timing Analyzer, click Write SDC File to write your constraints to an .sdc
file. You can add an .sdc file to your project on the Quartus II Settings page under
Timing Analysis Settings.

1 If you already have an .sdc file in your project, using the write_sdc command from
the command line or using the Write SDC File option from the TimeQuest GUI
overwrites the existing file with your newly applied constraints.

1 If you are using the Quartus II Classic Timing Analyzer, refer to the Quartus II Help
topic “Classic Timing Analyzer Settings Page (Settings Dialog Box)”. For some older
Altera device families, you can create clock and other timing constraints using the
Classic Timing Analyzer. For details about how to create these constraints, refer to the
Quartus II Help topic “Specifying Timing Requirements and Options (Classic Timing
Analyzer)”.

Ensure that every clock signal has an accurate clock setting constraint. If clocks come
from a common oscillator, they can be considered related. Ensure that all related or
derived clocks are set up correctly in the constraints. All I/O pins that require I/O
timing optimization must be constrained. You should also specify minimum timing
constraints as applicable. If there is more than one clock or there are different I/O
requirements for different pins, make multiple clock settings and individual I/O
assignments instead of using a global constraint.

Chapter 10: Area and Timing Optimization 10–5
Initial Compilation: Required Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Make any complex timing assignments required in the design, including false path
and multicycle path assignments. Common situations for these types of assignments
include reset or static control signals, cases in which it is not important how long it
takes a signal to reach a destination, and paths that can operate in more than one clock
cycle. These assignments allow the Quartus II software to make appropriate trade-offs
between timing paths and can enable the Compiler to improve timing performance in
other parts of the design.

f For more information about timing assignments and timing analysis, refer to The
Quartus II TimeQuest Timing Analyzer and the Quartus II Classic Timing Analyzer
chapters in volume 3 of the Quartus II Handbook and the Quartus II TimeQuest Timing
Analyzer Cookbook. For more information about how to specify multicycle exceptions
in the TimeQuest Timing Analyzer, refer to AN 481: Applying Multicycle Exceptions in
the TimeQuest Timing Analyzer.

Timing Constraint Check—Report Unconstrained Paths
To ensure that all constraints or assignments have been applied to design nodes, you
can report all unconstrained paths in your design.

While using the Quartus II TimeQuest Timing Analyzer, you can report all the
unconstrained paths in your design with the Report Unconstrained Paths command
in the Task pane or the report_ucp Tcl command.

Device Migration Settings
If you anticipate a change to the target device later in the design cycle, either because
of changes in the design or other considerations, plan for it at the beginning of your
design cycle. Whenever you select a target device in the Settings dialog box, you can
also list any other compatible devices you can migrate to by clicking on the Migration
Devices button on the Device page. If you plan to move your design to a HardCopy®
device, make sure to select the device from the list under the Companion device tab
on the Device page.

By selecting the migration device and companion device early in the design cycle, you
help to minimize changes to the design at a later stage.

Partitions and Floorplan Assignments for Incremental Compilation
The Quartus II incremental compilation feature enables hierarchical and team-based
design flows in which you can compile parts of your design while other parts of the
design remain unchanged, or import parts of your design from separate Quartus II
projects.

Using incremental compilation for your design with good design partitioning
methodology can often help to achieve timing closure. Creating LogicLock™ regions
and using incremental compilation can help you achieve timing closure block by
block, and preserve the timing performance between iterations, which helps achieve
timing closure for the entire design.

Using incremental compilation may also help reduce compilation times. For more
information, refer to “Incremental Compilation” on page 10–64.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf

10–6 Chapter 10: Area and Timing Optimization
Initial Compilation: Optional Settings

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

If you want to take advantage of incremental compilation for a team-based design
flow to reduce your compilation times, or to improve the timing performance of your
design during iterative compilation runs, make meaningful design partitions and
create a floorplan for your design partitions. Good assignments can improve your
results. Assignments can negatively affect a design’s results if you do not follow
Altera’s recommendations.

1 If you plan to use incremental compilation, you must create a floorplan for your
design. If you are not using incremental compilation, this step is optional.

f For guidelines about how to create partition and floorplan assignments for your
design, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Initial Compilation: Optional Settings
This section describes optional settings that can help to compile your design. You can
selectively set all the optional settings that help to improve performance (if required)
and reduce compilation time. These settings vary between designs and there is no
standard set that applies to all designs. Significantly different compilation results can
occur depending on the assignments you have set.

The following settings are optional:

■ “Design Assistant”

■ “Smart Compilation Setting” on page 10–7

■ “Early Timing Estimation” on page 10–7

■ “Optimize Hold Timing” on page 10–8

■ “Asynchronous Control Signal Recovery/Removal Analysis” on page 10–8

■ “Limit to One Fitting Attempt” on page 10–9

Design Assistant
You can run the Design Assistant to analyze the post-fitting results of your design
during a full compilation. The Design Assistant checks rules related to gated clocks,
reset signals, asynchronous design practices, and signal race conditions. This is
especially useful during the early stages of your design, so that you can work on any
areas of concern in your design before proceeding with design optimization.

On the Assignments menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation.

You can also specify which rules you want the Design Assistant to apply when
analyzing and generating messages for a design.

f For more information about the rules in the Design Assistant, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 10: Area and Timing Optimization 10–7
Initial Compilation: Optional Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Smart Compilation Setting
Smart compilation can reduce compilation time by skipping compiler stages that are
not required to recompile the design. This is especially useful when you perform
multiple compilation iterations during the optimization phase of the design process.
However, smart compilation uses more disk space. To turn on smart compilation, on
the Assignments menu, click Settings. In the Category list, select Compilation
Process Settings and turn on Use smart compilation.

1 Smart compilation skips entire compiler stages (such as Analysis and Synthesis) when
they are not required. This feature is different from incremental compilation, which
you can use to compile parts of your design while preserving results for unchanged
parts. For information about using the incremental compilation feature to reduce your
compilation time, refer to “Incremental Compilation” on page 10–64.

Early Timing Estimation
The Quartus II software provides an Early Timing Estimation feature that estimates
your design’s timing results before the software performs full placement and routing.
On the Processing menu, point to Start, and click Start Early Timing Estimate to
generate initial compilation results after you have run analysis and synthesis. When
you want a quick estimate of a design’s performance before proceeding with further
design or synthesis tasks, this command can save significant compilation time. Using
this feature provides a timing estimate up to 45× faster than running a full
compilation, although the fit is not fully optimized or routed. Therefore, the timing
report is only an estimate. On average, the estimated delays are within 11% of the final
timing results as achieved by a full comilation.

You can specify the type of delay estimates to use with Early Timing Estimation. On
the Assignments menu, click Settings. In the Category list, select Compilation
Process Settings, and select Early Timing Estimate. On the Early Timing Estimate
page, the following options are available:

■ The Realistic option, which is the default, generates delay estimates that are likely
to be close to the results of a full compilation.

■ The Optimistic option uses delay estimates that are lower than those likely to be
achieved by a full compilation, which results in an optimistic performance
estimate.

■ The Pessimistic option uses delay estimates that are higher than those likely to be
achieved by a full compilation, which results in a pessimistic performance
estimate.

All three options offer the same reduction in compilation time.

You can view the critical paths in the design by locating these paths in the Chip
Planner. Then, if necessary, you can add or modify floorplan constraints such as
LogicLock regions, or make other changes to the design. You can then rerun the Early
Timing Estimator to quickly assess the impact of any floorplan assignments or logic
changes, enabling you to try different design variations and find the best solution.

10–8 Chapter 10: Area and Timing Optimization
Initial Compilation: Optional Settings

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Optimize Hold Timing
The Optimize Hold Timing option directs the Quartus II software to optimize
minimum delay timing constraints. This option is available for all Altera device
families except MAX 3000 and MAX 7000 series devices. By default, the Quartus II
software optimizes hold timing for all paths for designs using newer devices such as
Arria II GX, Arria GX, Stratix III, Stratix IV, and Cyclone III devices. By default, the
Quartus II software optimizes hold timing only for I/O paths and minimum TPD
paths for older devices.

When you turn on Optimize Hold Timing, the Quartus II software adds delay to
paths to guarantee that the minimum delay requirements are satisfied. In the Fitter
Settings pane, if you select I/O Paths and Minimum TPD Paths (the default choice
for older devices such as Cyclone II and Stratix II family of devices if you turn on
Optimize Hold Timing), the Fitter works to meet the following criteria:

■ Hold times (tH) from device input pins to registers

■ Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins

■ Minimum clock-to-out time (tCO) from registers to output pins

If you select All Paths, the Fitter also works to meet hold requirements from registers
to registers, as in Figure 10–1, where a derived clock generated with logic causes a
hold time problem on another register. However, if your design has internal hold time
violations between registers, Altera recommends that you correct the problems by
making changes to your design, such as using a clock enable signal instead of a
derived or gated clock.

f For design practices that can help eliminate internal hold time violations, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

Asynchronous Control Signal Recovery/Removal Analysis
The asynchronous control signal Recovery/Removal analysis option checks paths
that end at an asynchronous clear, preset, or load of a register to determine if recovery
and removal times are met for all registers. Recovery and removal times are similar to
the setup and hold time requirements, respectively, but they are applicable to the
control signals rather than the data. Recovery time is the minimum length of time an
asynchronous control signal such as a reset must be stable before the active clock
edge. Removal time is the minimum time an asynchronous control signal must be
stable after the active clock edge.

Figure 10–1. Optimize Hold Timing Option Fixing an Internal Hold Time Violation

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 10: Area and Timing Optimization 10–9
Initial Compilation: Optional Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

When you use the TimeTimeQuest Timing Analyzer for timing analysis,
Recovery/Removal analysis and optimization are always performed during
placement and routing. You can use the create_timing_summary Tcl command to
report the recovery and removal analysis. The slack for Removal/Recovery analysis is
determined in a similar way to setup and hold checks. Running the asynchronous
control signal Recovery/Removal analysis helps you make sure that there are no
timing failures related to the asynchronous controls in your design.

f For more details about Recovery/Removal analysis with the TimeQuest Timing
Analyzer, refer to The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

When using the Quartus II Classic Timing Analyzer for timing analysis,
Recovery/Removal analysis is turned off by default. To turn on this option, on the
Assignments menu, click Settings. In the Category list, select Timing Requirements
& Options, then click More Settings. Turn on Enable Recovery/Removal analysis.
Turning on this option adds additional constraints during placement and routing,
which can increase compilation time.

1 For designs containing FIFOs, Altera recommends turning on Recovery/Removal
analysis if you are using the Quartus II Classic Timing Analyzer.

Limit to One Fitting Attempt
A design might fail to fit for several reasons, such as logic overuse or illegal
assignments. For most failures, the Quartus II software informs you of the problem.
However, if the design uses too much routing, the Quartus II software makes up to
two additional attempts to fit your design. Each of these fit attempts takes
significantly longer than the previous attempt.

For large designs, you might not want to wait for all three fitting attempts to be
completed. To have the Quartus II software issue an error message after the first failed
attempt, turn on Limit to one fitting attempt on the Fitter Settings page.

Refer to “Routing” on page 10–28 for instructions about how to lower the design’s
routing utilization, so your design can be made to fit into the target device if it fails to
fit due to the lack of routing resources.

Optimize Multi-Corner Timing
Historically, FPGA timing analysis has been performed using only worst-case delays,
which are described in the slow corner timing model. However, due to process
variation and changes in the operating conditions, delays on some paths can be
significantly smaller than those in the slow corner timing model. This can result in
hold time violations on those paths, and in rare cases, additional setup time
violations.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–10 Chapter 10: Area and Timing Optimization
Initial Compilation: Optional Settings

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Also, because of the small process geometries of the Cyclone III, Cyclone IV, Stratix III,
and Stratix IV device families, the slowest circuit performance of designs targeting
these devices does not necessarily occur at the highest operating temperature. The
temperature at which the circuit is slowest depends on the selected device, the design,
and the Quartus II compilation results. Therefore, the Quartus II software provides
the Cyclone III series, Cyclone IV, Stratix III, and Stratix IV device families with three
different timing corners in commercial devices—Slow 85°C corner, Slow 0°C corner,
and Fast 0°C corner. For other device families two timing corners are available in
commercial devices—Fast 0° C and Slow 85° C corner.

By default, the Fitter optimizes constraints using only the slow corner timing model.
You can turn on the Optimize multi-corner timing option to instruct the Fitter to also
optimize constraints considering all timing corners, at the cost of a slight increase in
runtime. By optimizing for all process corners, you can create a design
implementation that is more robust across process, temperature, and voltage
variations. This option is available only for Arria GX, Stratix, Cyclone, and MAX II
series of devices.

To turn on the Optimize multi-corner timing option, on the Assignments menu, click
Settings. In the Category list, select Fitter Settings and turn on Optimize
multi-corner timing. Using the different timing models can be important to account
for process, voltage, and temperature variations for each device. Turning this option
on increases compilation time by approximately 10%.

For designs with external memory interfaces such as DDR and QDR, Altera
recommends that you turn on the Optimize multi-corner timing setting.

Fitter Effort Setting
Fitter effort refers to the amount of effort the Quartus II software uses to fit your
design. To set the Fitter effort, on the Assignments menu, click Settings. In the
Category list, select Fitter Settings. The Fitter effort settings are Auto Fit, Standard
Fit, and Fast Fit. The default setting depends on the device family specified.

Auto Fit
The Auto Fit option (available for Arria GX, Stratix, Cyclone, HardCopy, and MAX II
series of devices) focuses the full Fitter effort only on those aspects of the design that
require further optimization. Auto Fit can significantly reduce compilation time
relative to Standard Fit if your design has easy-to-meet timing requirements, low
routing resource utilization, or both. However, those designs that require full
optimization generally receive the same effort as is achieved by selecting Standard
Fit. Auto Fit is the default Fitter effort setting for all devices for which this option is
available.

If you want the Fitter to attempt to exceed the timing requirements by a certain
margin instead of simply meeting them, specify a minimum slack in the Desired
worst case slack box.

1 Specifying a minimum slack does not guarantee that the Fitter achieves the slack
requirement; it only guarantees that the Fitter applies full optimization unless the
target slack is exceeded.

Chapter 10: Area and Timing Optimization 10–11
Design Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

In some designs with multiple clocks, it might be possible to improve the timing
performance on one clock domain while reducing the performance on other clock
domains by over-constraining the most important clock. If you use this technique,
perform a sweep over multiple seeds to ensure that any performance improvements
that you see are real gains. For more information, refer to “Fitter Seed” on page 10–46.

Over-constraining the clock for which you require maximum slack, while using the
Auto Fit option, increases the chances that the Fitter is able to meet this requirement.

The Auto Fit option also causes the Quartus II Fitter to optimize for shorter
compilation times instead of maximum possible performance if the design includes
no timing assignments.

If your design has aggressive timing requirements or is hard to route, the placement
does not stop early and the compilation time is the same as using the Standard Fit
option.

The Auto Fit option might increase the number of routing wires used. This can lead to
an increase in the dynamic power when compared to using the Standard Fit option,
unless the Extra effort option in the PowerPlay power optimization list is also
enabled. When you turn on Extra effort, Auto Fit continues to optimize for reduction
of wire usage even after meeting the register-to-register requirement. There is no
adverse effect on the dynamic power consumption. If dynamic power consumption is
a concern, select Extra effort in both the Analysis & Synthesis Settings and the Fitter
Settings pages.

f For more details, refer to the “Power Driven Compilation” section in the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Standard Fit
Use the Standard Fit option to exceed specified timing requirements and achieve the
best possible timing results and lowest routing resource utilization for your design.
The Standard Fit setting usually increases compilation time relative to Auto Fit,
because it applies full optimization, regardless of the design requirement. In designs
with no timing assignments, on average, using the Standard Fit option results in a
fMAX about 10% higher than that achieved using the Auto Fit option. In designs where
timing requirements can be easily met, using the Standard Fit option can result in
considerably longer compilation times than using the Auto Fit option.

Fast Fit
The Fast Fit option reduces the amount of optimization effort for each algorithm
employed during fitting. This option reduces the compilation time by about 50%,
resulting in a fit that has, on average, 10% lower fMAX than that achieved using the
Standard Fit setting.

Design Analysis
The initial compilation establishes whether the design achieves a successful fit and
meets the specified timing requirements. This section describes how to analyze your
design results in the Quartus II software. After design analysis, proceed to
optimization, as described in “Optimizing Your Design” on page 10–2.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

10–12 Chapter 10: Area and Timing Optimization
Design Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Error and Warning Messages
After first compiling the design, it is important to evaluate all error and warning
messages to see if any design or setting changes are required. If changes are required,
make these changes and recompile the design before proceeding with design
optimization.

To suppress messages that you have already evaluated and do not want to see again,
right-click on the message in the Messages window and click Suppress.

f For more information about message suppression, refer to the “Message Suppression”
section in the Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

Ignored Timing Constraints
The Quartus II software ignores illegal, obsolete, and conflicting constraints.

You can view a list of ignored constraints by clicking Report Ignored Constraints in
the Reports menu in the TimeQuest GUI or by typing the following command to
generate a list of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints" r
If any constraints were ignored, analyze why they were ignored. If necessary, correct
the constraints and recompile the design before proceeding with design optimization.

f For more information about the report_sdc command and its options, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

1 If you are using the Classic Timing Analyzer, open the Ignored Timing Assignments
page in the Compilation Report to view any constraints that were ignored.

Resource Utilization
Determining device utilization is important regardless of whether a successful fit is
achieved. If your compilation results in a no-fit error, resource utilization information
is important for analyzing the fitting problems in your design. If your fitting is
successful, review the resource utilization information to determine whether the
future addition of extra logic or other design changes might introduce fitting
difficulties.

To determine resource usage, refer to the Flow Summary section of the Compilation
Report. This section reports how many resources are used, including pins, memory
bits, digital signal processing (DSP) block 9-bit elements (for Arria GX, Stratix, and
Stratix II devices) or 18-bit elements (for Arria II GX, Stratix IV, and Stratix III
devices), and phase-locked loops (PLLs). The Flow Summary indicates whether the
design exceeds the available device resources. More detailed information is available
by viewing the reports under Resource Section in the Fitter section of the
Compilation Report.

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Area and Timing Optimization 10–13
Design Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 For Arria II GX, Arria GX, Stratix IV, Stratix III, and Stratix II devices, a device with
low utilization does not have the lowest adaptive logic module (ALM) utilization
possible. For these devices, the Fitter uses adaptive look-up tables (ALUTs) in
different ALMs—even when the logic can be placed within one ALM—to achieve the
best timing and routing results. In achieving these results, the Fitter can spread logic
throughout the device. As the device fills up, the Fitter automatically searches for
logic functions with common inputs to place in one ALM. The number of partnered
ALUTs and packed registers also increases. Therefore, a design that is reported as
close to 100% full might still have space for extra logic if logic and registers can be
packed together more aggressively.

If resource usage is reported as less than 100% and a successful fit cannot be achieved,
either there are not enough routing resources or some assignments are illegal. In
either case, a message appears in the Processing tab of the Messages window
describing the problem.

If the Fitter finishes faster than the Fitter runs on similar designs, a resource might be
over-utilized or there might be an illegal assignment. If the Quartus II software seems
to run for an excessively long time compared to runs on similar designs, a legal
placement or route probably cannot be found. In the Compilation Report, look for
errors and warnings that indicate these types of problems.

Refer to “Limit to One Fitting Attempt” on page 10–9 for more information about how
to get a quick error message on hard-to-fit designs.

You can use the Chip Planner or the Timing Closure Floorplan (for supported devices)
to find areas of the device that have routing congestion. If you find areas with very
high congestion, analyze the cause of the congestion. Issues such as high fan-out nets
not using global resources, an improperly chosen optimization goal (speed versus
area), very restrictive floorplan assignments, or the coding style can cause routing
congestion. After you identify the cause, modify the source or settings to reduce
routing congestion.

f For details about using the Chip Planner and the Timing Closure Floorplan tools, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

I/O Timing (Including tPD)
The Quartus II TimeQuest Timing Analyzer supports the Synopsys Design
Constraints (SDC) format for constraining your design. When using the TimeQuest
Timing Analyzer for timing analysis, use the set_input_delay constraint to
specify the data arrival time at an input port with respect to a given clock. For output
ports, use the set_output_delay command to specify the data arrival time at an
output port with respect to a given clock. You can use the report_timing Tcl
command to generate the I/O timing reports.

The I/O paths that do not meet the required timing performance are reported as
having negative slack and are highlighted in red in the TimeQuest Timing Analyzer
Report pane. In cases where you do not apply an explicit I/O timing constraint to an
I/O pin, the Quartus II timing analysis software still reports the Actual number,
which is the timing number that must be met for that timing parameter when the
device runs in your system.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

10–14 Chapter 10: Area and Timing Optimization
Design Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 If you are using the Quartus II Classic Timing Analyzer, refer to the Quartus II Help
topic “Classic Timing Analyzer and Timing I/O analysis reports”.

f For more information about how timing numbers are calculated, refer to the
Quartus II TimeQuest Timing Analyzer chapter or the Quartus II Classic Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

Register-to-Register Timing
This section contains the following sections:

■ “Timing Analysis with the TimeQuest Timing Analyzer”

■ “Tips for Analyzing Failing Paths” on page 10–16

■ “Tips for Analyzing Failing Clock Paths that Cross Clock Domains” on page 10–17

Timing Analysis with the TimeQuest Timing Analyzer
If you are using the TimeQuest Timing Analyzer, you should analyze all valid
register-to-register paths by using appropriate constraints. Use the report_timing
command to generate the required timing reports for any register-to-register path.
Your design meets timing requirements when you do not have negative slack on any
register-to-register path on any of the clock domains.

All paths that do not meet the timing requirement are shown with a negative slack
and appear in red in the TimeQuest Timing Analyzer GUI.

When you select a path listed in the TimeQuest Report Timing pane, the tabs in the
corresponding path detail pane show a path summary of source and destination
registers and their timing, statistics about the path delay, detailed information about
the complete data path with all nodes in the path and the waveforms of the relevant
signals (Figure 10–2). You can locate a selected path in the Chip Planner or the
Technology Map Viewer by using the shortcut menu. Similarly, if you know that a
path is not a valid path, you can set it to be a false path using the shortcut menu.

To see the path details of any selected path, click on the Data Path tab in the path
details pane. This displays the details of the Data Arrival Path, as well as the Data
Required Path. For a graphical view of the information, click on the Waveform tab.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Area and Timing Optimization 10–15
Design Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Timing Analysis with the Classic Timing Analyzer
If you are using the Quartus II Classic Timing Analyzer, in the Compilation Report
window, refer to the Timing Analyzer section to determine whether
register-to-register timing requirements are met. The Clock Setup folder displays
setup slacks between registers on each clock domain in the design. The paths that do
not meet timing requirements have a negative slack and appear in red.

To determine why your timing requirements were not met, right-click on an entry in
the report and click List Paths. A message listing the paths appears in the System tab
of the Messages window. The expanded report for the path appears (Figure 10–3).
Click the “+” icon at the beginning of the line to see where the greatest delay is located
along the path.

The List Paths report shows the slack time and how that slack time was calculated. By
expanding the various entries, you can see the incremental delay through each node
in the path as well as the total delay. The incremental delay is the sum of the
interconnect delay (IC) and the cell delay (CELL) through the logic.

Figure 10–2. TimeQuest Timing Analyzer GUI

10–16 Chapter 10: Area and Timing Optimization
Design Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To visually analyze register-to-register timing paths, right-click on a path, point to
Locate, and click Locate in Chip Planner. For MAX 3000 and MAX 7000 devices, click
Locate in Timing Closure Floorplan to perform this analysis. The Chip Planner or
Timing Closure Floorplan appears with the path highlighted. On the View menu in
the Chip Planner, click Critical Path Settings to select the paths you want to view. To
turn critical paths on or off in the Chip Planner, on the View menu of the Chip
Planner, click Show Critical Paths.

f For more information about how timing analysis results are calculated, refer to the
Quartus II TimeQuest Timing Analyzer chapter or the Quartus II Classic Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

You also can see the logic in a particular path by locating the logic in the RTL Viewer
or Technology Map Viewer. These viewers allow you to see a gate-level or
technology-mapped representation of your design netlist. To locate a timing path in
one of the viewers, right-click on a path in the report, point to Locate, and click Locate
in RTL Viewer or Locate in Technology Map Viewer. When you locate a timing path
in the Technology Map Viewer, the annotated schematic displays the same delay
information that is shown when you use the List Paths command.

f For more information about netlist viewers, refer to the Analyzing Designs with
Quartus II Netlist Viewers chapter in volume 1 of the Quartus II Handbook.

Tips for Analyzing Failing Paths
When you are analyzing clock path failures, focus on improving the paths that show
the worst slack. The Fitter works hardest on paths with the worst slack. If you fix
these paths, the Fitter might be able to improve the other failing timing paths in the
design.

Figure 10–3. fMAX Slack Report

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Area and Timing Optimization 10–17
Design Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Check for particular nodes that appear in many failing paths. Look for paths that have
common source registers, destination registers, or common intermediate
combinational nodes. In some cases, the registers might not be identical, but are part
of the same bus. In the timing analysis report panels, clicking on the From or To
column headings can be helpful to sort the paths by the source or destination
registers. Clicking first on From, then on To, uses the registers in the To column as the
primary sort and From as the secondary sort. If you see common nodes, these nodes
indicate areas of your design that might be improved through source code changes or
Quartus II optimization settings. Constraining the placement for just one of the paths
might decrease the timing performance for other paths by moving the common node
further away in the device.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains
When analyzing clock path failures, check whether these paths cross between two
clock domains. This is the case if the From Clock and To Clock in the timing analysis
report are different. There can also be paths that involve a different clock in the
middle of the path, even if the source and destination register clock are the same. To
analyze these paths in more detail, right-click on the entry in the report and click List
Paths.

Expand the List Paths entry in the Messages window and analyze the largest
register-to-register requirement. Evaluate the setup relationship between the source
and destination (launch edge and latch edge) to determine if that is reducing the
available setup time. For example, the path can start at a rising edge and end at a
falling edge, which reduces the setup relationship by one half clock cycle.

Check to see if the PLL phase shift is reducing the setup requirement. You might be
able to adjust this using PLL parameters and settings.

If you are using the Quartus II Classic Timing Analyzer, you can direct the software to
analyze the PLL compensation delay as clock skew by enabling Clock Latency
analysis. On the Assignments menu, click Timing Analysis Settings. In the Category
list, select Classic Timing Analyzer Settings and click More Settings. In the Name
list, select Enable Clock Latency. In the Setting list, select On. Typically, you must
enable this option if your design results in timing violations for paths that pass
between PLL clock domains. The Quartus II TimeQuest Timing Analyzer performs
this analysis by default.

Paths that cross clock domains are generally protected with synchronization logic (for
example, FIFOs or double-data synchronization registers) to allow asynchronous
interaction between the two clock domains. In such cases, you can ignore the timing
paths between registers in the two clock domains while running timing analysis, even
if the clocks are related.

The Fitter attempts to optimize all failing timing paths. If there are paths that can be
ignored for optimization and timing analysis, but the paths do not have constraints
that instruct the Fitter to ignore them, the Fitter tries to optimize those paths as well.
In some cases, optimizing unnecessary paths can prevent the Fitter from meeting the
timing requirements on timing paths that are critical to the design. It is beneficial to
specify all paths that can be ignored, so that the Fitter can put more effort into the
paths that must meet their timing requirements instead of optimizing paths that can
be ignored.

10–18 Chapter 10: Area and Timing Optimization
Design Analysis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more details about how to ignore timing paths that cross clock domains, refer to
the Quartus II TimeQuest Timing Analyzer chapter or the Quartus II Classic Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Evaluate the clock skew between the source clock and the destination clock to
determine if that is reducing the available setup time. You can check the shortest and
longest clock path reports to see what is causing the clock skew. Avoid using
combinational logic in clock paths because it contributes to clock skew. Differences in
the logic or in its routing between the source and destination can cause clock skew
problems and result in warnings during compilation.

Global Routing Resources
Global routing resources are designed to distribute high-fan-out, low-skew signals
(such as clocks) without consuming regular routing resources. Depending on the
device, these resources can span the entire chip, or some smaller portion, such as a
quadrant. The Quartus II software attempts to assign signals to global routing
resources automatically, but you might be able to make more suitable assignments
manually.

f Refer to the relevant device handbook for details about the number and types of
global routing resources available.

Check the global signal utilization in your design to ensure that appropriate signals
have been placed on global routing resources. In the Compilation Report, open the
Fitter report and click the Resource Section. Analyze the Global & Other Fast Signals
and Non-Global High Fan-out Signals reports to determine whether any changes are
required.

You might be able to reduce clock skew for high fan-out signals by placing them on
global routing resources. Conversely, you can reduce the insertion delay of low
fan-out signals by removing them from global routing resources. Doing so can
improve clock enable timing and control signal recovery/removal timing, but
increases clock skew. You can also use the Global Signal setting in the Assignment
Editor to control global routing resources.

Compilation Time
In long compilations, most of the time is spent in the Analysis and Synthesis and
Fitter modules. Analysis and Synthesis includes synthesis netlist optimizations, if you
have turned on that option. The Fitter includes two steps, placement and routing, and
also includes physical synthesis if you turned on that option. The Flow Elapsed Time
section of the Compilation Report shows how much time is spent running the
Analysis and Synthesis and Fitter modules. The Fitter Messages report in the Fitter
section of the Compilation Report shows the time that was spent in placement and the
time that was spent in routing.

Placement is the process of finding optimum locations for the logic in your design.
Routing is the process of connecting the nets between the logic in your design. There
are many possible placements for the logic in a design, and finding better placements
typically uses more compilation time. Good logic placement allows you to more easily
meet your timing requirements and makes the design easier to route.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Area and Timing Optimization 10–19
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 The applicable messages are indicated as shown in the following example, with each
time component in two-digit format:

Info: Fitter placement operations ending: elapsed time = <days:hours:mins:secs>
Info: Fitter routing operations ending: elapsed time = <days:hours:mins:secs>

1 Days are not shown if the time is less than one day.

While the Fitter is running (including Placement and Routing), hourly info messages
similar to the following message are displayed every hour to indicate Fitter
operations are progressing normally.

Info: Placement optimizations have been running for x hour(s)

In this case, x indicates the number of hours the process has run.

Resource Utilization Optimization Techniques (LUT-Based Devices)
After design analysis, the next stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to I/O timing optimization or
register-to-register timing optimization. Ensure that you have already set the basic
constraints described in“Initial Compilation: Required Settings” on page 10–3 before
proceeding with the resource utilization optimizations discussed in this section. If a
design does not fit into a specified device, use the techniques in this section to achieve
a successful fit. After you optimize resource utilization and your design fits in the
desired target device, optimize I/O timing as described in “I/O Timing Optimization
Techniques (LUT-Based Devices)” on page 10–73. These tips are valid for all FPGA
families and the MAX II family of CPLDs.

Using the Resource Optimization Advisor
The Resource Optimization Advisor provides guidance in determining settings that
optimize the resource usage. To run the Resource Optimization Advisor, on the Tools
menu, point to Advisors, and click Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about how to
optimize the resource usage (logic element, memory block, DSP block, I/O, and
routing) of your design. Some of the recommendations in these categories might
contradict each other. Altera recommends evaluating the options and choosing the
settings that best suit your requirements.

Resolving Resource Utilization Issues Summary
Resource utilization issues can be divided into the following three categories:

■ Issues relating to I/O pin utilization or placement, including dedicated I/O blocks
such as PLLs or LVDS transceivers (refer to“I/O Pin Utilization or Placement”).

■ Issues relating to logic utilization or placement, including logic cells containing
registers and look-up tables as well as dedicated logic, such as memory blocks and
DSP blocks (refer to“Logic Utilization or Placement” on page 10–20).

■ Issues relating to routing (refer to “Routing” on page 10–28).

10–20 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

I/O Pin Utilization or Placement
Use the suggestions in the following sections to help you resolve I/O resource
problems.

Use I/O Assignment Analysis
On the Processing menu, point to Start and click Start I/O Assignment Analysis to
help with pin placement. The Start I/O Assignment Analysis command allows you to
check your I/O assignments early in the design process. You can use this command to
check the legality of pin assignments before, during, or after compilation of your
design. If design files are available, you can use this command to accomplish more
thorough legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location assignments,
and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential standards have
specific pin pairings, and certain I/O standards might be supported only on certain
I/O banks.

If your compilation or I/O assignment analysis results in specific errors relating to
I/O pins, follow the recommendations in the error message. Right-click on the
message in the Messages window and click Help to open the Quartus II Help topic for
this message.

Modify Pin Assignments or Choose a Larger Package
If a design that has pin assignments fails to fit, compile the design without the pin
assignments to determine whether a fit is possible for the design in the specified
device and package. You can use this approach if a Quartus II error message indicates
fitting problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several pin
assignments are ignored or moved, you might have to modify the pin assignments for
the design or select a larger package.

If the design fails to fit because insufficient I/Os are available, a successful fit can
often be obtained by using a larger device package (which can be the same device
density) that has more available user I/O pins.

f For more information about I/O assignment analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Logic Utilization or Placement
Use the suggestions in the following subsections to help you resolve logic resource
problems, including logic cells containing registers and lookup tables (LUTs), as well
as dedicated logic such as memory blocks and DSP blocks.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 10: Area and Timing Optimization 10–21
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Optimize Synthesis for Area, Not Speed
If your design fails to fit because it uses too much logic, resynthesize the design to
improve the area utilization. First, ensure that you have set your device and timing
constraints correctly in your synthesis tool. Particularly when area utilization of the
design is a concern, ensure that you do not over-constrain the timing requirements for
the design. Synthesis tools generally try to meet the specified requirements, which can
result in higher device resource usage if the constraints are too aggressive.

If resource utilization is an important concern, some synthesis tools offer an easy way
to optimize for area instead of speed. If you are using Quartus II integrated synthesis,
select Balanced or Area for the Optimization Technique. You can also specify this
logic option for specific modules in your design with the Assignment Editor in cases
where you want to reduce area using the Area setting (potentially at the expense of
register-to-register timing performance) while leaving the default Optimization
Technique setting at Balanced (for the best trade-off between area and speed for
certain device families) or Speed. You can also use the Speed Optimization
Technique for Clock Domains logic option to specify that all combinational logic in
or between the specified clock domain(s) is optimized for speed.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those produced by the Area setting, with better performance
results. The Area setting can give better results in some cases.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or your
synthesis software’s documentation.

The Quartus II software provides additional attributes and options that can help
improve the quality of your synthesis results.

Restructure Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexed logic, you can achieve a more efficient implementation
in your Altera device.

The Quartus II software provides the Restructure Multiplexers logic option, which
can extract and optimize buses of multiplexers during synthesis. This option is
available on the Analysis & Synthesis Settings page of the Settings dialog box and is
useful if your design contains buses of fragmented multiplexers. This option
restructures multiplexers more efficiently for area, allowing the design to implement
multiplexers with a reduced number of logic elements (LEs) or ALMs. Using the
Restructure Multiplexers logic option can reduce your design’s register-to-register
timing performance. This option is turned on automatically when you set the
Quartus II Analysis & Synthesis Optimization Technique option to Area or
Balanced. To change the default setting, on the Assignments menu, click Settings. In
the Category list, select Analysis & Synthesis Settings, and click the appropriate
option from the Restructure Multiplexers list to set the option globally.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–22 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For design guidelines to achieve optimal resource utilization for multiplexer designs,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For more information about the Restructure Multiplexers option in the
Quartus II software, refer to the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus II Handbook.

Perform WYSIWYG Resynthesis with Balanced or Area Setting
If you use another EDA synthesis tool and want to determine if the Quartus II
software can remap the circuit to use fewer LEs or ALMs, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Turn on Perform WYSIWYG primitive resynthesis (using optimization
techniques specified in Analysis & Synthesis settings). Or, on the Assignments
menu, click Assignment Editor, and set the Perform WYSIWYG Primitive
Resynthesis logic option for a specific module in your design.

4. On the same page, select Balanced or Area under Optimization Technique. Or, on
the Assignments menu, click Assignment Editor. Set the Optimization Technique
to Balanced or Area for a specific module in your design.

5. Recompile the design.

1 The Balanced setting typically produces utilization results that are very similar to the
Area setting with better performance results. The Area setting can give better results
in some cases. Performing WYSIWYG resynthesis for area in this way typically
reduces register-to-register timing performance.

Use Register Packing
The Auto Packed Registers option implements the functions of two cells into one
logic cell by combining the register of one cell in which only the register is used with
the LUT of another cell in which only the LUT is used. Figure 10–4 shows register
packing and the gain of one logic cell in the design.

Figure 10–4. Register Packing

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 10: Area and Timing Optimization 10–23
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Registers can also be packed into DSP blocks (Figure 10–5).

The following list shows the most common cases in which register packing helps to
optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register with a single
data input

■ A LUT can be implemented in the same cell as the register that is fed by the LUT

■ A LUT can be implemented in the same cell as the register that feeds the LUT

■ A register can be packed into a RAM block

■ A register can be packed into a DSP block

■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for certain device families):

■ Off—Does not pack registers

■ Normal—Packs registers when this is not expected to adversely affect timing
results

■ Minimize Area—Aggressively packs registers to reduce area, even at the cost of
design performance

■ Minimize Area with Chains—Aggressively packs registers to reduce area. This
option packs registers with carry chains. It also converts registers into register
cascade chains and packs them with other logic to reduce area. This option is
available only for Arria GX, Stratix, Cyclone, and MAX II series of devices.

■ Auto—This is the default setting for register packing. This setting tells the Fitter to
attempt to achieve the best performance while maintaining a fit for the design in
the specified device. The Fitter combines all combinational (LUT) and sequential
(register) functions that benefit circuit speed. In addition, more aggressive
combinations of unrelated combinational and sequential functions are performed
to the extent required to reduce the area of the design to achieve a fit in the
specified device. This option is available only for the Arria GX, Stratix, and
Cyclone series of devices.

Figure 10–5. Register Packing in DSP Blocks

10–24 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Sparse—In this mode, the combinational (LUT) and sequential (register) functions
are combined such that the combined logic has either a combinational output or a
sequential output, but not both. This mode is available only for Arria II GX,
Arria GX, Stratix III, Stratix II, Cyclone III, and Cyclone II devices. This option
results in a higher logic array block (LAB) usage, but might give you better timing
performance because of reduced routing congestion.

■ Sparse Auto—In this mode, the Quartus II Fitter starts with sparse mode packing,
and then attempts to achieve best performance while maintaining a fit for the
specified device. Later optimizations are carried out in a way similar to the Auto
mode. This mode is available only for Arria II GX, Arria GX, Stratix IV, Stratix III,
Stratix II, Cyclone III, and Cyclone II devices.

Turning on register packing decreases the number of LEs or ALMs in the design, but
could also decrease performance in some cases. On the Assignments menu, click
Settings. In the Category list, select Fitter Settings, and then click More Settings.
Turn on Auto Packed Registers to turn on register packing.

The area reduction and performance results with register packing can vary greatly
depending on the design.

The Auto setting performs more aggressive register packing as required, so the typical
results vary depending on the device resource utilization.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet might not
fit in the targeted device. This can occur when the location or LogicLock assignments
are too strict and not enough routing resources are available on the device.

In this case, use the Routing Congestion view in the Chip Planner to locate routing
problems in the floorplan, then remove any location or LogicLock region assignments
in that area. If your design still does not fit, the design is over-constrained. To correct
the problem, remove all location and LogicLock assignments and run successive
compilations, incrementally constraining the design before each compilation. You can
delete specific location assignments in the Assignment Editor or the Chip Planner. To
remove LogicLock assignments in the Chip Planner, in the LogicLock Regions
Window, or on the Assignments menu, click Remove Assignments. Turn on the
assignment categories you want to remove from the design in the Available
assignment categories list.

f For more information about the Routing Congestion view in the Chip Planner, refer
to Analyzing and Optimizing the Design Floorplan in volume 2 of the Quartus II
Handbook. Also refer to the Quartus II Help.

Change State Machine Encoding
State machines can be encoded using various techniques. Using binary or gray code
encoding typically results in fewer state registers than one-hot encoding, which
requires one register for every state bit. If your design contains state machines,
changing the state machine encoding to one that uses the minimal number of registers
might reduce resource utilization. The effect of state machine encoding varies
depending on the way your design is structured.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 10: Area and Timing Optimization 10–25
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If your design does not manually encode the state bits, you can specify the state
machine encoding in your synthesis tool. When using Quartus II integrated synthesis,
on the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings and turn on Minimal Bits for State Machine Processing. You can
also specify this logic option for specific modules or state machines in your design
with the Assignment Editor.

You can also use the following Tcl command in scripts to modify the state machine
encoding.

set_global_assignment -name state_machine_processing <value>

In this case, <value> can be AUTO, ONE-HOT, MINIMAL BITS, or USER-ENCODE.

Flatten the Hierarchy During Synthesis
Synthesis tools typically provide the option of preserving hierarchical boundaries,
which can be useful for verification or other purposes. However, optimizing across
hierarchical boundaries allows the synthesis tool to perform the most logic
minimization, which can reduce area. Therefore, to achieve the best results, flatten
your design hierarchy whenever possible. If you are using Quartus II integrated
synthesis, ensure that the Preserve Hierarchical Boundary logic option is turned off;
that is, make sure that you have not turned on the option in the Assignment Editor or
with Tcl assignments. If you are using Quartus II incremental compilation, you cannot
flatten your design across design partitions. Incremental compilation always
preserves the hierarchical boundaries between design partitions. Follow Altera’s
recommendations for design partitioning, such as registering partition boundaries to
reduce the effect of cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Retarget Memory Blocks
If the design fails to fit because it runs out of device memory resources, your design
might require a certain type of memory the device does not have. For example, a
design that requires two M-RAM blocks can be targeted to a Stratix EP1S10 device,
which has only one M-RAM block. You might be able to obtain a fit by building one of
the memories with a different size memory block, such as an M4K memory block.

If the memory block was created with the MegaWizard™ Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the RAM block type so it targets a new
memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code, and your
synthesis software can place large shift registers into memory blocks by inferring the
ALTSHIFT_TAPS megafunction. This inference can be turned off in your synthesis
tool to cause the memory to be placed in logic instead of in memory blocks. To disable
inference when using Quartus II integrated synthesis, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis. The Analysis & Synthesis page
appears.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

10–26 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

3. Turn off the Auto RAM Replacement, Auto ROM Replacement, or Auto Shift
Register Replacement logic option as appropriate for your project. Or, disable the
option for a specific entity in the Assignment Editor.

Depending on your synthesis tool, you can also set the RAM block type for inferred
memory blocks. In Quartus II integrated synthesis, set the ramstyle attribute to the
desired memory type for the inferred RAM blocks, or set the option to logic to
implement the memory block in standard logic instead of a memory block.

Consider the resource utilization by hierarchy in the report file, and determine
whether there is an unusually high register count in any of the modules. Some coding
styles can prevent the Quartus II software from inferring RAM blocks from the source
code because of their architectural implementation, and forces the software to
implement the logic in flipflops. As an example, a function such as an asynchronous
reset on a register bank might make it incompatible with the RAM blocks in the
device architecture, so that the register bank is implemented in flipflops. It is often
possible to move a large register bank into RAM by slight modification of associated
logic.

f For more information about memory inference control in other synthesis tools, refer to
the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook,
or your synthesis software’s documentation. For more information about coding
styles and HDL examples that ensure memory inference, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Use Physical Synthesis Options to Reduce Area
The physical synthesis options for fitting can help you decrease the resource usage;
additional optimizations for fitting are available. When you enable these settings for
physical synthesis for fitting, the Quartus II software makes placement-specific
changes to the netlist that reduce resource utilization for a specific Altera device.

1 The compilation time might increase considerably when you use physical synthesis
options.

With the Quartus II software, you can apply physical synthesis options to specific
instances, which can reduce the impact on compilation time. Physical synthesis
instance assignments allow you to enable physical synthesis algorithms for specific
portions of their design.

If you want the performance gain from physical synthesis, but do not want a specific
hierarchy of the design to be modified, you can selectively disable physical synthesis
for that hierarchy. Likewise, if you do not want to run physical synthesis for most
parts of the design, but require the algorithms for a specific module in the design, you
can enable physical synthesis for a single module.

The following physical synthesis optimizations for fitting are available:

■ Physical synthesis for combinational logic

■ Map logic into memory

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 10: Area and Timing Optimization 10–27
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

On the Assignments menu, click Settings. In the Category list, expand Compilation
Process Settings and select Physical Synthesis Optimization. The Physical
Synthesis Optimization page appears. Under Optimize for fitting, turn on the
options to enable physical synthesis optimizations during fitting. You can also specify
the physical synthesis effort, which sets the level of physical synthesis optimization
that you want the Quartus II software to perform.

The Perform physical synthesis for combinational logic option allows the Quartus II
Fitter to resynthesize the combinational logic in a design to reduce the resource
utilization to help achieve a fit.

The Perform logic to memory mapping option allows the Quartus II Fitter to
automatically map logic into unused memory blocks during fitting, reducing the
number of logic elements required to implement the design.

To apply physical synthesis assignments for fitting on a per instance basis, use the
Quartus II Assignment Editor. The following assignments are available as instance
assignments for fitting:

■ Perform physical synthesis for combinational logic

■ Perform logic to memory mapping

In the Assignment Editor, indicate the module instance you want to apply the setting
to in the To tab. Select the required physical synthesis assignment in the Assignment
Name tab. In the Value tab, select ON. In the Enabled tab, select Yes.

Retarget or Balance DSP Blocks
A design might not fit because it requires too many DSP blocks. All DSP block
functions can be implemented with logic cells, so you can retarget some of the DSP
blocks to logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the function so it targets logic cells instead of
DSP blocks. The Quartus II software uses the
DEDICATED_MULTIPLIER_CIRCUITRY megafunction parameter to control the
implementation.

DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders,
and multiply-accumulators. This inference can be turned off in your synthesis tool.
When you are using Quartus II integrated synthesis, you can disable inference by
turning off the Auto DSP Block Replacement logic option for your entire project. On
the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and turn off Auto DSP Block Replacement. Alternatively, you
can disable the option for a specific block with the Assignment Editor.

f For more information about disabling DSP block inference in other synthesis tools,
refer to the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–28 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Quartus II software also offers the DSP Block Balancing logic option, which
implements DSP block elements in logic cells or in different DSP block modes. The
default Auto setting allows DSP block balancing to convert the DSP block slices
automatically as appropriate to minimize the area and maximize the speed of the
design. You can use other settings for a specific node or entity, or on a project-wide
basis, to control how the Quartus II software converts DSP functions into logic cells
and DSP blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in megafunction variations.

f For more details about the Quartus II logic options described in this section, refer to
the Quartus II Help.

Optimize Source Code
If your design does not fit because of logic utilization, and the methods described in
the preceding sections do not sufficiently improve the resource utilization of the
design, modify the design at the source to achieve the desired results. You can often
improve logic significantly by making design-specific changes to your source code.
This is typically the most effective technique for improving the quality of your results.

If your design does not fit into available LEs or ALMs, but you have unused memory
or DSP blocks, check to see if you have code blocks in your design that describe
memory or DSP functions that are not being inferred and placed in dedicated logic.
You might be able to modify your source code to allow these functions to be placed
into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

f For coding style guidelines, including examples of HDL code for inferring memory
and DSP functions, refer to the “Instantiating Altera Megafunctions” and the
“Inferring Altera Megafunctions” sections of the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook. For guidelines and sample HDL code
for state machines, refer to the “General Coding Guidelines” section of the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of LEs or ALMs, memory,
or DSP blocks, you might require a larger device.

Routing
Use the suggestions in the following subsections to help you resolve routing resource
problems.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 10: Area and Timing Optimization 10–29
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Set Auto Register Packing to Sparse or Sparse Auto
This option is useful for reducing LE or ALM count in a design. This option is
available for Arria GX, Cyclone, and Stratix series of devices. On the Assignments
menu, click Settings. The Settings dialog box appears. In the Category list, select
Fitter Settings. Click More Settings. Under Option, in the Name list, select Auto
Packed Registers. In the Settings list, select the Sparse or Sparse Auto from the list.

When you select Sparse, the Fitter combines functions to improve the performance of
many designs. When you select Sparse Auto, the Fitter attempts to achieve the
highest performance with the possibility of increasing the area, but without exceeding
the logic capacity of the device. These options might help improve the routing
because they do not aggressively pack registers.

Selecting the default Auto setting can help routing in many designs. However, for
some dense designs, the Fitter attempts to combine additional logic to reduce the area
of the design to achieve the best performance. It does this by fitting the design within
the best area of the selected device. Therefore, the Fitter can turn on the more
aggressive Minimize the area with chains option, making it more difficult to route
the design.

As an alternative, select Normal, and then increase the aggressiveness of register
packing to reduce LE/ALM count if the design does not fit.

When you select a register packing setting to perform more aggressive register
packing than the Auto setting, the extra register packing can affect the routability of
the design as an unintended result. The Minimize the area with chains setting
restricts placement and reduces routability significantly more than using the
Minimize Area setting. For more information about register packing, refer to“Use
Register Packing” on page 10–22.

Set Fitter Aggressive Routability Optimizations to Always
If routing resources are resulting in no-fit errors, use this option to reduce routing
wire utilization. On the Assignments menu, click Settings. In the Category list, select
Fitter Settings. Click More Settings. In the More Fitter Settings dialog box, set Fitter
Aggressive Routability Optimizations to Always and click OK.

If there is a significant imbalance between placement and routing time (during the
first fitting attempt), it might be because of high wire utilization. By turning on this
option, you might be able to reduce your compilation time.

On average, in Arria GX and Stratix II devices, this option saves approximately 3%
wire utilization but can reduce performance by approximately 1%. In Stratix III
devices, this option saves approximately 6% wire utilization, at the same time
reducing the performance by approximately 3%. In Cyclone III devices, using this
option saves approximately 4.5% wire utilization while reducing the performance by
about 4%.

These optimizations are used automatically when the Fitter performs more than one
fitting attempt, but turning the option on increases the optimization effort on the first
fitting attempt. This option also ensures that the Quartus II software uses maximum
optimization to reduce routability, even if the Fitter Effort is set to Auto Fit.

10–30 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Increase Placement Effort Multiplier
Increasing the placement effort can improve the routability of the design, allowing the
software to route a design that otherwise requires too many routing resources. On the
Assignments menu, click Settings. In the Category list, select Fitter Settings. Click
More Settings. In the More Fitter Settings dialog box, increase the value of the
Placement Effort Multiplier to increase placement effort. The default value is 1.0.
Legal values must be greater than 0 and can be non-integer values. Numbers less than
1 reduce the placement effort and might affect placement quality. Higher numbers
increase compilation time but can improve placement quality. For example, a value of
4 increases fitting time by approximately 2 to 4 times but can improve results.
Increasing the placement effort multiplier does not tend to improve timing
optimization unless the design also has very high routing resource usage.

Increased effort is used automatically when the Fitter performs more than one fitting
attempt. Setting a multiplier higher than one (before compilation) increases the
optimization effort on the first fitting attempt. The second and third fitting loops
increase the Placement Effort Multiplier to 4 and then to 16. These loops result in
increased compilation times, with possible improvement in the quality of placement.

You can modify the Placement Effort Multiplier using the following Tcl command:

set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER <value> r
<value> can be any positive, non-zero number.

Increase Router Effort Multiplier
The Router Effort Multiplier controls how quickly the router tries to find a valid
solution. The default value is 1.0 and legal values must be greater than 0. Numbers
higher than 1 (as high as 3 is generally reasonable) can improve routing quality at the
expense of run-time on difficult-to-route circuits. Numbers closer to 0 (for example,
0.1) can reduce router runtime, but usually reduce routing quality slightly.
Experimental evidence shows that a multiplier of 3.0 reduces overall wire usage by
about 2%. There is usually no gain in performance beyond a multiplier value of 3.

You can set the Router Effort Multiplier to a value higher than the default value for
difficult-to-route designs. To set the Router Effort Multiplier, on the Assignments
menu, click Settings, and then click Fitter Settings. Click the More Settings button.
From the options available, select Router Effort Multiplier and edit the value in the
dialog box that appears.

You can modify the Router Effort Multiplier by entering the following Tcl command:

set_global_assignment -name ROUTER_EFFORT_MULTIPLIER <value> r
<value> can be any positive, non-zero number.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet may not
fit the targeted device. This can occur when location or LogicLock assignments are too
strict and there are not enough routing resources.

In this case, use the Routing Congestion view in the Chip Planner to locate routing
problems in the floorplan, then remove all location and LogicLock region assignments
from that area. If your design still does not fit, the design is over-constrained. To
correct the problem, remove all location and LogicLock assignments and run
successive compilations, incrementally constraining the design before each

Chapter 10: Area and Timing Optimization 10–31
Resource Utilization Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

compilation. You can delete specific location assignments in the Assignment Editor or
the Chip Planner. Remove LogicLock assignments in the Chip Planner, in the
LogicLock Regions Window, or on the Assignments menu, click Remove
Assignments. Turn on the assignment categories you want to remove from the design
in the Available assignment categories list.

f For more information about the Routing Congestion view in the Chip Planner, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook. You can also refer to the Quartus II Help.

Optimize Synthesis for Area, Not Speed
In some cases, resynthesizing the design to improve the area utilization can also
improve the routability of the design. First, ensure that you have set your device and
timing constraints correctly in your synthesis tool. Ensure that you do not
over-constrain the timing requirements for the design, particularly when the area
utilization of the design is a concern. Synthesis tools generally try to meet the
specified requirements, which can result in higher device resource usage if the
constraints are too aggressive.

If resource utilization is important to improving the routing results in your design,
some synthesis tools offer an easy way to optimize for area instead of speed. If you are
using Quartus II integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and select Balanced or Area
under Optimization Technique.

You can also specify this logic option for specific modules in your design with the
Assignment Editor in cases where you want to reduce area using the Area setting
(potentially at the expense of register-to-register timing performance). You can apply
the setting to specific modules while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families) or Speed. You can also use the Speed Optimization Technique for Clock
Domains logic option to specify that all combinational logic in or between the
specified clock domain(s) is optimized for speed.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those obtained with the Area setting, with better performance
results. The Area setting can yield better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization, which can improve routability.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or your
synthesis software’s documentation.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–32 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Optimize Source Code
If your design does not fit because of routing problems and the methods described in
the preceding sections do not sufficiently improve the routability of the design,
modify the design at the source to achieve the desired results. You can often improve
results significantly by making design-specific changes to your source code, such as
duplicating logic or changing the connections between blocks that require significant
routing resources.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.

Timing Optimization Techniques (LUT-Based Devices)
This section contains guidelines if your design does not meet its timing requirements.

Timing Optimization Advisor
The Timing Optimization Advisor guides you in making settings that optimize your
design to meet your timing requirements. To run the Timing Optimization Advisor,
on the Tools menu, point to Advisors, and click on Timing Optimization Advisor.
This advisor describes many of the suggestions made in this section.

When you open the Timing Optimization Advisor after compilation, you find
recommendations to improve the timing performance of your design. Some of the
recommendations in these advisors can contradict each other. Altera recommends
evaluating these options and choosing the settings that best suit the given
requirements.

Metastability Analysis and Optimization Techniques
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that
the signal will meet its setup and hold time requirements. The mean time between
failure (MTBF) is an estimate of the average time between instances when
metastability could cause a design failure.

f For more information about metastability and MTBF, refer to the Understanding
Metastability in FPGAs white paper.

You can use the Quartus II software to analyze the average MTBF due to metastability
when a design synchronizes asynchronous signals, and optimize the design to
improve the MTBF. These metastability features are supported only for designs
constrained with the TimeQuest Timing Analyzer, and for select device families.

If the MTBF of your design is low, refer to the Metastability Optimization section in
the Timing Optimization Advisor, which suggests various settings that can help
optimize your design in terms of metastability.

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

Chapter 10: Area and Timing Optimization 10–33
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For details about the metastability features in the Quartus II software, refer to the
Managing Metastability with the Quartus II Software chapter in volume 1 of the
Quartus II Handbook. This chapter describes how to enable metastability analysis and
identify the register synchronization chains in your design, provides details about
metastability reports, and provides additional guidelines for managing metastability.

I/O Timing Optimization
The example in Figure 10–6 shows the Timing Optimization Advisor after compiling a
design that meets its frequency requirements, but requires setting changes to improve
the timing.

When you expand one of the categories in the Advisor, such as Maximum Frequency
(fmax) or I/O Timing (tsu, tco, tpd), the recommendations are divided into stages.
The stages show the order in which you should apply the recommended settings. The
first stage contains the options that are easiest to change, make the least drastic
changes to your design optimization, and have the least effect on compilation time.
Icons indicate whether each recommended setting has been made in the current
project. In Figure 10–6, the checkmark icons in the list of recommendations for Stage 1
indicate recommendations that are already implemented. The warning icons indicate
recommendations that are not followed for this compilation. The information icons
indicate general suggestions. For these entries, the advisor does not report whether
these recommendations were followed, but instead explains how you can achieve
better performance. Refer to the “How to use” page in the Advisor for a legend that
provides more information for each icon.

Figure 10–6. Timing Optimization Advisor

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.

http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

10–34 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

There is a link from each recommendation to the appropriate location in the
Quartus II user interface where you can change the settings. For example, consider the
Synthesis Netlist Optimizations page of the Settings dialog box or the Global
Signals category in the Assignment Editor. This approach provides the most control
over which settings are made and helps you learn about the settings in the software.
In some cases, you can also use the Correct the Settings button to automatically make
the suggested change to global settings.

For some entries in the advisor, a button appears that allows you to further analyze
your design and gives you more information. The advisor provides a table with the
clocks in the design and indicates whether they have been assigned a timing
constraint.

The next stage of design optimization focuses on I/O timing. Ensure that you have
made the appropriate assignments as described in “Initial Compilation: Required
Settings” on page 10–3, and that the resource utilization is satisfactory before
proceeding with I/O timing optimization. The suggestions provided in this section
are applicable to all Altera FPGA families and to the MAX II family of CPLDs.

Because changes to the I/O paths affect the internal register-to-register timing,
complete this stage before proceeding to the register-to-register timing optimization
stage as described in the “Register-to-Register Timing Optimization Techniques
(LUT-Based Devices)” on page 10–39.

The options presented in this section address how to improve I/O timing, including
the setup delay (tSU), hold time (tH), and clock-to-output (tCO) parameters.

Improving Setup and Clock-to-Output Times Summary
Table 10–1 shows the recommended order in which to use techniques to reduce tSU
and tCO times. Checkmarks indicate which timing parameters are affected by each
technique. Reducing tSU times increases hold (tH) times.

Table 10–1. Improving Setup and Clock-to-Output Times (Note 1) (Part 1 of 2)

Technique Affects tSU Affects tCO

Ensure that the appropriate constraints are set for the failing I/Os (page 10–3) v v
Use timing-driven compilation for I/O (page 10–35) v v
Use fast input register (page 10–36) v —

Use fast output register, fast output enable register, and fast OCT register (page 10–36) — v
Decrease the value of Input Delay from Pin to Input Register or set Decrease Input Delay to
Input Register = ON (page 10–37)

v —

Decrease the value of Input Delay from Pin to Internal Cells, or set Decrease Input Delay to
Internal Cells = ON (page 10–37)

v —

Decrease the value of Delay from Output Register to Output Pin, or set Increase Delay to Output
Pin = OFF (page 10–37)

— v
Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations
(page 10–38)

v —

Use PLLs to shift clock edges (page 10–38) v v
Use the Fast Regional Clock (page 10–39) — v
For MAX II series of devices, set Guarantee I/O paths to zero, Hold Time at Fast Timing Corner
to OFF, or when tSU and tPD constraints permit (page 10–39)

v —

Chapter 10: Area and Timing Optimization 10–35
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Timing-Driven Compilation
To perform IOC timing optimization using the Optimize IOC Register Placement For
Timing option, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Fitter Settings and click More Settings.

3. In the More Fitter Settings dialog box, under Existing option settings, select
Optimize IOC Register Placement for Timing.

This option moves registers into I/O elements if required to meet tSU or tCO
assignments, duplicating the register if necessary (as in the case in which a register
fans out to multiple output locations). This option is turned on by default and is a
global setting. The option does not apply to MAX II series of devices because they do
not contain I/O registers.

The Optimize IOC Register Placement for Timing option affects only pins that have
a tSU or tCO requirement. Using the I/O register is possible only if the register directly
feeds a pin or is fed directly by a pin. This setting does not affect registers with any of
the following characteristics:

■ Have combinational logic between the register and the pin

■ Are part of a carry or cascade chain

■ Have an overriding location assignment

■ Use the asynchronous load port and the value is not 1 (in device families where the
port is available)

Registers with the characteristics listed are optimized using the regular Quartus II
Fitter optimizations.

Fast Input, Output, and Output Enable Registers
You can place individual registers in I/O cells manually by making fast I/O
assignments with the Assignment Editor. For an input register, use the Fast Input
Register option; for an output register, use the Fast Output Register option; and for
an output enable register, use the Fast Output Enable Register option. Stratix II
devices also support the Fast OCT (on-chip termination) Register option. In the
MAX II series of devices, which have no I/O registers, these assignments lock the
register into the LAB adjacent to the I/O pin if there is a pin location assignment for
that I/O pin.

Increase the value of Delay to output enable pin or set Increase delay to output enable pin
(page 10–38)

— v
Note to Table 10–1:

(1) These options may not apply to all device families.

Table 10–1. Improving Setup and Clock-to-Output Times (Note 1) (Part 2 of 2)

Technique Affects tSU Affects tCO

10–36 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

If the fast I/O setting is on, the register is always placed in the I/O element. If the fast
I/O setting is off, the register is never placed in the I/O element. This is true even if
the Optimize IOC Register Placement for Timing option is turned on. If there is no
fast I/O assignment, the Quartus II software determines whether to place registers in
I/O elements if the Optimize IOC Register Placement for Timing option is turned
on.

The four fast I/O options (Fast Input Register, Fast Output Register, Fast Output
Enable Register, and Fast OCT Register) can also be used to override the location of a
register that is in a LogicLock region, and force it into an I/O cell. If this assignment is
applied to a register that feeds multiple pins, the register is duplicated and placed in
all relevant I/O elements. In MAX II series of devices, the register is duplicated and
placed in each distinct LAB location that is next to an I/O pin with a pin location
assignment.

Programmable Delays
Various programmable delay options can be used to minimize the tSU and tCO times.
For Arria GX, Stratix, and Cyclone series devices, and MAX II series of devices, the
Quartus II software automatically adjusts the applicable programmable delays to help
meet timing requirements. Programmable delays are advanced options that you
should use only after you compile a project, check the I/O timing, and determine that
the timing is unsatisfactory. For detailed information about the effect of these options,
refer to the device family handbook or data sheet.

After you have made a programmable delay assignment and compiled the design,
you can view the implemented delay values for every delay chain for every I/O pin in
the Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment
Editor. You can also view and modify the delay chain setting for the target device with
the Chip Planner and Resource Property Editor. When you use the Resource Property
Editor to make changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again automatically
when you recompile the design. The change management features allow you to
reapply the changes on subsequent compilations.

Although the programmable delays in newer devices such as Arria II GX, Stratix IV,
and Stratix III are user-controllable, Altera recommends their use for advanced users
only. However, the Quartus II software might use the programmable delays internally
during the Fitter phase.

f For more details about Stratix III programmable delays, refer to the Stratix III Device
Handbook and AN 474: Implementing Stratix III Programmable I/O Delay Settings in the
Quartus II Software. For more information about using the Chip Planner and Resource
Property Editor, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

Table 10–2 summarizes the programmable delays available for Altera devices.

http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 10: Area and Timing Optimization 10–37
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Table 10–2. Programmable Delays for Altera Devices (Part 1 of 2)

Programmable Delay Description
I/O Timing

Impact Devices

Decrease input delay to input
register

Decreases propagation delay from an
input pin to the data input of the input
register in the I/O cell associated with the
pin. Applied to an input/bidirectional pin or
register it feeds.

Decreases tSU
Increases tH

■ Stratix

■ Stratix GX

■ Cyclone

■ MAX 7000B

Input delay from pin to input
register

Sets propagation delay from an input pin
to the data input of the input register
implemented in the I/O cell associated
with the pin. Applied to an
input/bidirectional pin.

Changes tSU
Changes tH

■ Arria GX

■ Stratix II

■ Stratix II GX

■ Cyclone III

■ Cyclone II

■ HardCopy series

Decrease input delay to internal
cells

Decreases the propagation delay from an
input or bidirectional pin to logic cells and
embedded cells in the device. Applied to
an input/bidirectional pin or register it
feeds.

Decreases tSU
Increases tH

■ Arria GX

■ Stratix

■ Stratix GX

■ Cyclone

Input delay from pin to internal
cells

Sets the propagation delay from an input
or bidirectional pin to logic and embedded
cells in the device. Applied to an input or
bidirectional pin.

Changes tSU
Changes tH

■ Arria GX

■ Stratix II

■ Stratix II GX

■ Cyclone III

■ Cyclone II

■ HardCopy series

■ MAX IIE and MAX IIZ

Decrease input delay to output
register

Decreases the propagation delay from the
interior of the device to an output register
in an I/O cell. Applied to an
input/bidirectional pin or register it feeds.

Decreases tPD ■ HardCopy sereis

■ Stratix

■ Stratix GX

Increase delay to output enable
pin

Increases the propagation delay through
the tri-state output to the pin. The signal
can either come from internal logic or the
output enable register in an I/O cell.
Applied to an output/bidirectional pin or
register feeding it.

Increases tCO ■ Stratix

■ Stratix GX

■ HardCopy series

Delay to output enable pin Sets the propagation delay to an output
enable pin from internal logic or the
output enable register implemented in an
I/O cell.

Changes tCO ■ Arria GX

■ Stratix II

■ Stratix II GX

■ Cyclone III

Increase delay to output pin Increases the propagation delay to the
output or bidirectional pin from internal
logic or the output register in an I/O cell.
Applied to output/bidirectional pin or
register feeding it.

Increases tCO ■ Stratix

■ Stratix GX

■ Cyclone

10–38 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Use PLLs to Shift Clock Edges
Using a PLL typically improves I/O timing automatically. If the timing requirements
are still not met, most devices allow the PLL output to be phase shifted to change the
I/O timing. Shifting the clock backwards gives a better tCO at the expense of tSU, while
shifting it forward gives a better tSU at the expense of tCO and tH. Refer to Figure 10–7
This technique can be used only in devices that offer PLLs with the phase shift option.

You can achieve the same type of effect in certain devices by using the programmable
delay called Input Delay from Dual Purpose Clock Pin to Fan-Out Destinations,
described in Table 10–2.

Delay from output register to
output pin

Sets the propagation delay to the output
or bidirectional pin from the output
register implemented in an I/O cell. This
option is off by default.

Changes tCO ■ Arria GX

■ Stratix II

■ Stratix II GX

■ Cyclone III

■ Cyclone II

Increase input clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an I/O input register.

—
■ Stratix

■ Stratix GX

Input delay from dual purpose
clock pin to fan-out destinations

Sets the propagation delay from a
dual-purpose clock pin to its fan-out
destinations that are routed on the global
clock network. Applied to an input or
bidirectional dual-purpose clock pin.

—

■ Cyclone III

■ Cyclone II

Increase output clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable
input of the I/O output register and output
enable register.

—

■ Stratix

■ Stratix GX

■ HardCopy series

Increase output enable clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an output enable register.

—
■ Stratix

■ Stratix GX

Increase tZX delay to output pin Used for zero bus-turnaround (ZBT) by
increasing the propagation delay of the
falling edge of the output enable signal.

Increases tCO ■ Stratix

■ Stratix GX

■ HardCopy series

Table 10–2. Programmable Delays for Altera Devices (Part 2 of 2)

Programmable Delay Description
I/O Timing

Impact Devices

Figure 10–7. Shift Clock Edges Forward to Improve tSU at the Expense of tCO

Chapter 10: Area and Timing Optimization 10–39
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Use Fast Regional Clock Networks and Regional Clocks Networks
Altera devices have a variety of hierarchical clock structures. These include dedicated
global clock networks (GCLKs), regional clock networks (RCLKs), fast regional clock
networks (FCLK) and periphery clock networks (PCLKs). The available resources
differ between various Altera device families. Refer to the appropriate device
handbook to get the number of various clocking resources available in your target
device.

In general, fast regional clocks have less delay to I/O elements than regional and
global clocks, and are used for high fan-out control signals. Regional clocks provide
the lowest clock delay and skew for logic contained in a single quadrant. Placing
clocks on these low-skew and low-delay clock nets provides better tCO performance.

Change How Hold Times are Optimized for MAX II Devices
For MAX II series of devices, you can use the Guarantee I/O paths have zero hold
time at Fast Timing Corner option to control how hold time is optimized by the
Quartus II software. On the Assignments menu, click Settings. In the Category list,
select Fitter Settings. Click More Settings. In the More Fitter Settings dialog box, set
the option globally. Or, on the Assignments menu, click Assignment Editor to set this
option for specific I/Os.

The option controls whether the Fitter uses timing-driven compilation to optimize a
design to achieve a zero hold time for I/Os that feed globally clocked registers at the
fast (best-case) timing corner, even in the absence of any user timing assignments.
When this option is set to On (default), the Fitter guarantees zero hold time (tH) for
I/Os feeding globally clocked registers at the fast timing corner, at the expense of
possibly violating tSU or tPD timing constraints. When this option is set to When tsu
and tpd constraints permit, the Fitter achieves zero hold time for I/Os feeding
globally clocked registers at the fast timing corner only when tSU or tPD timing
constraints are not violated. When this option is set to Off, designs are optimized to
meet user timing assignments only.

By setting this option to Off or When tsu and tpd constraints permit, you improve tSU
at the expense of tH.

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
The next stage of design optimization is to improve register-to-register (fMAX) timing.
There are a number of options available if the performance requirements are not
achieved after compilation.

The coding style affects the performance of your design to a greater extent than other
changes in settings. Always evaluate your code and make sure to use synchronous
design practices.

f For more details about synchronous design practices and coding styles, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

1 When using the Quartus II TimeQuest Timing Analyzer, register-to-register timing
optimization is the same as maximizing the slack on the clock domains in your
domain. You can use the techniques described in this section to improve the slack on
different timing paths in your design.

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

10–40 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Before optimizing your design, you should understand the structure of your design as
well as the type of logic affected by each optimization. An optimization can decrease
performance if the optimization does not benefit your logic structure.

Improving Register-to-Register Timing Summary
The choice of options and settings to improve the timing margin (slack) or to improve
register-to-register timing depends on the failing paths in the design. To achieve the
results that best approximate your performance requirements, apply the following
techniques and compile the design after each step:

1. Ensure that your timing assignments are complete. For details, refer to “Timing
Requirement Settings” on page 10–4.

2. Ensure that you have reviewed all warning messages from your initial
compilation and check for ignored timing assignments. Refer to “Design Analysis”
on page 10–11 for details and fix any of these problems before proceeding with
optimization.

3. Apply netlist synthesis optimization options and physical synthesis.

4. Try different Fitter seeds (page 10–47). You can omit this step if a large number of
critical paths are failing, or if the paths are failing badly.

5. Apply the following synthesis options to optimize for speed:

■ “Optimize Synthesis for Speed, Not Area” (page 10–43)

■ “Flatten the Hierarchy During Synthesis” (page 10–25)

■ “Set the Synthesis Effort to High” (page 10–44)

■ “Change State Machine Encoding” (page 10–44)

■ “Prevent Shift Register Inference”(page 10–46)

■ “Use Other Synthesis Options Available in Your Synthesis Tool” (page 10–46)

6. Make LogicLock assignments (page 10–48) to control placement.

7. Make design source code modifications to fix areas of the design that are still
failing timing requirements by significant amounts (page 10–48).

8. Make location assignments, or as a last resort, perform manual placement by
back-annotating the design (page 10–51).

f You can use the Design Space Explorer (DSE) to automate the process of running
several different compilations with different settings. For more information, refer to
the Design Space Explorer chapter in volume 2 of the Quartus II Handbook.

If these techniques do not achieve performance requirements, additional design
source code modifications might be required (page 10–48).

Physical Synthesis Optimizations
The Quartus II software offers physical synthesis optimizations that can help improve
the performance of many designs regardless of the synthesis tool used. Physical
synthesis optimizations can be applied both during synthesis and during fitting.

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

Chapter 10: Area and Timing Optimization 10–41
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Physical synthesis optimizations that occur during the synthesis stage of the
Quartus II compilation operate either on the output from another EDA synthesis tool
or as an intermediate step in Quartus II integrated synthesis. These optimizations
make changes to the synthesis netlist to improve either area or speed, depending on
your selected optimization technique and effort level.

To view and modify the synthesis netlist optimization options, on the Assignments
menu, click Settings. In the Category list, expand Compilation Process Settings and
select Physical Synthesis Optimizations.

If you use a third-party EDA synthesis tool and want to determine if the Quartus II
software can remap the circuit to improve performance, you can use the Perform
WYSIWYG Primitive Resynthesis option. This option directs the Quartus II software
to unmap the LEs in an atom netlist to logic gates and then map the gates back to
Altera-specific primitives. Using Altera-specific primitives enables the Fitter to remap
the circuits using architecture-specific techniques.

To turn on the Perform WYSIWYG Primitive Resynthesis option, on the
Assignments menu, click Settings. In the Category list, select Analysis & Synthesis
Settings and check the box for Perform WYSIWYG Primitive Resynthesis.

The Quartus II technology mapper optimizes the design for Speed, Area, or
Balanced, according to the setting of the Optimization Technique option. To change
this setting, on the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and select Speed or Balanced under Optimization
Technique.

The physical synthesis optimizations occur during the Fitter stage of the Quartus II
compilation. Physical synthesis optimizations make placement-specific changes to the
netlist that improve speed performance results for a specific Altera device.

The following physical synthesis optimizations are available during the Fitter stage
for improving performance:

■ Physical synthesis for combinational logic

■ Automatic asynchronous signal pipelining

■ Physical synthesis for registers

■ Register duplication

■ Register retiming

1 You can apply physical synthesis options on specific instances if you want the
performance gain from physical synthesis only on parts of your design.

To view and modify the Physical Synthesis Optimizations, on the Assignments
menu, click Settings. In the Category list, select Fitter Settings, and specify the
physical synthesis optimization options on the Physical Synthesis Optimizations
page. You can also specify the Physical synthesis effort, which sets the level of
physical synthesis optimization that you want the Quartus II software to perform.

The Perform physical synthesis for combinational logic option allows the Quartus II
Fitter to resynthesize the combinational logic in a design to reduce delay along the
critical path and improve design performance.

10–42 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Perform automatic asynchronous signal pipelining option allows the Quartus II
Fitter to insert pipeline stages for asynchronous clear and asynchronous load signals
automatically during fitting to increase circuit performance. You can use this option if
asynchronous control signal recovery and removal times do not meet your
requirements. The option improves performance for designs in which asynchronous
signals in very fast clock domains cannot be distributed across the chip quickly
enough (because of long global network delays).

To apply physical synthesis assignments for fitting on a per instance basis, use the
Quartus II Assignment Editor. The following assignments are available as instance
assignments:

■ Perform physical synthesis for combinational logic

■ Perform register duplication for performance

■ Perform register retiming for performance

■ Perform automatic asynchronous signal pipelining

In the Assignment Editor, indicate the module instance you want to apply to the
specific physical synthesis setting in the To tab. Select the required physical synthesis
assignment in the Assignment Name tab. In the Value tab, select ON. In the Enabled
tab, select Yes.

1 The Perform automatic asynchronous signal pipelining option adds registers to nets
driving the asynchronous clear or asynchronous load ports of registers. This adds
register delays (and latency) to the reset, adding the same number of register delays
for each destination using the reset. Therefore, the option should be used only when
adding latency to reset signals does not violate any design requirements. This option
also prevents the promotion of signals to use global routing resources.

The Perform register duplication physical synthesis option allows the Quartus II
software to duplicate registers based on Fitter placement information to improve
design performance. The Fitter can also duplicate combinational logic when this
option is enabled.

The Perform register retiming physical synthesis option allows the Quartus II
software to move registers across combinational logic to balance timing. This option
applies to registers and combinational logic that have already been placed into logic
cells.

1 The Quartus II software generally does not retime register paths that cross clock
domains. However, if you are using the Classic Timing Analyzer and have a universal
fMAX specified for your compilation, the Quartus II software considers all clocks as
related to each other, and might retime paths between clock domains. To avoid the
retiming of paths, specify individual fMAX requirements for each of the clock domains
in your design when using the Classic Timing Analyzer.

You can perform physical synthesis during the fitting stage to improve the fitting
results as well. The Quartus II software performs the optimizations that help achieve
a better fit when you turn on the Perform physical synthesis for combinational logic
option.

Chapter 10: Area and Timing Optimization 10–43
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Fitter performs physical synthesis optimizations on logic and registers, allowing
the mapping of logic and registers into unused memory blocks in the device to
achieve a fit, when you turn on the Perform logic to memory mapping option.

f For more information and detailed descriptions of these netlist optimization options,
refer to the Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook.

Because performance results are design-dependent, try the physical synthesis options
in different combinations until you achieve the best results. Generally, turning on all
the options gives the best results but significantly increases compilation time. The
following information provides typical benchmark results on different designs with
varying amounts of logic using synthesis netlists from leading third-party synthesis
tools and compiled with the Quartus II software. These results use the default
Balanced setting for the Optimization Technique for WYSIWYG resynthesis.
Changing the setting to Speed or Area can affect your results.

In many designs, using WYSIWIG primitive resynthesis can reduce area or improve
fMAX. By using other physical synthesis options for combinational logic and registers,
you might be able to achieve an additional increase in fMAX.

Compilation time might increase considerably when you use high physical synthesis
effort levels. The optimizations are design dependent, and some designs might not
improve much with physical synthesis.

Turn Off Extra-Effort Power Optimization Settings
If PowerPlay power optimization settings are set to Extra Effort, your design
performance can be affected. If improving timing performance is more important than
reducing power use, set the PowerPlay power optimization setting to Normal.

To change the PowerPlay power optimization level, on the Assignments menu, click
Settings. The Settings dialog box appears. From the Category list, select Analysis &
Synthesis Settings. From the pull-down menu, select the appropriate level of
PowerPlay power optimization level.

f For more information about reducing power use, refer to the Power Optimization
chapter in volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed, Not Area
The manner in which the design is synthesized has a large impact on design
performance. Design performance varies depending on the way the design is coded,
the synthesis tool used, and the options specified when synthesizing. Change your
synthesis options if a large number of paths are failing, or if specific paths are failing
badly and have many levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis tools are
timing-driven and optimized to meet specified timing requirements. If you do not
specify target frequency, some synthesis tools optimize for area.

Some synthesis tools offer an easy way to instruct the tool to focus on speed instead of
area.

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

10–44 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

For Quartus II integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and specify Speed as the
Optimization Technique option. You can also specify this logic option for specific
modules in your design with the Assignment Editor while leaving the default
Optimization Technique setting at Balanced (for the best trade-off between area and
speed for certain device families) or Area (if area is an important concern). You can
also use the Speed Optimization Technique for Clock Domains option to specify
that all combinational logic in or between the specified clock domain(s) is optimized
for speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings. You can use
the DSE to experiment with different Quartus II synthesis options to optimize your
design for the best performance.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and third-party synthesis tools, refer to the
appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or
refer to your synthesis software documentation.

Flatten the Hierarchy During Synthesis
Synthesis tools typically let you preserve hierarchical boundaries, which can be useful
for verification or other purposes. However, the best optimization results generally
occur when the synthesis tool optimizes across hierarchical boundaries, because
doing so often allows the synthesis tool to perform the most logic minimization,
which can improve performance. Whenever possible, flatten your design hierarchy to
achieve the best results. If you are using Quartus II integrated synthesis, ensure that
the Preserve Hierarchical Boundary option is turned off. If you are using Quartus II
incremental compilation, you cannot flatten your design across design partitions.
Incremental compilation always preserves the hierarchical boundaries between
design partitions. Follow Altera’s recommendations for design partitioning, such as
registering partition boundaries to reduce the effect of cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Set the Synthesis Effort to High
Some synthesis tools offer varying synthesis effort levels to trade off compilation time
with synthesis results. Set the synthesis effort to high to achieve best results when
applicable.

Change State Machine Encoding
State machines can be encoded using various techniques. One-hot encoding, which
uses one register for every state bit, usually provides the best performance. If your
design contains state machines, changing the state machine encoding to one-hot can
improve performance at the cost of area.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 10: Area and Timing Optimization 10–45
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If your design does not manually encode the state bits, you can select the state
machine encoding chosen in your synthesis tool. In Quartus II integrated synthesis,
on the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and for State Machine Processing, select One-Hot. You also can
specify this logic option for specific modules or state machines in your design with
the Assignment Editor.

In some cases (especially in Stratix II and Stratix III devices), encoding styles other
than the default offer better performance. Experiment with different encoding styles
to see what effect the style has on your resource utilization and timing performance.

Duplicate Logic for Fan-Out Control
Duplicating logic or registers can help improve timing in cases where moving a
register in a failing timing path to reduce routing delay creates other failing paths, or
where there are timing problems due to the fan-out of the registers. Most often, timing
failures occur not because of the high Fan-Out registers, but because of the location of
those registers. Duplicating registers, where source and destination registers are
physically close, can help improve slack on critical paths.

Many synthesis tools support options or attributes that specify the maximum fan-out
of a register. When using Quartus II integrated synthesis, you can set the Maximum
Fan-Out logic option in the Assignment Editor to control the number of destinations
for a node so that the fan-out count does not exceed a specified value. You can also use
the maxfan attribute in your HDL code. The software duplicates the node as required
to achieve the specified maximum fan-out.

1 Logic duplication using Maximum Fan-Out assignments normally increases resource
utilization and can potentially increase compilation time, depending on the placement
and the total resource usage within the selected device. The improvement in timing
performance that results because of Maximum Fan-Out assignments is very
design-specific.

If you are using Maximum Fan-Out assignments, Altera recommends benchmarking
your design with and without these assignments to evaluate whether they give the
expected improvement in timing performance. Use the assignments only when you
get improved results.

You can manually duplicate registers in the Quartus II software regardless of the
synthesis tool used. To duplicate a register, apply the Manual Logic Duplication
option to the register with the Assignment Editor.

The Manual Logic Duplication option also accepts wildcards. This is an easy and
powerful duplication technique that you can use without editing your source code.
For example, you can use this technique to make a duplicate of a large fan-out node
for all of its destinations in a certain design hierarchy, such as hierarchy_A. To
apply such an assignment in the Assignment Editor, make an entry such as the one
shown in Table 10–3.

Table 10–3. Duplicating Logic in the Assignment Editor

From To Assignment Name Value

My_high_fanout_node *hierarchy_A* Manual Logic
Duplication

high_fanout_to_A

10–46 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about the manual logic duplication option, refer to the
Quartus II Help.

Prevent Shift Register Inference
In some cases, turning off the inference of shift registers increases performance. Doing
so forces the software to use logic cells to implement the shift register instead of
implementing the registers in memory blocks using the ALTSHIFT_TAPS
megafunction. If you implement shift registers in logic cells instead of memory, logic
utilization is increased.

Use Other Synthesis Options Available in Your Synthesis Tool
With your synthesis tool, experiment with the following options if they are available:

■ Turn on register balancing or retiming

■ Turn on register pipelining

■ Turn off resource sharing

These options can increase performance. They typically increase the resource
utilization of your design.

Fitter Seed
The Fitter seed affects the initial placement configuration of the design. Changing the
seed value changes the Fitter results, because the fitting results change whenever
there is a change in the initial conditions. Each seed value results in a somewhat
different fit, and you can experiment with several different seeds to attempt to obtain
better fitting results and timing performance.

When there are changes in your design, there is some random variation in
performance between compilations. This variation is inherent in placement and
routing algorithms—there are too many possibilities to try them all and get the
absolute best result, so the initial conditions change the compilation result.

1 Any design change that directly or indirectly affects the Fitter has the same type of
random effect as changing the seed value. This includes any change in source files,
Analysis & Synthesis Settings, Fitter Settings, or Timing Analyzer Settings. The
same effect can appear if you use a different computer processor type or different
operating system, because different systems can change the way floating point
numbers are calculated in the Fitter.

If a change in optimization settings slightly affects the register-to-register timing or
number of failing paths, you cannot always be certain that your change caused the
improvement or degradation, or whether it could be due to random effects in the
Fitter. If your design is still changing, running a seed sweep (compiling your design
with multiple seeds) determines whether the average result has improved after an
optimization change and whether a setting that increases compilation time has
benefits worth the increased time (such as setting the Physical Synthesis Effort to
Extra). The sweep also shows the amount of random variation you should expect for
your design.

Chapter 10: Area and Timing Optimization 10–47
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If your design is finalized, you can compile your design with different seeds to obtain
one optimal result. However, if you subsequently make any changes to your design,
you will likely have to perform seed sweep again.

On the Assignments menu, select Fitter Settings to control the initial placement with
the seed. You can use the DSE to perform a seed sweep easily.

You can use the following Tcl command from a script to specify a Fitter seed:

set_global_assignment -name SEED <value> r

f For more information about compiling with different seeds using the DSE script, refer
to the Design Space Explorer chapter in volume 2 of the Quartus II Handbook.

Set Maximum Router Timing Optimization Level
To improve routability in designs where the router did not pick up the optimal
routing lines, set the Router Timing Optimization Level to Maximum. This setting
determines how aggressively the router tries to meet timing requirements. Setting this
option to Maximum can increase design speed slightly at the cost of increased
compilation time. Setting this option to Minimum can reduce compilation time at the
cost of slightly reduced design speed. The default value is Normal.

To modify the Router Timing Optimization Level, on the Assignments menu, click
Settings. The Settings dialog box appears. In the Category list, click Fitter Settings.
Click on the More Settings tab. From the available settings, select Router Timing
Optimization Level and select the required setting from the list.

Enable Beneficial Skew Optimization
The Quartus II Fitter intentionally inserts some small delays on global clock networks
to improve performance on designs that target Arria II GX, Stratix IV, Stratix III, and
Cyclone III devices. This is called beneficial skew optimization and is enabled by
default for devices that support this feature. The value of skew introduced depends
on the device family and the speed grade of the chosen device. For example, when
this option is turned on for a Stratix III device (-2 speed grade), a skew value of
approximately 150 ps is introduced if the inclusion improves the timing performance
of your design. If you are targeting a Cyclone III device (-6 speed grade), the delay
value introduced is approximately 350 ps. For Arria II GX and Stratix IV devices, an
approximate skew of 100 ps could be introduced. To enable the Beneficial Skew
Optimization option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Fitter Settings. The Fitter Settings page appears.

3. Click More Settings. The More Fitter Settings dialog box appears.

4. Under Options, in the Name list, select Enable Beneficial Skew Optimization. In
the Setting list, select On.

5. Click OK.

6. In the Settings dialog box, click OK.

When you turn on Enable Beneficial Skew Optimization globally, you can disable
skew insertion on a particular clock or destination by using an instance level
ENABLE_BENEFICIAL_SKEW_OPTIMIZATION assignment.

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

10–48 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

When you want to use Enable Beneficial Skew Optimization, you must also set the
Optimize hold timing option to All paths (in the Fitter Settings page of the Settings
dialog box). If you turn on Enable Beneficial Skew Optimization, the fitter overrides
the setting of Optimize hold timing if it is not set to All paths, and displays an info
message describing the change.

Optimize Source Code
If the methods described in the preceding sections do not sufficiently improve timing
of the design, modify your design files to achieve the desired results. Try restructuring
the design to use pipelining or more efficient coding techniques. In many cases,
optimizing the design’s source code can have a very significant effect on your design
performance. In fact, optimizing your source code is typically the most effective
technique for improving the quality of your results, and is often a better choice than
using LogicLock or location assignments.

If the critical path in your design involves memory or DSP functions, check whether
you have code blocks in your design that describe memory or functions that are not
being inferred and placed in dedicated logic. You might be able to modify your source
code to cause these functions to be placed into high-performance dedicated memory
or resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

f For coding style guidelines including examples of HDL code for inferring memory,
functions, guidelines, and sample HDL code for state machines, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

LogicLock Assignments
Using LogicLock assignments to improve timing performance is only recommended
for older Altera devices, such as the MAX II family. For designs using these devices,
you can make LogicLock assignments for based nodes optimization, design hierarchy,
or critical paths. This method can be used if a large number of paths are failing, and
recoding the design does not seem to be necessary. LogicLock assignments can help if
routing delays form a large portion of your critical path delay, and placing logic closer
together in the device improves the routing delay.

Improving fitting results with LogicLock assignments, especially for larger devices,
such as the Stratix and Arria GX series of devices, can be difficult. The LogicLock
feature is intended to be used for performance preservation and to floorplan your
design. Therefore, LogicLock assignments do not always improve the performance of
the design. In many cases, you cannot improve upon results from the Fitter by making
location assignments.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 10: Area and Timing Optimization 10–49
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

If there are existing LogicLock assignments in your design, remove the assignments if
your design methodology permits it. Recompile the design to see if the assignments
are making the performance worse.

When making LogicLock assignments, it is important to consider how much
flexibility to give the Fitter. LogicLock assignments provide more flexibility than hard
location assignments. Assignments that are more flexible require higher Fitter effort,
but reduce the chance of design over-constraint. The following types of LogicLock
assignments are available, listed in the order of decreasing flexibility:

■ Auto size, floating location regions

■ Fixed size, floating location regions

■ Fixed size, locked location regions

f For more information about using LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

To determine what to put into a LogicLock region, refer to the timing analysis results
and analyze the critical paths in the Chip Planner. The register-to-register timing
paths in the Timing Analyzer section of the Compilation Report help you recognize
patterns.

The following sections describe cases in which LogicLock regions can help to
optimize a design.

Hierarchy Assignments
For a design with the hierarchy shown in Figure 10–8, which has failing paths in the
timing analysis results similar to those shown in Table 10–4, mod_A is probably a
problem module. In this case, a good strategy to fix the failing paths is to place the
mod_A hierarchy block in a LogicLock region so that all the nodes are closer together
in the floorplan.

Table 10–4 shows the failing paths connecting two regions together within mod_A
listed in the timing analysis report.

Figure 10–8. Design Hierarchy

Table 10–4. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

10–50 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Hierarchical LogicLock regions are also important if you are using an incremental
compilation flow. Each design partition for incremental compilation should be placed
in a separate LogicLock region to reduce conflicts and ensure good results as the
design develops. You can use auto size and floating location regions to find a good
design floorplan, but you should fix the size and placement to achieve the best results
in future compilations.

f For more information about using incremental compilation and recommendations for
creating a design floorplan using LogicLock regions, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and Best Practices for Incremental
Compilation and Floorplan Assignments chapters in volume 1 of the Quartus II Handbook,
and Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Path Assignments
If you see a pattern such as the one shown in Figure 10–9 and Table 10–5, it often
indicates paths with a common problem. In this case, a path-based assignment can be
made from all d_reg registers to all memaddr registers. You can make a path-based
assignment to place all source registers, destination registers, and the nodes between
them in a LogicLock region with the wildcard characters “*” and “?.”

You can also explicitly place the nodes of a critical path in a LogicLock region.
However, using this method instead of path assignments can result in alternate paths
between the source and destination registers becoming critical paths.

Table 10–5 shows the failing paths listed in the timing analysis report.

Figure 10–9. Failing Paths in Timing Analysis

Table 10–5. Failing Paths in Timing Analysis (Part 1 of 2)

From To

|d_reg[1] |memaddr[5]

|d_reg[1] |memaddr[6]

D Q

D Q

D Q

D Q

D Q

D Q

d_reg[0]

d_reg[1]

d_reg[7]

memaddr[0]

memaddr[2]

memaddr[7]

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 10: Area and Timing Optimization 10–51
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about path-based LogicLock assignments, refer to the Analyzing
and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Location Assignments and Back-Annotation
If a small number of paths are failing to meet their timing requirements, you can use
hard location assignments to optimize placement. Location assignments are less
flexible for the Quartus II Fitter than LogicLock assignments. In some cases, when you
are familiar with your design, you can enter location constraints in a way that
produces better results.

1 Improving fitting results, especially for larger devices, such as the Stratix and
Arria GX series of devices, can be difficult. Location assignments do not always
improve the performance of the design. In many cases, you cannot improve upon the
results from the Fitter by making location assignments.

The following commonly used location assignments are listed in the order of
decreasing flexibility:

■ Custom regions

■ Back-annotated LAB location assignments

■ Back-annotated LE or ALM location assignments

Custom Regions
A custom region is a rectangular region containing user-assigned nodes, which are
constrained in the region’s boundaries. If any portion of a block in the device
floorplan overlaps a custom region, such as an M-RAM block, it is considered to be
entirely in that region.

Custom regions are hard location assignments that cannot be overridden and are very
similar to fixed-size, locked-location, LogicLock regions. Custom regions are
commonly used when logic must be constrained to a specific portion of the device.

Back-Annotation and Manual Placement
Assigning the location of nodes in a design to the locations to which they were
assigned during the last compilation is called “back-annotation.” When nodes are
locked to their assigned locations in a back-annotated design, you can manually move
specific nodes without affecting other back-annotated nodes. The process of manually
moving and reassigning specific nodes is called manual placement.

|d_reg[1] |memaddr[7]

|d_reg[2] |memaddr[0]

|d_reg[2] |memaddr[1]

Table 10–5. Failing Paths in Timing Analysis (Part 2 of 2)

From To

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

10–52 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 Back-annotation is very restrictive to the compiler, so you should back-annotate only
when the design has been finalized and no further changes are expected. Assignments
can become invalid if the design is changed. Combinational nodes often change
names when a design is resynthesized, even if they are unrelated to the logic that was
changed.

Moving nodes manually can be very difficult for large devices. In many cases, you
cannot improve upon the Fitter ’s results. Illegal or unroutable location constraints can
cause “no fit” errors. Before making location assignments, determine whether to
back-annotate to lock down the assigned locations of all nodes in the design. When
you are using a hierarchical design flow, you can lock down node locations in one
LogicLock region only, while other node locations are left floating in a fixed
LogicLock region. By implementing a hierarchical approach, you can use the
LogicLock design methodology to reduce the dependence of logic blocks on other
logic blocks in the device.

Consistent node names are required to perform back-annotation. If you use Quartus II
integrated synthesis or any Quartus II optimizations, such as the WYSIWYG
primitive resynthesis netlist optimization or any physical synthesis optimizations,
you must create an atom netlist before you back-annotate to lock down the placement
of any nodes. This creates consistent node names.

1 Physical synthesis optimizations are placement-specific as well as design-specific.
Unless you back-annotate the design before recompilation, the physical synthesis
results can differ. This happens because the atom netlist creates different placement
results. By back-annotating the design, the design source and the atom netlist use the
same placement when the design is recompiled. When you use an atom netlist and
you want to maintain the same placement results as a previous compilation, use
LogicLock regions and back-annotate the placement of all nodes in the design. Not
back-annotating the design can result in the design source and the atom netlist having
different placement results and therefore different synthesis results.

f For more information about creating atom netlists for your design, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

When you back-annotate a design, you can choose whether to assign the nodes either
to LABs (this is preferred because of increased flexibility) or LEs/ALMs. You also can
choose to back-annotate routing to further restrict the Fitter and force a specific
routing within the device.

1 Using back-annotated routing with physical synthesis optimizations can result in a
routing failure.

f For more information about back-annotating routing, refer to the Quartus II Help.

When performing manual placement at a detailed level, Altera recommends that you
move LABs, not logic cells (LEs or ALMs). The Quartus II software places nodes that
share the same control signals in appropriate LABs. Successful placement and routing
is more difficult when you move individual logic cells. This is because LEs with
different control signals that are put into the same LAB might not have any unused
control signals available, and the design might not fit.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 10: Area and Timing Optimization 10–53
Timing Optimization Techniques (LUT-Based Devices)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

In general, when you are performing manual placement and routing, fix all I/O paths
first, because often fewer options are available to meet I/O timing. After I/O timing is
met, focus on manually placing register-to-register timing paths. This strategy is
consistent with the methodology outlined in this chapter.

The best way to meet performance is to move nodes closer together. For a critical path
such as the one shown in Figure 10–10, moving the destination node closer to the
other nodes reduces the delay and helps meet your timing requirements.

Optimizing Placement for Stratix, Stratix II, Arria GX, and Cyclone II Devices
In the Arria GX, Stratix, and Cyclone series of devices, the row interconnect delay is
slightly faster than the column interconnect delay. Therefore, when placing nodes,
optimal placement is typically an ellipse around the source or destination node. In
Figure 10–11, if the source is located in the center, any of the shaded LABs should give
approximately the same delay.

In addition, you should avoid crossing any M-RAM memory blocks for node-to-node
routing, because routing paths across M-RAM blocks requires using R24 or C16
routing lines.

The Quartus II software calculates the interconnect delay based on different electrical
characteristics of each individual wire, such as the length, fan-out, distribution of the
parasitic loading on the wire, and so forth.

Figure 10–10. Reducing Delay of Critical Path

Figure 10–11. Possible Optimal Placement Ellipse

10–54 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To determine the actual delays to and from a resource, use the Show Physical Timing
Estimate feature in the Chip Planner.

f For more information about using the Chip Planner, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Optimizing Placement for Cyclone Devices
In Cyclone devices, the row and column interconnect delays are similar; therefore,
when placing nodes, optimal placement is typically a circle around the source or
destination node.

Try to avoid long routes across the device. Long routes require more than one routing
line to cross the Cyclone device.

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
The following recommendations help you take advantage of the macrocell-based
architecture in the MAX 7000 and MAX 3000 devices to yield maximum speed,
reliability, and device resource utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to timing optimization. First,
ensure that you have set the basic constraints described in “Initial Compilation:
Required Settings” on page 10–3. If your design is not fitting into a specified device,
use the techniques in this section to achieve a successful fit.

Use Dedicated Inputs for Global Control Signals
MAX 7000 and MAX 3000 devices have four dedicated inputs that can be used for
global register control. Because the global register control signals can bypass the logic
cell array and directly feed registers, product terms can be preserved for primary
logic. Also, because each signal has a dedicated path into the LAB, global signals also
can bypass logic and data path interconnect resources.

Because the dedicated input pins are designed for high fan-out control signals and
provide low skew, you should always assign global signals (such as clock, clear, and
output enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals instead of
dedicated inputs. However, the following list shows the disadvantages of using
logic-generated control signals:

■ More resources are required (logic cells, interconnect).

■ More data skew is introduced.

■ If the logic-generated control signals have high fan-out, the design can be more
difficult to fit.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 10: Area and Timing Optimization 10–55
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

By default, the Quartus II software uses dedicated inputs for global control signals
automatically. You can assign control signals to dedicated input pins in one of the
following ways:

■ In the Assignment Editor, select one of the two following methods:

■ Assign pins to dedicated pin locations.

■ Assign a Global Signal setting to the pins.

■ On the Assignments menu, click Settings. On the Analysis & Synthesis Settings
page, in the Auto Global Options section, in the Category list, select Register
Control Signals.

■ Insert a GLOBAL primitive after the pins.

■ If you have already assigned pins for the design in the MAX+PLUS® II software,
on the Assignments menu, click Import Assignments.

Reserve Device Resources
Because pin and logic option assignments can be necessary for board layout and
performance requirements, and because full utilization of the device resources can
increase the difficulty of fitting the design, Altera recommends that you leave 10% of
the device’s logic cells and 5% of the I/O pins unused to accommodate future design
modifications. Following the Altera-recommended device resource reservation
guidelines for macrocell-based CPLDs increases the chance that the Quartus II
software can fit the design during recompilation after changes or assignments have
been made.

Pin Assignment Guidelines and Procedures
Sometimes user-specified pin assignments are necessary for board layout. This section
discusses pin assignment guidelines and procedures.

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs.

■ Assign output enables to appropriate locations.

■ Estimate fan-in to assign output pins to the appropriate LAB.

■ Assign output pins that require parallel expanders to macrocells numbered 4 to 16.

1 Altera recommends that you allow the Quartus II software to select pin assignments
automatically when possible. You can use the Quartus II Pin Advisor feature
(accessible from the Tools menu) for pin connection guidelines. For more information
about the Pin Advisor, refer to Quartus II Help.

Control Signal Pin Assignments
Assign speed-critical control signals to dedicated input pins. Every MAX 7000 and
MAX 3000 device has four dedicated input pins (GCLK1, OE2/GCLK2, OE1, and
GCLRn). You can assign clocks to global clock dedicated inputs (GCLK1 and
OE2/GCLK2), clear to the global clear dedicated input (GCLRn), and speed-critical
output enable to global OE dedicated inputs (OE1 and OE2/GCLK2).

10–56 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Output Enable Pin Assignments
Occasionally, because the total number of required output enable pins is more than
the dedicated input pins, output enable signals must be assigned to I/O pins.

f To minimize possible fitting errors when assigning the output enable pins for
MAX 7000 and MAX 3000 devices, refer to Pin-Out Files for Altera Devices on the
Altera website (www.altera.com).

Estimate Fan-In When Assigning Output Pins
Macrocells with high fan-in can cause more placement problems for the Quartus II
Fitter than those with low fan-in. The maximum fan-in per LAB should not exceed 36
in MAX 7000 and MAX 3000 devices. Therefore, estimate the fan-in of logic (such as
an x-input AND gate) that feeds each output pin. If the total fan-in of logic that feeds
each output pin in the same LAB exceeds 36, compilation can fail. To save resources
and prevent compilation errors, avoid assigning pins that have high fan-in.

Outputs Using Parallel Expander Pin Assignments
Figure 10–12 illustrates how parallel expanders are used within a LAB. MAX 7000 and
MAX 3000 devices contain chains that can lend or borrow parallel expanders. The
Quartus II Fitter places macrocells in a location that allows them to lend and borrow
parallel expanders appropriately.

As shown in Figure 10–12, only macrocells 2 through 16 can borrow parallel
expanders. Therefore, assign output pins that might require parallel expanders to pins
adjacent to macrocells 4 through 16. Altera recommends using macrocells 4 through
16 because they can borrow the largest number of parallel expanders.

http://www.altera.com

Chapter 10: Area and Timing Optimization 10–57
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Resolving Resource Utilization Problems
Two common Quartus II compilation fitting issues cause errors: excessive macrocell
usage and lack of routing resources. Macrocell usage errors occur when the total
number of macrocells in the design exceed the available macrocells in the device.
Routing errors occur when the available routing resources are insufficient to
implement the design. Check the Message window for the compilation results.

1 Messages in the Messages window are also copied in the Report Files. Right-click on a
message and click Help for more information.

Resolving Macrocell Usage Issues
Occasionally, a design requires more macrocell resources than are available in the
selected device, which results in the design not fitting. The following list provides tips
for resolving macrocell usage issues as well as tips to minimize the number of
macrocells used.

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and turn off Auto Parallel Expanders. If the design’s clock
frequency (fMAX) is not an important design requirement, turn off parallel
expanders for all or part of the project. The design usually requires more
macrocells if parallel expanders are turned on.

Figure 10–12. LAB Macrocells and Parallel Expander Associations

Macrocell 1

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately-preceding macrocells.

Macrocell 2 borrows up to five parallel
expanders from Macrocell 1.

Macrocell 1 cannot borrow
any parallel expanders.

Macrocell 3 borrows up to ten
parallel expanders from

Macrocells 1 and 2.

LAB A

10–58 Chapter 10: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Change Optimization Technique from Speed to Area. Selecting Area instructs the
compiler to give preference to area utilization rather than speed (fMAX). On the
Assignments menu, click Settings. In the Category list, change the Optimization
Technique option in the Analysis & Synthesis Settings page.

■ Use D-type flipflops instead of latches. Altera recommends that you always use
D-type flipflops instead of latches in your design because D-type flipflops can
reduce the macrocell fan-in, and thus reduce macrocell usage. The Quartus II
software uses extra logic to implement latches in MAX 7000 and MAX 3000
designs because MAX 7000 and MAX 3000 macrocells contain D-type flipflops
instead of latches.

■ Use asynchronous clear and preset instead of synchronous clear and preset. To
reduce the product term usage, use asynchronous clear and preset in your design
whenever possible. Using other control signals such as synchronous clear
produces macrocells and pins with higher fan-out.

1 After following the suggestions in this section, if your project still does not fit the
targeted device, consider using a larger device. When upgrading to a different
density, the vertical package-migration feature of the MAX 7000 and MAX 3000
device families allows pin assignments to be maintained.

Resolving Routing Issues
Routing is another resource that can cause design fitting issues. For example, if the
total fan-in into a LAB exceeds the maximum allowed, a no-fit error can occur during
compilation. If your design does not fit the targeted device because of routing issues,
consider the following suggestions.

■ Use dedicated inputs/global signals for high fan-out signals. The dedicated inputs
in MAX 7000 and MAX 3000 devices are designed for speed-critical and high
fan-out signals. Always assign high fan-out signals to dedicated inputs/global
signals.

■ Change the Optimization Technique option from Speed to Area. This option can
resolve routing resource and macrocell usage issues. Refer to “Resolving Macrocell
Usage Issues” on page 10–57.

■ Reduce the fan-in per cell. If you are not limited by the number of macrocells used
in the design, you can use the Fan-in per cell (%) option to reduce the fan-in per
cell. The allowable values are 20–100%; the default value is 100%. Reducing the
fan-in can reduce localized routing congestion but increase the macrocell count.
You can set this logic option in the Assignment Editor or under More Settings in
the Analysis & Synthesis Settings page of the Settings dialog box.

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and turn off Auto Parallel Expanders. By turning off the
parallel expanders, you give the Quartus II software more fitting flexibility for
each macrocell, allowing macrocells to be relocated. For example, each macrocell
(previously grouped together in the same LAB) can be moved to a different LAB to
reduce routing constraints.

Chapter 10: Area and Timing Optimization 10–59
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Insert logic cells. Inserting logic cells reduces fan-in and shared expanders used
per macrocell, increasing routability. By default, the Quartus II software
automatically inserts logic cells when necessary. Otherwise, Auto Logic Cell can
be disabled as follows. On the Assignments menu, click Settings. In the Category
list, select Analysis & Synthesis Settings. Under More Settings, turn off Auto
Logic Cell Insertion. Refer to “Using LCELL Buffers to Reduce Required
Resources” for more information.

■ Change pin assignments. If you want to discard your pin assignments, you can let
the Quartus II Fitter ignore some or all of the assignments.

1 If you prefer reassigning pins to increase routing efficiency, refer to “Pin
Assignment Guidelines and Procedures” on page 10–55.

Using LCELL Buffers to Reduce Required Resources
Complex logic, such as multilevel XOR gates, are often implemented with more than
one macrocell. When this occurs, the Quartus II software automatically allocates
shareable expanders—or additional macrocells (called synthesized logic cells)—to
supplement the logic resources that are available in a single macrocell. You can also
break down complex logic by inserting logic cells in the project to reduce the average
fan-in and the total number of shareable expanders required. Manually inserting logic
cells can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion option, you can
manually insert logic cells. However, Altera recommends that you use the Auto Logic
Cell Insertion option unless you know which part of the design is causing the
congestion.

A good location to manually insert LCELL buffers is where a single complex logic
expression feeds multiple destinations in your design. You can insert an LCELL buffer
just after the complex expression; the Quartus II Fitter extracts this complex
expression and places it in a separate logic cell. Rather than duplicate all the logic for
each destination, the Quartus II software feeds the single output from the logic cell to
all destinations.

To reduce fan-in and prevent no-fit compilations caused by routing resource issues,
insert an LCELL buffer after a NOR gate (Figure 10–13). The design in Figure 10–13
was compiled for a MAX 7000AE device. Without the LCELL buffer, the design
requires two macrocells and eight shareable expanders, and the average fan-in is 14.5
macrocells. However, with the LCELL buffer, the design requires three macrocells and
eight shareable expanders, and the average fan-in is just 6.33 macrocells.

10–60 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (Macrocell-Based CPLDs)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Timing Optimization Techniques (Macrocell-Based CPLDs)
After resource optimization, design optimization focuses on timing. Ensure that you
have made the appropriate assignments as described in “Initial Compilation:
Required Settings” on page 10–3, and that the resource utilization is satisfactory
before proceeding with timing optimization.

The following five timing parameters are primarily responsible for a design’s
performance:

■ Setup time (tSU)—the propagation time for input data signals

■ Hold time (tH)—the propagation time for input data signals

■ Clock-to-output time (tCO)—the propagation time for output signals

■ Pin-to-pin delays (tPD)—the time required for a signal from an input pin to
propagate through combinational logic and appear at an external output pin

■ Maximum clock frequency (fMAX)—the internal register-to-register performance

This section provides guidelines to improve the timing if the timing requirements are
not met. Figure 10–14 shows the parts of the design that determine the tSU, tH, tCO, tPD,
and fMAX timing parameters.

Figure 10–13. Reducing the Average Fan-In by Inserting LCELL Buffers

Chapter 10: Area and Timing Optimization 10–61
Timing Optimization Techniques (Macrocell-Based CPLDs)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Timing results for tSU, tH, tCO, tPD, and fMAX are found in the Compilation Report for the
Quartus II Classic Timing Analyzer, as discussed in “Design Analysis” on page 10–11.

When you are analyzing a design to improve performance, be sure to consider the two
major contributors to long delay paths:

■ Excessive levels of logic

■ Excessive loading (high fan-out)

When a MAX 7000 or MAX 3000 device signal drives more than one LAB, the
programmable interconnect array (PIA) delay increases by 0.1 ns per additional LAB
fan-out. Therefore, to minimize the added delay, concentrate the destination
macrocells into fewer LABs, minimizing the number of LABs that are driven. The
main cause of long delays in circuit design is excessive levels of logic.

Improving Setup Time
Sometimes the tSU timing reported by the Quartus II Fitter does not meet your timing
requirements. To improve the tSU timing, refer to the following guidelines:

■ Turn on the Fast Input Register option using the Assignment Editor. The Fast
Input Register option allows input pins to directly drive macrocell registers via
the fast-input path, thus minimizing the pin-to-register delay. This option is useful
when a pin drives a D-type flipflop and there is no combinational logic between
the pin and the register.

■ Reduce the amount of logic between the input and the register. Excessive logic
between the input pin and register causes more delays. To improve setup time,
Altera recommends that you reduce the amount of logic between the input pin
and the register whenever possible.

■ Reduce fan-out. The delay from input pins to macrocell registers increases when
the fan-out of the pins increases. To improve the setup time, minimize the fan-out.

Improving Clock-to-Output Time
To improve a design’s clock-to-output time, minimize the register-to-output-pin
delay. To improve the tCO timing, refer to the following guidelines.

■ Use the global clock. In addition to minimizing the delay from a register to an
output pin, minimizing the delay from the clock pin to the register can also
improve tCO timing. Always use the global clock for low-skew and speed-critical
signals.

Figure 10–14. Main Timing Parameters that Determine the System’s Performance

PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF

Logic Logic Logic

Input

Input Output

Clock Frequency

Setup and Hold Time Clock-to-Output Time

10–62 Chapter 10: Area and Timing Optimization
Timing Optimization Techniques (Macrocell-Based CPLDs)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Reduce the amount of logic between the register and output pin. Excessive logic
between the register and the output pin causes more delay. Always minimize the
amount of logic between the register and output pin for faster clock-to-output
time.

Table 10–6 shows the timing results for an EPM7064AETC100-4 device when a
combination of the Fast Input Register option, global clock, and minimal logic is
used. When the Fast Input Register option is turned on, the tSU timing is improved (tSU
decreases from 1.6 ns to 1.3 ns and from 2.8 ns to 2.5 ns). The tCO timing is improved
when the global clock is used for low-skew and speed-critical signals (tCO decreases
from 4.3 ns to 3.1 ns). However, if there is additional logic used between the input pin
and the register or the register and the output pin, the tSU and tCO delays increase.

Improving Propagation Delay (tPD)
Achieving fast propagation delay (tPD) timing is required in many system designs.
However, if there are long delay paths through complex logic, achieving fast
propagation delays can be difficult. To improve your design’s tPD, refer to the
following guidelines.

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and turn on Auto Parallel Expanders. Turning on the parallel
expanders for individual nodes or sub-designs can increase the performance of
complex logic functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells (which can reduce
routability), parallel expanders can cause the Quartus II Fitter to have difficulties
finding and optimizing a fit. Additionally, the number of macrocells required to
implement the design increases and results in a no-fit error during compilation if
the device resources are limited. For more information about turning on the Auto
Parallel Expanders option, refer to “Resolving Macrocell Usage Issues” on
page 10–57.

Table 10–6. EPM7064AETC100-4 Device Timing Results

Number of
Registers

tSU
(ns)

tH
(ns)

tCO
(ns)

Global
Clock Used

Fast Input
Register
Option

D Input
Location

Q Output
Location

Additional Logic Between:

D Input
Location &
Register

Register & Q
Output

Location

1 1.3 1.2 4.3 — On LAB A LAB A — —

1 1.6 0.3 4.3 — Off LAB A LAB A — —

1 2.5 0 3.1 v On LAB A LAB A — —

1 2.8 0 3.1 v Off LAB A LAB A — —

1 3.6 0 3.1 v Off LAB A LAB A v —

1 2.8 0 7.0 v Off LAB D LAB A — v
16 with the
same D and
clock inputs

2.8 0 All
6.2

v Off LAB D LAB A, B — —

32 with the
same D and
clock inputs

2.8 0 All
6.4

v Off LAB C LAB A, B, C — —

Chapter 10: Area and Timing Optimization 10–63
Timing Optimization Techniques (Macrocell-Based CPLDs)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Set the Optimization Technique to Speed. By default, the Quartus II software sets
the Optimization Technique option to Speed for MAX 7000 and MAX 3000
devices. Reset the Optimization Technique option to Speed only if you
previously set it to Area. On the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

Improving Maximum Frequency (fMAX)
Maintaining the system clock at or above a certain frequency is a major goal in circuit
design. For example, if you have a fully synchronous system that must run at
100 MHz, the longest delay path from the output of any register to the inputs of the
registers it feeds must be less than 10 ns. Maintaining the system clock speed can be
difficult if there are long delay paths through complex logic. Altera recommends that
you perform the following guidelines to increase your design’s clock speed (fMAX).

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings and turn on Auto Parallel Expanders. Turning on the parallel
expanders for individual nodes or subdesigns can increase the performance of
complex logic functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells (which can reduce
routability), parallel expanders can cause the Quartus II compiler to have
difficulties finding and optimizing a fit. Additionally, the number of macrocells
required to implement the design also increases and can result in a no-fit error
during compilation if the device’s resources are limited. For more information
about using the Auto Parallel Expanders option, refer to “Resolving Macrocell
Usage Issues” on page 10–57.

■ Use global signals or dedicated inputs. Altera MAX 7000 and MAX 3000 devices
have dedicated inputs that provide low skew and high speed for high fan-out
signals. Minimize the number of control signals in the design and use the
dedicated inputs to implement them.

■ Set the Optimization Technique to Speed. By default, the Quartus II software sets
the Optimization Technique option to Speed for MAX 7000 and MAX 3000
devices. Reset the Optimization Technique option to Speed only if you have
previously set it to Area. You can reset the Optimization Technique option. In the
Category list, select Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

■ Pipeline the design. Pipelining, which increases clock frequency (fMAX), refers to
dividing large blocks of combinational logic by inserting registers.

Optimizing Source Code—Pipelining for Complex Register Logic
If the methods described in the preceding sections do not sufficiently improve your
results, modify the design at the source to achieve the desired results. Using
additional register stages (pipeline registers) consumes more device resources, but it
also lowers the propagation delay between registers, allowing you to maintain high
system clock speed.

f Refer to the application note AN 584: Timing Closure Methodology for Advanced FPGA
Designs for more information about pipelining registers and other examples of
optimizing source code.

http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf

10–64 Chapter 10: Area and Timing Optimization
Compilation-Time Optimization Techniques

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Compilation-Time Optimization Techniques
If reducing the compilation time of your design is important, use the techniques in
this section. Be aware that reducing compilation time with some of these techniques
can reduce the overall quality of results. A Compilation Time Advisor is also available
in the Quartus II software, which helps you to reduce the compilation time. You can
run the Compilation Time Advisor on the Tools menu by pointing to Advisors and
clicking Compilation Time Advisor. You can find all the compilation time optimizing
techniques described in this section in the Compilation Time Advisor as well.

If you open the Compilation Time Advisor after compilation, it displays
recommendations on settings that can reduce the compilation time. Some of the
recommendations from different advisors can contradict each other; Altera
recommends evaluating the options, and choosing the settings that best suit your
design requirements.

Incremental Compilation
The incremental compilation feature can speed up design iteration time by an average
of 60% when making changes to the design and helps you reach design timing closure
more efficiently. Using incremental compilation allows you to organize your design
into logical and physical partitions for design synthesis and fitting. Design iterations
can be made faster by recompiling only a particular design partition and merging
results with previous compilation results from other partitions. You can also use
physical synthesis optimization techniques for specific design partitions while leaving
other modules untouched to preserve performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files
for parts of your design that you already have synthesized and optimized so that you
update only the parts of the design that change.

Regardless of your synthesis tool, you can use full incremental compilation along
with LogicLock regions to preserve placement and routing results for unchanged
partitions while working on other partitions. This ability provides the most reduction
in compilation time and run-time memory usage because neither synthesis nor fitting
is performed for unchanged partitions in the design.

You can also perform a bottom-up compilation in which parts of the design are
compiled completely independently in separate Quartus II projects, and then
exported into the top-level design. This flow is useful in team-based designs or when
incorporating third-party IP.

f For information about the full incremental compilation flow in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. For information about creating
multiple netlist files in third-party tools for use with incremental compilation, refer to
the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 10: Area and Timing Optimization 10–65
Compilation-Time Optimization Techniques

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Use Multiple Processors for Parallel Compilation
The Quartus II software can run some algorithms in parallel to take advantage of
multiple processors and reduce compilation time when more than one processor is
available. Parallel compilation is turned on by default in the Quartus II software and
the software can detect if multiple processors are available. You can also specify the
maximum number of processors that the software can use if you want to reserve some
of the available processors for other tasks. The Quartus II software supports up to
four processors. The software does not necessarily use all the processors that you
specify during a given compilation, but it never uses more than the specified number
of processors. This allows you to work on other tasks on your computer without it
becoming slow or less responsive. For interactive tasks such as word processing, it is
typically not necessary to restrict the number of processors in this manner.

By allowing the Quartus II software to use two processors, you can reduce the
compilation time by up to 10% on systems with two processing cores and by up to
15% on systems with four cores. With certain design flows in which timing analysis
runs alone, using multiple processors can reduce the time required for timing analysis
by an average of 12% when using two processors. This reduction can reach an average
of 15% when using four processors.

The actual reduction in compilation time depends on the design and on the specific
settings used for compilation. For example, compilations with multi-corner
optimization turned on benefit more from using multiple processors than do
compilations that do not use multi-corner optimization. The runtime requirement is
not reduced for some other compilation goals, such as Analysis and Synthesis. The
Fitter (quartus_fit), the Classic Timing Analyzer (quartus_tan), and the
TimeQuest Timing Analyzer (quartus_sta) stages in the compilation might benefit
from the use of multiple processors. The average number of processors used for these
stages is shown in the Compilation Report, on the Flow Elapsed Time panel. A more
detailed breakdown of processor usage is also shown in the Parallel Compilation
panel of the appropriate report, such as the Fit report. This panel is only displayed if
parallel compilation is enabled.

This feature is available for Arria GX, Stratix, Cyclone, and MAX II series of devices.

1 Do not consider processors with Intel Hyper-Threading to be more than one
processor. If you have a single processor with Intel Hyper-Threading enabled, you
should set the number of processors to one. Altera recommends that you do not use
the Intel Hyper-Threading feature for Quartus II compilations, as it can increase
runtimes.

f Many factors can impact the performance of parallel compilation. For detailed
information and instructions that can help improve the performance of this feature,
refer to the solution to the problem “How can I improve the compilation time
performance of the parallel compilation feature in the Quartus II software?” on the
Altera website (www.altera.com).

http://www.altera.com/support/kdb/solutions/rd03222007_376.html
http://www.altera.com/support/kdb/solutions/rd03222007_376.html
http://www.altera.com

10–66 Chapter 10: Area and Timing Optimization
Compilation-Time Optimization Techniques

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Quartus II software can detect the number of processors available on a computer
and use up to four processors to reduce compilation time. You can also control the
number of processors used during a compilation on a per user basis by performing
the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select Processing. The Processing page appears.

3. Under Parallel compilation, select Use all available processors or specify the
Maximum processors allowed for compilation.

The Maximum processors allowed setting is applicable to all your projects unless you
override the setting with local project-specific settings.

To control the number of processors used during compilation for a specific project,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Under Parallel compilation, select Use global parallel compilation setting if you
want a global setting for parallel compilation. If you want a different option for
this project, select the Use all available processors which utilizes all processors. If
you do not want to run the compilation on all available processors, select
Maximum processors allowed and type in the number of processors to be used
for compilation. The default value for the number of processors is 1.

Using multiple processors does not affect the quality of the fit. For a given Fitter seed
on a specific design, the fit is exactly the same, regardless of whether the Quartus II
software uses one processor or multiple processors. The only difference between such
compilations using a different number of processors is the compilation time.

You can also set the number of processors available for Quartus II compilation using
the following Tcl command in your script.

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value> r
In this case, <value> is an integer from 1 to 4.

If you want the Quartus II software to detect the number of processors and use all of
them for running the compilation, use the following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL r

Reduce Synthesis Time and Synthesis Netlist Optimization Time
You can reduce synthesis time by reducing your use of netlist optimizations and by
using incremental compilation (with Netlist Type set to Post-Synthesis) without
affecting the Fitter time. For tips for reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

Chapter 10: Area and Timing Optimization 10–67
Compilation-Time Optimization Techniques

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Synthesis Netlist Optimizations
You can use Quartus II integrated synthesis to synthesize and optimize HDL designs,
and you can use synthesis netlist optimizations to optimize netlists that were
synthesized by third-party EDA software. Using these netlist optimizations can cause
the Analysis and Synthesis module to take much longer to run. Read the Analysis and
Synthesis messages to find out how much time these optimizations take. The
compilation time spent in Analysis and Synthesis is usually small compared to the
compilation time spent in the Fitter.

If your design meets your performance requirements without synthesis netlist
optimizations, turn off the optimizations to save time. If you require synthesis netlist
optimizations to meet performance, you can optimize parts of your design hierarchy
separately to reduce the overall time spent in analysis and synthesis.

Check Early Timing Estimation Before Fitting
The Quartus II software can provide an estimate of your timing results after synthesis,
before the design is fully processed by the Fitter. In cases where you want a quick
estimate of your design results before proceeding with further design or synthesis
tasks, this feature can save you significant compilation time. For more information,
refer to “Early Timing Estimation” on page 10–7.

To view Early Timing Estimation, perform analysis and synthesis in the Quartus II
software, and then on the Processing menu, point to Start, and click Start Early
Timing Estimate.

Reduce Placement Time
The time required to place a design depends on two factors: the number of ways the
logic in the design can be placed in the device and the settings that control how hard
the placer works to find a good placement. You can reduce the placement time in two
ways:

■ Change the settings for the placement algorithm

■ Use incremental compilation to preserve the placement for parts of the design

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, make sure that it does not increase routing time
and negate the overall time reduction.

Fitter Effort Setting
Standard fit takes the most runtime and usually does not yield a better result than
Auto Fit. To switch from Standard to Auto Fit, on the Assignments menu, click
Settings. In the Category list, select Fitter Settings, and use the Fitter effort setting to
shorten runtime by changing the effort level to Auto Fit. If you are certain that your
design has only easy-to-meet timing constraints, you can select Fast Fit for an even
greater runtime saving.

10–68 Chapter 10: Area and Timing Optimization
Compilation-Time Optimization Techniques

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Placement Effort Multiplier Settings
You can control the amount of time the Fitter spends in placement by reducing one
aspect of placement effort with the Placement Effort Multiplier option. On the
Assignments menu, click Settings. Select Fitter Settings, and click More Settings.
Under Existing Option Settings, select Placement Effort Multiplier. The default is
1.0. Legal values must be greater than 0 and can be non-integer values. Numbers
between 0 and 1 can reduce fitting time, but also can reduce placement quality and
design performance. Numbers higher than 1 increase placement time and placement
quality, but can reduce routing time for designs with routing congestion. For example,
a value of 4 increases placement time by approximately 2 to 4 times, but might result
in better placement, which can result in reduced routing time.

Final Placement Optimization Levels
The Final Placement Optimization Level option specifies whether the Fitter performs
final placement optimizations. This can be set to Always, Never, and Automatically.
Performing optimizations can improve register-to-register timing and fitting, but
might require longer compilation times. The default setting of Automatically can be
used with the Auto Fit Fitter Effort Level (also the default) to let the Fitter decide
whether these optimizations should run based on the routability and timing
requirements of the design.

Setting the Final Placement Optimization Level to Never often reduces your
compilation time, but typically affects routability negatively and reduces timing
performance.

To change the Final Placement Optimization Level, on the Assignments menu, click
Settings. The Settings dialog box appears. From the Category list, select Fitter
Settings, and then click the More Settings button. Select Final Placement
Optimization Level, and then from the list, select the required setting.

Physical Synthesis Effort Settings
You can use the physical synthesis options to optimize your post-synthesis netlist and
improve your timing performance. These options, which affect placement, can
significantly increase compilation time.

If your design meets your performance requirements without physical synthesis
options, turn them off to save time. You also can use the Physical synthesis effort
setting on the Physical Synthesis Optimizations page under Fitter Settings in the
Category list to reduce the amount of extra compilation time that these optimizations
use. The Fast setting directs the Quartus II software to use a lower level of physical
synthesis optimization that, compared to the normal level, can cause a smaller
increase in compilation time. However, the lower level of optimization can result in a
smaller increase in design performance.

Limit to One Fitting Attempt
This option causes the software to quit after one fitting attempt option, instead of
repeating placement and routing with increased effort.

From the Assignments menu, select Settings. On the Fitter Settings page, turn on
Limit to one fitting attempt.

For more details about this option, refer to “Limit to One Fitting Attempt” on
page 10–9.

Chapter 10: Area and Timing Optimization 10–69
Compilation-Time Optimization Techniques

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Preserving Placement, Incremental Compilation, and LogicLock Regions
Preserving information about previous placements can make future placements faster.
The incremental compilation feature provides an easy-to-use methodology for
preserving placement results. For more information, refer to “Incremental
Compilation” on page 10–64.

Reduce Routing Time
The time required to route a design depends on three factors: the device architecture,
the placement of the design in the device, and the connectivity between different parts
of the design. Typically, the routing time is not a significant amount of the compilation
time. If your design takes a long time to route, perform one or more of the following
actions:

■ Check for routing congestion

■ Let the placer run longer to find a more routable placement

■ Use incremental compilation to preserve routing information for parts of your
design

Identify Routing Congestion in the Chip Planner
To identify areas of routing congestion in your design, open the Chip Planner. On the
Tools menu, click Chip Planner. To view the routing congestion in the Chip Planner,
click the Layers icon located next to the Task menu. Under Background Color Map,
select Routing Utilization. Routing resource usage above 90% indicates routing
congestion. You can change the connections in your design to reduce routing
congestion. If the area with routing congestion is in a LogicLock region or between
LogicLock regions, change or remove the LogicLock regions and recompile the
design. If the routing time remains the same, the time is a characteristic of the design
and the placement. If the routing time decreases, consider changing the size, location,
or contents of LogicLock regions to reduce congestion and decrease routing time.

f For information about identifying areas of congested routing using the Chip Planner
tool, refer to the “Viewing Routing Congestion” subsection in the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Identify Routing Congestion in the Timing Closure Floorplan for Legacy Devices
When using devices from the MAX 3000 and MAX 7000 device families, which are not
supported by Chip Planner, you must use the Timing Closure Floorplan to identify
areas of routing congestion in your design. To open the Timing Closure Floorplan, on
the Assignments menu, click Timing Closure Floorplan, and turn on Show Routing
Congestion. This feature is available only when you click Field View on the View
menu. Routing resource usage above 90% indicates routing congestion. You can
change the connections in your design to reduce routing congestion.

Placement Effort Multiplier Setting
Some designs might be time consuming and difficult to route because the placement
is not optimal. In such cases, you can increase the Placement Effort Multiplier to get a
better placement. Doing so might increase the placement time, but it can reduce the
routing time, and even overall compilation time in some cases.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

10–70 Chapter 10: Area and Timing Optimization
Other Optimization Resources

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Preserve Routing Incremental Compilation and LogicLock Regions
Preserving information about the previous routing results for part of the design can
reduce future routing time. LogicLock regions used with incremental compilation
provides an easy-to-use methodology that preserves placement and routing results.
For more information, refer to “Incremental Compilation” on page 10–64 and the
references listed in the section.

Setting Process Priority
It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you also have
to run other tasks at the same time.

To run a compilation at a reduced process priority, perform the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, under General, select Processing. The Processing page
appears.

3. Turn on Run design processing at a lower priority (recommended for single
processor machines).

When you turn on this option, it is applied to all future compilations.

Using this option can increase your compilation time.

Other Optimization Resources
The Quartus II software has additional resources to help you optimize your design for
resource, performance, compilation time, and power.

Design Space Explorer
The Design Space Explorer (DSE) automates the process of running multiple
compilations with different settings. You can use the DSE to try the techniques
described in this chapter. The DSE utility helps automate the process of finding the
best set of options for your design. The DSE explores the design space by applying
various optimization techniques and analyzing the results.

f For more information, refer to the Design Space Explorer chapter in volume 2 of the
Quartus II Handbook.

Other Optimization Advisors
The Power Optimization Advisor provides guidance for reducing power
consumption. In addition, the Incremental Compilation Advisor provides suggestions
to improve your results when partitioning your design for a hierarchical or
team-based design flow using the Quartus II incremental compilation feature.

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

Chapter 10: Area and Timing Optimization 10–71
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about using the Power Optimization Advisor, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook. Fore more information
about using the Incremental Compilation Advisor, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> \
-to <instance name> r

1 If the <value> field includes spaces (for example, “Standard Fit”), the value must be
enclosed by straight double quotation marks.

Initial Compilation Settings
The Quartus II Settings File (.qsf) variable name is used in the Tcl assignment to make
the setting along with the appropriate value. The Type column indicates whether the
setting is supported as a global setting, an instance setting, or both.

Table 10–7 lists the .qsf file variable name and applicable values for the settings
discussed in “Initial Compilation: Required Settings” on page 10–3. Table 10–8 shows
the list of advanced compilation settings.

Table 10–7. Initial Compilation Settings (Part 1 of 2)

Setting Name .qsf File Variable Name Values Type

Device Setting DEVICE <device part number> Global

Use Smart Compilation SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

10–72 Chapter 10: Area and Timing Optimization
Scripting Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Resource Utilization Optimization Techniques (LUT-Based Devices)
Table 10–9 lists the .qsf file variable name and applicable values for the settings
discussed in “Resource Utilization Optimization Techniques (LUT-Based Devices)”
on page 10–19.

Optimize Hold Timing OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND MINIMUM TPD
PATHS, ALL PATHS

Global

Fitter Effort FITTER_EFFORT STANDARD FIT, FAST FIT, AUTO FIT Global

Table 10–7. Initial Compilation Settings (Part 2 of 2)

Setting Name .qsf File Variable Name Values Type

Table 10–8. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router Effort
Multiplier

ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing
Optimization level

ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Final Placement
Optimization

FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY, NEVER Global

Table 10–9. Resource Utilization Optimization Settings (Part 1 of 2)

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1)

AUTO_PACKED_REGISTERS_<device family name> OFF, NORMAL,
MINIMIZE AREA,
MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Physical Synthesis
for Combinational
Logic for Reducing
Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF Global,
Instance

Physical Synthesis
for Mapping Logic
to Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_F
OR AREA

ON, OFF Global,
Instance

Optimization
Technique

<device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED,
BALANCED

Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT,
MINIMAL BITS,
USER-ENCODE

Global,
Instance

Preserve Hierarchy PRESERVE_HIERARCHICAL_BOUNDARY OFF, RELAXED, FIRM Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Chapter 10: Area and Timing Optimization 10–73
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

I/O Timing Optimization Techniques (LUT-Based Devices)
Table 10–10 lists the .qsf file variable name and applicable values for the I/O timing
optimization settings.

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
Table 10–11 lists the .qsf file variable name and applicable values for the settings
discussed in “Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 10–39.

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Number of
Processors for
Parallel Compilation

NUM_PARALLEL_PROCESSORS Integer between 1 and 4
inclusive, or ALL

Global

Note to Table 10–9:

(1) Allowed values for this setting depend on the device family that is selected.

Table 10–9. Resource Utilization Optimization Settings (Part 2 of 2)

Setting Name .qsf File Variable Name Values Type

Table 10–10. I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement
For Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable Register FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance

Table 10–11. Register-to-Register Timing Optimization Settings (Part 1 of 2)

Setting Name .qsf File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Physical Synthesis
for Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global,
Instance

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global,
Instance

Perform Register Retiming PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global,
Instance

Perform Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_
PIPELINING

ON, OFF Global,
Instance

10–74 Chapter 10: Area and Timing Optimization
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Duplicate Logic for Fan-Out Control
The manual logic duplication option accepts wildcards. This is an easy and powerful
duplication technique that you can use without editing your source code. You can use
this technique, for example, to make a duplicate of a large fan-out node for all of its
destinations in a certain design hierarchy, such as hierarchy_A. To make such an
assignment with Tcl, use a command similar to Example 10–1.

Conclusion
Using the recommended techniques described in this chapter can help you close
timing quickly on complex designs, reduce iterations by providing more intelligent
and better links between analysis and assignment tools, and balance multiple design
constraints including multiple clocks, routing resources, and area constraints.

The Quartus II software provides many features to achieve optimal results. Follow the
techniques presented in this chapter to efficiently optimize a design for area or timing
performance, or to reduce compilation time.

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Analyzing Designs with Quartus II Netlist Viewers chapter in volume 1 of the
Quartus II Handbook

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

Physical Synthesis Effort PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA,
FAST

Global

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic Duplication DUPLICATE_ATOM <node name> Instance

Optimize Power during
Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power during
Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF
EXTRA_EFFORT

Global

Table 10–11. Register-to-Register Timing Optimization Settings (Part 2 of 2)

Setting Name .qsf File Variable Name Values Type

Example 10–1. Duplication Technique

set_instance_assignment -name DUPLICATE_ATOM high_fanout_to_A -from \
high_fanout_node -to *hierarchy_A*

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 10: Area and Timing Optimization 10–75
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Design Analysis and Engineering Change Management with Chip Planner chapter in
volume 3 of the Quartus II Handbook

■ Design Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Managing Metastability with the Quartus II Software chapter in the Quartus II
Handbook

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Power Optimization chapter in volume 2 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Quartus II Settings File Reference Manual

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

10–76 Chapter 10: Area and Timing Optimization
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Document Revision History
Table 10–12 shows the revision history for this chapter.

Table 10–12. Document Revision History (Part 1 of 2)

Date and
Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed unsupported Timing Closure Floorplan references

■ Removed references to unsupported device families

■ Added several notes

■ Minor text edits

Updated for the Quartus II
9.1 software release.

March 2009
v9.0.0

■ Was chapter 8 in the 8.1.0 release.

■ Updated the following sections:

“Timing Analysis with the TimeQuest Timing Analyzer” on page 10–14

“Perform WYSIWYG Resynthesis with Balanced or Area Setting” on
page 10–22

“Use Physical Synthesis Options to Reduce Area” on page 10–26

“Metastability Analysis and Optimization Techniques” on page 10–32

“Use Fast Regional Clock Networks and Regional Clocks Networks”
on page 10–39

“Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 10–40

“Physical Synthesis Optimizations” on page 10–41

“Duplicate Logic for Fan-Out Control” on page 10–45

“LogicLock Assignments” on page 10–49

“Enable Beneficial Skew Optimization” on page 10–48

“Use Multiple Processors for Parallel Compilation” on page 10–65

■ Removed “Analyze Your Design for Megastability”

■ Updated Table 10–11 and Table 10–9

■ Removed Tables 8-1, 8-2, 8-3, 8-6, and 8-7 from version 8.1

Updated for the Quartus II
9.0 software release.
Added Arria II GX support.
Reorganized portions of
this chapter.

Chapter 10: Area and Timing Optimization 10–77
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

■ Changed document to 8½” × 11” page size.

■ Updated the following sections:

“Optimizing Your Design” on page 10–2

“Timing Requirement Settings” on page 10–4

“Optimize Hold Timing” on page 10–8

“Limit to One Fitting Attempt” on page 10–9

“Auto Fit” on page 10–10

“Fast Fit” on page 10–11

“Ignored Timing Assignments” on page 10–12

“I/O Timing (Including tPD)” on page 10–13

“Register-to-Register Timing” on page 10–14

“Timing Analysis with the TimeQuest Timing Analyzer” on page 10–14

“Use I/O Assignment Analysis” on page 10–20

“Flatten the Hierarchy During Synthesis” on page 10–25

“Retarget Memory Blocks” on page 10–25

“Use Physical Synthesis Options to Reduce Area” on page 10–26

“Increase Placement Effort Multiplier” on page 10–30

“Metastability Analysis and Optimization Techniques” on page 10–32

“Synthesis Netlist Optimizations and Physical Synthesis
Optimizations” on page 10–43

“Incremental Compilation” on page 10–65

“Use Multiple Processors for Parallel Compilation” on page 10–66

■ Updated Table 10–9 on page 10–73 and Table 10–11 on page 10–75.

Updated for the Quartus II
8.1 software release.

May 2008
v8.0.0

■ Updated links

■ Updated Other Optimization Resources]

■ Updated Setting Process Priority

■ Updated Location Assignment and Back-Annotation

■ Updated Fitter Effort Setting

■ Updated Synthesis Netlist Optimizations and Physical Synthesis
Optimizations

■ Updated Fast Fit

■ Added Metastability Analysis

■ Added Enable Beneficial Skew Optimization and Analyze Your Design for
Metastability

■ Removed figures from “Optimizing Source Code—Pipelining for
Complex Register Logic

■ Updated Table 8-5

Changes made to this
chapter reflect the
software changes made in
version 8.0. Removed
support for Mercury
devices. Added
information for Stratix IV
devices.

Table 10–12. Document Revision History (Part 2 of 2)

Date and
Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10–78 Chapter 10: Area and Timing Optimization
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

11. Power Optimization

Introduction
The Quartus® II software offers power-driven compilation to fully optimize device
power consumption. Power-driven compilation focuses on reducing your design’s
total power consumption using power-driven synthesis and power-driven
place-and-route. This chapter describes the power-driven compilation feature and
flow in detail, as well as low power design techniques that can further reduce power
consumption in your design. The techniques primarily target Arria® GX, Stratix® and
Cyclone® series of devices, and HardCopy® II devices. These devices utilize a low-k
dielectric material that dramatically reduces dynamic power and improves
performance. Stratix II, Stratix III, and Stratix IV device families include efficient logic
structures called adaptive logic modules (ALMs) that obtain maximum performance
while minimizing power consumption. Cyclone device families offer the optimal
blend of high performance and low power in a low-cost FPGA.

f For more information about Stratix IV and Stratix III device architecture, refer to the
Stratix IV Device Handbook and Stratix III Device Handbook, respectively.

Altera provides the Quartus II PowerPlay Power Analyzer to aid you during the
design process by delivering fast and accurate estimations of power consumption.
You can minimize power consumption, while taking advantage of the industry’s
leading FPGA performance, by using the tools and techniques described in this
chapter.

f For more information about the PowerPlay Power Analyzer, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. This chapter focuses on design optimization options and
techniques that help reduce core dynamic power and I/O power. In addition to these
techniques, there are additional power optimization techniques available for
Stratix IV and Stratix III devices. These techniques include:

■ Selectable Core Voltage (available only for Stratix III devices)

■ Programmable Power Technology

■ Device Speed Grade Selection

f For more information about power optimization techniques available for Stratix III
devices, refer to AN 437: Power Optimization in Stratix III FPGAs. For more information
about power optimization techniques available for Stratix IV devices, refer to AN 514:
Power Optimization in Stratix IV FPGAs.

QII52016-9.1.0

http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

11–2 Chapter 11: Power Optimization
Power Dissipation

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Power Dissipation
This section describes the sources of power dissipation in Stratix III and Cyclone III
devices. You can refine techniques that reduce power consumption in your design by
understanding the sources of power dissipation.

Figure 11–1 shows the power dissipation of Stratix III and Cyclone III devices in
different designs. All designs were analyzed at a fixed clock rate of 100 MHz and
exhibited varied logic resource utilization across available resources.

As shown in Figure 11–1, a significant amount of the total power is dissipated in
routing for both Stratix III and Cyclone III devices, with the remaining power
dissipated in logic, clock, and RAM blocks.

In Stratix and Cyclone device families, a series of column and row interconnect wires
of varying lengths provide signal interconnections between logic array blocks (LABs),
memory block structures, and digital signal processing (DSP) blocks or multiplier
blocks. These interconnects dissipate the largest component of device power.

FPGA combinational logic is another source of power consumption. The basic
building block of logic in the latest Stratix series devices is the ALM, and in
Cyclone IV GX, Cyclone III and Cyclone II devices, it is the logic element (LE).

f For more information about ALMs and LEs in Stratix IV, Stratix III, Stratix II,
Cyclone IV GX, Cyclone III, and Cyclone II devices, refer to the respective device
handbook.

Figure 11–1. Average Core Dynamic Power Dissipation

Notes to Figure 11–1:
(1) 103 different designs were used to obtain these results.
(2) 96 different designs were used to obtain these results.
(3) In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

Average Core Dynamic Power Dissipation by Block
 Type in Stratix III Devices at a 12.5% Toggle Rate (1)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone III Devices at a 12.5% Toggle Rate (2)

Routing
30%

Combinational Logic
16%

Registered Logic
18%

Memory
21%

Global Clock Routing
14%

DSP Blocks
1% (3)

Multipliers
1% (3)

Routing
29%

Combinational Logic
11%

Registered Logic
23%

Memory
20%

Global Clock Routing
16%

Chapter 11: Power Optimization 11–3
Design Space Explorer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Memory and clock resources are other major consumers of power in FPGAs. Stratix II
devices feature the TriMatrix memory architecture. TriMatrix memory includes
512-bit M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM blocks, which are
configurable to support many features. Stratix IV and Stratix III TriMatrix on-chip
memory is an enhancement based upon the Stratix II FPGA TriMatrix memory and
includes three sizes of memory blocks: MLAB blocks, M9K blocks, and M144K blocks.
Stratix II, Stratix III, and Stratix IV devices feature Programmable Power Technology,
an advanced architecture that enables a smooth tradeoff between speed and power.
The core of each Stratix III device is divided into tiles, each of which may be put into a
high-speed or low-power mode. The primary benefit of Programmable Power
Technology is to reduce static power, with a secondary benefit being a small
reduction in dynamic power. Cyclone II devices have 4-Kbit M4K memory blocks,
and Cyclone III and Cyclone IV GX devices have 9-Kbit M9K memory blocks.

Design Space Explorer
Design Space Explorer (DSE) is a simple, easy-to-use, design optimization utility that
is included in the Quartus II software. DSE explores and reports optimal Quartus II
software options for your design, targeting either power optimization, design
performance, or area utilization improvements. You can use DSE to implement the
techniques described in this chapter.

Figure 11–2 shows the DSE user interface. The Settings tab is divided into Project
Settings and Exploration Settings.

Figure 11–2. Design Space Explorer User Interface

11–4 Chapter 11: Power Optimization
Power-Driven Compilation

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Search for Lowest Power option, under Exploration Settings, uses a predefined
exploration space that targets overall design power improvements. This setting
focuses on applying different options that specifically reduce total design thermal
power. You can also set the Optimization Goal option for your design using the
Advanced tab in the DSE window. You can select your design optimization goal, such
as optimize for power, from the list of available settings in the Optimization Goal list.
The DSE then uses the selection from the Optimization Goal list, along with the
Search for Lowest Power selection, to determine the best compilation results.

By default, the Quartus II PowerPlay Power Analyzer is run for every exploration
performed by the DSE when the Search for Lowest Power option is selected. This
helps you debug your design and determine trade-offs between power requirements
and performance optimization.

f For more information about the DSE, refer to the Design Space Explorer chapter in
volume 2 of the Quartus II Handbook.

Power-Driven Compilation
The standard Quartus II compilation flow consists of Analysis and Synthesis,
placement and routing, Assembly, and Timing Analysis. Power-driven compilation
takes place at the Analysis and Synthesis and Place-and-Route stages.
Quartus II software settings that contol power-driven compilation are located in the
PowerPlay power optimization list on the Analysis & Synthesis Settings page, and
PowerPlay power optimization on the Fitter Settings page. The following sections
describes these power optimization options at the Analysis and Synthesis and Fitter
levels.

Power-Driven Synthesis
Synthesis netlist optimization occurs during the synthesis stage of the compilation
flow. The optimization technique makes changes to the synthesis netlist to optimize
your design according to the selection of area, speed, or power optimization. This
section describes power optimization techniques at the synthesis level.

The Analysis & Synthesis Settings page allows you to specify logic synthesis
options. The PowerPlay power optimization option is available for the Arria GX,
Stratix and Cyclone families of devices, and MAX® II devices (Figure 11–3).

To perform power optimization at the synthesis level in the Quartus II software,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis. The Analysis & Synthesis page
appears.

3. In the PowerPlay power optimization list, select your preferred setting. This
option determines how aggressively Analysis and Synthesis optimizes the design
for power.

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

Chapter 11: Power Optimization 11–5
Power-Driven Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Table 11–1 shows the settings in the PowerPlay power optimization list. You can
apply these settings on a project or entity level.

The Normal compilation setting is turned on by default. This setting performs
memory optimization and power-aware logic mapping during synthesis.

Memory blocks can represent a large fraction of total design dynamic power as
described in “Reducing Memory Power Consumption” on page 11–14. Minimizing
the number of memory blocks accessed during each clock cycle can significantly
reduce memory power. Memory optimization involves effective movement of
user-defined read/write enable signals to associated read-and-write clock enable
signals for all memory types (Figure 11–4).

Figure 11–3. Analysis & Synthesis Settings Page

Table 11–1. Optimize Power During Synthesis Options

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize
power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through netlist
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through netlist
optimizations. Max performance might be impacted.

11–6 Chapter 11: Power Optimization
Power-Driven Compilation

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 11–4 shows a default implementation of a simple dual-port memory block in
which write-clock enable and read-clock enable signals are connected to VCC, making
both read-and-write memory ports active during each clock cycle. Memory
transformation effectively moves the read-enable and write-enable signals to the
respective read-clock enable and write-clock enable signals. By using this technique,
memory ports are shut down when they are not accessed. This significantly reduces
your design’s memory power consumption. For more information about clock enable
signals, refer to “Reducing Memory Power Consumption” on page 11–14. For
Stratix IV and Stratix III devices, the memory transformation takes place at the Fitter
level by selecting the Normal compilation settings for the power optimization option.

In Stratix III, Cyclone III, and Cyclone IV GX devices, the specified read-during-write
behavior can significantly impact the power of single-port and bidirectional dual-port
RAMs. It is best to set the read-during-write parameter to “Don’t care” (at the HDL
level), as it allows an optimization whereby the read-enable signal can be set to the
inversion of the existing write-enable signal (if one exists). This allows the core of
the RAM to shut down (that is, not toggle), which saves a significant amount of
power.

The other type of power optimization that takes place with the Normal compilation
setting is power-aware logic mapping. The power-aware logic mapping reduces
power by rearranging the logic during synthesis to eliminate nets with high toggle
rates.

The Extra effort setting performs the functions of the Normal compilation setting and
other memory optimizations to further reduce memory power by shutting down
memory blocks that are not accessed. This level of memory optimization can require
extra logic, which can reduce design performance.

The Extra effort setting also performs power-aware memory balancing. Power-aware
memory balancing automatically chooses the best memory configuration for your
memory implementation and provides optimal power saving by determining the
number of memory blocks, decoder, and multiplexer circuits required. If you have not
previously specified target-embedded memory blocks for your design’s memory
functions, the power-aware balancer automatically selects them during memory
implementation.

Figure 11–5 shows an example of a 4k × 4 (4k deep and 4 bits wide) memory
implementation in two different configurations using M4K memory blocks available
in Stratix II devices. The minimum logic area implementation uses M4K blocks
configured as 4k × 1. This implementation is the default in the Quartus II software
because it has the minimum logic area (0 logic cells) and the highest speed. However,

Figure 11–4. Memory Transformation

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch

Chapter 11: Power Optimization 11–7
Power-Driven Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

all four M4K blocks are active on each memory access in this implementation, which
increases RAM power. The minimum RAM power implementation is created by
selecting Extra effort in the PowerPlay power optimization list. This implementation
automatically uses four M4K blocks configured as 1k × 4 for optimal power saving.
An address decoder is implemented by the RAM megafunction to select which of the
four M4K blocks should be activated on a given cycle, based on the state of the top
two user address bits. The RAM megafunction automatically implements a
multiplexer to feed the downstream logic by choosing the appropriate M4K output.
This implementation reduces RAM power because only one M4K block is active on
any cycle, but it requires extra logic cells, costing logic area and potentially impacting
design performance.

There is a trade-off between power saved by accessing fewer memories and power
consumed by the extra decoder and multiplexor logic. The Quartus II software
automatically balances the power savings against the costs to choose the lowest
power configuration for each logical RAM. The benchmark data shows that the
power-driven synthesis can reduce memory power consumption by as much as 60%
in Stratix devices.

Memory optimization options can also be controlled by the Low_Power_Mode
parameter in the Default Parameters page of the Settings dialog box. The settings for
this parameter are None, Auto, and ALL. None corresponds to the Off setting in the
PowerPlay power optimization list. Auto corresponds to the Normal compilation
setting and ALL corresponds to the Extra effort setting, respectively. You can apply
PowerPlay power optimization either on a compiler basis or on individual entities.
The Low_Power_Mode parameter always takes precedence over the Optimize Power
for Synthesis option for power optimization on memory.

Figure 11–5. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)

11–8 Chapter 11: Power Optimization
Power-Driven Compilation

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can also set the MAXIMUM_DEPTH parameter manually to configure the memory
for low power optimization. This technique is the same as the power-aware memory
balancer, but it is manual rather than automatic like the Extra effort setting in the
PowerPlay power optimization list. You can set the MAXIMUM_DEPTH parameter for
memory modules manually in the megafunction instantiation or in the MegaWizard™
Plug-In Manager for power optimization as described in “Reducing Memory Power
Consumption” on page 11–14. The MAXIMUM_DEPTH parameter always takes
precedence over the Optimize Power for Synthesis options for power optimization
on memory optimization.

Power-Driven Fitter
The Fitter Settings page enables you to specify options for fitting (Figure 11–6). The
PowerPlay power optimization option is available for Arria GX, Stratix IV, Stratix III,
Stratix II, Stratix II GX, Cyclone IV GX, Cyclone III, Cyclone II, HardCopy II, and
MAX II devices.

To perform power optimization at the Fitter level, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Fitter Settings. The Fitter Settings page appears.

3. In the PowerPlay power optimization list, select your preferred setting. This
option determines how aggressively the Fitter optimizes the design for power.

Figure 11–6. Fitter Settings Page

Chapter 11: Power Optimization 11–9
Power-Driven Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Table 11–2 lists the settings in the PowerPlay power optimization list. These settings
can only be applied on a project-wide basis. The Extra effort setting for the Fitter
requires extensive effort to optimize the design for power and can increase the
compilation time.

The Normal compilation setting is selected by default and performs DSP
optimization by creating power-efficient DSP block configurations for your DSP
functions. For Stratix III devices, this setting, which is based on timing constraints
entered for the design, enables the Programmable Power Technology to configure tiles
as high-speed mode or low-power mode. Programmable Power Technology is always
turned ON even when the OFF setting is selected for the Fitter PowerPlay power
optimization option. Tiles are the combination of LAB and MLAB pairs (including the
adjacent routing associated with LAB and MLAB), which can be configured to operate
in high-speed or low-power mode. This level of power optimization does not have
any affect on the fitting, timing results, or compile time. Also, for Stratix III devices,
this setting enables the memory transformation as described in “Power-Driven
Synthesis” on page 11–4.

f For more information about Stratix III power optimization, refer to AN 437: Power
Optimization in Stratix III FPGAs. For more information about Stratix IV power
optimization, refer to AN 514: Power Optimization in Stratix IV FPGAs.

The Extra effort setting performs the functions of the Normal compilation setting and
other place-and-route optimizations during fitting to fully optimize the design for
power. The Fitter applies an extra effort to minimize power even after timing
requirements have been met by effectively moving the logic closer during placement
to localize high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Signal Activity File (.saf) or Verilog Value Change
Dump File (.vcd) that guides the Fitter to fully optimize the design for power, based
on the signal activity of the design. The best power optimization during fitting results
from using the most accurate signal activity information. Signal activities from full
post-fit netlist (timing) simulation provide the highest accuracy because all node
activities reflect the actual design behavior, provided that supplied input vectors are
representative of typical design operation. If you do not have a .saf file (from
simulation or other source), the Quartus II software uses assignments, clock
assignments, and vectorless estimation values (PowerPlay Power Analyzer Tool
settings) to estimate the signal activities. This information is used to optimize your
design for power during fitting. The benchmark data shows that the power-driven
Fitter technique can reduce power consumption by as much as 19% in Stratix devices.

Table 11–2. Power-Driven Fitter Option

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through placement and routing
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through placement and routing
optimizations. Max performance might be impacted.

http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/AN437.pdf

11–10 Chapter 11: Power Optimization
Recommended Flow for Power-Driven Compilation

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 Only the Extra effort setting in the PowerPlay power optimization list for the Fitter
option uses the signal activities (from .vcd or .saf file) during fitting. The settings
made in the PowerPlay Power Analyzer Settings page in the Settings dialog box are
used to calculate the signal activity of your design.

f For more information about .saf and .vcd files, and how to create them, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Recommended Flow for Power-Driven Compilation
Figure 11–7 shows the recommended design flow to fully optimize your design for
power during compilation. This flow utilizes the power-driven synthesis and
power-driven Fitter options. On average, you can reduce core dynamic power by 16%
with the extra effort synthesis and extra effort fitting settings, as compared to the Off
settings in both synthesis and Fitter options for power-driven compilation.

Area-Driven Synthesis
Using area optimization rather than timing or delay optimization during synthesis
saves power because you use fewer logic blocks. Using less logic usually means less
switching activity. The Quartus II integrated synthesis tool provides Speed, Balanced,
or Area for the Optimization Technique option. You can also specify this logic option
for specific modules in your design with the Assignment Editor in cases where you
want to reduce area using the Area setting (potentially at the expense of register-to-
register timing performance) while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families). The Speed Optimization Technique can increase the resource usage of your
design if the constraints are too aggressive, and can also result in increased power
consumption.

Figure 11–7. Recommended Flow for Power-Driven Compilation

.saf
or

.vcd

Power-Driven
Synthesis of Design

Power-Driven
Fitting of Design

Find Signal Toggle
Rates: Gate-Level

Simulation with
Glitch Filtering

Fit Design

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 11: Power Optimization 11–11
Recommended Flow for Power-Driven Compilation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The benchmark data shows that the area-driven technique can reduce power
consumption by as much as 31% in Stratix devices and as much as 15% in Cyclone
devices.

Gate-Level Register Retiming
You can also use gate-level register retiming to reduce circuit switching activity.
Retiming shuffles registers across combinational blocks without changing design
functionality. The Perform gate-level register retiming option in the Quartus II
software enables the movement of registers across combinational logic to balance
timing, allowing the software to trade off the delay between timing critical and
non-critical timing paths.

Retiming uses fewer registers than pipelining. Figure 11–8 shows an example of
gate-level register retiming, where the 10 ns critical delay is reduced by moving the
register relative to the combinational logic, resulting in the reduction of data depth
and switching activity.

1 Gate-level register retiming makes changes at the gate level. If you are using an atom
netlist from a third-party synthesis tool, you must also select the Perform WYSIWYG
primitive resynthesis option to undo the atom primitives to gates mapping (so that
register retiming can be performed), and then to remap gates to Altera® primitives.
When using the Quartus II integrated synthesis, retiming occurs during synthesis
before the design is mapped to Altera primitives. The benchmark data shows that the
combination of WYSIWYG remapping and gate-level register retiming techniques can
reduce power consumption by as much as 6% in Stratix devices and as much as 21%
in Cyclone devices.

f For more information about register retiming, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Figure 11–8. Gate-Level Register Retiming

D Q D Q

D Q D Q

D Q

D Q

10 ns 5 ns

7 ns 8 ns

Before

After

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

11–12 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Design Guidelines
Several low-power design techniques can reduce power consumption when applied
during FPGA design implementation. This section provides detailed design
techniques for Stratix III, Stratix II, Cyclone IV GX, Cyclone III, and Cyclone II devices
that affect overall design power. The results of these techniques might be different
from design to design.

Clock Power Management
Clocks represent a significant portion of dynamic power consumption due to their
high switching activity and long paths. Figure 11–1 on page 11–2 shows a 14%
average contribution to power consumption for global clock routing in Stratix III
devices and 16% in Cyclone III devices. Actual clock-related power consumption is
higher than this because the power consumed by local clock distribution within logic,
memory, and DSP or multiplier blocks is included in the power consumption for the
respective blocks.

Clock routing power is automatically optimized by the Quartus II software, which
only enables those portions of the clock network that are required to feed downstream
registers. Power can be further reduced by gating clocks when they are not required.
It is possible to build clock-gating logic, but this approach is not recommended
because it is difficult to generate a glitch-free clock in FPGAs using ALMs or LEs.

Arria GX, Stratix IV, Stratix III, Stratix II, Cyclone IV GX, Cyclone III, and Cyclone II
devices use clock control blocks that include an enable signal. A clock control block is
a clock buffer that lets you dynamically enable or disable the clock network and
dynamically switch between multiple sources to drive the clock network. You can use
the Quartus II MegaWizard Plug-In Manager to create this clock control block with
the ALTCLKCTRL megafunction. Arria GX, Stratix IV, Stratix III, Stratix II,
Cyclone IV GX, Cyclone III, and Cyclone II devices provide clock control blocks for
global clock networks. In addition, Stratix IV, Stratix III and Stratix II devices have
clock control blocks for regional clock networks. The dynamic clock enable feature lets
internal logic control the clock network. When a clock network is powered down, all
the logic fed by that clock network does not toggle, thereby reducing the overall
power consumption of the device. Figure 11–9 shows a 4-input clock control block
diagram.

The enable signal is applied to the clock signal before being distributed to global
routing. Therefore, the enable signal can either have a significant timing slack (at least
as large as the global routing delay) or it can reduce the fMAX of the clock signal.

f For more information about using clock control blocks, refer to the Clock Control Block
Megafunction User Guide (ALTCLKCTRL).

Figure 11–9. Clock Control Block Diagram

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf

Chapter 11: Power Optimization 11–13
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Another contributor to clock power consumption is the LAB clock that distributes a
clock to the registers within a LAB. LAB clock power can be the dominant contributor
to overall clock power. For example, in Cyclone III and Cyclone II devices, each LAB
can use two clocks and two clock enable signals, as shown in Figure 11–10. Each
LAB’s clock signal and clock enable signal are linked. For example, an LE in a
particular LAB using the labclk1 signal also uses the labclkena1 signal.

To reduce LAB-wide clock power consumption without disabling the entire clock tree,
use the LAB-wide clock enable to gate the LAB-wide clock. The Quartus II software
automatically promotes register-level clock enable signals to the LAB-level. All
registers within an LAB that share a common clock and clock enable are controlled by
a shared gated clock. To take advantage of these clock enables, use a clock enable
construct in the relevant HDL code for the registered logic.

LAB-Wide Clock Enable Example
The VHDL code in Example 11–1 makes use of a LAB-wide clock enable. This
clock-gating logic is automatically turned into an LAB-level clock enable signal.

f For more information about LAB-wide control signals, refer to the Stratix II
Architecture, Cyclone III Device Family Overview, or Cyclone II Architecture chapters in
the respective device handbook.

Figure 11–10. LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

Example 11–1.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51001.pdf

11–14 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Reducing Memory Power Consumption
The memory blocks in FPGA devices can represent a large fraction of typical core
dynamic power. Memory represents 21% of the core dynamic power in a typical
Stratix III device design and 20% in a Cyclone III device design. Memory blocks are
unlike most other blocks in the device because most of their power is tied to the clock
rate, and is insensitive to the toggle rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that occur
within the block to execute a read or write. The circuitry controlled by the clock
consumes the same amount of power regardless of whether or not the address or data
has changed from one cycle to the next. Thus, the toggle rate of input data and the
address bus have no impact on memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory
clocking events. You can achieve this through clock network-wide gating described in
“Clock Power Management” on page 11–12, or on a per-memory basis through use of
the clock enable signals on the memory ports. Figure 11–11 shows the logical view of
the internal clock of the memory block. Use the appropriate enable signals on the
memory to make use of the clock enable signal instead of gating the clock.

Using the clock enable signal enables the memory only when necessary and shuts it
down for the rest of the time, reducing the overall memory power consumption. You
can use the MegaWizard Plug-In Manager to create these enable signals by selecting
the Clock enable signal option for the appropriate port when generating the memory
block function (Figure 11–12).

Figure 11–11. Memory Clock Enable Signal

Enable Internal Memory Clk

Clk

0

1

Chapter 11: Power Optimization 11–15
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

For example, consider a design that contains a 32-bit-wide M4K memory block in
ROM mode that is running at 200 MHz. Assuming that the output of this block is only
required approximately every four cycles, this memory block will consume 8.45 mW
of dynamic power according to the demands of the downstream logic. By adding a
small amount of control logic to generate a read clock enable signal for the memory
block only on the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory megafunction to
save power in Stratix IV, Stratix III, Stratix II, Cyclone IV GX, Cyclone III, and
Cyclone II devices; however, this approach might increase the number of LEs required
to implement the memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules manually in the
megafunction instantiation or in the MegaWizard Plug-In Manager (Figure 11–13).
The Quartus II software automatically chooses the best design memory configuration
for optimal power, as described in “Power-Driven Compilation” on page 11–4.

Figure 11–12. MegaWizard Plug-In Manager RAM 2-Port Clock Enable Signal Selectable Option

11–16 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Memory Power Reduction Example
Table 11–3 shows power usage measurements for a 4K × 36 simple dual-port memory
implemented using multiple M4K blocks in a Stratix II EP2S15 device. For each
implementation, the M4K blocks are configured with a different memory depth.

Figure 11–14 shows the amount of power saved using the MAXIMUM_DEPTH
parameter. For all implementations, a user-provided read enable signal is present to
indicate when read data is required. Using this power-saving technique can reduce
power consumption by as much as 60%.

Figure 11–13. MegaWizard Plug-In Manager RAM 2-Port Maximum Depth Selectable Option

Table 11–3. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633

Chapter 11: Power Optimization 11–17
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

As the memory depth becomes more shallow, memory dynamic power decreases
because unaddressed M4K blocks can be shut off using a decoded combination of
address bits and the read enable signal. For a 128-deep memory block, power used by
the extra LEs starts to outweigh the power gain achieved by using a more shallow
memory block depth. The power consumption of the memory blocks and associated
LEs depends on the memory configuration.

Pipelining and Retiming
Designs with many glitches consume more power because of faster switching activity.
Glitches cause unnecessary and unpredictable temporary logic switches at the output
of combinational logic. A glitch usually occurs when there is a mismatch in input
signal timing leading to unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR gate from 1 to
0, followed a few moments later by an input change from 0 to 1 on the other input.
For a moment, both inputs become 1 (high) during the state transition, resulting in 0
(low) at the output of the XOR gate. Subsequently, when the second input transition
takes place, the XOR gate output becomes 1 (high). During signal transition, a glitch is
produced before the output becomes stable, as shown in Figure 11–15. This glitch can
propagate to subsequent logic and create unnecessary switching activity, increasing
power consumption. Circuits with many XOR functions, such as arithmetic circuits or
cyclic redundancy check (CRC) circuits, tend to have many glitches if there are several
levels of combinational logic between registers.

Pipelining can reduce design glitches by inserting flipflops into long combinational
paths. Flipflops do not allow glitches to propagate through combinational paths.
Therefore, a pipelined circuit tends to have less glitching. Pipelining has the
additional benefit of generally allowing higher clock speed operations, although it
does increase the latency of a circuit (in terms of the number of clock cycles to a first
result). Figure 11–16 shows an example where pipelining is applied to break up a long
combinational path.

Figure 11–14. Power Savings Using the MAXIMUM_DEPTH Parameter

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
w

er
 S

av
in

gs

Figure 11–15. XOR Gate Showing Glitch at the Output

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

11–18 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Pipelining is very effective for glitch-prone arithmetic systems because it reduces
switching activity, resulting in reduced power dissipation in combinational logic.
Additionally, pipelining allows higher-speed operation by reducing logic-level
numbers between registers. The disadvantage of this technique is that if there are not
many glitches in your design, pipelining can increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization. The
benchmark data shows that pipelining can reduce dynamic power consumption by as
much as 31% in Stratix devices and as much as 30% in Cyclone devices.

Architectural Optimization
You can use design-level architectural optimization by taking advantage of specific
device architecture features. These features include dedicated memory and DSP or
multiplier blocks available in FPGA devices to perform memory or arithmetic-related
functions. You can use these blocks in place of LUTs to reduce power consumption.
For example, you can build large shift registers from RAM-based FIFO buffers instead
of building the shift registers from the LE registers.

The Stratix device family allows you to efficiently target small, medium, and large
memories with the TriMatrix memory architecture. Each TriMatrix memory block is
optimized for a specific function. The M512 memory blocks available in Stratix II
devices are useful for implementing small FIFO buffers, DSP, and clock domain
transfer applications. M512 memory blocks are more power-efficient than the
distributed memory structures in some competing FPGAs. The M4K memory blocks
are used to implement buffers for a wide variety of applications, including processor
code storage, large look-up table implementation, and large memory applications.
The M-RAM blocks are useful in applications where a large volume of data must be
stored on-chip. Effective utilization of these memory blocks can have a significant
impact on power reduction in your design.

The latest Stratix and Cyclone device families have configurable M9K memory blocks
that provide various memory functions such as RAM, FIFO buffers, and ROM.

Figure 11–16. Pipelining Example

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
DepthD Q D Q

D Q D Q D Q

Non-Pipelined

Pipelined

Chapter 11: Power Optimization 11–19
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about using DSP and memory blocks efficiently, refer to the
Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

I/O Power Guidelines
Non-terminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output
swing. The voltage difference between logic-high and logic-low signals at the output
pin is equal to the VCCIO supply voltage. If the capacitive loading at the output pin is
known, the dynamic power consumed in the I/O buffer can be calculated as shown in
Equation 11–1:

In this equation, F is the output transition frequency and C is the total load
capacitance being switched. V is equal to VCCIO supply voltage. Because of the
quadratic dependence on VCCIO, lower voltage standards consume significantly less
dynamic power. In addition, lower pin capacitance is an important factor in
considering I/O power consumption. Hardware and simulation data show that
Stratix II device I/O pins have half the pin capacitance of the nearest competing
FPGA. Cyclone II devices exhibit 20% less I/O power consumption than competitive,
low-cost, 90 nm FPGAs.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a
result, the total power consumed by a LVTTL or LVCMOS output is highly dependent
on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL, the output
load voltage swings by a small amount around some bias point. The same dynamic
power equation is used, where V is the actual load voltage swing. Because this is
much smaller than VCCIO, dynamic power is lower than for non-terminated I/O under
similar conditions. These resistively terminated I/O standards dissipate significant
static (frequency-independent) power, because the I/O buffer is constantly driving
current into the resistive termination network. However, the lower dynamic power of
these I/O standards means they often have lower total power than LVCMOS or
LVTTL for high-frequency applications. Use the lowest drive strength I/O setting that
meets your speed and waveform requirements to minimize I/O power when using
resistively terminated standards.

You can save a small amount of static power by connecting unused I/O banks to the
lowest possible VCCIO voltage of 1.2 V.

Table 11–4 shows the total supply and thermal power consumed by outputs using
different I/O standards for Stratix II devices. The numbers are for an I/O pin
transmitting random data clocked at 200 MHz with a 10 pF capacitive load.

For this configuration, non-terminated standards generally use less power, but this is
not always the case. If the frequency or the capacitive load is increased, the power
consumed by non-terminated outputs increases faster than the power of terminated
outputs.

Equation 11–1. Capacitive loading at the output pin

P 0.5 F C V2=

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

11–20 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For more information about I/O Standards, refer to the Selectable I/O Standards in
Stratix II Devices and Stratix II GX Devices chapter in volume 2 of the Stratix II Device
Handbook or the Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II
Device Handbook, or the Cyclone III Device Handbook, or the Cyclone IV GX Handbook.

When calculating I/O power, the PowerPlay Power Analyzer uses the default
capacitive load set for the I/O standard in the Capacitive Loading tab of the Device
& Pin Options dialog box. For Stratix II devices, if Enable Advanced I/O Timing is
turned on, I/O power is measured using an equivalent load calculated as the sum of
the near capacitance, the transmission line distributed capacitance, and the far-end
capacitance as defined in the Board Trace Model tab of the Device & Pin Options
dialog box or the Board Trace Model view in the Pin Planner. Any other components
defined in the board trace model are not taken into account for the power
measurement.

For Stratix IV, Stratix III, Cyclone IV GX, and Cyclone III devices, advanced I/O
power, which uses the full board trace model, is always used.

f For information about using Advanced I/O Timing and configuring a board trace
model, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Dynamically-Controlled On-Chip Terminations
Stratix IV and Stratix III FPGAs offer dynamic on-chip termination (OCT). Dynamic
OCT enables series termination (RS) and parallel termination (RT) to dynamically
turn on/off during the data transfer. This feature is especially useful when Stratix IV
and Stratix III FPGAs are used with external memory interfaces, such as interfacing
with DDR memories.

Table 11–4. I/O Power for Different I/O Standards in Stratix II Devices

Standard
Total Supply Current Drawn from

VCCIO Supply (mA)
Total On-Chip Thermal Power

Dissipation (mW)

3.3-V LVTTL 2.42 9.87

2.5-V LVCMOS 1.9 6.69

1.8-V LVCMOS 1.34 4.18

1.5-V LVCMOS 1.18 3.58

3.3-V PCI 2.47 10.23

SSTL-2 class I 6.07 4.42

SSTL-2 class II 10.72 5.1

SSTL-18 class I 5.33 3.28

SSTL-18 class II 8.56 4.06

HSTL-15 class I 6.06 3.49

HSTL-15 class II 11.08 4.87

HSTL-18 class I 6.87 4.09

HSTL-18 class II 12.33 5.82

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf

Chapter 11: Power Optimization 11–21
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Compared to conventional termination, dynamic OCT reduces power consumption
significantly as it eliminates the constant DC power consumed by parallel termination
when transmitting data. Parallel termination is extremely useful for applications that
interface with external memories where I/O standards, such as HSTL and SSTL, are
used. Parallel termination supports dynamic OCT, which is useful for bidirectional
interfaces (see Figure 11–17).

The following is an example of power saving for a DDR3 interface using on-chip
parallel termination.

The static current consumed by parallel OCT is equal to the VCCIO voltage divided by
100  . For DDR3 interfaces that use SSTL-15, the static current is 1.5 V/100  = 15
mA per pin. Therefore, the static power is 1.5 V ×15 mA = 22.5 mW. For an interface
with 72 DQ and 18 DQS pins, the static power is 90 pins × 22.5 mW = 2.025 W.
Dynamic parallel OCT disables parallel termination during write operations, so if
writing occurs 50% of the time, the power saved by dynamic parallel OCT is 50% ×
2.025 W = 1.0125 W.

f For more information about dynamic OCT in Stratix IV and Stratix III devices, refer to
the Stratix III Device I/O Features chapter in the Stratix III Device Handbook and the
Stratix IV Device I/O Features chapter in the Stratix IV Device Handbook, respectively.

Power Optimization Advisor
The Quartus II software includes the Power Optimization Advisor, which provides
specific power optimization advice and recommendations based on the current
design project settings and assignments. The advisor covers many of the suggestions
listed in this chapter. The following example shows how to reduce your design power
with the Power Optimization Advisor.

Power Optimization Advisor Example
After compiling your design, run the PowerPlay Power Analyzer to determine your
design power and to see where power is dissipated in your design. Based on this
information, you can run the Power Optimization Advisor to implement
recommendations that can reduce design power. Figure 11–18 shows the Power
Optimization Advisor after compiling a design that is not fully optimized for power.

Figure 11–17. Stratix III On-Chip Parallel Termination

VCCIO

GND

VREF

Zo = 50

100

Stratix III OCT

Transmitter Receiver

100

http://www.altera.com/literature/hb/stx3/stx3_siii51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf

11–22 Chapter 11: Power Optimization
Design Guidelines

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Power Optimization Advisor shows the recommendations that can reduce power
in your design. The recommendations are split into stages to show the order in which
you should apply the recommended settings. The first stage shows mostly CAS
setting options that are easy to implement and highly effective in reducing design
power. An icon indicates whether each recommended setting is made in the current
project. In Figure 11–18, the checkmark icon for Stage 1 shows the recommendations
that are already implemented. The warning icons indicate recommendations that are
not followed for this compilation. The information icon shows the general
suggestions. Each recommendation includes the description, summary of the affect of
the recommendation, and the action required to make the appropriate setting.

There is a link from each recommendation to the appropriate location in the
Quartus II user interface where you can change the setting. You can change the
Power-Driven Synthesis setting by clicking Open Settings dialog box - Analysis &
Synthesis Settings page (Figure 11–19). The Settings dialog box is shown with the
Analysis & Synthesis Settings page selected, where you can change the PowerPlay
power optimization settings.

Figure 11–18. Power Optimization Advisor

Chapter 11: Power Optimization 11–23
Design Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

After making the recommended changes, recompile your design. The Power
Optimization Advisor indicates with green check marks that the recommendations
were implemented successfully (Figure 11–20). You can use the PowerPlay Power
Analyzer to verify your design power results.

Figure 11–19. Analysis & Synthesis Settings Page

11–24 Chapter 11: Power Optimization
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The recommendations listed in Stage 2 generally involve design changes, rather than
CAD settings changes as in Stage 1. You can use these recommendations to further
reduce your design power consumption. Altera recommends that you implement
Stage 1 recommendations first, then the Stage 2 recommendations.

Conclusion
The combination of a smaller process technology, the use of low-k dielectric material,
and reduced supply voltage significantly reduces dynamic power consumption in the
latest FPGAs. To further reduce your dynamic power, use the design
recommendations presented in this chapter to optimize resource utilization and
minimize power consumption.

Referenced Documents
This chapter references the following documents:

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ AN 437: Power Optimization in Stratix III FPGAs

■ AN 514: Power Optimization in Stratix IV FPGAs

■ Clock Control Block Megafunction User Guide (ALTCLKCTRL)

■ Cyclone III Device Family Overview chapter in the Cyclone III Device Handbook

■ Cyclone II Architecture chapter in the Cyclone II Device Handbook

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Stratix II Architecture chapter in volume 1 in the Stratix II Device Handbook

Figure 11–20. Implementation of Power Optimization Advisor Recommendations

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51001.pdf
http://www.altera.com/literature/an/an514.pdf

Chapter 11: Power Optimization 11–25
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Selectable I/O Standards in Stratix II Devices and Stratix II GX Devices chapter in
volume 2 of the Stratix II Device Handbook

■ Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II Device
Handbook

■ Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II Device
Handbook

■ Stratix IV Device Handbook

■ Stratix III Device Handbook

■ Stratix II Device Handbook

Document Revision History
Table 11–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 11–5. Document Revision History

Date and
Document
Version Changes Made Summary of Changes

November 2009
v.9.1.0

■ Updated Figure 11-1 and associated references.

■ Updated device support.

■ Minor editorial updates.

Updated for the
Quartus II 9.1
software release.

March 2009
v9.0.0

■ Was chapter 9 in the 8.1.0 release.

■ Updated for the Quartus II software release.

■ Added benchmark results.

■ Removed several sections.

■ Updated Figure 11–1, Figure 11–18, Figure 11–19, and Figure 11–20.

Updated for the
Quartus II 9.0
software release.

November 2008
v8.1.0

■ Changed to 8½” × 11” page size.

■ Changed references to altsyncram to RAM.

■ Minor editorial updates

Updated for the
Quartus II 8.1
software release.

May 2008
v8.0.0

■ Updated Table 9–1 and 9–9.

■ Updated “Architectural Optimization” on page 9–22

■ Added “Dynamically-Controlled On-Chip Terminations” on page 9–26

■ Updated “Referenced Documents” on page 9–29

■ Updated references

Added support for
Stratix IV devices.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf

11–26 Chapter 11: Power Optimization
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

12. Analyzing and Optimizing the Design
Floorplan

You can use the Chip Planner to perform design analysis and create a design
floorplan. With some of the older device families, you must use the Timing Closure
Floorplan to analyze the device floorplan. To make I/O assignments, use the Pin
Planner.

Introduction
As FPGA designs grow larger in density, analyzing the design for performance,
routing congestion, and logic placement to meet the design requirements becomes
critical.

This chapter discusses how to analyze the design floorplan with the Chip Planner and
the Timing Closure Floorplan (for supported devices only).

f You can use the Design Partition Planner along with the Chip Planner to customize
the floorplan for your design. For more information, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and the Best Practices for Incremental
Compilation Partition and Floorplan Assignments chapters in volume 1 of the Quartus II
Handbook.

This chapter includes the following topics:

■ “Chip Planner Overview” on page 12–2

■ “LogicLock Regions” on page 12–6

■ “Using LogicLock Regions in the Chip Planner” on page 12–20

■ “Design Floorplan Analysis Using the Chip Planner” on page 12–20

■ “Design Analysis Using the Timing Closure Floorplan” on page 12–42

■ “Scripting Support” on page 12–48

f For more information about the Pin Planner, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Table 12–1 lists the device families supported by the Chip Planner and the Timing
Closure Floorplan.

Table 12–1. Chip Planner and Timing Closure Floorplan Device Support (Part 1 of 2)

Device Family Timing Closure Floorplan Chip Planner

Arria® series — v
Cyclone series — v
HardCopy series — v
Stratix series — v
MAX® IIZ — v
MAX II — v

QII52006-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

12–2 Chapter 12: Analyzing and Optimizing the Design Floorplan
Chip Planner Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Chip Planner Overview
The Chip Planner provides a visual display of chip resources. It can show logic
placement, LogicLock regions, relative resource usage, detailed routing information,
fan-in and fan-out connections between nodes, timing paths between registers, and
delay estimates for paths. With the Chip Planner, you can view critical path
information, physical timing estimates, and routing congestion.

You can also perform assignment changes with the Chip Planner, such as creating and
deleting resource assignments, and post-compilation changes such as creating,
moving, and deleting logic cells and I/O atoms. With the Chip Planner and Resource
Property Editor, you can change connections between resources and make
post-compilation changes to the properties of logic cells, I/O elements, PLLs, and
RAM and digital signal processing (DSP) blocks. With the Chip Planner, you can view
and create assignments for a design floorplan, perform power and design analyses,
and implement ECOs.

f For details about how to implement ECOs in your design using the Chip Planner in
the Quartus II software, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

MAX 3000 v —

MAX 7000 v —

Table 12–1. Chip Planner and Timing Closure Floorplan Device Support (Part 2 of 2)

Device Family Timing Closure Floorplan Chip Planner

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–3
Chip Planner Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Starting the Chip Planner
To start the Chip Planner, on the Tools menu, click Chip Planner (Floorplan & Chip
Editor). You can also start the Chip Planner by the following methods:

■ Click the Chip Planner icon on the Quartus II software toolbar

■ On the Shortcut menu in the following tools, click Locate and then click Chip
Planner:

■ Design Partition Planner

■ Compilation Report

■ LogicLock Regions window

■ Technology Map Viewer

■ Project Navigator window

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

■ Report Timing panel of the TimeQuest Timing Analyzer

1 If the device in your project is not supported by the Chip Planner and you attempt to
start the Chip Planner, the following message appears:

Can’t display Chip Planner: the current device family is unsupported.

Use the Timing Closure Floorplan for devices not supported by the Chip Planner.

Chip Planner Toolbar
The Chip Planner gives you powerful capabilities for design analysis with a
user-friendly GUI. Many Chip Planner functions are available from the menu items or
by clicking the icons on the toolbar. Figure 12–1 shows an example of the Chip
Planner toolbar and provides descriptions for commonly used icons located on the
Chip Planner toolbar.

12–4 Chapter 12: Analyzing and Optimizing the Design Floorplan
Chip Planner Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

1 You can customize the icons on the Chip Planner toolbar by clicking Customize Chip
Planner on the Tools menu (if the Chip Planner window is attached), or by clicking
Customize on the Tools menu (if the Chip Planner window is detached).

Chip Planner Tasks and Layers
The Chip Planner has predefined tasks that enable you to quickly implement ECO
changes or manipulate assignments for the floorplan of the device. To select a task,
click on the task name in the Task menu. The predefined tasks in the Chip Planner are:

■ Floorplan Editing (Assignment)

■ Post-Compilation Editing (ECO)

■ Partition Display (Assignment)

■ Partition Planner

■ Routing Congestion (ECO)

■ Clock Regions (Assignment)—available for Arria GX, Arria II GX, Cyclone II,
Cyclone III, HardCopy II, HardCopy III, Stratix II, Stratix II GX, Stratix III, and
Stratix IV devices only

Figure 12–1. Chip Planner Toolbar

Detach Window

Selection Tool
Zoom Tool

Hand Tool

Full Screen

Find

Create LogicLock Region

Generate Fan-In Connections
Generate Fan-Out Connections

Generate Connections Between Nodes

Critical Path Settings

Expand Connections/Paths

Clear Unselected Connections/Paths

Highlight Selections
Highlight Routing

Clear Unselected Highlight

Show Delays

Equations

Detailed Tooltip

Bird's Eye View

Check and Save All Netlist Changes

Opens Layers Settings Dialog Box

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–5
Chip Planner Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Power Analysis (Assignment)—available for Stratix III and Stratix IV devices
only

In the Chip Planner, layers allow you to specify the graphic elements that are
displayed for a given task. You can turn off the display of specific graphic elements to
increase the window refresh speed and reduce visual clutter when viewing complex
designs. The Background Color Map can indicate the Block Utilization, Routing
Utilization, Physical Timing Estimate, I/O Banks, or the High speed-Low power
Tiles. When you select Design Partition Planner in the Background Color Map
settings, the resources used by each partition are displayed in the Chip Planner with
the same colors used for these partitions in the Design Partition Planner. For example,
Routing Utilization indicates the relative routing utilization, and Physical Timing
Estimate indicates the relative physical timing.

Each predefined task in the Chip Planner has a Background Color Map, a set of
displayed layers, and an editing mode associated with the task. Click the Layers icon
(shown in Figure 12–1) to display the Layers Settings window (Figure 12–2). In this
window you can select the layers and background color map for each task.

Figure 12–2. Layers in the Chip Planner

Layers

12–6 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Chip Planner operates in either Assignment or ECO mode. You can perform
design analyses in either of these modes. Use the Floorplan Editing (Assignment)
task in the Assignment mode to manipulate LogicLock regions and location
assignments in your design. The Post Compilation Editing (ECO) task in ECO mode
allows you to implement ECO changes in your design. The Partition Display
(Assignment) task allows you to view the placement of nodes and color codes the
nodes based on their partition. When you select the Clock Regions (Assignment)
task, you can see the regions in your device that are driven by global clock networks.
The Power Analysis (Assignment) task allows you to view high and low power
resources in Stratix III and Stratix IV devices.

f For more information about the ECO mode of operation, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

You can also create and save your own custom tasks. When you create a custom task,
you can turn on or off any layer by checking the appropriate box located next to each
layer. You can also select different Background Color Maps for your custom task.
After selecting the required settings, click Save Task As to save your custom task.

LogicLock Regions
LogicLock regions are regions you define on the device. You can use LogicLock
regions to create a floorplan for your design. Your floorplan can contain several
LogicLock regions. A LogicLock region is defined by its height, width, and location.
You can specify the size or location of a region, or both, or the Quartus II software can
generate these properties automatically. The Quartus II software bases the size and
location of a region on the contents of the region and the timing requirements of the
module. Table 12–2 describes the options for creating LogicLock regions.

1 The Quartus II software cannot automatically define the size of a region if the location
is locked. Therefore, if you want to specify the exact location of the region, you must
also specify the size.

Table 12–2. Types of LogicLock Regions

Properties Values Behavior

State Floating
(default),
Locked

Floating regions allow the Quartus II software to determine the location of the region on the
device. Locked regions are areas that you define and are shown with a solid boundary in the
floorplan. A locked region must have a fixed size.

Size Auto
(default),
Fixed

Auto-sized regions allow the Quartus II software to determine the appropriate size of a region
given its contents. Fixed regions have a shape and size that you define.

Reserved Off
(default),
On, Limited

The reserved property allows you to define whether the Fitter can use the resources within a
region for entities that are not assigned to the region. If the reserved property is turned on, only
items assigned to the region can be placed within its boundaries. When you set it to limited, the
Fitter does not place any logic from the parent region.

Origin Any
Floorplan
Location

The origin is the origin of the LogicLock region’s placement on the floorplan. For Arria GX,
Stratix, and Cyclone series devices, and MAX II devices, the origin is located in the lower left
corner. For other Altera® device families, the origin is located in the upper left corner.

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–7
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f You can use the Design Partition Planner in conjunction with LogicLock regions to
create a floorplan for your design. For more information about using the Design
Partition Planner, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Designs and the Best Practices for Incremental Compilation Partition and
Floorplan Assignments chapters in volume 1 of the Quartus II Handbook.

Creating LogicLock Regions
You can create LogicLock Regions from the Project Navigator, the LogicLock Regions
window, or the Chip Planner.

Creating LogicLock Regions from the Quartus II User Interface
After you perform either a full compilation or analysis and elaboration on the design,
the Quartus II software displays the hierarchy of the design. On the View menu, click
Project Navigator. With the hierarchy of the design fully expanded, as shown in
Figure 12–3, right-click on any design entity in the design, and click Create New
LogicLock Region to create a LogicLock region.

Placing LogicLock Regions
A fixed region must contain all resources required for the design block for which you
define the region. Although the Quartus II software can automatically place and size
LogicLock regions to meet resource and timing requirements, you can manually place
and size regions to meet your design requirements. To do so, follow these guidelines:

■ Place LogicLock regions with pin assignments on the periphery of the device,
adjacent to the pins. For the Arria GX, Stratix, and Cyclone series of devices and
MAX II devices, you must also include the I/O block within the LogicLock
Region.

Figure 12–3. Using the Project Navigator to Create LogicLock Regions

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

12–8 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ Floating LogicLock regions can overlap with their ancestors or descendants, but
not with other floating LogicLock regions.

■ Avoid creating fixed and locked regions that overlap.

1 If you want to import multiple instances of a module into a top-level design, you must
ensure that the device has two or more locations with exactly the same device
resources. (You can determine this from the applicable device handbook.) If the device
does not have another area with exactly the same resources, the Quartus II software
generates a fitting error during compilation of the top-level design.

1 When you import a LogicLock region, the Quartus II software changes the property to
floating and assigns a new unique name. You can change the property to fixed to
guarantee the same placement achieved previously. You can import or export
LogicLock regions across devices within a family, but not between families.

Placing Device Features into LogicLock Regions
A LogicLock region includes all device resources within its boundaries, including
memory and pins. You can assign pins to LogicLock regions; however, this placement
puts location constraints on the region. When the Quartus II software places a floating
auto-sized region, it places the region in an area that meets the requirements of the
contents of the LogicLock region.

1 Pin assignments to LogicLock regions are effective only in fixed and locked regions.
Pin assignments to floating regions do not influence the placement of the region.

Only one LogicLock region can claim a device resource. If the boundary includes part
of a device resource, the Quartus II software allocates the entire resource to the
LogicLock region.

LogicLock Regions Window
The LogicLock window consists of the LogicLock Regions window (Figure 12–4) and
the LogicLock Region Properties dialog box. Use the LogicLock Regions window to
create LogicLock regions and assign nodes and entities to them. The dialog box
provides a summary of all LogicLock regions in your design. In the LogicLock
Regions window, you can modify the properties of a LogicLock region such as size,
state, width, height, origin, and whether the region is a reserved region. The
LogicLock Regions window also has a recommendations toolbar at the bottom. Select
a LogicLock region from the drop-down list in the recommendations toolbar to
display the relevant suggestions to optimize that LogicLock region.

1 The origin location varies, depending on the device family. For Arria GX, Cyclone,
Stratix, and MAX II devices, the origin of the LogicLock region is located at the
lower-left corner of the region. For all other supported devices, the origin is located at
the upper-left corner of the region.

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–9
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can customize the LogicLock Regions window by dragging and dropping the
columns to change their order. Columns can also be hidden.

For designs that target Arria GX, Cyclone, Stratix, and MAX II devices, the Quartus II
software automatically creates a LogicLock region that encompasses the entire device.
This default region is labelled Root_region, and is locked and fixed.

Use the LogicLock Region Properties dialog box to obtain detailed information about
your LogicLock region, such as which entities and nodes are assigned to your region
and which resources are required. The LogicLock Region Properties dialog box
shows the properties of the current selected regions. You can also modify the settings
for LogicLock regions in the LogicLock Region Properties dialog box.

1 To open the LogicLock Region Properties dialog box, double-click any region in the
LogicLock Regions window, or right-click the region and click Properties.

Creating LogicLock Regions with the Chip Planner
In the View menu of the Chip Planner, click Create LogicLock Region. In the Chip
Planner, click and drag to create a region of your preferred location and size.

Assigning LogicLock Region Content
After you have created a LogicLock region, you must assign resources to it using the
Chip Planner, the LogicLock Regions dialog box, or a Tcl script.

You can drag selected logic displayed in the Hierarchy tab of the Project Navigator, in
the Node Finder, or in a schematic design file, and drop it into the Chip Planner or the
LogicLock Regions dialog box. Figure 12–5 shows logic that has been dragged from
the Hierarchy tab of the Project Navigator and dropped into a LogicLock region in the
Chip Planner.

Figure 12–4. LogicLock Regions Window

12–10 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can also drag logic from the Hierarchy tab of the Project Navigator and drop it in
the LogicLock Regions Properties dialog box. Logic can also be dropped into the
Design Element Assigned column of the Contents tab of the LogicLock Region
Properties box.

You must assign pins to a LogicLock region manually. The Quartus II software does
not include pins automatically when you assign an entity to a region. The software
only obeys pin assignments to locked regions that border the periphery of the device.
For the Cyclone, Stratix, and MAX II series of devices, the locked regions must
include the I/O pins as resources.

Hierarchical (Parent and Child) LogicLock Regions
You can define a hierarchy for a group of regions by declaring parent and child
regions. The Quartus II software places a child region completely within the
boundaries of its parent region, allowing you to further constrain module locations.
Additionally, parent and child regions allow you to further improve the performance
of a module by constraining the nodes in the critical path of the module.

To make one LogicLock region a child of another LogicLock region, in the LogicLock
Regions window, select the new child region and drag and drop it inside its new
parent region.

1 The LogicLock region hierarchy does not have to be the same as the design hierarchy.

Figure 12–5. Drag and Drop Logic in the Chip Planner

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–11
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can create both fixed and floating LogicLock regions within a fixed parent
LogicLock region. The location of a floating child region can float within its parent. If
a child region is fixed, its location remains locked relative to its parent’s origin. A
locked parent region’s location is locked relative to the device. If the child’s location is
locked and the parent’s location is changed, the child’s origin changes, but maintains
the same placement relative to the origin of its parent. Either you or the Quartus II
software can determine a child region’s size; however, the child region must fit
entirely within the parent region. The levels of hierarchy in LogicLock regions are
unlimited, but complicated hierarchical regions might result in some LABs not being
utilized; thus, effectively increasing the resource utilization in the device.

Reserved LogicLock Region
The Quartus II software honors all entity and node assignments to LogicLock regions.
Occasionally, entities and nodes do not occupy an entire region, which leaves some of
the region’s resources unoccupied. To increase the region’s resource utilization and
performance, the Quartus II software’s default behavior fills the unoccupied resources
with other nodes and entities that have not been assigned to another region. You can
prevent this behavior by turning on Reserved on the General tab of the LogicLock
Region Properties dialog box. When you turn on this option, your LogicLock region
contains only the entities and nodes that you specifically assigned to your LogicLock
region. When you set the reserved property for a LogicLock region, the Fitter does not
place logic from the immediate parent LogicLock region in the assigned LogicLock
area, but it might place logic from other parts of your design in that area.

In a team-based design environment, the Limited option helps you create a device
floorplan. When this option is turned on, each team can be assigned a portion of the
device floorplan where placement and optimization of each submodule occurs.
Device resources can be distributed to each module without affecting the performance
of other modules.

Creating Non-Rectangular LogicLock Regions
When you create a floorplan for your design, you may want to create non-rectangular
LogicLock regions to make some device resources accessible to design blocks outside
a LogicLock region. You might also create a non-rectangular LogicLock region to
place certain parts of your design around specific device resources to improve
performance. You can create non-rectangular LogicLock regions in two ways: with the
Merge command in the Chip Planner, or with the reserved property of LogicLock
regions.

Creating Non-Rectangular LogicLock Regions Using the Merge Command
The Merge command is available for Arria II GX, Cyclone III series, Cyclone IV,
HardCopy III, HardCopy IV, Stratix III, and Stratix IV series device families. To create
a non-rectangular region with the Merge command, follow these steps:

1. In the Chip Planner, create two or more contiguous or non-contiguous rectangular
regions as described in “Creating LogicLock Regions” on page 12–7.

2. Arrange the regions that you have created into the locations where you want the
non-rectangular region to be.

12–12 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

3. Select all the individual regions to be merged by clicking each of them while
holding the Shift key.

4. Right-click the title bar of any of the LogicLock regions that you want to merge,
point to LogicLock regions, and then click Merge. The individual regions that you
have selected are now merged to create a single new region.

By default, the new LogicLock region bears the name of the component region
containing the greatest number of resources; however, you can rename the new
region. In the LogicLock Regions window, the new region is shown as having a
custom shape.

Figure 12–6 illustrates two autonomous LogicLock regions combined using the Merge
command to form a new non-rectangular region.

Creating Non-Rectangular Regions Using Reserved LogicLock Regions
For all devices not supported by the Merge command, you can use the reserved
property of LogicLock regions to create regions that are non-rectangular or
non-contiguous.

For example, consider a case in which there is one LogicLock region under the Root
region and two child regions under this region (Figure 12–7).

Figure 12–6. Using the Merge command to create a non-rectangular region

Figure 12–7. Example 1

Root Region

Parent_Region_1

Child_Region_1 Child_Region_2

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–13
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can set the Reserved property of a LogicLock region to On, Off, or Limited. If
you create a LogicLock region for Child_Region_1 with its Reserved property set to
Limited, the Fitter does not place nodes that are members of Parent_Region_1 or
Child_Region_2 into the boundary of Child_Region_1. However, if Child_Region_2
overlaps Child_Region_1, then logic can be placed in the overlapping area. The Fitter
can also place nodes that are not members of Parent_Region_1 or Child_Region_1
(such as members of the Root_Region) into Child_Region_1. On the other hand, if
Child_Region_1 is set to exclude all non-members, the Fitter can only place nodes that
are members of Child_Region_1 into the region.

If the Parent Region’s reserved property is turned off, then the Fitter might place other
logic in the allocated region.

If you want to create a non-rectangular region as shown in Figure 12–8, you can create
two rectangular hierarchical LogicLock regions. Turn off the reserved property on the
parent LogicLock region and set the reserved property on the child LogicLock region
to Limited to prevent the Fitter from placing any logic of the module assigned to the
parent LogicLock region. Logic that is external to the parent LogicLock region might
be placed in the area allocated to the child region. This produces a non-rectangular
LogicLock region.

Examples of Non-Rectangular LogicLock Regions Using Reserved Property
The following examples use the design hierarchy shown in Figure 12–9.

Example 1: Creating an L-Shaped Region
In the design hierarchy example in Figure 12–9, suppose you want to create an
L-shaped region, such that the Alu1 module is placed completely inside the region,
and the non-Alu1 nodes can be placed anywhere on the chip (as shown in
Figure 12–10).

Figure 12–8. Non-Rectangular Region

Required Logic Lock
Region (Parent)

Child
Region

Figure 12–9. An Example Design Hierarchy

Alu1 Memory

toy_cpu

Alu2

12–14 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The L-shaped region defines a rectangular region that is carved out by a child
LogicLock region (Special) to achieve the L-shape effect. The Reserved property of
this child LogicLock region is set to Limited, such that the Fitter does not require logic
from members of Alu1 (which is the parent region of the region named Special) inside
it while letting other nodes in. Not displayed in Figure 12–10, the Alu1 entity instance
is assigned as a member to the L_Shaped region. This effect can be achieved by
creating a hierarchical LogicLock region as shown in Figure 12–11.

Figure 12–12 illustrates the expected fitting results with these LogicLock regions.
Nodes from the Alu1 entity instance are colored blue, while nodes from the rest of the
design are colored red.

Figure 12–10. Creating an L-Shaped Region

Alu1

Device

Other nodes

Figure 12–11. Hierarchical LogicLock Region

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–15
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Example 2: Region with Disjoint Areas
Suppose you want to create a region consisting of two disjoint rectangles (or any
number of disjoint areas), such that the Alu1 module is placed completely inside the
region, and the non-Alu1 nodes can be placed anywhere on the chip as shown in
Figure 12–13.

Figure 12–12. Expected Fitting Results with LogicLock Regions

Figure 12–13. Region Consisting of Two Disjointed Rectangles

Alu1

Alu1

Other nodes

Device

12–16 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can achieve a region with disjoint areas using the region hierarchy example in
Figure 12–14.

The disjoint region defines a rectangular region that is carved out by the Special child
region to achieve the disjoint effect. Notice that the Special region is set to reserved
“from members of parent region hierarchy” to prevent the Alu1 nodes from being
placed inside it, while letting other nodes in. The Alu1 entity instance should be
assigned to the Disjoint LogicLock region.

Figure 12–15 shows the expected fitting results with the LogicLock regions. Nodes
from the Alu1 entity instance are colored blue, while nodes from the rest of the design
are colored red and brown.

1 Hierarchial LogicLock assignments can increase resource usage in the device, because
some design blocks might not have access to resources inside the LogicLock regions.
When you create hierarchial LogicLock regions to create non-rectangular regions,
keep the hierarchy assignments simple, to minimize increase in resource usage.

Figure 12–14. Region with Disjoint Areas

Figure 12–15. Expected Fitting Results with the LogicLock Regions

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–17
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Excluded Resources
The Excluded Resources feature allows you to easily exclude specific device resources
such as DSP blocks or M4K memory blocks from a LogicLock region. For example,
you can specify resources that belong to a specific entity that are assigned to a
LogicLock region, and specify that these resources be included with the exception of
the DSP blocks. Use the Excluded Resources feature on a per-LogicLock region
member basis.

To exclude certain device resources from an entity, in the LogicLock Region
Properties dialog box, highlight the entity in the Design Element column, and click
Edit. In the Edit Node dialog box, under Excluded Element Types, click the Browse
button. In the Excluded Resources Element Types dialog box, you can select the
device resources you want to exclude from the entity. When you have selected the
resources to exclude, the Excluded Resources column is updated in the LogicLock
Region Properties dialog box to reflect the excluded resources.

1 The Excluded Resources feature prevents certain resource types from being included
in a region, but it does not prevent the resources from being placed inside the region
unless the region’s Reserved property is set to On. To indicate to the Fitter that certain
resources are not required inside a LogicLock region, define a resource filter.

Additional Quartus II LogicLock Design Features
To complement the LogicLock Regions dialog box, the Quartus II software has
additional features to help you design with LogicLock regions.

Tooltips
When you move the mouse pointer over a LogicLock region name on the LogicLock
Regions dialog box, or over the top bar of the LogicLock region in the Chip Planner,
the Quartus II software displays a tooltip with information about the properties of the
LogicLock region.

Analysis and Synthesis Resource Utilization by Entity
The Compilation Report contains an Analysis and Synthesis Resource Utilization by
Entity section, which reports accurate resource usage statistics, including entity-level
information. You can use this feature when you manually create LogicLock regions.

Path-Based Assignments
You can assign paths to LogicLock regions based on source and destination nodes,
allowing you to easily group critical design nodes into a LogicLock region. Any of the
following types of nodes can be the source and destination nodes:

■ Valid register-to-register path—the source and destination nodes must be registers

■ Valid pin-to-register path—the source node is a pin and the destination node is a
register

■ Valid register-to-pin path—the source node is a register and the destination node
is a pin

■ Valid pin-to-pin path—both the source and destination nodes are pins

12–18 Chapter 12: Analyzing and Optimizing the Design Floorplan
LogicLock Regions

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To open the Paths dialog box, on the General tab of the Logic Lock Regions dialog
box, click Add Path.

1 Both “*” and “?” wildcard characters are allowed for the source and destination
nodes. When creating path-based assignments, you can exclude specific nodes using
the Name exclude field in the Paths dialog box. The Quartus II software ignores all
paths passing through the nodes that match the setting in the Name exclude field. For
example, consider a case with two paths between the source and destination—one
passing through node A and the other passing through node B. If you specify node B
in the Name exclude field, only the path assignment through node A is valid.

You can also use the Quartus II Timing Analysis Report to create path-based
assignments by following these steps:

1. Expand the Timing Analyzer section in the Compilation Report.

2. Select any of the clocks in the section labeled “Clock Setup:<clock name>.”

3. Locate a path that you want to assign to a LogicLock region. Drag this path from
the Report window and drop it in the appropriate row in the LogicLock Region
pane in the Quartus II GUI.

This operation creates a path-based assignment from the source register to the
destination register, as shown in the Timing Analysis Report.

Quartus II Revisions Feature
When you evaluate different LogicLock regions in your design, you might want to
experiment with different configurations to achieve your desired results. The
Quartus II Revisions feature provides a convenient way to organize the same project
with different settings until you find an optimum configuration.

To use the Revisions feature, on the Project menu, click Revisions. In the Revisions
dialog box, you can create and specify revisions. Revision can be based on the current
design or any previously created revisions. Each revision can have an associated
description. Revisions are a convenient way to organize the placement constraints
created for your LogicLock regions.

LogicLock Assignment Precedence
Conflicts can arise during the assignment of entities and nodes to LogicLock regions.
For example, an entire top-level entity might be assigned to one region and a node
within this top-level entity assigned to another region. To resolve conflicting
assignments, the Quartus II software maintains an order of precedence for LogicLock
assignments. The following order of precedence, from highest to lowest, applies:

■ Exact node-level assignments

■ Path-based and wildcard assignments

■ Hierarchical assignments

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–19
LogicLock Regions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Conflicts can arise within path-based and wildcard assignments when one path-based
or wildcard assignment contradicts another path-based or wildcard assignment. For
example, a path-based assignment is made containing a node labeled X and assigned
to LogicLock region PATH_REGION. A second assignment is made using wildcard
assignment X* with node X being placed into region WILDCARD_REGION. As a result
of these two assignments, node X is assigned to two regions: PATH_REGION and
WILDCARD_REGION.

To resolve this type of conflict, the Quartus II software maintains the order in which
the assignments were made and grants the higher priority to the most recently created
assignment.

1 Open the Priority dialog box by selecting Priority on the General tab of the
LogicLock properties dialog box. You can change the priority of path-based and
wildcard assignments with the Up and Down buttons in the Priority dialog box. To
prioritize assignments between regions, you must select multiple LogicLock regions
and then open the Priority dialog box from the LogicLock Properties window.

Normally, all nodes assigned to a particular LogicLock region reside within the
boundaries of that region.

Virtual Pins
Usually, when you compile a design in the Quartus II software, all I/O ports are
directly mapped to pins on the targeted device. However, there may be situations
where you do not want to map all I/O ports to the device pins; use the Virtual Pin
assignment in such cases.

A virtual pin is an I/O element which you do not intend to bring to the chip pins. You
can create a virtual pin by assigning the Virtual Pin logic option to an I/O element.
When you compile a design with some I/O elements assigned as virtual pins, those
I/O elements are mapped to a logic element and not to a pin during compilation, and
are then implemented as a LUT. You might use virtual pin assignments when you
compile a partial design, because not all the I/Os from a partial design may drive chip
pins at the top level.

The Virtual Pin assignment communicates to the Quartus II software which I/O ports
of the design module are internal nodes in the top-level design. These assignments
prevent the number of I/O ports in the lower-level modules from exceeding the total
number of available device pins. Every I/O port that is designated a virtual pin is
mapped to either an LCELL or an adaptive logic module (ALM), depending on the
target device.

1 Bidirectional, registered I/O pins, and I/O pins with output enable signals cannot be
virtual pins.

In the top-level design, these virtual pins are connected to an internal node of another
module. By making assignments to virtual pins, you can place those pins in the same
location or region on the device as that of the corresponding internal nodes in the
top-level module. The Virtual Pin option can be useful when compiling a LogicLock
module with more pins than the target device allows. The Virtual Pin option can
enable timing analyses that more closely match the performance of the LogicLock
module when it is integrated into the top-level design.

12–20 Chapter 12: Analyzing and Optimizing the Design Floorplan
Using LogicLock Regions in the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Apply the following guidelines when creating virtual pins in the Quartus II software:

■ Do not declare clock pins as virtual pins

■ Nodes or signals that drive physical device pins in the top-level design should not
be declared as virtual pins

1 In the Node Finder, you can set Filter Type to Pins: Virtual to display all assigned
virtual pins in the design. From the Assignment Editor, to access the Node Finder,
double-click the To field; when the arrow appears on the right side of the field, click
the arrow and select Node Finder.

Using LogicLock Regions in the Chip Planner
You can easily edit properties of existing LogicLock regions or assign resources to
them in the Chip Planner. You can also create new LogicLock regions using the Chip
Planner.

Viewing Connections Between LogicLock Regions in the Chip Planner
You can view and edit LogicLock regions using the Chip Planner. Select the Floorplan
Editing (Assignment) task or any task with the User-assigned LogicLock regions
setting enabled to manipulate LogicLock regions.

The Chip Planner shows the connections between LogicLock regions. By default, each
connection is represented as an individual line drawn between LogicLock regions.
You can choose to display connections between LogicLock regions as a single bundled
connection rather than as individual connection lines. To use this option, open the
Chip Planner floorplan and on the View menu, click Generate Inter-region Bundles.

In the Generate Inter-region Bundles dialog box, specify the Source node to region
fanout less than and the Bundle width greater than values.

f For more information about the Generate Inter-region Bundles dialog box, refer to
the Quartus II Help.

Design Floorplan Analysis Using the Chip Planner
The Chip Planner helps you visually analyze the floorplan of your design at any stage
of your design cycle. With the Chip Planner, you can view post-compilation
placement, connections, and routing paths. You can also create LogicLock regions and
location assignments. The Chip Planner allows you to create new logic cells and I/O
atoms and to move existing logic cells and I/O atoms using the architectural floorplan
of your design. You can also see global and regional clock regions within the device,
and the connections between both I/O atoms and PLLs and the different clock
regions.

From the Chip Planner, you can launch the Resource Property Editor, which you can
use to change the properties and parameters of device resources, and modify
connectivity between certain types of device resources. The Change Manager records
any changes that you make to your design floorplan, so that you can selectively undo
changes if necessary.

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–21
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about the Resource Property Editor and the Change Manager,
refer to the Engineering Change Management with the Chip Planner chapter in volume 2
of the Quartus II Handbook.

The following sections present Chip Planner floorplan views and design analysis
procedures which you can use with any predefined task—unless explicitly stated that
a given procedure requires a specific task or editing mode).

Chip Planner Floorplan Views
The Chip Planner uses a hierarchical zoom viewer that shows various abstraction
levels of the targeted Altera device. As you zoom in, the level of abstraction decreases,
revealing more detail about your design.

First-Level View
The first level provides a high-level view (LAB level view) of the entire device
floorplan. You can locate a node and view the placement of that node in your design.
Figure 12–16 shows the Chip Planner’s Floorplan first-level view of a Stratix device.

Figure 12–16. Chip Planner’s First-Level Floorplan View

LABs

MRAM

DSP

M512

M4K

I/Os

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

12–22 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Each resource is shown in a different color. The Chip Planner floorplan uses a gradient
color scheme in which the color becomes darker as the utilization of a resource
increases. For example, as more LEs are used in the logic array block (LAB), the color
of the LAB becomes darker.

When you place the mouse pointer over a resource at this level, a tooltip appears that
briefly describes the utilization of the resource (Figure 12–17).

Second-Level View
As you zoom in, the level of detail increases. Figure 12–18 shows the second-level
view of the Chip Planner Floorplan for a Stratix device.

At this zoom level, the contents of LABs and I/O banks and the routing channels that
connect resources are all visible.

When you place the mouse pointer over an LE or ALM at this level, a tooltip is
displayed (Figure 12–19) that shows the name of the LE/ALM, the location of the
LE/ALM, and the number of resources that are used with that LAB. When you place
the mouse pointer over an interconnect, the tooltip shows the routing channels that
are used by that interconnect. At this zoom level, you can move LEs, ALMs, and I/Os
from one physical location to another.

Figure 12–17. Tooltip Message: First-Level View

Figure 12–18. Chip Planner’s Second-Level Floorplan View

LEs

I/Os

LABs

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–23
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Third-Level View
The third level provides a more detailed view, displaying each routing resource that is
used within a LAB in the FPGA. Figure 12–20 shows the level of detail at the
third-level view for a Stratix device.

From the third level, you can move LEs, ALMs, and I/Os from one physical location
to another. You can move a resource by selecting, dragging, and dropping it into the
desired location. At this level, you can also create new LEs and I/Os when you are in
the post-compilation (ECO) mode.

1 You can delete a resource only after all of its fan-out connections are removed. Moving
nodes in the Floorplan Editing (Assignment) task creates an assignment. However, if
you move logic nodes in the Post-Compilation Editing (ECO) task, that change is
considered an ECO change. For more information about Floorplan Assignments, refer
to “Viewing Assignments in the Chip Planner” on page 12–39.

f For more information about performing ECOs, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Figure 12–19. Tooltip Message: Second-Level View

Figure 12–20. Chip Planner’s Third-Level Floorplan View

Horizontal
Routing

LE

LAB Internal
Routing

Vertical
Routing

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

12–24 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Bird’s Eye View
The Bird’s Eye View (Figure 12–21) displays a high-level picture of resource usage for
the entire chip and provides a fast and efficient way to navigate between areas of
interest in the Chip Planner.

The Bird’s Eye View is a separate window that is linked to the Chip Planner floorplan.
When you select an area of interest in the Bird’s Eye View, the Chip Planner floorplan
automatically refreshes to show that region of the device. As you change the size of
the main-view rectangle in the Bird’s Eye View window, the main Chip Planner
floorplan window also zooms in (or zooms out). You can make the main-view
rectangle smaller in the Bird’s Eye View to see more detail on the Chip Planner
floorplan window by right-clicking and dragging inside the Bird’s Eye View.

You can use the Bird’s Eye View when you are interested in resources at opposite ends
of the chip, and you want to quickly navigate between resource elements without
losing your frame of reference.

Figure 12–21. Bird’s Eye View

DSP

M512

Main-View
Rectangle

M4K

LAB

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–25
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Selected Elements Window
The Selected Elements Window lists the objects (such as atoms, paths, LogicLock
regions, or routing elements) currently selected in the Chip Planner. To display the
Selected Elements Window, click Selected Elements Window on the View menu in
the Chip Planner.

Viewing Architecture-Specific Design Information
With the Chip Planner, you can view the following architecture-specific information
related to your design:

■ Device routing resources used by your design—View how blocks are connected,
as well as the signal routing that connects the blocks.

■ LE configuration—View how a logic element (LE) is configured within your
design. For example, you can view which LE inputs are used; if the LE utilizes the
register, the look-up table (LUT), or both; as well as the signal flow through the LE.

■ ALM configuration—View how an ALM is configured within your design. For
example, you can view which ALM inputs are used, if the ALM utilizes the
registers, the upper LUT, the lower LUT, or all of them. You can also view the
signal flow through the ALM.

■ I/O configuration—View how the device I/O resources are used. For example,
you can view which components of the I/O resources are used, if the delay chain
settings are enabled, which I/O standards are set, and the signal flow through the
I/O.

■ PLL configuration—View how a phase-locked loop (PLL) is configured within
your design. For example, you can view which control signals of the PLL are used
with the settings for your PLL.

■ Timing—View the delay between the inputs and outputs of FPGA elements. For
example, you can analyze the timing of the DATAB input to the COMBOUT output.

Figure 12–22. Selected Elements Window

12–26 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

In addition, you can modify the following properties of an Altera device with the
Chip Planner:

■ LEs and ALMs

■ I/O cells

■ PLLs

■ Registers in RAM and DSP blocks

■ Connections between elements

■ Placement of elements

f For more information about LEs, ALMs, and other resources of an FPGA device, refer
to the relevant device handbook.

Viewing Available Clock Networks in the Device
When you select Clock Regions (Assignment) from the Task list, you can display the
areas of the chip that are driven by global and regional clock networks. This global
clock display feature is available for Arria GX, Arria II GX, Cyclone II, Cyclone III,
HardCopy II, HardCopy III, Stratix II, Stratix II GX, Stratix III, and Stratix IV device
families.

When you select the Clock Regions task, the Chip Planner displays various types of
regional and global clocks and the regions they cover in the device. The connectivity
between clock regions, pins, and PLLs is also shown. Clock regions are shown with
rectangular overlay boxes with name labels of clock type and index.You can select
each clock network region by clicking on it. The clock-shaped icon at the top-left
corner indicates that the region represents a clock network region.

Clock types are listed in the Layer Settings window. You can change the color of the
clock network in the Chip Planner on the Options page of the Tools menu.

You can customize your view of the global clock networks by using the layers setting
in the Chip Planner. You can turn on or off the display of all clock regions with the All
types option. When the selected device does not contain a specific clock region, the
option for that category is turned off in the dialog box. Figure 12–23 shows the
potential fan-in in the Chip Planner.

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–27
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To trace the possible connectivity to each clock network region, select the clock
network region and use the Generate Potential Fan-In and Generate Potential
Fan-Out commands.

If you are interested in locating the clock regions that a pin or PLL can feed, select the
pin or the PLL, then use the Generate Fan-Out Connections command. Connection
arrows are drawn from the selected pins or PLLs to their clock regions.

When you use the Generate Fan-In Connections and Generate Fan-Out Connections
commands, the Chip Planner shows connections that are actually used in the netlist
for the selected clock region.

Viewing Critical Paths
Critical paths are timing paths in your design that have a negative slack. These timing
paths can span from device I/Os to internal registers, registers-to-registers, or
registers-to-devices I/Os. The View Critical Paths feature displays routing paths in
the Chip Planner, as shown in Figure 12–24. The criticality of a path is determined by
its slack and is shown in the timing analysis report. Design analysis for timing closure
is a fundamental requirement for optimal performance in highly complex designs.
The Chip Planner helps you close timing on complex designs with its analytical
capability.

Figure 12–23. Potential Fan-In

12–28 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Viewing critical paths in the Chip Planner helps you analyze why a specific path is
failing. You can see if any modification in the placement can potentially reduce the
negative slack. You can display details of a path (to expand/collapse the path to/from
the connections in the path) by clicking Expand Connections/Paths in the toolbar, or
by clicking on the “+/-” on the label.

To view critical paths in the Chip Planner, on the View menu, click Critical Path
Settings. In the Critical Path Settings dialog box, click Show Path (refer to
Figure 12–25 on page 12–29).

If you are using the TimeQuest Timing Analyzer, you can locate the failing paths
starting from the timing report. To locate the critical paths, run the Report Timing task
from the Custom Reports group in the Tasks pane of the TimeQuest Timing Analyzer.
From the View pane, which lists the failing paths, right-click on any failing path or
node, and select Locate Path. From the Locate dialog box, select Chip Planner to see
the failing path in the Chip Planner.

Figure 12–24. Chip Planner Showing Critical Path

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–29
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

When viewing critical paths, you can specify the clock in the design you want to view.
You determine the paths to be displayed by specifying the slack threshold in the slack
field of the Critical Path Settings for Chip Planner dialog box. This dialog box also
helps you to filter specific paths based on the source and destination registers.

1 Timing settings must be made and a timing analysis performed for paths to be
displayed in the floorplan.

For more information about performing static timing analysis with the Quartus II
Classic Timing Analyzer, refer to the Quartus II Classic Timing Analyzer chapter in
volume 3 of the Quartus II Handbook. For more information about performing static
timing analysis with the Quartus II TimeQuest Timing Analyzer, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Viewing Physical Timing Estimates
In the Chip Planner, you can select a resource and see the approximate delay to any
other resource on the device. After you select a resource, the delay is represented by
the color of potential destination resources. The lighter the color of the resource, the
longer the delay.

To see the physical timing map of the device, in the Chip Planner, click the Layers icon
located next to the Task menu. Under Background Color Map, select Physical
Timing Estimate. Select a source and move your cursor to a destination resource. The
Chip Planner displays the approximate routing delay between your selected source
and destination register (Figure 12–26).

Figure 12–25. Critical Path Settings for the Chip Planner

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

12–30 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can use the physical timing estimate information when attempting to improve the
Fitter results by manually moving logic in a device or when creating LogicLock
regions to group logic together. This feature allows you to estimate the physical
routing delay between different nodes so that you can place critical nodes and
modules closer together, and move non-critical or unrelated nodes and modules
further apart.

In addition to reducing delay between critical nodes, you can make placement
assignments to reduce the routing congestion between critical and noncritical entities
and modules. This allows the Fitter to meet the design timing requirements.

1 Moving logic and creating manual placements is an advanced technique to meet
timing requirements and must be done after careful analysis of the design. Moving
nodes in the Floorplan Editing (Assignment) task creates an assignment. However, if
you move logic nodes in the Post-Compilation Editing (ECO) task, that change is
considered an ECO change.

For more information about Floorplan Assignments, refer to “Viewing Assignments
in the Chip Planner” on page 12–39.

f For more information about performing ECOs, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Figure 12–26. Chip Planner Displaying Routing Delay

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–31
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Viewing Routing Congestion
The Routing Congestion view allows you to determine the percentage of routing
resources used after a compilation. This feature identifies where there is a lack of
routing resources. This information helps you make design changes that might ease
routing congestion and thus meet design requirements. Congestion is represented
visually by the color and shading of logic resources; darker shading represents a
greater utilization of routing resources.

You can set a routing congestion threshold to identify areas of high routing congestion
with the Routing Congestion Settings dialog box by selecting the Routing
Congestion (ECO) task from the drop-down task list or by selecting Routing
Utilization from the layers settings. In the Routing Congestion Settings dialog box,
set the threshold level for congestion indication and click Apply. You can also select
the interconnect type. All areas that exceed the specified threshold appear in red
(Figure 12–27).

If you are using a HardCopy II device, turn on Routing Congestion to see the routing
congestion in the device by selecting Routing Utilization from the Layers Settings
window.

To view the routing congestion in the Chip Planner, click the Layers icon located next
to the Task menu. Under Background Color Map, select the Routing Utilization map
(Figure 12–28). Any areas that exceed the threshold appear red. Use this congestion
information to evaluate if you could modify the floorplan, or make changes to the
RTL to reduce routing congestion.

Figure 12–27. Areas Exceeding Threshold

12–32 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Viewing I/O Banks
The Chip Planner can show all of the I/O banks of the device. To see the I/O bank
map of the device, click the Layers icon located next to the Task menu. Under
Background Color Map, select I/O Banks. Refer to Figure 12–29.

Figure 12–28. Viewing Routing Congestion Map in the Chip Planner

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–33
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Generating Fan-In and Fan-Out Connections
The ability to display fan-in and fan-out connections enables you to view the atoms
that fan-in to or fan-out from the selected atom. To remove the connections displayed,
use the Clear Unselected Connections/Paths icon in the Chip Planner toolbar.
Figure 12–30 shows the fan-in connections for the selected resource.

Figure 12–29. Viewing I/O Banks in the Chip Planner

12–34 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Generating Immediate Fan-In and Fan-Out Connections
The ability to display immediate fan-in and fan-out connections enables you to view
the immediate resource that is the fan-in or fan-out connection for the selected atom.
For example, selecting a logic resource and choosing to view the immediate fan-in
enables you to see the routing resource that drives the logic resource. You can
generate immediate fan-in and fan-outs for all logic resources and routing resources.
To remove the connections that are displayed, click the Clear Connections icon in the
toolbar. Figure 12–31 shows the immediate fan-out connections for the selected
resource.

Figure 12–30. Generated Fan-In

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–35
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Highlight Routing
The Highlight Routing command enables you to highlight the routing resources used
by a selected path or connection. Figure 12–32 shows the routing resources used
between two logic elements.

Figure 12–31. Immediate Fan-Out Connection

12–36 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Show Delays
You can view the timing delays for the highlighted connections when generating
connections between elements. For example, you can view the delay between two
logic resources or between a logic resource and a routing resource. Figure 12–33
shows the delays between several logic elements.

Figure 12–32. Highlight Routing

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–37
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Exploring Paths in the Chip Planner
You can use the Chip Planner to explore paths between logic elements. The following
example uses the Chip Planner to traverse paths from the Timing Analysis report.

Locate Path from the Timing Analysis Report to the Chip Planner
To locate a path from the Timing Analysis report to the Chip Planner, perform the
following steps:

1. Select the path you want to locate.

2. Right-click the path in the Timing Analysis report, point to Locate, and click
Locate in Chip Planner (Floorplan & Chip Editor).

Figure 12–34 shows the path that is displayed in the Chip Planner.

Figure 12–33. Show Delays

12–38 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To view the routing resources taken for a path you have located in the Chip Planner,
click the Highlight Routing icon in the Chip Planner toolbar, or from the View menu,
click Highlight Routing.

Analyzing Connections for a Path
To determine the connections between items in the Chip Planner, click the Expand
Connections/Paths icon on the toolbar. To add the timing delays between each
connection, click the Show Delays icon on the toolbar. Figure 12–35 shows the
connections for the selected path that are displayed in the Chip Planner. To see the
constituent delays on the selected path, click on the “+” sign next to the path delay
displayed in the Chip Planner.

Figure 12–34. Resulting Path

Figure 12–35. Path Analysis

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–39
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Viewing Assignments in the Chip Planner
You can view location assignments by selecting the appropriate layer set in the Chip
Planner. To view location assignments in the Chip Planner, select the Floorplan
Editing (Assignment) task or any custom task with Assignment editing mode. See
Figure 12–36.

The Chip Planner shows location assignments graphically, by displaying assigned
resources in a particular color (gray, by default). You can create or move an
assignment by dragging the selected resource to a new location.

You can make node and pin location assignments and assignments to LogicLock
regions and custom regions using the drag-and-drop method in the Chip Planner. The
assignments that you create are applied by the Fitter during the next place-and-route
operation.

f To learn more about working with location assignments, refer to the Quartus II Help.

Viewing Routing Channels for a Path in the Chip Planner
To determine the routing channels between connections, click the Highlight Routing
icon on the toolbar. Figure 12–37 shows the routing channels used for the selected
path in the Chip Planner.

Figure 12–36. Viewing Assignments in the Chip Planner

Note: The gray
colored resource is a
user assignment.

12–40 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f You can view and edit resources in the FPGA using the Resource Property Editor
mode of the Chip Planner. For more information, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Cell Delay Table
You can view the propagation delay from all inputs to all outputs for any LE in your
design. To see the Cell Delay Table for an atom, select the atom in the Chip Planner
and right-click. From the pop-up menu, click Locate and then click Locate in
Resource Property Editor. The Resource Property window shows you the atom
properties along with the Cell Delay Table, indicating the propagation delay from all
inputs to all outputs. Figure 12–38 shows the Cell Delay Table.

Figure 12–37. Highlight Routing

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–41
Design Floorplan Analysis Using the Chip Planner

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Timing numbers are displayed only when there is a direct path between the source
input port and the destination output port. In cases where there is no path, or the path
requires an intermediate buried timing node, the displayed cell delay is given as
“N/A.”

Viewing High-Speed and Low-Power Tiles in Stratix III Devices in the Chip Planner
The Chip Planner has a predefined task, Power Analysis (Assignment), which shows
the power map of a Stratix III device. Stratix III devices have ALMs that can operate in
either high-speed mode or low-power mode. The power mode is set during the fitting
process in the Quartus II software. These ALMs are grouped together to form larger
blocks, called “tiles.”

f To learn more about power analyses and optimizations in Stratix III devices, refer to
AN 437: Power Optimization in Stratix III FPGAs. To learn more about power analyses
and optimizations in Stratix IV devices, refer to AN 514: Power Optimization in
Stratix IV FPGAs.

When the Power Analysis (Assignment) task is selected in the Chip Planner for
Stratix III devices, low-power and high-speed tiles are displayed in different colors;
yellow tiles operate in a high-speed mode, while blue tiles operate in a low-power
mode (see Figure 12–39). When you select the Power Analysis task, you can perform
all floorplanner-related functions for this task, however you cannot edit tiles to
change the power mode.

Figure 12–38. Cell Delay Table

http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf

12–42 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Analysis Using the Timing Closure Floorplan

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Design Analysis Using the Timing Closure Floorplan
For older device families not supported by the Chip Planner, you can perform
floorplan analysis using the Timing Closure Floorplan. Table 12–1 on page 12–1 lists
the device families supported by the Timing Closure Floorplan Editor and the Chip
Planner.

The Timing Closure Floorplan Editor allows you to analyze your design visually
before and after performing a full design compilation in the Quartus II software. This
floorplan editor, used in conjunction with the Classic Timing Analyzer, provides a
method for performing design analysis.

To start the Timing Closure Floorplan Editor, on the Assignments menu, click Timing
Closure Floorplan.

1 If the device in your project is not supported by the Timing Closure Floorplan, the
following message appears:

Can’t display a floorplan: the current device family is only
supported by Chip Planner.

If your target device is supported by the , you can also start the Timing Closure
Floorplan by right-clicking any of the following sources, pointing to Locate, and
clicking Locate in Timing Closure Floorplan:

■ Compilation Report

■ Node Finder

Figure 12–39. Viewing High-Speed and Low Power Tiles in a Stratix III Device

Yellow Tiles Operate in
High Speed Mode

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–43
Design Analysis Using the Timing Closure Floorplan

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Project Navigator

■ RTL source code

■ RTL Viewer

■ Simulation Report

■ Timing Report

Figure 12–40 shows the icons in the Timing Closure Floorplan toolbar.

Timing Closure Floorplan Views
The Timing Closure Floorplan Editor provides the following views of your design:

■ Field view

■ Interior Cells view

■ Interior LAB view

The following two views open the Pin Planner:

■ Package Top view

■ Package Bottom view

Field View
The Field view provides a color-coded, high-level view of the resources used in the
device floorplan. All device resources, such as embedded system blocks (ESBs) and
MegaLAB blocks, are outlined.

Figure 12–40. Timing Closure Floorplan Icons

12–44 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Analysis Using the Timing Closure Floorplan

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To view the details of a resource in the Field view, select the resource, right-click, and
click Show Details. To hide the details, select all the resources, right-click, and click
Hide Details (Figure 12–41).

Other Views
You can view your design in the Timing Closure Floorplan Editor with the Interior
Cells, Interior LABs, Package Top, and Package Bottom views. Use the View menu to
display the various floorplan views. The Interior Cells view provides a detailed view
of device resources, including device pins and individual logic elements within a
MegaLAB.

Viewing Assignments
The Timing Closure Floorplan Editor differentiates between user assignments and
Fitter placements. If the device is changed after a compilation, the user assignment
and Fitter placement options cannot be used together. When this situation occurs, the
Fitter placement displays the last compilation result and the user assignment displays
the floorplan of the newly selected device.

To see the user assignments, click the Show User Assignments icon in the Floorplan
Editor toolbar, or, on the View menu, point to Assignments and click Show User
Assignments. To see the Fitter placements, click the Show Fitter Placements icon in
the Floorplan Editor toolbar, or, on the View menu, point to Assignments and click
Show Fitter Placements. Figure 12–42 shows the Fitter placements.

Figure 12–41. Show and Hide Details of a Logic Array Block in Field View

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–45
Design Analysis Using the Timing Closure Floorplan

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Viewing Critical Paths
The View Critical Paths feature displays routing paths in the floorplan, as shown in
Figure 12–43. The criticality of a path is determined by its slack and is also shown in
the Timing Analysis report.

Figure 12–42. Fitter Placements

12–46 Chapter 12: Analyzing and Optimizing the Design Floorplan
Design Analysis Using the Timing Closure Floorplan

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To view critical paths in the Timing Closure Floorplan, click the Critical Path Settings
icon on the toolbar, or, on the View menu, point to Routing and click Critical Path
Settings.

When viewing critical paths, you can specify the clock in the design to be viewed. You
can determine which paths to display by specifying the slack threshold in the slack
field.

1 You must make timing settings and perform timing analysis to view paths in the
floorplan.

f For more information about performing static timing analyses of your design with a
timing analyzer, refer to the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II Handbook.

You can view critical paths to determine the criticality of nodes based on placement.
You can view the details of the critical path in a number of ways.

The default view in the Timing Closure Floorplan shows the path with the source and
destination registers displayed. You can also view all the combinational nodes along
the worst-case path between the source and destination nodes. To view the full path,
click on the delay label to select the path, right-click, and select Show Path Edges.
Figure 12–44 shows the critical path through combinational nodes. To hide the
combinational nodes, select the path, right-click, and select Hide Path Edges.

Figure 12–43. Critical Paths

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–47
Design Analysis Using the Timing Closure Floorplan

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

1 You must view the routing delays to select a path.

After running timing analysis, you can locate timing paths from the timing reports file
produced. Right-click on any row in the report file, point to Locate, and click Locate
in Timing Closure Floorplan. The Timing Closure Floorplan window opens with the
timing path highlighted.

f For more information about optimizing your design in the Quartus II software, refer
to the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.
With the options and tools available in the Timing Closure Floorplan and the
techniques described in that chapter, the Quartus II software can help you achieve
timing closure in a more time-efficient manner.

Viewing Routing Congestion
The View Routing Congestion feature allows you to determine the percentage of
routing resources used after a compilation. This feature identifies where there is a lack
of routing resources.

The congestion is shown by the color and shading of logic resources. The darker
shading represents a greater routing resource utilization. Logic resources that are red
have routing resource utilization greater than the specified threshold.

Figure 12–44. Worst-Case Combinational Path Showing Path Edges

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

12–48 Chapter 12: Analyzing and Optimizing the Design Floorplan
Scripting Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The routing congestion view is only available from the View menu when you enable
the Field view. To view routing congestion in the floorplan, click the Show Routing
Congestion icon, or on the View menu, point to Routing and click Show Routing
Congestion. To set the criteria for the critical path you want to view, click the Routing
Congestion Settings icon, or on the View menu, point to Routing and click Routing
Congestion Settings.

In the Routing Congestion Settings dialog box, you can choose the routing resource
(interconnect type) you want to examine and set the congestion threshold. Routing
congestion is calculated based on the total resource usage divided by the total
available resources.

If you use the routing congestion viewer to determine where there is a lack of routing
resources, examine each routing resource individually to determine which ones use
close to 100% of the available resources (Figure 12–45). Use this congestion
information to evaluate whether you should modify the floorplan, or make changes to
the RTL to reduce routing congestion.

Scripting Support
You can run procedures and create the settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f The same information is available in the Quartus II Help, and in the Quartus II
Scripting Reference Manual.

Figure 12–45. Routing Congestion of a Sample Design in a MAX3000A series Device

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–49
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

f For information about all settings and constraints in the Quartus II software, refer to
the Quartus II Settings File Reference Manual.

Initializing and Uninitializing a LogicLock Region
You must initialize the LogicLock data structures before creating or modifying any
LogicLock regions and before executing any of the Tcl commands listed below.

Use the following Tcl command to initialize the LogicLock data structures:

initialize_logiclock

Use the following Tcl command to uninitialize the LogicLock data structures before
closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions
Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \ <my_region-name>

1 In the above example, the size of the region is set to auto and the state is set to floating.

If you specify a region name that does not exist in the design, the command creates
the region with the specified properties. If you specify the name of an existing region,
the command changes all properties you specify and leaves unspecified properties
unchanged.

For more information about creating LogicLock regions, refer to the sections
“Creating LogicLock Regions” on page 12–7 and “Creating LogicLock Regions with
the Chip Planner” on page 12–9.

Obtaining LogicLock Region Properties
Use the following Tcl command to obtain LogicLock region properties. This example
returns the height of the region named my_region:

get_logiclock -region my_region -height

Assigning LogicLock Region Content
Use the following Tcl commands to assign or change nodes and entities in a
LogicLock region. This example assigns all nodes with names matching fifo* to the
region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl command:

set_logiclock_contents -region my_region -from fifo -to ram*

For more information about assigning LogicLock Region Content, refer to “Assigning
LogicLock Region Content” on page 12–9.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

12–50 Chapter 12: Analyzing and Optimizing the Design Floorplan
Conclusion

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Save a Node-Level Netlist for the Entire Design into a Persistent Source File
Make the following assignments to cause the Quartus II Fitter to save a node-level
netlist for the entire design into a .vqm file:

set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file
name>

Any path specified in the file name is relative to the project directory. For example,
specifying atom_netlists/top.vqm places top.vqm in the atom_netlists subdirectory
of your project directory.

A .vqm file is saved in the directory specified at the completion of a full compilation.

1 The saving of a node-level netlist to a persistent source file is not supported for
designs targeting newer devices such as the Stratix IV, Stratix III, Cyclone III,
Arria II GX, or Arria GX.

Setting LogicLock Assignment Priority
Use the following Tcl code to set the priority for a LogicLock region’s members. This
example reverses the priorities of the LogicLock region in your design.

set reverse [list]
for each member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

Assigning Virtual Pins
Use the following Tcl command to turn on the virtual pin setting for a pin called
my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

For more information about assigning virtual pins, refer to “Virtual Pins” on
page 12–19.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

Conclusion
Design floorplan analysis is a valuable method for achieving timing closure and
timing closure optimal performance in highly complex designs. With their analysis
capability, the Quartus II Chip Planner and the Timing Closure Floorplan help you
close timing quickly on your designs. Using these tools together with LogicLock and
Incremental Compilation enables you to compile your designs hierarchically,
preserving the timing results from individual compilation runs. You can use
LogicLock regions as part of an incremental compilation methodology to improve
your productivity. You can also include a module in one or more projects while
maintaining performance and reducing development costs and time-to-market.
LogicLock region assignments give you complete control over logic and memory
placement to improve the performance of non-hierarchical designs as well.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 12: Analyzing and Optimizing the Design Floorplan 12–51
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Referenced Documents
This chapter references the following documents:

■ AN 437: Power Optimization in Stratix III FPGAs

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Best Practices for Incremental Compilation Partition and Floorplan Assignments
chapters in volume 1 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Manual

■ The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 12–3 shows the revision history for this chapter.

Table 12–3. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated supported device information throughout

■ Removed deprecated sections related to the Timing Closure
Floorplan for older device families. (For information on using the
Timing Closure Floorplan with older device families, refer to
previous versions of the Quartus II Handbook, available in the
Quartus II Handbook Archive.)

■ Updated “Creating Non-Rectangular LogicLock Regions“ section

■ Added “Selected Elements Window” section

■ Updated table 12-1

Updated for the Quartus II
9.1 software release.

March 2009
v9.0.0

■ Was chapter 10 in the 8.1.0 release. Updated for the Quartus II
9.0 software release.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

12–52 Chapter 12: Analyzing and Optimizing the Design Floorplan
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

■ Changed page size to 8½” × 11”

■ Removed “Importing LogicLock Regions”, “Exporting LogicLock
Regions”, Importing Back-Annotated Routing in LogicLock
Regions”, LogicLock Regions Versus Soft LogicLock Regions”, and
“Exporting Back-Annotated Routing in LogicLock Regions”, and
removed subsections in “Using LogicLock Methodology for Older
Device Families”

■ Updated “Viewing Routing Congestion” on page 12–29

■ Updated Table 12–2

Updated for the Quartus II
8.1 software release.

May 2008
v8.0.0

■ Updated the following sections:

“Chip Planner Tasks and Layers”

“LogicLock Regions”

“Back-Annotating LogicLock Regions”

“LogicLock Regions in the Timing Closure Floorplan”

■ Added the following sections:

“Reserve LogicLock Region”

“Creating Non-Retangular LogicLock Regions”

“Viewing Available Clock Networks in the Device”

■ Updated Table 10–1

■ Removed the following sections:

Reserve LogicLock Region Design Analysis Using the Timing
Closure Floorplan

Updated for the Quartus II
8.0 software release.

Table 12–3. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

13. Netlist Optimizations and Physical
Synthesis

The Quartus® II software offers physical synthesis optimizations to improve your
design beyond the optimization performed in the normal course of the Quartus II
compilation flow.

Introduction
Physical synthesis optimizations can help improve the performance of your design
regardless of the synthesis tool used, although the effect of physical synthesis
optimizations depends on the structure of your design.

Netlist optimization options work with the atom netlist of your design, which
describes a design in terms of Altera®-specific primitives. An atom netlist file can be
an Electronic Design Interchange Format (.edf) file or a Verilog Quartus Mapping
(.vqm) file generated by a third-party synthesis tool, or a netlist used internally by the
Quartus II software. Physical synthesis optimizations are applied at different stages of
the Quartus II compilation flow, either during synthesis, fitting, or both.

This chapter explains how the physical synthesis optimizations in the Quartus II
software can modify your design’s netlist to improve your quality of results. This
chapter also provides information about preserving compilation results through
back-annotation and writing out a new netlist, and provides guidelines for applying
the various options.

1 Because the node names for primitives in the design can change when you use
physical synthesis optimizations, you should evaluate whether your design flow
requires fixed node names. If you use a verification flow that might require fixed node
names, such as the SignalTap® II Logic Analyzer, formal verification, or the LogicLock
based optimization flow (for legacy devices), you must turn off the synthesis netlist
optimization and physical synthesis options.

WYSIWYG Primitive Resynthesis
If you use a third-party tool to synthesize your design, use the Perform WYSIWYG
primitive resynthesis option to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Quartus II software
to un-map the logic elements (LEs) in an atom netlist to logic gates, and then re-map
the gates back to Altera-specific primitives. Third-party synthesis tools generate an
atom netlist file that specifies Altera-specific primitives. Atom netlist files can be
either an .edf or .vqm file generated by the third-party synthesis tool. When you turn
on the Perform WYSIWYG primitive resynthesis option, the Quartus II software can
work on different techniques specific to the device architecture during the re-mapping
process. This feature re-maps the design using the Optimization Technique specified
for your project (Speed, Area, or Balanced).

1 The Perform WYSIWYG primitive resynthesis option has no effect if you are using
Quartus II integrated synthesis to synthesize your design.

QII52007-9.1.0

13–2 Chapter 13: Netlist Optimizations and Physical Synthesis
WYSIWYG Primitive Resynthesis

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To turn on the Perform WYSIWYG primitive resynthesis option, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis and Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Turn on Perform WYSIWYG Primitive Resynthesis, and click OK.

If you want to perform WYSIWYG resynthesis on only a portion of your design, you
can use the Assignment Editor to assign the Perform WYSIWYG primitive
resynthesis logic option to a lower-level entity in your design. This logic option can
be used with Arria® II GX, Arria GX, Cyclone® series, HardCopy® series, MAX® II
series, or Stratix® series device families.

The results of the remapping depend on the Optimization Technique you choose. To
select an Optimization Technique, perform the following steps:

1. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

2. Under Optimization Technique, select Speed, Area, or Balanced to specify how
the Quartus II technology mapper optimizes the design. The Balanced setting is
the default for many Altera device families; this setting optimizes the timing
critical parts of the design for speed and the rest of the design for area.

3. Click OK.

f Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook for details on the Optimization Technique option.

Figure 13–1 shows the Quartus II software flow for the WYSIWYG primitive
resynthesis feature.

The Perform WYSIWYG primitive resynthesis option is not beneficial if you are
using Quartus II integrated synthesis; it is intended for optimization of projects that
use other EDA synthesis tools.

Figure 13–1. WYSIWYG Primitive Resynthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 13: Netlist Optimizations and Physical Synthesis 13–3
Performing Physical Synthesis Optimizations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Perform WYSIWYG primitive resynthesis option unmaps and remaps only logic
cells, also referred to as LCELL or LE primitives, and regular I/O primitives (which
may contain registers). Double data rate (DDR) I/O primitives, memory primitives,
digital signal processing (DSP) primitives, and logic cells in carry/cascade chains are
not remapped. Logic specified in an encrypted .vqm file or an .edf file, such as
third-party intellectual property (IP), is not touched.

The Perform WYSIWYG primitive resynthesis option can change node names in the
.vqm file or .edf file from your third-party synthesis tool, because the primitives in the
atom netlist are broken apart and then remapped by the Quartus II software. The
remapping process removes duplicate registers, but registers that are not removed
retain the same name after remapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never
Allow are not affected during WYSIWYG primitive resynthesis. You can use the
Assignment Editor to apply the Netlist Optimizations logic option. This option
disables WYSIWYG resynthesis for parts of your design.

1 Primitive node names are specified during synthesis. When netlist optimizations are
applied, node names might change because primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools cannot be
maintained because those attributes are not written into the atom netlist read by the
Quartus II software.

If you use the Quartus II software to synthesize, you can use the Preserve Register
(preserve) and Keep Combinational Logic (keep) attributes to maintain certain
nodes in the design.

f For more information about using these attributes during synthesis in the Quartus II
software, refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook.

Performing Physical Synthesis Optimizations
The Quartus II design flow involves separate steps of synthesis and fitting. The
synthesis step optimizes the logical structure of a circuit for area, speed, or both. The
Fitter then places and routes the logic cells to ensure critical portions of logic are close
together and use the fastest possible routing resources. While you are using this
push-button flow, the synthesis stage is unable to anticipate the routing delays seen in
the Fitter. Because routing delays are a significant part of the typical critical path
delay, the physical synthesis optimizations available in the Quartus II software take
those routing delays into consideration and focus timing-driven optimizations at
those parts of the design. This tight integration of the fitting and synthesis processes is
known as physical synthesis.

The following sections describe the physical synthesis optimizations available in the
Quartus II software, and how they can help improve your performance results.
Physical synthesis optimization options can be used with Arria GX, Arria II GX,
Cyclone, HardCopy, and Stratix series device families.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

13–4 Chapter 13: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

If you are migrating your design to a HardCopy II device, you can target physical
synthesis optimizations to the FPGA architecture in the FPGA-first flow or to the
HardCopy II architecture in the HardCopy-first flow. The optimizations are mapped
to the other device architecture during the migration process.

1 You cannot target optimizations to optimize for both device architectures individually
because doing so results in a different post-fitting netlist for each device.

f For more information about using physical synthesis with HardCopy devices, refer to
the Quartus II Support of HardCopy Series Devices chapter in volume 1 of the Quartus II
Handbook.

You can choose the physical synthesis optimization options you want for your design
during synthesis and fitting in the Physical Synthesis Optimizations page under the
Compilation Process Settings page in the Settings dialog box. The settings include
optimizations for improving performance and fitting in the selected device.

You can also set the effort level for physical synthesis optimizations. Normally,
physical synthesis optimizations increase the compilation time; however, you can
select the Fast effort level if you want to limit the increase in compilation time. When
you select the Fast effort level, the Quartus II software performs limited register
retiming operations during fitting. The Extra effort level runs additional algorithms to
get the best circuit performance, but results in increased compilation time.

To optimize performance, the following options are available:

■ Perform physical synthesis for combinational logic

■ Perform register retiming

■ Perform automatic asynchronous signal pipelining

■ Perform register duplication

To optimize for better fitting, you can choose from the following options:

■ Perform physical synthesis for combinational logic

■ Perform logic to memory mapping

To view and modify the physical synthesis optimization options, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify the options for performing physical synthesis optimizations.

Some physical synthesis options affect only registered logic and some options affect
only combinational logic. Select options based on whether you want to keep the
registers intact or not. For example, if your verification flow involves formal
verification, you might have to keep the registers intact.

http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 13: Netlist Optimizations and Physical Synthesis 13–5
Performing Physical Synthesis Optimizations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

All Physical Synthesis optimizations write results to the Netlist Optimizations report,
which provides a list of atom netlist files that were modified, created, and deleted
during physical synthesis. To access the Netlist Optimizations report, perform the
following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Netlist Optimizations under Fitter.

Similarly, physical synthesis optimizations performed during synthesis write results
to the synthesis report. To access this report, perform the following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Analysis & Synthesis.

Nodes or entities that have the Netlist Optimizations logic option set to Never Allow
are not affected by the physical synthesis algorithms. You can use the Assignment
Editor to apply the Netlist Optimizations logic option. Use this option to disable
physical synthesis optimizations for parts of your design.

Automatic Asynchronous Signal Pipelining
The Perform automatic asynchronous signal pipelining option on the Physical
Synthesis Optimizations page in the Compilation Process Settings section of the
Settings dialog box allows the Quartus II Fitter to perform automatic insertion of
pipeline stages for asynchronous clear and asynchronous load signals during fitting
when these signals negatively affect performance. You can use this option if
asynchronous control signal recovery and removal times are not achieving their
requirements.

The Perform automatic asynchronous signal pipelining option improves
performance for designs in which asynchronous signals in very fast clock domains
cannot be distributed across the chip fast enough due to long global network delays.
This optimization performs automatic pipelining of these signals, while attempting to
minimize the total number of registers inserted.

1 The Perform automatic asynchronous signal pipelining option adds registers to nets
driving the asynchronous clear or asynchronous load ports of registers. These
additional registers add register delays (adds latency) to the reset, adding the same
number of register delays for each destination using the reset. The additional register
delays can change the behavior of the signal in the design; therefore, you should use
this option only if additional latency on the reset signals does not violate any design
requirements. This option also prevents the promotion of signals to global routing
resources.

The Quartus II software performs automatic asynchronous signal pipelining only if
Enable Recovery/Removal analysis is turned on. If you use the TimeQuest Timing
Analyzer, Enable Recovery/Removal analysis is turned on by default. Pipelining is
allowed only on asynchronous signals that have the following properties:

■ The asynchronous signal is synchronized to a clock (a synchronization register
drives the signal)

■ The asynchronous signal fans-out only to asynchronous control ports of registers

13–6 Chapter 13: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To use Enable Recovery/Removal analysis with the Classic Timing Analyzer,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Classic Timing Analyzer Settings under Timing
Analysis Settings.

3. Click More Settings. The More Timing Settings dialog box appears.

4. In the Name list, select Enable Recovery/Removal analysis. In the Setting list,
select On.

5. Click OK.

6. Click OK.

The Quartus II software does not perform automatic asynchronous signal pipelining
on asynchronous signals that have the Netlist Optimization logic option set to Never
Allow.

Physical Synthesis for Combinational Logic
To optimize the design and reduce delay along critical paths, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings.

3. Turn on Perform physical synthesis for combinational logic.

The software performs this optimization by swapping the look-up table (LUT) ports
within LEs so that the critical path has fewer layers through which to travel. See
Figure 13–2 for an example. The Perform physical synthesis for combinational logic
option also allows the duplication of LUTs to enable further optimizations on the
critical path.

In Figure 13–2, the critical input feeds through the first LUT to the second LUT. The
Quartus II software swaps the critical input to the first LUT with an input feeding the
second LUT, thus reducing the number of LUTs contained in the critical path. The
synthesis information for each LUT is altered to maintain design functionality.

The Perform physical synthesis for combinational logic option affects only
combinational logic in the form of LUTs. These transformations might occur during
the synthesis stage or the Fitter stage during compilation. The registers contained in
the affected logic cells are not modified. Inputs into memory blocks, DSP blocks, and
I/O elements (IOEs) are not swapped.

Figure 13–2. Physical Synthesis for Combinational Logic

Chapter 13: Netlist Optimizations and Physical Synthesis 13–7
Performing Physical Synthesis Optimizations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Quartus II software does not perform combinational optimization on logic cells
that have the following properties:

■ Are part of a chain

■ Drive global signals

■ Are constrained to a single logic array block (LAB) location

■ Have the Netlist Optimizations option set to Never Allow

If you consider logic cells with any of these conditions for physical synthesis, you can
override these rules by setting the Netlist Optimizations logic option to Always
Allow on a given set of nodes.

Physical Synthesis for Registers—Register Duplication
The Perform register duplication option on the Physical Synthesis Optimizations
page in the Compilation Process Settings section of the Settings dialog box allows
the Quartus II Fitter to duplicate registers based on Fitter placement information. You
can also duplicate combinational logic when this option is enabled. A logic cell that
fans out to multiple locations can be duplicated to reduce the delay of one path
without degrading the delay of another. The new logic cell can be placed closer to
critical logic without affecting the other fan-out paths of the original logic cell.
Figure 13–3 shows an example of register duplication.

Figure 13–3. Register Duplication

13–8 Chapter 13: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Quartus II software does not perform register duplication on logic cells that have
the following properties:

■ Are part of a chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive global signals

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are driven by input pins without a tSU constraint

■ Contain registers that are driven by a register in another clock domain

■ Are considered virtual I/O pins

■ Have the Netlist Optimizations option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Retiming
The Perform Register Retiming option enables the movement of registers across
combinational logic, allowing the Quartus II software to trade off the delay between
timing-critical paths and non-critical paths. Register retiming can be done during
Quartus II integrated synthesis or during the Fitter stages of design compilation.

Figure 13–4 shows an example of register retiming in which the 10-ns critical delay is
reduced by moving the register relative to the combinational logic.

Retiming can create multiple registers at the input of a combinational block from a
register at the output of a combinational block. In this case, the new registers have the
same clock and clock enable. The asynchronous control signals and power-up level
are derived from previous registers to provide equivalent functionality. Retiming can
also combine multiple registers at the input of a combinational block to a single
register (Figure 13–5).

Figure 13–4. Register Retiming Diagram

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 13: Netlist Optimizations and Physical Synthesis 13–9
Performing Physical Synthesis Optimizations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

To move registers across combinational logic to balance timing, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify your preferred option under Physical synthesis for performance and
Effort level.

4. Click OK.

If you want to prevent register movement during register retiming, you can set the
Netlist Optimizations logic option to Never Allow. You can apply this option to
either individual registers or entities in the design using the Assignment Editor.

In digital circuits, synchronization registers are instantiated on cross clock domain
paths to reduce the possibility of metastability. The Quartus II software detects such
synchronization registers and does not move them, even if register retiming is turned
on.

The following sets of registers are not moved during register retiming:

■ Both registers in a direct connection from input pin-to-register-to-register if both
registers have the same clock and the first register does not fan-out to anywhere
else. These registers are considered synchronization registers.

■ Both registers in a direct connection from register-to-register if both registers have
the same clock, the first register does not fan out to anywhere else, and the first
register is fed by another register in a different clock domain (directly or through
combinational logic). These registers are considered synchronization registers.

By default, the Quartus II software assumes that a synchronization register chain
consists of a set of two registers. If your design has synchronization register chains
containing more than two registers, you must indicate the number of registers in your
synchronization chains so that they are not affected by register retiming. To do this,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Setting page appears.

3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

Figure 13–5. Combining Registers with Register Retiming

13–10 Chapter 13: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

4. In the Name list, select Synchronization Register Chain Length and modify the
setting to match the synchronization register length used in your design. If you set
a value of 1 for the Synchronization Register Chain Length, it means that any
registers connected to the first register in a register-to-register connection can be
moved during retiming. A value of n > 1 means that any registers in a sequence of
length 1, 2,… n are not moved during register retiming.

The Quartus II software does not perform register retiming on logic cells that have the
following properties:

■ Are part of a cascade chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive a register in another clock domain

■ Contain registers that are driven by a register in another clock domain

1 The Quartus II software does not usually retime registers across different
clock domains; however, if you are using the Classic Timing Analyzer and
have specified a global fMAX requirement, the Quartus II software interprets
all clocks as being related to one another. Consequently, the Quartus II
software might try to retime register-to-register paths associated with
different clocks.

To avoid this circumstance, provide individual fM AX requirements to each
clock when using Classic Timing Analysis. When you constrain each clock
individually, the Quartus II software assumes no relationship between
different clock domains and considers each clock domain to be asychronous
to other clock domains; hence no register-to-register paths crossing clock
domains are retimed.

When you use the TimeQuest Timing Analyzer, register-to-register paths
across clock domains are never retimed, because the TimeQuest Timing
Analyzer treats all clock domains as asychronous to each other unless they
are intentionally grouped.

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are connected to SERDES

■ Are considered virtual I/O pins

■ Registers that have the Netlist Optimizations logic option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of registers.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 13: Netlist Optimizations and Physical Synthesis 13–11
Performing Physical Synthesis Optimizations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Preserving Your Physical Synthesis Results
The Quartus II software generates the same results on every compilation for the same
source code and settings on a given system, hence you do not need to preserve your
results from compilation to compilation. When you make changes to the source code
or to the settings, you usually get the best results by allowing the software to compile
without using previous compilation results or location assignments. In some cases, if
you avoid performing analysis and synthesis or quartus_map, and run the Fitter or
another desired Quartus II executable instead, you can skip the synthesis stage of the
compilation.

When you use the Quartus II incremental compilation flow, you can preserve
synthesis results for a particular partition of your design by choosing a netlist type of
post-synthesis. If you want to preserve fitting results between compilation runs,
choose a netlist type of post-fit during incremental compilation.

The rest of this section is relevant only for those designs using older devices that do
not support incremental compilation.

f For information about the incremental compilation design methodology, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

You can preserve the resulting nodes from physical synthesis in older devices that do
not support incremental compilation. You might need to preserve nodes if you use the
LogicLock flow to back-annotate placement, import one design into another, or both.
For all device families that support incremental compilation, use that feature to
preserve results.

To preserve the nodes from Quartus II physical synthesis optimization options for
older devices that do not support incremental compilation (such as Max II devices),
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on Save a node-level netlist of the entire design into a persistent source
file. This setting is not available for Cyclone III, Stratix III, and newer devices.

4. Click OK.

The Save a node-level netlist of the entire design into a persistent source file option
saves your final results as an atom-based netlist in .vqm file format. By default, the
Quartus II software places the .vqm file in the atom_netlists directory under the
current project directory. To create a different .vqm file using different Quartus II
settings, in the Compilation Process Settings page, change the File name setting.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

13–12 Chapter 13: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

If you use synthesis netlist optimizations (and not physical synthesis optimizations),
generating a .vqm file is optional. To lock down the location of all logic and device
resources in the design with or without a Quartus II-generated .vqm file, on the
Assignments menu, click Back-Annotate Assignments and specify the desired
options. You should use back-annotated location assignments unless you have
finalized the design. Making any changes to the design invalidates your back-
annotated location assignments. If you require changes later, use the new source HDL
code as your input files, and remove the back-annotated assignments corresponding
to the old code or netlist.

If you create a .vqm file to recompile the design, use the new .vqm file as the input
source file and turn off the synthesis netlist optimizations for the new compilation.

If you use the physical synthesis optimizations and want to lock down the location of
all LEs and other device resources in the design with the Back-Annotate Assignments
command, a .vqm file netlist is required. The .vqm file preserves the changes that you
made to your original netlist. Because the physical synthesis optimizations depend on
the placement of the nodes in the design, back-annotating the placement changes the
results from physical synthesis. Changing the results means that node names are
different, and your back-annotated locations are no longer valid.

You should not use a Quartus II-generated .vqm file or back-annotated location
assignments with physical synthesis optimizations unless you have finalized the
design. Making any changes to the design invalidates your physical synthesis results
and back-annotated location assignments. If you require changes later, use the new
source HDL code as your input files, and remove the back-annotated assignments
corresponding to the Quartus II-generated .vqm file.

To back-annotate logic locations for a design that was compiled with physical
synthesis optimizations, first create a .vqm file. When recompiling the design with the
hard logic location assignments, use the new .vqm file as the input source file and
turn off the physical synthesis optimizations for the new compilation.

If you are importing a .vqm file and back-annotated locations into another project that
has any Netlist Optimizations turned on, you must apply the Never Allow
constraint to make sure node names don’t change; otherwise, the back-annotated
location or LogicLock assignments are invalid.

1 For newer devices, such as the Arria, Cyclone, or Stratix series, use incremental
compilation to preserve compilation results instead of using logic back-annotation.

Physical Synthesis Options for Fitting
The Quartus II software provides physical synthesis optimization options for
improving fitting results. To access these options, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Under Optimize for fitting (physical synthesis for density), there are two physical
synthesis options available to improve fitting your design in the target device:
Physical synthesis for combinational logic and Perform logic to memory
mapping (Table 13–1).

Chapter 13: Netlist Optimizations and Physical Synthesis 13–13
Applying Netlist Optimization Options

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Applying Netlist Optimization Options
The improvement in performance when using netlist optimizations is design
dependent. If you have restructured your design to balance critical path delays, netlist
optimizations might yield minimal improvement in performance. You may have to
experiment with available options to see which combination of settings works best for
a particular design. Refer to the messages in the compilation report to see the
magnitude of improvement with each option, and to help you decide whether you
should turn on a given option or specific effort level.

Turning on more netlist optimization options can result in more changes to the node
names in the design; bear this in mind if you are using a verification flow, such as the
SignalTap II Logic Analyzer or formal verification that requires fixed or known node
names.

Applying all of the physical synthesis options at the Extra effort level generally
produces the best results for those options, but adds significantly to the compilation
time. You can also use the Physical synthesis effort level options to decrease the
compilation time. The WYSIWYG primitive resynthesis does not add much
compilation time relative to the overall design compilation time.

To find the best results, you can use the Quartus II Design Space Explorer (DSE) to
apply various sets of netlist optimization options.

f For more information about using DSE, refer to the Design Space Explorer chapter in
volume 2 of the Quartus II Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f The Quartus II Scripting Reference Manual includes the same information in PDF form.
For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Manual for information
about all settings and constraints in the Quartus II software. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 13–1. Physical Synthesis Optimizations Options

Option Function

Physical Synthesis for
Combinational Logic

When you select this option, the Fitter detects duplicate combinational logic and optimizes
combinational logic to improve the fit.

Perform Logic to Memory
Mapping

When you select this option, the Fitter can remap registers and combinational logic in your
design into unused memory blocks and achieves a fit.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf

13–14 Chapter 13: Netlist Optimizations and Physical Synthesis
Scripting Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

You can specify many of the options described in this section on either an instance or
global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name> r

Synthesis Netlist Optimizations
Table 13–2 lists the Quartus II Settings File (.qsf) variable names and applicable values
for the settings discussed in “WYSIWYG Primitive Resynthesis” on page 13–1. The
.qsf file variable name is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Physical Synthesis Optimizations
Table 13–3 lists the .qsf file variable name and applicable values for the settings
discussed in “Performing Physical Synthesis Optimizations” on page 13–3. The .qsf
file variable name is used in the Tcl assignment to make the setting, along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Table 13–2. Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus II Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_
OPTIMIZATION_TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER ALLOW"

Instance

Table 13–3. Physical Synthesis Optimizations and Associated Settings (Part 1 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Physical Synthesis
for Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_
SIGNAL_PIPELINING

ON, OFF Global

Chapter 13: Netlist Optimizations and Physical Synthesis 13–15
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Incremental Compilation
For information about scripting and command line usage for incremental compilation
as mentioned in “Preserving Your Physical Synthesis Results” on page 13–11, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Back-Annotating Assignments
You can use the logiclock_back_annotate Tcl command to back-annotate
resources in your design. This command can back-annotate resources in LogicLock
regions, and resources in designs without LogicLock regions.

For more information about back-annotating assignments, refer to “Preserving Your
Physical Synthesis Results” on page 13–11.

The following Tcl command back-annotates all registers in your design:

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate package.

Conclusion
Physical synthesis optimizations restructure and optimize your design netlist. You
can take advantage of these Quartus II netlist optimizations to help improve your
quality of results.

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file
name>

Table 13–3. Physical Synthesis Optimizations and Associated Settings (Part 2 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

13–16 Chapter 13: Netlist Optimizations and Physical Synthesis
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Settings File Manual

■ Quartus II Support for HardCopy Series Devices chapter in volume 1 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 13–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 13–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

November 2009
v9.1.0

■ Added information to “Physical Synthesis for
Registers—Register Retiming”

■ Added information to “Applying Netlist Optimization
Options”

■ Made minor editorial updates

Updated for the Quartus II 9.1 software
release.

March 2009
v9.0.0

■ Was chapter 11 in the 8.1.0 release.

■ Updated the “Physical Synthesis for
Registers—Register Retiming” and“Physical
Synthesis Options for Fitting”

■ Updated “Performing Physical Synthesis
Optimizations”

■ Deleted Gate-Level Register Retiming section.

■ Updated the referenced documents

Updated GUI references and procedure
steps, and document structure for the
Quartus II software 9.0 release.

November 2008
v8.1.0

Changed to 8½” × 11” page size. No change to content. Updated for the Quartus II 8.1 software
release.

May 2008
v8.0.0

Updated “Physical Synthesis Optimizations for
Performance on page 11-9

Added Physical Synthesis Options for Fitting on page
11-16

Updated for Quartus II 8.0 version.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

14. Design Space Explorer

The Quartus® II software includes many advanced optimization algorithms to help
you achieve timing closure, optimize area, and reduce dynamic power. Various
settings and parameters control the behavior of the algorithms. These options provide
complete control over the Quartus II software optimization and power techniques.

Each FPGA design is unique. There is no standard set of options that always results in
the best performance or power utilization. Each design requires a unique set of
options to achieve optimal performance. This chapter describes Design Space
Explorer (DSE), a utility written in Tcl/Tk that automates finding the best set of
options for your design. DSE explores the design space of your design by applying
various optimization techniques and analyzing the results. The DSE Tcl script dse.tcl
is located in the <Quartus II installation directory>/common/tcl/apps/dse directory on
Windows and Linux operating systems.

DSE is a valuable tool to use in the late phases of your design cycle. You can take
advantage of DSE’s capability to automatically sweep multiple options to close
timing, minimize area, or reduce power consumption on a design that is nearing
completion.

DSE Concepts
This section explains the concepts and terminology used with DSE.

Exploration Space and Exploration Point
Before DSE explores a design, DSE creates an exploration space, which consists of
Analysis and Synthesis, and Fitter settings available in the Quartus II software. Each
group of settings in an exploration space is referred to as a point. An exploration
space contains one or more points. DSE traverses the points in the exploration space
to determine optimal settings for your design.

Seed and Seed Sweeping
The Quartus II Fitter uses a seed to specify the starting value that randomly
determines the initial placement for the current design. The seed value can be any
non-negative integer value. Changing the starting value may or may not produce
better fitting results. However, varying the value of the seed or seed sweeping allows
the Quartus II software to determine an optimal value for the current design.

DSE extends Fitter seed sweeping in exploration spaces by providing a method for
sweeping through compilation and Fitter parameters to find the best options for your
design. You can run DSE in various exploration space modes, ranging from an
exhaustive try-all-options-and-values mode to a mode that focuses on one parameter.

QII52008-9.1.0

14–2 Chapter 14: Design Space Explorer
Running DSE

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

DSE Exploration
DSE compares all exploration point results with the results of a base compilation,
generated from the initial settings that you specify in the original Quartus II project
files. As DSE traverses all points in the exploration space, all settings not explicitly
modified by DSE default to the base compilation setting. For example, if an
exploration point turns on register retiming, but does not modify the Placement Effort
Multiplier setting, the Placement Effort Multiplier setting defaults to the value you
specified in the base compilation.

1 DSE performs the base compilation with the settings you specified in the original
Quartus II project. These settings are restored after DSE traverses all points in the
exploration space. DSE makes a copy of your base revision and uses this copy for
changing the settings required to traverse through all other points in the chosen
exploration space. Your base revision is not affected by DSE exploration.

DSE Support for Altera Device Families
DSE support varies across Altera device families. The Stratix® series of devices, the
Cyclone® series of devices, and the Arria® series of devices can take advantage of all
the available DSE optimization methods. The MAX® II device family supports a
subset of DSE options.

Timing Analyzer Support
DSE supports both the Quartus II TimeQuest Timing Analyzer and the Quartus II
Classic Timing Analyzer. You must set the timing analyzer with the
Quartus II software prior to opening the project in DSE. After the timing analyzer is
set, DSE performs the design exploration with the selected timing analyzer.

You can directly launch the TimeQuest Timing Analyzer from DSE if you have set the
default timing analyzer to TimeQuest and have specified the timing constraints in a
Synopsis Design Constraint File (.sdc).

Running DSE
You can use DSE in either the graphical user interface (GUI) or from a command line.

Using DSE from a Command Line
To run DSE from a command line, type the following command at the command
prompt:

quartus_sh --dse -nogui [<options>] r
You can run DSE with the following options:

-archive
-concurrent-compiles [0..6]
-custom-file <filename>
-decision-column <"column name">
-exploration-space <"space">
-ignore-failed-base
-llr-restructuring
-lower-priority
-lsf-queue <queue name>

Chapter 14: Design Space Explorer 14–3
Running DSE

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

-nogui
-optimization-goal <"goal">
-project <project name>
-report-all-resource-usage
-revision <revision name>
-run-power
-search-method <"method">
-seeds <seed list>
-skip-base
-slaves <"slave list">
-stop-after-time <dd:hh:mm>
-stop-after-zero-failing-paths
-use-lsf

f For more information about DSE command line options, type the following command
at the command prompt:

quartus_sh --help=dse r

Using the DSE Graphical User Interface
To run DSE with the GUI, either click Launch Design Space Explorer on the Tools
menu in the Quartus II software, or type the following at the command prompt:

quartus_sh --dse r
Figure 14–1 shows the DSE graphical user interface. The Settings tab is divided into
two sections: Project Settings and Exploration Settings.

Figure 14–1. DSE Graphical User Interface

14–4 Chapter 14: Design Space Explorer
DSE Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

DSE Configuration File
Many options exist that allow you to customize the behavior of each DSE exploration.
For example, you can specify seed values or a list of slave computers to be used for a
Parallel DSE run. Each time you close the DSE GUI, it saves these values in a
configuration file, dse.conf. The next time you launch the DSE GUI, it reads the values
from dse.conf and restores the previous exploration settings.

Where the dse.conf file is stored varies depending on the operating system that
launches DSE. Table 14–1 specifies the locations where dse.conf files are stored.

1 Settings specified in the DSE command-line mode are not saved to a dse.conf
configuration file.

f For more information about the DSE GUI, launch the DSE GUI. On the Help menu,
click Contents or press the F1 key.

DSE Flow
You can run DSE at any point in the design process. However, Altera recommends
that you run DSE late in your design cycle when your focus is on optimizing
performance and power. The results gained from different combinations of
optimization options early in the design cycle may not persist over large changes in a
design.

DSE runs the Quartus II software for every point in the exploration space. The
Quartus II software always attempts to achieve all your timing requirements
regardless of whether or not you are running DSE. The Exploration Settings you
choose in DSE will determine the settings to be used for compilation. DSE does not
change the behavior of the Quartus II software.

DSE provides a summary of results for all the compilations, and flags the best
compilation run based on the exploration setting you have chosen. Specifying all
timing requirements before you use DSE to explore your design is very important to
ensure that DSE finds the optimal set of parameters for your design based on design
criteria you set in your initial design.

You can change the initial placement configuration used by the Quartus II Fitter by
varying the Fitter Seed value. You can enter seed values in the Seeds box of the DSE
user interface.

To set the seed value in the Quartus II software, on the Assignments menu, click
Settings and select Fitter Settings.

Compilation time increases as DSE exploration spaces become more comprehensive.
Increased compilation time results from running several compilations and comparing
the generated results with the original base compilation results.

Table 14–1. DSE Configuration File Location

OS File Location (default) Comment

Windows %APPDATA%/Altera/dse.conf If the variable %APPDATA% is not defined, the
configuration file is saved to
%HOME%\.altera.quartus\dse.conf

Linux ~/.altera.quartus/dse.conf

Chapter 14: Design Space Explorer 14–5
DSE Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

For a typical design, varying only the seed value varies the fMAX within a range of
+/-5%. For example, when compiling with three different seeds, one-third of the time
fMAX does not change over the initial compilation, one-third of the time fMAX improves
by 5%, and one-third of the time fMAX worsens by 5%.

DSE Project Settings
This section provides the following information about DSE project settings:

■ Setting Up the DSE Work Environment

■ Specifying the Revision

■ Setting the Initial Seed

■ Project Uses Quartus II Integrated Synthesis

■ Restructuring LogicLock Regions

Setting Up the DSE Work Environment
From the DSE GUI, you can open a Quartus II project for a design exploration by
clicking Open Project on the File menu and then browsing to your project. Clicking
the Quartus II icon in the DSE GUI closes the DSE GUI and opens the project in the
Quartus II software.

Specifying the Revision
You can specify the revision to be explored with the Revision field in the DSE GUI.
The Revision field is populated after the Quartus II project has been opened.

1 If no revisions were created in the Quartus II project, the default revision, which is the
top-level entity, is used. For more information, refer to the Managing Quartus II
Projects chapter in volume 2 of the Quartus II Handbook.

Setting the Initial Seed
To specify the seed that DSE uses for an exploration, specify a non-negative integer
value in the Seeds box under Project Settings on the Settings tab. The seed value
determines your design’s initial placement in a Quartus II compilation.

To specify a range of seeds, type the low end of the range followed by a hyphen,
followed by the high end of the range. For example, 2-5 specifies that DSE uses the
values 2, 3, 4, and 5 as seeds.

Project Uses Quartus II Integrated Synthesis
Ensure that you turn on the Project Uses Quartus II Integrated Synthesis option if
you use Quartus II Integrated Synthesis to synthesize your design. The DSE explores
several options that affect, and can help, the synthesis stage of compilation when this
option is turned on.

f For more information about integrated synthesis options, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

14–6 Chapter 14: Design Space Explorer
DSE Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Restructuring LogicLock Regions
The Allow LogicLock Region Restructuring option allows DSE to modify the
properties of LogicLock regions in your design. DSE applies the Soft property to
LogicLock regions to improve timing. In addition, DSE can remove LogicLock regions
that negatively affect the performance of the design.

1 DSE makes a copy of your base revision and modifies the LogicLock region
settings on the new copy to test whether timing improves with the Allow
LogicLock Region Restructuring option. Your original revision remains
intact.

DSE Exploration Settings
This section provides the following information about DSE exploration settings:

■ Using DSE to Search for the Best Area

■ Using DSE to Search for the Best Performance

■ Using DSE to Search for the Lowest Power

Use the Exploration Settings list to select the type of exploration to perform.

Using DSE to Search for the Best Area
The Search for Best Area option uses a predefined exploration space that targets
device utilization improvements for your design.

Using DSE to Search for the Best Performance
The Search for Best Performance option uses a predefined exploration space that
targets performance improvements for your design. Depending on the device that
your design targets, you can select up to five predefined exploration spaces: Low
(Seed Sweep), Medium (Extra Effort Space), High (Physical Synthesis Space),
Highest (Physical Synthesis with Retiming Space), and Selective (Selected
Performance Optimizations). As you move from Low to Highest, the number of
options explored by DSE increases, which causes compilation time to increase.

In an exploration for best performance, DSE works on reducing the worst magnitude
slack, regardless of whether it is a hold slack or setup slack. During this process, DSE
also takes into consideration all process corners before flagging one of the
compilations as the best.

Effort Level

When you select Search for Best Performance under the Exploration Settings in the
DSE GUI, you can select the effort level you wish to use to compile your design in
DSE. The effort levels are Low (Seed Sweep), Medium (Extra Effort Space), High
(Physical Synthesis Space), Highest (Physical Synthesis with Retiming Space) and
Selective (Selected Performance Optimizations). DSE traverses the points in the
exploration space, applies the settings to the design, and compares compilation
results to determine the best settings for your design based on your chosen effort
level. Search time increases proportionally with the breadth of the options being
explored. The exploration space search time increases with the number, type, and
combination of options DSE explores.

Chapter 14: Design Space Explorer 14–7
DSE Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

DSE offers the following exploration space types:

■ Seed Sweep

■ Extra Effort Space

■ Physical Synthesis Space

■ Physical Synthesis with Retiming Space

■ Selective (Selective Performance Optimizations)

Seed Sweep

Enter the seed values in the Seeds field in the DSE user interface. There are no
“magic” seeds. The variation between seeds is truly random, any non-negative
integer value is as likely to produce good results. DSE defaults to seeds 2, 3, 4, 5, and
6. The Low (Seed Sweep) option exploration space does not change your netlist.

1 The Seeds field accepts individual seed values, for example, 2, 3, 4, and 5, or seed
ranges, for example, 2-5.

Each seed value you specify requires an additional compilation. For example, if you
enter five seeds, the compilation time increases to 5 times the initial (or base)
compilation time.

Extra Effort Space

The Extra Effort Space effort level increases the Quartus II Fitter effort during
placement and routing in addition to performing a seed sweep. The Extra Effort
Space effort level does not change your netlist.

Physical Synthesis Space

The Physical Synthesis Space effort level adds physical synthesis options such as
register retiming and physical synthesis for combinational logic to the options
included in the Extra Effort Space effort level. These netlist optimizations move
registers in your design. Look-up tables (LUTs) are modified by these options.
However, the design behavior is not affected by these options.

f For more information about physical synthesis, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Physical Synthesis with Retiming Space

The Physical Synthesis with Retiming Space effort level includes all the options in
the Physical Synthesis Space effort level, and it explores various Quartus II
Integrated Synthesis optimization options and register retiming. Register retiming can
move registers in your design.

The Physical Synthesis with Retiming Space effort level works only for designs that
have been synthesized using Quartus II Integrated Synthesis.

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

14–8 Chapter 14: Design Space Explorer
DSE Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Selective (Selective Performance Optimizations)

The Selective Performance Optimizations effort level combines a seed sweep with
various performance Fitter settings to improve the timing of your design. The seed
sweep is performed over a limited number of points in such a way that the base
settings are not replicated. This is the recommended option for large designs where
other spaces may be too large. Use this exploration space for first-time DSE searches
on your designs to evaluate the range of results.

Table 14–2 shows the settings adjusted by each effort level.

Using DSE to Search for the Lowest Power
The Search for Lowest Power option uses a predefined exploration space that targets
overall power improvements for your design. When Search for Lowest Power is
selected, DSE automatically runs the PowerPlay Power Analyzer for each point in the
space. You must ensure that the PowerPlay Power Analyzer is configured correctly to
ensure accurate results. DSE issues a warning if the confidence level for any power
estimate is low.

DSE Flow Options
You can control the configuration of DSE with the following options:

■ Continue Exploration Even If Base Compilation Fails

■ Skip Base Analysis and Compilation If Possible

■ Stop Flow When Zero Failing Paths are Achieved

■ Stop Flow After Time

■ Report all Resource Usage Information

■ Parallel DSE Information

■ Create Revisions Without Compiling

Table 14–2. Summaries of Effort Levels (Note 1)

Optimization Options

Effort Levels

Seed Sweep Extra Effort
Physical

Synthesis Retiming

Analysis and Synthesis Settings

Optimization Technique — — v v
Perform WYSIWYG primitive
resynthesis

— — v v

Fitter Settings

Fitter seed v v v v
Increase PowerFit Fitter effort — v v v
Perform physical synthesis for
combinational logic

— — v v

Perform register retiming — — — v
Note to Table 14–2:

(1) For effort levels that include Quartus II Integrated Synthesis projects, DSE increases the synthesis effort.

Chapter 14: Design Space Explorer 14–9
DSE Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Run Quartus II PowerPlay Power Analyzer During Exploration

■ Show Full Path to Project in Title Bar

Continue Exploration Even If Base Compilation Fails
With the Continue Exploration Even If Base Compilation Fails option turned on,
DSE continues the exploration even when a design compilation error occurs. For
example, if timing settings are not applied to your design, a DSE error occurs. To
direct DSE to continue with the exploration instead of halting when an error occurs,
turn on this option.

Skip Base Analysis and Compilation If Possible
The Skip Base Analysis & Compilation if Possible option allows DSE to skip the
Analysis and Elaboration stage or the compilation of the base point if base point
compilation results are available from a previous Quartus II compilation.

Stop Flow When Zero Failing Paths are Achieved
Instructs DSE to stop exploring the space after it encounters any point, including the
base point, that has zero failing paths. DSE uses the failing path count reported in the
All Failing Paths report column to make this decision.

Stop Flow After Time
Turn on Stop Flow After Time to stop further exploration after a specified number of
days, hours, and/or minutes.

1 Exploration time might exceed the specified value because DSE does not
stop in the middle of a compilation.

Report all Resource Usage Information
Turn on Report all Resource Usage Information to include all resource information
from the Quartus II Fitter reports in the DSE report. The Report all Resource Usage
Information option allows you to compare resource utilization in one place, rather
than comparing the Fitter report from multiple compilations. You may find this
option useful if you are trying to optimize the design for the lowest use of a particular
type of resource. Turn off Report all Resource Usage Information to include only
logic elements and RAM blocks used.

Archive All Compilations
Turn on Archive all Compilations to create a Quartus II Archive File (.qar) for each
compilation. These archive files are saved to the dse directory in the design’s working
directory.

The result of each DSE run is saved as a .qar file in the dse subdirectory under your
project directory. Each run is identified by a number. The best result of DSE run is
saved with the name best.qar.

The dse directory also contains a spreadsheet (results.csv) that compares the results of
all the individual runs in your DSE compilation.

14–10 Chapter 14: Design Space Explorer
DSE Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Create Revisions Without Compiling
Turn on Create Revisions Without Compiling to create a Quartus II project revision
for every combination of Quartus II software settings in the exploration space,
without compiling the project. That is, DSE creates a revision for every combination of
Analysis & Synthesis settings, Fitter settings, LogicLock region settings, and seed
values in the exploration space. DSE creates nsynthesis settings x nfitter settings x nLogicLock settings x
nseeds revisions.

Run Quartus II PowerPlay Power Analyzer During Exploration
Turn on Run Quartus II PowerPlay Power Analyzer During Exploration to run the
Quartus II PowerPlay Analyzer for every exploration performed by DSE. Using this
option can help you debug your design and determine trade-offs between power
requirements and performance optimization.

Show Full Path to Project in Title Bar
Shows, in the title bar of the DSE window, the full directory path to the project.

1 Changes to this option do not take effect until you restart DSE.

DSE Processing Commands
You can process design explorations with the following commands:

■ Explore Space

■ View Last DSE Report for Project

■ Create a Revision from a DSE Point

■ Open Project in TimeQuest Timing Analyzer

■ Open Project in Quartus II

Explore Space
The Explore Space command directs DSE to begin the search of the exploration space.

View Last DSE Report for Project
The View Last DSE Report for Project command displays the DSE report generated
by the most recent exploration of the project.

Create a Revision from a DSE Point
This command facilitates the creation of multiple revisions based on the same space
point for further optimization within the Quartus II software. After you have
performed a design exploration, you can use the Create a Revision from a DSE Point
to create a new revision with the Quartus II settings of any exploration point. You can
also use this command to merge the Quartus II settings of any exploration point with
an existing revision.

Open Project in TimeQuest Timing Analyzer
The Open Project in TimeQuest Timing Analyzer command closes DSE and opens
the current project revision in the TimeQuest Timing Analyzer.

Chapter 14: Design Space Explorer 14–11
Parallel DSE Information

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Open Project in Quartus II
The Open Project in Quartus II command closes DSE and opens the current project
revision in the Quartus II software.

Parallel DSE Information
This section covers the Parallel DSE option, which enables you to run an exploration
on multiple computers concurrently. This feature increases the processing efficiency of
design space exploration. You can access the settings for Parallel DSE from the
Parallel DSE menu in the DSE GUI.

Computer Load Sharing Using Parallel DSE
DSE uses cluster computing technology to decrease exploration time when you click
Distribute Compilations to Other Machines on the Parallel DSE menu. DSE uses
multiple client computers to compile points in the specified exploration space.

Parallel DSE functions in one of the following modes:

■ Use LSF Resources—DSE uses the PlatformLSF grid computing technology to
distribute exploration space points to a computing network.

■ Use QSlave—This function uses a Quartus II master process. DSE acts as a master
and distributes exploration space points to client computers.

1 When you use the Distribute Compilations to Other Machines option, different
exploration points in the exploration space are compiled on different slave client
computers at the same time. Concurrent compilations requires a separate license for
each instance of the Quartus II software being used to compile the design. Each
compilation also might require licenses for any IP cores in the design. Therefore, the
number of parallel distributed compilations can be limited to the number of licenses
available for the Quartus II software or the IP core used in your design.

Parallel DSE Using LSF Resources
The easiest way to use distributed DSE technology is to submit the compilations to a
preconfigured LSF cluster at your local site. For more information about LSF software,
refer to www.platform.com, or contact your system administrator. To run Parallel DSE
using LSF resources, on the Parallel DSE menu, click Configure Resources.

Parallel DSE Using a Quartus II Master Process
Before DSE can use computers in the local area network to compile points in the
exploration space, you must create Quartus II software slave instances on the
computers that will be used as clients. Type the following command at a command
prompt on a client computer:

quartus_sh --qslave r
Repeating this command on several computers creates a cluster of Quartus II software
slaves for DSE to use. After you have created a set of Quartus II software slaves on the
network, add the names of each slave computer in the QSlave tab of the Configure
Resources dialog box.

http://www.platform.com/

14–12 Chapter 14: Design Space Explorer
Parallel DSE Information

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To access the Configure Resources dialog box, on the Parallel DSE menu, click
Configure Resources. To add resources, click the QSlave tab and click Add and type
the client name. Click OK.

At the start of an exploration, DSE assumes the role of a Quartus II software master
process and submits points to the slaves on the list to compile. If the list is empty, DSE
issues an error and the search stops.

1 For more information about running and configuring Quartus II slaves,
type the following command at the command prompt:

quartus_sh --help=qslave r
Parallel DSE uses a protocol based on FTP to move files between the master
and the slaves. By default, the qslave client listens to port number 1977 for
communication with the master. If you are running a firewall on a computer
that is running the qslave client, make sure you configure the firewall software
such that it allows incoming and outgoing transmission control protocol (TCP)
and user datagram protocol (UDP) packets on the port used by qslave.

You must set this configuration in every computer that is used as a slave in a
distributed DSE environment.

1 You can change the default port number used by qslave by typing the
following command at a command prompt:

quartus_sh --qslave port=<new_port_number> r
You must use the same version of the Quartus II software to run the slave processes as
you use to run DSE. To determine which Quartus II software version you are using to
run DSE, select Help and click About DSE. Unexpected results can occur if you mix
different Quartus II software versions when using the Parallel DSE feature.

1 When you are using ClearCase revision control software, Parallel DSE
compilations launched within a ClearCase view might fail. ClearCase
catches system I/O calls that can prevent communication between the DSE
master and its slave computers. To avoid this problem, run Parallel DSE
outside of the ClearCase environment.

Concurrent Local Compilations
To reduce compilation time, DSE can compile exploration points concurrently. The
Concurrent Local Compilations option allows you to specify up to six concurrent
compilations by choosing an integer value ranging from 0 through 6. You can use this
option in conjunction with Parallel DSE. However, your system must have the
appropriate resources and licenses to perform concurrent compilations, and
distributed processing. Multiprocessor or multicore systems are recommended for
concurrent local compilations.

1 Concurrent Local Compilations require a separate Quartus II software
license for each concurrent compilation. For example, if you compile four
concurrent compilations, you must have four licenses. Ensure that sufficient
licenses are available before you choose a Concurrent Local Compilations
value and start compilation.

Chapter 14: Design Space Explorer 14–13
Referenced Documents

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can use concurrent compilations and distributed compilations with other
computer options at the same time if you use the QSlave approach for
distributing compilations to other computers.

If you use LSF, all the jobs are submitted to the LSF system.

Referenced Documents
This chapter references the following documents:

■ Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

14–14 Chapter 14: Design Space Explorer
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Document Revision History
Table 14–3 shows the revision history for this chapter.

Table 14–3. Document Revision History (Part 1 of 2)

Date and
Document
Version Changes Made Summary of Changes

November 2009
v.9.1.0

Updated the following sections:

■ Updated Figure 14–1.

■ Added the following section:

“DSE Processing Commands” on page 14–10

■ Updated the following sections:

“Introduction” on page 14–1

“DSE Support for Altera Device Families” on page 14–2

“DSE Exploration Settings” on page 14–6

“DSE Flow Options” on page 14–8

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

■ Was chapter 12 in the 8.1.0 release.

■ Updated Table 14–2 and Table 14–1

■ Added the following sections:

“Project Uses Quartus II Integrated Synthesis” on
page 14–5

“DSE Exploration Settings” on page 14–6

“Effort Level” on page 14–6

■ Updated the following sections:

“Running DSE” on page 14–2

“Setting Up the DSE Work Environment” on page 14–5

“Seed Sweep” on page 14–7

“Physical Synthesis Space” on page 14–7

“Concurrent Local Compilations” on page 14–12

■ Deleted the following sections:

Ignore SignalTap and SignalProbe Settings

Quartus II Integrated Synthesis

Search fir Best Performance, Search for Best Area
Options, or Search for Lowest Power Option

Updated for the Quartus II software
version 9.0 release.

Chapter 14: Design Space Explorer 14–15
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

Changed to 8½” x 11” page size. No change to content. Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

Updated the following sections:

■ “Search for Best Performance, Search for Best Area Options,
or Search for Lowest Power Option” on page 12–5

■ “Using the DSE to Search for the Best Performance” on page
12–6

■ “Physical Synthesis with Retiming Space” on page 12–7

■ “Parallel DSE Information” on page 12–10

Deleted the following sections:

■ Advanced Search Options

■ Exploration Space

■ Custom Space

■ Area Optimization Space

■ Change Decision Column

■ Save Exploration Space to File

■ Creating Custom Spaces for DSE

—

Table 14–3. Document Revision History (Part 2 of 2)

Date and
Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

14–16 Chapter 14: Design Space Explorer
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Section IV. Engineering Change
Management

Programmable logic can accommodate changes to a system specification late in the
design cycle. Last-minute design changes, commonly referred to as engineering
change orders (ECOs), are small changes to the functionality of a design after the
design has been fully compiled. This section describes how the Chip Planner feature
in the Quartus® II software supports ECOs by allowing quick and efficient changes to
your logic late in the design cycle.

This section includes the following chapter:

■ Chapter 15, Engineering Change Management with the Chip Planner

This chapter addresses the impact that ECOs have on the design cycle, discusses
the design flow for performing ECOs, and describes how you can use the Chip
Planner to perform ECOs.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

IV–2 Section IV: Engineering Change Management

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

15. Engineering Change Management
with the Chip Planner

The Chip Planner allows you to make small changes to your design after the design
has been fully compiled.

Introduction
Programmable logic can accommodate changes to a system specification late in the
design cycle. In a typical engineering project development cycle, the specification for
the programmable logic portion is likely to change after engineering development
begins or while integrating all system elements.

Last-minute design changes, commonly referred to as engineering change orders
(ECOs), are small changes to the functionality of a design after the design has been
fully compiled. A design is fully compiled when synthesis and place-and-route are
completed.

The Chip Planner supports ECOs by allowing quick and efficient changes to your
logic late in the design cycle. It provides a visual display of your post place-and-route
design mapped to the device architecture of your chosen FPGA, from LAB placement
in the device to each mapped Logic Element (LE) or Adaptive Logic Module (ALM).
You can analyze your design with the visual display to alter how device resources are
mapped to support ECOs.

This chapter addresses the impact that ECOs have on the design cycle, discusses the
design flow for making ECOs, and describes how you can use the Chip Planner to
make ECOs.

1 In addition to making ECOs, the Chip Planner allows you to perform detailed
analysis on routing congestion, relative resource usage, logic placement, LogicLock™
and customized regions, fan-ins and fan-outs, paths between registers, and delay
estimates for paths.

f For detailed information about using the Chip Planner for design analysis, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

The Chip Planner does not support the MAX® 7000 device family.

QII52017-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

15–2 Chapter 15: Engineering Change Management with the Chip Planner
Engineering Change Orders

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Engineering Change Orders
ECOs are typically made during the verification stage of a design cycle. When a small
change is required on a design, such as modifying a PLL for a different clock
frequency or routing a signal out to a pin for analysis, recompilation of the entire
design can be time consuming, especially for larger designs. Because several iterations
of small design changes can occur during the verification cycle, recompilation times
can quickly add up. Furthermore, a full recompilation due to a small design change
can result in the loss of previous design optimizations. Making ECOs, instead of
performing a full recompilation on your design, limits the change only to the affected
portions of logic.

This section discusses the areas in which ECOs have an impact on a system design
and how the Quartus® II software can help you optimize the design in these areas. The
following topics are discussed in this section:

■ “Performance”

■ “Compilation Time” on page 15–3

■ “Verification” on page 15–3

■ “Documentation” on page 15–3

Performance
Making a small change to the design functionality can result in a loss of previous
design optimizations. Typical examples of design optimizations are floorplan
optimizations and physical synthesis. Ideally, you should preserve previous design
optimizations.

The Chip Planner allows you to make ECOs directly on the post place-and-route
database of your design. Any changes you make are restricted to the affected device
resources, and so the timing performance of the remaining portions of your design are
not affected. The Chip Planner performs design rule checks on all changes to prevent
illegal modifications to your design.

Additionally, the Quartus II software offers an incremental compilation feature that
preserves the optimizations and placement of your design during recompilation. This
feature allows you to create partitions of your design, so that if a change is required
after the design is fully placed and optimized, only the affected partition is
recompiled to implement the change.

The incremental compilation flow fully supports making ECOs with the Chip Planner.

When recompiling a project with the Quartus II incremental compilation enabled, the
compiler preserves all ECOs made with the Chip Planner in partitions that have not
been modified.

f For more information about how to use the incremental compilation feature in the
Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

For more information about using the ECO flow in conjunction with incremental
compilation, refer to “Using Incremental Compilation in the ECO Flow” on
page 15–31.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–3
Engineering Change Orders

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Compilation Time
In the traditional programmable logic design flow, a small change in the design
requires a complete recompilation of the design. A complete recompilation of the
design consists of synthesis and place-and-route. Making small changes to the design
to reach the final implementation on a board can be a long process. Because the Chip
Planner works only on the post place-and-route database, you can implement your
design changes in minutes without performing a full compilation.

Verification
After you make a design change, you can verify the impact to your design. To verify
that you have not violated timing, you can perform static timing analysis using the
Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
after you check and save your netlist changes within the Chip Planner.

f For more information about the Quartus II TimeQuest Timing Analyzer, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.
For more information about the Quartus II Classic Timing Analyzer, refer to the
Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Additionally, you can perform a gate-level or timing simulation of the ECO-modified
design with the post place-and-route netlist generated by the Quartus II software.

Documentation
All ECOs made with the Chip Planner are logged in the Change Manager to provide a
track record of all changes. With the Change Manager, you can easily revert back to
the original post-fit netlist or you can pick and choose which ECOs you want to have
applied.

Additionally, the Quartus II software provides support for multiple compilation
revisions of the same project. You can use ECOs made with the Chip Planner in
conjunction with revision support to compare several different ECO changes and
revert back to previous project revisions when required.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

15–4 Chapter 15: Engineering Change Management with the Chip Planner
ECO Design Flow

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

ECO Design Flow
Figure 15–1 shows the design flow for making ECOs.

For iterative verification cycles, implementing small design changes at the netlist level
can be faster than making an RTL code change. As such, making ECO changes are
especially helpful when you debug the design on silicon and require a fast
turnaround to generate a programming file for debugging the design.

Figure 15–1. Design Flow to Support ECOs

Verilog HDL
(.v)

VHDL
(.vhdl)

AHDL
(.tdf)

Block Design
file

(.bdf)

EDIF Netlist
(.edf)

VQM Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Analysis & Synthesis

Partition Merge
Create complete netlist using

appropriate source netlists for each
partition (post-fit or post-synthesis)

Fitter

Assembler

Timing Analyzer

Program/Configuration Device

System Test and Verify

Requirements
Satisfied?

yes

no

Recreate Programming File

Change Manager
Stores netlist

modification details

Modify
Logic cells, I/O cells,

PLL, Floorplan location
assignments in Chip Planner

Analysis and Synthesis Changes

Analysis and Synthesis Changes

Make design change
in your HDL

Make ECO
at Netlist level

no

Design Partition Assignment

Chapter 15: Engineering Change Management with the Chip Planner 15–5
The Chip Planner Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

A typical ECO application occurs when you uncover a problem on the board and
isolate the problem to the appropriate nodes or I/O cells on the device. You must be
able to correct the functionality quickly and generate a new programming file. By
making small changes with the Chip Planner you can modify the post place-and-route
netlist directly, without having to perform synthesis and logic mapping, thus
decreasing the turnaround time for programming file generation during the
verification cycle. If the change corrects the problem, no modification of the HDL
source code is necessary. You can use the Chip Planner to perform the following
ECO-related changes to your design:

■ Document the changes made with the Change Manager

■ Easily recreate the steps taken to produce design changes

■ Generate EDA simulation netlists for design verification

■ Perform static timing analysis on the design

1 The Quartus II software can help reduce recompilation time with incremental
recompilation for more complex changes that require HDL source code modifications.

The Chip Planner Overview
The Chip Planner provides a visual display of device resources. It shows the
arrangement and usage of the resource atoms in the device architecture that you are
targeting. Resource atoms are the building blocks for your device, such as ALMs, LEs,
PLLs, DSP blocks, memory blocks, or I/O elements.

The Chip Planner also provides an integrated platform for design analysis and for
making ECOs to your design after place-and-route. The toolset consists of the Chip
Planner (providing a device floorplan view of your mapped design) and two
integrated subtools—the Resource Property Editor and the Change Manager.

For analysis, the Chip Planner can show logic placement, LogicLock and custom
regions, relative resource usage, detailed routing information, routing congestion,
fan-ins and fan-outs, paths between registers, and delay estimates for paths.
Additionally, the Chip Planner allows you to create location constraints or resource
assignment changes, such as moving or deleting logic cells or I/O atoms with the
device floorplan. For ECO changes, the Chip Planner enables you to create, move, or
delete logic cells in the post place-and-route netlist for fast programming file
generation. Additionally, you can open the Resource Property Editor from the Chip
Planner to edit the properties of resource atoms or to edit the connections between
resource atoms. All changes to resource atoms and connections are logged
automatically with the Change Manager.

Opening the Chip Planner
To open the Chip Planner, on the Tools menu, click Chip Planner. Alternatively, click
the Chip Planner icon on the Quartus II software toolbar.

Optionally, you can open the Chip Planner by cross-probing from the shortcut menu
in the following tools:

■ Compilation Report

■ Project Navigator window

15–6 Chapter 15: Engineering Change Management with the Chip Planner
The Chip Planner Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

The Chip Planner Tasks and Layers
The Chip Planner enables you to set up tasks to quickly implement ECO changes or
manipulate assignments for the floorplan of the device. Each task consists of an
editing mode and a set of customized layer settings.

The editing modes available in the Chip Planner are the Assignment mode and the
ECO mode. Assignment mode enables you to create or manipulate LogicLock regions
and make location constraints on the resource atoms used in your design.
Assignments made are reflected in the Quartus II Settings File (.qsf) and the
Assignment Editor. With ECO mode, you can create atoms, delete atoms, and move
existing atoms to different locations. The changes made with ECO mode are made in
the post place-and-route database. You can analyze your design with both modes.

The layers settings enable you to specify the displayed graphic elements for a given
task. You can turn off the display of specific graphic elements to increase the window
refresh speed and reduce visual clutter when viewing complex designs. The
Background Color Map indicates the relative level of resource usage for different
areas of the device. For example, Routing Utilization indicates the relative routing
utilization and Physical Timing Estimate indicates the relative physical timing.

The Chip Planner has predefined tasks that enable you to quickly implement ECO
changes or manipulate assignments for the floorplan of the device. The Chip Planner
provides the following predefined tasks:

■ Post-Compilation Editing (ECO)

■ Floorplan Editing (Assignment)

■ Partition Display (Assignment)

■ Global Clock Network (Assignment)

■ Power Analysis (Assignment)—available for devices with programmable power
technology

You can choose the predefined task by selecting it in the Task list located in the upper
right corner of the Chip Planner floorplan view.

To customize your own task, click the Layers icon that is next to the Task list to open
the Layers Settings dialog box.

f For more information about assignments and analysis with the Chip Planner, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

For more information about making ECOs using the ECO mode, refer to “Performing
ECOs with the Chip Planner (Floorplan View)” on page 15–11.

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–7
The Chip Planner Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

The Chip Planner Floorplan Views
The Chip Planner uses a hierarchical zoom viewer that shows various abstraction
levels of the targeted Altera device. As you increase the zoom level, the level of
abstraction decreases, thus revealing more detail about your design.

First-Level View
The first zoom level provides a high-level view of the entire device floorplan. You can
locate and view the placement of any node in your design. Figure 15–2 shows the
Chip Planner Floorplan first-level view of a Stratix device.

Each resource is shown in a different color to help you distinguish between resources.
The Chip Planner Floorplan uses a gradient color scheme in which the color becomes
darker as the utilization of a resource increases. For example, as more LEs are used in
the LAB, the color of the LAB becomes darker.

When you place the mouse pointer over a resource at this level, a tooltip appears that
describes, at a high level, the utilization of the resource (Figure 15–3).

Figure 15–2. The Chip Planner First-Level (Highest) Floorplan View (Stratix Family Device)

LABs

MRAM

DSP

M512

M4K

I/Os

15–8 Chapter 15: Engineering Change Management with the Chip Planner
The Chip Planner Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Second-Level View
As you zoom in, you see an increase in the level of detail. Figure 15–4 shows the
second-level view of the Chip Planner Floorplan for a Stratix device.

At this level you can see the contents of LABs and I/O banks. You also see the routing
channels that are used to connect resources. When you place the mouse pointer over
an LE or ALM at this level, a tooltip is displayed (Figure 15–5) that shows the name of
the LE/ALM, the location of the LE/ALM, and the number of resources that are used
with that LAB. When you place the mouse pointer over an interconnect, the tooltip
shows the routing channels that are used by that interconnect.

Figure 15–3. Tooltip Message: First-Level View

Figure 15–4. The Chip Planner Second-Level Floorplan View (Stratix Family Device)

Figure 15–5. Tooltip Message: Second-Level View

LEs

I/Os

LABs

Chapter 15: Engineering Change Management with the Chip Planner 15–9
The Chip Planner Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Third-Level View
At the third level, which provides the greatest level of detail, you can see each routing
resource that is used within a LAB in the FPGA. Figure 15–6 shows the level of detail
at the third-level view for a Stratix device.

The second and third levels of zoom allow you to move LEs, ALMs, and I/Os from
one physical location to another. You can move a resource by selecting, dragging, and
dropping it into the desired location. At these levels, you can also create new LEs and
I/Os.

For more information about creating atoms, deleting atoms, or reallocating device
atoms, refer to “Performing ECOs with the Chip Planner (Floorplan View)” on
page 15–11.

f For more information about creating Floorplan Assignments, refer to the Analyzing
and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Bird’s Eye View
The Bird’s Eye View (Figure 15–7) displays a high-level picture of resource usage for
the entire chip and provides a fast and efficient way to navigate between areas of
interest in the Chip Planner.

Figure 15–6. The Chip Planner Third-Level View

Horizontal
Routing

LE

LAB Internal
Routing

Vertical
Routing

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

15–10 Chapter 15: Engineering Change Management with the Chip Planner
The Chip Planner Overview

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

The Bird’s Eye View is displayed as a separate window that is linked to the Chip
Planner Floorplan. When you select an area of interest in the Bird’s Eye View, the Chip
Planner Floorplan automatically refreshes to show that region of the device. The
Bird’s Eye View displays a resizable rectangle that allows you to define the area of the
device displayed in the main Chip Planner window. To change the position or zoom
factor of the area displayed in the main Chip Planner window, right-click in the Bird’s
Eye View and drag the pointer to resize the rectangle over the area of interest. You can
make the rectangle larger to zoom out and display a greater area of the device in the
main Chip Planner window, or make the rectangle smaller to zoom in and display a
smaller area of the device in greater detail.

The Bird’s Eye View is particularly useful when the parts of your design that you are
interested in are at opposite ends of the chip and you want to quickly navigate
between resource elements without losing your frame of reference.

Figure 15–7. Bird’s Eye View

DSP

M512

Main-View
Rectangle

M4K

LAB

Chapter 15: Engineering Change Management with the Chip Planner 15–11
Performing ECOs with the Chip Planner (Floorplan View)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Performing ECOs with the Chip Planner (Floorplan View)
You can manipulate resource atoms in the Chip Planner when you select the ECO
editing mode. The following ECO changes can be made with the Chip Planner
Floorplan view:

■ “Creating Atoms”

■ “Deleting Atoms” on page 15–15

■ “Moving Atoms” on page 15–15

1 To configure the properties of atoms, such as managing the connections between
different LEs/ALMs, use the Resource Property Editor.

Refer to “Resource Property Editor” on page 15–15 for details about editing atom
resource properties.

To select the ECO editing mode in the Chip Planner, perform the following steps with
the Chip Planner open:

1. On the View menu, click Layers Settings, or click the Layers icon next to the Task
list. The Layers Settings dialog box appears.

2. Under Editing Mode, select ECO.

Creating Atoms
While in the ECO editing mode, the Chip Planner enables you to easily create atoms
by right-clicking the desired resource atom and clicking Create Atom. After the atoms
are created, the properties can be edited by double-clicking the resource atom, which
opens the Resource Property Editor.

The type of atoms that you can create are:

■ ALMs (for the appropriate device families)

■ LEs (for the appropriate device families)

■ I/O elements

1 The creation of resource atoms is not supported in the Assignment editing mode.

f For the architectural details and resource atoms supported by your device, refer to the
device data sheet.

Creating ALM Atoms
Each ALM has two combinational LUT outputs and two registered outputs. In the
Chip Planner, you can divide each ALM into four resource atoms according to the
type of output path. Figure 15–8 shows an ALM in the Chip Planner.

15–12 Chapter 15: Engineering Change Management with the Chip Planner
Performing ECOs with the Chip Planner (Floorplan View)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To create a combinational ALM LUT atom, perform the following steps:

1. Right-click the left side of any unused (not shaded) ALM and click Create Atom.
The Resource Selection dialog box appears.

2. In the Resource Selection dialog box, select the atom that you wish to create. The
lower index number refers to the top combinational node and the higher index
refers to the bottom combinational node.

3. Click OK. The Create <Altera device> LUT Atom dialog box appears.

4. In the Atom Name box, type the name of the resource atom.

5. Under LUT Mode, select Normal, Extended, or Arithmetic.

6. If applicable, in the Partition list, select the partition that the newly created atom
should reside in. The default partition for newly created atoms is the top-level
partition.

7. Click OK.

f For more information about the LUT mode, refer to the data sheet of the appropriate
device.

When you have successfully created a combinational output, the combinational
element is colored in the Chip Planner. Figure 15–9 shows a combinational ALUT
atom.

To create a registered ALM atom, perform the following steps:

1. Right-click any ALM register resource and click Create Atom. The Create Register
Atom dialog box appears.

2. In the Atom Name box, type the atom name.

3. Click OK.

Figure 15–8. ALM in the Chip Planner

Top Register Node

Bottom Register Node

Top Combinational ALUT

Bottom Combinational ALUT

Figure 15–9. Combinational ALUT Atom

Chapter 15: Engineering Change Management with the Chip Planner 15–13
Performing ECOs with the Chip Planner (Floorplan View)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Creating Logic Element Atoms
The Chip Planner shows resource atoms for Stratix, Cyclone, and MAX device
families as LEs. For all other LE-based device families, the Chip Planner shows
resource atoms as the combinational output of the LE LUT and the registered output
of the LE. Figure 15–10 shows an example of an atom resource in the Chip Planner for
the Stratix, Cyclone, and MAX devices. Figure 15–11 shows a Cyclone II resource
atom in the Chip Planner.

Figure 15–10. LE for Stratix, Cyclone, and MAX Devices in the Chip Planner

15–14 Chapter 15: Engineering Change Management with the Chip Planner
Performing ECOs with the Chip Planner (Floorplan View)

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

To create an LE resource for Stratix, Cyclone, and MAX device families, perform the
following steps:

1. Right-click any available (unshaded) LE resource and click Create Atom. The
Create Logic Cell Atom dialog box appears.

2. If applicable, in the Partition list, select the partition in which the newly created
atom should reside. The default partition for newly created atoms is the top-level
partition.

3. In the Atom Name box, type the atom name.

4. Click OK.

To create a combinational resource atom for all other LE-based device families,
perform the following steps:

1. Right-click the left side of an available (unshaded) LE resource and click Create
Atom. The Create <device family> LUT Atom dialog box appears.

2. If applicable, in the Partition list, select the partition in which the newly created
atom should reside. The default partition for newly created atoms is the top-level
partition.

3. In the Atom Name box, type the atom name.

Figure 15–11. LE for a Cyclone II Device in the Chip Planner

Chapter 15: Engineering Change Management with the Chip Planner 15–15
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

4. Click OK.

To create a register resource atom for Cyclone II devices, perform the following steps:

1. Right-click the right side of an available (unshaded) LE resource and click Create
Atom. The Create <device family> Register Atom dialog box appears.

2. If applicable, in the Partition list, select the partition in which the newly created
atom should reside. The default partition for newly created atoms is the top-level
partition.

3. In the Atom Name box, type the atom name.

4. Click OK.

Deleting Atoms
To delete a resource atom, right-click the desired resource atom in the Chip Planner
and click Delete Atom.

You can delete a resource only after all of its fan-out connections are removed.
Protected resources, such as resources in megafunctions or IP cores, cannot be deleted.

Refer to “Resource Property Editor” on page 15–15 for more details about removing
fan-out connections.

Moving Atoms
You can move resource ALMs, LEs, and FPGA I/O atoms by clicking on the desired
resource and dragging the selected atom to a free resource atom. Moving nodes as an
ECO can be done only in the ECO editing mode. Changes made while in Assignment
mode create location constraints on the design and require a recompilation to
incorporate the change.

Resource atoms from protected resources, such as resources of megafunction IP cores,
cannot be moved.

Check and Save Netlist Changes
After making all ECOs, you can run the Fitter to incorporate the changes by clicking
on the Check and Save Netlist Changes icon in the Chip Planner toolbar. The Fitter
compiles the ECO changes, performs design rule checks on the design, and generates
a programming file.

Resource Property Editor
You can view and edit the following resources with the Resource Property Editor:

■ “Logic Element” on page 15–16

■ “Adaptive Logic Module” on page 15–18

■ “FPGA I/O Elements” on page 15–20

■ “PLL Properties” on page 15–34

■ “FPGA RAM Blocks” on page 15–26

■ “FPGA DSP Blocks” on page 15–27

15–16 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Logic Element
An Altera LE contains a four-input LUT, which is a function generator that can
implement any function of four variables. In addition, each LE contains a register fed
by the output of the LUT or by an independent function generated in another LE.

You can use the Resource Property Editor to view and edit any LE in the FPGA. Open
the Resource Property Editor for an LE by pointing to Locate on the Project menu and
clicking Locate in Resource Property Editor in one of the following views:

■ RTL Viewer

■ Technology Map Viewer

■ Node Finder

■ Chip Planner

f For more information about LE architecture for a particular device family, refer to the
device family handbook or data sheet.

You can use the Resource Property Editor to change the following LE properties:

■ Data input to the LUT

■ LUT mask or LUT equation

Logic Element Schematic View
Figure 15–12 shows how the LE appears in the Resource Property Editor.

Figure 15–12. Stratix LE Architecture (Note 1), (2)

Notes to Figure 15–12:
(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 15–12, the used resources are in blue

and the unused resources are in red.
(2) For more information about the Stratix device’s LE architecture, refer to the Stratix Device Handbook.

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–17
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

LE Properties
Figure 15–13 shows an example of the properties that can be viewed for a selected LE
in the Resource Property Editor. To view LE properties, on the View menu, click View
Properties.

Modes of Operation
LUTs in an LE can operate in either normal or arithmetic mode.

f For more information about LE modes of operation, refer to volume 1 of the
appropriate device handbook.

When an LE is configured in normal mode, the LUT in the LE can implement a
function of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is divided into two
3-input LUTs. The first LUT generates the signal that drives the output of the LUT,
while the second LUT generates the carry-out signal. The carry-out signal can drive
only a carry-in signal of another LE.

Sum and Carry Equations
You can change the logic function implemented by the LUT by changing the sum and
carry equations. When the LE is configured in normal mode, you can change only the
SUM equation. When the LE is configured in arithmetic mode, you can change both
the SUM and the CARRY equations.

The LUT mask is the hexadecimal representation of the LUT equation output. When
you change the LUT equation, the Quartus II software automatically changes the LUT
mask. Conversely, when you change the LUT mask, the Quartus II software
automatically computes the LUT equation.

sload and sclr Signals
Each LE register contains a synchronous load (sload) signal and a synchronous clear
(sclr) signal. You can invert either the sload or sclr signal feeding into the LE. If
the design uses the sload signal in an LE, the signal and its inversion state must be
the same for all other LEs in the same LAB. For example, if two LEs in a LAB have the
sload signal connected, both LEs must have the sload signal set to the same value.
This is also true for the sclr signal.

Figure 15–13. LE Properties

15–18 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Register Cascade Mode
When register cascade mode is enabled, the cascade-in port feeds the input to the
register. The register cascade mode is used most often when the design implements
shift registers. You can change the register cascade mode by connecting (or
disconnecting) the cascade in the port. However, if you create this port, you must
ensure that the source port LE is directly above the destination LE.

Cell Delay Table
The cell delay table describes the propagation delay from all inputs to all outputs for
the selected LE.

LE Connections
On the View menu, click View Port Connections to view the connections that feed in
and out of an LE. Figure 15–14 shows the LE connections in the Connectivity window.

Delete an LE
To delete an LE, perform the following steps:

1. Right-click the desired LE in the Chip Planner, point to Locate, and click Locate in
Resource Property Editor.

2. You must remove all fan-out connections from an LE prior to deletion. To delete
fan-out connections, right-click each connected output signal, point to Remove,
and click Fanouts. Select all of the fan-out signals in the Remove Fan-outs dialog
box and click OK.

3. To delete an atom after all fan-out connections are removed, right-click the atom in
the Chip Planner and click Delete Atom.

Adaptive Logic Module
Each ALM contains LUT-based resources that can be divided between two adaptive
LUTs (ALUTs). With up to eight inputs to the two ALUTs, each ALM can implement
various combinations of two functions. This adaptability allows the ALM to be
completely backward-compatible with four-input LUT architectures. One ALM can
implement any function with up to six inputs and certain seven-input functions. In
addition to the ALUT-based resources, each ALM contains two programmable
registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. The ALM can efficiently implement various arithmetic functions and
shift registers with these dedicated resources.

Figure 15–14. View LE Connections

Chapter 15: Engineering Change Management with the Chip Planner 15–19
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

You can implement the following types of functions in a single ALM:

■ Two independent 4-input functions

■ An independent 5-input function and an independent 3-input function

■ A 5-input function and a 4-input function, if they share one input

■ Two 5-input functions, if they share two inputs

■ An independent 6-input function

■ Two 6-input functions, if they share four inputs and share function

■ Certain 7-input functions

You can use the Resource Property Editor to change the following ALM properties:

■ Data input to the LUT

■ LUT mask or LUT equation

ALM Schematic
You can view and edit any ALM atom with the Resource Property Editor by
right-clicking the ALM in the RTL Viewer, the Node Finder, or the Chip Planner, and
clicking Locate in Resource Property Editor (Figure 15–15).

f For a detailed description of the ALM, refer to the device handbooks of devices based
on an ALM architecture.

Figure 15–15. ALM Schematic (Note 1)

Note to Figure 15–15:
(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 15–15, the used resources are in blue

and the unused resources are in red.

15–20 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

ALM Properties
The properties that you can display for the ALM include an equations table that
shows the name and location of each of the two combinational nodes and two register
nodes in the ALM, the individual LUT equations for each of the combinational nodes,
and the combout, sumout, carryout, and shareout equations for each
combinational node.

ALM Connections
On the View menu, click View Port Connections to view the input and output
connections for the ALM.

FPGA I/O Elements
Altera FPGAs that have high-performance I/O elements, including up to six registers,
are equipped with support for a number of I/O standards that allow you to run your
design at peak speeds. Use the Resource Property Editor to view, change connectivity,
and edit the properties of the I/O elements. Use the Chip Planner (Floorplan view) to
change placement, delete, and create new I/O elements.

f For a detailed description of the device I/O elements, refer to the applicable device
handbook.

You can change the following I/O properties:

■ Delay chain

■ Bus hold

■ Weak pull up

■ Slow slew rate

■ I/O standard

■ Current strength

■ Extend OE disable

■ PCI I/O

■ Register reset mode

■ Register synchronous reset mode

■ Register power up

■ Register mode

Chapter 15: Engineering Change Management with the Chip Planner 15–21
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
The I/O elements in Stratix series device families and Arria GX devices contain a
bidirectional I/O buffer, six registers, and a latch for a complete bidirectional single
data rate or DDR transfer. Figure 15–16 shows the Stratix and Stratix GX I/O elements
structure. The I/O element structure contains two input registers (plus a latch), two
output registers, and two output enable registers.

Figure 15–16. Stratix and Stratix GX Device I/O Element and Structure (Note 1), (2)

Notes to Figure 15–16:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–16, the used resources are

in blue and the unused resources are in red.
(2) For more information about I/O elements in Stratix and Stratix GX devices, refer to the Stratix Device Handbook and the Stratix GX Device

Handbook.

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/hb/sgx/sgx_handbook.pdf
http://www.altera.com/literature/hb/sgx/sgx_handbook.pdf

15–22 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 15–17 shows the Arria GX and Stratix II I/O element structures.

Stratix III I/O Element
The I/O elements in Stratix III devices contain a bi-directional I/O buffer and I/O
registers to support a complete embedded bi-directional single data rate or DDR
transfer (shown in Figure 15–18). The I/O registers are composed of the input path for
handling data from the pin to the core, the output path for handling data from the
core to the pin, and the output enable (OE) path for handling the OE signal for the
output buffer. Each path consists of a set of delay elements that allow you to fine-tune
the timing characteristics of each path for skew management.

f For more information about programmable I/O elements in Stratix III devices, refer to
AN 474: Implementing Stratix III Programmable I/O Delay Settings in the Quartus II
Software.

Figure 15–17. Arria GX Device and Stratix II I/O Element and Structure (Note 1), (2), (3)

Notes to Figure 15–17:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–17, the used resources are

in blue and the unused resources are in red.
(2) For more information about I/O elements in Arria GX and Stratix II devices, refer to the appropriate device handbook.
(3) Current I/O element shown in a DQS pin. Non-DQS pins do not contain DQS delay circuitry.

http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–23
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Cyclone and Cyclone II I/O Elements
The I/O elements in Cyclone and Cyclone II devices contain a bidirectional I/O buffer
and three registers for complete bidirectional single data-rate transfer. Figure 15–19
shows the Cyclone and Cyclone II I/O element structure. The I/O element contains
one input register, one output register, and one output enable register.

Figure 15–18. Stratix III Device I/O Element and Structure (Note 1), (2)

Notes to Figure 15–18:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–18, the used resources are
in blue and the unused resources are in red.

(2) For more information about I/O elements in Stratix III devices, refer to the Stratix III Device Handbook. For Stratix IV devices, refer to the Stratix IV
Device Handbook.

http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf

15–24 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Cyclone III I/O Elements
Cyclone III device I/O elements contain a bidirectional I/O buffer and five registers
for complete embedded bidirectional single data rate transfer. Figure 15–20 shows the
Cyclone III I/O element structure. The I/O element contains one input register, two
output registers, and two output-enable registers. The two output registers and two
output-enable registers are utilized for double-data rate (DDR) applications. You can
use the input registers for fast setup times and the output registers for fast
clock-to-output times. Additionally, you can use the output-enable (OE) registers for
fast clock-to-output enable timing. You can use I/O elements for input, output, or
bidirectional data paths.

Figure 15–19. Cyclone and Cyclone II Device I/O Elements and Structure (Note 1), (2)

Notes to Figure 15–19:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–19, the used resources are

in blue and the unused resources are in red.
(2) For more information about I/O elements in Cyclone II and Cyclone devices, refer to the Cyclone II Device Handbook and Cyclone Device

Handbook, respectively.

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–25
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Figure 15–20. Cyclone III Device I/O Elements and Structure (Note 1), (2)

Notes to Figure 15–20:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–20, the used resources are
in blue and the unused resources are in red.

(2) For more information about I/O elements in Cyclone III devices, refer to the Cyclone III Device Handbook.

http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf

15–26 Chapter 15: Engineering Change Management with the Chip Planner
Resource Property Editor

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

MAX II I/O Elements
MAX II device I/O elements contain a bidirectional I/O buffer. Figure 15–21 shows
the MAX II I/O element structure. Registers from adjacent LABs can drive to or be
driven from the I/O element’s bidirectional I/O buffers.

FPGA RAM Blocks
With the Resource Property Editor, you can view the architecture of different RAM
blocks in the device, modify the input and output registers from the RAM blocks, and
modify the connectivity of the input and output ports. Figure 15–22 shows an M9K
RAM view in a Stratix III device.

Figure 15–21. MAX II Device I/O Elements and Structure (Note 1), (2)

Notes to Figure 15–21:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In
Figure 15–21, the used resources are in blue and the unused resources are in red.

(2) For more information about I/O elements in MAX II devices, refer to the MAX II Device Handbook.

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–27
Resource Property Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

FPGA DSP Blocks
Dedicated hardware DSP circuit blocks in Altera devices provide performance
benefits for the critical DSP functions in your design. The Resource Property Editor
allows you to view the architecture of DSP blocks in the Resource Property Editor for
the Cyclone and Stratix series of devices. The Resource Property Editor also allows
you to modify the signal connections to and from the DSP blocks and modify the
input and output registers from the DSP blocks.

Figure 15–22. M9K RAM View in a Stratix III Device (Note 1)

Note to Figure 15–22:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In
Figure 15–22, the used resources are in blue and the unused resources are in red.

15–28 Chapter 15: Engineering Change Management with the Chip Planner
Change Manager

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Figure 15–23 shows the DSP architecture in a Stratix III device.

Change Manager
The Change Manager maintains a record of every change that you perform with the
Resource Property Editor. Each row in the Change Manager represents one ECO
performed. The changes are numbered sequentially, such that the larger the number,
the more recent the change.

More complex changes are marked in the Change Manager with a plus icon. You can
expand a complex entry in the Change Manager by clicking the plus icon to reveal all
the changes that occurred. An example of a complex change is the creation or deletion
of an atom.

Figure 15–23. DSP Block View in a Stratix III Device (Note 1)

Note to Figure 15–23:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 15–23, the used resources are
in blue and the unused resources are in red.

Chapter 15: Engineering Change Management with the Chip Planner 15–29
Change Manager

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Table 15–1 summarizes the information shown by the Change Manager.

After you complete all of your design modifications, check the integrity of the netlist
by right-clicking in the Change Manager and clicking Check & Save All Netlist
Changes. If the applied changes successfully pass the netlist check, they are written to
disk. If the changes do not pass the netlist check, all changes made since the previous
successful netlist check are reversed. Figure 15–24 shows the Change Manager.

Colored indicators in the Current Value and Disk Value columns indicate the present
status of the data in those columns. Green in the Current Value column indicates that
the change has been recorded. Blue in the Disk Value column indicates that the
change has successfully passed a Check & Save Netlist Changes operation.

f For more information about SignalProbe pins, refer to the Quick Design Debugging
Using SignalProbe chapter in volume 3 of the Quartus II Handbook.

1 Each line in the Change Manager represents a change record. Simple changes appear
as a single line. More complex changes, which require that the system perform several
actions to achieve the change, appear as a single line marked by a plus icon. Click the
plus icon to show all the component actions performed as part of the change.

Table 15–1. Change Manager Information

Column Name Description

Index Identifies, by a sequential number, change records corresponding to changes made in the Chip Planner or
Resource Property Editor.

In the case of complex change records, the index column identifies not only the main change, but also
any component changes.

Node Name Uniquely identifies the resource to which a change has been made.

Change Type Identifies the type of change that has been made to the resource.

Old Value Lists the value of the resource immediately prior to the change being made.

Target Value Lists the desired target value (new value) that you have established with the Resource Property Editor,
Chip Planner, or SignalProbe.

Current Value Lists the value of the resource in the netlist that is currently active in memory (as opposed to the value in
the netlist saved on disk, which may be different if you have made changes and not yet used the Check &
Save All Netlist Changes command).

Disk Value Lists the current value of the resource on disk.

Comment Allows you to add a comment to a change record in the Change Manager.

To add a comment to a change record, double-click in the Comment field of the record you want to
annotate, and type your comment.

Figure 15–24. Change Manager Results

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf

15–30 Chapter 15: Engineering Change Management with the Chip Planner
Change Manager

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Complex Changes in the Change Manager
Certain types of changes that you make in the Resource Property Editor or the Chip
Planner (including creating or deleting atoms and changing connectivity) can appear
to be self-contained, but these changes are actually composed of multiple actions.
Complex changes are indicated with a plus icon in the Index column.

The change record in the Change Manager is a single-line representation of the actual
change actions that occurred. Expand the change record to show the component
actions that make up the change by clicking the plus icon.

After expanding a change entry in the Change Manager, you can see that creation of
an atom consists of three actions:

■ The creation of a new logic cell

■ The creation of an output port on the newly created logic cell

■ The assignment of a location index to the newly created logic cell

You cannot select individual components of a complex change record; if you select
any part of a complex change record, the entire complex change record is selected.

f For examples of managing changes with the Change Manager, refer to “Example of
Managing Changes With the Change Manager” in the Quartus II Help.

Managing SignalProbe Signals
The SignalProbe pins that you create from the SignalProbe Pins dialog box are
recorded in the Change Manager. After you have made a SignalProbe assignment,
you can use the Change Manager to quickly disable SignalProbe assignments by
selecting Revert to Last Saved Netlist on the shortcut menu in the Change Manager.

f For more information about SignalProbe pins, refer to the Quick Design Debugging
Using SignalProbe chapter in volume 3 of the Quartus II Handbook.

Exporting Changes
You can export all your changes to a tool command language (Tcl) script, a Comma
Separated Value (.csv) file, or a Text (.txt) file. The Tcl file enables you to write a
script that reapplies changes that were deleted by compilation. You can also write
a script that applies to other Quartus II software projects that you create. The .csv or
.txt files provide a list of changes in a tabular format. To export changes, perform the
following steps:

1. Right-click in the Change Manager and then click Export Changes on the shortcut
menu.

2. Specify the Tcl file name.

3. Click OK.

The resulting Tcl script can also implement similar changes to another Quartus II
design.

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–31
Using Incremental Compilation in the ECO Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Using Incremental Compilation in the ECO Flow
Beginning with the Quartus II software version 6.1, the incremental compilation
feature is turned on by default. The top-level design is automatically set to a design
partition when the incremental compilation feature is turned on. A design partition
during incremental compilation can have different netlist types (netlist types can be
set to source HDL, post synthesis, or post-fit). The netlist type indicates whether that
partition should be resynthesized or refit during the recompilation. Incremental
compilation saves you time and preserves the placement of unchanged partitions in
your design if you make small changes to some partitions late in the design cycle.

f For more information about partitions, their netlist types, and Quartus II incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

The behavior of ECOs during an incremental compilation depends on the netlist type
of your design partitions. The Quartus II software preserves ECOs if the partition
containing the ECO satisfies the following two conditions:

■ The netlist type of the affected partition is set to post-fit.

■ There are no source code changes in the affected partition that would cause the
partition to be resynthesized during recompilation.

If you have ECOs that affect multiple partitions in your design, the Quartus II
software preserves your ECOs during recompilation if any of the affected partitions
are set to post-fit.

1 Whenever an ECO affects multiple partitions, all of the affected partitions become
linked. All of the higher-level “parent” partitions up to their nearest common parent
are also linked. In such cases, the connection between the partitions is actually defined
outside of the two partitions immediately affected, so all the partitions must be
compiled together. The linked partition inherits the netlist type of the partition with
the highest level of preservation. For example, if an ECO is made on a lower-level
partition of a post-fit type and a top-level partition of a post-synthesis type, the two
partitions are linked and have a post-fit netlist type.

If the partitions are set to use the source code or a post-synthesis netlist, the software
issues a warning and the post-fit ECO changes are not included in the new
compilation.

For example, if your top-level partition netlist type is set to post-synthesis, and either
you have no other lower-level partitions or the lower-level partitions netlist type is
also set to post-synthesis, during recompilation, your ECOs are not preserved and a
warning message appears in the messages window, indicating that ECO
modifications are discarded; however, all of the ECO information is retained in the
Change Manager. In this case, you can apply ECOs from the Change Manager and
perform the Check & Save All Netlist Changes step as described in “ECO Flow
without Quartus II Incremental Compilation” on page 15–32.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

15–32 Chapter 15: Engineering Change Management with the Chip Planner
Scripting Support

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

ECO Flow without Quartus II Incremental Compilation
If you do not use the Quartus II incremental compilation feature and have
implemented ECOs, those ECOs are not preserved during recompilation of your
design; however, all of the ECOs remain in the Change Manager. To apply an ECO,
right-click the Change Manager and click Apply Selected Change. (If the Change
Manager window is not visible at the bottom of your screen, on the View menu, point
to Utility Windows and click Change Manager.)

After applying the selected ECO, perform one of the following steps:

■ On the menu within the Change Manager, click Check & Save All Netlist
Changes.

or

■ On the Processing menu, point to Start and click Start Check & Save All Netlist
Changes.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. The Tcl commands for
controlling the Chip Planner are located in the chip_planner package of the
quartus_cdb executable. A comprehensive list of Tcl commands for the Chip
Planner can be found in the Quartus II Scripting Reference Manual.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Common ECO Applications
This section provides examples of how you might use an ECO to make a
post-compilation change to your design. To help build your system quickly, you can
use Chip Planner functions to perform the following activities:

■ Adjust the drive strength of an I/O with the Chip Planner

■ Modify the PLL properties with the Resource Property Editor (see “Modify the
PLL Properties Using the Chip Planner” on page 15–33)

■ Modify the connectivity between new resource atoms with the Chip Planner and
Resource Property Editor

Adjust the Drive Strength of an I/O with the Chip Planner
To adjust the drive strength of an I/O, follow the steps in this section to run the Fitter
and assembler to incorporate the ECO changes into the netlist of the design.

1. In the Chip Planner, select the Post-Compilation Editing (ECO) task.

2. Locate the I/O in the Resource Property Editor, as shown in Figure 15–25.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–33
Common ECO Applications

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

3. In the Resource Property Editor, click the Current Strength box for the selected
I/O, then click Edit.

4. Change the value for the desired current strength.

5. Right-click the ECO change in the Change Manager and click Check & Save All
Netlist Changes to apply the ECO change.

1 You can change the pin locations of input/output ports using the ECO flow. You can
drag and move the signal from an existing pin location to a new location while in the
Post Compilation Editing (ECO) task in the Chip Planner. You can then click Check &
Save All Netlist Changes to compile the ECO.

Modify the PLL Properties Using the Chip Planner
You use PLLs to modify and generate clock signals to meet design requirements.
Additionally, you can use PLLs to distribute clock signals to different devices in a
design, reducing clock skew between devices, improving I/O timing, and generating
internal clock signals.

The Resource Property Editor enables you to view and modify PLL properties to meet
your design requirements. Using the Stratix PLL as an example, the rest of this section
describes the adjustable PLL properties and the equations as a function of the
adjustable PLL properties that govern the PLL output parameters. Figure 15–26
shows a Stratix PLL as shown in the Resource Property Editor.

Figure 15–25. I/O in the Resource Property Editor

15–34 Chapter 15: Engineering Change Management with the Chip Planner
Common ECO Applications

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

PLL Properties
The Resource Property Editor enables you to modify PLL options, such as phase shift,
output clock frequency, and duty cycle. You can also change the following PLL
properties with the Resource Property Editor:

■ Input frequency

■ M VCO tap

■ M initial

■ M value

■ N value

■ M counter delay

■ N counter delay

■ M2 value

■ N2 value

■ SS counter

■ Charge pump current

■ Loop filter resistance

Figure 15–26. PLL View in a Stratix Device

Chapter 15: Engineering Change Management with the Chip Planner 15–35
Common ECO Applications

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

■ Loop filter capacitance

■ Counter delay

■ Counter high

■ Counter low

■ Counter mode

■ Counter initial

■ VCO tap

You can also view post-compilation PLL properties in the Compilation Report. To do
so, in the Compilation Report, select Fitter and then select Resource Section.

Adjusting the Duty Cycle
Use Equation 15–1 to adjust the duty cycle of individual output clocks.

Adjusting the Phase Shift
Use Equation 15–2 to adjust the phase shift of an output clock of a PLL.

For normal mode Tap VCO, Initial VCO, and Period VCO are governed by the following
settings:

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are governed by the
following settings:

f For a detailed description of the settings, refer to the Quartus II Help. For more
information about Stratix device PLLs, refer to the Stratix Architecture chapter in
volume 1 of the Stratix Device Handbook. For more information about PLLs in
Arria GX, Cyclone, Cyclone II, and Stratix II devices, refer to the appropriate device
handbook.

Equation 15–1.

Equation 15–2.

High % Counter High
Counter High Counter Low+ 

--=

Phase Shift Period VCO 0.125 Tap VCO  Initial VCO Period VCO +=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO In Clock Period N M=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO
In Clock Period N

M Counter High Counter Low+ + 
---=

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

15–36 Chapter 15: Engineering Change Management with the Chip Planner
Common ECO Applications

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Adjusting the Output Clock Frequency
Use Equation 15–3 to adjust the PLL output clock in normal mode.

Use Equation 15–4 to adjust the PLL output clock in external feedback mode.

Adjusting the Spread Spectrum
Use Equation 15–5 to adjust the spread spectrum for your PLL.

Modify the Connectivity between Resource Atoms
The Chip Planner and Resource Property Editor allow you to create new resource
atoms and manipulate the existing connection between resource atoms in the post-fit
netlist. This feature is useful for small changes when you are debugging a design,
such as manually inserting pipeline registers into a combinational path that fails
timing, or to route a signal to a spare I/O pin for analysis. Use the following
procedure to create a new register in a Cyclone III device and route register output to
a spare I/O pin. This example illustrates how to create a new resource atom and
modify the connections between resource atoms.

To create new resource atoms and manipulate the existing connection between
resource atoms in the post-fit netlist, perform the following steps:

1. Create a new register in the Chip Planner Floorplan.

2. Locate the atom in the Resource Property Editor.

3. To assign a clock signal to the register, right-click the clock input port for the
register, point to Edit connection, and click Other. Use the Node Finder to assign a
clock signal from your design.

4. To tie the SLOAD input port to VCC, right-click the clock input port for the register,
point to Edit connection, and click VCC.

5. Assign a data signal from your design to the SDATA port.

6. In the connectivity window, under the output port names, copy the port name of
the register.

7. In the Chip Planner Floorplan, locate a free I/O resource and create an output
buffer.

Equation 15–3.

Equation 15–4.

Equation 15–5.

Output Clock Frequency Input Frequency M value
N Value Counter High Counter Low+ +
--=

OUTCLK M value External Feedback Counter High External Feedback Counter Low+ +
N value Counter High Counter Low+ +

---=

% spread
M2N1

M1N2
-------------=

Chapter 15: Engineering Change Management with the Chip Planner 15–37
Post ECO Steps

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

8. Locate the new I/O atom in the Resource Property Editor.

9. On the input port to the output buffer, right-click, point to Edit connection, and
click Other.

10. In the Edit Connection dialog box, type the output port name of the register you
have created.

11. Run the ECO Fitter to apply the changes by clicking Check and Save Netlist
Changes.

1 A successful ECO connection is subject to the available routing resources. You can
view the relative routing utilization by selecting Routing Utilization as the
Background Color Map in the Layers Settings dialog box. Also, you can view
individual routing channel utilization from local, row, and column interconnects with
the tooltips created when you position your mouse pointer over the appropriate
resource. Refer to the device data sheet for more information about the architecture of
the routing interconnects of your device.

Post ECO Steps
This section describes the operations you can perform after making an ECO change
with the Chip Planner.

Performing Static Timing Analysis
After you make an ECO change with the Chip Planner, you must perform static
timing analysis of your design with either the Quartus II Classic Timing Analyzer or
the Quartus II TimeQuest Timing Analyzer to ensure that your changes have not
adversely affected the timing performance of your design.

For example, when you turn on one of the delay chain settings for a specific pin, you
change the I/O timing. Therefore, to ensure that the design still meets all timing
requirements, you should perform static timing analysis.

f For more information about performing a static timing analysis of your design, refer
to the Quartus II Classic Timing Analyzer or The Quartus II TimeQuest Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

Conclusion
Altera developed the Chip Planner in the Quartus II software suite to assist you in
getting your design to the marketplace quickly. The Chip Planner enables you to
analyze and modify your design floorplan. Also, ECO changes made with the Chip
Planner do not require a full recompilation, eliminating the lengthy process of RTL
modification, resynthesis, and another place-and-route cycle. In summary, the Chip
Planner speeds design verification and timing closure.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

15–38 Chapter 15: Engineering Change Management with the Chip Planner
Referenced Documents

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ AN 474: Implementing Stratix III Programmable I/O Delay Settings in the Quartus II
Software

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Cyclone Device Handbook

■ MAX II Device Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Programmer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Settings File Manual

■ The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook

■ Stratix Architecture chapter in volume 1 of the Stratix Device Handbook

■ Stratix Device Handbook

■ Stratix III Device Handbook

■ Stratix IV Device Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/stx/ch_2_vol_1.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf

Chapter 15: Engineering Change Management with the Chip Planner 15–39
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Document Revision History
Table 15–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Development
Software Literature web page.

Table 15–2. Document Revision History

Date and Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated device support list

■ Made minor editorial updates

Updated for the
Quartus II software
release 9.1.

March 2009
v9.0.0

■ Updated Figure 15–18

■ Made minor editorial updates

■ Chapter 15 was previously Chapter 13 in the 8.1.0 release.

Updated for the
Quartus II software
release 9.0.

November 2008
v8.1.0

Corrected preservation attributes for ECOs in the section “Using
Incremental Compilation in the ECO Flow” on page 15–32.

Minor editorial updates.

Changed to 8½” x 11” page size.

Updated for the
Quartus II software
release 8.1.

May 2008
v8.0.0

■ Updated device support list

■ Modified description for ECO support for block RAMs and DSP blocks

■ Corrected Stratix PLL ECO example

■ Added an application example to show modifying the connectivity
between resource atoms

Updated for the
Quartus II software
release 8.0.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

15–40 Chapter 15: Engineering Change Management with the Chip Planner
Document Revision History

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization

Additional Information

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 9.1.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.1 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information

Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization © November 2009 Altera Corporation

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-
SIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is impor-
tant, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Handbook Version 9.1
Volume 3: Verification

QII5V3-9.1

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

 © November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Contents

Chapter Revision Dates . xxv

Section I. Simulation

Chapter 1. Quartus II Simulator
Introduction . 1-1
Simulation Flow . 1-2

Functional Simulation . 1-4
Timing Simulation . 1-5
Timing Simulation Using Fast Timing Model Simulation . 1-5

Waveform Editor . 1-5
Creating .vwf Files . 1-6

Count Value . 1-9
Clock . 1-9
Arbitrary Value . 1-9
Random Value . 1-10

Generating a Testbench . 1-10
Grid Size . 1-10
Time Bars . 1-10
Stretch or Compress a Waveform Interval . 1-11
End Time . 1-11
Arrange Group or Bus in LSB or MSB Order . 1-12

Simulator Settings . 1-13
Simulation Verification Options . 1-15
Simulation Output Files Options . 1-16

Simulation Report . 1-16
Simulation Waveform . 1-16
Simulating Bidirectional Pin . 1-17
Logical Memories Report . 1-17
Simulation Coverage Reports . 1-18
Comparing Two Waveforms . 1-18

Debugging with the Quartus II Simulator . 1-19
Breakpoints . 1-19
Updating Memory Content . 1-19
Last Simulation Vector Outputs . 1-20
Conventional Debugging Process . 1-20

Accessing Internal Signals for Simulation . 1-20
Scripting Support . 1-21
Conclusion . 1-22
Referenced Documents . 1-22
Document Revision History . 1-23

Chapter 2. Simulating Designs with EDA Tools
Introduction . 2-1
PLD Design Flow . 2-2

RTL Simulation Flow . 2-3
Gate-Level Simulation Flow . 2-3
Converting BDF Format to HDL Format . 2-4

iv Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation Libraries . 2-4
RTL Simulation . 2-4
Gate-Level Timing Simulation . 2-4
Simulation Library Files . 2-5

Generating Simulation Netlist Files . 2-8
Configuring EDA Netlist Writer Settings . 2-8
Generating Post-Synthesis Simulation Netlist Files . 2-9
Generating Gate-Level Timing Simulation Netlist Files . 2-10
Generating Timing Simulation Netlist Files with Different Timing Models 2-10

EDA Simulation Library Compiler . 2-11
Running the EDA Simulation Library Compiler Through the GUI . 2-12
Running the EDA Simulation Library Compiler from the Command Line 2-13

Using the NativeLink Feature . 2-13
Setting Up the EDA Simulator Execution Path . 2-14
Configuring NativeLink Settings . 2-15
Running RTL Simulation Using the NativeLink Feature . 2-16
Running Gate-Level Simulation Using the NativeLink Feature . 2-16
Setting Up Testbench Files Using the NativeLink Feature . 2-17
Creating Testbench Files . 2-18

Conclusion . 2-18
Referenced Documents . 2-18
Document Revision History . 2-19

Chapter 3. Mentor Graphics ModelSim Support
Introduction . 3-1
Software Compatibility . 3-3
Altera Design Flow with ModelSim-Altera or ModelSim Software . 3-3
Simulation Libraries . 3-3

Precompiled Simulation Libraries in the ModelSim-Altera Software . 3-4
RTL Functional Simulation Libraries . 3-5
Gate-Level Simulation Libraries . 3-5

Simulation Library Files in the Quartus II Software . 3-6
Disabling Timing Violation on Registers . 3-6
Compiling Libraries Using the EDA Simulation Library Compiler . 3-7

Performing Simulation Using the ModelSim-Altera Software . 3-7
Simulating the VHDL Designs Using the GUI . 3-7

Performing RTL Functional Simulation . 3-7
Performing Post-Synthesis Simulation . 3-9
Performing Gate-Level Simulation . 3-11

Simulating Verilog HDL Designs through the GUI . 3-13
Performing RTL Functional Simulation . 3-13
Performing Post-Synthesis Simulation . 3-14
Performing Gate-Level Simulation . 3-16

Simulating the VHDL Designs from the Command Line . 3-18
Performing RTL Functional Simulation . 3-18
Performing Post-Synthesis Simulation . 3-19
Performing Gate-Level Simulation . 3-20

Simulating the Verilog HDL Designs on the Command Line . 3-22
Performing RTL Functional Simulation . 3-22
Performing Post-Synthesis Simulation . 3-23
Performing Gate-Level Simulation . 3-24

Performing Simulation Using the ModelSim Software . 3-26
Simulating the VHDL Designs Using the GUI . 3-26

Performing RTL Functional Simulation . 3-26

Contents v

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing Post-Synthesis Simulation . 3-28
Performing Gate-Level Simulation . 3-31

Simulating the Verilog HDL Designs Using the GUI . 3-33
Performing RTL Functional Simulation . 3-34
Performing Post-Synthesis Simulation . 3-36
Performing Gate-Level Simulation . 3-38

Simulating the VHDL Designs from the Command Line . 3-40
Performing RTL Functional Simulation . 3-41
Performing Post-Synthesis Simulation . 3-43
Performing Gate-Level Simulation . 3-44

Simulating the Verilog HDL Designs from the Command Line . 3-46
Performing RTL Functional Simulation . 3-47
Performing Post-Synthesis Simulation . 3-48
Performing Gate-Level Simulation . 3-50

Passing Parameter Information from Verilog to VHDL . 3-52
Speeding Up Simulation . 3-53

Simulating Designs that Include Transceivers . 3-53
RTL Functional Simulation for Stratix IV Devices . 3-53

Performing RTL Functional Simulation in VHDL (ModelSim-Altera) . 3-54
Performing RTL Functional Simulation in VHDL (ModelSim SE/PE)) . 3-54
Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera) 3-54
Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE) 3-54

Gate-Level Timing Simulation for Stratix IV Devices . 3-54
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 3-54
Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE) 3-55
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera) 3-55
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE) 3-55

RTL Functional Simulation for Stratix II GX Devices . 3-55
Performing RTL Functional Simulation in VHDL (ModelSim-Altera) . 3-57
Performing RTL Functional Simulation in VHDL (ModelSim SE/PE) . 3-57
Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera) 3-57
Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE) 3-57

Gate-Level Timing Simulation for Stratix II GX Devices . 3-57
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 3-58
Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE) 3-58
Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera) 3-58
Performing Gate-Level Timing Simulation in Verilog HDL ModelSim SE/PE) 3-58

RTL Functional Simulation for Stratix IV Devices . 3-58
Performing RTL Functional Simulation in VHDL (ModelSim-Altera) . 3-59
Performing RTL Functional Simulation in VHDL (ModelSim SE/PE) . 3-59
Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera) 3-59
Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE) 3-59

Gate-Level Timing Simulation for Stratix IV Devices . 3-59
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 3-59
Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE) 3-60
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera) 3-60
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE) 3-60

Transport Delays . 3-60
+transport_path_delays . 3-60
+transport_int_delays . 3-60

Using the NativeLink Feature with ModelSim-Altera or ModelSim Software 3-61
ModelSim Error Message Verification . 3-61
Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power Analyzer 3-61
Viewing a Waveform from a .wlf File . 3-62

vi Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Scripting Support . 3-63
Generating a Post-Synthesis Simulation Netlist for ModelSim . 3-63

Tcl Commands . 3-63
Command Prompt . 3-63

Generating a Gate-Level Timing Simulation Netlist for ModelSim . 3-63
Tcl Commands . 3-63
Command Line . 3-64

Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition 3-64
LM_LICENSE_FILE Variable . 3-65

Conclusion . 3-65
Referenced Documents . 3-65
Document Revision History . 3-66

Chapter 4. Synopsys VCS and VCS MX Support
Introduction . 4-1
Software Requirements . 4-1
Using the VCS or VCS MX Software in the Quartus II Design Flow . 4-2

Compiling Libraries Using the EDA Simulation Library Compiler . 4-2
RTL Functional Simulations . 4-2

RTL Functional Simulation (Verilog HDL Designs) . 4-3
RTL Functional Simulation (VHDL Designs) . 4-3

Post-Synthesis Simulation . 4-4
Post-Synthesis Simulation (Verilog HDL) . 4-4
Post-Synthesis Simulation (VHDL) . 4-5

Gate-Level Timing Simulation . 4-5
Gate-Level Timing Simulation (Verilog HDL) . 4-5
Gate-Level Timing Simulation (VHDL) . 4-6

Disabling Timing Violation on Registers . 4-6
Performing Timing Simulation Using the Post-Synthesis Netlist . 4-6

Common VCS and VCS MX Software Compiler Options . 4-7
Using VirSim . 4-7
Using DVE . 4-7
Debugging Support Command-Line Interface . 4-8
Simulating Designs that Include Transceivers . 4-8

RTL Functional Simulation for Stratix GX Devices . 4-8
Compiling Library Files for RTL Functional Simulation in Verilog HDL . 4-9

Gate-Level Timing Simulation for Stratix GX Devices . 4-9
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4-9

RTL Functional Simulation for Stratix II GX Devices . 4-9
Compiling Library Files for RTL Functional Simulation in Verilog HDL 4-10

Gate-Level Timing Simulation for Stratix II GX Devices . 4-10
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4-11

RTL Functional Simulation for Stratix IV Devices . 4-11
Compiling Library Files for RTL Functional Simulation in Verilog HDL 4-11

Gate-Level Timing Simulation for Stratix IV Devices . 4-11
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4-12

Transport Delays . 4-12
+transport_path_delays . 4-12
+transport_int_delays . 4-12

Using NativeLink with the VCS or VCS MX Software . 4-12
Generating a Timing .vcd File for the PowerPlay Power Analyzer . 4-13
Viewing a Waveform from a .vpd or .vcd File . 4-13
Scripting Support . 4-14

Generating a Post-Synthesis Simulation Netlist for VCS . 4-14

Contents vii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Tcl Commands . 4-14
Command Prompt . 4-15

Generating a Gate-Level Timing Simulation Netlist for VCS . 4-15
Tcl Commands . 4-15
Command Prompt . 4-15

Conclusion . 4-15
Referenced Documents . 4-15
Document Revision History . 4-16

Chapter 5. Cadence NC-Sim Support
Introduction . 5-1
Software Requirements . 5-1
Simulation Flow Overview . 5-2

Operation Modes . 5-3
Quartus II Software and NC Simulation Flow Overview . 5-3
Compiling Libraries Using the EDA Simulation Library Compiler . 5-4

RTL Functional Simulation . 5-4
Creating Libraries . 5-4

Basic Library Setup . 5-4
LPM Functions, Altera Megafunctions, and Altera Primitive Library Setup 5-6
Megafunctions Requiring Atom Libraries . 5-7

Compiling Source Code and Testbenches . 5-7
Compiling in Command-Line Mode . 5-7
Compilation in GUI Mode . 5-8

Elaborating Your Design . 5-9
Elaborating Your Design in Command-Line Mode . 5-9
Elaborating Your Design in GUI Mode . 5-10

Adding Signals to View . 5-10
Adding Signals to View in Command-Line Mode . 5-10
Adding Signals to View in GUI Mode . 5-11

Simulating the Design . 5-13
RTL Functional Simulation in Command-Line Mode . 5-13
RTL Functional Simulation in GUI Mode . 5-14

Post-Synthesis Simulation . 5-14
Quartus II Simulation Output Files . 5-14
Creating Libraries . 5-14
Compiling Project Files and Libraries . 5-14
Elaborating Your Design . 5-14
Adding Signals to the View . 5-15
Simulating Your Design . 5-15

Gate-Level Timing Simulation . 5-15
Generating a Gate-Level Timing Simulation Netlist . 5-15
Disabling Timing Violation on Registers . 5-15
Performing Timing Simulation Using Post-Synthesis Netlist . 5-15
Quartus II Timing Simulation Libraries . 5-16
Creating Libraries . 5-16
Compiling the Project Files and Libraries . 5-16
Elaborating Your Design . 5-17

Compiling the .sdo File (VHDL Only) in Command-Line Mode . 5-17
Compiling the .sdo File (VHDL Only) in GUI Mode . 5-18

Adding Signals to View . 5-18
Simulating Your Design . 5-18

Simulating Designs that Include Transceivers . 5-18
RTL Functional Simulation for Stratix GX Devices . 5-19

viii Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for RTL Functional Simulation in VHDL . 5-19
Compiling Library Files for RTL Functional Simulation in Verilog HDL 5-19

Gate-Level Timing Simulation for Stratix GX Devices . 5-19
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 5-19
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 5-20

RTL Functional Simulation for Stratix II GX Devices . 5-20
Compiling Library Files for RTL Functional Simulation in VHDL . 5-21
Compiling Library Files for RTL Functional Simulation in Verilog HDL 5-22

Gate-Level Timing Simulation for Stratix II GX Devices . 5-22
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 5-22
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 5-23

RTL Functional Simulation for Stratix IV Devices . 5-23
Compiling Library Files for RTL Functional Simulation in VHDL . 5-24
Compiling Library Files for RTL Functional Simulation in Verilog HDL 5-24

Gate-Level Timing Simulation for Stratix IV Devices . 5-24
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 5-25
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 5-25

Pulse Reject Delays . 5-25
-PULSE_R . 5-25
-PULSE_INT_R . 5-25

Using the NativeLink Feature with NC-Sim . 5-26
Generating a Timing VCD File for the PowerPlay Power Analyzer . 5-26
Viewing a Waveform from a .trn File . 5-27
Scripting Support . 5-28

Generating NC-Sim Simulation Output Files . 5-28
Tcl Commands . 5-28
Command Prompt . 5-29

Conclusion . 5-29
Referenced Documents . 5-29
Document Revision History . 5-30

Chapter 6. Aldec Active-HDL Support
Introduction . 6-1
Software Compatibility . 6-1
Using Active-HDL Software in Quartus II Design Flows . 6-2
Simulation Libraries . 6-2

Simulation Library Files in the Quartus II Software . 6-3
Disabling Timing Violation on Registers . 6-3

Compiling Libraries Using the EDA Simulation Library Compiler . 6-3
Performing Simulation Using the Active-HDL Software (GUI Mode) . 6-4

Simulating VHDL Designs . 6-4
Performing RTL Functional Simulation . 6-4
Performing Post-Synthesis Simulation . 6-6
Performing Gate-Level Timing Simulation . 6-9

Simulating Verilog HDL Designs . 6-12
Performing RTL Functional Simulation . 6-12
Performing Post-Synthesis Simulation . 6-14
Performing Gate-Level Timing Simulation . 6-17

Performing Simulation Using the Active-HDL Software (Batch Mode) . 6-20
Simulating the VHDL Designs . 6-20

Performing RTL Functional Simulation . 6-21
Performing Post-Synthesis Simulation . 6-22
Performing Gate-Level Timing Simulation . 6-24

Simulating the Verilog HDL Designs . 6-26

Contents ix

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation . 6-26
Performing Post-Synthesis Simulation . 6-28
Performing Gate-Level Timing Simulation . 6-29

Compiling System Verilog Files . 6-31
Simulating Designs that Include Transceivers . 6-31

RTL Functional Simulation for Stratix II GX Devices . 6-32
Performing RTL Functional Simulation in VHDL . 6-33
Performing RTL Functional Simulation in Verilog HDL . 6-34

Gate-Level Timing Simulation for Stratix II GX Devices . 6-34
Performing Gate-Level Timing Simulation in VHDL . 6-34
Performing Gate-Level Timing Simulation in Verilog HDL . 6-35

RTL Functional Simulation for Stratix GX Devices . 6-35
Performing RTL Functional Simulation in VHDL . 6-35
Performing RTL Functional Simulation in Verilog HDL . 6-36

Gate-Level Timing Simulation for Stratix GX Devices . 6-36
Performing Gate-Level Timing Simulation in VHDL . 6-37
Performing Gate-Level Timing Simulation in Verilog HDL . 6-37

RTL Functional Simulation for Stratix IV Devices . 6-38
Performing RTL Functional Simulation in VHDL . 6-38
Performing RTL Functional Simulation in Verilog HDL . 6-38

Gate-Level Timing Simulation for Stratix IV Devices . 6-39
Performing Gate-Level Timing Simulation in VHDL . 6-39
Performing Gate-Level Timing Simulation in Verilog HDL . 6-40

Transport Delays . 6-40
Using the NativeLink Feature in Active-HDL Software . 6-41
Generating .vcd Files for the PowerPlay Power Analyzer . 6-41
Scripting Support . 6-41

Generating a Post-Synthesis Simulation Netlist for Active-HDL . 6-42
Tcl Commands . 6-42
Command Line . 6-42

Generating a Gate-Level Timing Simulation Netlist for Active-HDL . 6-42
Tcl Commands . 6-42
Command Line . 6-42

Conclusion . 6-43
Referenced Documents . 6-43
Document Revision History . 6-44

Chapter 7. Simulating Altera IP in Third-Party Simulation Tools
Introduction . 7-1
IP Functional Simulation Flow . 7-2

Verilog HDL and VHDL IPFS Models . 7-3
Instantiate the IP in Your Design . 7-3
Perform RTL Functional Simulation . 7-3

Simulating Altera IP Using the Quartus II NativeLink Feature . 7-4
Perform Analysis and Elaboration on Your Design . 7-4
Run Simulation Using the Quartus II NativeLink Feature . 7-5

Simulating Altera IP Without the Quartus II NativeLink Feature . 7-5
Using the EDA Simulation Library Compiler . 7-5

Design Language Examples . 7-6
Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software 7-6
VHDL Example: Simulating the IPFS Model in the ModelSim Software . 7-7
NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software 7-8
Verilog HDL Example: Simulating Your IPFS Model in VCS . 7-9

Single-Step Process . 7-9

x Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Two-Step Process (Compilation and Simulation) . 7-9
Conclusion . 7-9
Referenced Documents . 7-9
Document Revision History . 7-10

Section II. Timing Analysis

Chapter 8. The Quartus II TimeQuest Timing Analyzer
Introduction . 8-1
Getting Started with the Quartus II TimeQuest Timing Analyzer . 8-2

Setting Up the Quartus II TimeQuest Timing Analyzer . 8-2
Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines 8-2
Running the Quartus II TimeQuest Timing Analyzer . 8-4

Directly from the Quartus II Software . 8-4
Stand-Alone Mode . 8-4
Command-Line Mode . 8-4

Timing Analysis Overview . 8-6
Clock Analysis . 8-10

Clock Setup Check . 8-10
Clock Hold Check . 8-11
Recovery and Removal . 8-13
Multicycle Paths . 8-14

Metastability . 8-15
Common Clock Path Pessimism . 8-16
Clock-As-Data . 8-18

The Quartus II TimeQuest Timing Analyzer Flow Guidelines . 8-19
Create a Timing Netlist . 8-20
Read the Synopsys Design Constraints File . 8-20
Update Timing Netlist . 8-20
Generate Timing Reports . 8-20

Collections . 8-21
Adding and Removing Collection Items . 8-22

Application Examples . 8-23
SDC Constraint Files . 8-24

Fitter and Timing Analysis with SDC Files . 8-24
Specifying SDC Files for Place-and-Route . 8-24
Specifying SDC Files for Static Timing Analysis . 8-25

Synopsys Design Constraints File Precedence . 8-25
Clock Specification . 8-26

Clocks . 8-26
Generated Clocks . 8-27
Virtual Clocks . 8-30
Multi-Frequency Clocks . 8-31
Automatic Clock Detection . 8-31
Derive PLL Clocks . 8-32
Default Clock Constraints . 8-34
Clock Groups . 8-35
Clock Effect Characteristics . 8-36

Clock Latency . 8-36
Clock Uncertainty . 8-37

Derive Clock Uncertainty . 8-38
Intra-Clock Transfers . 8-39
Inter-Clock Transfers . 8-39

Contents xi

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

I/O Interface Clock Transfers . 8-39
I/O Specifications . 8-41

Input and Output Delay . 8-41
Set Input Delay . 8-41
Set Output Delay . 8-42

Delay and Skew Specifications . 8-44
set_net_delay . 8-44
set_max_skew . 8-44

Timing Exceptions . 8-45
Precedence . 8-45
False Path . 8-46
Minimum Delay . 8-47
Maximum Delay . 8-48
Multicycle Path . 8-49
Application Examples . 8-50
Delay Annotation . 8-51

Constraint and Exception Removal . 8-53
Timing Reports . 8-54

report_timing . 8-54
report_exceptions . 8-56
report_metastability . 8-58
report_clock_transfers . 8-59
report_clocks . 8-59
report_min_pulse_width . 8-60
report_net_timing . 8-61
report_sdc . 8-62
report_ucp . 8-62
report_bottleneck . 8-64
report_datasheet . 8-65
report_rskm . 8-66
report_tccs . 8-67
report_partitions . 8-67
report_path . 8-68
report_net_delay . 8-70
report_max_skew . 8-70
report_skew . 8-71
check_timing . 8-73
report_clock_fmax_summary . 8-75
create_timing_summary . 8-76

Timing Analysis Features . 8-77
Multi-Corner Analysis . 8-77
Advanced I/O Timing and Board Trace Model Assignments . 8-79
Wildcard Assignments and Collections . 8-79
Resetting a Design . 8-81
Cross-Probing . 8-81

locate . 8-82
The TimeQuest Timing Analyzer GUI . 8-83

The Quartus II Software Options and Compilation Report . 8-84
View Pane . 8-84

View Pane: Splitting . 8-85
View Pane: Removing Split Windows . 8-86

Tasks Pane . 8-87
Opening a Project and Writing a Synopsys Design Constraints File . 8-87
Netlist Setup Folder . 8-87

xii Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Reports Folder . 8-88
Macros Folder . 8-88

Console Pane . 8-89
Report Pane . 8-89
Constraints . 8-89
Name Finder . 8-91
Target Pane . 8-92
SDC Editor . 8-93

Conclusion . 8-93
Referenced Documents . 8-93
Document Revision History . 8-94

Chapter 9. Best Practices for the Quartus II TimeQuest Timing Analyzer
Clock Requirements . 9-1

Base Clocks . 9-1
Derived Clocks . 9-2
Virtual Clocks . 9-2

I/O Requirements . 9-4
Input Requirements . 9-4
Output Requirements . 9-5

Exceptions . 9-5
False Paths . 9-5
Minimum and Maximum Delays . 9-6
Multicycles . 9-6

Conclusion . 9-7
Referenced Documents . 9-7
Document Revision History . 9-7

Chapter 10. Switching to the Quartus II TimeQuest Timing Analyzer
Introduction . 10-1

Benefits of Switching to the Quartus II TimeQuest Timing Analyzer . 10-1
Chapter Contents . 10-1

Switching to the Quartus II TimeQuest Timing Analyzer . 10-2
Compile Your Design . 10-2
Create an .sdc File . 10-2

Conversion Utility . 10-3
Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer 10-3

Run the Quartus II TimeQuest Timing Analyzer . 10-3
Set the Default Timing Analyzer . 10-4

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers 10-4
Terminology . 10-5

Netlist . 10-5
Collections . 10-6

Constraints . 10-6
Constraint Files . 10-6
Constraint Entry . 10-7
Constraint File Priority . 10-8
Constraint Priority . 10-10
Ambiguous Constraints . 10-10

Clocks . 10-11
Related and Unrelated Clocks . 10-11
Clock Offset . 10-12
Clock Latency . 10-13

Contents xiii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Offset and Latency Example . 10-13
Clock Uncertainty . 10-14
Derived and Generated Clocks . 10-15
Automatic Clock Detection . 10-16
Hold Relationship . 10-18

Clock Objects . 10-19
Hold Multicycle . 10-20
Fitter Behavior . 10-22

Fitter Performance . 10-22
Reporting . 10-22

Paths and Pairs . 10-22
Default Reports . 10-23
Netlist Names . 10-23
Non-Integer Clock Periods . 10-24
Other Features . 10-24

Scripting API . 10-25
Timing Assignment Conversion . 10-26

Setup Relationship . 10-27
Hold Relationship . 10-27
Clock Latency . 10-27
Clock Uncertainty . 10-28
Inverted Clock . 10-28
Not a Clock . 10-28
Default Required fMAX Assignment . 10-29
Virtual Clock Reference . 10-29
Clock Settings . 10-30
Multicycle . 10-30
Clock Enable Multicycle . 10-30
I/O Constraints . 10-31
Input and Output Delay . 10-31
tSU Requirement . 10-32
tH Requirement . 10-34
tCO Requirement . 10-36
Minimum tCO Requirement . 10-38
tPD Requirement . 10-40
Minimum tPD Requirement . 10-41
Cut Timing Path . 10-41
Maximum Delay . 10-41
Minimum Delay . 10-42
Maximum Clock Arrival Skew . 10-42
Maximum Data Arrival Skew . 10-42

Constraining Skew on an Output Bus . 10-42
Conversion Utility . 10-44

Unsupported Global Assignments . 10-44
Recommended Global Assignments . 10-44
Clock Conversion . 10-45
Instance Assignment Conversion . 10-46

PLL Phase Shift Conversion . 10-48
tCO Requirement Conversion . 10-49

Entity-Specific Assignments . 10-49
Paths Between Unrelated Clock Domains . 10-50
Unsupported Instance Assignments . 10-50
Reviewing Conversion Results . 10-51

Warning Messages . 10-51

xiv Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clocks . 10-52
Clock Transfers . 10-53
Path Details . 10-53
Unconstrained Paths . 10-53
Bus Names . 10-53
Other . 10-53

Re-Running the Conversion Utility . 10-54
Notes . 10-54

Output Pin Load Assignments . 10-54
Constraint Target Types . 10-54
DDR Constraints with the DDR Timing Wizard . 10-54
HardCopy Stratix Device Handoff . 10-55
Unsupported SDC Features . 10-55
Constraint Passing . 10-55
Optimization . 10-55
Clock Network Delay Reporting . 10-55
PowerPlay Power Analysis . 10-55
Project Management . 10-56
Conversion Utility . 10-56

tPD and Minimum tPD Requirement Conversion . 10-56
Referenced Documents . 10-56
Document Revision History . 10-57

Chapter 11. Quartus II Classic Timing Analyzer
Introduction . 11-1
Timing Analysis Tool Setup . 11-2
Static Timing Analysis Overview . 11-2

Clock Analysis . 11-4
Clock Setup Check . 11-4
Clock Hold Check . 11-6

Multicycle Paths . 11-7
Clock Settings . 11-8

Individual Clock Settings . 11-8
Default Clock Settings . 11-8

Clock Types . 11-9
Base Clocks . 11-9
Derived Clocks . 11-9
Undefined Clocks . 11-9
PLL Clocks . 11-10

Clock Uncertainty . 11-10
Clock Latency . 11-11
Timing Exceptions . 11-13

Multicycle . 11-13
Destination Multicycle Setup Exception . 11-14
Destination Multicycle Hold Exception . 11-14
Source Multicycle Setup Exception . 11-15
Source Multicycle Hold Exception . 11-16
Default Hold Multicycle . 11-16
Clock Enable Multicycle . 11-16

Setup Relationship and Hold Relationship . 11-19
Maximum Delay and Minimum Delay . 11-20
False Paths . 11-20

I/O Analysis . 11-21
External Input Delay and Output Delay Assignments . 11-21

Contents xv

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Input Delay Assignment . 11-22
Output Delay Assignment . 11-23

Virtual Clocks . 11-24
Asynchronous Paths . 11-24

Recovery and Removal . 11-25
Recovery Report . 11-25
Removal Report . 11-27

Skew Management . 11-28
Maximum Clock Arrival Skew . 11-28
Maximum Data Arrival Skew . 11-29

Generating Timing Analysis Reports with report_timing . 11-30
Other Timing Analyzer Features . 11-31

Wildcard Assignments . 11-31
Assignment Groups . 11-32
Fast Corner Analysis . 11-33
Early Timing Estimation . 11-33
Timing Constraint Checker . 11-34
Latch Analysis . 11-34

Timing Analysis Using the Quartus II GUI . 11-35
Assignment Editor . 11-35
Timing Settings . 11-36

Clock Settings Dialog Box . 11-36
More Timing Settings Dialog Box . 11-36

Timing Reports . 11-36
Advanced List Path . 11-37
Early Timing Estimate . 11-38
Assignment Groups . 11-38

Scripting Support . 11-39
Creating Clocks . 11-39

Base Clocks . 11-39
Derived Clocks . 11-39

Clock Latency . 11-40
Clock Uncertainty . 11-40
Cut Timing Paths . 11-40
Input Delay Assignment . 11-40
Maximum and Minimum Delay . 11-41
Maximum Clock Arrival Skew . 11-41
Maximum Data Arrival Skew . 11-41
Multicycle . 11-41
Output Delay Assignment . 11-42
Report Timing . 11-42
Setup and Hold Relationships . 11-42
Assignment Group . 11-43
Virtual Clock . 11-43

MAX+PLUS II Timing Analysis Methodology . 11-43
fMAX Relationships . 11-43

Slack . 11-43
I/O Timing . 11-44

tSU Timing . 11-44
tH Timing . 11-45
tCO Timing . 11-45
Minimum tCO (min tCO) . 11-46
tPD Timing . 11-46
Minimum tPD (min tPD) . 11-46

xvi Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Timing Analyzer Tool . 11-47
Conclusion . 11-47
Referenced Documents . 11-48
Document Revision History . 11-48

Chapter 12. Synopsys PrimeTime Support
Introduction . 12-1
Quartus II Settings for Generating the PrimeTime Software Files . 12-1
Files Generated for the PrimeTime Software Environment . 12-2

The Netlist . 12-3
The SDO File . 12-3

Generating Multiple Operating Conditions with TimeQuest . 12-3
The Tcl Script . 12-5

Generated File Summary . 12-6
Running the PrimeTime Software . 12-7

Analyzing Quartus II Projects . 12-8
Other pt_shell Commands . 12-8

PrimeTime Timing Reports . 12-8
Sample of the PrimeTime Software Timing Report . 12-8
Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime Software
 . 12-9

Clock Setup Relationship and Slack . 12-10
Clock Hold Relationship and Slack . 12-13
Input Delay and Output Delay Relationships and Slack . 12-16

Static Timing Analyzer Differences . 12-18
The Quartus II Classic Timing Analyzer and the PrimeTime Software . 12-18

Rise/Fall Support . 12-18
Minimum and Maximum Delays . 12-18
Recovery/Removal Analysis . 12-18
Encrypted Intellectual Property Blocks . 12-19
Registered Clock Signals . 12-19
Multiple Source and Destination Register Pairs . 12-19
Latches . 12-20
LVDS I/O . 12-20
Clock Latency . 12-20
Input and Output Delay Assignments . 12-20
Generated Clocks Derived from Generated Clocks . 12-20

The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software 12-21
Encrypted Intellectual Property Blocks . 12-21
Latches . 12-21
LVDS I/O . 12-21
The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility 12-21
Clock and Data Paths . 12-22
Inverting and Non-Inverting Propagation . 12-22
Multiple Rise/Fall Numbers For a Timing Arc . 12-22
Virtual Generated Clocks . 12-22
Generated Clocks Derived from Generated Clocks . 12-22

Conclusion . 12-22
Referenced Documents . 12-22
Document Revision History . 12-23

Section III. Power Estimation and Analysis

Contents xvii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Chapter 13. PowerPlay Power Analysis
Introduction . 13-1
Creating PowerPlay EPE Spreadsheets . 13-2

PowerPlay EPE File Generator Compilation Report . 13-3
Types of Power Analysis . 13-5
Factors Affecting Power Consumption . 13-5

Device Selection . 13-5
Environmental Conditions . 13-6

Air Flow . 13-6
Heat Sink and Thermal Compound . 13-6
Junction Temperature . 13-6
Board Thermal Model . 13-6

Device Resource Usage . 13-7
Number, Type, and Loading of I/O Pins . 13-7
Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks 13-7
Number and Type of Global Signals . 13-7

Signal Activities . 13-7
PowerPlay Power Analyzer Flow . 13-8

Operating Conditions . 13-9
Signal Activities Data Sources . 13-10

Simulation Results . 13-11
Using Simulation Files in Modular Design Flows . 13-11

Complete Design Simulation . 13-13
Modular Design Simulation . 13-13
Multiple Simulations on the Same Entity . 13-14
Overlapping Simulations . 13-14
Partial Simulations . 13-14
Node Name Matching Considerations . 13-15
Glitch Filtering . 13-15
Node and Entity Assignments . 13-17

Timing Assignments to Clock Nodes . 13-17
Default Toggle Rate Assignment . 13-18
Vectorless Estimation . 13-18

Using the PowerPlay Power Analyzer . 13-18
Common Analysis Flows . 13-19

Signal Activities from Full Post-Fit Netlist (Timing) Simulation . 13-19
Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation . 13-19
Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
13-19
Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities 13-20
Signal Activities from User Defaults Only . 13-20

Generating a .saf or .vcd Using the Quartus II Simulator . 13-20
Generating a .vcd Using a Third-Party Simulator . 13-21

Generating a .vcd from ModelSim Software . 13-22
Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation . 13-23

Running the PowerPlay Power Analyzer Using the Quartus II GUI . 13-23
PowerPlay Power Analyzer Compilation Report . 13-26

Summary . 13-26
Settings . 13-26
Simulation Files Read . 13-26
Operating Conditions Used . 13-27
Thermal Power Dissipated by Block . 13-27
Thermal Power Dissipation by Block Type (Device Resource Type) . 13-27
Thermal Power Dissipation by Hierarchy . 13-27

xviii Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Core Dynamic Thermal Power Dissipation by Clock Domain . 13-27
Current Drawn from Voltage Supplies . 13-27
Confidence Metric Details . 13-28
Signal Activities . 13-28
Messages . 13-28
Specific Rules for Reporting . 13-28

Scripting Support . 13-29
Running the PowerPlay Power Analyzer from the Command Line . 13-29

Conclusion . 13-30
Referenced Documents . 13-30
Document Revision History . 13-31

Section IV. In-System Design Debugging
Introduction . IV-1
On-Chip Debugging Ecosystem . IV-1

Analysis Tools for RTL Nodes . IV-3
Resource Usage . IV-4
Pin Usage . IV-5
Usability Enhancements . IV-6

Stimulus-Capable Tools . IV-8
In-System Sources and Probes . IV-8
In-System Memory Content Editor . IV-8
Virtual JTAG Interface Megafunction . IV-9

Conclusion . IV-9

Chapter 14. Quick Design Debugging Using SignalProbe
Introduction . 14-1
Debugging Using the SignalProbe Feature . 14-1

Reserve the SignalProbe Pins . 14-2
Perform a Full Compilation . 14-3
Assign a SignalProbe Source . 14-3
Add Registers to the Pipeline Path to SignalProbe Pin . 14-4
Perform a SignalProbe Compilation . 14-5
Analyze the Results of the SignalProbe Compilation . 14-5
SignalProbe ECO Flows . 14-5

SignalProbe ECO Flow with Quartus II Incremental Compilation . 14-6
SignalProbe ECO Flow Without Quartus Incremental Compilation . 14-6

Common Questions About the SignalProbe Feature . 14-8
Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to
Process”? . 14-8
How Can I Retain My SignalProbe ECOs During Re-Compilation of My Design? 14-8
Why Did My SignalProbe Source Disappear in the Change Manager? . 14-8
What is an ECO and Where Can I Find More Information about ECOs? 14-8
How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software Version 5.1
and Earlier to Version 6.0 and Later? . 14-9
What are all the Changes for the SignalProbe Feature between the Quartus II Software Version 5.1
and Earlier, and Version 6.0 and Later? . 14-9
Why Can't I Reserve a SignalProbe Pin? . 14-10

Scripting Support . 14-11
Make a SignalProbe Pin . 14-11
Delete a SignalProbe Pin . 14-11
Enable a SignalProbe Pin . 14-11
Disable a SignalProbe Pin . 14-11

Contents xix

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Perform a SignalProbe Compilation . 14-11
Migrate Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later 14-11
Script Example . 14-11

Adding SignalProbe Sources . 14-12
Performing a SignalProbe Compilation . 14-13

Running SignalProbe with Smart Compilation . 14-13
Understanding the Results of a SignalProbe Compilation . 14-13

Analyzing SignalProbe Routing Failures . 14-14
SignalProbe Scripting Support . 14-15
Reserving SignalProbe Pins . 14-15
Adding SignalProbe Sources . 14-16
Assigning I/O Standards . 14-16
Adding Registers for Pipelining . 14-16
Run SignalProbe Automatically . 14-16
Run SignalProbe Manually . 14-16
Enable or Disable All SignalProbe Routing . 14-17
Running SignalProbe with Smart Compilation . 14-17
Allow SignalProbe to Modify Fitting Results . 14-17

Conclusion . 14-17
Referenced Documents . 14-17
Document Revision History . 14-18

Chapter 15. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Introduction . 15-1

Hardware and Software Requirements . 15-2
Design Flow Using the SignalTap II Embedded Logic Analyzer . 15-4
SignalTap II Embedded Logic Analyzer Task Flow . 15-4

Add the SignalTap II Embedded Logic Analyzer to Your Design . 15-5
Configure the SignalTap II Embedded Logic Analyzer . 15-5
Define Trigger Conditions . 15-6
Compile the Design . 15-6
Program the Target Device or Devices . 15-6
Run the SignalTap II Embedded Logic Analyzer . 15-6
View, Analyze, and Use Captured Data . 15-6

Add the SignalTap II Embedded Logic Analyzer to Your Design . 15-6
Creating and Enabling a SignalTap II File . 15-7

Creating a SignalTap II File . 15-7
Enabling and Disabling a SignalTap II File for the Current Project . 15-8

Embedding Multiple Analyzers in One FPGA . 15-9
Monitoring FPGA Resources Used by the SignalTap II Embedded Logic Analyzer 15-9
Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer 15-10

Creating an HDL Representation Using the MegaWizard Plug-In Manager 15-10
SignalTap II Megafunction Ports . 15-13
Instantiating the SignalTap II Embedded Logic Analyzer in Your HDL 15-14

Configure the SignalTap II Embedded Logic Analyzer . 15-14
Assigning an Acquisition Clock . 15-14
Adding Signals to the SignalTap II File . 15-15

Signal Preservation . 15-16
Assigning Data Signals Using the Node Finder . 15-17
Assigning Data Signals Using the Technology Map Viewer . 15-18
Node List Signal Use Options . 15-18
Untappable Signals . 15-19

Adding Signals with a Plug-In . 15-19
Adding Finite State Machine State Encoding Registers . 15-20

xx Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Modifying and Restoring Mnemonic Tables for State Machines . 15-22
Additional Considerations . 15-22

Specifying the Sample Depth . 15-22
Capturing Data to a Specific RAM Type . 15-23
Choosing the Buffer Acquisition Mode . 15-23

Non-Segmented Buffer . 15-24
Segmented Buffer . 15-24

Using the Storage Qualifier Feature . 15-25
Input Port Mode . 15-27
Transitional Mode . 15-28
Conditional Mode . 15-29
Start/Stop Mode . 15-30
State-Based . 15-31
Showing Data Discontinuities . 15-31
Disable Storage Qualifier . 15-31

Managing Multiple SignalTap II Files and Configurations . 15-32
Define Triggers . 15-33

Creating Basic Trigger Conditions . 15-33
Creating Advanced Trigger Conditions . 15-34

Examples of Advanced Triggering Expressions . 15-35
Trigger Condition Flow Control . 15-36

Sequential Triggering . 15-36
Custom State-Based Triggering . 15-38
SignalTap II Trigger Flow Description Language . 15-42
State Labels . 15-42
Boolean_expression . 15-43
Action_list . 15-43
Resource Manipulation Action . 15-43
Buffer Control Action . 15-44
State Transition Action . 15-44
Using the State-Based Storage Qualifier Feature . 15-45

Specifying the Trigger Position . 15-48
Creating a Power-Up Trigger . 15-49

Enabling a Power-Up Trigger . 15-49
Managing and Configuring Power-Up and Runtime Trigger Conditions 15-50

Using External Triggers . 15-51
Trigger In . 15-51
Trigger Out . 15-51
Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer 15-52

Compile the Design . 15-53
Faster Compilations with Quartus II Incremental Compilation . 15-53

Enabling Incremental Compilation for Your Design . 15-54
Using Incremental Compilation with the SignalTap II Embedded Logic Analyzer 15-55

Preventing Changes Requiring Recompilation . 15-57
Timing Preservation with the SignalTap II Embedded Logic Analyzer . 15-57
Performance and Resource Considerations . 15-57

Program the Target Device or Devices . 15-59
Programming a Single Device . 15-59
Programming Multiple Devices to Debug Multiple Designs . 15-60

Run the SignalTap II Embedded Logic Analyzer . 15-60
Running with a Power-Up Trigger . 15-62
Running with Runtime Triggers . 15-62
Performing a Force Trigger . 15-62
Runtime Reconfigurable Options . 15-63

Contents xxi

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

SignalTap II Status Messages . 15-65
View, Analyze, and Use Captured Data . 15-66

Viewing Captured Data . 15-66
Capturing Data Using Segmented Buffers . 15-67
Creating Mnemonics for Bit Patterns . 15-69
Automatic Mnemonics with a Plug-In . 15-69
Locating a Node in the Design . 15-69
Saving Captured Data . 15-70
Converting Captured Data to Other File Formats . 15-70
Creating a SignalTap II List File . 15-71

Other Features . 15-71
Using the SignalTap II MATLAB MEX Function to Capture Data . 15-71
Using SignalTap II in a Lab Environment . 15-73
Remote Debugging Using the SignalTap II Embedded Logic Analyzer . 15-73

Equipment Setup . 15-73
Software Setup on the Remote PC . 15-73
Software Setup on the Local PC . 15-74
SignalTap II Setup on the Local PC . 15-75

Using the SignalTap II Embedded Logic Analyzer in Devices with Configuration Bitstream Security
 . 15-75
Backward Compatibility with Previous Versions of Quartus II Software . 15-76

SignalTap II Scripting Support . 15-76
SignalTap II Command-Line Options . 15-76
SignalTap II Tcl Commands . 15-78

Design Example: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems 15-79
Custom Triggering Flow Application Examples . 15-79

Design Example 1: Specifying a Custom Trigger Position . 15-80
Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and
triggercond3 . 15-80

Conclusion . 15-81
Referenced Documents . 15-81
Document Revision History . 15-82

Chapter 16. In-System Debugging Using External Logic Analyzers
Introduction . 16-1
Choosing a Logic Analyzer . 16-1

Required Components . 16-2
FPGA Device Support . 16-3

Debugging Your Design Using the Logic Analyzer Interface . 16-3
Creating an LAI File . 16-4

Creating a New Logic Analyzer Interface File . 16-5
Opening an Existing External Analyzer Interface File . 16-5
Saving the External Analyzer Interface File . 16-5

Configuring the Logic Analyzer Interface File Core Parameters . 16-5
Mapping the Logic Analyzer Interface File Pins to Available I/O Pins . 16-6
Mapping Internal Signals to the Logic Analyzer Interface Banks . 16-7
Using the Node Finder . 16-7
Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project 16-8
Compiling Your Quartus II Project . 16-8
Programming Your FPGA Using the Logic Analyzer Interface . 16-9
Using the Logic Analyzer Interface with Multiple Devices . 16-9
Configuring Banks in the Logic Analyzer Interface File . 16-10
Acquiring Data on Your Logic Analyzer . 16-10

Advanced Features . 16-10

xxii Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Using the Logic Analyzer Interface with Incremental Compilation . 16-11
Creating Multiple Logic Analyzer Interface Instances in One FPGA . 16-11

Conclusion . 16-12
Referenced Documents . 16-12
Document Revision History . 16-12

Chapter 17. In-System Updating of Memory and Constants
Introduction . 17-1
Overview . 17-1
Device Megafunction Support . 17-2
Updating Memory and Constants in Your Design . 17-2
Creating In-System Modifiable Memories and Constants . 17-3
Running the In-System Memory Content Editor . 17-3

Instance Manager . 17-4
Editing Data Displayed in the Hex Editor Pane . 17-6
Importing and Exporting Memory Files . 17-6
Viewing Memories and Constants in the Hex Editor Pane . 17-7
Scripting Support . 17-8
Programming the Device with the In-System Memory Content Editor . 17-8
Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic
Analyzer . 17-9

Conclusion . 17-9
Referenced Documents . 17-10
Document Revision History . 17-10

Chapter 18. Design Debugging Using In-System Sources and Probes
Introduction . 18-1
Overview . 18-1

Hardware and Software Requirements . 18-3
Design Flow Using the In-System Sources and Probes Editor . 18-3

Configuring the ALTSOURCE_PROBE Megafunction . 18-4
Instantiating the ALTSOURCE_PROBE Megafunction . 18-5
Compiling the Design . 18-6

Running the In-System Sources and Probes Editor . 18-6
Programming Your Device With JTAG Chain Configuration . 18-7
Instance Manager . 18-7
In-System Sources and Probes Editor Pane . 18-8

Reading Probe Data . 18-8
Writing Data . 18-9
Organizing Data . 18-9

Tcl interface for the In-System Sources and Probes Editor . 18-9
Design Example: Dynamic PLL Reconfiguration . 18-12
Conclusion . 18-15
Referenced Documents . 18-15
Document Revision History . 18-15

Section V. Formal Verification

Chapter 19. Cadence Encounter Conformal Support
Introduction . 19-1

Formal Verification Versus Simulation . 19-1
Formal Verification: What You Need to Know . 19-2

Formal Verification Design Flow . 19-2

Contents xxiii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Quartus II Integrated Synthesis . 19-2
EDA Tool Support for Quartus II Integrated Synthesis . 19-3
Synplify Pro . 19-3
EDA Tool Support for Synplify Pro . 19-4

RTL Coding Guidelines for Quartus II Integrated Synthesis . 19-4
Synthesis Directives and Attributes . 19-5
Stuck-at Registers . 19-6
ROM, LPM_DIVIDE, and Shift Register Inference . 19-6
RAM Inference . 19-7
Latch Inference . 19-7
Combinational Loops . 19-7
Finite State Machine Coding Styles . 19-8

Black Boxes in the Encounter Conformal Flow . 19-8
Tcl Command . 19-9
GUI . 19-9

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files 19-10
The Quartus II Software Generated Files, Formal Verification Scripts, and Directories 19-14

Understanding the Formal Verification Scripts for Encounter Conformal . 19-15
The Encounter Conformal Commands within the Quartus II Software-Generated Scripts 19-15

Comparing Designs Using Encounter Conformal . 19-17
Running the Encounter Conformal Software from the GUI . 19-17
Running the Encounter Conformal Software From a System Command Prompt 19-18

Known Issues and Limitations . 19-19
Black Box Models . 19-21
Conformal Dofile/Script Example . 19-23
Conclusion . 19-25
Referenced Documents . 19-25
Document Revision History . 19-25

Section VI. Device Programming

Chapter 20. Quartus II Programmer
Introduction . 20-1
Programming Flow . 20-1
Programming and Configuration Modes . 20-4

JTAG Mode . 20-4
Passive Serial Mode . 20-4
Active Serial Mode . 20-5
In-Socket Programming Mode . 20-5

Programmer Overview . 20-6
Tools Menu . 20-9

Hardware Setup . 20-11
Hardware Settings . 20-11
JTAG Settings . 20-11

Device Programming and Configuration . 20-12
Single Device Programming and Configuration . 20-12
Multi-Device Programming and Configuration . 20-13

Bypassing an Altera Device . 20-13
Bypassing a Non-Altera Device . 20-13
Chain Description File . 20-16
Design Security Key Programming . 20-16

Optional Programming Files . 20-17
Types of Programming and Configuration Files . 20-17

xxiv Contents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Generating Optional Programming Files . 20-19
Create Programming Files . 20-19
Convert Programming Files . 20-19
Generating Optional Programming or Configuration Files During Compilation 20-19

Flash Loaders . 20-19
Parallel Flash Loader . 20-19
Serial Flash Loader . 20-20

JTAG Chain Debugger Tool . 20-20
JTAG Chain Integrity . 20-21

JTAG Chain Integrity Test . 20-22
IDCODE Iteration Test . 20-24

JTAG Chain Debugging . 20-25
Bypassing Devices in the Chain . 20-28
JTAG Chain Log . 20-29

Other Programming Tools . 20-30
Quartus II Stand-Alone Programmer . 20-30
jtagconfig Debugging Tool . 20-30

Scripting Support . 20-30
Conclusion . 20-31
Referenced Documents . 20-31
Document Revision History . 20-32

Additional Information
About this Handbook . Info-1
How to Contact Altera . Info-1
Third-Party Software Product Information . Info-1
Typographic Conventions . Info-2

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Chapter Revision Dates

The chapters in this book, Quartus II Handbook Version 9.1 Volume 3: Verification, were
revised on the following dates. Where chapters or groups of chapters are available
separately, part numbers are listed.

Chapter 1 Quartus II Simulator
Revised: November 2009
Part Number: QII53017-9.1.0

Chapter 2 Simulating Designs with EDA Tools
Revised: November 2009
Part Number: QII53024-9.1.0

Chapter 3 Mentor Graphics ModelSim Support
Revised: November 2009
Part Number: QII53001-9.1.0

Chapter 4 Synopsys VCS and VCS MX Support
Revised: November 2009
Part Number: QII53002-9.1.0

Chapter 5 Cadence NC-Sim Support
Revised: November 2009
Part Number: QII53003-9.1.0

Chapter 6 Aldec Active-HDL Support
Revised: November 2009
Part Number: QII53023-9.1.0

Chapter 7 Simulating Altera IP in Third-Party Simulation Tools
Revised: November 2009
Part Number: QII53014-9.1.0

Chapter 8 The Quartus II TimeQuest Timing Analyzer
Revised: November 2009
Part Number: QII53018-9.1.0

Chapter 9 Best Practices for the Quartus II TimeQuest Timing Analyzer
Revised: November 2009
Part Number: QII53024-9.1.0

Chapter 10 Switching to the Quartus II TimeQuest Timing Analyzer
Revised: November 2009
Part Number: QII53019-9.1.0

Chapter 11 Quartus II Classic Timing Analyzer
Revised: November 2009
Part Number: QII53004-9.1.0

xxvi Chapter Revision Dates

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Chapter 12 Synopsys PrimeTime Support
Revised: November 2009
Part Number: QII53005-9.1.0

Chapter 13 PowerPlay Power Analysis
Revised: November 2009
Part Number: QII53013-9.1.0

Chapter 14 Quick Design Debugging Using SignalProbe
Revised: November 2009
Part Number: QII53008-9.1.0

Chapter 15 Design Debugging Using the SignalTap II Embedded Logic Analyzer
Revised: November 2009
Part Number: QII53009-9.1.0

Chapter 16 In-System Debugging Using External Logic Analyzers
Revised: November 2009
Part Number: QII53016-9.1.0

Chapter 17 In-System Updating of Memory and Constants
Revised: November 2009
Part Number: QII53012-9.1.0

Chapter 18 Design Debugging Using In-System Sources and Probes
Revised: November 2009
Part Number: QII53021-9.1.0

Chapter 19 Cadence Encounter Conformal Support
Revised: November 2009
Part Number: QII53011-9.1.0

Chapter 20 Quartus II Programmer
Revised: November 2009
Part Number: QII53022-9.1.0

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section I. Simulation

As the design complexity of FPGAs continues to rise, verification engineers are
finding it increasingly difficult to simulate their system-on-a-programmable-chip
(SOPC) designs in a timely manner. The verification process is now the bottleneck in
the FPGA design flow. You can perform functional and timing simulation of your
design by using the Quartus® II Simulator. The Quartus II software also provides a
wide range of features for performing simulation of designs in EDA simulation tools.

This section includes the following chapters:

■ Chapter 1, Quartus II Simulator

This chapter describes how to perform different types of simulations with the
Quartus II simulator.

■ Chapter 2, Simulating Designs with EDA Tools

This chapter provides guidelines to help you perform simulation for your Altera®

designs using EDA simulators and the Quartus II NativeLink feature.

■ Chapter 3, Mentor Graphics ModelSim Support

This chapter provides detailed instructions about how to simulate your design in
the ModelSim-Altera® software or the Mentor Graphics® ModelSim software.

■ Chapter 4, Synopsys VCS and VCS MX Support

This chapter describes how to use the Synopsys VCS and VCS MX software to
simulate designs that target Altera FPGAs.

■ Chapter 5, Cadence NC-Sim Support

This chapter describes the basic NC-Sim, NC-Verilog, and NC-VHDL functional,
post-synthesis, and gate-level timing simulations.

■ Chapter 6, Aldec Active-HDL Support

This chapter describes how to use the Active-HDL software to simulate designs
that target Altera FPGAs.

■ Chapter 7, Simulating Altera IP in Third-Party Simulation Tools

This chapter describes the process for instantiating the IP megafunctions in your
design and simulating their functional simulation models in Altera-supported,
third-party simulation tools.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

I–2 Section I: Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1. Quartus II Simulator

This chapter describes how to perform different types of simulations with the
Quartus II simulator.

Introduction
With today’s FPGAs becoming faster and more complex, designers face challenges in
validating their designs. Simulation verifies the correctness of the design, reducing
board testing and debugging time.

The Altera® Quartus® II simulator is included in the Quartus II software to assist
designers with design verification. The Quartus II simulator has a comprehensive set
of features that are covered in the following sections:

■ “Simulation Flow” on page 1–2

■ “Waveform Editor” on page 1–5

■ “Simulator Settings” on page 1–13

■ “Simulation Report” on page 1–16

■ “Debugging with the Quartus II Simulator” on page 1–19

■ “Scripting Support” on page 1–21

The Quartus II simulator supports the following device families:

■ ACEX® 1K

■ APEX™ 20KC, APEX 20KE, APEX II

■ Arria® GX

■ Cyclone® III, Cyclone II, Cyclone

■ FLEX® 10K, FLEX 10KA, FLEX 10KE, FLEX 6000

■ HardCopy® II, HardCopy

■ MAX® II, MAX 3000A, MAX 7000AE, MAX 7000B, MAX 7000S

■ Stratix® III, Stratix II, Stratix, Stratix GX, Stratix II GX

1 The Quartus II simulator does not support newer devices introduced after Stratix III
and Quartus II software version 8.1 and onwards. Use the ModelSim-Altera Edition to
run simulations on designs targeting device introductions after Stratix III. For more
information about the ModelSim-Altera Edition simulator, refer to the Mentor Graphics
ModelSim Support chapter in volume 3 of the Quartus II Handbook.

In the Quartus II software version 10.0 and onwards, the Quartus II simulator and
Waveform Editor is removed. Therefore, you can run your simulation in the EDA
simulators. The following EDA simulators are supported in the Quartus II software:

QII53017-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf

1–2 Chapter 1: Quartus II Simulator
Simulation Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ ModelSim

■ ModelSim SE

■ ModelSim Altera Edition (AE)

■ ModelSim Altera Starter Edition (ASE)

■ VCS/VCS-MX

■ NCSim

■ Active-HDL

■ Riviera-PRO

f For more information, refer to the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook.

Simulation Flow
You can perform functional and timing simulations with the Quartus II simulator.
Both types of simulation verify the correctness and behavior of your design.
Functional simulations are run at the beginning of the Quartus II design flow and
timing simulations are run at the end.

Figure 1–1 shows the Quartus II simulator flow.

Chapter 1: Quartus II Simulator 1–3
Simulation Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Your design simulation can happen at the functional level, in which the logical
behavior of your design is verified and no timing information is used in simulation
(refer to Figure 1–1). Timing simulation can happen after your design is compiled
(synthesized and placed and routed) and after you use the timing data of your
design’s resources. In timing simulation, the logical behavior of your design is
verified with the device’s worst-case timing models. Timing simulation using the fast
timing model is also a type of timing simulation in which best-case timing data is
used.

To perform functional simulations with the Quartus II simulator, you must first
generate a functional simulation netlist. A functional netlist file is a flattened netlist
extracted from the design files that does not contain timing information.

For timing simulations, you must first perform place-and-route and static timing
analysis to generate a timing simulation netlist. A timing simulation netlist includes
timing delays of each device atom block and the routing delays.

Figure 1–1. Simulation Flow

Notes to Figure 1–1:

(1) For more information about EDA simulators, refer to the Simulation section in volume 3 of the Quartus II Handbook.
(2) You can use Signal Activity Files (.saf) or Value Change Dump Files (.vcd) in the PowerPlay power analyzer to check power resources.

Design Entry

Analysis & Synthesis

Place & Route (Fitter)

Timing Analysis

.saf

.vwf/.tbl/

.vec/.scf/
.cvwf/
.vcd

.rptSimulation
Report File

Input Stimulus

NetlistNetlist

Generate Functional
Simulation Netlist

Fast Timing
Analysis

Netlist

Timing Simulation Using
Fast Timing Model

Functional Simulation Timing Simulation

Functional
Netlist (db)

Timing
Netlist (db)

Fast Timing
Netlist (db)

Signal Activity File (2)

Netlist
Writer

EDA
Simulator (1)

Quartus II Simulator

Quartus II
Simulator

.vwf/
.cvwf/
.vcd

Test Bench File

EndSimulation Debugging
YesNo Requirements

Satisfied?

Convert to
RTL Testbench

.vt/.vht

.vcd

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

1–4 Chapter 1: Quartus II Simulator
Simulation Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If you want to use third-party EDA simulation tools, you can generate a netlist using
EDA Netlist Writer. You can use this netlist with your testbench files in third-party
simulation tools.

f For more information about third-party simulators, refer to the respective EDA
Simulation chapter in the Simulation section in volume 3 of the Quartus II Handbook.

The Quartus II simulator supports Functional, Timing, and Timing using Fast Timing
Model simulations. The following sections describe how to perform these
simulations.

Functional Simulation
To run a functional simulation, you must perform the following steps:

1. On the Processing menu, click Generate Functional Simulation Netlist. This
flattens the functional simulation netlist extracted from the design files. The netlist
does not contain timing information.

2. On the Assignments menu, click Settings. The Settings dialog box appears.

3. In the Category list, select Simulator Settings. The Simulator Settings page
appears.

4. In the Simulation mode list, select Functional.

5. In the Simulation input box, specify the vector source. You must specify the
vector file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

Chapter 1: Quartus II Simulator 1–5
Waveform Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Timing Simulation
To run a timing simulation, you must perform the following steps:

1. On the Processing menu, click Start Compilation or click the Compilation button
on the toolbar. This flattens the design and generates an internal netlist with
timing delay information annotated.

2. On the Assignments menu, click Settings. The Settings dialog box appears.

3. In the Category list, select Simulator Settings. The Simulator Settings page
appears.

4. In the Simulation mode list, select Timing.

5. In the Simulation input list, specify the vector source. You must specify the vector
file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

Timing Simulation Using Fast Timing Model Simulation
To run a timing simulation using a fast timing model, you must perform the following
steps:

1. On the Processing menu, point to Start and click Start Analysis and Synthesis.

2. On the Processing menu, point to Start and click Start Fitter.

1 You must perform fast timing analysis before you can perform a timing
simulation using the fast timing models.

3. On the Processing menu, point to Start and click Start Classic Timing Analyzer
(Fast Timing Model).

4. On the Assignments menu, click Settings. The Settings dialog box appears.

5. In the Category list, select Simulator Settings. The Simulator Settings page
appears.

6. In the Simulation mode list, select Timing using Fast Timing Model.

7. In the Simulation input box, specify the vector source. You must specify the
vector file to run the simulation.

8. Click OK.

9. On the Processing menu, click Start Simulation.

Waveform Editor
The most common input stimulus for the Quartus II simulator is Vector Waveform
File (.vwf). You can use the Quartus II Waveform Editor to generate a .vwf.

1–6 Chapter 1: Quartus II Simulator
Waveform Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Creating .vwf Files
To create a .vwf, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Select Vector Waveform File.

3. Click OK. A blank Waveform Editor dialog box appears (Figure 1–2).

4. Add nodes and buses. To add a node or bus, on the Edit menu, click Insert and
click Insert Node or Bus. The Insert Node or Bus dialog box appears. All nodes
and buses, as well as the internal signals, are listed under Name in the Waveform
Editor window.

1 You can also open the Insert Node or Bus dialog box by double-clicking
under Name in the Waveform Editor.

5. You can customize the type of node or bus you want to add. If you have a large
design with many nodes or buses, you may want to use the Node Finder for node
or bus selection. To use the Node Finder, click Node Finder. The Node Finder
dialog box appears (Figure 1–3).

Figure 1–2. Waveform Editor Window

Chapter 1: Quartus II Simulator 1–7
Waveform Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

You can use the Node Finder to find your nodes for simulation among all the
nodes and buses in your design. Use the Node Finder to filter and add nodes to
your waveform. The Node Finder is equipped with multiple default filter options.
By using the correct filter in the Node Finder, you can find the internal node’s
name and add it to your .vwf for simulation.

1 Your node might not appear in the simulation waveform and might be
ignored during simulation. This happens because the node has been
renamed or synthesized away by the Quartus II software. To prevent this
from happening, Altera recommends using the register and pin nodes to
simulate your design.

Table 1–1 describes 12 of the Node Finder default filters.

Figure 1–3. Node Finder Dialog Box

Name of the node or
bus you want to find

Specify or browse the hierarchy
of the design to find the node or bus

List of default filters

Customize your filters

All nodes and buses matching
the search criteria are listed here

All selected nodes and
buses are placed here

Table 1–1. Filter Options (Part 1 of 2)

Filter Description

Pins: input Finds all input pin names in your design file or files.

Pins: output Finds all output pin names in your design file or files.

Pins: bidirectional Finds all bidirectional pin names in your design file or files.

Pins: virtual Finds all virtual pin names.

Pins: all Finds all pin names in your design file or files.

Registers: pre-synthesis Finds all user-entered register names contained in the design after design elaboration, but
before physical synthesis does any synthesis optimizations.

1–8 Chapter 1: Quartus II Simulator
Waveform Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To customize your own filters in the Node Finder, you must perform the following
steps:

a. Click Customize. The Customize Filter dialog box appears.

b. To configure settings, click New. The New Custom Filter dialog box appears.

c. In the Filter name dialog box, type the name of the custom filter.

d. In the Copy settings from filter list, select the filter setting.

e. Click OK.

f. You can now customize your filters in the Customize Filter dialog box.

6. In the Look in dialog box, you can view and edit the current search hierarchy path.
You can type the search hierarchy path or you can browse for the hierarchy path
by clicking the browse button.

You can move up the search hierarchy by selecting hierarchical names in the Select
Hierarchy Level dialog box. This ensures that in a large design with many signals,
you can specify which hierarchy you would like to get the node from to reduce the
amount of signals displayed.

7. After you have configured the filter and specified the correct hierarchy in the
Node Finder dialog box, click List to display all relevant nodes or buses.

Select any number of nodes or buses from the Nodes Found list and click the >
button to include them in the waveform, or you can click the >> button to include
all nodes and buses displayed in the Nodes Found list.

8. Click OK.

1 You can also add nodes to the Waveform Editor by dragging nodes from the
Project Navigator, Netlist Viewers, or Block Diagram, and dropping them
into the Waveform Editor.

9. Create a waveform for a signal. The Quartus II Waveform Editor toolbar includes
some of the most common waveform settings, making waveform vector drawings
easier and user friendly. Figure 1–4 shows the options available on the Waveform
Editor toolbar.

Registers: post-fitting Finds all user-entered register names in your design file or files that survived physical
synthesis and fitting.

Design Entry (all names) Finds all user-entered names in your design file or files.

Post-Compilation Finds all user-entered and compiler-generated names that do not have location
assignments and survived fitting.

SignalTap II: pre-synthesis Finds all internal device nodes in the pre-synthesis netlist that can be analyzed by the
SignalTap® II Logic Analyzer.

SignalTap II: post-fitting Finds all internal device nodes in the post-fitting netlist that can be analyzed by the
SignalTap II Logic Analyzer.

SignalProbe Finds all SignalProbe device nodes in the post-fitting netlist.

Table 1–1. Filter Options (Part 2 of 2)

Filter Description

Chapter 1: Quartus II Simulator 1–9
Waveform Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

10. After you edit your waveform, save the waveform. On the File menu, click Save
As. The Save As dialog box appears. Type your file name, specify the file type, and
click Save.

1 Instead of using the Node Finder to insert your nodes for your .vwf file,
you can also drag-and-drop any nodes from the Netlist Viewer to your
Simulation Vector Waveform File. For more information about Netlist
Viewers, refer to the Analyzing Designs with the Quartus II Netlist Viewers
chapter in volume 1 of the Quartus II Handbook.

Count Value
Count Value applies a count value to a bus to increment the value of the bus by a
specified time interval. Instead of manually editing the values for each node, the
Count Value feature on the Waveform Editor toolbar automatically creates the
counting values for buses. This feature enables you to specify a starting value for a
bus, what time interval to increment, and when to stop counting. You can also
configure transition occurrences while setting the count type and increment number.
When you click on the Count Value button in the Waveform Editor toolbar, the Count
Value dialog box appears. You can also open the Count Value dialog box by
right-clicking the selected node, pointing to Value, and clicking Count Value.

Clock
You can use the Clock feature in the Waveform Editor toolbar to automatically
generate the clock wave, rather than drawing each clock triggering pulse. To generate
a clock signal with the Clock dialog box, click the Overwrite Clock button on the
Waveform Editor toolbar. You can also determine the start and end time of a clock
signal, whether to manually configure the period (the offset and the duty cycle), or
whether to generate the clock based on a specified clock.

Arbitrary Value
Arbitrary Value allows you to overwrite a node value over the selected waveform,
waveform interval, or across one or more nodes or groups. To overwrite a node value,
perform the following steps:

1. Select a node or a bus and click the Arbitrary Value button on the Waveform
Editor toolbar (refer to Figure 1–4). The Arbitrary Value dialog box appears.

Figure 1–4. Waveform Editor Toolbar

Selection
Tool

Full
Screen

Forcing
Unknown (x)

Weak
Unknown (W)

Invert Random
Value (R)

Waveform
Editing Tool

Replace Forcing
High (1)

Weak
High (H)

Overwrite
Clock

Sort

Text Find
Forcing
Low (0)

Weak
Low (L)

Count
Value (C)

Snap
to Grid

Zoom
Tool

Unitialized
(U)

High
Impedance

(Z)
Don't

Care (DC)
Arbitrary

Value

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

1–10 Chapter 1: Quartus II Simulator
Waveform Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

2. Under Time range, specify the start and end time you want to overwrite for the
node value.

3. In the Radix list, select the radix type.

4. Specify the new value you want overwritten in the Numeric or named value box.

5. Click OK.

Random Value
Random Value allows you to generate random node values over the selected
waveform, waveform interval, or across one or more nodes or groups.

You can generate random node values by every grid interval, every half grid interval,
at random intervals, or at fixed intervals.

Generating a Testbench
You can export your .vwf file as a VHDL Test Bench File (.vht) or Verilog Test Bench
File (.vt). This is useful when you want to use a vector waveform in different EDA
tools. You must run an analysis and elaboration before you can export a waveform
vector. To export a waveform vector, have your vector waveform open and perform
the following steps:

1. On the File menu, click Export. The Export dialog box appears.

2. In the Save as type list, select VHDL Test Bench File (*.vht) or Verilog Test Bench
File (*.vt).

3. You can optionally turn on the Add self-checking code to file option. This option
adds additional logic to check the results of the output and compares it to the
original .vwf file.

1 You must open your project in the Quartus II software before you can export a .vwf
file.

f For more information about using the generated testbench in other EDA tools, refer to
the respective EDA simulator chapter in the Simulation section in volume 3 of the
Quartus II Handbook.

Grid Size
When you select portions of your waveform, the selection area snaps to time intervals
specified in the Grid Size dialog box. You can customize the grid size in the
Waveform Editor. You can change the grid size based on the clock settings or by
setting the time period. To customize the grid size, on the Edit menu, click Grid Size.

Time Bars
Add time bars in the Waveform Editor to compare edges between different signals.
You can also use time bars to jump forward and backward to the next edge transition
in the selected signal, and read the logic level of signals by sliding the Time Bar in
your waveform. The logic level is displayed in the Value at column of the Waveform
Editor.

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

Chapter 1: Quartus II Simulator 1–11
Waveform Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Time Bar Organizer dialog box enables you to create, delete, and edit a time bar,
and to create a master time bar. Only one master time bar is allowed per waveform
file. To use the Time Bar Organizer, on the Edit menu, point to Time Bar and click
Time Bar Organizer.

1 Under Existing time bars, in the Absolute time column, the red M indicates the
master time bar (Figure 1–5).

Stretch or Compress a Waveform Interval
You can stretch or compress a waveform interval in the Waveform Editor, which
enables you to analyze the effects on a waveform. For example, you can check the
behavior of your design at high speeds for a short interval by using the compress
option to compress the waveform. You can also use this feature to delay the transition
of a signal by stretching the waveform.

You have to specify the original start and end time, and the new time for the
waveform you want to stretch or compress. If you want to stretch or compress all the
nodes or buses, deselect all nodes and buses and set the stretch or compress feature.

To stretch or compress a waveform interval, on the Edit menu, point to Value and
click Stretch or Compress Waveform Interval. The Stretch or Compress Waveform
Interval dialog box appears.

The “To time value” end time specified in the Stretch or Compress Waveform
Interval dialog box cannot be larger than the “End Time” specified in the Simulator
Settings page of the Settings dialog box. Otherwise, the Quartus II software displays
a message indicating the invalid time value.

End Time
The End Time setting enables you to change the end time of the .vwf file. The end
time represents the maximum length of time in the .vwf file. You can specify the end
time and your preferred time unit, and have different extension values for different
nodes or buses. With the waveform open, specify the end time by performing the
following steps:

Figure 1–5. Time Bar Organizer Dialog Box

1–12 Chapter 1: Quartus II Simulator
Waveform Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1. On the Edit menu, click End Time. The End Time dialog box appears (Figure 1–6).

2. In the Time box, specify the end time and select the time unit in the Time list.

3. Under Default extension options, in the Extension value list, select the value.

4. Under End time extension per signal, you can select specific extension values for
each signal by clicking in the Extension value column.

1 The options in the End time dialog box are different settings than those under
Simulation period in the Settings dialog box. Simulation period is the period that the
Quartus II software simulates the stimuli. End time is the maximum length of time in
the .vwf file. For information on the simulation period, refer to Table 1–2 on
page 1–13.

Arrange Group or Bus in LSB or MSB Order
You can arrange a group or bus in LSB or MSB order. If you arrange in LSB order, the
LSB is on top and the MSB is at the bottom. If you arrange in MSB order, the MSB is on
top and the LSB is at bottom.

To arrange a group or bus in LSB or MSB order, perform the following steps:

1. Select the bus that you want to change the LSB or MSB order. You can also select
multiple buses in the waveform editor.

2. On the Edit menu, point to Group and Bus Bit Order and click either MSB on top,
LSB on Bottom to change the bus or group in MSB order, or click LSB on top,
MSB on Bottom to change the bus or group in LSB order.

Figure 1–6. End Time Dialog Box

Chapter 1: Quartus II Simulator 1–13
Simulator Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Simulator Settings
You can enhance your output, reduce debugging time, and provide better coverage
before running a simulation. This section covers the different simulation modes
supported by the Quartus II simulator. Additionally, the Quartus II simulator offers
common setup features like glitch filtering, setup and hold violation detection, and
simulation coverage.

To set up simulation settings, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Simulator Settings. The Simulator Settings page
appears.

Table 1–2 shows the options in the Simulator Settings page.

Table 1–2. Quartus II Simulator Settings (Part 1 of 2)

Settings and Options Description

Simulation mode (1) Functional

This simulation mode uses a pre-synthesis compiler database to simulate the logical performance
of a project without the timing information. This mode enables you to check the functionality of the
design. All nodes and buses are preserved in this simulation because functional simulation is
performed before synthesis, partitioning, or fitting. A .vwf is required to perform this simulation
mode.

Timing

This simulation mode uses the compiled netlist that includes timing information. With this
simulation mode, you can check setup, hold violation, glitches, and simulation coverage. You can
remove nodes or buses using the Quartus II Compiler when logic is optimized. This simulation
mode uses the worst case timing model.

Timing using Fast Timing Model

This simulation mode is similar to timing simulation but this mode uses the best-case timing
model.

Simulation input You must include the vector file in the Simulation input box. You can type the name of the file or
use the browse button to open the Select File dialog box. In the Files of type list, you can select
Vector Waveform File (*.vwf), Compressed Vector Waveform File (*.cvwf), Value Change Dump
File (*.vcd), Vector Table Output File (*.tbl), Vector Text File (*.vec), Simulation Channel File
(.scf), or All Files (*.*).

.tbl files contain input vectors and output logic levels in a tabular-format list. You can generate this
file using a .vwf. However, if you would like to maintain, view, or update the vectors, .vwf files
offer better visibility. .vwf or .tbl formats are interchangeable. You can generate .tbl files from .vwf
files and vice versa. You can create a .vwf with the Waveform Editor. For more information about
the Waveform Editor, refer to “Waveform Editor” on page 1–5.

The Quartus II software also supports MAX+PLUS® II simulation vector files, such as .vec and
.scf files.

A .cvwf is the simplified version, non-readable format of the .vwf format. This file type is in binary
format and is generally smaller in file size. You can use .cvwf files in the Waveform Editor and
simulation.

A .vcd is an ASCII file that contains header information, variable definitions, and the value changes
for specified variables, or all variables, in a given design. The value changes for a variable are
given in scalar or vector format based on the nature of the variable.

1–14 Chapter 1: Quartus II Simulator
Simulator Settings

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation period The simulation period determines the length of time that the simulator runs the stimuli with the
maximum period being equal to the end time of a .vwf. If the simulation period is configured
shorter than the end time, all signals beyond the simulation period are displayed as Unknown (X).
Therefore, you can also shorten the simulation period or end the simulation earlier by selecting
End Simulation at and specifying the time and selecting the time unit. If the simulation period is
configured longer than the end time, the simulation will stop at the end time. For information on
the end time, refer to “End Time” on page 1–11.

Glitch filtering options Specifies whether to enable glitch filtering for simulations. You can select one of the following
options:

Auto—The simulator performs glitch filtering when .saf generation is enabled in the Simulation
Output Files page of the Settings dialog box.

Always—The simulator always performs glitch filtering, even if .saf generation is not enabled.

Never—The simulator never performs glitch filtering, even if .saf generation is enabled.

More Settings If you click More Settings, the More Simulator Settings dialog box appears. The following
options are available under Existing option settings.

Cell Delay Model Type

Specifies the type of delay model to be used for cell delays: transport or inertial. The default is
transport.

Interconnect Delay Model Type

Specifies the type of delay model to be used for interconnect delays: transport or inertial. The
default is transport.

Preserve fewer signal transition to reduce memory requirements

This option is effective on lower performance workstations because turning on this option flushes
signal transitions from memory to disk for memory optimization.

Note to Table 1–2:

(1) The Quartus II simulator may flag an error message if zero-time oscillation occurs in your design. Zero-time oscillation occurs when a particular
output signal does not achieve a stable output value at a particular fixed time, which may be due to your design containing combinational logic
path loops.

Table 1–2. Quartus II Simulator Settings (Part 2 of 2)

Settings and Options Description

Chapter 1: Quartus II Simulator 1–15
Simulator Settings

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Simulation Verification Options
Table 1–3 shows the options in the Simulation Verification page.

Table 1–3. Quartus II Simulation Verification

Settings and Options Description

Check outputs Check outputs checks expected outputs against actual outputs in the
simulation report. After turning on Check outputs, click the Waveform
Comparison Settings button. The Waveform Comparison Settings dialog
box appears.

In the Waveform Comparison Settings dialog box, you can specify the
waveform comparison time frame and the comparison options. You can also
set the tolerance level for all the signals by specifying the tolerance limit in
the Default comparison timing tolerance box. The Maximum comparison
mismatches box is the amount of mismatches the Quartus II simulator is
allowed to accept before it stops comparing.

You can also set the type of transition the comparison should trigger in the
Waveform Comparison Settings dialog box. You can assign trigger
comparisons based on Input signal transition edges, All signal transition
edges, or Selected Signal transition edges.

To customize the waveform comparison matching rules, you can also click
the Comparison Rules button. The Comparison Rules dialog box appears,
allowing you to customize the comparison matching rules.

Setup and hold time violation detection This option detects setup and hold time violation. Setup time is the period
required by a synchronous signal to stabilize before the arrival of a clock
edge. Hold time is the time required by a synchronous signal to maintain
after the same clock edge. If the Setup and hold time violation detection
option is turned on, a warning in the Messages window appears if any setup
or hold time violation is detected during the simulation. This option is only
for Timing and Timing using Fast Timing Model simulation modes.

Glitch detection Conditions occur when two or more signals toggle simultaneously and can
cause glitches or unwanted short pulses. The Glitch detection option enables
you to detect glitches and specify the time interval that defines a glitch. If two
logic level transitions occur in a period shorter than the specified time period,
the resulting glitch is detected and reported in the Processing tab of the
Messages window.

If you turn on the Glitch detection option, you can specify the acceptable
glitch width. A Messages window appears when a pulse is smaller than the
specified glitch width that is detected. The Glitch detection option is only
available for Timing and Timing using Fast Timing Model simulation modes.

Simulation coverage reporting This option reports the ratio of outputs (coverage) actually simulated to the
number of outputs in the netlist and is expressed as a percentage. When you
turn on the Simulation coverage reporting option, the Report Settings
button is available. If you click Report Settings, the Report Settings dialog
box appears. The three types of coverage reports you can select from are
Display complete 1/0 value coverage report, Display missing 1-value
coverage report, and Display missing 0-value coverage report.

Disable setup and hold time violation
detection for input registers of
bi-directional pins

This option enables you to disable setup and hold time violation detection in
input registers of all bidirectional pins in the simulated design during Timing
or Timing using Fast Timing Model simulation.

1–16 Chapter 1: Quartus II Simulator
Simulation Report

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation Output Files Options
Table 1–4 shows the options in the Simulation Output Files page.

Simulation Report
Comprehensive reports are shown after the completion of each simulation. These
reports are important to ensure designs meet timing and logical correctness. These
simulation reports also play an important role in debugging.

Simulation Waveform
Simulation Waveforms are part of the Simulation report. In this report, the stimuli and
the results of the simulation are displayed.

You can export the simulation waveform as a VHDL Test Bench File or a Verilog Test
Bench File for use in other EDA tools. You can also save a simulation as a .vwf file or
Vector Table Output File for use with the Quartus II software.

When you try to edit the Simulation Waveform, the Edit Input Vector File dialog box
appears, asking whether you would like to edit the vector input file with the results of
the simulation or if you would like to overwrite the vector input file with other vector
inputs (refer to Figure 1–7).

Table 1–4. Quartus II Simulation Output Files

Setting and Options Description

Simulation output
waveform

Specify the simulation output waveform options.

Automatically add pins to simulation output waveforms

This option automatically adds all outputs that are available in the design to the waveform
reports. If your design has large amounts of outputs, turning on this option ensures all
outputs are monitored during simulation.

Overwrite simulation input file with simulation results

This option overwrites the vector source file with simulation results. This option is ignored
when the Check outputs setting is turned on. This option adds the result to the vector file and
generally, it can give you more visibility during the debugging process. (1)

Group bus channel in simulation results

This option automatically groups bus channels in the output waveform that are shown in the
simulation reports. By turning off this option, all output waveforms have a node to represent
each bus signal.

Signal activity output for
power analysis

When you perform your simulation with the Quartus II simulator, you can generate a .saf,
which is used by the PowerPlay Power Analyzer to assist you with power analysis. (2), (3)

VCD output for power
analysis

When you perform simulation with the Quartus II simulator, you can generate a .vcd, which is
used by the PowerPlay Power Analyzer to assist you with power analysis. (2), (3)

Notes to Table 1–4:

(1) A backup copy of the source vector file is saved under the db folder with the name <project>.sim_ori.
<vector file format type>.

(2) Instead of using the .saf or Generate .vcd (*.vcd), you can also save your output waveform as a .vcd to perform power analysis.
(3) For more information about the PowerPlay Power Analyzer, refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook.

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

Chapter 1: Quartus II Simulator 1–17
Simulation Report

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

You can overwrite your simulation input file with the simulation results so that your
input vector file is updated with the resulting waveform after a simulation. For more
information, refer to the Overwrite simulation input file with simulation results
option in Table 1–2 on page 1–13.

If you do not want to overwrite the simulation input file in every simulation run,
perform the following to overwrite simulation input files with simulation results after
a simulation:

On the Processing Menu, point to Simulation Debug and click Overwrite Vector
Inputs with Simulation Outputs.

Simulating Bidirectional Pin
A bidirectional pin is represented in the waveform by two channels. One channel
represents the input to the bidirectional pin, and the other channel represents the
output from the bidirectional pin. You can enter the input channel into the waveform
by using the Node Finder dialog box. The output channel is automatically created by
the Quartus II simulator and named <bidir pin name> ~result.

Logical Memories Report
The Quartus II software writes out the contents of each memory module after
simulation. Therefore, if you use memory cells in your design, you can analyze the
contents of the logic memory structures in the device in the Logical Memories Report.
The Logical Memories Report displays individual reports for each memory block and
contains the data stored in the memory cell used at the end of simulation.

After being simulated, a memory module’s contents are stored in the Logical
Memories section of the simulation report file.

To view this section, perform the following steps:

1. On the Processing menu, click Simulation Report. The Simulation Report window
appears.

2. In the report window, click the “+” next to Logical Memories.

Figure 1–7. Edit Input Vector File

1–18 Chapter 1: Quartus II Simulator
Simulation Report

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation Coverage Reports
The Coverage Summary report contains the following summary information for the
simulation:

■ Total toggling coverage as a percentage

■ Total nodes checked in the design

■ Total output ports checked

■ Total output ports with complete 1/0-value coverage

■ Total output ports with no 1/0-value coverage

■ Total output ports with no 1-value coverage

■ Total output ports with no 0-value coverage

The Complete 1/0-Value Coverage report lists the following information:

■ Node name

■ Output port name

■ Output port type for output ports that toggle between 1 and 0 during the
simulation

The Missing 0-Value Coverage report and Missing 1-Value Coverage report list the
following information:

■ Node name

■ Output port name

■ Output port type for output ports that do not toggle to the designated value

For more information about Simulation Coverage reports, refer to the Simulation
coverage reporting option in Table 1–2 on page 1–13.

The following are individual reports and their definitions:

■ Complete 1/0 value coverage report—Displays all the nodes or buses that toggle
between 1 and 0 during simulation.

■ Missing 1-value coverage and Missing 0-value coverage reports—Displays all
the nodes that do not toggle to the designated value.

Comparing Two Waveforms
You can compare your simulation results against previous simulations using the
compare option. To compare two waveforms in the Simulation Report, turn on the
Check outputs option. For more information about the Check outputs option, refer to
Table 1–2 on page 1–13. With the Check outputs option turned on, the two
comparable waveforms are visible in black and red. The black waveforms represent
the original output or the expected output, and the red waveforms represent the
compared output or the actual output.

Chapter 1: Quartus II Simulator 1–19
Debugging with the Quartus II Simulator

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 1–8 shows an example of expected output waveform versus actual output
waveform.

Debugging with the Quartus II Simulator
The Quartus II software includes tools to help with simulation debugging. This
section covers some debugging tools and their use.

Breakpoints
Inserting breakpoints into the simulation process enables the simulator to break at the
desired time or on the desired node or bus condition. You can monitor the activity of
nodes or buses during specified times and pinpoint the cause of mismatched signal
levels between expected and actual. To use breakpoints, perform the following steps:

1. On the Processing menu, point to Simulation Debug and click Breakpoints. The
Breakpoints dialog box appears.

2. In the Equation text box, click condition. You can configure the logical conditions
of individual nodes or buses, or you can set the time.

3. After you configure the equation conditions, select the action for the Quartus II
simulator. In the Action pull-down list, select Stop, Warning Message, Error
Message, or Information Message. This selection defines the action when the
condition is met.

4. You can also enter the text that appears when the simulator encounters the
breakpoint. If you do not make an entry in this box, the Quartus II software
displays a default message.

Updating Memory Content
If your design includes memories, when the simulator stops at a breakpoint, you can
view and edit the contents of the memories. To view your memories during a
breakpoint in the simulation, on the Processing menu, point to Simulation Debug
and click Embedded Memory.

Figure 1–8. Example of Simulation Waveform from the Simulation Report When Check Output is Turned On

Expected Output Waveform
(in Black)

Actual Output Waveform
(in Red)

1–20 Chapter 1: Quartus II Simulator
Debugging with the Quartus II Simulator

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Last Simulation Vector Outputs
The Last Simulation Vector Outputs command opens the Output Simulation
Waveforms report generated by the last simulation. To use this command, on the
Processing menu, point to Simulation Debug and click Last Simulation Vector
Outputs.

You can open the current input vectors that you defined in the Simulator Settings
dialog box with the Current Vector Inputs command. To use this command, on the
Processing menu, point to Simulation Debug and click Current Vector Inputs. Lastly,
you can overwrite the vector source file with the simulation outputs that open the
resulting file.

Conventional Debugging Process
During the design phase, tapping out internal signals is a common practice to debug
simulation errors. Therefore, the Quartus II software enables you to tap out the signal
for simulation debug and also enables you to pull out the internal signal to the
physical I/O. The Quartus II software also offers SignalTap II and SignalProbe to
further assist you with debugging.

Accessing Internal Signals for Simulation
You can conventionally debug by probing out the internal signals, which enables you
to preserve the internal signals during synthesis. You can probe the internal signal by
selecting the node or bus and specifying a name, and then adding an output port to
the schematic with a similar name. Figure 1–9 shows an example of accessing internal
signals for simulation from a schematic diagram.

For timing simulations, the simulation netlist is based on the Compilation
post-Synthesis and post-Fitting netlist. Therefore, some of the internal nodes or buses
are optimized away during compilation of the netlist. If an internal node is optimized
away, the Quartus II software displays a warning message similar to the following in
the Warning tab of the Messages window:

Figure 1–9. Example of Tapping Out Internal Signal

Accesing the internal
signal of the bus INTA.

Both the internal signal bus and
the output port have the same name.

Chapter 1: Quartus II Simulator 1–21
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Warning: Compiler packed, optimized or synthesized away node “DataU”.
Ignored vector source file node.

This internal node is ignored by the Quartus II simulator.

If you would like to tap out the D and Q ports of registers, turn on Add D and Q ports
of register node to Simulation Output Waveform from the Assignment Editor. This
feature is only available for functional simulations.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can change the Functional, Timing, or Timing using Fast Timing Model
simulation modes by typing the following at the command prompt:

simulation_mode <mode> r
To initialize the simulation for the current design, use the following command.
During initialization, the simulator builds the simulation netlist and sets the
simulation time to zero.

The option -ignore_vector_file is set to Off by default when the source vector
file exists for simulation. The Quartus II software ignores the source vector file during
simulation if the option -ignore_vector_file is set to On. The -end_time
option is used only when the -ignore_vector_file option is set to On.

initialize_simulation [-h | -help] [-long_help] [-check_outputs <On | Off>] \
[-end_time <end_time>] [-glitch_filtering <On | Off>] [-ignore_vector_file <On | Off>] \
[-memory_limiter <On | Off>] [-power_vcd_output <target_file>] \
[-read_settings_files <On | Off>] [-saf_output <target_file>] \
[-sim_mode <functional | timing | timing_using_fast_timing_model >] \
[-vector_source <vector_source_file>] [-write_settings_files <On | Off>] \
-simulation_results_format <.vwf | .cvwf | .vcd> -vector_source <vector source file>

To force the specified signal or group of signals to the specified value, type the
following at the command prompt:

force_simulation_value [-h | -help] [-long_help] -node <hpath> <value> r
To turn on the simulator to simulate the design for a specified time, type the following
at a command prompt:

run_simulation [-h | -help] [-long_help] [-time <time>] r

1 If you do not set a specific length of time for the simulation run, it runs a complete
simulation.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

1–22 Chapter 1: Quartus II Simulator
Conclusion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To create a breakpoint with a specified equation and action, type the following at the
command prompt:

create_simulation_breakpoint [-h | -help] [-long_help] \
-action [Give Warning | Give Info | Give Error] \
-breakpoint <breakpoint_name> -equation <equation> [-user_message <message_text>]r

To delete a breakpoint with a specified name, type the following at the command
prompt:

delete_simulation_breakpoint [-h | -help] [-long_help] -breakpoint <breakpoint_name> r

Conclusion
Simulation plays an important role in ensuring the quality of a product. The
Quartus II software offers various tools to assist you with simulation and helps
reduce debugging time with the introduction of features like Glitch Filtering and
Breakpoints.

Referenced Documents
This chapter references the following documents:

■ Analyzing Designs with the Quartus II Netlist Viewers chapter in volume 1 of the
Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Mentor Graphics ModelSim Support chapter in volume 3 of the Quartus II Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Manual

■ Section I: Simulation section in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 1: Quartus II Simulator 1–23
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Document Revision History
Table 1–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 1–5. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1

■ Updated “Introduction” on page 1–1. Updated for the Quartus II
9.1 software release.

March 2009

v9.0

■ No change to content. —

November 2008

v8.1

■ Changed to 8½” × 11” page size. No change to content. —

May 2008

v8.0.0

■ Updated “Introduction” on page 1–1.

■ Updated “Referenced Documents” on page 1–27.

Updated for the Quartus II
8.0 software release

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

1–24 Chapter 1: Quartus II Simulator
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. Simulating Designs with EDA Tools

This chapter provides guidelines to help you perform simulation for your Altera®
designs using EDA simulators and the Quartus® II NativeLink feature.

Introduction
The Quartus II software assists you in FPGA and ASIC design, from RTL level to
on-chip level. Simulation is the process of verifying the design behavior and timing
before configuring the chip.

In previous versions of the Quartus II software, you could use either the Quartus II
simulator or an EDA simulator to perform your simulation. The Quartus II simulator
will be removed from newer Quartus II versions, and you will have to use EDA
simulators to perform simulation.

This chapter guides you through simulation of your Altera design using EDA
simulators. There are two ways to simulate your Altera design using EDA simulators:

■ Use the NativeLink feature to automatically create scripts for EDA simulators and
launch them

■ Perform manual simulation using EDA simulators

This chapter focuses on the steps required to perform your simulation using EDA
simulators with the NativeLink feature.

Manual simulation using EDA simulators is described in the EDA simulator chapters
in Volume 3: Verification of the Quartus II Handbook.

The following topics are discussed in this chapter:

■ “PLD Design Flow” on page 2–2

■ “Simulation Libraries” on page 2–4

■ “Generating Simulation Netlist Files” on page 2–8

■ “EDA Simulation Library Compiler” on page 2–11

■ “Using the NativeLink Feature” on page 2–13

QII53025-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

2–2 Chapter 2: Simulating Designs with EDA Tools
PLD Design Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

PLD Design Flow
This section describes the programmable logic device (PLD) design flow.

Figure 2–1 shows the Altera design flow using EDA simulators and the Quartus II
software.

Figure 2–1. Altera Design Flow with EDA Simulators and the Quartus II Software

Notes to Figure 2–1:

(1) Simulation can be run with the NativeLink feature or performed manually. (For manual simulation, refer to the EDA tool support chapters in
Volume 3: Verification of the Quartus II Handbook.)

(2) ModelSim-Altera does not require simulation library source files for simulation.
(3) The simulation tools include Modelsim SE, ModelSim-Altera, VCS/VCS MX, NC-Sim, Active-HDL, and Riviera-PRO.

.v/.vhd Design Entry

Synthesis

Place and Route

Timing Analysis

Program into
Device, PCB Board
Simulation, and Test

RTL Simulation (1), (3)

Post-Synthesis
Simulation (1), (3)

Gate-Level
Simulation (1), (3)

Generate Simulation
Netlist Files (Functional)

Generate Simulation
Netlist Files (Timing)

Altera IP

.vo/.vho

.vo/.vho

.sdo

.v/.vhd

Testbench

RTL
Simulation
Library Files (2)

Gate-Level
Simulation
Library Files (2)

.v/.vhd

.v/.vhd

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

Chapter 2: Simulating Designs with EDA Tools 2–3
PLD Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

RTL Simulation Flow
Figure 2–2 shows the overall RTL simulation flow from the Quartus II software. For
information about running EDA simulation automatically through the Quartus II
software, refer to “Using the NativeLink Feature” on page 2–13. For information
about manual simulation, refer to the EDA simulator chapters in Volume 3: Verification
of the Quartus II Handbook.

Gate-Level Simulation Flow
Figure 2–3 shows the overall gate-level simulation flow from the Quartus II software.
For information about running EDA simulation automatically through the Quartus II
software, refer to “Using the NativeLink Feature” on page 2–13. For information
about manual simulation, refer to the EDA simulator chapters in Volume 3: Verification
of the Quartus II Handbook.

Figure 2–2. : EDA RTL Simulation Flow from the Quartus II Software

Create your design and
testbench

BDF to HDL Conversion
(If your design is created
in BDF)

NativeLink Topic

Simulate via
NativeLink?

Manual Simulation (ModelSim Chapter)

Manual Simulation (VCS/VCS MX Chapter)

Manual Simulation (NC-Sim Chapter)

Manual Simulation (Active-HDL Chapter)

Y

N

Compile Altera
Libraries with EDA
Simulation Library
Compiler?

EDA Simulation Library Compiler
N

Y

Figure 2–3. EDA Gate-Level Simulation Flow from Quartus II Software

 NativeLink Topic

Simulate via
NativeLink?

Manual Simulation (ModelSim Chapter)

Manual Simulation (VCS/VCS MX Chapter)

Manual Simulation (NC-Sim Chapter)

Manual Simulation (Active-HDL Chapter)

Y

N

Compile Altera
Libraries with EDA
Simulation Library
Compiler?

EDA Simulation Library Compiler
N

Y

Create your design and
testbench

Synthesis and Fitting

Generate Simulation Netlist

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

2–4 Chapter 2: Simulating Designs with EDA Tools
Simulation Libraries

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Converting BDF Format to HDL Format
If you create your design in BDF (Block Diagram Format), you must convert it to HDL
format (Verilog HDL or VHDL) to perform RTL simulation in EDA simulators. To
convert your design from BDF format to HDL format, perform the following steps:

1. Detach the BDF window.

2. On the File Menu, point to Create/Update and click Create HDL Design File for
Current File.

3. From the File type list, select VHDL or Verilog HDL.

4. Click OK.

After you perform these steps, the HDL file is generated. The HDL file and the BDF
file have the same name but different extensions (for example, if your BDF file is
example.bdf, the HDL file created is example.v or example.vhd).

Simulation Libraries
When you are using an EDA simulator, you must determine which libraries are
required for your simulation if you have used Altera Megafunctions or IP in your
design.

RTL Simulation
The following libraries are required to perform RTL simulation:

■ If your design does not include transceivers and PCIE core, you will need the
Altera_Behavior_Libraries. (For a list of the required libraries, click the Simulation
Libraries tab under the EDA page in the MegaWizardTM Plug-In Manager.)

■ If your design includes transceivers, you will need <family>_hssi_atoms, sgate,
and the Altera_Behavior_Libraries.

■ For Stratix GX devices, you will need stratixgx_mf, sgate, and the
Altera_Behavior_Libraries.

■ If your design includes PCIE core, you will need <family>_pcie_hip_atoms, sgate,
and the Altera_Behavior_Libraries.

For more information about simulation libraries, refer to “Simulation Library Files”
on page 2–5.

1 Altera_Behavior_Libraries refers to altera_mf, 220model, and altera_primitives.

Gate-Level Timing Simulation
The following libraries are required to perform gate-level timing simulation:

■ If your design does not include transceivers and PCIE core, you will need
<family>_atoms, sgate, and the Altera_Behavior_Libraries.

■ If your design includes transceivers, you will need <family>_hssi_atoms,
<family>_atoms, sgate, and the Altera_Behavior_Libraries.

Chapter 2: Simulating Designs with EDA Tools 2–5
Simulation Libraries

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ If your design includes PCIE core and transceivers, you will need
<family>_pcie_hip_atoms, <family>_hssi_atoms, <family>_atoms, sgate, and the
Altera_Behavior_Libraries.

Simulation Library Files
This section lists the RTL functional simulation and gate-level timing simulation
library files in the Quartus II directory.

Table 2–1 lists the RTL functional simulation library files in the Quartus II directory
for Verilog HDL.

Table 2–2 lists the RTL functional simulation library files in the Quartus II directory
for VHDL.

Table 2–1. RTL Functional Simulation Library Files in the Quartus II Directory (Verilog HDL)

RTL Simulation Model Verilog HDL Libraries

ALTGX Megafunction (Stratix IV GX) <path to Quartus II installation>/eda/sim_lib/stratixiv_hssi_atoms.v

LPM <path to Quartus II installation>/eda/sim_lib/220model.v

Altera Megafunction <path to Quartus II installation>/eda/sim_lib/altera_mf.v

ALTGXB Megafunction (Stratix GX) <path to Quartus II installation>/eda/sim_lib/stratixgx_mf.v

ALT2GXB Megafunction (Stratix II GX) <path to Quartus II installation>/eda/sim_lib/arriagx_hssi_atoms.v

High-Level Primitives <path to Quartus II installation>/eda/sim_lib/sgate.v

Low-Level Primitives <path to Quartus II installation>/eda/sim_lib/altera_primitives.v

Table 2–2. RTL Functional Simulation Library Files in the Quartus II Directory (VHDL)

RTL Simulation Model VHDL Libraries

ALTGX Megafunction (Stratix IV GX) <path to Quartus II installation>/eda/sim_lib/stratixiv_hssi_components.vhd
<path to Quartus II installation>/eda/sim_lib/stratixiv_hssi_atoms.vhd

LPM <path to Quartus II installation>/eda/sim_lib/220pack.vhd
<path to Quartus II installation>/eda/sim_lib/220model.vhd
<path to Quartus II installation>/eda/sim_lib/220model_87.vhd

Altera Megafunction <path to Quartus II installation>/eda/sim_lib/altera_mf_components.vhd
<path to Quartus II installation>/eda/sim_lib/altera_mf.vhd
<path to Quartus II installation>/eda/sim_lib/altera_mf_87.vhd

ALTGXB Megafunction (Stratix GX) <path to Quartus II installation>/eda/sim_lib/stratixgx_mf_components.vhd
<path to Quartus II installation>/eda/sim_lib/stratixgx_mf.vhd

ALT2GXB Megafunction (Stratix II GX) <path to Quartus II installation>/eda/sim_lib/stratixiigx_hssi_components.vhd
<path to Quartus II installation>/eda/sim_lib/stratixiigx_hssi_atoms.v
<path to Quartus II installation>/eda/sim_lib/arriagx_hssi_components.vhd
<path to Quartus II installation>/eda/sim_lib/arriagx_hssi_atoms.vhd

High-Level Primitives <path to Quartus II installation>/eda/sim_lib/sgate_pack.vhd
<path to Quartus II installation>/eda/sim_lib/sgate.vhd

Low-Level Primitives <path to Quartus II installation>/eda/sim_lib/altera_primitives_components.vhd
<path to Quartus II installation>/eda/sim_lib/altera_primitives.vhd

2–6 Chapter 2: Simulating Designs with EDA Tools
Simulation Libraries

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 2–3 lists the gate-level timing simulation library files in the Quartus II directory
for Verilog HDL.

Table 2–3. Gate-Level Timing Simulation Library Files in the Quartus II Software (Verilog HDL)

Device Simulation Model Location in Quartus II Directory Structure

Arria II (without transceiver block) <Quartus II installation directory>/eda/sim_lib/arriaii_atoms.v

Arria II (with transceiver block) <Quartus II installation directory>/eda/sim_lib/arriaii_hssi_atoms.v

Arria II (with PCI Express) <Quartus II installation directory>/eda/sim_lib/arriaii_pcie_atoms.v

Arria GX (without transceiver block) <Quartus II installation directory>/eda/sim_lib/arriagx_atoms.v

Arria GX (with transceiver block) <Quartus II installation directory>/eda/sim_lib/arriagx_hssi_atoms.v

Stratix IV <Quartus II installation directory>/eda/sim_lib/stratixiv_atoms.v

Stratix IV (with transceiver block) <Quartus II installation directory>/eda/sim_lib/stratixiv_hssi_atoms.v

Stratix IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/stratixiv_pcie_hip_atoms.v

Stratix III <Quartus II installation directory>/eda/sim_lib/stratixiii_atoms.v

Stratix II <Quartus II installation directory>/eda/sim_lib/stratixii_atoms.v

Stratix II GX (without transceiver block) <Quartus II installation directory>/eda/sim_lib/stratixiigx_atoms.v

Stratix II GX (with transceiver block) <Quartus II installation directory>/eda/sim_lib/stratixiigx_hssi_atoms.v

Stratix <Quartus II installation directory>/eda/sim_lib/stratix_atoms.v

Stratix GX <Quartus II installation directory>/eda/sim_lib/stratixgx_atoms.v

Stratix GX (with transceiver block) <Quartus II installation directory>/eda/sim_lib/stratixgx_hssi_atoms.v

Cyclone IV <Quartus II installation directory>/eda/sim_lib/cycloneiv_atoms.v

Cyclone IV (with transceiver block) <Quartus II installation directory>/eda/sim_lib/cycloneiv_hssi_atoms.v

Cyclone IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/cycloneiv_pcie_hip_atoms.v

Cyclone III LS <Quartus II installation directory>/eda/sim_lib/cycloneiiils_atoms.v

Cyclone III <Quartus II installation directory>/eda/sim_lib/cycloneiii_atoms.v

Cyclone II <Quartus II installation directory>/eda/sim_lib/cycloneii_atoms.v

Cyclone <Quartus II installation directory>/eda/sim_lib/cyclone_atoms.v

MAX II <Quartus II installation directory>/eda/sim_lib/maxii_atoms.v

MAX 7000 <Quartus II installation directory>/eda/sim_lib/max_atoms.v

MAX 3000 <Quartus II installation directory>/eda/sim_lib/max_atoms.v

HardCopy IV <Quartus II installation directory>/eda/sim_lib/hardcopyiv_atoms.v

HardCopy IV (with transceiver block) <Quartus II installation directory>/eda/sim_lib/hardcopyiv_hssi_atoms.v

HardCopy IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/hardcopyiv_pcie_hip_atoms.v

HardCopy III <Quartus II installation directory>/eda/sim_lib/hardcopyiii_atoms.v

HardCopy Stratix <Quartus II installation directory>/eda/sim_lib/hcstratix_atoms.v

HardCopy II <Quartus II installation directory>/eda/sim_lib/hardcopyii_atoms.v

Chapter 2: Simulating Designs with EDA Tools 2–7
Simulation Libraries

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 2–4 lists the gate-level timing simulation library files in the Quartus II directory
for VHDL.

Table 2–4. Gate-Level Timing Simulation Library Files in the Quartus II Software (VHDL) (Part 1 of 2)

Device Simulation Model Location in Quartus II Directory Structure

Arria II (without transceiver
block)

<Quartus II installation directory>/eda/sim_lib/arriaii_components.vhd
<Quartus II installation directory>/eda/sim_lib/arriaii_atoms.vhd

Arria II (with transceiver block) <Quartus II installation directory>/eda/sim_lib/arriaii_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/arriaii_hssi_atoms.vhd

Arria II (with PCI Express) <Quartus II installation directory>/eda/sim_lib/arriaii_pcie_components.vhd
<Quartus II installation directory>/eda/sim_lib/arriaii_pcie_atoms.vhd

Arria GX (without transceiver
block)

<Quartus II installation directory>/eda/sim_lib/arriagx_components.vhd
<Quartus II installation directory>/eda/sim_lib/arriagx_atoms.vhd

Arria GX (with transceiver block) <Quartus II installation directory>/eda/sim_lib/arriagx_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/arriagx_hssi_atoms.vhd

Stratix IV <Quartus II installation directory>/eda/sim_lib/stratixiv_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiv_atoms.vhd

Stratix IV (with transceiver
block)

<Quartus II installation directory>/eda/sim_lib/stratixiv_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiv_hssi_atoms.vhd

Stratix IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/stratixiv_pcie_hip_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiv_pcie_hip_atoms.vhd

Stratix III <Quartus II installation directory>/eda/sim_lib/stratixiii_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms.vhd

Stratix II <Quartus II installation directory>/eda/sim_lib/stratixii_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixii_atoms.vhd

Stratix II GX (without transceiver
block)

<Quartus II installation directory>/eda/sim_lib/stratixiigx_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiigx_atoms.vhd

Stratix II GX (with transceiver
block)

<Quartus II installation directory>/eda/sim_lib/stratixiigx_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixiigx_hssi_atoms.vhd

Stratix <Quartus II installation directory>/eda/sim_lib/stratix_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratix_atoms.vhd

Stratix GX <Quartus II installation directory>/eda/sim_lib/stratixgx_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixgx_atoms.vhd

Stratix GX (with transceiver
block)

<Quartus II installation directory>/eda/sim_lib/stratixgx_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/stratixgx_hssi_atoms.vhd

Cyclone IV <Quartus II installation directory>/eda/sim_lib/cycloneiv_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneiv_atoms.vhd

Cyclone IV (with transceiver
block)

<Quartus II installation directory>/eda/sim_lib/cycloneiv_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneiv_hssi_atoms.vhd

Cyclone IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/cycloneiv_pcie_hip_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneiv_pcie_hip_atoms.vhd

Cyclone III LS <Quartus II installation directory>/eda/sim_lib/cycloneiiils_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneiiils_atoms.vhd

Cyclone III <Quartus II installation directory>/eda/sim_lib/cycloneiii_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneiii_atoms.vhd

Cyclone II <Quartus II installation directory>/eda/sim_lib/cycloneii_components.vhd
<Quartus II installation directory>/eda/sim_lib/cycloneii_atoms.vhd

2–8 Chapter 2: Simulating Designs with EDA Tools
Generating Simulation Netlist Files

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Generating Simulation Netlist Files
Simulation netlist files are required to perform post-synthesis simulation or gate-level
timing simulation. These simulation netlist files are generated using the EDA Netlist
Writer.

If you are performing post-synthesis simulation, the Verilog HDL Output File (.vo) or
VHDL Output File (.vho) is required. For the steps required to generate post-synthesis
simulation netlist files for .vo or .vho files, refer to “Generating Post-Synthesis
Simulation Netlist Files” on page 2–9.

If you are performing gate-level timing simulation, the .vo file or .vho file and the
Standard Delay Format Output File (.sdo) are required. The .sdo file is used to
annotate the delay for the elements found in the .vo or .vho file. For the steps required
to generate simulation netlist files for .vo or .vho, and .sdo files, refer to “Generating
Gate-Level Timing Simulation Netlist Files” on page 2–10.

Configuring EDA Netlist Writer Settings
To configure your EDA Netlist Writer settings, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, under EDA Tool Settings, click Simulation. The Simulation
page appears.

3. In the Tool name list, select your preferred EDA simulator.

Cyclone <Quartus II installation directory>/eda/sim_lib/cyclone.vhd
<Quartus II installation directory>/eda/sim_lib/cyclone_atoms.vhd

MAX II <Quartus II installation directory>/eda/sim_lib/maxii_components.vhd
<Quartus II installation directory>/eda/sim_lib/maxii_atoms.vhd

MAX 7000 <Quartus II installation directory>/eda/sim_lib/max_components.vhd

MAX 3000 <Quartus II installation directory>/eda/sim_lib/max_atoms.vhd

HardCopy IV <Quartus II installation directory>/eda/sim_lib/hardcopyiv_components.vhd
<Quartus II installation directory>/eda/sim_lib/hardcopyiv_atoms.vhd

HardCopy IV (with transceiver
block)

<Quartus II installation directory>/eda/sim_lib/hardcopyiv_hssi_components.vhd
<Quartus II installation directory>/eda/sim_lib/hardcopyiv_hssi_atoms.vhd

HardCopy IV (with PCI Express) <Quartus II installation directory>/eda/sim_lib/hardcopyiv_pcie_hip_components.vhd
<Quartus II installation directory>/eda/sim_lib/hardcopyiv_pcie_hip_atoms.vhd

HardCopy III <Quartus II installation directory>/eda/sim_lib/hardcopyiii_components.vhd
<Quartus II installation directory>/eda/sim_lib/hardcopyiii_atoms.vhd

HardCopy Stratix <Quartus II installation directory>/eda/sim_lib/hcstratix_components.vhd
<Quartus II installation directory>/eda/sim_lib/hcstratix_atoms.vhd

HardCopy II <Quartus II installation directory>/eda/sim_lib/hardcopyii_components.vhd
<Quartus II installation directory>/eda/sim_lib/hardcopyii_atoms.vhd

Table 2–4. Gate-Level Timing Simulation Library Files in the Quartus II Software (VHDL) (Part 2 of 2)

Device Simulation Model Location in Quartus II Directory Structure

Chapter 2: Simulating Designs with EDA Tools 2–9
Generating Simulation Netlist Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

4. Under EDA Netlist Writer settings, in the Format for output netlist list, select
VHDL or Verilog HDL. You can also modify where you want the output netlist to
be generated by editing or browsing to a directory in the Output directory box.

5. To generate post-synthesis simulation netlist files, perform the following steps:

a. Click More EDA Netlist Writer Settings. The More EDA Netlist Writer
Settings dialog box appears.

b. In the Existing option settings list, click Generate netlist for functional
simulation only.

c. In the Setting list under Options, select On.

d. Click OK.

6. In the Settings dialog box, click OK.

Generating Post-Synthesis Simulation Netlist Files
To generate post-synthesis simulation netlist files in the Quartus II software, perform
the following steps:

1. On the Processing menu, point to Start and click Start Analysis & Synthesis (you
can also perform this after step 2).

2. Configure the EDA Netlist Writer. Refer to “Configuring EDA Netlist Writer
Settings” on page 2–8.

3. On the Processing menu, point to Start and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software produces a .vo file or
.vho file that can be used for post-synthesis simulations in the EDA simulators. This
netlist file is mapped to architecture-specific primitives. No timing information is
included at this stage. The resulting netlist is located in the output directory you
specified in the Settings dialog box, which defaults to the <project
directory>/simulation/<EDA Simulator> directory (<EDA Simulator> can be
modelsim, vcs, vcs mx, rivierapro, ncsim, or activehdl).

If you want to generate a post-synthesis simulation netlist with just the cell delays,
you can generate an .sdo file without running the Fitter. In this case, the .sdo file
includes all timing values for only the device cells. Interconnect delays are not
included because fitting (placement and routing) has not been performed. To generate
the post-synthesis netlist and the .sdo file, type the following commands at a
command prompt:

quartus_map <project name> -c <revision name> r
quartus_sta <project name> -c <revision name> --post_map r
or

quartus_tan <project name> -c <revision name> --post_map --\
zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation \
--tool= <3rd party EDA tool> --format=<HDL language> r
For more information about the -format and -tool options, type the following
command at a command prompt:

quartus_eda --help=<options> r

2–10 Chapter 2: Simulating Designs with EDA Tools
Generating Simulation Netlist Files

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Generating Gate-Level Timing Simulation Netlist Files
To perform gate-level timing simulation, the EDA simulators require information
about how the design was placed into device-specific architectural blocks. The
Quartus II software provides this information in the form of a .vo file for Verilog HDL
designs and a .vho file for VHDL designs. The accompanying timing information is
stored in the .sdo file, which annotates the delay for the elements found in the .vo file
or .vho file. To generate a gate-level timing simulation netlist in the Quartus II
software, perform the following steps:

1. Configure the EDA Netlist Writer. Refer to “Configuring EDA Netlist Writer
Settings” on page 2–8.

2. If you have not run a full compilation prior to the fitting process, perform a full
compilation. On the Processing menu, click Start Compilation.

3. On the Processing menu, point to Start and click Start EDA Netlist Writer.

During the full compilation or EDA Netlist Writer stage, the Quartus II software
produces a .vo file, .vho file, and a .sdo file used for gate-level timing simulations in
the EDA simulators. This netlist file is mapped to architecture-specific primitives. The
timing information for the netlist is included in the .sdo file. The resulting netlist is
located in the output directory you specified in the Settings dialog box, which
defaults to the <project directory>/simulation/<EDA Simulator> directory (<EDA
Simulator> can be modelsim, vcs, vcs mx, rivierapro, ncsim, or activehdl).

Generating Timing Simulation Netlist Files with Different Timing Models
In Stratix III and later devices, you can specify different temperature and voltage
parameters to generate the timing simulation netlist files. If you enable the Quartus II
Classic Timing Analyzer or Quartus II TimeQuest Timing Analyzer when generating
the timing simulation netlist files (.vo or .vho and .sdo), different timing models for
different operating conditions are used by default. Multi-corner timing analysis is run
by default during the full compilation.

Perform the following steps to manually generate the simulation netlist files (.vo or
.vho and .sdo) for the three different operating conditions:

1. Generate all the available corner models at all operating conditions by typing the
following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the timing simulation netlist files for all three corners by performing

steps 1 through 3 in “Generating Gate-Level Timing Simulation Netlist Files” on
page 2–10. The output files are generated in the simulation output directory.

The following examples show the timing simulation netlist files are generated for the
operating conditions of the preceding steps, when Verilog HDL is selected as the
output netlist format.

First Slow Corner (slow, 1100 mV, 85° C)

■ .vo file—<revision name>.vo

■ .sdo file—<revision name>_v.sdo

The <revision_name>.vo and <revision name>_v.sdo are generated for backward
compatibility in case there are existing scripts that still use them.

Chapter 2: Simulating Designs with EDA Tools 2–11
EDA Simulation Library Compiler

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ .vo file—<revision name>_<speedgrade>_1100mv_85c_slow.vo

■ .sdo file—<revision name>_<speedgrade>_1100mv_85c_v_slow.sdo

Second Slow Corner (slow, 1100 mV, 0° C)

■ .vo file—<revision name>_<speedgrade>_1100mv_0c_slow.vo

■ .sdo file—<revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast Corner (fast, 1100 mV, 0° C)

■ .vo file—<revision name>_min_1100mv_0c_fast.vo

■ .sdo file—<revision name>_min_1100mv_0c_v_fast.sdo

For older devices, a slow-corner (worst case) timing model is used by default. There
are only two timing models available: slow-corner and fast-corner. To generate the
timing simulation netlist files using a different timing model, you must run the
Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
with a different timing model before you start the EDA Netlist Writer.

To run the Quartus II Classic Timing Analyzer with the best-case model, on the
Processing menu, point to Start and click Start Classic Timing Analyzer (Fast Timing
Model). After timing analysis is complete, the Compilation Report appears.

You can also perform classic timing analysis with the fast timing model by typing the
following command at a command prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case model, use the
-fast_model option after you create the timing netlist.

The following command enables the fast timing model:

create_timing_netlist --fast_model r
After running the Quartus II Classic or Quartus II TimeQuest Timing Analyzer,
perform steps 1 through 3 in “Generating Gate-Level Timing Simulation Netlist Files”
on page 2–10 to generate the timing simulation netlist file. For fast corner timing
models, the -fast post fix is added to the .vo or .vho and .sdo file (for example,
my_project_fast.vo or my_project_fast.vho and my_project_fast.sdo).

For more information about performing multi-corner timing analysis, refer to the
Quartus II Classic Timing Analyzer chapter or the Quartus II TimeQuest Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

EDA Simulation Library Compiler
The EDA Simulation Library Compiler compiles Verilog HDL and VHDL simulation
libraries for all Altera devices and supported third-party simulators. You can use this
tool to compile all libraries required by RTL and gate-level simulation.

When the compilation targets third-party simulation tools such as ModelSim,
Active-HDL, Riviera-PRO, VCS MX, and NC-Sim, the compiled libraries are kept in
the directory you specified. When you perform the simulation using these simulators,
you can use or reuse the compiled libraries and avoid the overhead associated with
redundant library compilations.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

2–12 Chapter 2: Simulating Designs with EDA Tools
EDA Simulation Library Compiler

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If the compilation targets third-party simulation tools such as VCS, the option files
(simlib_comp.vcs) are generated after compilation. You can then include your design
and testbench files in the option files and invoke them with the vcs command.

Before using the EDA Simulation Library Compiler, ensure the appropriate
simulation tools are already installed and their execution paths are specified. To
specify the path, refer to “Setting Up the EDA Simulator Execution Path” on
page 2–14.

Running the EDA Simulation Library Compiler Through the GUI
To compile libraries with the EDA Simulation Library Compiler GUI, perform the
following steps:

1. On the Tools menu, click EDA Simulation Library Compiler. The EDA
Simulation Library Compiler dialog box appears.

2. In the Tool name entry box under EDA simulation tool, select a simulation tool.
The Executable location box displays the location of the simulation tool you
specified. This location must be set before running the EDA Simulation Library
Compiler.

3. Under Library families, select one or more device families for your design
compilation and move them to the Selected families box.

4. Under Library language, select VHDL, Verilog HDL, or both.

5. In the Output directory field, specify a location in which to store the compiled
libraries or option files.

You can then link to the directory so that the NativeLink feature will reuse the
compiled libraries rather than compile the Altera Libraries. Refer to step 9 under
“Configuring NativeLink Settings” on page 2–15.

6. Click Start Compilation.

When the EDA Simulation Library Compiler finishes, for ModelSim SE, Active-HDL,
Riviera-PRO, VCS MX, and NC-Sim, all required libraries are compiled and stored in
<output location you specified>/<verilog_libs or vhdl_libs>.

Chapter 2: Simulating Designs with EDA Tools 2–13
Using the NativeLink Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

When the EDA Simulation Library Compiler finishes, for VCS, the simlib_comp.vcs
file is generated. Example 2–1 shows the contents of the simlib_comp.vcs file.

If you manually run a simulation using the Synopsys VCS simulator, you must
include your design file and testbench file in the option file, .synopys_sim.setup, as
shown in Example 2–2.

To compile all of the libraries, design files, and testbench files, type the following
command:

vcs -f simlib_comp.vcs r
The EDA Simulation Library Compiler does not support ModelSim-Altera, because
ModelSim-Altera already contains precompiled libraries.

Running the EDA Simulation Library Compiler from the Command Line
To run the EDA Simulation Library Compiler from the command line, type the
following command:

quartus_sh --simlib_comp -family <device> -tool <simulation tool name>\
-language <language> -directory <directory> r
For more information about the command line options and how to use them, type the
following command:

quartus_sh --help=simlib_comp r

Using the NativeLink Feature
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run an
EDA simulator within the Quartus II software.

Example 2–1.

+cli+1 -line -timescale=1ps/1ps \
-v /apps/quartus/9.0/quartus/eda/sim_lib/altera_primitives.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/220model.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/sgate.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/altera_mf.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/stratixii_atoms.v \
+incdir+/apps/quartus/9.0/quartus/eda/sim_lib

Example 2–2.

+cli+1 -line -timescale=1ps/1ps design_file.v test_bench_file.vt\
-v /apps/quartus/9.0/quartus/eda/sim_lib/altera_primitives.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/220model.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/sgate.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/altera_mf.v \
-v /apps/quartus/9.0/quartus/eda/sim_lib/stratixiii_atoms.v \
+incdir+/apps/quartus/9.0/quartus/eda/sim_lib

2–14 Chapter 2: Simulating Designs with EDA Tools
Using the NativeLink Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Setting Up the EDA Simulator Execution Path
To run an EDA simulator automatically from the Quartus II software using the
NativeLink feature, specify the path to your simulation tool by performing the
following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options.

3. Double-click the entry under Location of executable beside the name of your EDA
tool.

4. Type the path or browse to the directory containing the executables of your EDA
tool. Following are the execution paths for each EDA simulator:

ModelSim-Altera software

c:\<ModelSim-Altera installation path>\win32aloem (Windows)

/<ModelSim-Altera installation path>/linuxaloem (Linux)

ModelSim SE/PE software

c:\<ModelSim installation path>\win32 (Windows)

/<ModelSim installation path>/bin (Linux)

VCS/VCS MX software

/<VCS MX installation path>/bin (Linux)

NC-Sim software

/<NC-Sim installation path>/tools/bin (Linux)

Active-HDL software

c:\<Active-HDL installation path>\bin (Windows)

Riviera-PRO software

c:\<Riviera-PRO installation path>\bin (Windows)

5. Click OK.

You can also specify the path to the simulator’s executables by typing the
set_user_option Tcl command, as follows:

set_user_option -name EDA_TOOL_PATH_MODELSIM <path to executables> r
set_user_option -name EDA_TOOL_PATH_MODELSIM_ALTERA <path to \
executables> r
set_user_option -name EDA_TOOL_PATH_VCS <path to executables> r
set_user_option -name EDA_TOOL_PATH_VCS_MX <path to executables> r
set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <path to executables> r
set_user_option -name EDA_TOOL_PATH_RIVIERAPRO <path to executables> r

Chapter 2: Simulating Designs with EDA Tools 2–15
Using the NativeLink Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Configuring NativeLink Settings
To configure NativeLink settings, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page appears.

3. In the Tool name list, select your preferred EDA tool.

4. For gate level simulation, if you want to run simulation in your EDA simulator
automatically after Quartus II full compilation, turn on Run gate-level simulation
automatically after compilation.

5. If you have testbench files or macro scripts, enter the information under
NativeLink settings. For more information about setting up a testbench file with
NativeLink, refer to “Setting Up Testbench Files Using the NativeLink Feature” on
page 2–17.

6. If you want to run the EDA simulator in command-line mode, perform the
following steps:

a. On the Simulation page, click More NativeLink Settings. The More
NativeLink Settings dialog box appears.

b. Under Existing option settings, click Launch third-party EDA tool in
command-line mode.

c. In the Setting field, select On.

d. Click OK.

7. If you want to generate only the simulation script without launching the EDA
simulator during the NativeLink process, perform the following steps:

a. On the Simulation page, click More NativeLink Settings. The More
NativeLink Settings dialog box appears.

b. Under Existing option settings, click Generate third-party EDA tool
command scripts without running the EDA tool.

c. In the Setting field, select On.

d. Click OK.

If you turn this option on and run NativeLink, only the simulation command
script is generated. The file names of simulation command scripts for various
simulators are as follows:

<project_name>_run_msim_<rtl/gate>_level_<verilog/vhdl>.do (ModelSim SE/AE)

<project_name>_sim_<rtl/gate>_<verilog/vhdl>.do (Riviera-PRO and Active-HDL)

script_file.sh and <project_name>_rtl.vcs (VCS)

<project_name>_vcsmx_<rtl/gate>_<vhdl/verilog>.tcl (VCS MX)

<project_name>_ncsim_<rtl/gate>_<verilog/vhdl>.tcl (NC-Sim)

8. Perform the simulation by typing one of the following commands, depending on
the simulator:

do <script>.do r (DO file)

2–16 Chapter 2: Simulating Designs with EDA Tools
Using the NativeLink Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

quartus_sh -t <script>.tcl r (TCL script)

sh <script>.sh r (Shell script)

9. If you have compiled libraries using the EDA Simulation Library Compiler,
perform the following steps:

a. On the Simulation page, click More EDA Netlist Writer Settings. The More
EDA Netlist Writer Settings dialog box appears.

b. Under Existing option settings, click Location of user compiled simulation
library.

c. In the Setting field, type the path that contains the user-compiled libraries that
are generated from the EDA Simulation Library Compiler. The path should be
the same as the path you have set in the Output Directory in the EDA
Simulation Library Compiler.

 For more information about the EDA Simulation Library Compiler, refer to “EDA
Simulation Library Compiler” on page 2–11.

Running RTL Simulation Using the NativeLink Feature
To run RTL simulation using the NativeLink feature, perform the following steps:

1. Configure the NativeLink settings. Refer to “Configuring NativeLink Settings” on
page 2–15.

2. On the Processing menu, point to Start and click Start Analysis & Elaboration to
perform an Analysis and Elaboration. This command collects all your file name
information and builds your design hierarchy in preparation for simulation.

3. On the Tools menu, point to Run EDA Simulation Tool and click EDA RTL
Simulation to automatically run the EDA simulator, compile all necessary design
files, and complete a simulation.

Running Gate-Level Simulation Using the NativeLink Feature
To run a gate-level simulation using the NativeLink feature, perform the following
steps:

1. Configure the EDA Netlist Writer settings. Refer to “Configuring EDA Netlist
Writer Settings” on page 2–8.

2. Configure the NativeLink settings. Refer to “Configuring NativeLink Settings” on
page 2–15.

3. On the Processing menu, click Start Compilation to perform Quartus II full
compilation, including generation of an EDA netlist file.

If you have turned on Run gate-level simulation automatically after compilation
while configuring NativeLink settings, you can skip step 4.

4. On the Tools menu, point to Run EDA Simulation Tool and click EDA Gate Level
Simulation to automatically run the EDA simulator, compile all necessary design
files, and complete a simulation.

Chapter 2: Simulating Designs with EDA Tools 2–17
Using the NativeLink Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Setting Up Testbench Files Using the NativeLink Feature
You can use the NativeLink feature to compile your design files and testbench files,
and run an EDA simulation tool to automatically perform a simulation.

To set up the NativeLink feature for simulation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. The Simulation
page appears.

3. Under NativeLink settings, select None, Compile test bench, or Script to
compile test bench (Table 2–5).

4. If you select Compile test bench, select your testbench setup from the Compile
test bench list. You can use different testbench setups to specify different test
scenarios. If there are no testbench setups entered, create a testbench setup by
performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type the testbench setup name that identifies the
different testbench setups.

d. In the Test level module box, type the top-level testbench entity/module
name. For example, for a Quartus II-generated VHDL testbench, type <Vector
Waveform File name>_vhd_vec_tst.

e. In the Instance box, type the full instance path to the top level of your FPGA
design. For example, for a Quartus II-generated VHDL testbench, type i1.

f. Under Simulation period, select Run simulation until all vector stimuli are
used or specify the end time of the simulation.

g. Under Test bench files, browse and add all of your testbench files in the File
name box. Use the Up and Down buttons to reorder your files. The script used
by the NativeLink feature compiles the files in order from top to bottom.

You can also specify the library name and HDL version to compile the
testbench file. The NativeLink feature compiles the testbench file to a library
name using the specified HDL version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

Table 2–5. NativeLink Testbench Settings

Setting Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and
starts simulation

Script to compile test
bench

NativeLink compiles the simulation models and design files. The script you
provide is sourced after design files compile. Use this option when you
want to create your own script to compile your testbench file and perform
simulation.

2–18 Chapter 2: Simulating Designs with EDA Tools
Conclusion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

5. Under NativeLink settings, turn on Use script to set up simulation and browse to
your script. Your script is executed to set up and run simulation after loading the
design using the vsim command.

6. If you select Script to compile test bench, browse to your script and click OK.

Creating Testbench Files
In the Quartus II software, you can create a Verilog HDL or VHDL testbench file from
a Vector Waveform File. The generated testbench file includes the behavior of the
input stimulus and applies it to your instantiated top-level FPGA design.

To create a Verilog HDL or VHDL testbench file from a Vector Waveform File, perform
the following steps:

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files. Select your Vector
Waveform File.

3. Click Open.

4. On the File menu, click Export. The Export dialog box appears.

5. Click the Save as type arrow and select VHDL Test Bench File (.vht) or Verilog
Test Bench File (.vt).

6. Turn on Add self-checking code to file to check your simulation results against
your Vector Waveform File.

7. Click Export. Your VHDL or Verilog HDL testbench file is generated in your
project directory.

Conclusion
The Quartus II NativeLink feature eases the tasks of setting up and running a
simulation. The NativeLink feature lets you launch third-party simulators to perform
simulation from within the Quartus II software. The NativeLink feature automates
the compilation and simulation of testbenches.

Referenced Documents
This chapter references the following documents:

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Volume 3: Verification of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 2: Simulating Designs with EDA Tools 2–19
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Document Revision History
Table 2–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 2–6. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

Initial release. Updated for the Quartus II
software version 9.1
release.

http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

2–20 Chapter 2: Simulating Designs with EDA Tools
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. Mentor Graphics ModelSim Support

This chapter provides detailed instructions about how to simulate your design in the
ModelSim-Altera® software or the Mentor Graphics® ModelSim software.

Introduction
An Altera® Quartus® II software subscription includes a no-cost entry-level version of
the ModelSim-Altera software on a PC or UNIX platform. Altera also offers the
ModelSim-Altera Subscription Edition software with full support for Altera devices.
You can use the ModelSim-Altera Starter Edition software to perform register transfer
level (RTL) functional, post-synthesis, and gate-level timing simulations for either
Verilog HDL or VHDL designs that target an Altera FPGA.

This chapter provides details about the specific libraries that are needed for an RTL
functional, post-synthesis, and gate-level timing simulation.

This chapter includes the following topics:

■ “Software Compatibility” on page 3–3

■ “Altera Design Flow with ModelSim-Altera or ModelSim Software” on page 3–3

■ “Simulation Libraries” on page 3–3

■ “Performing Simulation Using the ModelSim-Altera Software” on page 3–7

■ “Performing Simulation Using the ModelSim Software” on page 3–26

■ “Simulating Designs that Include Transceivers” on page 3–53

■ “Using the NativeLink Feature with ModelSim-Altera or ModelSim Software” on
page 3–61

■ “Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power
Analyzer” on page 3–61

■ “Viewing a Waveform from a .wlf File” on page 3–62

■ “Scripting Support” on page 3–63

■ “Software Licensing and Licensing Setup in ModelSim-Altera Subscription
Edition” on page 3–64

f For more information about the current Quartus II software version, refer to the
Altera website at www.altera.com.

ModelSim-Altera software is included with your Altera software subscription and can
be licensed for PC, UNIX, or Linux platforms to support either Verilog HDL or VHDL
simulation. ModelSim-Altera software supports RTL functional, post-synthesis, and
gate-level timing simulations for all Altera devices.

QII53001-9.1.0

http://www.altera.com

3–2 Chapter 3: Mentor Graphics ModelSim Support
Introduction

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 3–1 lists the differences between the Mentor Graphics ModelSim SE/PE and
ModelSim-Altera software versions.

Table 3–1. Comparison of ModelSim Software Versions

Product Feature ModelSim SE ModelSim PE ModelSim-Altera
ModelSim-Altera
Starter Edition

100% VHDL, Verilog HDL, mixed-HDL
support

Optional Optional Supports only
single-HDL
simulation

Supports only
single-HDL
simulation

Complete HDL debugging environment v v v v
Optimized direct compile architecture v v v v
Industry-standard scripting v v v v
Flexible licensing v Optional v —

Verilog HDL PLI support. Interfaces Verilog
HDL designs to customer C code and
third-party software

v v v v

VHDL FLI support. Interfaces VHDL designs
to customer C code and third-party software

v — — —

Standard Delay Output Format File
annotation

v v v(1) v (1)

Advanced debugging features and
language-neutral licensing

v — — —

Customizable, user-expandable GUI and
integrated simulation performance analyzer

v — — —

Integrated code coverage analysis and
SWIFT support

v — — —

Accelerated VITAL and Verilog HDL
primitives (3 times faster), and register
transfer level (RTL) acceleration (5 times
faster)

v — — —

Platform support PC, UNIX, Linux PC only PC, UNIX, Linux PC, UNIX, Linux

Precompiled libraries No No Yes Yes

Note to Table 3–1:

(1) ModelSim-Altera software only allows SDF annotation to modules in the Altera library.

Chapter 3: Mentor Graphics ModelSim Support 3–3
Software Compatibility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Software Compatibility
Table 3–2 shows which ModelSim-Altera and ModelSim software version is
compatible with the Quartus II software versions. ModelSim versions provided
directly from Mentor Graphics do not correspond to specific Quartus II software
versions.

For help with the ModelSim-Altera licensing setup, refer to “Software Licensing and
Licensing Setup in ModelSim-Altera Subscription Edition” on page 3–64.

Altera Design Flow with ModelSim-Altera or ModelSim Software
You can perform the following types of simulations using the ModelSim-Altera and
ModelSim SE software:

■ RTL functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

For more information about the Quartus II software design flow, refer to the “PLD
Design Flow” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

Simulation Libraries
Simulation model libraries are required to run a simulation whether you are running
an RTL functional simulation, post-synthesis simulation, or gate-level timing
simulation. In general, running an RTL functional simulation requires the RTL
functional simulation model libraries, while running a post-synthesis or gate-level
timing simulation requires the gate-level timing simulation model libraries. You must
compile the necessary library files before you can run the simulation.

Table 3–2. Compatibility Between Software Versions

ModelSim-Altera Software Quartus II Software (1)

ModelSim-Altera and ModelSim software version 6.5b Quartus II software version 9.1

ModelSim-Altera and ModelSim software version 6.4a Quartus II software version 9.0

ModelSim-Altera 6.3g_p1 and ModelSim software version 6.3g Quartus II software version 8.1

ModelSim-Altera and ModelSim software version 6.1g Quartus II software version 6.1, 7.0, 7.1, 7.2, and 8.0

ModelSim-Altera and ModelSim software version 6.1d Quartus II software version 6.0

ModelSim-Altera and ModelSim software version 6.0e Quartus II software version 5.1

ModelSim-Altera and ModelSim software version 6.0c Quartus II software version 5.0

ModelSim-Altera and ModelSim software version 5.8.e

ModelSim-Altera and ModelSim software version 5.8

Quartus II software version 4.2

Note to Table 3–2:

(1) Updated ModelSim-Altera precompiled libraries are available for download on Altera’s website for each release of the Quartus II service pack.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–4 Chapter 3: Mentor Graphics ModelSim Support
Simulation Libraries

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

There are a few exceptions where you must compile gate-level timing simulation
library files to perform RTL functional simulation. For example, the following list
shows some of the Altera megafunctions’ gate-level libraries required to perform an
RTL functional simulation using third-party simulators:

■ ALTCLKBUF

■ ALTCLKCTRL

■ ALTDQS

■ ALTDQ

■ ALTDDIO_IN

■ ALTDDIO_OUT

■ ALTDDIO_BIDIR

■ ALTUFM_NONE

■ ALTUFM_PARALLEL

■ ALTUFM_SPI

■ ALTMEMMULT

■ ALTREMOTE_UPDATE

1 To identify which type of simulation libraries are required to run the simulation for a
specified Altera megafunction, refer to the last page in the Altera megafunction
MegaWizard™ Plug-In Manager. This page explains which simulation library files are
required to perform an RTL functional simulation for that particular megafunction.

Simulation of the transceiver megafunction (for example, ALT2GXB) is another
exception that requires the gate-level libraries to perform RTL functional simulation
and vice versa.

For detailed, step-by-step instructions about how to simulate the transceiver
megafunction, refer to “Simulating Designs that Include Transceivers” on page 3–53.

Precompiled Simulation Libraries in the ModelSim-Altera Software
Precompiled libraries for both functional and gate-level simulations are available in
the ModelSim-Altera software. You do not have to explicitly compile these library
files before running the simulation.

The precompiled libraries provided in <ModelSim Altera path>/altera> must be
compatible with the version of the Quartus II software that is used to create the
simulation netlist. To check whether the precompiled libraries are compatible with
your version of the Quartus II software, refer to the <ModelSim Altera
path>/altera/version.txt file. This file shows which version and build of the Quartus II
software was used to create the precompiled libraries.

Chapter 3: Mentor Graphics ModelSim Support 3–5
Simulation Libraries

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

RTL Functional Simulation Libraries
RTL functional simulation libraries include the LPM simulation model, Altera
megafunction simulation model, and the low-level primitive simulation model.
Table 3–3 shows the precompiled library name and the location in the
ModelSim-Altera software for all RTL functional simulation models.

1 <compiled> refers to <ModelSim-Altera installation directory>\altera

Gate-Level Simulation Libraries
Gate-level simulation libraries include the supported Altera device atom simulation
models. Table 3–4 shows the precompiled library name and location in the
ModelSim-Altera software for all gate-level simulation models.

Table 3–3. Precompiled RTL Functional Simulation Libraries in the ModelSim-Altera Software

RTL Simulation Model

Precompiled
Library Name

(Verilog)
Location in ModelSim-Altera

(Verilog)

Precompiled
Library Name

(VHDL)
Location in

ModelSim-Altera (VHDL)

LPM lpm_ver <compiled>\verilog\220model lpm <compiled>\vhdl\220model

Altera Megafunction altera_mf_ver <compiled>\verilog\altera_mf altera_mf <compiled>\vhdl\altera_mf

Low-Level Primitives altera_ver <compiled>\verilog\altera altera <compiled>\vhdl\altera

ALTGXB Megafunction
(Stratix GX)

altgxb_ver <compiled>\verilog\altgxb altgxb <compiled>\vhdl\altgxb

High-Level Primitives sgate_ver <compiled>\verilog\sgate sgate <compiled>\vhdl\sgate

Low-Level Primitives alt_vtl_ver <compiled>\verilog\alt_vtl alt_vtl <compiled>\vhdl\alt_vtl

Table 3–4. Precompiled Gate-Level Simulation Libraries in the ModelSim-Altera Software (Part 1 of 2)

Device
Simulation

Model

Precompiled
Library Name

(Verilog)
Location in ModelSim-Altera

(Verilog)

Precompiled
Library Name

(VHDL)
Location in ModelSim-Altera

(VHDL)

Arria® II (without
transceiver block)

arriaii_ver <compiled>\verilog\arriaii arriaii <compiled>\vhdl\arriaii

Arria II GX (with
transceiver block)

arriaii_hssi_ver <compiled>\verilog\arriaii_hssi arriaii_hssi <compiled>\vhdl\arriaii_hssi

Arria II (with PCI
Express)

arriaii_pcie_hip_ver <compiled>\verilog\arriaii_pcie_hip arriaii_pcie_hip <compiled>\vhdl\arriaii_pcie
_hip

Arria GX (without
transceiver block)

arriagx_ver <compiled>\verilog\arriagx arriagx <compiled>\vhdl\arriagx

Arria GX (with
transceiver block)

arriagx_hssi_ver <compiled>\verilog\arriagx_hssi arriagx_hssi <compiled>\vhdl\arriagx_hssi

Stratix® IV stratixiv_ver <compiled>\verilog\stratixiv stratixiv <compiled>\vhdl\stratixiv

Stratix IV (with
transceiver block)

stratixiv_hssi_ver <compiled>\verilog\stratixiv_hssi stratixiv_hssi <compiled>\vhdl\stratixiv_hssi

Stratix IV (with
PCI Express)

stratixiv_pcie_hip_
ver

<compiled>\verilog\stratixiv_pcie_hip stratixiv_pcie_hip <compiled>\vhdl\stratixiv
_pcie_hip

Stratix III stratixiii_ver <compiled>\verilog\stratixiii stratixiii <compiled>\vhdl\stratixiii

Stratix II stratixii_ver <compiled>\verilog\stratixii stratixii <compiled>\vhdl\stratixii

Stratix II GX
(without
transceiver block)

stratixiigx_ver <compiled>\verilog\stratixiigx stratixiigx <compiled>\vhdl\stratixiigx

3–6 Chapter 3: Mentor Graphics ModelSim Support
Simulation Libraries

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation Library Files in the Quartus II Software
In ModelSim SE/PE, no precompiled libraries are available. You must compile the
necessary libraries to perform RTL functional or gate-level simulation. For
information about the required libraries, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Disabling Timing Violation on Registers
In certain situations, a timing violation can be ignored and you can disable timing
violations on registers (for example, timing violations that occur in internal
synchronization registers used for asynchronous clock domain crossing).

By default, the x_on_violation_option logic option is On, which means simulation
shows “x” whenever a timing violation occurs. To disable showing the timing
violation on certain registers, set the x_on_violation_option logic option to Off on
those registers. The following Quartus II Tcl command disables timing violation on
registers. This Tcl command is also stored in the .qsf file.

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name>

Stratix II GX (with
transceiver block)

stratixiigx_hssi_ver <compiled>\verilog\stratixiigx_hssi stratixiigx_hssi <compiled>\vhdl\stratixiigx_hssi

Stratix stratix_ver <compiled>\verilog\stratix stratix <compiled>\vhdl\stratix

Stratix GX
(without
transceiver block)

stratixgx_ver <compiled>\verilog\stratixgx stratixgx <compiled>\vhdl\stratixgx

Stratix GX (with
transceiver block)

stratixgx_gxb_ver <compiled>\verilog\stratixgx_gxb stratixgx_gxb <compiled>\vhdl\stratixgx_gxb

HardCopy® IV hardcopyiv_ver <compiled>\verilog\hardcopyiv hardcopyiv <compiled>\vhdl\hardcopyiv

HardCopy III hardcopyiii_ver <compiled>\verilog\hardcopyiii hardcopyiii <compiled>\verilog\hardcopyiii

HardCopy II hardcopyii_ver <compiled>\verilog\hardcopyii hardcopyii <compiled>\vhdl\hardcopyii

Cyclone® III LS cycloneiiils_ver <compiled>\verilog\cycloneiiils cycloneiiils <compiled>\vhdl\cycloneiiils

Cyclone IV
(without
transceiver block)

cycloneiv_ver <compiled>\verilog\cycloneiv cycloneiv <compiled>\vhdl\cycloneiv

Cyclone IV (with
transceiver block)

cycloneiv_hssi_ver <compiled>\verilog\cycloneiv_hssi cycloneiv_hssi <compiled>\vhdl\cycloneiv_hssi

Cyclone IV (with
PCI Express)

cycloneiv_pcie_hip
_ver

<compiled>\verilog\cycloneiv_pcie
_ hip

cycloneiv_pcie_
hip

<compiled>\vhdl\cycloneiv_pcie
_hip

Cyclone III cycloneiii_ver <compiled>\verilog\cycloneiii cycloneiii <compiled>\vhdl\cycloneiii

Cyclone II cycloneii_ver <compiled>\verilog\cycloneii cycloneii <compiled>\vhdl\cycloneii

Cyclone cyclone_ver <compiled>\verilog\cyclone cyclone <compiled>\vhdl\cyclone

MAX® II maxii_ver <compiled>\verilog\maxii maxii <compiled>\vhdl\maxii

MAX 7000
MAX 3000

max_ver <compiled>\verilog\max max <compiled>\vhdl\max

Table 3–4. Precompiled Gate-Level Simulation Libraries in the ModelSim-Altera Software (Part 2 of 2)

Device
Simulation

Model

Precompiled
Library Name

(Verilog)
Location in ModelSim-Altera

(Verilog)

Precompiled
Library Name

(VHDL)
Location in ModelSim-Altera

(VHDL)

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–7
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler can compile Verilog HDL and VHDL
simulation libraries for all Altera devices and supported EDA simulators. You can use
this tool to compile all libraries required for RTL and gate-level simulation.

f For more information about this tool, refer to the “EDA Simulation Library Compiler”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Performing Simulation Using the ModelSim-Altera Software
Simulation of Verilog HDL or VHDL designs with the ModelSim-Altera software can
be performed at various levels to verify designs from different aspects. Simulation is
divided into three categories: RTL functional simulation, post-synthesis simulation,
and gate-level timing simulation. Simulation helps you verify your designs and
debug them.

The following sections provide step-by-step instructions for performing the
simulation through the GUI and from the command line.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

Simulating the VHDL Designs Using the GUI
Simulating the VHDL design using the ModelSim-Altera GUI is user-friendly. You do
not have to remember the commands to compile the libraries, or load and simulate the
VHDL design files. You can use the ModelSim-Altera GUI to perform RTL functional
simulation, post-synthesis simulation, and gate-level timing simulation. The
following sections show how to perform simulation at various levels through the
ModelSim-Altera GUI.

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in the
ModelSim-Altera software for VHDL designs.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Design Files into the Work Library

The following instructions show you how to compile your testbench and design files
into the work library using the ModelSim-Altera GUI.

1. Browse to locate your designs.

2. Click OK.

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–8 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and design files into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The design files and testbench file should be compiled into
the Work library.

3. Select the design files and testbench file, and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries text box, click the Add button.

c. Browse to the required precompiled library in the ModelSim-Altera software.
You can either browse to locate the path <ModelSim-Altera installation
directory>/altera/vhdl/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> or <precompiled library mapped name> are
altera_mf and lpm. The functional RTL simulation libraries are required for
performing RTL functional simulation. For the complete set of libraries, refer to
“Precompiled Simulation Libraries in the ModelSim-Altera Software” on
page 3–4.

d. Click OK to add the libraries to the Search Libraries text box.

7. Click OK.

Chapter 3: Mentor Graphics ModelSim Support 3–9
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the
ModelSim-Altera software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a VHDL
design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and VHDL Output File into the Work Library

The following instructions show you how to compile your testbench and *.vho file
into the work library using the ModelSim-Altera GUI.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vho file. By default, the *.vho file is located in
<project directory>/simulation/modelsim.

2. Click OK.

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and VHDL output (*.vho) files into the work library, perform
the following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–10 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

2. Select the library Work. The testbench and VHDL output (*.vho) files should be
compiled into the Work library.

3. Select the testbench and *.vho design files and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries text box, click the Add button.

c. Browse to the required precompiled library in the ModelSim-Altera software.
You can either browse to locate the path <ModelSim-Altera installation
directory>/altera/vhdl/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> or <precompiled library mapped name> are
stratixiii and cycloneiii. The gate-level simulation libraries are required for
performing post-synthesis simulation. For the complete set of libraries, refer to
“Precompiled Simulation Libraries in the ModelSim-Altera Software” on
page 3–4.

d. Click OK to add the libraries to the Search Libraries text box.

7. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Chapter 3: Mentor Graphics ModelSim Support 3–11
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing Gate-Level Simulation
Gate-level simulation is an important step in ensuring that the device functionality is
correct and meets all timing requirements following place and route. You can create
the gate-level netlist in the Quartus II software and use the netlist to perform
gate-level simulation with the ModelSim-Altera software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a VHDL design in
the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and VHDL Output File into the Work Library

The following instructions show how you can compile your testbench and *.vho file
into the work library using the ModelSim-Altera GUI.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vho file. By default, the *.vho file is located in
<project directory>/simulation/modelsim.

2. Click OK.

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and VHDL output (*.vho) files into the work library, perform
the following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and VHDL output (*.vho) files should be
compiled into the Work library.

3. Select the testbench and VHDL output (*.vho) design files, and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–12 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. Click the SDF tab, and click Add. The Add SDF Entry dialog box appears.

3. In the Add SDF Entry dialog box, click Browse and select the *.sdo file. By default,
the *.sdo file is located in <project directory>/simulation/modelsim.

4. In the Apply to Region dialog box, type the instance path to which the *.sdo file is
to be applied. For example, if you are using a testbench exported into the
Quartus II software from a Vector Waveform File, the instance path is set to /i1.

1 You do not have to choose from the Delay list because the Quartus II EDA Netlist
Writer generates the *.sdo file using the same value for the triplet (minimum, typical,
and maximum timing values).

5. Click OK.

6. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

7. In the Library list, select and expand the Work library.

8. Select the top-level design unit (your testbench).

9. In the Resolution list, select ps.

10. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries text box, click the Add button.

c. Browse to the required precompiled library in the ModelSim-Altera software.
You can either browse to locate the path <ModelSim-Altera installation
directory>/altera/vhdl/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> or <precompiled library mapped name> are
stratixiii and cycloneiii. The gate-level simulation libraries are required for
performing gate-level simulation. For the complete set of libraries, refer to
“Precompiled Simulation Libraries in the ModelSim-Altera Software” on
page 3–4.

d. Click OK to add the libraries to the Search Libraries text box.

11. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

Chapter 3: Mentor Graphics ModelSim Support 3–13
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Simulating Verilog HDL Designs through the GUI
You do not have to remember the commands to compile the libraries or load and
simulate the Verilog HDL design files. You can use the ModelSim-Altera GUI to
perform RTL functional simulation, post-synthesis simulation, and gate-level timing
simulation. The following sections show how to perform simulation at various levels
through the ModelSim-Altera GUI.

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in the
ModelSim-Altera software for Verilog HDL designs.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Design Files into the Work Library

The following instructions show you how to compile your testbench and design files
into the work library using the ModelSim-Altera GUI.

To change to the design directory, perform the following steps:

1. Browse to locate your designs.

2. Click OK.

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and design files into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The design files and testbench file should be compiled into
the Work library.

3. Select the design files and testbench file and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

3–14 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. Click the Libraries tab.

7. In the Search Libraries text box, click the Add button.

8. Browse to the required precompiled library in the ModelSim-Altera software. You
can either browse to locate the path <ModelSim-Altera installation
directory>/altera/verilog/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> or <precompiled library mapped name> are
altera_mf_ver and lpm_ver. The RTL simulation libraries are required for
performing RTL functional simulation. For the complete set of libraries, refer to
“Precompiled Simulation Libraries in the ModelSim-Altera Software” on page 3–4.

9. Click OK to add the libraries to the Search Libraries text box.

10. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the
ModelSim-Altera software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–15
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following sections help you perform a post-synthesis simulation for a Verilog
HDL design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Verilog HDL Output File into the Work Library

The following instructions show you how to compile your testbench and Verilog HDL
output file (*.vo) into the work library using the ModelSim-Altera GUI.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vo file. By default, the *.vho file is located in
<project directory>/simulation/modelsim.

2. Click OK.

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and Verilog HDL output (*.vo) files into the work library,
perform the following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and Verilog HDL output (*.vo) files should
be compiled into the Work library.

3. Select the testbench and *.vo design files, and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. Click the Libraries tab.

7. In the Search Libraries text box, click the Add button.

3–16 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

8. Browse to the required precompiled library in the ModelSim-Altera software. You
can either browse to locate the path <ModelSim-Altera installation
directory>/altera/verilog/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> or <precompiled library mapped name> are
stratixiii_ver and cycloneiii_ver. The gate-level simulation libraries are required
for performing post-synthesis simulation. For the complete set of libraries, refer to
“Precompiled Simulation Libraries in the ModelSim-Altera Software” on page 3–4.

9. Click OK to add the libraries to the Search Libraries text box.

10. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the
ModelSim-Altera software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” in the Simulating Designs with EDA Tools section chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a Verilog HDL
design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Verilog HDL Output File into the Work Library

The following instructions show you how to compile your testbench and *.vo file into
the work library using the ModelSim-Altera GUI.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vo file. By default, the *.vo file is located in
<project directory>/simulation/modelsim.

2. Click OK.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–17
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

To create the work library, perform the following steps:

1. In the ModelSim-Altera software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and *.vo files into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and *.vo files should be compiled into the
Work library.

3. Select the testbench and *.vo design files, and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

When simulating in Verilog HDL, you do not have to specify the Standard Delay
Output Format File (*.sdo) file. In the $sdf_annotate task, when the Quartus II
software generates the *.vo file, the ModelSim-Altera software looks for the *.sdo file
in the directory in which the VSIM was run. If your *.sdo file is not in this directory,
copy the *.sdo file into your current directory.

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. Click the Libraries tab.

7. In the Search Libraries text box, click the Add button.

8. Browse to the required precompiled library in the ModelSim-Altera software. You
can either browse to locate the path <ModelSim-Altera installation
directory>/altera/verilog/<precompiled library> or you can just click the arrow
button to select the <precompiled library mapped name>.

Examples of <precompiled library> are altera_mf_ver and lpm_ver. The gate-level
simulation libraries are required for performing gate-level simulation. For the
complete set of libraries, refer to “Precompiled Simulation Libraries in the
ModelSim-Altera Software” on page 3–4.

9. Click OK to add the libraries to the Search Libraries text box.

3–18 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

10. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Simulating the VHDL Designs from the Command Line
Simulating VHDL designs from the ModelSim-Altera command line gives you more
flexibility and control to compile the libraries, and load and simulate the VHDL
design files. All simulation commands are Tcl commands that can be included in the
ModelSim Macro File (*.do). Using the *.do file allows you to run simulation in batch
mode. You have to execute only the *.do file, and the ModelSim-Altera tool
automatically executes all commands in the *.do script macro file.

You can use the ModelSim-Altera command line to perform RTL functional
simulation, post-synthesis simulation, and gate-level simulation. The following
sections show how to perform simulation at various levels from the ModelSim-Altera
command line.

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in
ModelSim-Altera for VHDL designs.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Design Files into the Work Library

Use the following commands to compile your testbench and design files into the work
library in the ModelSim-Altera software.

To change to the design library, type the following command:

cd <your_design_directory> r
(for example, cd:/designs)

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and design files into the work library, type the following
command:

vcom -work work <my_testbench.vhd> <my_design_files.vhd> r

Chapter 3: Mentor Graphics ModelSim Support 3–19
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <precompiled-library1> -L <precompiled-library2> work.<my_testbench> r
The <precompiled-library1> and <precompiled-library2> variables are the libraries
required to compile your testbench. If you have multiple libraries, use the -L option
for each library in the vsim command.

Examples of <precompiled library> are altera_mf and lpm. The functional RTL
simulation libraries are required for performing RTL functional simulation. For the
complete set of libraries, refer to “Precompiled Simulation Libraries in the
ModelSim-Altera Software” on page 3–4.

You can choose not to invoke -L in the vsim command for VHDL designs if you have
already included the mapped name of the libraries in your design files or subfiles.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r
For example, to add all signals in your testbench hierarchy, type the following
command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the
ModelSim-Altera software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the ”Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a VHDL
design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and VHDL Output File into the Work Library

Use the following commands to compile your testbench and *.vho file into the work
library in the ModelSim-Altera software.

To change to the simulation output directory, type the following command:

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–20 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

1 This directory contains the *.vho file, which is generated by the netlist writer.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.vho files into the work library, type the following
command:

vcom -work work <my_testbench.vhd> <my_design_netlists.vho> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <precompiled-library1> -L <precompiled-library2> work.<my_testbench> r
The <precompiled-library1> and <precompiled-library2> variables are the libraries
required to compile your testbench. If you have multiple libraries, use the -L option
for each library in the vsim command.

Examples of <precompiled library> are stratixiii and cycloneiii. The gate-level
simulation libraries are required for performing post-synthesis simulation. For the
complete set of libraries, refer to “Precompiled Simulation Libraries in the
ModelSim-Altera Software” on page 3–4.

You can choose not to invoke -L in the vsim command for VHDL designs if you have
already included the mapped name of the libraries in your design files or subfiles.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the
ModelSim-Altera software.

Chapter 3: Mentor Graphics ModelSim Support 3–21
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a VHDL design in
the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and VHDL Output File into the Work Library

Use the following commands to compile your testbench and *.vho file into the work
library in the ModelSim-Altera software.

To change to the simulation output directory, type the following command:

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

1 This directory contains the *.vho file, which is generated by the netlist writer.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.vho files into the work library, type the following
command:

vcom -work work <my_testbench.vhd> <my_design_netlists.vho> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -sdftyp <design instance> = <path to *.sdo file> -L \
<precompiled-library1> -L <precompiled-library2> work.<my_testbench> r

The <precompiled-library1> and <precompiled-library2> variables are the libraries
required to compile your testbench. If you have multiple libraries, use the -L option
for each library in the vsim command.

Examples of <precompiled library> are stratixiii and cycloneiii. The gate-level
simulation libraries are required for performing gate-level simulation. For the
complete set of libraries, refer to “Precompiled Simulation Libraries in the
ModelSim-Altera Software” on page 3–4.

You can choose not to invoke -L in the vsim command for VHDL designs if you have
already included the mapped name of the libraries in your design files or subfiles.

1 You do not have to set the value (minimum, average, maximum) for the *.sdo file
because the Quartus II EDA Netlist Writer generates the *.sdo file using the same
value for the triplet (minimum, average, and maximum timing values).

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–22 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If your design under test is instantiated in the testbench file under the i1 label, the
<design instance> should be “i1” (for example, /i1=<my design>.sdo).

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Simulating the Verilog HDL Designs on the Command Line
Simulating Verilog HDL design from the ModelSim-Altera command line gives you
more flexibility and control to compile the libraries and load the design files. All
simulation commands are Tcl commands that can be put into the ModelSim Macro
File (*.do). Using the *.do file allows you to run simulation in batch mode. You only
have to execute the *.do file and the ModelSim-Altera tool automatically executes all
commands in the *.do script macro file.

You can use the ModelSim-Altera command line to perform the RTL functional
simulation, post-synthesis simulation, and gate-level simulation. The following
sections show how to perform simulation at various levels from the ModelSim-Altera
command line.

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in
ModelSim-Altera for Verilog HDL designs.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Design Files into the Work Library

Use the following commands to compile your testbench and design files into the work
library in the ModelSim-Altera software.

To change to the design library, type the following command:

cd <your_design_directory> r
(for example, cd:/designs)

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and design files into the work library, type the following
command:

vlog -work work <my_testbench.v> <my_design_files.v> r

Chapter 3: Mentor Graphics ModelSim Support 3–23
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim –t ps –L <library1> –L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are required libraries to compile your
testbench. If you have multiple libraries, use the –L option multiple times in the vsim
command.

1 Examples of <precompiled library> are altera_mf_ver and lpm_ver. The functional RTL
simulation libraries are required for performing RTL functional simulation. For the
complete set of libraries, refer to “Precompiled Simulation Libraries in the
ModelSim-Altera Software” on page 3–4.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the
ModelSim-Altera software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a Verilog
HDL design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Verilog HDL Output File into the Work Library

Use the following commands to compile your testbench and *.vo file into the work
library in the ModelSim-Altera software.

To change to the simulation output directory, type the following command:

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–24 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim-Altera Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

1 This directory contains the *.vo file, which is generated by the netlist writer.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.v files into the work library, type the following
command:

vlog -work work <my_testbench.v> <my_design_netlists.vo> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim –t ps –L <library1> –L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are libraries required to compile your
testbench. Examples of <precompiled library> are stratixiii_ver, stratixii_ver, and
stratixiigx_ver. Gate-level libraries are required for performing post-synthesis
simulation. If you have multiple libraries, use the -L option multiple times in the
vsim command. For the complete set of libraries, refer to “Precompiled Simulation
Libraries in the ModelSim-Altera Software” on page 3–4.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the
ModelSim-Altera software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–25
Performing Simulation Using the ModelSim-Altera Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following sections help you perform a gate-level simulation for a Verilog HDL
design in the ModelSim-Altera software.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

Compiling Testbench and Verilog HDL Output File into the Work Library

Use the following commands to compile your testbench and *.vo file into the work
library in the ModelSim-Altera software.

To change to the simulation output directory, type the following command:

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

1 This directory contains the *.vho file, which is generated by the netlist writer.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and VHDL output (*.vho) files into the work library, type the
following command:

vlog -work work <my_testbench.v> <my_design_netlists.vo> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

When simulating in Verilog HDL, you do not have to specify the *.sdo file. In the
$sdf_annotate task, when the Quartus II software generates the *.vo file, the
ModelSim-Altera software looks for the *.sdo file in the directory in which the VSIM
was run. If your *.sdo file is not in this directory, copy the *.sdo file into your current
directory.

To load a design, type the following command:

vsim –t ps –L <library1> –L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are required libraries to compile your
testbench. Examples of precompiled libraries are stratixiii_ver, stratixii_ver, and
stratixiigx_ver. Gate-level libraries are required for performing gate-level timing
simulation. If you have multiple libraries, use the -L option multiple times in the
vsim command. For the complete set of libraries, refer to “Precompiled Simulation
Libraries in the ModelSim-Altera Software” on page 3–4.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

3–26 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Simulation Using the ModelSim Software
Simulation of Verilog HDL or VHDL designs with ModelSim software can be done at
various levels to verify designs from different aspects. Simulation is divided into three
categories: RTL functional simulation, post-synthesis simulation, and gate-level
simulation. Simulation helps you verify your designs and debug them against any
possible errors in the designs.

You can perform the simulation through the GUI or from the command line. The
following sections provide step-by-step instructions to perform the simulation
through the GUI and from the command line. You can proceed to the specific section
that meets your needs.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

Simulating the VHDL Designs Using the GUI
You do not have to remember the commands to compile the libraries or load and
simulate the VHDL design files. You can use the ModelSim GUI to perform RTL
functional simulation, post-synthesis simulation, and gate-level timing simulation.
The following sections show how to perform simulation at various levels through the
ModelSim GUI.

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in the ModelSim
software for VHDL designs.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To change to the design directory, perform the following steps:

1. Browse to locate your designs.

2. Click OK.

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to create the simulation library. (If you are using this
utility, you can skip these steps.)

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

Chapter 3: Mentor Graphics ModelSim Support 3–27
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. In the Library Name box, type the library name of the newly created library.

1 For example, the library name for Altera megafunctions is altera_mf, and the library
name for LPM is lpm. To see all of the functional simulation library files, refer to the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook.

4. Click OK.

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, altera_mf, lpm).

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The altera_mf_components.vhd and altera_mf.vhd model files should be compiled
into the altera_mf library. The 220pack.vhd and 220model.vhd model files should be
compiled into the lpm library.

4. Repeat step 2 and step 3 to compile other simulation models.

5. Click Done.

Compiling Testbench and Design Files into the Work Library

The following instructions show you how to compile your testbench and design files
into the work library with the ModelSim GUI.

To create the work library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench and design files into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The design files and testbench file should be compiled into
the Work library.

3. Select the design files and the testbench file and click Compile.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–28 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries (-L) text box, click the Add button.

c. Browse to the required simulation library that you previously compiled (for
example, altera_mf, lpm, or altera).

d. Click OK to add the libraries to the Search Libraries (-L) text box.

7. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the ModelSim
software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–29
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following sections help you perform a post-synthesis simulation for a VHDL
design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. You must create the required simulation libraries for the device family you
are using and link them to your design correctly.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vho file. By default, the *.vho file is located in
<project directory>/simulation/modelsim.

2. Click OK.

If you are not using the EDA Simulation Library Compiler as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, perform the
following steps to create the simulation library. (If you are using this utility, you can
skip these steps.)

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name of the newly created library.

1 For example, the library name for Stratix III family is stratixiii. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

4. Click OK.

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, stratixiii).

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The stratixiii_components.vhd and stratixiii.vhd model files are compiled into the
stratixiii library.

4. Repeat step 2 and step 3 to compile other simulation models.

5. Click Done.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–30 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Testbench and VHDL Output File into the Work Library

The following instructions show you how to compile your testbench and *.vho file
into the work library using the ModelSim GUI.

To create the work library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench file and *.vho file into the work library, perform the
following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and *.vho file should be compiled into the
Work library.

3. Select the testbench and *.vho file design files and click Compile.

4. Click Done.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. In the Start Simulation dialog box, click the Design tab. In the Resolution list,
select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries (-L) text box, click the Add button.

c. Browse to the required simulation library that you previously compiled (for
example, stratixii, stratixiii, or cycloneiii).

d. Click OK to add the libraries to the Search Libraries (-L) text box.

7. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

Chapter 3: Mentor Graphics ModelSim Support 3–31
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim
software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a VHDL design in
the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. You must create the required simulation libraries for the device family you
are using and link them to your design correctly.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vho file. By default, the *.vho file is located in
<project directory>/simulation/modelsim>.

2. Click OK.

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to create simulation libraries. (If you are using this utility,
you can skip these steps.)

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name of the newly created library.

1 For example, the library name for the Stratix III family is stratixiii. To see all gate-level
timing simulation library files, refer to the “Simulation Libraries” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

4. Click OK.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–32 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, stratixiii).

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The stratixiii_components.vhd and stratixiii.vhd model files should be compiled into
the stratixiii library.

4. Repeat step 2 and step 3 to compile other simulation models.

5. Click Done.

Compiling Testbench and Design Files into the Work Library

The following instructions show you how to compile your testbench and *.vho file
into the work library using the ModelSim GUI.

To create the work library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench file and *.vho file into the work library, perform the
following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and *.vho file should be compiled into the
Work library.

3. Select the testbench and *.vho design files and click Compile.

4. Click Done.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. Click the SDF tab and click Add.

Chapter 3: Mentor Graphics ModelSim Support 3–33
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. In the Add SDF Entry dialog box, click Browse and select the *.sdo file. By default,
the *.sdo file is located in <project directory>/simulation/modelsim.

4. In the Apply to Region dialog box, type in the instance path to which the *.sdo file
is to be applied. For example, if you are using a testbench exported into the
Quartus II software from a Vector Waveform File, the instance path is set to /i1.

1 You do not have to choose from the Delay list because the Quartus II EDA
Netlist Writer generates the *.sdo file using the same value for the triplet
(minimum, typical, and maximum timing values).

5. Click OK.

6. Click the Design tab. In the Resolution list, select ps.

7. In the Library list, select the Work library.

8. In the Start Simulation dialog box, expand the Work library.

9. Select the top-level design unit (your testbench).

10. In the Resolution list, select ps.

11. For VHDL designs, if you have not included the mapped name of the libraries in
your design files or subfiles, perform the following steps:

a. Click the Libraries tab.

b. In the Search Libraries (-L) text box, click the Add button.

c. Browse to the required simulation library that you previously compiled (for
example, stratixii, stratixiii, or cycloneiii).

d. Click OK to add the libraries to the Search Libraries (-L) text box.

12. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Simulating the Verilog HDL Designs Using the GUI
Simulating Verilog HDL design using the ModelSim GUI is user-friendly. You do not
have to remember the commands to compile the libraries or load and simulate the
Verilog HDL design files. You can use the ModelSim GUI to perform RTL functional
simulation, post-synthesis simulation, and gate-level timing simulation. The
following sections show how to perform simulation at various levels through the
ModelSim GUI.

3–34 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in the ModelSim
software for Verilog HDL designs.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your designs.

2. Click OK.

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to create simulation libraries. (If you are using this utility,
you can skip these steps.)

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name of the newly created library.

1 For example, the library name for Altera megafunctions is altera_mf_ver, and the
library name for LPM is lpm_ver. To see all of the functional simulation library files,
refer to the “Simulation Libraries” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook.

4. Click OK.

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, altera_mf_ver or lpm_ver).

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The altera_mf.v model files should be compiled into the altera_mf_ver library. The
220model.v model files should be compiled into the lpm_ver library.

4. Repeat step 2 and step 3 to compile other simulation models.

5. Click Done.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–35
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Testbench and Design Files into the Work Library

The following instructions show you how to compile your testbench and design files
into the work library using the ModelSim GUI.

To change to the design directory, perform the following steps:

1. Browse to locate your designs.

2. Click OK.

To compile the testbench and design files into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The design files and testbench file should be compiled into
the Work library.

3. Select the design files and the testbench file and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. Click the Design tab. In the Resolution list, select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. Click the Libraries tab.

7. In the Search Libraries (-L) text box, click the Add button to browse to the
required simulation library that you previously compiled (for example,
altera_mf_ver, lpm_ver, or altera_ver) and click OK to add them into the Search
Libraries (-L) text box.

8. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

3–36 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the ModelSim
software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a Verilog
HDL design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To change to the design directory, perform the following steps:

1. Browse to locate your testbench or *.vo file. By default, the *.vo file is located in
<project directory>/simulation/modelsim.

2. Click OK.

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to create the simulation library. (If you are using the
utility, you can skip these steps.)

To create the simulation library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name of the newly created library.

1 For example, the library name for the Stratix III family is stratixiii. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

4. Click OK.

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, stratixiii_ver).

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–37
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The stratixiii_atoms.v model files should be compiled into the stratixiii_ver library.

4. Repeat step 2 and step 3 to compile other simulation models, if needed.

5. Click Done.

Compiling Testbench and Verilog HDL Output File into the Work Library

The following instructions show you how to compile your testbench and *.vo into the
work library using the ModelSim GUI.

To create the work library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench file and *.vo file into the work library, perform the following
steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and *.vo file should be compiled into the
Work library.

3. Select the testbench and *.vo design files, and click Compile.

4. Click Done.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. Click the Design tab. In the Resolution list, select ps.

3. In the Library list, select the Work library.

4. In the Start Simulation dialog box, expand the Work library.

5. Select the top-level design unit (your testbench).

6. In the Resolution list, select ps.

7. Click the Libraries tab.

8. In the Search Libraries (-L) text box, click the Add button to browse to the
required simulation library that you previously compiled (for example,
stratixiii_ver or stratixiiigx_ver) and click OK to add them into the Search
Libraries (-L) text box.

3–38 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

9. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim
software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a Verilog HDL
design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To change to the simulation output directory, perform the following steps:

1. Browse to locate your testbench or *.vo file. By default, the *.vo file is located in
<project directory>/simulation/modelsim.

2. Click OK.

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to create the simulation library. (If you are using the
utility, you can skip these steps.)

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name of the newly created library.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–39
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 For example, the library name for the Stratix III family is stratixiii. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

4. Click OK.

Compiling Simulation Models into Simulation Libraries

If you are not using the EDA Simulation Library Compiler, as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–7,
perform the following steps to compile simulation models into simulation libraries. (If
you are using this utility, you can skip these steps.)

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library that you created (for example, stratixiii_ver).

3. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files to your project. Select the simulation model files and click
Compile.

1 The stratixiii_atoms.v model files should be compiled into the stratixiii_ver library.

4. Repeat step 2 and step 3 to compile other simulation models, if needed.

5. Click Done.

Compiling Testbench and Verilog HDL Output File into the Work Library

The following instructions show you how to compile your testbench and *.vo file into
the work library using the ModelSim GUI.

To create the work library, perform the following steps:

1. In the ModelSim software, on the File menu, point to New and click Library. The
Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the library name Work in the text box.

4. Click OK.

To compile the testbench file and Verilog HDL output file (*.vo) into the work library,
perform the following steps:

1. On the Compile menu, click Compile. The Compile Source Files dialog box
appears.

2. Select the library Work. The testbench and *.vo file should be compiled into the
Work library.

3. Select the testbench and *.vo design files and click Compile.

4. Click Done.

1 Resolve compile-time errors before proceeding to the next section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–40 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Loading the Design

When simulating in Verilog HDL, you do not have to specify the *.sdo file. In the
$sdf_annotate task, when the Quartus II software generates the *.vo file, the
ModelSim-Altera software looks for the *.sdo file in the directory in which the VSIM
was run. If your *.sdo file is not in this directory, copy the *.sdo file into your current
directory.

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation dialog box
appears.

2. Click the Design tab. In the Resolution list, select ps.

3. In the Library list, select and expand the Work library.

4. Select the top-level design unit (your testbench).

5. In the Resolution list, select ps.

6. Click the Libraries tab.

7. In the Search Libraries (-L) text box, click the Add button to browse to the
required simulation library that you previously compiled (for example,
stratixiii_ver or stratixiiigx_ver) and click OK to add them into the Search
Libraries (-L) text box.

8. Click OK.

Running the Simulation

To run a simulation, perform the following steps:

1. On the View menu, point to Debug Windows and click Objects. This command
displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them into the Wave
window.

4. On the Processing menu, point to Run and click Run 100 ps to run the simulation
for 100 ps.

Simulating the VHDL Designs from the Command Line
Simulating VHDL designs from the ModelSim command line gives you more
flexibility and control to compile the libraries and load and simulate the VHDL design
files. All simulation commands are Tcl commands that can be included in the
ModelSim Macro File (*.do). Using the *.do file allows you to run simulation in batch
mode. You have to execute only the *.do file, and the ModelSim tool automatically
executes all commands in the *.do script macro file.

You can use the ModelSim command line to perform RTL functional simulation,
post-synthesis simulation, and gate-level simulation. The following sections show
how to perform simulation at various levels from the ModelSim command line.

Chapter 3: Mentor Graphics ModelSim Support 3–41
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections describe how to perform RTL functional simulation in ModelSim
for VHDL designs.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To change to the design library, type the following command:

cd <your_design_directory> r
(for example, cd:/designs)

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for Altera megafunctions is altera_mf, and the library
name for LPM is lpm. To see all of the functional simulation library files, refer to the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook.

To create simulation libraries for altera_mf, lpm, and altera, type the following
commands:

vlib altera_mf r
vmap altera_mf altera_mf r
vlib lpm r
vmap lpm lpm r
vlib altera r
vmap altera altera r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vcom –work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, the altera_mf_components.vhd and altera_mf.vhd model files should
be compiled into the altera_mf library. The 220pack.vhd and 220model.vhd model
files should be compiled into the lpm library.

Use Example 3–1 to compile the simulation model files to the simulation libraries for
altera_mf, lpm, and altera.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–42 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

Compiling Testbench and Design Files into the Work Library

Use the following commands to compile your testbench and design files into the work
library in the ModelSim software.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and design files into the work library, type the following
command:

vcom -work work <my_testbench.vhd> <my_design_files.vhd> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <compiled-library1> -L <compiled-library2> work.<my_testbench> r
The <compiled-library1> and <compiled-library2> variables are the libraries you
compiled previously (for example, altera_mf or lpm) that are required to compile
your testbench. RTL libraries are required for performing RTL simulation. If you have
multiple libraries, use the -L option for each library in the vsim command.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Example 3–1.

vcom -work altera_mf <Quartus II installation directory> \
/eda/sim_lib/altera_mf_components.v <Quartus II installation directory> \
/eda/sim_lib/altera_mf.vhd r
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220model.vhd \
<Quartus II installation dir>/eda/sim_lib/220model.vhd r
vcom -work altera <Quartus II installation directory> \
/eda/sim_lib/altera_primitives_components.vhd \
<Quartus II installation directory>/eda/sim_lib/altera_primitives.vhd r

Chapter 3: Mentor Graphics ModelSim Support 3–43
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the ModelSim
software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Netlist Files”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

The following sections help you perform a post-synthesis simulation for a VHDL
design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To change to the simulation output directory, type the following command:

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for the Stratix III family is stratixiii. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for stratixiii, type the following commands:

vlib stratixiii r
vmap stratixiii stratixiii r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vcom -work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, the stratixiii_atoms_components.vhd and stratixiii_atoms.vhd model
files should be compiled into the stratixiii library.

Use Example 3–2 to compile the simulation model files to the simulation libraries for
stratixiii:

Example 3–2.

vcom -work stratixiii <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms_components.vhd <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms.vhd r

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–44 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

Compiling Testbench and VHDL Output Files into the Work Library

Use the following commands to compile your testbench and *.vho file into the work
library in the ModelSim software.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.vho file into the work library, type the following
command:

vcom -work work <my_testbench.vhd> <my_design_files.vho> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <compiled-library1> -L <compiled-library2> work.<my_testbench> r
The <compiled-library1> and <compiled-library2> variables are the libraries you
compiled previously (for example, stratixiii or cycloneiii) that are required to compile
your testbench. Gate-level libraries are required for performing post-synthesis
simulation. If you have multiple libraries, use the -L option for each library in the
vsim command.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim
software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–45
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following sections help you perform a gate-level simulation for a VHDL design in
the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To change to the simulation output directory, type the following command:

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for the Stratix III family is stratixiii. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for stratixiii, type the following commands:

vlib stratixiii r
vmap stratixiii stratixiii r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vcom –work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, the stratixiii_atoms_components.vhd and stratixiii_atoms.vhd model
files should be compiled into the stratixiii library.

Use Example 3–3 to compile the simulation model files to the simulation libraries for
stratixiii.

If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

Be sure that the user-compiled libraries are stored in the same directory as the design
and testbench files you want to compile.

Compiling Testbench and VHDL Output Files into the Work Library

Use the following commands to compile your testbench and *.vho file into the work
library in the ModelSim software.

To create the work library, type the following commands:

Example 3–3.

vcom -work stratixiii <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms_components.vhd <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms.vhd r

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–46 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

vlib work r
vmap work work r
To compile the testbench and *.vho file into the work library, type the following
command:

vcom -work work <my_testbench.vht> <my_design_files.vho> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -sdftyp <design instance> = <path to *.sdo file> -L <compiled-library1> \
-L <compiled-library2> work.<my_testbench> r

The <compiled-library1> and <compiled-library2> variables are the libraries you
compiled previously (for example, stratixiii or cycloneiii) that are required to compile
your testbench. Gate-level libraries are required for performing gate-level simulation.
If you have multiple libraries, use the -L option for each library in the vsim
command.

1 You do not have to set the value (minimum, average, maximum) for the *.sdo file
because the Quartus II EDA Netlist Writer generates the *.sdo file using the same
value for the triplet (minimum, average, and maximum timing values).

1 If your design under test is instantiated in the testbench file under the i1 label, the
<design instance> should be “i1” (for example, /i1=<my design>.sdo).

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Simulating the Verilog HDL Designs from the Command Line
Simulating Verilog HDL design from the ModelSim command line gives you more
flexibility and control to compile the libraries, and load and simulate the Verilog HDL
design files. All simulation commands are Tcl commands that can be included in the
*.do file. Using the *.do file allows you to run simulation in batch mode. You have to
execute only the *.do file, and the ModelSim tool automatically executes all
commands in the *.do script macro file.

You can use the ModelSim command line to perform RTL functional simulation,
post-synthesis simulation, and gate-level simulation. The following sections show
how to perform simulation at various levels from the ModelSim command line.

Chapter 3: Mentor Graphics ModelSim Support 3–47
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation
RTL functional simulation verifies code syntax and design functionality. The
following sections show how to perform RTL functional simulation in ModelSim for
Verilog HDL designs.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To change to the design library, type the following command:

cd <your_design_directory> r
(for example, cd:/designs)

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for Altera megafunction is altera_mf_ver, and the
library name for LPM is lpm_ver. To see all of the functional simulation library files,
refer to the “Simulation Libraries” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for altera_mf, lpm_ver, and altera_ver, type the
following commands:

vlib altera_mf_ver r
vmap altera_mf altera_mf_ver r
vlib lpm_ver r
vmap lpm lpm_ver r
vlib altera_ver r
vmap altera altera_ver r
If you are using the EDA Simulation Library Compiler, skip the steps for creating and
compiling the simulation libraries.

Compiling Simulation Models into Simulation Libraries

If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

To compile simulation models into simulation libraries, type the following command:

vlog –work <simulation_library> <Quartus II installation directory>\
/eda/sim_lib/<simulation_library_files> r
For example, the altera_mf.v model files should be compiled into the altera_mf_ver
library. The 220model.v model files should be compiled into the lpm_ver library.

To compile the simulation model files to the simulation libraries for altera_mf_ver,
lpm_ver, and altera_ver, type the following commands:

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–48 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

vlog -work altera_mf_ver \
<Quartus II installation directory>/eda/sim_lib/altera_mf.v r
vlog -work lpm_ver \
<Quartus II installation directory>/eda/sim_lib/220model.v r
vlog -work altera_ver \
<Quartus II installation directory>/eda/sim_lib/altera_primitives.v r

Compiling Testbench and Design Files into the Work Library

Use the following commands to compile your testbench and design files into the work
library in the ModelSim software.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and design files into the work library, type the following
command:

vlog -work work <my_testbench.v> <my_design_files.v> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <library1> -L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are required libraries to compile your
testbench. If you have multiple libraries, use the -L option multiple times in the vsim
command.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the ModelSim
software.

Chapter 3: Mentor Graphics ModelSim Support 3–49
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a Verilog
HDL design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To change to the simulation output directory, type the following command:

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for the Stratix III family is stratixiii_ver. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for stratixiii_ver, type the following commands:

vlib stratixiii_ver r
vmap stratixiii_ver stratixiii_ver r
If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vlog –work <simulation_library> <Quartus II installation dir> \
/eda/sim_lib/<simulation_library_files> r
For example, the stratixiii_atoms.v model files should be compiled into the
stratixiii_ver library.

To compile the simulation model files to the simulation libraries for stratixiii_ver,
type the following command:

vlog -work stratixiii_ver <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms.v r
If you are using the EDA Simulation Library Compiler, skip the steps for creating and
compiling the simulation libraries.

Compiling Testbench and Verilog HDL Output Files into the Work Library

Use the following commands to compile your testbench and *.vo file into the work
library in the ModelSim software.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–50 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.vo file into the work library, type the following
command:

vlog -work work <my_testbench.vt> <my_design_netlists.vo> r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps -L <library1> -L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are the libraries you compiled previously (for
example, stratixiii or stratixiigx) that are required to compile your testbench.
Gate-level libraries are required for performing post-synthesis simulation. If you have
multiple libraries, use the -L option multiple times in the vsim command.

Running the Simulation

To run a simulation, type the following commands:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Performing Gate-Level Simulation
Gate-level simulation is a necessary step in ensuring that the functionality of the
FPGA device is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim
software.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of
the Quartus II Handbook.

The following sections help you perform a gate-level simulation for a Verilog HDL
design in the ModelSim software.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To change to the simulation output directory, type the following command:

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–51
Performing Simulation Using the ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

cd <simulation_output_directory> r
(for example, cd:/designs/modelsim/simulation)

1 This directory contains the *.vo file, which is generated by the netlist writer.

To create the simulation libraries, type the following commands:

vlib <library_name> r
vmap <logical_library_name> <library_name> r

1 For example, the library name for the Stratix III family is stratixiii_ver. To see all of the
gate-level timing simulation library files, refer to the “Simulation Libraries” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for stratixiii_ver, type the following commands:

vlib stratixiii_ver r
vmap stratixiii_ver stratixiii_ver r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vlog -work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, the stratixiii_atoms.v model files should be compiled into the
stratixiii_ver library.

Use the following example to compile the simulation model files to the simulation
libraries for stratixiii_ver:

vlog -work stratixiii <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms.v r
If you are using the EDA Simulation Library Compiler, as described in “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–7, skip the steps for
creating and compiling the simulation libraries.

Compiling Testbench and Verilog HDL Output Files into the Work Library

Use the following commands to compile your testbench and *.vo file into the work
library in the ModelSim software.

To create the work library, type the following commands:

vlib work r
vmap work work r
To compile the testbench and *.vo files into the work library, type the following
command:

vlog -work work <my_testbench.v> <my_design_netlists.vo> r

1 Resolve compile-time errors before proceeding to the next section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–52 Chapter 3: Mentor Graphics ModelSim Support
Performing Simulation Using the ModelSim Software

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Loading the Design

When simulating in Verilog HDL, you do not have to specify the *.sdo file. In the
$sdf_annotate task, when the Quartus II software generates the *.vo file, the
ModelSim-Altera software looks for the *.sdo file in the directory in which the VSIM
was run. If your *.sdo file is not in this directory, copy the *.sdo file into your current
directory.

To load a design, type the following command:

vsim -t ps -L <library1> -L <library2> work.<my_testbench> r

1 The <library1> and <library2> variables are the libraries you compiled previously (for
example, stratixiii_ver or stratixiigx_ver) that are required to compile your testbench.
Gate-level libraries are required for performing gate-level timing simulation. If you
have multiple libraries, use the -L option multiple times in the vsim command.

Running the Simulation

Perform the following commands to run a simulation:

add wave <signal name> r
run <time period> r

1 To add all signals in your testbench hierarchy, type the following command:

add wave * r
To run the simulation for 100 ps, type the following command:

run 100 ps r

Passing Parameter Information from Verilog to VHDL
You must use in-line parameters to pass values from Verilog HDL to VHDL. Using the
defparam command can cause an error in simulation.

The following error message appears:

** Error: (vsim-3043)
/apps2/home/users/bhlee/SPR_ADOQS/ADOQS10000935_IN_LINE_PARAMETER/lpm_
add_sub1.v(67): Unresolved reference to 'lpm_add_sub_component' in
lpm_add_sub_component.lpm_direction.

Region: /IN_LINE_PARAMETER_vlg_vec_tst/i1/b2v_inst

The following example converts the defparam command to in-line parameters:

lpm_add_sub_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0)

);
defparam

lpm_add_sub_component.lpm_direction = "ADD",
lpm_add_sub_component.lpm_hint =

"ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",
lpm_add_sub_component.lpm_type = "LPM_ADD_SUB",
lpm_add_sub_component.lpm_width = 12;

This megafunction instantiation has been modified to use in-line parameters:

Chapter 3: Mentor Graphics ModelSim Support 3–53
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

lpm_add_sub#(12,"SIGNED","ADD",0,"LPM_ADD_SUB","ONE_INPUT_IS_CONSTANT=
NO,CIN_USED=NO")
lpm_add_sub_component (

.dataa (dataa),

.datab (datab),

.result (sub_wire0)
);

1 The sequence of the parameters depends on the sequence of the GENERIC at the
VHDL component declaration.

Speeding Up Simulation
By default, the ModelSim software runs in a debug-optimized mode. To run the
ModelSim software in speed-optimized mode, add the following two vlog command
line switches:

vlog -fast -05

In this mode, module boundaries are flattened and loops are optimized. This
eliminates levels of debugging hierarchy, which may result in faster simulation. This
switch is not supported in the ModelSim-Altera simulator.

Simulating Designs that Include Transceivers
If your design includes an Arria GX, Arria II GX, Cyclone IV, HardCopy IV,
Stratix GX, Stratix II GX, or Stratix IV transceiver, you must compile additional library
files to perform RTL functional or gate-level timing simulations. The following
example shows how to perform simulation on designs that include transceivers in
Stratix GX, Stratix II GX, and Stratix IV devices.

Performing simulation with transceivers in Arria II, Cyclone IV, HardCopy IV, and
Stratix IV device families are very similar. You have to replace only stratixiigx_atoms
and stratixiigx_hssi_atoms model files with arriaii_atoms and arriaii_hssi_atoms
model files for Arria II devices, cycloneiv_atoms and cycloneiv_hssi_atoms model
files for Cyclone IV devices, and hardcopyiv_atoms and hardcopyiv_hssi_atoms
model files for HardCopy IV devices.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

f If your design contains PCI Excpress hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

RTL Functional Simulation for Stratix IV Devices
To perform an RTL functional simulation of your design that instantiates the ALTGXB
megafunction, which enables the gigabit transceiver block on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixiigx_mf model file references the lpm and sgate libraries. If you are using
ModelSim PE/SE, you must create these libraries to perform a simulation.

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

3–54 Chapter 3: Mentor Graphics ModelSim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix GX devices in VHDL
(ModelSim-Altera), type the following commands:

vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my testbench> r

Performing RTL Functional Simulation in VHDL (ModelSim SE/PE))
To perform RTL functional simulation for Stratix GX devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my testbench> r

Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix GX devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb work.<my testbench>
r

Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)
To perform RTL functional simulation for Stratix GX devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlib work_ver r
vlib lpm_ver r
vlib altera_mf_ver r
vlib sgate_ver r
vlib altgxb_ver r
vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work altgxb_ver stratixgx_mf.v r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L sgate_ver-L altgxb_ver work.<my testbench> r

Gate-Level Timing Simulation for Stratix IV Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim PE/SE, you must create these libraries to perform a simulation.

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix GX devices in VHDL (ModelSim-
Altera), type the following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps - +transport_int_delays+transport_path_delaysr

Chapter 3: Mentor Graphics ModelSim Support 3–55
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
To perform gate-level timing simulation for Stratix GX devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix GX devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE)
To perform gate-level timing simulation for Stratix GX devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixgx_ver stratixgx_atoms.v r
vlog -work stratixgx_gxb_ver stratixgx_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver \
-L stratixgx_gxb_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

RTL Functional Simulation for Stratix II GX Devices
To perform a functional simulation of your design that instantiates the ALT2GXB
megafunction, which enables the gigabit transceiver block on Stratix II GX devices,
compile the stratixiigx_hssi model file into the stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim PE/SE, you must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on Generate Simulation Model in
the Simulation Library tab of the ALT2GXB MegaWizard Plug-In Manager
(Figure 3–1). The <alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated
in the current project directory.

3–56 Chapter 3: Mentor Graphics ModelSim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

Figure 3–1. ALT2GXB MegaWizard Plug-In Manager, Generate Simulation Model

Chapter 3: Mentor Graphics ModelSim Support 3–57
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix II GX devices in VHDL
(ModelSim-Altera), type the following commands:

vcom -work work <alt2gxb entity name>.vho r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r

Performing RTL Functional Simulation in VHDL (ModelSim SE/PE)
To perform RTL functional simulation for Stratix II GX devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work work <alt2gxb entity name>.vho r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my testbench> r

Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix II GX devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work work <alt2gxb module name>.vo r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my testbench> r

Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)
To perform RTL functional simulation for Stratix II GX devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v r
vlog -work work <alt2gxb module name>.vo r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my testbench> r

Gate-Level Timing Simulation for Stratix II GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx
and stratixiigx_hssi libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim PE/SE, you must create these libraries to perform a simulation.

3–58 Chapter 3: Mentor Graphics ModelSim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix II GX devices in VHDL
(ModelSim-Altera), type the following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
To perform gate-level timing simulation for Stratix II GX devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera)
To perform gate-level timing simulation for Stratix II GX devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiigx_ver \
-L stratixiigx_hssi_ver work.<my testbench> -t ps \
+transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL ModelSim SE/PE)
To perform gate-level timing simulation for Stratix II GX devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiigx_ver stratixiigx_atoms.v r
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiigx_ver \
-L stratixiigx_hssi_ver work.<my testbench> -t ps \
+transport_int_delays +transport_path_delays r

RTL Functional Simulation for Stratix IV Devices
To perform an RTL functional simulation of your design that instantiates the ALTGX
megafunction, which enables the gigabit transceiver block on Stratix IV devices,
compile the stratixiv_hssi model file into the altgx library.

1 The stratixiv_hssi model file references the lpm and sgate libraries. If you are using
ModelSim PE/SE, you must create these libraries to perform a simulation.

Chapter 3: Mentor Graphics ModelSim Support 3–59
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix IV devices in VHDL
(ModelSim-Altera), type the following commands:

vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench>r

Performing RTL Functional Simulation in VHDL (ModelSim SE/PE)
To perform RTL functional simulation for Stratix IV devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiv_hssi \
stratixiv_hssi_atoms.vhd stratixiv_hssi_components.vhd r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench> r

Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform RTL functional simulation for Stratix IV devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L \
stratixiv_hssi_ver work.<my testbench> r

Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)
To perform RTL functional simulation for Stratix IV devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work straixiv_hssi_ver stratixiv_hssi_atoms.v r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L sgate_ver-L stratixiv_hssi_ver work.<my testbench> r

Gate-Level Timing Simulation for Stratix IV Devices
Perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver by compiling the stratixiv_atoms and stratixiv_hssi_atoms model files
into the stratixiv and stratixiv_hssi libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim PE/SE, you must create these libraries to perform a simulation.

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix IV devices in VHDL
(ModelSim-Altera), type the following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps - +transport_int_delays+transport_path_delays r

3–60 Chapter 3: Mentor Graphics ModelSim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
To perform gate-level timing simulation for Stratix IV devices in VHDL (ModelSim
SE/PE), type the following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiv stratixiv_atoms.vhd stratixiv_components.vhd r
vcom -work stratixiv_hssi stratixiv_hssi_atoms.vhd \
stratixiv_hssi_components.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix IV devices in Verilog HDL
(ModelSim-Altera), type the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver -L \
stratixiv_hssi_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE)
To perform gate-level timing simulation for Stratix IV devices in Verilog HDL
(ModelSim SE/PE), type the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiv_ver stratixiv_atoms.v r
vlog -work stratixiv_hssi_ver stratixiv_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver \
-L stratixiv_hssi_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Transport Delays
By default, the ModelSim software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
ModelSim software prevents the simulation tool from filtering out these pulses. Use
the following options to ensure that all signal pulses are seen in the simulation results.

+transport_path_delays
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive.

+transport_int_delays
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives.

1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

Chapter 3: Mentor Graphics ModelSim Support 3–61
Using the NativeLink Feature with ModelSim-Altera or ModelSim Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For more information about either of these options, refer to the ModelSim-Altera
Command Reference installed with the ModelSim software.

The following ModelSim software command shows the command line syntax to
perform a gate-level timing simulation with the device family library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

Using the NativeLink Feature with ModelSim-Altera or ModelSim
Software

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
ModelSim within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

ModelSim Error Message Verification
ModelSim error and warning messages are tagged with a vsim or vcom code. To
determine the cause and resolution for a vsim or vcom error or warning, use the
verror command.

For example, ModelSim may display the following error message:

** Error:
C:/altera_trn/DUALPORT_TRY/simulation/modelsim/DUALPORT_TRY.vho(31):
(vcom-1136) Unknown identifier "stratixiii".

In this case, type the following command:

verror 1136 r
At that point, the error message appears as follows:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

Generating a Timing Value Change Dump (.vcd) File for the PowerPlay
Power Analyzer

To generate a timing Value Change Dump (*.vcd) file for the PowerPlay Power
Analyzer, you must first generate a *.vcd script file in the Quartus II software and run
the *.vcd script file from the ModelSim or ModelSim-Altera software to generate a
timing *.vcd file. This timing *.vcd file can then be used by PowerPlay for power
analysis. The following instructions show you step-by-step how to generate a timing
*.vcd file.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–62 Chapter 3: Mentor Graphics ModelSim Support
Viewing a Waveform from a .wlf File

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To generate timing VCD Scripts in the Quartus II software, perform the following
steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings and select
Simulation. The Simulation page appears.

3. Choose the appropriate third-party simulation tool (ModelSim or
ModelSim-Altera) in the Tool name list. Turn on the Generate Value Change
Dump (VCD) file script option.

4. To generate the *.vcd script file, perform a full compilation.

To generate a timing *.vcd file in the ModelSim-Altera or ModelSim software, perform
the following steps:

1. In the ModelSim or ModelSim-Altera software, before simulating your design,
source the <revision_name>_dump_all_vcd_nodes.tcl script. To source the Tcl
script, run the following command before running the vsim command. For
example:

source <revision_name>_dump_all_vcd_nodes.tcl r
2. Continue to run the simulation as usual until the end of the simulation. Exit the

ModelSim or ModelSim-Altera software. If you do not exit the software, the
ModelSim software may end the writing process of the timing *.vcd files
improperly, resulting in a corrupted timing *.vcd file.

f For more information about using the timing *.vcd file for power estimation, refer to
the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .wlf File
A .wlf file is automatically generated when your simulation is done. The .wlf file is
not readable. It is used for generating the waveform view through ModelSim.

To view a waveform from a .wlf file through ModelSim, perform the following steps:

1. Type vsim on the command line. The ModelSim dialog box appears.

2. On the View menu, click Datasets. The Datasets Browser dialog box appears.

3. Click Open and browse to the directory that contains your .wlf file.

4. Select the .wlf file and click Open, then click OK.

5. Click Done.

6. In the Object browser, select the signals that you want to observe.

7. On the Add menu, click Wave and then click Selected Signals.

You cannot view a waveform from a .vcd file in ModelSim directly. The .vcd file must
first be converted to a .wlf file.

1. Use the vcd2wlf command to convert the file. For example, type the following on
a command-line:

vcd2wlf <example>.vcd <example>.wlf r

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–63
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. After you convert the .vcd file to a .wlf file, follow the procedures for viewing a
waveform from a .wlf file through ModelSim.

You can also convert your .wlf file to a .vcd file by using the wlf2vcd command.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at the command line prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For more information about command line scripting, refer to the Command Line
Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the Quartus II II
Help command line and Tcl API help browser. To access this information, type the
following command to start a help browser:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for ModelSim
You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at the command-line prompt. The following
example assumes that you are selecting ModelSim (Verilog HDL output from the
Quartus II software).

Tcl Commands
Use the following Tcl commands to set the output format to Verilog HDL, the
simulation tool to ModelSim for Verilog HDL, and to generate a functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "ModelSim (Verilog)" r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Prompt
Use the following command to generate a simulation output file for the ModelSim
simulator. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=ModelSim --functional r

Generating a Gate-Level Timing Simulation Netlist for ModelSim
Use the Quartus II software to generate a gate-level timing simulation netlist with Tcl
commands or with a command at the command prompt.

Tcl Commands
Use one of the following Tcl commands:

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim-Altera (Verilog)" r

http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

3–64 Chapter 3: Mentor Graphics ModelSim Support
Software Licensing and Licensing Setup in ModelSim-Altera Subscription

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim-Altera (VHDL)" r

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim (Verilog)" r

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim (VHDL)" r

Command Line
Generate a simulation output file for the ModelSim simulator by specifying VHDL or
Verilog HDL for the format by typing the following command at the command
prompt:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=ModelSim r

Software Licensing and Licensing Setup in ModelSim-Altera
Subscription Edition

License the ModelSim-Altera Subscription Edition software subscription with a
parallel port FIXEDPC license, or a network FLOATNET or FLOATPC license. Each
Altera software subscription includes a license for both VHDL and Verilog HDL. The
ModelSim-Altera Subscription Edition software supports both VHDL and Verilog
HDL, but the software does not support mixed language simulation.

1 The USB software guard is not supported by versions earlier than Mentor Graphics
ModelSim software 5.8d.

You can obtain a license for the ModelSim-Altera Subscription Edition software from
the Altera website at www.altera.com. Get licensing information for the
Mentor Graphics ModelSim software directly from Mentor Graphics. Refer to
Figure 3–2 for the set-up process.

1 For ModelSim-Altera software versions prior to 5.5b, use the PCLS utility included
with the software to set up the license.

For the Quartus II software version 8.1 and later, the no-cost entry level of the
ModelSim-Altera software does not require a license file. However, you must request
a license file to use the ModelSim-Altera Subscription Edition software.

http://www.altera.com

Chapter 3: Mentor Graphics ModelSim Support 3–65
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

LM_LICENSE_FILE Variable
Altera recommends setting the LM_LICENSE_FILE environment variable to the
location of the license file. For example, the value for the LM_LICENSE_FILE
environment variable should point to <path to license file>\license.dat.

f For more information about setting up the license for ModelSim-Altera Subscription
Edition software, refer to the Altera Software Installation and Licensing manual.

Conclusion
Using the ModelSim and ModelSim-Altera simulation software within the Altera
FPGA design flow enables Altera software users to easily and accurately perform RTL
functional simulations, post-synthesis simulations, and gate-level simulations on their
designs. Proper verification of designs at the functional, post-synthesis, and post
place-and-route stages using the ModelSim and ModelSim-Altera software helps
ensure design functionality and success and, ultimately, a quick time-to-market.

Referenced Documents
This chapter references the following documents:

■ Altera Software Installation and Licensing manual

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook

Figure 3–2. ModelSim-Altera Subscription Edition Software Licensing Set Up Process

Initial Installation

Set the LM_LICENSE_FILE Variable

yes

no

Is the ModelSim-Altera
software properly licensed?

yes

no

Using
the ModelSim-Altera

Starter Edition
software?

Start

End

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

3–66 Chapter 3: Mentor Graphics ModelSim Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 3–5 shows the revision history for this chapter.

Table 3–5. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed NativeLink information and referenced new Simulating
Designs with EDA Tools chapter

■ Added Stratix IV transceiver simulation section

■ Reformatted transceiver simulation sections

■ Text edits throughout chapter

Updated for the Quartus II
software version 9.1
release.

March 2009
v9.0.0

Added the following sections:

■ “Compile Libraries Using the EDA Simulation Library Compiler” on
page 2–17

■ “Generate Simulation Script from EDA Netlist Writer” on page 2–77

■ “Viewing a Waveform from a .wlf File” on page 2–78

Updated the following:

■ Table 2–1, Table 2–2, Table 2–5, Table 2–6, Table 2–7, Table 2–8,
Table 2–9, Table 2–10

■ Figure 2–4 on page 2–81

■ All sections titled “Loading the Design”

Updated for the Quartus II
software version 9.0
release.

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

Chapter 3: Mentor Graphics ModelSim Support 3–67
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008
v8.1.0

Updated the following:

■ Table 2–2, Table 2–3, Table 2–4, Table 2–5, Table 2–6

■ Removed --zero_ic_delays from quartus_sta option in
“Generate Post-Synthesis Simulation Netlist Files” on page 2–11

■ Removed steps to include the library when the simulation is run in
VHDL mode from all procedures; this is no longer necessary

■ Added information about the Altera Simulation Library Compiler
throughout the chapter

■ Added “Compile Libraries Using the Altera Simulation Library
Compiler” on page 2–15

■ Added “Disabling Simulation” on page 2–72

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

Updated for the Quartus II
software version 8.1
release.

May 2008
v8.0.0

■ Updated “Altera Design Flow with ModelSim-Altera or ModelSim
Software” on page 2–3

■ Updated “Simulation Libraries” on page 2–4

■ Updated “Simulation Netlist Files” on page 2–11

■ Updated “Perform Simulation Using ModelSim-Altera Software” on
page 2–15

■ Updated “Perform Simulation Using ModelSim Software” on
page 2–33

■ Updated “Simulating Designs that Include Transceivers” on
page 2–57

■ Updated “Using the NativeLink Feature with ModelSim-Altera or
ModelSim Software” on page 2–63

■ Updated “Generating a Timing VCD File for PowerPlay” on page 2–68

Updated for the Quartus II
software version 8.0.

Table 3–5. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3–68 Chapter 3: Mentor Graphics ModelSim Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

4. Synopsys VCS and VCS MX Support

This chapter describes how to use the Synopsys VCS and VCS MX software to
simulate designs that target Altera® FPGAs.

Introduction
This chapter provides step-by-step instructions about how to perform register transfer
level (RTL) functional simulations, post-synthesis simulations, and gate-level timing
simulations using the VCS and VCS MX software.

1 Verilog HDL design simulation is the same in both the VCS and VCS MX software. In
this chapter, VCS MX is used in VHDL design simulation examples.

This chapter discusses the following topics:

■ “Software Requirements”

■ “Using the VCS or VCS MX Software in the Quartus II Design Flow” on page 4–2

■ “Common VCS and VCS MX Software Compiler Options” on page 4–7

■ “Using VirSim” on page 4–7

■ “Using DVE” on page 4–7

■ “Debugging Support Command-Line Interface” on page 4–8

■ “Simulating Designs that Include Transceivers” on page 4–8

■ “Transport Delays” on page 4–12

■ “Using NativeLink with the VCS or VCS MX Software” on page 4–12

■ “Generating a Timing .vcd File for the PowerPlay Power Analyzer” on page 4–13

■ “Viewing a Waveform from a .vpd or .vcd File” on page 4–13

■ “Scripting Support” on page 4–14

Software Requirements
To simulate your design using the Synopsys VCS software, you must first set up the
Altera libraries. These libraries are installed with the Quartus® II software.

Table 4–1 shows the compatibility between versions of the Quartus II software and
the Synopsys VCS software.

Table 4–1. Supported Quartus II and VCS Software Version Compatibility (Part 1 of 2)

Synopsys Altera

VCS and VCS MX software version 2009.06 Quartus II software version 9.1

VCS and VCS MX software version Y-2006.06-SP1 Quartus II software version 9.0

VCS software version Y-2006.06-SP1 Quartus II software version 8.1

VCS software version Y-2006.06-SP1 Quartus II software version 7.2 and 8.0

VCS software version 2006.06 Quartus II software version 7.1

QII53002-9.1.0

4–2 Chapter 4: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about installing the software and the directories created during
the Quartus II software installation, refer to the Altera Software Installation and
Licensing manual.

Using the VCS or VCS MX Software in the Quartus II Design Flow
You can perform the following types of simulations using the VCS and VCS MX
software:

■ RTL functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

f Refer to the “PLD Design Flow” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook for the Quartus II software design flow.

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler is used to compile Verilog HDL and VHDL
simulation libraries for all Altera devices and supported third-party simulators. You
can compile all libraries required by RTL and gate-level simulation.

f For more information, refer to the “EDA Simulation Library Compiler” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

RTL Functional Simulations
RTL functional simulations verify the functionality of the design before synthesis,
placement, and routing. These simulations are independent of any Altera FPGA
architecture implementation. After the HDL designs are verified to be functionally
correct, the next step is to synthesize the design and use the Quartus II software to
place-and-route the design in an Altera device.

To functionally simulate an Altera FPGA design in the VCS or VCS MX software that
uses Altera intellectual property (IP) megafunctions or a library of parameterized
modules (LPM) functions, you must include certain libraries during the compilation.

f Refer to the “Simulation Libraries” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook for details about simulation libraries.

VCS software version 2005.06-SP2 Quartus II software version 7.0 and 6.1

VCS software version 2005.06-SP1 Quartus II software version 6.0

VCS software version 7.2 Quartus II software version 5.1

VCS software version 7.2 Quartus II software version 5.0

VCS software version 7.1.1 Quartus II software version 4.2

Table 4–1. Supported Quartus II and VCS Software Version Compatibility (Part 2 of 2)

Synopsys Altera

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 4: Synopsys VCS and VCS MX Support 4–3
Using the VCS or VCS MX Software in the Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

RTL Functional Simulation (Verilog HDL Designs)
The following VCS command performs an RTL functional simulation for Verilog HDL
designs with one of the libraries listed in the “Simulation Libraries” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook:

vcs -R <testbench>.v <design name>.v –v <library file1>.v -v <library file 2>.v r
If you have already generated the option file (simlib_comp.vcs) from “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 4–2, type the
following command:

vcs -f simlib_comp.vcs r
Be sure to include the design files and testbench files in simlib_comp.vcs.

Alternatively, you can use the following commands to perform RTL functional
simulation for Verilog HDL designs:

Create Libraries Directories
mkdir <Directory_to_store_compiled_library1>
mkdir <Directory_to_store_compiled_library2>
Create Work Directory
mkdir <Directory_to_store_compiled_design_and_testbench_files>
Compilation
(Before this step, make sure the mapped file ".synopys_sim.setup" was created.)
Libraries Compilation
vlogan -work <library1_name> <library1>.v
vlogan -work <library2_name> <library2>.v
Design and Test bench files Compilation
vlogan -work <work_library_name> <design>.v <testbench>.v
Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation
simv -gui

The .synopys_sim.setup file contains the following mapping commands to map the
libraries:

<library1_name> : <Directory_to_store_compiled_library1>
<library2_name> : <Directory_to_store_compiled_library2>
<work_library_name> : <Directory_to_store_compiled_design_and_testbench_files>

RTL Functional Simulation (VHDL Designs)
For VHDL designs, you need to use VCS MX software to perform all types of
simulations. The following commands are for performing an RTL functional
simulation for VHDL designs with one of the libraries listed in the “Simulation
Libraries” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook:

Create Libraries Directories
mkdir <Directory_to_store_compiled_library1>
mkdir <Directory_to_store_compiled_library2>
Create Work Directory
mkdir <Directory_to_store_compiled_design_and_testbench_files>
Compilation
(Before this step, make sure the mapped file ".synopys_sim.setup" is created.)
Libraries Compilation
vhdlan -work <library1_name> <library1>.vhd
vhdlan -work <library2_name> <library2>.vhd
Design and Test bench files Compilation
vhdlan -work <work_library_name> <design>.vhd <testbench>.vhd
Eleboration

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

4–4 Chapter 4: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

scs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation
scsim -gui

The .synopys_sim.setup file contains the following mapping commands to map the
libraries:

<library1_name> : <Directory_to_store_compiled_library1>
<library2_name> : <Directory_to_store_compiled_library2>
<work_library_name> : <Directory_to_store_compiled_design_and_testbench_files>

1 If you have generated the Altera libraries with the EDA Simulation Library Compiler,
ignore the steps # Create Libraries Directories and # Libraries Compilation.

Post-Synthesis Simulation
A post-synthesis simulation verifies the functionality of a design after synthesis has
been performed. You can create a post-synthesis netlist in the Quartus II software and
use this netlist to perform a post-synthesis simulation in the VCS or VCS MX
software. When the post-synthesis version of the design has been verified, the next
step is to place-and-route the design in the target architecture using the Quartus II
software. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in
the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Post-Synthesis Simulation (Verilog HDL)
The following VCS command shows the command-line syntax used to perform a
post-synthesis simulation with the appropriate device family library listed in the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook:

vcs -R <testbench> <post synthesis netlist> -v <Altera device family library> r
If you have already generated the option file (simlib_comp.vcs) as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 4–2,
modify the simlib_comp.vcs file to add the testbench and post synthesis netlist, and
then type the following command:

vcs -f simlib_comp.vcs r
Be sure to include the post synthesis netlist file and testbench files in
simlib_comp.vcs.

Alternatively, you can use the following commands to perform Post-Synthesis
simulation for Verilog HDL designs:

Create Libraries Directories
mkdir <Directory_to_store_compiled_library1>
mkdir <Directory_to_store_compiled_library2>
Create Work Directory
mkdir <Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>
Compilation
(Before this step, make sure that mapped file ".synopys_sim.setup" is created.)
Libraries Compilation
vlogan -work <library1_name> <library1>.v
vlogan -work <library2_name> <library2>.v
Design and Test bench files Compilation
vlogan -work <work_library_name> <post_synthesis_netlist>.vo <test_bench>.v
Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 4: Synopsys VCS and VCS MX Support 4–5
Using the VCS or VCS MX Software in the Quartus II Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

simv -gui

The .synopys_sim.setup file contains the following commands to map the libraries:

<library1_name> : <Directory_to_store_compiled_library1>
<library2_name> : <Directory_to_store_compiled_library2>
<work_library_name> :

<Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>

Post-Synthesis Simulation (VHDL)
The following VCS MX commands show the command-line syntax used to perform a
post-synthesis simulation with the appropriate device family library listed in the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook:

Create Libraries Directories
mkdir <Directory_to_store_compiled_library1>
mkdir <Directory_to_store_compiled_library2>
Create Work Directory
mkdir <Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>
Compilation
#(Before this step, make sure that mapped file ".synopys_sim.setup" is created.)
Libraries Compilation
vhdlan -work <library1_name> <library1>.vhd
vhdlan -work <library2_name> <library2>.vhd
Design and Test bench files Compilation
vhdlan -work <work_library_name> <post_synthesis_netlist>.vho <test_bench>.vhd
Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation
simv -gui

The .synopys_sim.setup file contains the following commands to map the libraries:

<library1_name> : <Directory_to_store_compiled_library1>
<library2_name> : <Directory_to_store_compiled_library2>
<work_library_name> :

<Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>

1 If you have generated the Altera libraries as described in “Compiling Libraries Using
the EDA Simulation Library Compiler” on page 4–2, ignore the steps # Create
Libraries Directories and # Libraries Compilation.

Gate-Level Timing Simulation
A gate-level timing simulation verifies the functionality and timing of the design after
place-and-route. You can create a post-fit netlist in the Quartus II software and use
this netlist to perform a gate-level timing simulation in the VCS or VCS MX software.

f For information about how to generate a gate-level timing simulation netlist, refer to
the “Generating Gate-Level Timing Simulation Netlist Files” section in the Simulating
Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Gate-Level Timing Simulation (Verilog HDL)
For gate-level timing simulation, follow the steps in “Post-Synthesis Simulation
(Verilog HDL)” on page 4–4.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

4–6 Chapter 4: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You do not have to specify the Standard Delay Output File (*.sdo) file because it is
already specified in the Verilog Output File (*.vo) file. However, the *.sdo file must be
in the same directory as the simulator executable file simv generated by VCS.

Gate-Level Timing Simulation (VHDL)
For gate-level timing simulation, follow the steps in “Post-Synthesis Simulation
(VHDL)” on page 4–5.

For VHDL, the *.sdo file must be specified in the scsim command as follows:

simv -xlrm -gui -sdf typ:<design_instance>:<design>.sdo r

1 Adding the -xlrm switch avoids the errors that occur when the timing arcs in SDO
do not match Altera VHDL simulation models as per the IEEE VITAL ASIC standard.
However, adding this switch reduces timing accuracy, as it may cause some SDO
delays to be ignored. Therefore, Altera recommends generating the Verilog HDL
simulation output netlist (.vo) if you want to perform gate-level simulation.

Disabling Timing Violation on Registers
In certain situations, the timing violations can be ignored and you want to disable the
“X” propagation that happens when there are timing violations on registers (for
example, timing violations that occur in internal synchronization registers used for
asynchronous clock-domain crossing).

By default, the x_on_violation_option logic option that applies to all registers in the
design is On, which means a register outputs “X” whenever a timing violation occurs.
To disable “X” propagation due to timing violation on certain registers, you can set
the x_on_violation_option logic option to Off for those registers. The following
command is an example of the Quartus II Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name> r

Performing Timing Simulation Using the Post-Synthesis Netlist
You can perform a timing simulation using the post-synthesis netlist instead of using
a gate-level netlist, and you can generate an .sdo file without running the Fitter. In this
case, the .sdo file includes all timing values for the device cells only. Interconnect
delays are not included because fitting (placement and routing) has not been
performed.

To generate the post-synthesis netlist and the .sdo file, type the following commands
at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map \
--zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation \
--tool= <third-party EDA tool> --format=<HDL language> r
For more information about the -format and -tool options, type the following
command:

quartus_eda -help=<options> command r

Chapter 4: Synopsys VCS and VCS MX Support 4–7
Common VCS and VCS MX Software Compiler Options

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Common VCS and VCS MX Software Compiler Options
The VCS software has options that help you simulate your design. Table 4–2 lists
some of the available options.

f For more information about VCS software options, refer to the VCS User Guide.

Using VirSim
VirSim is the graphical debugging system for the VCS software. This tool is included
with the VCS software and can be run by using the -RI compile-time compiler option
when compiling a design. The following VCS software command shows the
command-line syntax for compiling and loading a timing simulation in VirSim:

vcs -RI <testbench>.v <design name>.vo -v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf r

f For more information about using VirSim, refer to the VirSim User Guide included in
the VCS software installation.

Using DVE
DVE is the graphical debugging system for the VCS and VCS MX software. This tool
is included with the VCS MX software. It can be run by using the -gui (simulating
option) when running a simulation.

The following VCS or VCS MX software command shows the command-line syntax
for simulating in DVE:

simv -gui (for Verilog HDL simulation)

Table 4–2. VCS Software Compiler Options

Library Description

-R Runs the executable file immediately.

-RI After the compile has completed, instructs the VCS software to automatically launch
VirSim.

-v <library filename> Specifies a Verilog HDL library file (for example, 220model.v or altera_mf.v). The VCS
software looks in this file for module definitions that are found in the source code. Only
the relevant library files are compiled based on the modules found.

-y <library directory> Specifies a Verilog HDL library directory. The VCS software looks for library files in this
folder that contain module definitions that are instantiated in the source code.

+compsdf Indicates that the VCS software compiler includes the back-annotated Standard Delay
File (.sdf) file in the compilation.

+cli The VCS software enters Command-Line Interface (CLI) mode upon successful
compilation completion.

+race Specifies that the VCS software generate a report that indicates all of the race conditions
in the design. The default report name is race.out.

-P Compiles user-defined Programming Language Interface (PLI) table files.

-q Indicates the VCS software runs in quiet mode. All messages are suppressed.

http://synopsys.com/

4–8 Chapter 4: Synopsys VCS and VCS MX Support
Debugging Support Command-Line Interface

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

However, to open the GUI with these commands, you must enable the use of Unified
Command Line Interface (UCLI) and DVE when performing elaboration. To enable
UCLI and DVE, enter the following command:

vcs -debug_all (for Verilog HDL simulations)

f For more information about using DVE, refer to the DVE User Guide included in the
VCS MX software installation.

Debugging Support Command-Line Interface
The Synopsys VCS software has an interactive non-graphical debugging capability
that is very similar to other UNIX debuggers such as the GNU debugger (GDB). The
VCS software UCLI can be used to halt simulations at user-defined break points, force
registers with values, and display register values.

Enable the non-graphical capability by using the +ucli run-time option. Use the VCS
software UCLI to debug your Altera FPGA design by typing the following command:

vcs -R <testbench>.v <design name>.vo -v <path to Quartus II \
installation> \eda\sim_lib\<device family>_atoms.v +compsdf +ucli r
The +ucli command takes an optional number argument that specifies the level of
debugging capability. As the optional debugging capability is increased, there is an
increase in simulation time.

f For more information about the +ucli options, refer to the VCS User Guide included
in the VCS software installation.

For the design examples to run gate-level timing simulation in VHDL or Verilog HDL
language, refer to Synopsys VCS Simulation Design Example.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone IV, HardCopy IV, Stratix, Stratix II, or
Stratix IV transceivers, you must compile additional library files to perform functional
RTL or gate-level timing simulations.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

f If your design contains PCI Excpress hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

RTL Functional Simulation for Stratix GX Devices
To perform an RTL functional simulation of your design that instantiates the ALTGXB
megafunction, enabling the gigabit transceiver block gigabit transceiver block on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

http://www.altera.com/support/examples/vcs/exm-vcs.html
http://www.synopsys.com/
http://www.synopsys.com/
http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

Chapter 4: Synopsys VCS and VCS MX Support 4–9
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix GX device, at the VCS command prompt, type the following
command:

vcs -R <testbench>.v <design files>.v -v stratixgx_mf.v -v sgate.v \
-v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix GX device, at the VCS command prompt, type the following
command:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixgx_atoms.v -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v +transport_int_delays \
+pulse_int_e/0 +pulse_int_r/0 +transport_path_delays +pulse_e/0 +pulse_r/0 r

RTL Functional Simulation for Stratix II GX Devices
RTL functional simulation for Stratix II GX devices is similar to RTL functional
simulation for Arria GX devices. The following example shows only the RTL
functional simulation for designs that include transceivers in Stratix II GX devices. To
simulate the transceiver in Arria GX devices, you only have to replace the
stratixiigx_hssi model file with the arriagx_hssi model file.

To perform an RTL functional simulation of your design that instantiates the
ALT2GXB megafunction, enabling the gigabit transceiver block gigabit transceiver
block on Stratix II GX devices, compile the stratixiigx_hssi model file into the
stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on Generate Simulation Model in
the Simulation Library in the ALT2GXB MegaWizard™ Plug-In Manager (Figure 4–1).
The <alt2gxb entity name>.vho file or <alt2gxb module name>.vo file is generated in the
current project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi wysiwyg atoms.

4–10 Chapter 4: Synopsys VCS and VCS MX Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix II GX device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <alt2gxb simulation netlist>.vo -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix II GX Devices
Gate-level timing simulation for Stratix II GX devices is similar togate-level timing
simulation for Arria GX devices. The following example shows only the gate-level
timing simulation for designs that include transceivers in Stratix II GX devices. To
simulate the transceiver in Arria GX devices, you only have to replace the
stratixiigx_hssi model file with the arriagx_hssi model file.

To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx
and stratixiigx_hssi libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Figure 4–1. ALT2GXB MegaWizard Plug-In Manager, Generate Simulation Model

Chapter 4: Synopsys VCS and VCS MX Support 4–11
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix II GX device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiigx_atoms.v -v \
stratixiigx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

RTL Functional Simulation for Stratix IV Devices
RTL functional simulation for Stratix IV devices is similar to RTL functional
simulation for Arria II, Cyclone IV, and HardCopy IV devices. The following example
shows only the RTL functional simulation for designs that include transceivers in
Stratix IV devices. To simulate transceivers in Arria II, Cyclone IV, and HardCopy IV
devices, you only have to replace the stratixiv_hssi model file with the arriaii_hssi,
cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

To perform an RTL functional simulation of your design that instantiates the ALTGX
megafunction, enabling the gigabit transceiver block gigabit transceiver block on
Stratix IV devices, compile the stratixiv_hssi model file into the stratixiv_hssi library,

The stratixiv_hssi_atoms and and model file references the lpm and sgate libraries.
You must create these libraries to perform a simulation.

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix IV device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <altgx>.v -v \ stratixiv_hssi_atoms.v -v sgate.v \
-v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix IV Devices
Gate-level timing simulation for Stratix IV devices is similar to gate-level timing
simulation for Arria II, Cyclone IV, and HardCopy IV devices. The following example
shows only the gate-level timing simulation for designs that include transceivers in
Stratix IV devices. To simulate transceivers in Arria II, Cyclone IV, and HardCopy IV
devices, you only have to replace the stratixiv_hssi model file with the arriaii_hssi,
cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

To perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver, compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively.

To perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver, compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively.

The stratixiv_hssi_atoms and model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

4–12 Chapter 4: Synopsys VCS and VCS MX Support
Transport Delays

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix IV device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiv_atoms.v \
-v stratixiv_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0

Transport Delays
By default, the VCS software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
VCS software prevents the simulation tool from filtering out these pulses. Use the
following options to ensure that all signal pulses are seen in the simulation results.

+transport_path_delays
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive. You must include the +pulse_e/number and
+pulse_r/number options.

+transport_int_delays
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives. You must include the +pulse_int_e/number and
+pulse_int_r/number options.

1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the VCS User Guide
installed with the VCS software.

The following VCS software command shows the command-line syntax to perform a
post-synthesis simulation with the device family library:

vcs -R <testbench>.v <gate-level netlist>.v -v <Altera device family library>.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 +transport_path_delays \
+pulse_e/0 +pulse_r/0 r

Using NativeLink with the VCS or VCS MX Software
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
VCS or VCS MX within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://synopsys.com/

Chapter 4: Synopsys VCS and VCS MX Support 4–13
Generating a Timing .vcd File for the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Generating a Timing .vcd File for the PowerPlay Power Analyzer
To generate a timing Verilog Value Change Dump File (*.vcd) for PowerPlay, you
must first generate a VCD script in the Quartus II software, and then run the VCD
script from the VCS software. This timing .vcd file can then be used by PowerPlay for
power analysis.

To generate timing VCD scripts in the Quartus II software, perform the following
steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. On the
Simulation page, in the Tool name list, select the appropriate third-party
simulation tool (for example, VCS), and turn on the Generate Value Change
Dump (VCD) file script option.

3. To generate the VCD script file, perform a full compilation.

Perform the following steps to generate a timing .vcd file in the VCS software:

1. Before compiling and simulating your design, include the script in your testbench
file where the design under test (DUT) is instantiated:

include <revision_name>_dump_all_vcd_nodes.v r

1 Include the script within the testbench module block. If you include the
script outside of the testbench module block, syntax errors occur during
compilation.

2. Run the simulation using the VCS command as usual. Exit the VCS software when
the simulation is finished and the <revision_name>.vcd file is generated in the
simulation directory.

f For more detailed information about using the timing .vcd file for power analysis,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .vpd or .vcd File
A Virtual Panoramic Display (.vpd) file is automatically generated when your
simulation is finished. The .vpd file is not readable. It is used for generating the
waveform view through VirSim or DVE. You can view your waveform result in
VirSim or DVE if you have created a .vpd or .vcd file.

To view a waveform from a .vpd file through VirSim, perform the following steps:

1. Type virsim on a command line. The VirSim Hierarchy dialog box appears.

2. On the File menu, click Open. The Open File dialog box appears.

3. In the Directories field, browse to the directory that contains your .vpd file (for
example, inter.vpd).

4. Double-click the .vpd file.

5. On the Window menu, click Waveform. The VirSim Waveform dialog box
appears.

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

4–14 Chapter 4: Synopsys VCS and VCS MX Support
Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

6. Move the signals that you want to observe from the VirSim Hierarchy dialog box
to the VirSim Waveform dialog box. View the waveform.

To view a waveform from a .vpd file through DVE, perform the following steps:

1. Type dve on a command line. The DVE dialog box appears.

2. On the File menu, click Open Database. The Open Database dialog box appears.

3. Browse to the directory that contains your .vpd file (for example, inter.vpd).

4. Double-click the .vpd file.

5. In the DVE dialog box, select the signals that you want to observe from the
Hierarchy.

6. On the Signal menu, click Add To Waves.

7. Click New Wave View. The waveform appears.

You cannot view a waveform from a .vcd file in VirSim or DVE directly. The .vcd file
must first be converted to a .vpd file. To convert the file, perform the following steps:

1. Use the vcd2vpd command to convert the file. For example, type the following on
a command-line:

vcd2vpd <example>.vcd <example>.vpd r
2. After you convert the .vcd file to a .vpd file, follow the procedures for viewing a

waveform from a .vpd file through VirSim or DVE.

You can also convert your .vpd file to a .vcd file by using the vpd2vcd command.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the Qhelp utility.

To start the Qhelp utility, type the following command:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for VCS
You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at a command prompt.

Tcl Commands
Type the following Tcl commands to generate a post-synthesis simulation netlist when
you compile your design or as part of a Tcl script that compiles your design:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r
set_global_assignment –name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 4: Synopsys VCS and VCS MX Support 4–15
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Command Prompt
Type the following command to generate a simulation output file for the VCS
software simulator; specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=vcs --functional r

Generating a Gate-Level Timing Simulation Netlist for VCS
You can use the Quartus II software to generate a gate-level timing simulation netlist
with Tcl commands or with a command at a command prompt.

Tcl Commands
Type the following Tcl command to generate a gate-level timing simulation netlist:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r

Command Prompt
Type the following command to generate a simulation output file for the VCS
software simulator. Specify VHDL or Verilog HDL for the format.

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs r

Conclusion
You can use the Synopsys VCS or VCS MX software in your Altera FPGA design flow
to easily and accurately perform RTL functional simulations, post-synthesis
simulations, and gate-level functional timing simulations. The seamless integration of
the Quartus II software and VCS or VCS MX software make this simulation flow an
ideal method for fully verifying an FPGA design.

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Altera Software Installation and Licensing manual

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

■ VCS User Guide

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://synopsys.com/
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

4–16 Chapter 4: Synopsys VCS and VCS MX Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Document Revision History
Table 4–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 4–3. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed NativeLink information and referenced new Simulating
Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-
Level Timing Simulation for Stratix IV Devices” sections

■ Minor text edits

Updated for the Quartus II
software version 9.1
release.

March 2009
v9.0.0

■ Added support for Synopsys VCS MX software.

■ Changed chapter title to “Synopsys VCS and VCS MX Support”.

■ Major revision to “Compiling Libraries Using the EDA Simulation
Library Compiler” on page 4–2.

■ Major revision to “RTL Functional Simulations” on page 4–2.

■ Added Table 3–4 on page 3–10 and Table 3–5 on page 3–11.

■ Added new section “Using DVE” on page 4–7.

■ Added new section “Generating a Simulation Script from the EDA
Netlist Writer” on page 3–16.

■ Added new section “Viewing a Waveform from a .vpd or .vcd File” on
page 4–13.

Updated for the Quartus II
software version 9.0
release.

November 2008
v8.1.0

■ Added “Compile Libraries Using the EDA Simulation Library Compiler”
on page 3–3.

■ Added information about the --simlib_comp utility.

■ Updated entire chapter using 8½” × 11” chapter template.

■ Minor editorial updates.

Updated for the Quartus II
software version 8.1
release.

May 2008
v8.0.0

■ Updated Table 3–1.

■ Updated Figure 3–1.

■ Updated Table 3–3.

■ Updated “Generating a Timing Netlist with Different Timing Models” on
page 3–7.

■ Added “Disable Timing Violation on Registers” on page 3–8.

■ Updated “Simulating Designs that Include Transceivers” on page 3–10.

■ Updated “Performing a Gate-Level Timing Simulation Using
NativeLink” on page 3–15.

■ Added “Generating a Timing VCD File for PowerPlay” on page 3–17.

Updated for the Quartus II
software version 8.0.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.stanford.edu/class/ee271/docs/virsim.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Cadence NC-Sim Support

This chapter describes the basic NC-Sim, NC-Verilog, and NC-VHDL functional,
post-synthesis, and gate-level timing simulations.

Introduction
The Cadence Incisive verification platform includes NC-Sim, NC-Verilog, NC-VHDL,
Verilog HDL, and VHDL desktop simulators.

This chapter is a “getting started” guide to using the Incisive verification platform in
Altera® FPGA design flows. This chapter also describes the location of the simulation
libraries and how to automate simulations.

This chapter contains the following topics:

■ “Software Requirements”

■ “Simulation Flow Overview” on page 5–2

■ “RTL Functional Simulation” on page 5–4

■ “Post-Synthesis Simulation” on page 5–14

■ “Gate-Level Timing Simulation” on page 5–15

■ “Simulating Designs that Include Transceivers” on page 5–18

■ “Using the NativeLink Feature with NC-Sim” on page 5–26

■ “Generating a Timing VCD File for the PowerPlay Power Analyzer” on page 5–26

■ “Viewing a Waveform from a .trn File” on page 5–27

■ “Scripting Support” on page 5–28

Software Requirements
The Cadence interface is installed automatically when you install the Quartus II
software on your computer.

Table 5–1 shows the Cadence NC simulator versions compatible with specific
Quartus II software versions.

Table 5–1. Compatibility Between Software Versions (Part 1 of 2)

Quartus II Software
Cadence NC

Simulators (UNIX)
Cadence NC

Simulators (PC)
Cadence NC

Simulators (Linux)

Version 9.1 Version 8.2 Version 8.2 Version 8.2

Version 9.0 Version 6.2 — Version 6.2

Version 8.1 Version 6.2 — Version 6.2

Version 8.0 Version 6.2 — Version 6.2

Version 7.2 Version 6.1 p001 — Version 6.1 p001

Version 7.1 Version 5.83 p003 — Version 5.83 p003

QII53003-9.1.0

5–2 Chapter 5: Cadence NC-Sim Support
Simulation Flow Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Simulation Flow Overview
The Incisive verification platform supports the following simulation flows:

■ RTL Functional Simulation

■ Post-Synthesis Simulation

■ Gate-Level Timing Simulation

■ Using the NativeLink Feature with NC-Sim

RTL functional simulation verifies the functionality of your design. When you
perform an RTL functional simulation with Cadence Incisive simulators, you use your
design files (Verilog HDL or VHDL) and the models provided with the Quartus II
software. These Quartus II models are required if your design uses the library of
parameterized modules (LPM) functions or Altera-specific megafunctions. Refer to
“RTL Functional Simulation” on page 5–4 for more information about how to perform
this simulation.

A post-synthesis simulation verifies the functionality of a design after synthesis has
been performed. You can create a post-synthesis netlist (.vo or .vho) in the Quartus II
software and use this netlist to perform a post-synthesis simulation with the Incisive
simulator. Refer to “Post-Synthesis Simulation” on page 5–14 for more information
about how to perform this simulation.

After performing place-and-route, the Quartus II software generates a Verilog HDL
Output File (.vo) or VHDL Output File (.vho) and a Standard Delay Output file (.sdo)
for gate-level timing simulation. The netlist files map your design to
architecture-specific primitives. The .sdo file contains the delay information of each
architecture primitive and routing element specific to your design. Together, these
files provide an accurate simulation of your design with the selected Altera FPGA
architecture. Refer to “Gate-Level Timing Simulation” on page 5–15 for more
information about how to perform this simulation.

Version 7.0 Version 5.82 p001 — Version 5.82 p001

Version 6.1 Version 5.82 p001 Version 5.4 s011 Version 5.82 p001

Version 6.0 Version 5.5 s012 Version 5.4 s011 Version 5.5 s012

Version 5.1 Version 5.4 s011 Version 5.4 s011 Version 5.4 s011

Version 5.0 Version 5.4 s004 Version 5.4 p001 Version 5.4 s004

Version 4.2 Version 5.1 s017 Version 5.1 s017 Version 5.1 s017

Version 4.1 Version 5.1 s012 Version 5.1 s010 Version 5.0 p001

Version 4.0 Version 5.0 s005 Version 5.0 s006 Version 5.0 p001

Table 5–1. Compatibility Between Software Versions (Part 2 of 2)

Quartus II Software
Cadence NC

Simulators (UNIX)
Cadence NC

Simulators (PC)
Cadence NC

Simulators (Linux)

Chapter 5: Cadence NC-Sim Support 5–3
Simulation Flow Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Operation Modes
In the NC simulators, you can use either the GUI mode or the command-line mode to
simulate your design.

To start the Incisive simulators in GUI mode in a PC or a UNIX environment, at a
command prompt, type the following:

nclaunch r
To simulate in command-line mode, use the programs shown in Table 5–2.

Quartus II Software and NC Simulation Flow Overview
This section provides an overview of the Quartus II software and Cadence NC
simulation flow. More detailed information is provided in “RTL Functional
Simulation” on page 5–4, “Post-Synthesis Simulation” on page 5–14, and “Gate-Level
Timing Simulation” on page 5–15.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

Complete the following tasks:

1. Set up your working environment (UNIX only).

You must set several environment variables in UNIX to establish an environment
that facilitates entering and processing designs.

2. Create user libraries.

Create a file that maps logical library names to their physical locations. These
library mappings include your working directory and any design-specific
libraries; for example, Altera LPM functions or megafunctions.

3. Compile source code and testbenches.

Compile your design files at the command-line using ncvlog (Verilog HDL files)
or ncvhdl (VHDL files) or, on the Tools menu, click Verilog Compiler or VHDL
Compiler in NCLaunch. During compilation, the NC software performs syntax
and static semantic checks. If no errors are found, compilation produces an
internal representation for each HDL design unit in the source files. By default,
these intermediate objects are stored in a single, packed, library database file in
your working directory.

Table 5–2. Command-Line Programs

Program Function

ncvlog or
ncvhdl

NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog Syntax Tree (.vst) file. ncvlog also performs
syntax and static semantics checks.

NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax Tree (.ast) file. ncvhdl also performs syntax
and static semantics checks.

ncelab NC-Elab (ncelab) elaborates the design. ncelab constructs the design hierarchy and establishes signal
connectivity. This program also generates a Signature File (.sig) and a Simulation SnapShot File (.sss).

ncsim NC-Sim (ncsim) performs mixed-language simulation. This program is the simulation kernel that performs
event scheduling and executes the simulation code.

5–4 Chapter 5: Cadence NC-Sim Support
RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

4. Elaborate your design.

Before you can simulate your model, you must define the design hierarchy in a
process called “elaboration”. Use ncelab in command-line mode or, on the Tools
menu in NCLaunch, click Elaborator.

5. Add signals to your waveform.

Specify which signals to view in your waveform using a simulation history
manager (SHM) database.

6. Simulate your design.

Run the simulator with the ncsim program (command-line mode) or by clicking
Run in the SimVision Console window.

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler compiles Verilog HDL and VHDL simulation
libraries for all Altera devices and supported third-party simulators. You can compile
all libraries required by RTL and gate-level simulation with this tool.

f For more information about this tool, refer to the “EDA Simulation Library Compiler”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

RTL Functional Simulation
The following sections provide detailed instructions for performing RTL functional
simulation using the Quartus II software and the Cadence Incisive verification
platform tools.

Creating Libraries
Before performing simulation with the Incisive simulator, you must set up libraries
with a file named cds.lib. The cds.lib file is an ASCII text file that maps logical library
names—for example, your working directory or the location of resource libraries such
as models for LPM functions—to their physical directory paths. The Incisive
simulator reads cds.lib to determine which libraries are accessible and where they are
located. There is also a default cds.lib file, which you can modify for your project
settings.

You can use more than one cds.lib file. For example, you can have a project-wide
cds.lib file that contains library settings specific to a project, such as technology or cell
libraries and a user cds.lib file.

Basic Library Setup
You can create a cds.lib file with any text editor. The following examples show how
you use the DEFINE statement to bind a library name to its physical location. The
logical and physical names can be the same or you can select different names. The
DEFINE statement usage is:

DEFINE <library name> <physical directory path>

A simple cds.lib file for Verilog HDL contains the lines shown in Example 5–1.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 5: Cadence NC-Sim Support 5–5
RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using Multiple cds.lib Files

Use the INCLUDE or SOFTINCLUDE statement to reference another cds.lib file within
a cds.lib file. The syntax is:

INCLUDE <path to another cds.lib>

or

SOFTINCLUDE <path to another cds.lib>

For VHDL or mixed-language simulation, in addition to the DEFINE statements, you
must include the default cds.lib file (included with NC-Sim). The syntax for including
the default cds.lib file is:

INCLUDE <path to NC installation>/tools/inca/files/cds.lib

or

INCLUDE $CDS_INST_DIR/tools/inca/files/cds.lib

The default cds.lib file, provided with NC tools, contains a SOFTINCLUDE statement
to include other cds.lib files, such as cdsvhdl.lib and cdsvlog.lib. These files contain
library definitions for IEEE libraries and Synopsys libraries.

Creating a cds.lib File in Command-Line Mode

To create a cds.lib file at the command prompt, perform the following steps:

1. Create a directory for the work library and any other libraries you require by
typing the following at a command prompt:

mkdir <library name> r
For example: mkdir worklib r

2. Using a text editor, create a cds.lib file and add the following line to it:

DEFINE <library name> <physical directory path>

For example: DEFINE worklib ./worklib r

Creating a cds.lib File in GUI Mode

To create a cds.lib file using the GUI, perform the following steps:

1. To run the GUI, at the command line, type the following command:

nclaunch r
2. If the NCLaunch window is not in multiple step mode, on the File menu, click

Switch to Multiple Step.

3. On the File menu, click Set Design Directory. The Set Design Directory dialog
box appears (Figure 5–1).

Example 5–1. cds.lib File for Verilog HDL

DEFINE lib_std /usr1/libs/std_lib
DEFINE worklib ../worklib

5–6 Chapter 5: Cadence NC-Sim Support
RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

4. Browse to your design directory.

5. Click Create cds.lib File. In the New cds.lib File dialog box, select the libraries to
include and click Save.

6. Under Work Library, click New.

7. Enter your new work library name; for example, worklib.

8. Click OK. The new library appears under Work Library. Figure 5–1 shows an
example using the directory name worklib.

9. Repeat steps 7 and 8 for each functional simulation library. For example: lpm,
altera_mf, altera.

10. In the Set Design Directory dialog box, click OK.

1 You can edit your libraries by editing the cds.lib file. To edit the cds.lib file, in the
right side of the NCLaunch window, right-click the cds.lib filename and click Edit.

LPM Functions, Altera Megafunctions, and Altera Primitive Library Setup
Altera provides behavioral descriptions for LPM functions, Altera-specific
megafunctions, and Altera primitives. You can implement the megafunctions in a
design using the Quartus II MegaWizard™ Plug-In Manager, or by instantiating them
directly from your design file. If your design uses LPM functions, Altera
megafunctions, or Altera primitives, you must set up resource libraries so you can
simulate your design in the Incisive simulator.

1 Many LPM functions and Altera megafunctions use memory files. You must convert
the memory files into a format the Incisive tools can read before simulation. To
convert the memory files, follow the instructions in “Compiling Source Code and
Testbenches” on page 5–7.

Altera provides megafunction behavioral descriptions in the files shown in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

f For more information about LPM functions and Altera megafunctions, refer to the
Quartus II Help.

Figure 5–1. Creating a Work Directory in GUI Mode

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 5: Cadence NC-Sim Support 5–7
RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If an lpm library does not exist, set up a library for LPM functions. Create a new
directory and add the following line to your cds.lib file:

DEFINE lpm <path>/<directory name>

If an altera_mf library does not exist, set up a library for Altera megafunctions.
Add the following line to your cds.lib file:

DEFINE altera_mf <path>/<directory name>

Megafunctions Requiring Atom Libraries
The following Altera megafunctions require device atom libraries to perform a
functional simulation in a third-party simulator:

■ ALTCLKBUF

■ ALTCLKCTRL

■ ALTDQ

■ ALTDQS

■ ALTDDIO_IN

■ ALTDDIO_OUT

■ ALTDDIO_BIDIR

■ ALTUFM_NONE

■ ALTUFM_PARALLEL

■ ALTUFM_SPI

■ ALTMEMMULT

■ ALTREMOTE_UPDATE

f For more information about these megafunctions, refer to the
Literature: Megafunctions section of the Altera website.

The device atom library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib

Compiling Source Code and Testbenches
Compile your testbench and design files with ncvlog (for Verilog HDL files) and
ncvhdl (for VHDL files). Both ncvlog and ncvhdl perform syntax checks and static
semantic checks. A successful compilation produces an internal representation for
each HDL design unit in the source files. By default, these intermediate objects are
stored in a single, packed, library database file in your work library directory.

Compiling in Command-Line Mode
To compile from your design and testbench from the command line, type one of the
following commands:

■ Verilog HDL:

ncvlog <options> -work <library name> <design files> r
■ VHDL:

ncvhdl <options> -work <library name> <design files> r

http://www.altera.com/literature/lit-ip.jsp

5–8 Chapter 5: Cadence NC-Sim Support
RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 You must create a work library before compiling your design and testbench.

If your design uses LPM, Altera megafunctions, or Altera primitives, you must also
compile the Altera-provided functional models. The commands in Example 5–2 and
Example 5–3 show an example of each.

Compilation in GUI Mode
To compile using the NCLaunch GUI, perform the following steps:

1. In the NCLaunch window, right-click a library filename and click NCVlog
(Verilog HDL) or NCVhdl (VHDL).

Alternatively, on the Tools menu, click Verilog Compiler or VHDL Compiler.
Figure 5–2 shows the Compile Verilog and Compile VHDL dialog boxes.

Example 5–2. Creating a Work Directory in GUI Mode in Verilog HDL

ncvlog –WORK lpm 220model.v
ncvlog –WORK altera_mf altera_mf.v
ncvlog -WORK altera altera_primitives.v

Example 5–3. ncvlog -WORK altera altera_primitives.v in VHDL

ncvhdl –V93 –WORK lpm 220pack.vhd
ncvhdl –V93 –WORK lpm 220model.vhd
ncvhdl –V93 –WORK altera_mf altera_mf_components.vhd
ncvhdl –V93 –WORK altera_mf altera_mf.vhd
ncvhdl -V93 -WORK altera altera_primitives_components.vhd
ncvhdl -V93 -WORK altera altera_primitives.vhd

Figure 5–2. Compiling Verilog HDL and VHDL Files

Chapter 5: Cadence NC-Sim Support 5–9
RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. To begin compilation, in the Compile Verilog or Compile VHDL dialog box,
select all files to be compiled (design files, top-level file, testbench file). Click OK.
The dialog box closes and returns you to NCLaunch.

1 The command-line equivalent argument is shown at the bottom of the
NCLaunch window.

Elaborating Your Design
Before you can simulate your design, you must define the design hierarchy in a
process called elaboration. The Incisive simulator elaborates your design with the
language-independent ncelab program. The ncelab program constructs a design
hierarchy based on the design’s instantiation and configuration information,
establishes signal connectivity, and computes initial values for all objects in the
design. The elaborated design hierarchy is stored in a simulation snapshot, which is
the representation of your design that the simulator uses to run the simulation. The
snapshot is stored in the library database file, along with the other intermediate
objects generated by the compiler and elaborator.

1 If you are running the NC-Verilog simulator with the single-step invocation method
(ncverilog), and want to compile your source files and elaborate the design with
one command, use the +elaborate option to stop the simulator after elaboration; for
example:

ncverilog +elaborate test.v r

Elaborating Your Design in Command-Line Mode
To elaborate your Verilog HDL or VHDL design from the command line, type the
following command:

ncelab [options][<library>.]<cell>[:<view>] r
You can set your simulation timescale using the -TIMESCALE <arguments> option.
The following example elaborates a dual-port RAM with the time scale option:

ncelab –TIMESCALE 1ps/1ps worklib.lpm_ram_dp_test:entity r

1 If you specified a timescale of 1 ps in the Verilog HDL testbench, the TIMESCALE
option is not necessary. Using a ps resolution ensures the correct simulation of your
design.

If your design includes high-speed signals, you might have to add the following pulse
reject options with the ncelab command.

ncelab -TIMESCALE 1ps/1ps worklib.mydesign:entity -PULSE_R 0 –PULSE_INT_R 0 r

f For more information about the pulse reject options, refer to the SDF Annotate Guide
from Cadence.

http://cadence.com/

5–10 Chapter 5: Cadence NC-Sim Support
RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To list the elements in your library and the available views, use the ncls program. The
following command displays all of the cells and their views in your current worklib
directory:

ncls –library worklib r

f For more information about the ncls program, refer to the Cadence NC-Verilog
Simulator Help or Cadence NC-VHDL Simulator Help.

Elaborating Your Design in GUI Mode
To elaborate using the GUI, perform the following steps:

1. In the right side of the NCLaunch window, expand your current work library.

2. Select and (if necessary) expand the entity or module name you want to elaborate.

3. Right-click the view you want to display. Click NCElab. The Elaborate dialog box
appears. Optionally, on the Tools menu, click Elaborator.

4. In the Other Options box, set the simulation timescale by typing the following
command:

–TIMESCALE 1ps/1ps r
5. To begin elaboration, in the Elaborate dialog box, click OK. The dialog box closes

and returns you to NCLaunch.

Adding Signals to View
The SHM database is a Cadence proprietary waveform database that stores selected
signals for viewing. To specify which signal to view, you must create a database. To
create this database, add commands to your code, or create a Verilog Value Change
Dump File (.vcd) to store the simulation history.

f For more information about using a .vcd file, refer to the Cadence NC-Sim User Manual
included in the installation package.

Adding Signals to View in Command-Line Mode
To create an SHM database, specify the system tasks described in Table 5–3 in your
Verilog HDL code.

1 For VHDL, you can use the Tcl command interface or C function calls to add signals to
a database. Refer to the Cadence documentation included in the installation package
for details.

Table 5–3. SHM Database System Tasks (Part 1 of 2)

System Task Description

$shm_open("<filename>.shm"); Opens a database. If you do not specify a filename, the default waves.shm database
opens. If a database with the specified name does not exist, it is created for you.

Chapter 5: Cadence NC-Sim Support 5–11
RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 5–4 shows an example of how to add signals to an SHM database.

1 You can insert this code sample into your Verilog HDL file. It is applicable only for
Verilog HDL files. For more information about these system tasks, refer to the Cadence
NC-Sim User Manual included in the installation package.

Adding Signals to View in GUI Mode
To add signals in GUI mode, perform the following steps:

1. In the NC-Sim software, load the design.

a. In the NCLaunch window, click the ”+“ icon to expand the Snapshots
directory.

b. Right-click the lib.cell:view you want to simulate. Click NCSim.

c. In the Simulate dialog box, click OK.

After you load the design, the SimVision Console and SimVision Design
Browser windows appear. Figure 5–3 shows the SimVision Design Browser
window.

2. To display the signal names, in the Design Browser window, on the left side of the
window, select a module (Figure 5–3).

$shm_probe("[A|S|C]"); Probe signals. You can specify the signals to probe; if you do not specify signals, the
default is all ports in the current scope.

A probes all nodes in the current scope.

S probes all nodes below the current scope.

C probes all nodes below the current scope and in libraries.

$shm_save; Saves the database.

$shm_close; Closes the database.

Table 5–3. SHM Database System Tasks (Part 2 of 2)

Example 5–4. Elaborating the Design

initial
begin

$shm_open ("waves.shm");
$shm_probe ("AS");

end

5–12 Chapter 5: Cadence NC-Sim Support
RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. To send the selected signals to the Waveform Viewer, perform one of the following
steps:

Select a group of signals from the right side of the Design Browser window. In the
Send To toolbar (the upper-right area of the Design Browser window), click the
Send to Waveform Viewer icon.

or

Right-click the signals and click Send to Waveform Window (Figure 5–4).

A waveform window showing all of your signals appears. You are now ready to
simulate your testbench and design.

Figure 5–3. SimVision Design Browser

Chapter 5: Cadence NC-Sim Support 5–13
RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Simulating the Design
After you have compiled and elaborated your design, you can simulate it using
ncsim. The ncsim program loads the file or snapshot generated by ncelab as its
primary input and then loads other intermediate objects referenced by the snapshot. If
you enable interactive debugging, ncsim can also load HDL source files and script
files. The simulation output is controlled by the model or debugger. The output can
include result files generated by the model, the SHM database, or the .vcd file.

RTL Functional Simulation in Command-Line Mode
To perform RTL functional simulation of your Verilog HDL or VHDL design at the
command line, type the following command:

ncsim [options][<library>.]<cell>[:<view>] r
For example:

ncsim worklib.lpm_ram_dp:syn r
Table 5–4 shows some of the options you can use with ncsim.

Figure 5–4. Selecting Signals in the Design Browser Window

Table 5–4. ncsim Options

Options Description

-gui Launch GUI mode

-batch Used for non-interactive mode

-tcl Used for interactive mode (not required when using –gui)

5–14 Chapter 5: Cadence NC-Sim Support
Post-Synthesis Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

RTL Functional Simulation in GUI Mode
You can perform a simulation of your Verilog HDL or VHDL design in the GUI. In the
Design Browser window, on the Simulation menu, click Run to begin the simulation.

1 You must load the design before simulating. If you have not done so, refer to step 1 in
“Adding Signals to View in GUI Mode” on page 5–11 for instructions.

Post-Synthesis Simulation
The following sections provide detailed instructions for performing post-synthesis
simulation the Incisive platform software and output files and simulation files from
the Quartus II software.

Quartus II Simulation Output Files
After performing synthesis with either a third-party synthesis tool or with Quartus II
integrated synthesis, you must generate a simulation netlist for functional
simulations. To generate a simulation netlist for functional simulation, refer to the
“Generating Post-Synthesis Netlist Files” section in the Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook.

Creating Libraries
Create the following libraries for your simulation:

■ Work library

■ Device family library targeting your design targets using the following files in the
<path to Quartus II installation>/eda/sim_lib directory:

■ <device_family>_atoms.v

■ <device_family>_atoms.vhd

■ <device_family>_components.vhd

Compiling Project Files and Libraries
Compile the project files and libraries into your work directory using the ncvlog or
ncvhdl programs or the GUI. Include the following files:

■ Testbench file

■ The Quartus II software functional output netlist file (.vo file or .vho file)

■ Atom library file for the device family <device family>_atoms.<v|vhd>

■ For VHDL, <device family>_components.vhd

Refer to “Compiling Source Code and Testbenches” on page 5–7 for instructions about
compiling.

Elaborating Your Design
Elaborate your design using the ncelab program as described in “Elaborating Your
Design in GUI Mode” on page 5–10.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 5: Cadence NC-Sim Support 5–15
Gate-Level Timing Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Adding Signals to the View
Refer to “Adding Signals to View” on page 5–10 for information about adding signals
to the view.

Simulating Your Design
Simulate your design using the ncsim program as described in “Simulating the
Design” on page 5–13.

Gate-Level Timing Simulation
The following sections provide detailed instructions for performing timing simulation
using the Quartus II output files, simulation libraries, and Cadence NC tools.

Generating a Gate-Level Timing Simulation Netlist
To perform gate-level timing simulation, your design should provide the NC-Sim
software with information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in the form of
a .vo file for Verilog HDL designs and a .vho file for VHDL designs. The
accompanying timing information is stored in the .sdo file, which annotates the delay
for the elements found in the .vo file or .vho file.

To generate the .vo or .vho file and the .sdo file, refer to the “Generating Gate-Level
Timing Simulation Netlist Files” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook.

Disabling Timing Violation on Registers
In certain situations, the timing violations can be ignored and you can disable the
timing violation on registers. For example, timing violations that occur in internal
synchronization registers used for asynchronous clock-domain crossing.

By default, the x_on_violation_option logic option is On, which means the
simulation shows “X” whenever a timing violation occurs. To disable showing the
timing violation on certain registers, you can set the x_on_violation_option logic
option to Off for those registers. The following command is the Quartus II Tcl
command to disable timing violation on registers. This Tcl command is also stored in
the .qsf file.

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to \
<register_name>

Performing Timing Simulation Using Post-Synthesis Netlist
You can perform a timing simulation using the post-synthesis netlist instead of using
a gate-level netlist and you can generate a .sdo file without running the Fitter. In this
case, the .sdo file includes all timing values for the device cells only. Interconnect
delays are not included because fitting (placement and routing) has not been
performed.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

5–16 Chapter 5: Cadence NC-Sim Support
Gate-Level Timing Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To generate the post-synthesis netlist and the .sdo file, type the following at a
command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool=<3rd party EDA tool> \
--format=<HDL language> r

For more information about the -format and -tool options, type the following
command at a command prompt:

quartus_eda -help=<options> command r

Quartus II Timing Simulation Libraries
Altera device simulation library files are provided in the <Quartus II
installation>/eda/sim_lib directory. The .vo file or .vho file requires the library for the
device your design targets. For example, the Stratix device family requires the
following library files:

■ stratix_atoms.v

■ stratix_atoms.vhd

■ stratix_components.vhd

If your design targets a Stratix device, you must set up the appropriate mappings in
your cds.lib file. Refer to “Creating Libraries” for more information.

Creating Libraries
Create the following libraries for your simulation:

■ Work library

■ Device family libraries targeting using the following files in the <path to Quartus II
installation>/eda/sim_lib directory:

■ <device_family>_atoms.v

■ <device_family>_atoms.vhd

■ <device_family>_components.vhd

For instructions about creating libraries, refer to “Basic Library Setup” on page 5–4
and “LPM Functions, Altera Megafunctions, and Altera Primitive Library Setup” on
page 5–6.

Compiling the Project Files and Libraries
Compile the project files and libraries into your work directory with the ncvlog or
ncvhdl programs or the GUI. Include the following files:

■ Testbench file

■ The Quartus II software functional output netlist file (.vo file or .vho file)

■ Atom library file for the device family <device family>_atoms.<v|vhd>

■ For VHDL, <device family>_components.vhd

Chapter 5: Cadence NC-Sim Support 5–17
Gate-Level Timing Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

For instructions about compiling, refer to “Compiling Source Code and Testbenches”
on page 5–7.

Elaborating Your Design
When performing elaboration with the Quartus II-generated Verilog HDL netlist file,
the .sdo file is read automatically. The ncelab executable recognizes the embedded
system task $sdf_annotate and automatically compiles and annotates the .sdo file
(runs ncsdfc automatically).

1 The .sdo file should be located in the same directory where you perform an
elaboration or simulation, because the $sdf_annotate task references the .sdo file
without using a full path. If you are starting an elaboration or simulation from a
different directory, you can either comment out the $sdf_annotate and annotate
the .sdo file with the GUI, or add the full path of the .sdo file.

Refer to “Elaborating Your Design” on page 5–9 for elaboration instructions.

VHDL netlist files do not contain system task calls to locate your .sdf file; therefore,
you must compile the Standard .sdo file manually. For information about compiling
the .sdo file, refer to “Compiling the .sdo File (VHDL Only) in Command-Line Mode”
and “Compiling the .sdo File (VHDL Only) in GUI Mode”.

Compiling the .sdo File (VHDL Only) in Command-Line Mode
To annotate the .sdo file timing data from the command line, perform the following
steps:

1. Compile the .sdo file using the ncsdfc program by typing the following command
at the command prompt:

ncsdfc <project name>_vhd.sdo –output <output name> r
The ncsdfc program generates an <output name>.sdf.X compiled .sdo file.

1 If you do not specify an output name, ncsdfc uses <project name>.sdo.X.

2. Specify the compiled .sdf file for the project by adding the following command to
an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

Example 5–5 shows an example of an SDF command file.

After you compile the .sdf file, type the following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> r

Example 5–5. SDF Command File

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

5–18 Chapter 5: Cadence NC-Sim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling the .sdo File (VHDL Only) in GUI Mode
To annotate the .sdo file timing data in the GUI, in the NCLaunch window, perform
the following steps:

1. On the Tools menu, click SDF Compiler. The Compile SDF dialog box appears.

2. In the SDF File box, type the name of the .sdo file for the project.

3. Click OK.

When the .sdo file compilation is complete, you can elaborate the design. Refer to
“Elaborating Your Design in GUI Mode” on page 5–10 for instructions.

1 If you perform a VHDL gate-level timing simulation, you must create an
SDF command file before you begin elaboration. To create the SDF
command file, continue the procedure.

4. On the Tools menu, click Elaborator. The Elaborate dialog box appears.

5. Click Advanced Options.

6. Click Annotation.

7. Turn on Use SDF File.

8. Click Edit.

9. Browse to the location of the SDF command file name.

10. Click Add and browse to the location of the .sdo file in the Compiled SDF File box
and click OK.

11. Click OK to save and exit the SDF Command File dialog box.

Adding Signals to View
Refer to “Adding Signals to View” on page 5–10 for information about adding signals
to view.

Simulating Your Design
Simulate your design using the ncsim program as described in “Simulating the
Design” on page 5–13.

f For the design examples to run gate-level timing simulation, refer to the
Cadence NC-Sim Simulation Design Example web page.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone IV, HardCopy IV, Stratix, Stratix II, or
Stratix IV transceivers, you must compile additional library files to perform functional
RTL or gate-level timing simulations.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

http://www.altera.com/support/examples/ncsim/exm-ncsim.html

Chapter 5: Cadence NC-Sim Support 5–19
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f If your design contains PCI Excpress hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

RTL Functional Simulation for Stratix GX Devices
To perform an RTL functional simulation of your design that instantiates the ALTGXB
megafunction, enabling the gigabit transceiver block (GXB) on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Compiling Library Files for RTL Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix GX device, type the commands shown in Example 5–6 at the
NC-Sim command prompt.

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for a functional simulation of a Verilog HDL design
targeting a Stratix GX device, type the commands shown in Example 5–7 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver, compile the stratixgx_atoms and stratixgx_hssi_atoms model files into
the stratixgx and stratixgx_gxb libraries, respectively.

1 You must create these libraries to perform a simulation because the
stratixgx_hssi_atoms model file references the lpm and sgate libraries.

Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for timing simulation of a VHDL design targeting a
Stratix GX device, type the commands shown in Example 5–8 at the NC-Sim
command prompt.

Example 5–6. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd
ncsim work.<my design>

Example 5–7. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work altgxb stratixgx_mf.v
ncsim work.<my design>

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

5–20 Chapter 5: Cadence NC-Sim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix GX device, type the commands shown in Example 5–9 at the
NC-Sim command prompt.

RTL Functional Simulation for Stratix II GX Devices
Functional simulation of Stratix II GX devices is similar to functional simulation of
Arria GX devices. Example 5–11 and Example 5–12 show only the RTL functional
simulation for designs that include transceivers in Stratix II GX devices. To simulate
transceivers in Arria GX devices, replace the stratixiigx_hssi model file with the
arriagx_hssi model file.

To perform an RTL functional simulation of your design that instantiates the
ALT2GXB megafunction, edit your cds.lib file so all of the libraries point to the work
library, and compile the stratixiigx_hssi model file into the stratixiigx_hssi library.
When compiling the library files, you can safely ignore the following warning
message:

"Multiple logical libraries mapped to a single location"

Example 5–10 shows the cds.lib file.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Example 5–8. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd
ncvhdl -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 5–9. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixgx stratixgx_atoms.v
ncvlog -work stratixgx_gxb stratixgx_hssi_atoms.v
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 5–10. cds.lib File

SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiigx_hssi ./ncsim_work
DEFINE stratixiigx ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

Chapter 5: Cadence NC-Sim Support 5–21
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Generate a functional simulation netlist by turning on Create a simulation library for
this design in the last page of the ALT2GXB MegaWizard Plug-In Manager
(Figure 5–5). The <alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated
in the current project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

Compiling Library Files for RTL Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix II GX device, type the commands shown in Example 5–11 at the
NC-Sim command prompt.

Figure 5–5. ALT2GXB MegaWizard Plug-In Manager: Generate Simulation Model

5–22 Chapter 5: Cadence NC-Sim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix II GX device, type the commands shown in Example 5–12 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix II GX Devices
Stratix II GX functional simulation is similar to Arria GX functional simulation.
Example 5–13 and Example 5–14 show only the gate-level timing simulation for
designs that include transceivers in Stratix II GX. To simulate transceivers in
Arria GX, replace the stratixiigx_hssi model file with the arriagx_hssi model file.

To perform a post-fit timing simulation of your design that includes the ALT2GXB
megafunction, edit your cds.lib file so that all the libraries point to the work library
and compile stratixiigx_atoms and stratixiigx_hssi_atoms into the
stratixiigx and stratixiigx_hssi libraries, respectively. When compiling the library
files, you can safely ignore the following warning message:

"Multiple logical libraries mapped to a single location"

For an example of a cds.lib file, refer to “RTL Functional Simulation for Stratix II GX
Devices” on page 5–20.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for timing simulation of a VHDL design targeting a
Stratix II GX device, type the commands shown in Example 5–13 at the NC-Sim
command prompt.

Example 5–11. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
ncvhdl -work work <alt2gxb entity name>.vho
ncelab work.<my design>

Example 5–12. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
ncvlog -work work <alt2gxb module name>.vo
ncelab work.<my design>

Chapter 5: Cadence NC-Sim Support 5–23
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix II GX device, type the commands shown in Example 5–14 at the
NC-Sim command prompt.

RTL Functional Simulation for Stratix IV Devices
RTL functional simulation for Stratix IV devices is similar to RTL functional
simulation for Arria II, Cyclone IV, and HardCopy IV devices. Example 5–16 shows
only the RTL functional simulation for designs that include transceivers in Stratix IV
devices. To simulate transceivers in Arria II, Cyclone IV, and HardCopy IV devices,
replace the stratixiv_hssi model file with the arriaii_hssi, cycloneiv_hssi, and
hardcopyiv_hssi model files, respectively.

To perform an RTL functional simulation of your design that instantiates the ALTGX
megafunction, edit your cds.lib file so that all of the libraries point to the work library,
and compile the stratixiv_hssi model file into the stratixiv_hssi library.

When compiling the library files, you can safely ignore the following warning
message:

"Multiple logical libraries mapped to a single location"

Example 4-15 shows the cds.lib file.

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Example 5–13. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
ncvhdl -work work <alt2gxb>.vho
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 5–14. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiigx stratixiigx_atoms.v
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 5–15. cds.lib File

SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiv_hssi ./ncsim_work
DEFINE stratixiv ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

5–24 Chapter 5: Cadence NC-Sim Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Library Files for RTL Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix IV device, type the commands shown in Example 5–16 at the
NC-Sim command prompt.

Compiling Library Files for RTL Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix IV device, type the commands shown in Example 5–17 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix IV Devices
Stratix IV gate-level timing simulation is similar to Arria II gate-level timing
simulation.

Example 5–18 and Example 5–19 show only the gate-level timing simulation for
designs that include transceivers in Stratix IV devices. To simulate transceivers in
Arria II, Cyclone IV, and HardCopy IV devices, replace the stratixiv_hssi model file
with the arriaii_hssi, cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

To perform a post-fit timing simulation of your design that includes the ALTGX
megafunction, edit your cds.lib file so that all of the libraries point to the work library
and compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively. When compiling the library files, you can safely
ignore the following warning message:

"Multiple logical libraries mapped to a single location"

For an example of a cds.lib file, refer to Example 5–15 on page 5–23.

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Example 5–16. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiv_hssi stratixiv_hssi_components.vhd \
stratixiv_hssi_atoms.vhd
ncvhdl -work work <altgx entity name>.vhd
ncelab work.<my design>

Example 5–17. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiv_hssi stratixiv_hssi_atoms.v
ncvlog -work work <altgx module name>.v
ncelab work.<my design>

Chapter 5: Cadence NC-Sim Support 5–25
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for timing simulation of a VHDL design targeting a
Stratix IV device, type the commands shown in Example 5–18 at the NC-Sim
command prompt.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix IV device, type the commands shown in Example 5–19 at the
NC-Sim command prompt.

Pulse Reject Delays
By default, the NC-Sim software filters out all pulses that are shorter than the
propagation delay between primitives. Setting the pulse reject delays (similar to
transport delays) options in the NC-Sim software prevents the simulation tool from
filtering out these pulses. Use the following options to ensure that all signal pulses are
seen in the simulation results.

-PULSE_R
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive. The argument is the percentage of delay for pulse reject limit for
the path.

-PULSE_INT_R
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives. The argument is the percentage of delay for
pulse reject limit for the path.

1 The -PULSE_R and -PULSE_INT_R options are also used by default in the
NativeLink feature for gate-level timing simulation.

Example 5–18. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiv stratixiv_atoms.vhd \
stratixiv_components.vhd
ncvhdl -work stratixiv_hssi stratixiv_hssi_components.vhd \
stratixiv_hssi_atoms.vhd
ncvhdl -work work <altgx>.vho
ncsdfc <project name>_vhd.sdo
ncelab work.<my design> -TIMESCALE 1ps/1ps \
-SDF_CMD_FILE <SDF Command File> -PULSE_R 0 -PULSE_INT_R 0

Example 5–19. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiv stratixiv_atoms.v
ncvlog -work stratixiv_hssi stratixiv_hssi_atoms.v
ncvlog -work work <altgx>.vo
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

5–26 Chapter 5: Cadence NC-Sim Support
Using the NativeLink Feature with NC-Sim

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The following NC-Sim software command describes the command-line syntax to
perform a gate-level timing simulation with the device family library:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Using the NativeLink Feature with NC-Sim
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
NC-Sim within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Generating a Timing VCD File for the PowerPlay Power Analyzer
To generate a timing .vcd file for PowerPlay, you must first generate a VCD script in
the Quartus II software and run the VCD script from the NC-Sim software to generate
a timing .vcd file. This timing .vcd file can then be used by the PowerPlay Power
Analyzer for power analysis. The following instructions show you how to generate a
timing .vcd file.

Perform the following steps to generate timing VCD scripts in the Quartus II
software:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears (Figure 5–6).

2. In the Category list, click the “+” icon to expand EDA Tool SEttings.

3. Click Simulation.

4. In the Tool name list, click your preferred simulation tool.

5. Turn on the Generate Value Change Dump (VCD) File Script option.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 5: Cadence NC-Sim Support 5–27
Viewing a Waveform from a .trn File

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

6. Click OK.

7. To generate the VCD script file, perform a full compilation.

Perform the following steps to generate a timing .vcd file in NC-Sim:

1. In the NC-Sim software, before simulating your design, source the
<revision_name>_dump_all_vcd_nodes.tcl script. To source the .tcl script, use the
–input switch while running the nssim command. For example:

ncsim –input <revision_name>_dump_all_vcd_nodes.tcl <my design>

2. Continue to run the simulation until simulation finishes. Exit the ncsim and the
<revision_name>.vcd is generated in the simulation directory.

f For more detailed information about using the timing .vcd file for power analysis,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .trn File
A .trn file is automatically generated when your simulation is done. The .trn file is not
readable. It is used for generating the waveform view through SimVision.

To view a waveform from a .trn file through SimVision, perform the following steps:

1. Type simvision on a command line. The Design Browser dialog box appears.

2. On the File menu, click Open Database. The Open File dialog box appears.

Figure 5–6. Simulation Settings Dialog Box

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

5–28 Chapter 5: Cadence NC-Sim Support
Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. In the Directories field, browse to the directory that contains your .trn file.

4. Double-click the .trn file.

5. In the Design Browser dialog box, select the signals that you want to observe from
the Hierarchy.

6. Right-click the selected signals and click Send to Waveform Window.

1 You cannot view a waveform from a .vcd file in SimVision and the .vcd file cannot be
converted to a .trn file.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt.

f For detailed information about scripting command options, refer to the Quartus II
Command-Line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

f The Quartus II Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generating NC-Sim Simulation Output Files
You can generate .vo files and .sdo simulation output files with Tcl commands or at a
command prompt.

For more information about generating .vo simulation output files and .sdo file
simulation output files, refer to “Quartus II Simulation Output Files” on page 5–14.

Tcl Commands
The following three assignments cause a Verilog HDL netlist to be written out when
you run the Quartus II netlist writer. The netlist has a 1 ps timing resolution for the
NC-Sim simulation software.

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"

Use the following Tcl command to run the Quartus II Netlist Writer:

execute_module -tool eda

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 5: Cadence NC-Sim Support 5–29
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Command Prompt
Use the following command to generate a simulation output file for the Cadence
NC-Sim software simulator. Specify Verilog HDL or VHDL for the format.

quartus_eda <project name> --simulation --format=<verilog|vhdl> --tool=ncsim r

Conclusion
The Cadence NC family of simulators work within an Altera FPGA design flow to
perform RTL functional, post-synthesis, and gate-level timing simulation, easily and
accurately.

Altera provides functional models of LPM and Altera-specific megafunctions that you
can compile with your testbench or design. For timing simulation, use the atom netlist
file generated by Quartus II compilation.

The seamless integration of the Quartus II software and Cadence NC tools make this
simulation flow an ideal method for fully verifying an FPGA design.

Referenced Documents
This chapter references the following documents:

■ Cadence NC-Sim Simulation Design Example

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Manual

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ SDF Annotate Guide and Cadence NC-Sim User Manual from Cadence

■ Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://cadence.com/
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/support/examples/ncsim/exm-ncsim.html
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

5–30 Chapter 5: Cadence NC-Sim Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Document Revision History
Table 5–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 5–5. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed NativeLink information and referenced new Simulating
Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-
Level Timing Simulation for Stratix IV Devices” sections

■ Minor text edits

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library
Compiler”.

■ Added “Compile Libraries Using the EDA Simulation Library Compiler”
on page 4–5.

■ Added “Generate Simulation Script from EDA Netlist Writer” on
page 4–35.

■ Added “Viewing a Waveform from a .trn File” on page 4–36.

■ Minor editorial updates.

Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

■ Added “Compile Libraries Using the Altera Simulation Library
Compiler” on page 4–5.

■ Added information about the --simlib_comp utility.

■ Minor editorial updates.

■ Updated entire chapter using 8½” × 11” chapter template.

Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0.0

■ Updated Table 4–1.

■ Updated Figure 4–1.

■ Updated “Compilation in Command-Line Mode” on page 4–9.

■ Updated “Generating a Timing Netlist with Different Timing Models” on
page 4–18.

■ Added “Disable Timing Violation on Registers” on page 4–20.

■ Updated “Simulating Designs that Include Transceivers” on
page 4–23.

■ Updated “Performing a Gate Level Simulation Using NativeLink” on
page 4–30.

■ Added “Generating a Timing VCD File for PowerPlay” on page 4–33.

■ Added hyperlinks to referenced documents throughout the chapter.

■ Minor editorial updates.

Updated for the Quartus II
software version 8.0 release.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

6. Aldec Active-HDL Support

This chapter describes how to use the Active-HDL software to simulate designs that
target Altera® FPGAs.

Introduction
This chapter provides step-by-step instructions about how to perform register transfer
level (RTL) functional simulations, post-synthesis simulations, and gate-level timing
simulations for Verilog HDL or VHDL designs using Active-HDL software. This
chapter also describes the location of the simulation library files, how to compile these
library files, and how to load the design and testbench.

The Quartus® II software version 9.0 and later supports Aldec’s Riviera-PRO tool. For
more information about this simulator, refer to the manual that is provided in the
installation package. The manual is located at <Riviera-PRO Installation
Directory>/help/ riviera.pdf.

This chapter includes the following topics:

■ “Software Compatibility”

■ “Using Active-HDL Software in Quartus II Design Flows” on page 6–2

■ “Simulation Libraries” on page 6–2

■ “Performing Simulation Using the Active-HDL Software (GUI Mode)” on
page 6–4

■ “Performing Simulation Using the Active-HDL Software (Batch Mode)” on
page 6–20

■ “Simulating Designs that Include Transceivers” on page 6–31

■ “Using the NativeLink Feature in Active-HDL Software” on page 6–41

■ “Generating .vcd Files for the PowerPlay Power Analyzer” on page 6–41

■ “Scripting Support” on page 6–41

Software Compatibility
To simulate your design using the Active-HDL software, you must first set up the
Altera libraries. These libraries are installed with the Quartus II software. Table 6–1
shows the compatibility between versions of the Quartus II software and the Aldec
Active-HDL software.

Table 6–1. Supported Quartus II and Active-HDL Software Version Compatibility

Aldec (Active-HDL) Aldec (Riviera-PRO) Altera

Active-HDL software version 8.2 Riviera-PRO 2009.06 Quartus II software version 9.1

Active-HDL software version 8.1 Riviera-PRO 2008.06 Quartus II software version 9.0

Active-HDL software version 7.3sp1 — Quartus II software version 8.1

QII53023-9.1.0

6–2 Chapter 6: Aldec Active-HDL Support
Using Active-HDL Software in Quartus II Design Flows

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about installing the software and directories created during the
Quartus II software installation, refer to the Altera Software Installation and Licensing
manual.

Using Active-HDL Software in Quartus II Design Flows
You can perform the following types of simulations using the Active-HDL software:

■ RTL functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

Simulation Libraries
Simulation model libraries are required to run a simulation whether you are running
an RTL functional simulation, post-synthesis simulation, or gate-level timing
simulation. In general, running an RTL functional simulation requires the RTL
functional simulation model libraries and running a post-synthesis or gate-level
timing simulation requires the gate-level timing simulation model libraries. You must
compile the necessary library files before you can run the simulation.

However, there are a few exceptions where you are also required to compile gate-level
timing simulation library files to perform RTL functional simulation. For example, the
following are some of the Altera megafunctions gate-level libraries required to
perform an RTL functional simulation in third-party simulators:

■ ALTCLKBUF

■ ALTCLKCTRL

■ ALTDQS

■ ALTDQ

■ ALTDDIO_IN

■ ALTDDIO_OUT

■ ALTDDIO_BIDIR

■ ALTUFM_NONE

■ ALTUFM_PARALLEL

■ ALTUFM_SPI

■ ALTMEMMULT

■ ALTREMOTE_UPDATE

Active-HDL software version 7.3 — Quartus II software version 8.0

Active-HDL software version 7.3 — Quartus II software version 7.2

Table 6–1. Supported Quartus II and Active-HDL Software Version Compatibility

Aldec (Active-HDL) Aldec (Riviera-PRO) Altera

http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 6: Aldec Active-HDL Support 6–3
Simulation Libraries

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 To identify what type of simulation libraries are required to run the simulation for a
certain Altera megafunction, refer to the last page in the Altera MegaWizard™ Plug-In
Manager, which lists the simulation library files required to perform an RTL
functional simulation for that particular megafunction.

Simulating the transceiver megafunction (for example, ALT2GXB) is also another
exception that requires the gate-level libraries to perform RTL functional simulation
and vice versa. For detailed, step-by-step instructions about how to simulate the
transceiver megafunction, refer to “Simulating Designs that Include Transceivers” on
page 6–31.

Simulation Library Files in the Quartus II Software
In Active-HDL software, you must compile the necessary libraries to perform RTL
functional, post-synthesis functional, or gate-level timing simulation. The following
sections show the location of these library files in the Quartus II directory structure.
You can refer to these library files for any particular simulation model that you are
looking for.

f For more information, refer to the “Simulation Libraries” section in the Simulating
Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Disabling Timing Violation on Registers
In certain situations, the timing violation can be ignored and you can disable the
timing violation on registers; for example, timing violations that occur in internal
synchronization registers used for asynchronous clock-domain crossing.

By default, the x_on_violation_option logic option is On, which means the
simulation shows “x” whenever a timing violation occurs. To disable showing the
timing violation on certain registers, set the x_on_violation_option logic option to
Off on those registers. The following command is an example of the QSF file:

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name>

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler is used to compile Verilog HDL and VHDL
simulation libraries for all Altera devices and supported third-party simulators. You
can use this tool to compile all libraries required by RTL and gate-level simulation.

f For more information about this tool, refer to the “EDA Simulation Library Compiler”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–4 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing Simulation Using the Active-HDL Software (GUI Mode)
Perform simulation of Verilog HDL or VHDL designs with Active-HDL software at
various levels to verify designs from different aspects. There are three types of
simulation:

■ RTL functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

Simulation helps you verify your designs and debug them against any errors the
designs may have. The following sections provide step-by-step instructions to
perform the simulation through the GUI.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions. If you choose slower than ps, the high-speed simulation may
fail.

Workspace creation is the mandatory first step to start working in the Active-HDL
GUI. You must create a new workspace to add the simulation model files, design files,
and testbench file before you can compile them.

Simulating VHDL Designs
The Active-HDL GUI is intuitive and easy to use. You do not have to remember the
commands to compile the libraries or load and simulate the VHDL design files. You
can use the Active-HDL GUI to perform the RTL functional simulation, post-synthesis
simulation, and gate-level timing simulation. The following sections show you how to
perform simulation at various levels through the Active-HDL GUI.

Performing RTL Functional Simulation
RTL functional simulation is typically performed to verify the syntax of the code and
to check the functionality of the design. The following sections show how to perform
RTL functional simulation in the Active-HDL software for VHDL designs.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required and you can skip the following section.

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, lpm function, or Altera megafunction. Different designs require different
simulation libraries, and you must create these required simulation libraries before
you can run the simulation.

For example, the library name for Altera megafunctions should be altera_mf and the
library name for LPM should be lpm. For a list of all functional simulation library
files, refer to the “Simulation Libraries” section in the Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–5
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Before you start creating simulation libraries (for example, altera_mf and lpm) ensure
that the library with the same name is not present in the Active-HDL software.
Perform the following steps:

1. In the Active-HDL software, on the View menu, click Library Manager. The
Library Manager window appears.

2. Check to see if the simulation libraries (for example, altera_mf and lpm) that you
are going to create are not already present.

3. If the simulation libraries are already present, you must detach them. To detach
the simulation libraries, right-click on the library and select Detach.

To create and compile the simulation libraries, you must create a new workspace.
Perform the following steps to create a new workspace, create a new library, compile
the library, and register the library in the Library Manager.

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to proceed to the Design name and Library name
fields.

5. Type the design name (for example, altera_mf or lpm), select the location of
your RTL design in the Design folder field, and click Next. For simplicity, keep the
design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

Compile the altera_mf_components.vhd and altera_mf.vhd model files into the
altera_mf library. Compile the 220pack.vhd and 220model.vhd model files into
the lpm library.

9. On the Design menu, click Compile All to compile all the files (for example,
altera_mf_components.vhd and altera_mf.vhd) in the design library.

10. On the File menu, click Close Workspace.

11. You must register the created library in the Active-HDL software. On the View
menu, click Library Manager. The Library Manager window appears.

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, altera_mf.lib or lpm.lib) from the design
directory that you created in the previous steps and click Open. This action
attaches the simulation library as a global library inside your library manager and
makes it visible for any design in Active-HDL.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

6–6 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling Testbench and Design Files into the Work Library

To compile the testbench and design files into a work library, you must create a new
workspace. Perform the following steps to create a new workspace and compile your
testbench and design files into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the RTL design directory and add the testbench and RTL design files.

9. On the Design menu, click Compile All to compile the testbench and RTL design
files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. In the Design Browser, click the Top-level Selection pull-down menu. Select the
top-level entity, which is your testbench with corresponding architecture.

2. On the Simulation menu, select Initialize Simulation. This loads the simulation.

3. The Design Browser automatically switches to the Structure tab and shows you
the design tree.

Running the Simulation

To run a simulation, perform the following steps:

1. On the File menu, point to New and click Waveform.

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

3. On the Simulation menu, click Run Until. A pop-up window appears.

4. Specify how long you want your simulation to run (for example, 500 ns).

Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that functionality of the design
functionality is preserved after synthesis. You can create the post-synthesis netlist in
the Quartus II software and use the netlist to perform post-synthesis simulation with
the Active-HDL software.

Chapter 6: Aldec Active-HDL Support 6–7
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Before you run post-synthesis simulation, generate post-synthesis simulation netlist
files. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Use the instructions in the following section to perform a post-synthesis simulation
for VHDL designs in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the following section.

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries before running the simulation.

Performing post-synthesis simulation requires a gate-level timing simulation library.
For example, the library name for the Stratix III family should be stratixiii. For a list of
all gate-level timing simulation library files, refer to the “Simulation Libraries” section
in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Before you create simulation libraries (for example, stratixiii) ensure that a library
with the same name is not present in the Active-HDL software. Perform the following
steps:

1. In the Active-HDL software, on the View menu, click Library Manager. The
Library Manager window appears.

2. Check that the simulation libraries (for example, stratixiii) you are going to create
are not already present.

3. If these simulation libraries are present, you must detach them. To detach these
simulation libraries, right-click the library and from the menu list, select Detach.

To create and compile the simulation libraries, you must create a new workspace.
Perform the following steps to create a new workspace, create a new library, and
compile and register the library in the Library Manager. Perform the following steps:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type the design name (for example, stratixiii) and select the location of your
RTL design. For simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–8 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 Compile the statixiii_atoms_components.vhd and stratixiii_atoms.vhd model files
into the stratixiii library.

9. On the Design menu, click Compile All to compile all the files (for example,
altera_mf_components.vhd and altera_mf.vhd) to the design library.

10. On the File menu, click Close Workspace.

11. To register the created library in the Active-HDL software, on the View menu, click
Library Manager. The Library Manager window appears.

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, stratixiii.lib) from the design directory that you
created in the previous steps and click Open. This attaches the simulation library
as a global library inside your library manager and makes it visible for any design
in the Active-HDL software.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

Compiling the Testbench and Design File into the Work Library

To compile design files and the testbench into a work library, you must create a new
workspace. Perform the following steps to create a new workspace, and compile your
testbench and *.vho file into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the VHDL output file directory (for example, <project
directory>/simulation/activehdl) and add the VHDL output file (*.vho). Browse to
the testbench file directory and add the testbench file.

9. On the Design menu, click Compile All to compile the testbench and VHDL
output netlist files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. In the Design Browser, click the Top-level Selection list. Select the top-level entity,
which is your testbench with corresponding architecture.

Chapter 6: Aldec Active-HDL Support 6–9
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. On the Simulation menu, click Initialize Simulation. This loads the simulation.
The Design Browser automatically switches to the Structure tab and displays the
design tree.

Running the Simulation

To run the simulation, perform the following steps:

1. On the File menu, point to New and click Waveform.

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

3. On the Simulation menu, click Run Until.

4. In the pop-up window, specify how long you want your simulation to run (for
example, 500 ns).

Performing Gate-Level Timing Simulation
Gate-level timing simulation is a very important step in ensuring that the FPGA’s
functionality is still correct and meets all the timing requirements after the design was
placed and routed. You can create the gate-level netlist in the Quartus II software and
use the netlist to perform gate-level simulation with the Active-HDL software.

Before you run gate-level timing simulation, generate gate-level timing simulation
netlist files. Refer to the “Generating Gate-Level Timing Simulation Netlist Files”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Use the following instructions to perform a gate-level timing simulation for VHDL
designs in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the next section.

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-fitting
primitives. Depending on the device family you are using, you must create the
required simulation libraries before running the simulation.

Performing gate-level timing simulation requires a gate-level timing simulation
library. For example, the library name for the Stratix III family should be stratixiii. For
a list of all gate-level timing simulation library files, refer to the “Simulation
Libraries” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

Before you create simulation libraries (for example, stratixiii), ensure that a library
with the same name is not present in the Active-HDL software. Perform the following
steps:

1. In the Active-HDL software, on the View menu, Click Library Manager. The
Library Manager window appears.

2. Check to see that the simulation libraries (for example, stratixiii) you are going to
create are not already present.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–10 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. If these simulation libraries are present, you must detach them. Right-click the
library and from the menu list, select Detach.

To create and compile simulation libraries, you must create a new workspace. Perform
the following steps to create a new workspace, create a new library, and compile and
register the library in the Library Manager. Do this by performing the following steps:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type the design name (for example, stratixiii) and select the location of your
RTL design. For simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

Compile the statixiii_atoms_components.vhd and stratixiii_atoms.vhd model
files into the stratixiii library.

9. On the Design menu, click Compile All to compile all the files (for example,
altera_mf_components.vhd and altera_mf.vhd) into the design library.

10. On the File menu, click Close Workspace.

11. To register the created library in the Active-HDL software, on the View menu,
click Library Manager. The Library Manager window appears.

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, stratixiii.lib) from the design directory that you
created in the previous steps and click Open. This attaches the simulation library
as a global library inside your library manager and makes it visible to any design
in the Active-HDL software.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

Compiling the Testbench and Design File into the Work Library

To compile design files and the testbench into a work library, you must create a new
workspace. Perform the following steps to create a new workspace and compile your
design files into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

Chapter 6: Aldec Active-HDL Support 6–11
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the VHDL output file directory (for example, <project
directory>/simulation/activehdl) and add the VHDL output file (*.vho) and
standard output file (*.sdo). Browse to the testbench file directory and add the
testbench file.

9. On the Design menu, click Compile All to compile the testbench and VHDL
output netlist files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. On the Design menu, click Settings. The Design Settings window appears. Expand
the Simulation category and click SDF.

1 If there are no .sdo files listed, no .sdo files have been added to the design.
You must add the .sdo file before running the timing simulation.

2. In the Files-Region dialog box, select the level of the design hierarchy to which the
.sdo file should be bonded to. For example, if your design under test is
instantiated in the testbench file under the i1 label, the region should be 'i1/'.

3. In the SDF settings box, set Value to Average and set Load to Yes so that the
simulator loads this file upon simulation start.

1 You do not have to set the Value (Minimum, Average, Maximum) for the *.sdo file,
because the Quartus II EDA Netlist Writer generates the *.sdo file using the same
value for the triplet (minimum, average, and maximum timing values).

4. Click OK to close the Design Settings window.

5. In the Design Browser, click the Top-level Selection list. Select the top-level entity,
which is your testbench with corresponding architecture.

6. On the Simulation menu, click Initialize Simulation. This loads the simulation.
The Design Browser automatically switches to the Structure tab and shows you
the design tree.

Running the Simulation

To run the simulation, perform the following steps:

1. On the File menu, point to New and click Waveform.

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

6–12 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. On the Simulation menu, click Run Until.

4. In the pop-up window, specify how long you want your simulation to run (for
example, 500 ns).

Simulating Verilog HDL Designs
When you simulate Verilog HDL designs using the Active-HDL GUI, you do not have
to remember the commands to compile the libraries or to load and simulate the
Verilog HDL design files. You can use the Active-HDL GUI to perform RTL functional
simulation, post-synthesis simulation, and gate-level simulation. The following
sections show you how to perform simulation at various levels through the
Active-HDL GUI.

Performing RTL Functional Simulation
RTL functional simulation is performed to verify the syntax of the code and to check
the functionality of the design. The following sections show how to perform RTL
functional simulation in the Active-HDL software for Verilog HDL designs.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the next section.

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Different designs require different
simulation libraries, and you must create these required simulation libraries before
you can run the simulation.

For example, the library name for Altera megafunctions should be altera_mf_ver and
the library name for LPM should be lpm. For a list of all functional simulation library
files, refer to the “Simulation Libraries” section in the Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook.

Before you start creating simulation libraries (for example, altera_mf_ver or
lpm_ver), ensure that the library with the same name is not present in the
Active-HDL software.

1. In the Active-HDL software, on the View menu, click Library Manager. The
Library Manager window appears.

2. Check to see if the simulation libraries that you are going to create are not already
present.

3. If the simulation libraries are already present, you must detach them. Right-click
the library and from the menu list, select Detach.

To create and compile simulation libraries, you must create a new workspace. Perform
the following steps to create a new workspace, create a new library, compile the
library, and register the library in the Library Manager.

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–13
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

3. Click Next. The Property page appears.

4. In the Property page, click Next to proceed to the Design name and Library name
fields.

5. Type the design name (for example, altera_mf_ver or lpm_ver), select the
location of your RTL design in the Design folder field, and click Next. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

For example, compile the altera_mf_.v model files into the altera_mf_ver library,
and compile the 220model.v model files into the lpm_ver library.

9. On the Design menu, click Compile All to compile all the files (for example,
altera_mf.v) into the design library.

10. On the File menu, click Close Workspace.

11. On the View menu, click Library Manager. The Library Manager window
appears.

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, altera_mf_ver.lib) from the design directory that
you created in the previous steps and click Open. This attaches the simulation
library as a global library inside your library manager and makes it visible to any
design in Active-HDL.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

Compiling the Testbench and Design Files into the Work Library

To compile design files and the testbench into the work library, you must create a new
workspace. Perform the following steps to create a new workspace and compile your
testbench and design files into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the RTL design directory and add the testbench and RTL design files.

6–14 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

9. Your design might require simulation libraries that you created previously to
compile successfully. For example, the altera_mf_ver library is required for
compiling designs that use Altera megafunctions. If your design requires these
simulation libraries, perform the following steps:

a. On the Design menu, click Settings. The Design Settings window appears.
Expand the Compilation category and click Verilog.

b. To add the Verilog Library settings, click the Add library icon (upper-right
icon) and click OK to insert the required Verilog HDL simulation libraries.

1 These simulation libraries are the simulation libraries that you compiled or
installed previously (for example, altera_mf_ver and lpm_ver, altera_ver).

10. On the Design menu, click Compile All to compile the testbench and RTL design
files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. In the Design Browser, click the Top-level Selection list. Select the top-level
module, which is your testbench.

2. To add the required simulation library, on the Design menu, click Settings. The
Design Settings window appears.

a. Expand the Simulation category and click Verilog.

b. In the Verilog Libraries window, click the Add library icon (top-right icon)
and click OK to insert the required Verilog HDL simulation libraries (for
example, altera_mf_ver, lpm_ver, and altera_ver).

3. On the Simulation menu, click Initialize Simulation. This loads the simulation.
The Design Browser automatically switches to the Structure tab and shows you
the design tree.

Running the Simulation

Perform the following steps to run the simulation:

1. On the File menu, point to New and click Waveform.

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

3. On the Simulation menu, click Run Until.

4. In the pop-up window, specify how long you want your simulation to run (for
example, 500 ns).

Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that functionality of the design is not lost
after synthesis. You can create the post-synthesis netlist in the Quartus II software and
use the netlist to perform post-synthesis simulation with the Active-HDL software.

Chapter 6: Aldec Active-HDL Support 6–15
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Before you run post-synthesis simulation, generate post-synthesis simulation netlist
files. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Use the instructions in the following section to perform a post-synthesis simulation
for Verilog HDL designs in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required and you can skip the following section.

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries before running the simulation.

Performing post-synthesis simulation requires a gate-level timing simulation library.
For example, the library name for the Stratix III family should be stratixiii_ver. For a
list of all gate-level timing simulation library files, refer to the “Simulation Libraries”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Before you create simulation libraries (for example, stratixiii_ver), ensure that a
library with the same name is not present in the Active-HDL software. Perform the
following steps:

1. In the Active-HDL software, on the View menu, click Library Manager. The
Library Manager window appears.

2. Check to see that the simulation libraries you are going to create are not already
present.

3. If these simulation libraries are present, you must detach them. Right-click the
library and from the menu list, select Detach.

To create and compile the simulation libraries, you must create a new workspace.
Perform the following steps to create a new workspace, create a new library, and
compile and register the library in the Library Manager. Perform the following steps:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next.

5. Type the design name (for example, stratixiii_ver) and select the location of
your RTL design. For simplicity, keep the design name and the library name the
same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

For example, compile the statixiii.v model file into the stratixiii_ver library.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–16 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

9. On the Design menu, click Compile All to compile all the files (for example,
stratixiii.v) to the design library.

10. On the File menu, click Close Workspace.

11. On the View menu, click Library Manager. The Library Manager window
appears.

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, stratixiii.lib) from the design directory that you
created in the previous steps and click Open. This attaches the simulation library
as a global library inside your library manager and makes it visible to any design
in the Active-HDL software.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

Compiling the Testbench and Design File into the Work Library

To compile design files and the testbench into a work library, you must create a new
workspace. Perform the following steps to create a new workspace, and compile your
testbench and *.vo file into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the Verilog HDL output file directory (for example, <project
directory>/simulation/activehdl) and add the Verilog HDL output file (*.vo).
Browse to the testbench file directory and add the testbench file.

9. Your design may require simulation libraries that you created previously to
compile successfully. For example, the stratixiii library is required for compiling
designs that use Stratix III devices. If your design requires these simulation
libraries, perform the following steps:

a. On the Design menu, click Settings. The Design Settings window appears.
Expand the Compilation category and click Verilog.

b. To add the Verilog Library settings, click the Add library icon (upper-right
icon), and click OK to insert the required Verilog HDL simulation libraries.

1 These simulation libraries are the simulation libraries you compiled or
installed previously.

Chapter 6: Aldec Active-HDL Support 6–17
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

10. On the Design menu, click Compile All to compile the testbench and *.vo files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. In the Design Browser, click the Top-level Selection list. Select the top-level
module, which is your testbench.

2. To add the required simulation library, on the Design menu, click Settings. The
Design Settings window appears.

a. Expand the Simulation category and click Verilog.

b. In the Verilog Libraries window, click the Add library icon (top-right icon)
and click OK to insert the required Verilog HDL simulation libraries (for
example, stratixiii_ver).

3. On the Simulation menu, click Initialize Simulation. This loads the simulation.
The Design Browser automatically switches to the Structure tab and shows you
the design tree.

Running the Simulation

Perform the following steps to run a simulation:

1. On the File menu, point to New and click Waveform.

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

3. On the Simulation menu, click Run Until.

4. In the pop-up window, specify how long you want your simulation to run (for
example, 500 ns).

Performing Gate-Level Timing Simulation
Gate-level timing simulation is a very important step in ensuring that the FPGA’s
functionality is still correct and meets all of the timing requirements after the design
was placed and routed. You can create the gate-level netlist in the Quartus II software
and use the netlist to perform gate-level simulation with the Active-HDL software.

Before you run the gate-level timing simulation, generate gate-level timing simulation
netlist files. Refer to the “Generating Gate-Level Timing Simulation Netlist Files”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Use the following instructions to perform a gate-level timing simulation for Verilog
HDL designs in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the next section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–18 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (GUI Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Creating and Compiling Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-fitting
primitives. Depending on the device family you are using, you must create the
required simulation libraries before running the simulation.

Performing gate-level timing simulation requires a gate-level timing simulation
library. For example, the library name for the Stratix III family should be
stratixiii_ver. For a list of all gate-level timing simulation library files, refer to the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook.

Before you create simulation libraries (for example, stratixiii_ver), ensure that a
library with the same name is not present in the Active-HDL software. Perform the
following steps:

1. In the Active-HDL software, on the View menu, click Library Manager. The
Library Manager window appears.

2. Check to see that the simulation libraries (for example, stratixiii_ver) you are
going to create are not already present.

3. If these simulation libraries are present, you must detach them. Right-click the
library and from the menu list, click Detach.

To create and compile simulation libraries, you must create a new workspace. Perform
the following steps to create a new workspace and a new library, and compile and
register the library in the Library Manager:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type the design name (for example, stratixiii_ver) and select the location of
your RTL design. For simplicity, keep the design name and the library name the
same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to <Quartus II installation directory>/eda/sim_lib and add the necessary
simulation model files.

For example, compile the statixiii_atoms.v model files into the stratixiii_ver
library.

9. On the Design menu, click Compile All to compile all the files (for example,
statixiii_atoms.v) to the design library.

10. On the File menu, click Close Workspace.

11. You must now register the created library in the Active-HDL software. On the
View menu, click Library Manager. The Library Manager window appears.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–19
Performing Simulation Using the Active-HDL Software (GUI Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

12. On the Library menu, click Attach Library.

13. Locate the .lib file (for example, stratixiii.lib) in your design directory that you
created in the previous steps and click Open. This attaches the simulation library
as a global library inside your library manager and makes it visible for any design
in the Active-HDL software.

14. Repeat this procedure to create and compile another simulation library, if
necessary.

Compiling the Testbench and Design File into the Work Library

To compile design files and the testbench into a work library, you must create a new
workspace. Perform the following steps to create a new workspace and compile your
testbench and *.vo file into the work library:

1. In the Active-HDL software, on the File menu, point to New and click Design. The
New Design Wizard appears.

2. Select Create an Empty Design and keep the Create New Workspace option
selected.

3. Click Next. The Property page appears.

4. In the Property page, click Next to reach the design name and library name
options.

5. Type work for the design name and select the location of your RTL design. For
simplicity, keep the design name and the library name the same.

6. Click Finish to complete the wizard.

7. On the Design menu, click Add files to Design.

8. Browse to the Verilog HDL output file directory (for example, <project
directory>/simulation/activehdl) and add the *.vo file and *.sdo file. Browse to the
testbench file directory and add the testbench file.

9. On the Design menu, click Compile All to compile the testbench and Verilog HDL
output netlist files.

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following steps:

1. In the Design Browser, click the Top-level Selection list. Select the top-level entity,
which is your testbench with corresponding architecture.

2. On the Simulation menu, click Initialize Simulation. This loads the simulation.

3. The Design Browser automatically switches to the Structure tab and shows you
the design tree.

Running the Simulation

To run the simulation, perform the following steps:

1. On the File menu, point to New and click Waveform.

6–20 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

2. Drag signals of interest from the Design Browser (in the Structure tab) to the
Waveform window.

3. On the Simulation menu, click Run Until.

4. In the pop-up window, specify how long you want your simulation to run (for
example, 500 ns).

Performing Simulation Using the Active-HDL Software (Batch Mode)
Perform simulation of Verilog HDL or VHDL designs with Active-HDL software at
various levels to verify designs from different aspects. There are three categories of
simulation:

■ RTL functional simulation

■ Post-synthesis simulation

■ Gate-level simulation

Simulation helps you verify your design and debug it against any possible errors in
the design.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions. If you choose slower than ps, the high-speed simulation may
fail.

There are two modes in which the Active-HDL software can operate in the batch
mode:

■ Shell mode

■ Command-line mode

In shell mode, all commands are executed in the Active-HDL shell that is started by
vsimsa.bat. Commands can be grouped into macro files (*.do) that are executed
within the tool shell.

In command-line mode, standalone commands, such as vlib, vcom, and vsim, are
executed in the system shell (for example, cygwin). These standalone commands can
be grouped into script files (tcl, perl, windows batch) that are run from the system
shell.

Before running Active-HDL from the command line, ensure that the Active-HDL/bin
directory is located in PATH environment variables.

1 If you are running the command from the Active-HDL GUI console, workspace
creation is the first step. The following commands create the workspace and open the
workspace:

createdesign <workspace name> <your design path> r
opendesign -a <workspace name>.adf r

Simulating the VHDL Designs
The following sections show how to perform RTL functional, post-synthesis, and
gate-level timing simulations in command-line mode or shell mode of the
Active-HDL software.

Chapter 6: Aldec Active-HDL Support 6–21
Performing Simulation Using the Active-HDL Software (Batch Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation
RTL functional simulation is performed to verify the code syntax and design
functionality. The following sections show how to perform RTL functional simulation
in the Active-HDL software for VHDL designs.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required and you can skip the following section.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

Execute the following command to create a simulation library:

vlib <library_name> r

1 The library name for Altera megafunctions should be altera_mf and the library name
for LPM should be lpm. For a list of all functional simulation library files, refer to the
“Simulation Libraries” section in the Simulating Designs with EDA Tools chapter in
volume 3 of the Quartus II Handbook.

For example, to create simulation libraries for altera_mf, lpm, and altera, type the
following commands

vlib altera_mf r
vlib lpm r
vlib altera r

Compiling Simulation Models into Simulation Libraries

Type the following command to compile simulation models into simulation libraries:

vcom –work <simulation_library> <Quartus II installation directory>
/eda/sim_lib/<simulation_library_files> r
For example, compile the altera_mf_components.vhd and altera_mf.vhd model files
into the altera_mf library, and the 220pack.vhd and 220model.vhd model files into
the LPM library.

Use Example 6–1 to compile the simulation model files into the simulation libraries
for altera_mf, lpm, and altera:

Example 6–1.

vcom -work altera_mf \
<Quartus II installation directory>/eda/sim_lib/altera_mf_components.v <Quartus II \
installation directory>/eda/sim_lib/altera_mf.vhd
vcom -work lpm \
<Quartus II installation directory>/eda/sim_lib/220model.vhd \
<Quartus II installation directory>/eda/sim_lib/220model.vhd
vcom -work altera <Quartus II installation directory> \
/eda/sim_lib/altera_primitives_components.vhd \
<Quartus II installation directory>/eda/sim_lib/altera_primitives.vhd

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–22 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Compiling the Testbench and Design Files into the Work Library

The following commands show how to compile your testbench and design files into
the work library in the Active-HDL software’s batch mode.

Type the following command to create the work library:

vlib work r
Type the following command to compile the testbench and design files into work
library:

vcom -work work <my_testbench>.vhd <my_design_files>.vhd r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim –t ps –L <library1> -L <library2> work .<my_testbench> r

1 <library1> and <library2> are the required libraries to load the design. If you have
multiple libraries, use the -L option multiple times with the vsim command.

Running the Simulation

Type the following commands to trace the signals and run the simulation:

trace <hierarchical signal name> r
run <time period> r
The following commands trace the DUT/clk1 and DUT/U1/DATA signal and run the
simulation for 100 ps:

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r
To view the simulation result in the GUI waveform, perform the following command
to open the wave.asdb file:

open -asdb {<your_design_path> \work\src\wave.asdb} r

Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that functionality of the design is not lost
after synthesis. You can create the post-synthesis netlist in the Quartus II software and
use the netlist to perform post-synthesis simulation with the Active-HDL software.

Before you run post-synthesis simulation, generate post-synthesis simulation netlist
files. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

The following sections help you perform a post-synthesis simulation for a VHDL
design in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the following section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–23
Performing Simulation Using the Active-HDL Software (Batch Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

Execute the following command to create a simulation library:

vlib <library_name> r

1 For example, the library name for the Stratix III family should be stratixiii. For a list of
all gate-level timing simulation library files, refer to the “Simulation Libraries” section
in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

For example, to create simulation libraries for stratixiii, execute:

vlib stratixiii r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vcom –work <simulation_library> \ <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, compile the stratixiii_atoms_components.vhd and stratixiii_atoms.vhd
model files into the stratixiii library.

Example 6–2 compiles simulation model files into the simulation libraries for
stratixiii.

Compiling the Testbench and VHDL Output File into the Work Library

The following instructions show how you can compile your testbench *.vho files into
the work library using the Active-HDL GUI.

Type the following command to create the work library:

vlib work r
Type the following command to compile the testbench and *.vho files into the work
library:

vcom -work work <my_testbench>.vhd <my_vhdl_netlists>.vho r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, perform the following command:

vsim –t ps –L <library1> -L <library2> work.<my_testbench>

Example 6–2.

vcom -work stratixiii \
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms_components.vhd \
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms.vhd

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–24 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 <library1> and <library2> are the libraries you compiled previously (for example,
stratixiii and stratixiigx), which are required to load your design. The gate-level
libraries are usually required to perform post-synthesis simulation. If you have
multiple libraries, use the -L option multiple times with the vsim command.

Running the Simulation

Type the following commands to trace the signals and run a simulation:

trace <hierarchical signal name> r
run <time period> r
For example, the following commands trace the DUT/clk1 and DUT/U1/DATA signal,
and run the simulation for 100 ps.

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r
To view the simulation result in the GUI waveform, type the following command to
open the wave.asdb file:

open -asdb {<your_design_path> \work\src\wave.asdb} r

Performing Gate-Level Timing Simulation
Gate-level simulation is a very important step in ensuring that your design meets all
required timing requirements after placement and routing. You can create the
gate-level netlist in the Quartus II software and use the netlist to perform gate-level
timing simulation with the Active-HDL software.

Before you perform a gate-level timing simulation, generate gate-level timing
simulation netlist files. Refer to the “Generating Gate-Level Timing Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

The following sections help you perform a gate-level timing simulation for a VHDL
design in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the Creating
Simulation Libraries and Compiling Simulation Models into Simulation Libraries
sections.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-fitting
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

Type the following commands to create simulation libraries:

vlib <library_name> r

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–25
Performing Simulation Using the Active-HDL Software (Batch Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

For example, the library name for the Stratix III family should be stratixiii. For a list of
all gate-level timing simulation library files, refer to the “Simulation Libraries” section
in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

To create simulation libraries for stratixiii, type the following command:

vlib stratixiii r

Compiling Simulation Models into Simulation Libraries

Perform the following command to compile simulation models into simulation
libraries:

vcom –work <simulation_library> <Quartus II installation \
directory>/eda/sim_lib/<simulation_library_files> r
For example, compile the stratixiii_atoms_components.vhd and stratixiii_atoms.vhd
model files into the stratixiii library.

Example 6–3 compiles the simulation model files to the simulation libraries for
stratixiii.

Compiling the Testbench and VHDL Output File into the Work Library

The following instructions show how you can compile your testbench and *.vho files
into the work library using the Active-HDL software.

Type the following command to create the work library:

vlib work r
Type the following command to compile the testbench and *.vho files into the work
library:

vcom -work work <my_testbench>.vhd <my_vhdl_netlists>.vho r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim -t ps –L <library1> -L <library2> -sdftyp <instance path to \
design>= <path to SDO file> work.<my_testbench> r

1 The <library1> and <library2> are the libraries that you compiled previously (for
example, stratixiii and stratixiigx), which are required to load your design. The
gate-level libraries are usually required to perform post-synthesis simulation. If you
have multiple libraries, use the -L option multiple times with the vsim command.

1 You do not have to set the value (Minimum, Average, Maximum) for the *.sdo file
because the Quartus II EDA Netlist Writer generates the *.sdo file using the same
value for the triplet (Minimum, Average, and Maximum timing values).

Example 6–3.

vcom -work stratixiii \
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms_components.vhd \
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms.vhd

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–26 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If your design under test is instantiated in the testbench file under the i1 label, the
<design instance> should be “i1/” (for example, /i1=<my design>.sdo).

Running the Simulation

To trace the signals and run a simulation, type the following commands:

trace <hierarchical signal name> r
run <time period> r
For example, the following commands trace the DUT/clk1 and DUT/U1/DATA signal,
and run the simulation for 100 ps.

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r
To view the simulation result in the GUI waveform, type the following command to
open the wave.asdb file:

open -asdb {<your_design_path> \work\src\wave.asdb} r

Simulating the Verilog HDL Designs
The following sections show how to perform RTL functional post-synthesis and
gate-level timing simulations in the command-line mode of the Active-HDL software.

Performing RTL Functional Simulation
RTL functional simulation is typically performed to verify code syntax and design
functionality. The following sections show how to perform RTL functional simulation
in the Active-HDL software for Verilog HDL designs.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the following section.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that contains an Altera
primitive, LPM function, or Altera megafunction. Depending on your design, you
must create the required simulation libraries and link them to your design correctly.

To create a simulation library, type the following command:

vlib <library_name> r

1 The library name for Altera megafunctions should be altera_mf_ver and the library
name for LPM should be lpm_ver. For a list of all functional simulation library files,
refer to the “Simulation Libraries” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook.

To create simulation libraries for altera_mf, lpm, and altera, type the following
commands:

vlib altera_mf_ver r
vlib lpm_ver r
vlib altera_ver r

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–27
Performing Simulation Using the Active-HDL Software (Batch Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vlog –work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, compile the altera_mf.v model files into the altera_mf_ver library, and
compile the 220model.v model files into the lpm_ver library.

Use Example 6–4 to compile the simulation model files to the simulation libraries for
altera_mf_ver, lpm_ver, and altera_ver:

Compiling the Testbench and Design Files into the Work Library

The following commands show how to compile your testbench and design files into
the work library in the Active-HDL command-line.

To create the work library, type the following command:

vlib work r
To compile the testbench and design files into the work library, type the following
command:

vlog -work work <my_testbench>.v <my_design_files>.v r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim –t ps –L <library1> -L <library2> work .<my_testbench>.v r

1 <library1> and <library2> are the required libraries to load your design. If you have
multiple libraries, use the -L option multiple times with the vsim command.

Running the Simulation

To trace the signals and run a simulation, type the following commands:

trace <hierarchical signal name> r
run <time period>

For example, the following commands trace the DUT/clk1 and DUT/U1/DATA signal,
and run the simulation for 100 ps:

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r

Example 6–4.

vlog -work altera_mf_ver <Quartus II installation directory>/eda/sim_lib/altera_mf.v
vlog -work lpm_ver <Quartus II installation directory>/eda/sim_lib/220model.v
vlog -work altera_ver \

<Quartus II installation directory> /eda/sim_lib/altera_primitives.v

6–28 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To view the simulation result in the GUI waveform, type the following command to
open the wave.asdb file:

open -asdb {<your_design_path>\work\src\wave.asdb} r

Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that design functionality is preserved
after synthesis. You can create the post-synthesis netlist in the Quartus II software and
use the netlist to perform Post-Synthesis simulation with the Active-HDL software.

Before you run post-synthesis simulation, generate the post-synthesis simulation
netlist files. Refer to Refer to the “Generating Post-Synthesis Simulation Netlist Files”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

The following sections help you perform a post-synthesis simulation for a Verilog
HDL design in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the following section.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-synthesis
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To create a simulation library, type the following command:

vlib <library_name> r
For example, the library name for the Stratix III family should be stratixiii_ver. For a
list of all gate-level timing simulation library files, refer to the “Simulation Libraries”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

As an example, to create simulation libraries for stratixiii_ver, type:

vlib stratixiii_ver r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into simulation libraries, type the following command:

vlog –work <library_name> <Quartus II installation directory> \
eda/sim_lib/<simulation_library_files> r

1 Compile the stratixiii_atoms.v model files into the stratixiii_ver library.

Example 6–5 compiles the simulation model files into the simulation libraries for
stratixiii.

Example 6–5.

vlog -work stratixiii_ver \
<Quartus II installation directory>/eda/sim_lib/stratixiii_atoms.v

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–29
Performing Simulation Using the Active-HDL Software (Batch Mode)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compiling the Testbench and Verilog HDL Output File into the Work Library

The following instructions show how you can compile your testbench and *.vo files
into the work library using the Active-HDL command line.

To create the work library, type the following command:

vlib work r
To compile the testbench and *.vo files into the work library, type the following
command:

vlog -work work <my_testbench>.v <design_netlists>.vo r

1 Resolve compile-time errors before proceeding to the next section.

Loading the Design

To load a design, type the following command:

vsim –t ps –L <library1> -L <library2> work.<my_testbench>.v r

1 <library1> and <library2> are the libraries that you compiled previously (for example,
stratixiii_ver and stratixiigx_ver), which are required to load the design. The
gate-level libraries are usually required to perform post-synthesis simulation. If you
have multiple libraries, use the -L option multiple times with the vsim command.

Running the Simulation

To trace the signals and run a simulation, type the following command:

trace <hierarchical signal name> r
run <time period> r
For example, the following commands trace the DUT/clk1 and DUT/U1/DATA signal,
and run the simulation for 100 ps:

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r
To view the simulation result in the GUI waveform, type the following command to
open the wave.asdb file:

open -asdb {<your_design_path> \work\src\wave.asdb} r

Performing Gate-Level Timing Simulation
Gate-Level timing simulation is a very important step in ensuring that your design
meets all timing requirements after placement and routing. You can create the
gate-level netlist in the Quartus II software and use the netlist to perform gate-level
simulation with the Active-HDL software.

Before you perform a gate-level timing simulation, generate gate-level timing
simulation netlist files. Refer to the “Generating Gate-Level Timing Simulation Netlist
Files” section in the Simulating Designs with EDA Tools chapter in volume 3 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–30 Chapter 6: Aldec Active-HDL Support
Performing Simulation Using the Active-HDL Software (Batch Mode)

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The following sections help you perform a gate-level timing simulation for a
Verilog HDL design in the Active-HDL software.

1 If your Active-HDL software comes with precompiled simulation libraries, creating or
compiling simulation libraries is not required, and you can skip the following
sections.

Creating Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to post-fitting
primitives. Depending on the device family you are using, you must create the
required simulation libraries and link them to your design correctly.

To create a simulation library, type the following command:

vlib <library_name> r
For example, the library name for the Stratix III family should be stratixiii_ver. To see
all the gate-level timing simulation library files, refer to the “Simulation Libraries”
section in the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

As an example, to create simulation libraries for stratixiii, type the following
command:

vlib stratixiii_ver r

Compiling Simulation Models into Simulation Libraries

To compile simulation models into a simulation library, type the following command:

vlog –work <simulation_library> <Quartus II installation directory> \
/eda/sim_lib/<simulation_library_files> r
For example, compile the stratixiii_atoms.v model files into the stratixiii_ver library.

The following is an example to compile simulation model files to the simulation
libraries for stratixiii:

vlog -work stratixiii_ver <Quartus II installation directory> \
/eda/sim_lib/stratixiii_atoms.v r

Compiling the Testbench and Verilog HDL Output File into the Work Library

The following instructions show how you can compile your testbench and *.vo files
into the work library using the Active-HDL command line.

To create the work library, type the following command:

vlib work r
To compile the testbench and *.vo files into the work library, type the following
command:

vlog -work work <my_testbench>.v <design_netlist>.vo r

1 Resolve compile-time errors before proceeding to the next section.

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 6: Aldec Active-HDL Support 6–31
Compiling System Verilog Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Loading the Design

When simulating in Verilog HDL, the .sdo file does not have to be manually specified,
because the Quartus II software generates the .vo file with the $sdf_annotate task
that tells Active-HDL how to load the .sdo file. Ensure that the .sdo file is located in
the same simulation output directory.

To load a design, type the following command:

vsim –t ps –L <library1> -L <library2> work.<my_testbench>.v r
<library1> and the <library2> are the libraries that you compiled previously (for
example, stratixiii_ver and stratixiigx_ver), which are required to load the design.
The gate-level libraries are usually required for performing gate-level simulation. If
you have multiple libraries, use the -L option multiple times with the vsim
command.

Running the Simulation

To trace the signals and run a simulation, type the following command:

trace <hierarchical signal name> r
run <time period> r
For example, the following commands trace the DUT/clk1 and DUT/U1/DATA signal,
and run the simulation for 100 ps:

trace DUT/clk1 r
trace DUT/U1/DATA r
....
run 100 ps r
When the simulation is finished, type the following command to end the simulation:

endsim r
To view the simulation result in the GUI waveform, perform the following command
to open the wave.asdb file:

open -asdb {<your_design_path> \work\src\wave.asdb} r

Compiling System Verilog Files
If your design includes multiple System Verilog files, you must compile the System
Verilog files together with a single alog command.

If you have Verilog files and System Verilog files in your design, it is recommended
that you compile the Verilog files, and then compile only the System Verilog files in
the single alog command.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone IV, HardCopy IV, Stratix, Stratix II, or
Stratix IV transceivers, you must compile additional library files to perform functional
RTL or gate-level timing simulations. The following example shows how to perform
simulation on designs that include Stratix GX and Stratix II GX transceivers.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

6–32 Chapter 6: Aldec Active-HDL Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing simulation with transceivers in Arria GX or Stratix II GX is very similar.
The only requirement is to replace the stratixiigx_atoms and stratixiigx_hssi_atoms
model files with the arriagx_atoms and arriagx_hssi_atoms model files, respectively.

f If your design contains PCI Excpress hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

RTL Functional Simulation for Stratix II GX Devices
RTL functional simulation for Stratix II GX devices is similar to RTL functional
simulation for Arria GX devices. The following example shows only the RTL
functional simulation for designs that include transceivers in Stratix II GX devices. To
simulate transceivers in Arria GX devices, replace the stratixiigx_hssi model file with
the arriagx_hssi model file.

To perform an RTL functional simulation of your design that instantiates the
ALT2GXB megafunction, which enables the gigabit transceiver blocks on Stratix II GX
devices, you must generate a functional simulation netlist and compile the
stratixiigx_hssi model file into the stratixiigx_hssi library.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries; you must
create these libraries to perform a simulation.

To run the RTL functional simulation, you must generate a functional simulation
netlist by turning on Generate Simulation Model in the Simulation Libraries tab of
the ALT2GXB MegaWizard Plug-In Manager (see Figure 6–1).

The <alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated in the current
project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

Chapter 6: Aldec Active-HDL Support 6–33
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing RTL Functional Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–6.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–7 to compile and simulate the design.

Figure 6–1. ALT2GXB MegaWizard Plug-In Manager

Example 6–6.

vcom -work work <alt2gxb entity name>.vho
vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my testbench>

6–34 Chapter 6: Aldec Active-HDL Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing RTL Functional Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–8.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–9 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix II GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, you must compile stratixiigx_atoms and stratixiigx_hssi_atoms into the
stratixiigx and stratixiigx_hssi libraries, respectively.

Performing Gate-Level Timing Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–10.

Example 6–7.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
vcom -work work <alt2gxb entity name>.vho
vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my testbench>

Example 6–8.

vlog -work work <alt2gxb module name>.vo
vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \

work.<my testbench>

Example 6–9.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v
vlog -work work <alt2gxb module name>.vo
vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi \

work.<my testbench>

Example 6–10.

vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Chapter 6: Aldec Active-HDL Support 6–35
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs.

Type the commands in Example 6–11 to compile and simulate the design.

Performing Gate-Level Timing Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the command in Example 6–12.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs.

Type the commands in Example 6–13 to compile and simulate the design.

RTL Functional Simulation for Stratix GX Devices
To perform an RTL functional simulation of your design that instantiates the ALTGXB
megafunction, which enables the gigabit transceiver block on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Performing RTL Functional Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. Simulate the design directly by
typing the commands in Example 6–14.

Example 6–11.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiigx stratixiigx_atoms.vhd stratixiigx_components.vhd
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd stratixiigx_hssi_atoms.vhd
vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Example 6–12.

vlog -work <my design>.vo <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiigx_ver -L \
stratixiigx_hssi_ver work.<my design> -t ps +transport_int_delays +transport_path_delays

Example 6–13.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiigx_ver stratixiigx_atoms.v
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v
vlog -work <my design>.vo <my testbench>.v
vsim -L lpm -L altera_mf_ver -L sgate_ver -L stratixiigx_ver -L stratixiigx_hssi_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays

6–36 Chapter 6: Aldec Active-HDL Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulation the designs. Type the
commands in Example 6–15 to compile and simulate the design.

Performing RTL Functional Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the command in Example 6–16.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–17 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.

Example 6–14.

vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf –L sgate -L altgxb work.<my testbench>

Example 6–15.

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work lpm 220pack.vhd 220model.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd
vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my testbench>

Example 6–16.

vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb_ver work.<my testbench>

Example 6–17.

vlib work
vlib lpm_ver
vlib altera_mf_ver
vlib sgate_ver
vlib altgxb_ver
vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work altgxb_ver stratixgx_mf.v
vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb_ver work.<my testbench>

Chapter 6: Aldec Active-HDL Support 6–37
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing Gate-Level Timing Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–18.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–19 to compile and simulate the design.

Performing Gate-Level Timing Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–20.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–21 to compile and simulate the design.

Example 6–18.

vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work.<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays+transport_path_delays

Example 6–19.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd
vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb work. \
<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Example 6–20.

vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L stratixgx_gxb_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays

Example 6–21.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixgx_ver stratixgx_atoms.v
vlog -work stratixgx_gxb_ver stratixgx_hssi_atoms.v
vlog -work <my design>.vo <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L stratixgx_gxb_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delaysr

6–38 Chapter 6: Aldec Active-HDL Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

RTL Functional Simulation for Stratix IV Devices
RTL functional simulation for Stratix IV devices is similar to RTL functional
simulation for Arria II, Cyclone IV, and HardCopy IV devices.

The following example shows only the RTL functional simulation for designs that
include transceivers in Stratix IV devices. To simulate transceivers in Arria II,
Cyclone IV, and HardCopy IV devices, replace the stratixiv_hssi model file with the
arriaii_hssi, cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

To perform an RTL functional simulation of your design that instantiates the ALTGX
megafunction, which enables the gigabit transceiver blocks on Stratix IV devices, you
must generate a functional simulation netlist and compile the stratixiv_hssi model
file into the stratixiv_hssi library.

1 The stratixiv_hssi model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Performing RTL Functional Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. Simulate the design directly by
typing the commands in Example 6–22.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the design. Type the
commands in Example 6–23 to compile and simulate the design.

Performing RTL Functional Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–24.

Example 6–22.

vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratix_hssi work.<my testbench>

Example 6–23.

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work lpm 220pack.vhd 220model.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiv_hssi stratixiv_hssi.vhd\
stratixiv_hssi_components.vhd
vcom -work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench>

Example 6–24.

vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver \
-L stratixiv_hssi_ver work.<my testbench>

Chapter 6: Aldec Active-HDL Support 6–39
Simulating Designs that Include Transceivers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–25 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix IV Devices
Perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver by compiling the stratixiv_atoms and stratixiv_hssi_atoms model files
into the stratixiv and stratixiv_hssi libraries, respectively.

Performing Gate-Level Timing Simulation in VHDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–26.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–27 to compile and simulate the design.

Example 6–25.

vlib work
vlib lpm_ver
vlib altera_mf_ver
vlib sgate_ver
vlib stratixiv_hssi_ver
vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiv_hssi_ver stratixiv_hssi_.v
vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver \
-L stratixiv_hssi_ver work.<my testbench>

Example 6–26.

vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi \
work.<my testbench> -t ps \
-sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays+transport_path_delays

Example 6–27.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiv stratixiv_atoms.vhd stratixiv_components.vhd
vcom -work stratixiv_hssi stratixiv_hssi_atoms.vhd \
stratixiv_hssi_components.vhd
vcom -work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi\
work.<my testbench> -t ps\
-sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

6–40 Chapter 6: Aldec Active-HDL Support
Simulating Designs that Include Transceivers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Performing Gate-Level Timing Simulation in Verilog HDL
If you are using Active-HDL software that comes with precompiled simulation
libraries, compiling the libraries is not necessary. You can simulate the design directly
by typing the commands in Example 6–28.

If you are using Active-HDL software without precompiled simulation libraries, you
must compile the necessary libraries before you can simulate the designs. Type the
commands in Example 6–29 to compile and simulate the design.

Transport Delays
By default, the Active-HDL software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
Active-HDL software prevents the simulation tool from filtering out these pulses. Use
the following options to ensure that all signal pulses are visible in the simulation
results:

■ +transport_path_delays

Use this option when the pulses in your simulation may be shorter than the delay
within a gate-level primitive.

■ +transport_int_delays

Use this option when the pulses in your simulation may be shorter than the
interconnect delay between gate-level primitives.

1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the Active-HDL online
documentation installed with the Active-HDL software.

Example 6–30 shows an Active-HDL software command in command-line syntax to
perform a gate-level timing simulation with the device family library.

Example 6–28.

vlog -work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver -L
stratixiv_hssi_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays

Example 6–29.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiv_ver stratixiv_atoms.v
vlog -work stratixiv_hssi_ver stratixiv_hssi_atoms.v
vlog -work <my design>.vo <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver -L
stratixiv_hssi_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays

Chapter 6: Aldec Active-HDL Support 6–41
Using the NativeLink Feature in Active-HDL Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using the NativeLink Feature in Active-HDL Software
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
Active-HDL within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Generating .vcd Files for the PowerPlay Power Analyzer
To generate a Value Change Dump File (.vcd) for the PowerPlay power analyzer, you
must first generate a VCD script in the Quartus II software and run the VCD script
from the Active-HDL software to generate a VCD file. This VCD file can then be used
by PowerPlay for power analysis. The following instructions show you how to
generate a VCD file.

Perform the following steps to generate VCD Scripts in the Quartus II software:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, select Simulator Settings.

3. On the Simulator Settings page, in the Tool name list, select the appropriate
third-party simulation tool (that is, Active-HDL), and turn on the Generate Value
Change Dump File Script option.

4. To generate the VCD Script file, perform a full compilation.

Perform the following steps to generate a VCD file in the Active-HDL software:

1. In the Active-HDL software, before simulating your design, source the
<revision_name>_dump_all_vcd_nodes.tcl script. To source the TCL script, run the
following command before running the vsim command:

source <revision_name>_dump_all_vcd_nodes.tcl r
2. Continue to run the simulation until the simulation is completed. Exit the

Active-HDL software. If you do not exit the software, the Active-HDL software
may end the writing process of the VCD files improperly, resulting in a corrupted
VCD file.

f For more details about using the VCD file for power analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at the command-line prompt.

Example 6–30.

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo \
work.filtref_vhd_vec_tst +transport_int_delays +transport_path_delays

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

6–42 Chapter 6: Aldec Active-HDL Support
Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For more information about command-line scripting, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

f For detailed information about scripting command options, refer to the Qhelp
command line and Tcl API help browser.

To start the Qhelp help browser, type the following command:

quartus_sh -qhelp r

Generating a Post-Synthesis Simulation Netlist for Active-HDL
You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at the command-line prompt. The following
examples assume you are selecting Active-HDL (Verilog HDL output from the
Quartus II software).

Tcl Commands
Use the following Tcl commands to set the output format to Verilog HDL, the
simulation tool to Active-HDL for Verilog HDL, and to generate a functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "Active-HDL(Verilog)" r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Line
Use the following command to generate a simulation output file for the Active-HDL
software. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=activehdl --functional r

Generating a Gate-Level Timing Simulation Netlist for Active-HDL
You can use the Quartus II software to generate a gate-level timing simulation netlist
with Tcl commands or with a command at the command prompt.

Tcl Commands
Use one of the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (Verilog)" r
set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (VHDL)" r

Command Line
Generate a simulation output file for the Active-HDL software by specifying VHDL or
Verilog HDL for the format by typing the following command at the command
prompt:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=activehdl r

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 6: Aldec Active-HDL Support 6–43
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conclusion
Using the Active-HDL simulation software within the Altera FPGA design flow
allows you to easily and accurately perform RTL functional simulations,
post-synthesis simulations, and gate-level timing simulations on your designs. Proper
verification of designs at the functional, post-synthesis, and post place-and-route
stages using the Active-HDL software helps ensure your design functions correctly
and, ultimately, a quick time-to-market.

Referenced Documents
This chapter references the following documents:

■ Altera Software Installation and Licensing manual

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
chapter in volume 3 of the Quartus II Handbook

6–44 Chapter 6: Aldec Active-HDL Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–2. Document Revision History

Date / Revision Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated Table 6–1

■ Removed Simulation Library tables and EDA Simulation Library
Compiler sections and referenced new Simulating Designs with EDA
Tools chapter

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-
Level Timing Simulation for Stratix IV Devices” sections

■ Minor text edits

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library
Compiler”.

■ Added “Compile Libraries Using the EDA Simulation Library Compiler”
on page 5–10.

■ Added “Generate Simulation Script from EDA Netlist Writer” on
page 5–51.

■ Minor editorial updates.

Updated for the Quartus II
software version 9.0 release.

November 2008
v.8.1.0

Added the following sections:

■ “Compile Libraries Using the Altera Simulation Library Compiler” on
page 5–10

■ Added steps to the procedure “Performing an RTL Simulation Using
NativeLink” on page 5–45 for using the Altera Simulation Library
Compilation

■ Added steps to the procedure “Performing a Gate-Level Timing
Simulation Using NativeLink” on page 5–47 for using the Altera
Simulation Library Compilation

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

Updated for the Quartus II
software version 8.1 release.

May 2008
v.8.0.0

Initial Release. —

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

7. Simulating Altera IP in Third-Party
Simulation Tools

This chapter describes the process for instantiating the IP megafunctions in your
design and simulating their functional simulation models in Altera-supported,
third-party simulation tools.

Introduction
The capacity and complexity of Altera® FPGAs continues to increase as the need for
intellectual property (IP) becomes increasingly critical. Using IP megafunctions
reduces design and verification time, allowing you to focus on design customization.
Altera and the Altera Megafunction Partners Program (AMPPSM) offer a broad
portfolio of IP megafunctions optimized for Altera FPGAs. Through
parameterization, these reusable blocks of IP can be customized to meet your design
requirements.

Even when the IP source code is encrypted or otherwise restricted, Altera’s
Quartus® II software allows you to easily simulate designs that contain Altera IP. With
the Quartus II software, you can custom configure IP designs, then generate a VHDL
or Verilog HDL functional simulation model to use with your choice of simulation
tools.

In this chapter, IP megafunctions refer to Altera megafunctions, IP MegaCore®
functions, and IP AMPP megafunctions.

All IP MegaCore functions come with IP functional simulation (IPFS) models to
support functional simulation. Some Altera and AMPP megafunctions also require
IPFS models for functional simulation.

1 An IPFS model is a cycle-accurate VHDL or Verilog HDL model produced by the
Quartus II software. The model allows for fast functional simulation of IP using
industry-standard VHDL and Verilog HDL simulators.

c Use IPFS models for simulation only. Do not use them for synthesis or any other
purpose. Using these models for synthesis results in a nonfunctional design.

This chapter discusses the following topics:

■ “IP Functional Simulation Flow” on page 7–2

■ “Instantiate the IP in Your Design” on page 7–3

■ “Perform RTL Functional Simulation” on page 7–3

■ “Design Language Examples” on page 7–6

QII53014-9.1.0

7–2 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
IP Functional Simulation Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

IP Functional Simulation Flow
The IP megafunction’s MegaWizard™ interface allows you to quickly and easily view
documentation, specify parameters, generate an IPFS model, and output the files
necessary to integrate a parameterized IP megafunction into your design. Within the
Quartus II software, you can use the MegaWizard Plug-In Manager to select and
parameterize your choice of IP megafunctions. The Quartus II software generates an
IP megafunction’s variation file that is included in your Quartus II project. For IP
megafunctions that require IPFS models, the Quartus II software can also generate a
Verilog HDL Output File (.vo) or VHDL Output File (.vho) that contains a Register
Transfer Level (RTL) IPFS model after you have parameterized the megafunction.
IPFS models are written to the Quartus II project directory.

Most Altera megafunctions and IP MegaCore functions support functional simulation
in Verilog HDL and VHDL for all Altera-supported third-party simulators.
Simulation libraries are required to simulate IP megafunctions.

1 For a list of simulation libraries supplied with the Quartus II software, refer to the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Figure 7–1 shows a typical simulation flow for Altera IP with third-party simulators.

Figure 7–1. IPFS Model Design Flow

Quartus II Design Environment

Parameterize IP Megafunction

Instantiate IP in your Design

Perform Simulation in an
Altera-Supported VHDL/Verilog HDL

Simulator

Simulation
Libraries

Generate IPFS Model
and Variation File

Chapter 7: Simulating Altera IP in Third-Party Simulation Tools 7–3
Instantiate the IP in Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Verilog HDL and VHDL IPFS Models
Some IP megafunctions require IPFS models to support functional simulation. These
IPFS models are generated in register transfer level (RTL) HDL. The RTL models in
Verilog HDL or VHDL format differ from the low-level synthesized netlist in Verilog
HDL or VHDL format generated by the Quartus II software for post-synthesis or post
place-and-route simulations. The IPFS models generated by the Quartus II software
are much faster than the low-level post-synthesis or post place-and-route netlists of
your design because they are mapped to higher-level primitives such as adders,
multipliers, and multiplexers. These IPFS models can be simulated together with the
rest of your design in any Altera-supported simulator. Altera recommends that you
generate IPFS models in the same hardware language as the IP megafunction’s
variation file hardware language.

1 Generating an IPFS model for Altera MegaCore functions does not require a license.
However, generating an IPFS model for AMPP megafunctions may require a license.
For more information about licensing requirements, contact the IP megafunction
vendor.

For details about how to parameterize and generate an IP, refer to the applicable IP
user guide.

Instantiate the IP in Your Design
For each IP megafunction in your design, you must instantiate the corresponding
entity or module in your design. Each IP megafunction entity or module name is
defined in its Quartus II-generated megafunction variation file.

For information about instantiating IP megafunctions, refer to the Megafunction
Overview User Guide.

f For information about synthesis and compilation with the Quartus II software, refer
to the applicable chapters in Volume 1: Design Synthesis of the Quartus II Handbook.

Perform RTL Functional Simulation
To perform RTL functional simulation, in addition to adding your design files and
testbench files, you also have to add the IP megafunction’s variation file or IPFS
model to your simulation project. If the IP megafunction does not require an IPFS
model for simulation, add the megafunction’s variation file to your simulation
project. If the IP megafunction you are simulating requires an IPFS model, add the
IPFS model to your simulation project. Your simulation project also requires
Altera-supplied libraries for successful simulation. Figure 7–2 shows how the Altera
libraries are used in IP functional simulation.

http://www.altera.com/literature/ug/ug_megafunction_overview.pdf
http://www.altera.com/literature/ug/ug_megafunction_overview.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf

7–4 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
Perform RTL Functional Simulation

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II software contains all the libraries required for setting up and running a
successful simulation of Altera IP. If the IP megafunction you are using supports the
Quartus II NativeLink feature, it is easy to use the NativeLink feature to set up your
simulation. However, you can also simulate Altera IP directly with third-party
simulators. Refer to the applicable IP megafunction user guide to determine whether
the NativeLink feature is supported.

Simulating Altera IP Using the Quartus II NativeLink Feature
The Quartus II NativeLink feature eases the tasks of setting up and running a
simulation. The NativeLink feature lets you launch the third-party simulator to
perform simulation from within the Quartus II software. The NativeLink feature
automates the compilation and simulation of testbenches.

Before running the simulation, you need to open your Quartus II project and perform
Analysis and Elaboration, as described in the following section.

Perform Analysis and Elaboration on Your Design
To perform Analysis and Elaboration on your design, on the Quartus II Processing
menu, point to Start, then click Start Analysis & Elaboration.

If you are using the Quartus II NativeLink feature and your Quartus II project
contains IP megafunctions that require IPFS models for simulation, you do not have
to manually add the IPFS models to the Quartus II project for these IP megafunctions.
When the Quartus II NativeLink feature launches the third-party simulator tool and
starts the simulation, it automatically adds the IPFS model files required for
simulation if they are present in the Quartus II project directory.

You can now continue the simulation process using the NativeLink feature.

Figure 7–2. IPFS Library Usage

Notes to Figure 7–2:

(1) The IP that uses the transceiver requires the Altera transceiver libraries for simulation. Refer to the Simulating
Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook for a list of all Altera transceiver libraries.

(2) An IP that uses the PCI Express (PCIe) hard core in a Stratix IV device requires the PCIe libraries for simulation. Refer
to the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook for a list of all PCIe
transceiver libraries.

My RTL Design

My
Testbench

sgate
Library

IP Functional
Simulation Model

PCIe
Libraries (2)

220model,
altera_mf, and

altera_primitives Libraries

Altera
Transceiver
Libraries (1)

Chapter 7: Simulating Altera IP in Third-Party Simulation Tools 7–5
Perform RTL Functional Simulation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Run Simulation Using the Quartus II NativeLink Feature
For detailed information about using the NativeLink feature to simulate Altera IP,
refer to the Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II
Handbook.

Simulating Altera IP Without the Quartus II NativeLink Feature
You can also simulate Altera IP directly with third-party simulators. If your design
instantiates an IP megafunction, add its variation file to your simulation project. If the
IP megafunction requires IPFS model files, do not add the megafunction’s variation
file to your simulation project. Instead, add its IPFS model files (either Verilog HDL or
VHDL) to your simulation project. The IPFS model generated by the Quartus II
software instantiates high-level primitives such as adders, multipliers, and
multiplexers, as well as the library of parameterized modules (LPM) functions and
Altera megafunctions.

To properly compile, load, and simulate the IP megafunctions, you must first compile
the following libraries in your simulation tool:

■ sgate—includes the definition of the high-level primitives (needed for IPFS
models)

■ altera_mf—includes the definition of Altera megafunctions

■ altera_primitives—includes the definition of Altera primitives

■ 220model—includes the definition of LPM functions

■ Altera transceiver—includes the definition of all Altera transceiver
megafunctions. If you use IP with the transceiver block, you must compile these
libraries, which are device dependent.

■ PCIe—includes the definition of PCI Express hard IP megafunctions for Stratix IV
devices. If you use IP with the PCI Express hard IP for Stratix IV devices, you must
compile these libraries.

You can use these library files with any Altera-supported simulation tool. If you are
using the ModelSim-Altera software, the libraries are precompiled and mapped, and
no compilation is required.

Using the EDA Simulation Library Compiler
You can also compile these libraries with the EDA Simulation Library Compiler. If
you use this tool, you do not need to know all of the required libraries; the compiler
will retrieve them for you.

f For more information about the EDA Simulation Library Compiler, refer to the section
“EDA Simulation Library Compiler” in the Simulating Designs with EDA Tools chapter
in volume 3 of the Quartus II Handbook.

f To simulate a design containing a Nios® processor or Avalon® peripherals, refer to
AN 189: Simulating Nios Embedded Processor Designs.

http://www.altera.com/literature/an/an189.pdf
http://www.altera.com/literature/an/an189.pdf

7–6 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
Design Language Examples

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Design Language Examples
The following design language examples explain how to simulate IP megafunctions
directly with third-party simulator tools. These design examples describe simulation
with the following tools:

■ ModelSim Verilog HDL

■ ModelSim VHDL

■ NC-VHDL

■ VCS

Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software
The following example shows the process of simulating a Verilog HDL-based
megafunction. The example assumes that the megafunction variation and the IPFS
model are generated.

1. To create a ModelSim project, perform the following steps:

a. In the ModelSim software, on the File menu, point to New and click Project.
The Create Project dialog box appears.

b. Specify the name of your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add relevant files to your simulation project:

■ Your design files.

■ The IPFS model generated by the Quartus II software. (If you are using the
ModelSim-Altera software, skip to step 5.)

■ The sgate.v, 220model.v, and altera_mf.v library files.

■ The transceiver library files in Verilog HDL, if you use IP with transceivers.
Transceiver libraries are family independent.

■ The PCIe library files in Verilog HDL, if you use IP with the PCIe hard core
for Stratix IV devices.

1 For more information about simulation libraries, refer to the Simulating Designs with
EDA Tools chapter in volume 3 of the Quartus II Handbook.

2. To create the required simulation libraries, type the following commands at the
ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

3. Map to the required simulation libraries by typing the following commands at the
ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

Chapter 7: Simulating Altera IP in Third-Party Simulation Tools 7–7
Design Language Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

4. Compile the HDL into libraries by typing the following commands at the
ModelSim prompt:

vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work lpm 220model.v r

5. Compile the IPFS model by typing the following command at the ModelSim
prompt:

vlog -work work <my_IP>.vo r
6. Compile your RTL by typing the following command at the ModelSim prompt:

vlog -work work <my_design>.v r
7. Compile the testbench by typing the following command at the ModelSim

prompt:

vlog -work work <my_testbench>.v r
8. Load the testbench by typing the following command at the ModelSim prompt:

vsim -L <altera_mf library_path> -L <lpm_library_path> \
-L <sgate_library_path> work.<my_testbench> r

VHDL Example: Simulating the IPFS Model in the ModelSim Software
The following example shows how to perform a functional simulation of a
VHDL-based, megafunction IPFS model. The example assumes that the
megafunction’s variation and the IPFS model are generated.

1. Create a ModelSim project by performing the following steps:

a. In the ModelSim software, on the File menu, point to New and click Project.
The Create Project dialog box appears.

b. Specify the name for your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add the relevant files to your simulation project:

■ Your design files

■ The IPFS model generated by the Quartus II software (if you are using the
ModelSim-Altera software, skip to step 5)

■ The sgate.vhd, sgate_pack.vhd, 220model.vhd, 220pack.vhd,
altera_mf.vhd, and altera_mf_components.vhd library files

■ The transceiver library files in VHDL, if you use IP with transceivers.
Transceiver libraries are family independent.

■ The PCIe library files in VHDL, if you use IP with the PCI Express hard IP
for Stratix IV.

1 For more information about simulation libraries, refer to the Simulating Designs with
EDA Tools chapter in volume 3 of the Quartus II Handbook.

7–8 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
Design Language Examples

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

2. Create the required simulation libraries by typing the following commands at the
ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

3. Map to the required simulation libraries by typing the following commands at the
ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

4. Compile the HDL into libraries by typing the following commands at the
ModelSim prompt:

vcom -work altera_mf -93 -explicit altera_mf_components.vhd r
vcom -work altera_mf -93 -explicit altera_mf.vhd r
vcom -work lpm -93 -explicit 220pack.vhd r
vcom -work lpm -93 -explicit 220model.vhd r
vcom -work sgate -93 -explicit sgate_pack.vhd r
vcom -work sgate -93 -explicit sgate.vhd r

5. Compile the IPFS model by typing the following command at the ModelSim
prompt:

vcom -work work -93 -explicit <output_netlist>.vho r
6. Compile the RTL by typing the following command at the ModelSim prompt:

vcom -work work -93 -explicit <RTL>.vhd r
7. Compile the testbench by typing the following command at the ModelSim

prompt:

vcom -work work -93 -explicit <my_testbench>.vhd r
8. Load the testbench by typing the following command at the ModelSim prompt:

vsim work.my_testbench r

NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software
The following example shows how to perform a functional simulation of an
NC-VHDL-based, megafunction IP functional-simulation model. The example
assumes that the megafunction’s variation and the IPFS model are generated.

1. Create a cds.lib file by typing the following entries:

DEFINE worklib ./worklib
DEFINE sgate ./sgate
DEFINE altera_mf ./altera_mf
DEFINE lpm ./lpm

2. Compile library files into appropriate libraries by typing the following commands
at the command prompt:

ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf_components.vhd r
rncvhdl –V93 –WORK altera_mf altera_mf.vhd r

Chapter 7: Simulating Altera IP in Third-Party Simulation Tools 7–9
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

ncvhdl –V93 –WORK sgate sgate_pack.vhd r
ncvhdl –V93 –WORK sgate sgate.vhd r

3. Compile source code and testbench files by typing the following commands at the
command prompt:

ncvhdl –V93 –WORK worklib <my_design>.vhd r
ncvhdl –V93 –WORK worklib <my_testbench>.vhd r
ncvhdl –V93 –WORK worklib <my_IPtoolbench_output_netlist>.vho r

4. Elaborate the design by typing the following command at the command prompt:

ncelab worklib.<my_testbench>:entity r

Verilog HDL Example: Simulating Your IPFS Model in VCS
The following example shows how to perform a functional simulation of a design that
contains a Verilog HDL-based, megafunction IPFS model. This example assumes that
the megafunction variation and the IPFS model are generated.

Single-Step Process
For the single-step process, type the following at the command prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v \
altera_mf.v sgate.v -R r

Two-Step Process (Compilation and Simulation)
For compilation and simulation, perform the following steps:

1. Compile your design files by typing the following at the command prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v \
altera_mf.v sgate.v -o simulation_out r

2. Load your simulation by typing the following at the command prompt:

source simulation_out r

f For more information about simulating a design in VCS, refer to the Synopsys VCS and
VCS-MX Support chapter in volume 3 of the Quartus II Handbook.

Conclusion
Altera Quartus II software enables you to simulate IP megafunctions with third-party
tools either directly or using its NativeLink feature. Using the Quartus II software,
you can also generate IPFS models for supported megafunctions that enhance and
simplify design verification. Using an IPFS model is transparent, requiring only the
addition of different files in which to synthesize and simulate projects.

Referenced Documents
This chapter references the following documents:

■ AN 189: Simulating Nios Embedded Processor Designs

■ Megafunction Overview User Guide

■ Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/ug/ug_megafunction_overview.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/an/an189.pdf

7–10 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Synopsys VCS and VCS-MX Support chapter in volume 3 of the Quartus II Handbook

■ Volume 1: Design Synthesis in the Quartus II Handbook

Document Revision History
Table 7–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 7–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed most NativeLink information

■ Added references to new chapter Simulating Designs with
EDA Tools and Megafunction Overview User Guide

■ Minor text edits

Updated for the Quartus II
software version 9.1 release.

March 2009

v9.0.0

Removed figures.
—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

■ Updated “Introduction.”

■ Updated “Simulating Altera IP without the Quartus II
NativeLink Feature.”

■ Updated “Verilog HDL Example: Simulating the IPFS Model
in the ModelSim Software.”

■ Updated “VHDL Example: Simulating the IPFS Model in the
ModelSim Software.”

■ Updated Figure 6–2.

■ Updated Table 6–1.

■ Updated Table 6–2.

Updated for the Quartus II
software version 8.0 release.

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Chapter 7: Simulating Altera IP in Third-Party Simulation Tools 7–11
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

7–12 Chapter 7: Simulating Altera IP in Third-Party Simulation Tools
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section II. Timing Analysis

As designs become more complex, advanced timing analysis capability requirements
grow. Static timing analysis is a method of analyzing, debugging, and validating the
timing performance of a design. The Quartus® II software provides the features
necessary to perform advanced timing analysis for today’s system-on-a-
programmable-chip (SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to perform static
timing analysis on most ASIC designs. The Quartus II software provides a path to
enable you to run PrimeTime on your Quartus II software designs, and export a
netlist, timing constraints, and libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the advanced
features supported by the Quartus II Timing Analyzer, and how you can run
PrimeTime on your Quartus designs.

This section includes the following chapters:

■ Chapter 8, The Quartus II TimeQuest Timing Analyzer

This chapter describes the Quartus II TimeQuest Timing Analyzer, which is a
powerful ASIC-style timing analysis tool that validates the timing performance of
all logic in your design using an industry-standard constraint, analysis, and
reporting methodology.

■ Chapter 9, Best Practices for the Quartus II TimeQuest Timing Analyzer

This chapter provides the steps to fully constrain an FPGA design with the
Quartus II TimeQuest Timing Analyzer.

■ Chapter 10, Switching to the Quartus II TimeQuest Timing Analyzer

This chapter describes the benefits of switching to the Quartus II TimeQuest
Timing Analyzer, the differences between the Quartus II TimeQuest and
Quartus II Classic Timing Analyzers, and the process you should follow to switch
a design from using the Quartus II Classic Timing Analyzer to the Quartus II
TimeQuest Timing Analyzer.

■ Chapter 11, Quartus II Classic Timing Analyzer

This chapter describes the Qurtus II Classic Timing Analyzer and assumes you
have some Tcl expertise; Tcl commands are used throughout this chapter to
describe the alternative methods for making timing analysis assignments.

■ Chapter 12, Synopsys PrimeTime Support

This chapter describes the PrimeTime software that uses data from either best-case
or worst-case Quartus II timing models to measure timing. The PrimeTime
software is controlled using a Tcl script generated by the Quartus II software that
you can customize to direct the PrimeTime software to produce violation and
slack reports.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

2–2 Section II: Timing Analysis

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

8. The Quartus II TimeQuest
Timing Analyzer

Introduction
The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology. Use the
Quartus II TimeQuest Timing Analyzer’s GUI or command-line interface to constrain,
analyze, and report results for all timing paths in your design.

Before running the Quartus II TimeQuest Timing Analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing exceptions, and signal
transition arrival and required times. You can specify timing constraints in the
Synopsys Design Constraints (.sdc) file format using the GUI or command-line
interface. The Quartus II Fitter optimizes the placement of logic to meet your
constraints.

During timing analysis, the Quartus II TimeQuest Timing Analyzer analyzes the
timing paths in the design, calculates the propagation delay along each path, checks
for timing constraint violations, and reports timing results as slack in the Report pane
and in the Console pane. If the Quartus II TimeQuest Timing Analyzer reports any
timing violations, you can customize the reporting to view precise timing information
about specific paths, and then constrain those paths to correct the violations. When
your design is free of timing violations, you can be confident that the logic will
operate as intended in the target device.

The Quartus II TimeQuest Timing Analyzer is a complete static timing analysis tool
that you can use as a sign-off tool for Altera® FPGAs and HardCopy® ASICs.

This chapter contains the following sections:

■ “Getting Started with the Quartus II TimeQuest Timing Analyzer” on page 8–2

■ “Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines”
on page 8–2

■ “Timing Analysis Overview” on page 8–6

■ “The Quartus II TimeQuest Timing Analyzer Flow Guidelines” on page 8–19

■ “Collections” on page 8–21

■ “SDC Constraint Files” on page 8–24

■ “Clock Specification” on page 8–26

■ “I/O Specifications” on page 8–41

■ “Timing Exceptions” on page 8–45

■ “Constraint and Exception Removal” on page 8–53

■ “Timing Reports” on page 8–54

■ “Timing Analysis Features” on page 8–77

■ “The TimeQuest Timing Analyzer GUI” on page 8–83

 QII53018-9.1.0

8–2 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Getting Started with the Quartus II TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ “Conclusion” on page 8–93

f For more information about the TimeQuest Timing Analyzer and the SOPC Builder,
refer to Volume 4: SOPC Builder in the Quartus II Handbook.

Getting Started with the Quartus II TimeQuest Timing Analyzer
The Quartus II TimeQuest Timing Analyzer caters to the needs of the most basic to the
most advanced designs for FPGAs.

This section provides a brief overview of the Quartus II TimeQuest Timing Analyzer,
including the necessary steps to properly constrain a design, perform a full
place-and-route, and perform reporting on the design.

Setting Up the Quartus II TimeQuest Timing Analyzer
The Quartus II software version 7.2 and later supports two native timing analysis
tools: Quartus II TimeQuest Timing Analyzer and Quartus II Classic Timing Analyzer.
When you specify the Quartus II TimeQuest Timing Analyzer as the default timing
analysis tool, the Quartus II TimeQuest Timing Analyzer guides the Fitter and
analyzes timing results after compilation.

To specify the Quartus II TimeQuest Timing Analyzer as the default timing analyzer,
on the Assignments menu, click Settings. In the Settings dialog box, in the Category
list, select Timing Analysis Settings and turn on Use TimeQuest Timing Analyzer
during compilation.

To add the TimeQuest icon to the Quartus II toolbar, on the Tools menu, click
Customize. In the Customize dialog box, click the Toolbars tab, turn on Processing,
and click Close.

Compilation Flow with the Quartus II TimeQuest Timing Analyzer
Guidelines

When you enable the Quartus II TimeQuest Timing Analyzer as the default timing
analyzer, everything from constraint validation to timing verification is performed by
the Quartus II TimeQuest Timing Analyzer. Figure 8–1 shows the recommended
design flow steps to maximize and leverage the benefits the Quartus II TimeQuest
Timing Analyzer. Details about each step are provided after the figure.

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–3
Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Create Quartus II Project and Specify Design Files—Creates a project before you
can compile design files. In this step you specify the target FPGA, any EDA tools
used in the design cycle, and all design files.

You can also modify existing design files for design optimization and add
additional design files. For example, you can add HDL files or schematics to the
project.

■ Perform Initial Compilation—Creates an initial design database before you
specify timing constraints for your design. Perform Analysis and Synthesis to
create a post-map database, or perform a full compilation to create a post-fit
database.

Creating a post-map database for the initial compilation is faster than creating a
post-fit database. A post-map database is sufficient for the initial database.

Creating a post-fit database is recommended only if you previously created and
specified an .sdc file for the project. A post-map database is sufficient for the initial
compilation.

■ Specify Timing Requirements—Timing requirements guide the Fitter as it places
and routes your design.

You must enter all timing constraints and exceptions in an .sdc file. This file must
be included as part of the project. To add this file to your project, on the Project
menu, click Add/Remove Files in Project and add the .sdc file in the Files dialog
box.

■ Perform Compilation—Synthesizes, places, and routes your design into the target
FPGA.

When compilation is complete, the TimeQuest Timing Analyzer generates
summary clock setup and clock hold, recovery, and removal reports for all defined
clocks in the design.

Figure 8–1. Design Flow with the Quartus II TimeQuest Timing Analyzer

Create Quartus II Project
and Specify Design Files

Perform Initial Compilation

Specify Timing Requirements

Perform Compilation

Verify Timing

8–4 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Running the Quartus II TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Verify Timing—Verifies timing in your design with the Quartus II TimeQuest
Timing Analyzer. Refer to “The Quartus II TimeQuest Timing Analyzer Flow
Guidelines” on page 8–19.

Running the Quartus II TimeQuest Timing Analyzer
You can run the Quartus II TimeQuest Timing Analyzer in one of the following
modes:

■ Directly from the Quartus II software

■ Stand-alone mode

■ Command-line mode

This section describes each of the modes, and the behavior of the Quartus II
TimeQuest Timing Analyzer.

Directly from the Quartus II Software
To run the Quartus II TimeQuest Timing Analyzer from the Quartus II software, on
the Tools menu, click TimeQuest Timing Analyzer. The Quartus II TimeQuest Timing
Analyzer is available after you have created a database for the current project. The
database can be either a post-map or post-fit database; perform
Analysis and Synthesis to create a post-map database, or a full compilation to create a
post-fit database.

1 After a database is created, you can create a timing netlist based on that database. If
you create a post-map database, you cannot create a post-fit timing netlist in the
Quartus II TimeQuest Timing Analyzer.

When you launch the TimeQuest Timing Analyzer directly from the Quartus II
software, the current project opens by default.

Stand-Alone Mode
To run the Quartus II TimeQuest Timing Analyzer in stand-alone mode, type the
following command at the command prompt:

quartus_staw r
In stand-alone mode, you can perform static analysis on any project that contains
either a post-map or post-fit database. To open a project, double-click Open Project in
the Tasks pane.

Command-Line Mode
Use command-line mode for easy integration with scripted design flows. Using the
command-line mode avoids interaction with the user interface provided by the
Quartus II TimeQuest Timing Analyzer, but allows the automation of each step of the
static timing analysis flow. Table 8–1 provides a summary of the options available in
the command-line mode.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–5
Running the Quartus II TimeQuest Timing Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

To run the Quartus II TimeQuest Timing Analyzer in command-line mode, type the
following command at the command prompt:

quartus_sta <options> r

Table 8–1. Summary of Command Line Options

Command Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock

report_timing -setup -npaths 1 -to_clock $clock

report_timing -hold -npaths 1 -to_clock $clock

report_timing -recovery -npaths 1 -to_clock $clock

report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces the Delay Annotator to annotate the new delays from the recently compiled
design to the compiler database.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--qsf2sdc Converts assignments from the Quartus II Settings File (.qsf) format to the
Synopsys Design Constraints File format.

--sdc=<SDC file> Specifies the .sdc file to read.

--report_script=<script> Specifies a custom report script to be called.

--speed=<value> Specifies the device speed grade to be used for timing analysis.

--tq2hc Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer .sdc
file(s) to a PrimeTime .sdc file that can be used by the HardCopy Design Center
(HCDC).

--tq2pt Generates temporary files to convert the Quartus II TimeQuest Timing Analyzer .sdc
file(s) to a PrimeTime .sdc file.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated Quartus II Settings File (.qsf) to use.

--multicorner Specifies that all slack summary reports be generated for both slow and fast corners.

--multicorner[=on|off] Turns off the multicorner analysis by using the off value.

--voltage=<value_in_mV> Specifies the device voltage (mV) to be used in timing analysis.

--temperature=
<value_in_C>

Specifies the device temperature (C) to be used in timing analysis.

--parallel
[=<num_processors>]

Specifies the number of computer processors to use on a multi-processor system.

--64bit Enables 64-bit version of the executable.

8–6 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Timing Analysis Overview
This section provides an overview of the Quartus II TimeQuest Timing Analyzer
concepts. Understanding these concepts allows you to take advantage of the powerful
timing analysis features available in the Quartus II TimeQuest Timing Analyzer.

The Quartus II TimeQuest Timing Analyzer follows the flow shown in Figure 8–2
when it analyzes your design. Table 8–2 lists the most commonly used commands for
each step.

Table 8–2 describes Quartus II TimeQuest Timing Analyzer terminology.

Figure 8–2. The Quartus II TimeQuest Timing Analyzer Flow

Table 8–2. Quartus II TimeQuest Timing Analyzer Terms (Part 1 of 2)

Terminology Definition

Nodes Most basic timing netlist unit. Use to represent ports, pins, and registers.

Keepers Ports or registers. (1)

Cells Look-up table (LUT), registers, digital signal processing (DSP) blocks,
TriMatrix memory, IOE, and so on. (2)

Pins Inputs or outputs of cells.

Nets Connections between pins.

Ports Top-level module inputs or outputs; for example, device pins.

Open Project
project_open

Create Timing Netlist
create_timing_netlist

Constrain the Design
create_clock

set_clock_uncertainty
set_clock_latency

create_generated_clock
derive_pll_clocks
set_input_delay
set_output_delay

...

Update Timing Netlist
update_timing_netlist

report_clocks_transfers
report_min_pulse_width

report_net_timing

report_sdc
report_timing
report_clocks

report_min_pulse_width
report_ucp

Verify Static Timing Analysis
Results

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–7
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Quartus II TimeQuest Timing Analyzer requires a timing netlist before it can
perform a timing analysis on any design. For example, for the design shown in
Figure 8–3, the Quartus II TimeQuest Timing Analyzer generates a netlist equivalent
to the one shown in Figure 8–4.

Clocks Abstract objects outside of the design.

Notes to Table 8–2:

(1) Pins can indirectly refer to keepers. For example, when the value in the -from field of a constraint is a clock pin
to a dedicated memory. In this case, the clock pin refers to a collection of registers.

(2) For Stratix® devices and other early device families, the LUT and registers are contained in logic elements (LE) and
act as cells for these device families.

Figure 8–3. Sample Design

Table 8–2. Quartus II TimeQuest Timing Analyzer Terms (Part 2 of 2)

Terminology Definition

data1

data2

clk

reg1

reg2

and_inst

reg3

Figure 8–4. The Quartus II TimeQuest Timing Analyzer Timing Netlist

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk
regout

regout

datac

datad

combout

datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

8–8 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 8–4 shows various cells, pins, nets, and ports. The following sample cell names
are included:

■ reg1

■ reg2

■ and_inst

The following sample pins names are included:

■ data1|combout

■ reg1|regout

■ and_inst|combout

The following net names are included:

■ data1~combout

■ reg1

■ and_inst

The following port names are included:

■ data1, clk

■ data_out

Paths connect two design nodes, such as the output of a register to the input of
another register. Timing paths play a significant role in timing analysis.
Understanding the types of timing paths is important to timing closure and
optimization. The following list shows some of the commonly analyzed paths that are
described in this section:

■ Edge paths—the connections from ports-to-pins, from pins-to-pins, and from
pins-to-ports.

■ Clock paths—the edges from device ports or internally generated clock pins to the
clock pin of a register.

■ Data paths—the edges from a port or the data output pin of a sequential element
to a port or the data input pin of another sequential element.

■ Asynchronous paths—the edges from a port or sequential element to the
asynchronous set or clear pin of a sequential element.

Figure 8–5 shows some of these commonly analyzed path types.

Figure 8–5. Path Types

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–9
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

After the Quartus II TimeQuest Timing Analyzer identifies the path type, it can report
data and clock arrival times for valid register-to-register paths. The Quartus II
TimeQuest Timing Analyzer calculates data arrival time by adding the delay from the
clock source to the clock pin of the source register, the micro clock-to-out (tCO) of the
source register, and the delay from the source register’s Q pin to the destination
register’s D pin, where the tCO is the intrinsic clock-to-out for the internal registers in
the FPGA.

The Quartus II TimeQuest Timing Analyzer calculates clock arrival time by adding
the delay from the clock source to the destination register’s clock pin. Figure 8–6
shows a data arrival path and a clock arrival path. The Quartus II TimeQuest Timing
Analyzer calculates data required time by accounting for the clock arrival time and
micro setup time (tSU) of the destination register, where the tSU is the intrinsic setup
for the internal registers in the FPGA.

In addition to identifying various paths in a design, the Quartus II TimeQuest Timing
Analyzer analyzes clock characteristics to compute the worst-case requirement
between any two registers in a single register-to-register path. You should constrain
all clocks in your design before performing this analysis.

The launch edge is an active clock edge that sends data out of a sequential element,
acting as a source for the data transfer. A latch edge is the active clock edge that
captures data at the data port of a sequential element, acting as a destination for the
data transfer.

Figure 8–7 shows a single-cycle system that uses consecutive clock edges to transfer
and capture data, a register-to-register path, and the corresponding launch and latch
edges timing diagram. In this example, the launch edge sends the data out of register
reg1 at 0 ns, and register reg2 latch edge captures the data at 5 ns.

Figure 8–6. Data Arrival and Clock Arrival

D Q D Q

Data Arrival

Clock Arrival

8–10 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II TimeQuest Timing Analyzer validates clock setup and hold
requirements relative to the launch and latch edges.

Clock Analysis
A comprehensive static timing analysis includes analysis of register-to-register, I/O,
and asynchronous reset paths. The Quartus II TimeQuest Timing Analyzer uses data
required times, data arrival times, and clock arrival times to verify circuit
performance and detect possible timing violations. The Quartus II TimeQuest Timing
Analyzer determines the timing relationships that must be met for the design to
correctly function and checks arrival times against required times to verify timing.

Clock Setup Check
To perform a clock setup check, the Quartus II TimeQuest Timing Analyzer
determines a setup relationship by analyzing each launch and latch edge for each
register-to-register path. For each latch edge at the destination register, the Quartus II
TimeQuest Timing Analyzer uses the closest previous clock edge at the source register
as the launch edge. In Figure 8–8, two setup relationships are defined and are labeled
setup A and setup B. For the latch edge at 10 ns, the closest clock that acts as a launch
edge is at 3 ns and is labeled setup A. For the latch edge at 20 ns, the closest clock that
acts as a launch edge is 19 ns and is labeled setup B.

Figure 8–7. Launch Edge and Latch Edge

Latch Edge at
Destination Register reg2

Launch Edge at
Source Register reg1

D Q D Q

reg1 reg2

clk

0 ns 5 ns 15 ns10 ns

Figure 8–8. Setup Check

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–11
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Quartus II TimeQuest Timing Analyzer reports the result of clock setup checks as
slack values. Slack is the margin by which a timing requirement is met or not met.
Positive slack indicates the margin by which a requirement is met; negative slack
indicates the margin by which a requirement is not met. The Quartus II TimeQuest
Timing Analyzer determines clock setup slack, as shown in Equation 8–1, for internal
register-to-register paths.

If the data path is from an input port to a internal register, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8–2 to calculate the setup
slack time.

If the data path is an internal register to an output port, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8–3 to calculate the setup
slack time.

Clock Hold Check
To perform a clock hold check, the Quartus II TimeQuest Timing Analyzer determines
a hold relationship for each possible setup relationship that exists for all source and
destination register pairs. The Quartus II TimeQuest Timing Analyzer checks all
adjacent clock edges from all setup relationships to determine the hold relationships.
The Quartus II TimeQuest Timing Analyzer performs two hold checks for each setup
relationship. The first hold check determines that the data launched by the current
launch edge is not captured by the previous latch edge. The second hold check
determines that the data launched by the next launch edge is not captured by the
current latch edge. Figure 8–9 shows two setup relationships labeled setup A and
setup B. The first hold check is labeled hold check A1 and hold check B1 for setup A
and setup B, respectively. The second hold check is labeled hold check A2 and hold
check B2 for setup A and setup B, respectively.

Equation 8–1.

Equation 8–2.

Equation 8–3.

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

tCO Register-to-Register Delay+

Data Required Clock Arrival Time tSU Setup Uncertainty––=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Maximum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register tSU–+=

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

tCO Register-to-Pin Delay+

Data Required Time Latch Edge Clock Network Delay Output Maximum Delay of Pin–+=

8–12 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

From the possible hold relationships, the Quartus II TimeQuest Timing Analyzer
selects the hold relationship that is the most restrictive. The hold relationship with the
largest difference between the latch and launch edges (that is, latch – launch and not
the absolute value of latch and launch) is selected because this determines the
minimum allowable delay for the register-to-register path. For Figure 8–9, the hold
relationship selected is hold check A2.

The Quartus II TimeQuest Timing Analyzer determines clock hold slack as shown in
Equation 8–4.

If the data path is from an input port to an internal register, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8–5 to calculate the hold slack
time.

If the data path is an internal register to an output port, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8–6 to calculate the setup hold
time.

Figure 8–9. Hold Checks

Equation 8–4.

Equation 8–5.

Equation 8–6.

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register tCO+ + +=

Register-to-Register Delay

Data Required Time Clock Arrival Time tH Hold Uncertainty+ +=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Hold Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay + +=

Input Minimum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register tH+ +=

Clock Hold Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Latch Edge Clock Network Delay to Source Register tCO+ + +=

Register-to-Pin Delay

Data Required Time Latch Edge Clock Network Delay Output Minimum Delay of Pin–+=

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–13
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Recovery and Removal
Recovery time is the minimum length of time the de-assertion of an asynchronous
control signal; for example, clear and preset, must be stable before the next active
clock edge. The recovery slack time calculation is similar to the clock setup slack time
calculation, but it applies to asynchronous control signals. If the asynchronous control
signal is registered, the Quartus II TimeQuest Timing Analyzer uses Equation 8–7 to
calculate the recovery slack time.

If the asynchronous control is not registered, the Quartus II TimeQuest Timing
Analyzer uses the equations shown in Equation 8–8 to calculate the recovery slack
time.

1 If the asynchronous reset signal is from a port (device I/O), you must make an Input
Maximum Delay assignment to the asynchronous reset port for the Quartus II
TimeQuest Timing Analyzer to perform recovery analysis on that path.

Removal time is the minimum length of time the de-assertion of an asynchronous
control signal must be stable after the active clock edge. The Quartus II TimeQuest
Timing Analyzer removal time slack calculation is similar to the clock hold slack
calculation, but it applies asynchronous control signals. If the asynchronous control is
registered, the Quartus II TimeQuest Timing Analyzer uses the equations shown in
Equation 8–9 to calculate the removal slack time.

If the asynchronous control is not registered, the Quartus II TimeQuest Timing
Analyzer uses the equations shown in Equation 8–10 to calculate the removal slack
time.

Equation 8–7.

Equation 8–8.

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

tCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register tSU–+=

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay Maximum Input Delay+ + +=

Port-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register Delay tSU–+=

Equation 8–9.

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

tCO of Source Register Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register tH+ +=

8–14 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If the asynchronous reset signal is from a device pin, you must specify the Input
Minimum Delay constraint to the asynchronous reset pin for the Quartus II
TimeQuest Timing Analyzer to perform a removal analysis on this path.

Multicycle Paths
Multicycle paths are data paths that require more than one clock cycle to latch data at
the destination register. For example, a register may be required to capture data on
every second or third rising clock edge. Figure 8–10 shows an example of a multicycle
path between a multiplier’s input registers and output register where the destination
latches data on every other clock edge.

Figure 8–11 shows a register-to-register path where the source clock, src_clk, has a
period of 10 ns and the destination clock, dst_clk, has a period of 5 ns.

Equation 8–10.

+

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay Input Minimum Delay of Pin+ +=

Minimum Pin-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register tH+ +=

Figure 8–10. Example Diagram of a Multicycle Path

Figure 8–11. Register-to-Register Path

2 Cycles

ENA

D Q

ENA

D Q

D Q

D Q

ENA

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–15
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 8–12 shows the respective timing diagrams for the source and destination
clocks and the default setup and hold relationships. The default setup relationship is
5 ns; the default hold relationship is 0 ns.

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate the system requirements.

Table 8–3 shows the commands used to modify either the launch or latch edge times
that the Quartus II TimeQuest Timing Analyzer Timing Analyzer uses to determine a
setup relationship or hold relationship.

Figure 8–13 shows the timing diagram after a multicycle setup of two has been
applied. The command moves the latch edge time to 10 ns from the default 5 ns.

Metastability
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains because the designer cannot guarantee that
the signal will meet setup and hold time requirements. To minimize the failures due to
metastability, circuit designers typically use a sequence of registers (synchronization
register chain or synchronizer) in the destination clock domain to resynchronize the
data signals to the new clock domain.

The Mean Time Before Failure (MTBF) is an estimate of the average time between
instances of failure due to metastability.

Figure 8–12. Default Setup and Hold Timing Diagram

0 10 20 30

setup
hold

Table 8–3. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Launch edge time of the hold relationship

Figure 8–13. Modified Setup Diagram

 new setup
default setup

0 10 20 30

8–16 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The TimeQuest Timing Analyzer analyzes the robustness of the design for
metastability and can calculate the MTBF for synchronization register chains in the
design. The MTBF of the entire design is then estimated based on the synchronization
chains it contains.

In addition to reporting synchronization register chains found in the design, the
Quartus II software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The
Quartus II software can also optimize the MTBF of your design if the MTBF is too low.

Refer to “report_metastability” on page 8–58 for information about how to enable
metastability analysis and report metastability in the TimeQuest Timing Analyzer.

f For more information about metastability, its effects in FPGAs, and how MTBF is
calculated, refer to the Understanding Metastability in FPGAs White Paper. For more
information about metastability analysis, reporting, and optimization features in the
Quartus II software, refer to the Managing Metastability with the Quartus II Software
chapter in volume 1 of the Quartus II Handbook.

Common Clock Path Pessimism
Common clock path pessimism (CCPP) removal accounts for the minimum and
maximum delay variation associated with common clock paths during a static timing
analysis. CCPP removal accounts for this variation by adding the difference between
the maximum and minimum delay value of the common clock path to the appropriate
slack equation.

The minimum and maximum delay variation might arise when two different delay
values are used for the same clock path. For example, in a simple setup analysis, the
maximum clock path delay to the source register is used to determine the data arrival
time. The minimum clock path delay to the destination register is used to determine
the data required time. However, if the clock path to the source register and to the
destination register share a common clock path, the analysis uses both the maximum
delay and the minimum delay to model the common clock path. This results in an
overly pessimistic analysis since two different delay values, the maximum and
minimum delays, cannot be used to model the same clock path.

Figure 8–14 shows a typical register-to-register path with the maximum and
minimum delay values shown.

Figure 8–14. Common Clock Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns

www.altera.com/literature/hb/qts/qts_qii51018.pdf
www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–17
Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Segment A is the common clock path between reg1 and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the CCPP removal value; in this case, CCPP equals
0.5 ns. The CCPP removal value is then added to the appropriate slack equation.
Therefore, if the setup slack for the register-to-register in Figure 8–14 equals 0.7 ns
without CCPP removal, the slack would be 1.2 ns with CCPP removal.

CCPP is also used when determining the minimum pulse width of a register. A clock
signal must meet a register’s minimum pulse width requirement to be recognized by
the register. A minimum high time defines the minimum pulse width for a
positive-edge triggered register. A minimum low time defines the minimum pulse
width for a negative-edge triggered register.

Clock pulses that violate the minimum pulse width of a register prevent data from
being latched at the data pin of the register. To calculate the slack of the minimum
pulse width, the required minimum pulse width time is subtracted from the actual
minimum pulse width time. The actual minimum pulse width time is determined by
the clock requirement specified for the clock that feeds the clock port of the register.
The required minimum pulse width time is determined by the maximum rise,
minimum rise, maximum fall, and minimum fall times. Figure 8–15 shows a diagram
of the required minimum pulse width time for both the high pulse and low pulse.

With CCPP, the minimum pulse width slack can be increased by the smallest value of
either the maximum rise time minus the minimum rise time, or the maximum fall
time minus the minimum fall time. For Figure 8–15, the slack value can be increased
by 0.2 ns, which is the smallest value between 0.3 ns (0.8 ns – 0.5 ns) and 0.2 ns (0.9
ns – 0.7 ns).

Refer to “report_min_pulse_width” on page 8–60 for more information about
reporting CCPP in the TimeQuest Timing Analyzer.

You must use the Enable common clock path pessimism removal option to account
for CCPP in the Fitter and timing analysis. This option defaults to ON for Stratix III,
Cyclone III, and newer device families.

To access this option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, next to Timing Analysis Settings, click the “+” icon to expand
the menu. Click TimeQuest Timing Analyzer.

Figure 8–15. Required Minimum Pulse Width

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise

Rise Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7

8–18 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. Turn on Enable common clock path pessimism removal.

4. Click OK.

1 CCPP is supported for Stratix III, Cyclone III, and newer devices.

Clock-As-Data
The majority of FPGA designs contain simple connections between any two nodes
known as either a data path or a clock path. A data path is a connection between the
output of a synchronous element to the input of another synchronous element. A
clock is a connection to the clock pin of a synchronous element. However, as FPGA
designs become more complex, such as using source-synchronous interfaces, this
simplified view is no longer sufficient.

The connection between port clk_in and port clk_out can be treated either as a
clock path or a data path. The clock path is from the port clk_in to the register
reg_data clock pin. The data path is from port clk_in to the port clk_out. In the
design shown in Figure 8–16, the path from port clk_in to port clk_out is both a
clock and a data path.

With clock-as-data analysis, the TimeQuest Timing Analyzer provides a more
accurate analysis of the path based on the user constraints. For the clock path analysis,
any phase shift associated with the PLL is taken into consideration. For the data path,
any phase shift associated with the PLL is taken into consideration instead of being
ignored.

The clock-as-data analysis also applies to internally generated clock dividers similar
to Figure 8–17.

Figure 8–16. Simplified Source Synchronous Output

D Q

clk_in
clk_out

reg_data

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–19
The Quartus II TimeQuest Timing Analyzer Flow Guidelines

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

A source-synchronous interface contains a clock signal that travels in parallel with
data signals. The clock and data pair originates or terminates at the same device.

The Quartus II TimeQuest Timing Analyzer Flow Guidelines
Use the steps shown in Figure 8–18 to verify timing in the TimeQuest Timing
Analyzer.

Figure 8–17. Clock Divider (Note 1)

Note to Figure 8–17:

(1) In this figure, the inverter feedback path is analyzed during timing analysis. The output of the divider register is used
to determine the launch time and the clock port of the register is used to determine the latch time.

D Q

D Q

Launch Clock (1/2 T)

Data Arrival Time

Latch Clock (T)

Figure 8–18. Timing Verification in the TimeQuest Timing Analyzer

Create a Timing Netlist

Read .sdc File

Update Timing Netlist

Generate Timing Reports

8–20 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The Quartus II TimeQuest Timing Analyzer Flow Guidelines

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The following sections describe each of the steps shown in Figure 8–18.

Create a Timing Netlist
After you perform a full compilation, you must create a timing netlist based on the
fully annotated database from the post-fit results.

To create the timing netlist, double-click Create Timing Netlist in the Tasks pane, or
type the following command in the Console pane:

create_timing_netlist r

Read the Synopsys Design Constraints File
After you create a timing netlist, you must read an .sdc file. This step reads all
constraints and exceptions defined in the .sdc file.

You can read the .sdc file from either the Task pane or the Console pane.

To read the .sdc file from the Tasks pane, double-click the Read SDC File command.

1 The Read SDC File task reads the <current revision>.sdc file.

To read the .sdc file from the Console, type the following command in the Console:

read_sdc r
For more information about reading .sdc files in the TimeQuest Timing Analyzer, refer
to “Synopsys Design Constraints File Precedence” on page 8–25.

Update Timing Netlist
You must update the timing netlist after you read an .sdc file. The TimeQuest Timing
Analyzer applies all constraints to the netlist for verification and removes any invalid
or false paths in the design from verification.

To update the timing netlist, double-click Update Timing Netlist in the Tasks pane, or
type the following command in the Console pane:

update_timing_netlist r

Generate Timing Reports
You can generate timing reports for all critical paths in your design. The Tasks pane
contains the commonly used reporting commands. Individual or custom reports can
be generated for your design.

For more information about reporting, refer to the section “Timing Reports” on
page 8–54.

f For a full list of available report application program interfaces (APIs), refer to the
SDC & TimeQuest API Reference Manual.

http://www.altera.com/literature/manual/mnl-sdctmq.pdf

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–21
Collections

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

As you verify timing, you may encounter failures along critical paths. If this occurs,
you can refine the existing constraints or create new ones to change the effects of
existing constraints. If you modify, remove, or add constraints, you should perform a
full compilation. This allows the Fitter to re-optimize the design based on the new
constraints and brings you back to the Perform Compilation step in the process. This
iterative process allows you to resolve your timing violations in the design.

f For a sample Tcl script to automate the timing analysis flow, refer to the TimeQuest
Quick Start Tutorial.

Collections
The Quartus II TimeQuest Timing Analyzer supports collection APIs that provide
easy access to ports, pins, cells, or nodes in the design. Use collection APIs with any
valid constraints or Tcl commands specified in the Quartus II TimeQuest Timing
Analyzer.

Table 8–4 describes the collection commands supported by the Quartus II TimeQuest
Timing Analyzer.

Table 8–5 describes the Altera SDC extension collection commands only supported by
the Quartus II TimeQuest Timing Analyzer.

Table 8–4. SDC Collection Commands

Command Description

all_clocks Returns a collection of all clocks in the design.

all_inputs Returns a collection of all input ports in the design.

all_outputs Returns a collection of all output ports in the design.

all_registers Returns a collection of all registers in the design.

get_cells Returns a collection of cells in the design. All cell names in the collection match the specified
pattern. Wildcards can be used to select multiple cells at the same time.

get_clocks Returns a collection of clocks in the design. When used as an argument to another command, such
as the -from or -to of set_multicycle_path, each node in the clock represents all nodes
clocked by the clocks in the collection. The default uses the specific node (even if it is a clock) as
the target of a command.

get_nets Returns a collection of nets in the design. All net names in the collection match the specified
pattern. You can use wildcards to select multiple nets at the same time.

get_pins Returns a collection of pins in the design. All pin names in the collection match the specified
pattern. You can use wildcards to select multiple pins at the same time.

get_ports Returns a collection of ports (design inputs and outputs) in the design.

Table 8–5. Altera SDC Extension Collection Commands (Part 1 of 2)

Command Description

get_fanouts <filter> Returns a collection of fan-out nodes starting from <filter>.

get_keepers <filter> Returns a collection of keeper nodes (non-combinational nodes) in the design.

get_nodes <filter> Returns a collection of nodes in the design. The get_nodes collection cannot be
used when specifying constraints or exceptions.

get_partitions <filter> Returns a collection of partitions matching the <filter>.

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf

8–22 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Collections

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 Avoid the use of SDC Altera extentions if your design targets the HardCopy series of
devices or you plan to migrate the design to the HardCopy series of devices. Altera
extentions are not compatible with the HardCopy series design flow.

f For more information about collections, refer to the .sdc file and the SDC and
TimeQuest API Reference Manual.

Adding and Removing Collection Items
Filters used with collection commands limit collection items identifed by the
command. For example, if a design contains registers named src0, src1, src2, and
dst0, the collection command [get_registers src*] identifies registers src0,
src1, and src2, but not register dst0. To identify register dst0 an additional
command would be required, which is [get_pins dst*].

To overcome this limitation the add_to_collection and
remove_from_collection commands are available. The add_to_collection
command allows you to add additional items to an existing collection. Example 8–1
shows the add_to_collection command and arguments.

Table 8–6 describes the options for the add_to_collection command.

The remove_from_collection command allows you to remove items from an
existing collection. Example 8–2 shows the remove_from_collection command
and arguments.

get_registers <filter> Returns a collection of registers in the design.

get_fanins <filter> Returns a collection of fan-in nodes starting from <filter>.

derive_pll_clocks Automatically creates generated clocks on the outputs of the PLL. The generated
clock properties reflect the PLL properties that have been specified by the
MegaWizard™ Plug-In Manager.

get_assignment_groups
<filter>

Returns either a collection of keepers, ports, or registers that have been saved to
the Quartus Settings File (.qsf) with the Assignment (Time) Groups option.

remove_clock <clock list> Removes the list of clocks specified by <clock list>.

set_scc_mode <size> Allows you to set the maximum Strongly Connected Components (SCC) loop size
or force the Quartus II TimeQuest Timing Analyzer to always estimate delays
through SCCs.

set_time_format Sets time format, including time unit and decimal places.

Table 8–5. Altera SDC Extension Collection Commands (Part 2 of 2)

Command Description

Example 8–1. add_to_collection Command

add_to_collection <first collection> <second collection>

Table 8–6. add_to_collection Command Arguments

Options Description

<first collection> First object collection (must be an existing collection)

<second collection> Second object collection

http://www.altera.com/literature/manual/mnl-sdctmq.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–23
Collections

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–7 describes the options remove_from_collection command.

The remove_from_collection command returns a new collection equal to the
difference between the first collection and the second collection.

For both the add_to_collection and remove_from_collection commands,
the second collection must contain the same types of items as the first collection,
according to the following rules:

■ If the first collection consists of keepers, the second collection can only consist of
keepers, registers or ports.

■ If the first collection consists of partitions, the second collection can only consist of
partitions or cells.

■ If the first collection consists of nodes, the second collection can only consist of
nodes, keepers, registers, ports, pins, nets or combinational nodes.

Application Examples
Example 8–3 shows examples of how to add elements to collections.

Example 8–2. remove_from_collection Command

remove_from_collection <first collection> <second collection>

Table 8–7. remove_from_collection Command Arguments

Options Description

<first collection> First item collection (must be an existing collection)

<second collection> Second item collection

Example 8–3. Adding Items to a Collection

#Setting up initial collection of registers

set regs1 [get_registers a*]

#Setting up initial collection of keepers

set kprs1 [get_keepers b*]

#Creating a new set of registers of $regs1 and $kprs1

set regs_union [add_to_collection $kprs1 $regs1]

#OR

Creating a new set of registers of $regs1 and b*

Note that the new collection append only registers with name b*

not all keepers

set regs_union [add_to_collection $regs1 b*]

8–24 Chapter 8: The Quartus II TimeQuest Timing Analyzer
SDC Constraint Files

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

SDC Constraint Files
The Quartus II TimeQuest Timing Analyzer stores all timing constraints in an .sdc file.
You can create an .sdc file with different constraints for place-and-route and for
timing analysis. The .sdc file should contain only SDC commands. Commands to
manipulate the timing netlist or control the compilation flow should be run as part of
a seperate Tcl script.

The Quartus II software does not automatically create or update .sdc files. You must
explicitly write new or updated constraints in the TimeQuest Timing Analyzer GUI.
Use the write_sdc command, or, in the Quartus II TimeQuest Timing Analyzer, on
the Constraints menu, click Write SDC File to write your constraints to an .sdc file.

Example 8–4 shows use of the write_sdc command.

Table 8–8 describes the options for the write_sdc command.

1 The constraints in the .sdc file are order-sensitive. A constraint must first be declared
before any references are made to that constraint. For example, if a generated clock
references a base clock with a name clk, the base clock constraint must be declared
before the generated clock constraint.

Fitter and Timing Analysis with SDC Files
You can specify the same or different .sdc files for the Quartus II Fitter for
place-and-route, and the Quartus II TimeQuest Timing Analyzer for static timing
analysis. Using different .sdc files allows you to have one set of constraints for
place-and-route and another set of constraints for final timing sign-off in the
Quartus II TimeQuest Timing Analyzer.

Specifying SDC Files for Place-and-Route
To specify an .sdc file for the Fitter, you must add the .sdc file to your Quartus II
project. To add the file to your project, use the following command in the Tcl console:

set_global_assignment -name SDC_FILE <SDC file name> r
Or, in the Quartus II software GUI, on the Project menu, click Add/Remove Files in
Project.

The Fitter optimizes your design based on the requirements in the .sdc files in your
project.

Example 8–4. write_sdc Command

write_sdc [-expand] [-history] [<file_name>]

Table 8–8. write_sdc Command Options

Options Description

-expand Expand all macros used. For example, the marco derive_pll_clocks will get
expand such that all generated clock contraints are specified.

-history Reports full history of assignments.

<file_name> Name of output SDC file

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–25
SDC Constraint Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The results shown in the timing analysis report located in the Compilation Report are
based on the .sdc files added to the project.

1 You must specify the Quartus II TimeQuest Timing Analyzer as the default timing
analyzer to make the Fitter read the .sdc file.

Specifying SDC Files for Static Timing Analysis
After you create a timing netlist in the Quartus II TimeQuest Timing Analyzer, you
must specify timing constraints and exceptions before you can perform a timing
analysis. The timing requirements do not have to be identical to those provided to the
Fitter. You can specify your timing requirements manually or you can read a
previously created .sdc file.

To manually enter your timing requirements, you can use constraint entry dialog
boxes or SDC commands. If you have an .sdc file that contains your timing
requirements, use this file to apply your timing requirements. To specify the .sdc file
for timing analysis in the Quartus II TimeQuest Timing Analyzer, use the following
command:

read_sdc [<SDC file name>] r
If you use the TimeQuest GUI to apply the .sdc file for timing analysis, in the
Quartus II TimeQuest Timing Analyzer, on the Constraints menu, click Read SDC
File.

The read_sdc command has the -hdl option, allowing read_sdc to read SDC
commands embedded in HDL that uses that ALTERA_ATTRIBUTE attribute.

1 The read_sdc command without any options reads both your .sdc files and any
HDL-embedded commands. By default, the Read SDC File command in the Tasks
pane reads the .sdc files specified in the Quartus II Settings File (.qsf), which are the
same .sdc files used by the Fitter.

Synopsys Design Constraints File Precedence
The Quartus II Fitter and the Quartus II TimeQuest Timing Analyzer reads the .sdc
files from the files list in the .qsf file in the order they are listed, from top to bottom.

The Quartus II software searches for an .sdc file, as shown in Figure 8–19.

8–26 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If you type the read_sdc command at the command line without any arguments, the
precedence order shown in Figure 8–19 is followed.

Clock Specification
The specification of all clocks and any associated clock characteristics in your design
is essential for accurate static timing analysis results. The Quartus II TimeQuest
Timing Analyzer supports many SDC commands that accommodate various clocking
schemes and any clock characteristics.

This section describes the .sdc file API available to create and specify clock
characteristics.

Clocks
Use the create_clock command to create a clock at any register, port, or pin. You
can create each clock with unique characteristics. Example 8–5 shows the
create_clock command and options.

Table 8–9 describes the options for the create_clock command.

Figure 8–19. Synopsys Design Constraints File Order of Precedence

Note to Figure 8–19:

(1) This occurs only in the Quartus II TimeQuest Timing Analyzer and not during compilation in the Quartus II software.
The Quartus II TimeQuest Timing Analyzer has the ability to automate the conversion of the QSF timing assignments
to SDC if no .sdc file exists when the Quartus II TimeQuest Timing Analyzer is opened.

Is the SDC File specified in the
Add Files to Project dialog box?

No

Yes

Does the .sdf file
<current revision>.sdc

exist?

No

Yes

Compilation Flow

Manually create .sdf file <current revision>.sdc
based on the current Quartus Settings File (1)

Example 8–5. create_clock Command

create_clock
-period <period value>
[-name <clock name>]
[-waveform <edge list>]
[-add]
<targets>

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–27
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 8–6 shows how to create a 10 ns clock with a 50% duty cycle, where the first
rising edge occurs at 0 ns applied to port clk.

Example 8–7 shows how to create a 10 ns clock with a 50% duty cycle that is phase
shifted by 90 degrees applied to port clk_sys.

Clocks defined with the create_clock command have a default source latency
value of zero. The Quartus II TimeQuest Timing Analyzer automatically computes the
clock’s network latency for non-virtual clocks.

Generated Clocks
The Quartus II TimeQuest Timing Analyzer considers clock dividers, ripple clocks, or
circuits that modify or change the characteristics of the incoming or master clock as
generated clocks. You should define the output of these circuits as generated clocks.
This definition allows the Quartus II TimeQuest Timing Analyzer to analyze these
clocks and account for any network latency associated with them.

Use the create_generated_clock command to create generated clocks.
Example 8–8 shows the create_generated_clock command and the available
options.

Table 8–9. create_clock Command Options

Option Description

-period <period value> Specifies the clock period. You can also specify the clock period in units of frequency,
such as -period <num>MHz. (1)

-name <clock name> Name of the specific clock; for example, sysclock. If you do not specify the clock
name, the clock name is the same as the node to which it is assigned.

-waveform <edge list> Specifies the clock’s rising and falling edges. The edge list alternates between rising
edge and falling edge. For example, a 10 ns period where the first rising edge occurs at
0 ns and the first falling edge occurs at 5 ns would be written as
-waveform {0 5}. The difference must be within one period unit, and the rise edge
must come before the fall edge. The default edge list is {0 <period>/2}, or a 50%
duty cycle.

-add Allows you to specify more than one clock to the same port or pin.

<targets> Specifies the port(s) or pin(s) to which the assignment applies. If source objects are not
specified, the clock is a virtual clock. Refer to “Virtual Clocks” on page 8–30 for more
information.

Note to Table 8–9:

(1) The default time unit in the Quartus II TimeQuest Timing Analyzer is nanoseconds (ns).

Example 8–6. 100MHz Clock Creation

create_clock –period 10 –waveform { 0 5 } clk

Example 8–7. 100MHz Shifted by 90 Degrees Clock Creation

create_clock –period 10 –waveform { 2.5 7.5 } clk_sys

8–28 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–10 describes the options for the create_generated_clock command.

Example 8–8. create_generated_clock Command

create_generated_clock
[-name <clock name>]
-source <master pin>
[-edges <edge list>]
[-edge_shift <shift list>]
[-divide_by <factor>]
[-multiply_by <factor>]
[-duty_cycle <percent>]
[-add]
[-invert]
[-master_clock <clock>]
[-phase <phase>]
[-offset <offset>]
<targets>

Table 8–10. create_generated_clock Command Options

Option Description

-name <clock name> Name of the generated clock; for example, clk_x2. If you do not specify the clock
name, the clock name is the same as the first node to which it is assigned.

-source <master pin> The <master pin> specifies the node in the design from which the clock settings
derive.

-edges <edge list> |
-edge_shift <shift list>

The -edges option specifies the new rising and falling edges with respect to the
master clock’s rising and falling edges. The master clock’s rising and falling edges
are numbered 1..<n> starting with the first rising edge; for example, edge 1. The
first falling edge after that is edge number 2, the next rising edge number 3, and so
on. The <edge list> must be in ascending order. The same edge may be used for two
entries to indicate a clock pulse independent of the original waveform’s duty cycle.

-edge_shift specifies the amount of shift for each edge in the <edge list>. The
-invert option can be used to invert the clock after the -edges and
-edge_shifts are applied. (1)

-divide_by <factor> |
-multiply_by <factor>

The -divide_by and -multiply_by factors are based on the first rising edge
of the clock, and extend or contract the waveform by the specified factors. For
example, a -divide_by 2 is equivalent to -edges {1 3 5}. For multiplied
clocks, the duty cycle can also be specified. The Quartus II TimeQuest Timing
Analyzer supports specifying multiply and divide factors at the same time.

-duty_cycle <percent> Specifies the duty cycle of the generated clock. The duty cycle is applied last.

-add Allows you to specify more than one clock to the same pin.

-invert Inversion is applied at the output of the clock after all other modifications are
applied, except duty cycle.

-master_clock <clock> -master_clock is used to specify the clock if multiple clocks exist at the master
pin.

-phase <phase> Specifies the phase of the generated clock.

-offset <offset> Specifies the offset of the generated clock.

<targets> Specifies the port(s) or pin(s) to which the assignment applies.

Note to Table 8–10:

(1) The Quartus II TimeQuest Timing Analyzer supports a maximum of three edges in the edge list.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–29
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Source latencies are based on clock network delays from the master clock (not
necessarily the master pin). You can use the set_clock_latency -source
command to override source latency.

Figure 8–20 shows how to create an inverted generated clock based on a 10 ns clock.

Figure 8–21 shows how to modify the generated clock using the -edges and
-edge_shift options.

Figure 8–22 shows the effect of the -multiply_by option on the generated clock.

Figure 8–20. Generating an Inverted Clock

create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 1 -invert -source [get_registers clk] \

[get_registers gen|clkreg]

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

gen|clkreg

Time

Figure 8–21. Edges and Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5} [get_ports clk]
Creates a divide-by-t clock
create_generated_clock -source [get_ports clk] -edges {1 3 5 } [get_registers \
clkdivA|clkreg]
Creates a divide-by-2 clock independent of the master clocks’ duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges {1 1 5} -edge_shift { 0 2.5 0 } \
[get_registers clkdivB|clkreg]

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

0 10 20 30
Time

8–30 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Virtual Clocks
A virtual clock is a clock that does not have a real source in the design or that does not
interact directly with the design. For example, if a clock feeds only an external
device’s clock port and not a clock port in the design, and the external device then
feeds (or is fed by) a port in the design, it is considered a virtual clock.

Use the create_clock command to create virtual clocks, with no value specified for
the source option.

1 You can use virtual clocks for set_input_delay and set_output_delay
constraints.

Figure 8–23 shows an example where a virtual clock is required for the Quartus II
TimeQuest Timing Analyzer to properly analyze the relationship between the external
register and those in the design. Because the oscillator labeled virt_clk does not
interact with the Altera device, but acts as the clock source for the external register, the
clock virt_clk must be declared. Example 8–9 shows the command to create a 10 ns
virtual clock named virt_clk with a 50% duty cycle where the first rising edge
occurs at 0 ns. The virtual clock is then used as the clock source for an output delay
constraint.

After you create the virtual clock, you can perform register-to-register analysis
between the register in the Altera device and the register in the external device.

Figure 8–22. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]
Creates a multiply-by-2 clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

clk

clkmult|clkreg

0 10 20 30
Time

Figure 8–23. Virtual Clock Board Topology

Altera FPGA External Device

system_clik virt_clk

reg_a reg_b
dataout

datain

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–31
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 8–10 shows the command to create a 10 ns virtual clock with a 50% duty
cycle that is phase shifted by 90°.

Multi-Frequency Clocks
Certain designs have more than one clock source feeding a single clock port in the
design. The additional clock may act as a low-power clock, with a lower frequency
than the primary clock. To analyze this type of design, the create_clock command
supports the -add option that allows you to add more than one clock to a clock node.

Example 8–11 shows the command to create a 10 ns clock applied to clock port clk,
and then add an additional 15 ns clock to the same clock port. The Quartus II
TimeQuest Timing Analyzer uses both clocks when it performs timing analysis.

Automatic Clock Detection
To create clocks for all clock nodes in your design automatically, use the
derive_clocks command. This command creates clocks on ports or registers to
ensure every register in the design has a clock.

Example 8–12 shows the derive_clocks command and options.

Table 8–11 describes the options for the derive_clocks command.

Example 8–9. Virtual Clock Example 1

#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]

Example 8–10. Virtual Clock Example 2

create_clock -name virt_clk –period 10 –waveform { 2.5 7.5 }

Example 8–11. Multi-Frequency Example

create_clock –period 10 –name clock_primary –waveform { 0 5 } [get_ports
clk]
create_clock –period 15 –name clock_secondary –waveform { 0 7.5 }
[get_ports clk] -add

Example 8–12. derive_clocks Command

derive_clocks
[-period <period value>]
[-waveform <edge list>]

8–32 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 The derive_clocks command does not create clocks for the output of the PLLs.

The derive_clocks command is equivalent to using create_clock for each
register or port feeding the clock pin of a register.

1 Using the derive_clocks command for final timing sign-off is not recommended.
You should create clocks for all clock sources using the create_clock and
create_generated_clock commands.

Derive PLL Clocks
PLLs are used for clock management and synthesis in Altera devices. You can
customize the clocks generated from the outputs of the PLL based on design
requirements. Because a clock should be created for all clock nodes, all outputs of the
PLL should have an associated clock.

You can manually create a clock for each output of the PLL with the
create_generated_clock command, or you can use the derive_pll_clocks
command, which automatically searches the timing netlist and creates generated
clocks for all PLL outputs according to the settings specified for each PLL output.

Use the derive_pll_clocks command to automatically create a clock for each
output of the PLL. Example 8–13 shows the derive_pll_clocks command and
options.

Table 8–12 describes the options for the derive_pll_clocks command.

Table 8–11. derive_clocks Command Options

Option Description

-period <period value> Creates the clock period. You can also specify the frequency as
-period <num>MHz. (1)

-waveform <edge list> Creates the clock’s rising and falling edges. The edge list alternates between the rising
edge and falling edge. For example, for a 10 ns period where the first rising edge occurs
at 0 ns and the first falling edge occurs at 5 ns, the edge list is waveform {0 5}. The
difference must be within one period unit, and the rising edge must come before the
falling edge. The default edge list is {0 period/2}, or a 50% duty cycle.

Note to Table 8–11:

(1) This option uses the default time unit nanoseconds (ns).

Example 8–13. derive_pll_clocks Command

derive_pll_clocks
[-create_base_clocks]
[-use_tan_name]

Table 8–12. derive_pll_clocks Command Options

Option Description

-use_tan_name By default, the clock name is the output clock name. This option uses the net name similar
to the names used by the Quartus II Classic Timing Analyzer.

-create_base_clocks Creates the base clocks on input clock ports of the design that are feeding the PLL.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–33
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The derive_pll_clocks command calls the create_generated_clock
command to create generated clocks on the outputs of the PLL. The source for the
create_generated_clock command is the input clock pin of the PLL. Before or
after the derive_pll_clocks command has been issued, you must manually create
a base clock for the input clock port of the PLL. If a clock is not defined for the input
clock node of the PLL, no clocks are reported for the PLL outputs. Instead, the
Quartus II TimeQuest Timing Analyzer issues a warning message similar to
Example 8–14 when the timing netlist is updated.

1 You can use the -create_base_clocks option to create the input clocks for the
PLL inputs automatically.

You can include the derive_pll_clocks command in your .sdc file, which allows
the derive_pll_clocks command to automatically detect any changes to the PLL.
With the derive_pll_clocks command in your .sdc file, each time the file is read,
the appropriate create_generated_clocks command for the PLL output clock
pin is generated. If you use the write_sdc-expand command after the
derive_pll_clock command, the new .sdc file contains the individual
create_generated_clock commands for the PLL output clock pins and not the
derive_pll_clocks command. Any changes to the properties of the PLL are not
automatically reflected in the new .sdc file. You must manually update the
create_generated_clock commands in the new .sdc file written by the
derive_pll_clocks command to reflect the changes to the PLL.

1 The derive_pll_clocks constraint will also constrain any LVDS transmitters or
LVDS receivers in the design by adding the appropriate multicycle constraints to
account for any deserialization factors.

For example, Figure 8–24 shows a simple PLL design with a register-to-register path.

Use the derive_pll_clocks command to automatically constrain the PLL. When
this command is issued for the design shown in Figure 8–24, the messages shown in
Example 8–15 are generated.

Example 8–14. Warning Message

Warning: The master clock for this clock assignment could not be
derived.
Clock: <name of PLL output clock pin name> was not created.

Figure 8–24. Simple PLL Design

reg_1 reg_2

pll_inclk pll_inst

dataout

8–34 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The node name pll_inst|altpll_component|pll|inclk[0] used for the
source option refers to the input clock pin of the PLL. In addition, the name of the
output clock of the PLL is the name of the PLL output clock node,
pll_inst|altpll_component|pll|clk[0].

1 If the PLL is in clock switchover mode, multiple clocks are created for the output clock
of the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). In this case, you should cut the
primary and secondary output clocks using the set_clock_groups command with
the -exclusive option.

Before you can generate any reports for this design, you must create a base clock for
the PLL input clock port. Use a the following command or one similar:

create_clock -period 5 [get_ports pll_inclk]

1 You do not have to generate the base clock on the input clock pin of the PLL:
pll_inst|altpll_component|pll|inclk[0]. The clock created on the PLL
input clock port propagates to all fan-outs of the clock port, including the PLL input
clock pin.

Default Clock Constraints
To provide a complete clock analysis, the Quartus II TimeQuest Timing Analyzer, by
default, automatically creates clocks for all detected clock nodes in your design that
have not be constrained, if there are no base clock constraints in the design. The
Quartus II TimeQuest Timing Analyzer creates a base clock with a 1 GHz requirement
to unconstrained clock nodes, using the following command:

derive_clocks -period 1 r

1 Individual clock constraints (for example, create_clock and
create_generated_clock) should be made for all clocks in the design. This
results in a thorough and realistic analysis of the design’s timing requirements. Avoid
using derive_clocks for final timing sign-off.

The default clock constraint is only applied when the Quartus II TimeQuest Timing
Analyzer detects that all synchronous elements have no clocks associated with them.
For example, if a design contains two clocks and only one clock has constraints, the
default clock constraint is not applied. However, if both clocks have not been
constrained, the default clock constraint is applied.

Example 8–15. derive_pll_clocks Generated Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source
pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|clk[0]
pll_inst|altpll_component|pll|clk[0]
Info:

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–35
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Clock Groups
Many clocks can exist in a design; however, not all of the clocks interact with one
another and certain clock interactions are not possible.

Use the set_clock_groups command to specify clocks that are exclusive or
asynchronous. Example 8–16 shows the set_clock_groups command and options.

Table 8–13 describes the options for the set_clock_groups command.

The exclusive option is used to declare when two clocks are mutually exclusive to
each other and cannot coexist in the design at the same time. This can happen when
multiple clocks are created on the same node or for multiplexed clocks. For example, a
port can be clocked by either a 25-MHz or a 50-MHz clock. To constrain this port, two
clocks should be created on the port with the create_clock command, then use
set_clock_groups -exclusive to declare that they cannot coexist in the design
at the same time.

This eliminates any clock transfers that may be derived between the 25-MHz clock
and the 50-MHz clock. Example 8–17 shows the constraints for this.

A group is defined with the -group option. The TimeQuest Timing Analyzer cuts the
timing paths between clocks each of the separate -groups groups.

The asynchronous option is used to group related and unrelated clocks. With the
asynchronous option, clocks that are contained in groups are considered
asynchronous to each other. Any clocks within each group are considered
synchronous to each other.

Example 8–16. set_clock_groups Command

set_clock_groups
[-asynchronous | -exclusive]
-group <clock name>
[-group <clock name>]
[-group <clock name>] ...

Table 8–13. set_clock_groups Command Options

Option Description

-asynchronous Asynchronous clocks—when the two clocks have no phase relationship and are active at the
same time.

-exclusive Exclusive clocks—when only one of the two clocks is active at any given time. An example
of an exclusive clock group is when two clocks feed a 2-to-1 MUX.

-group <clock name> Specifies valid destination clock names that are mutually exclusive. <clock name> is used to
specify the clock names.

Example 8–17. Exclusive Option

create_clock -period 40 -name clk_A [get_ports {port_A}]
create_clock -add -period 20 -name clk_B [get_ports {port_A}]
set_clock_groups -exclusive -group {clk_A} -group {clk_B}

8–36 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

For example, suppose you have three clocks: clk_A, clk_B, and clk_C. The clocks
clk_A and clk_B are related to each other, but clock clk_C operates completely
asynchronous with clk_A or clk_B. Example 8–18 makes clk_A and clk_B related
in the same group and unrelated with the second group which contains clk_C.

Example 8–19 shows an alternative method of specifying the same constraint as
Example 8–18.

This makes clk_C unrelated with every other clock in the design because clk_C is
the only group in the constraint.

1 The TimeQuest Timing Analyzer assumes all clocks are related by default, unless
constrained otherwise.

Example 8–20 shows a set_clock_groups command and the equivalent
set_false_path commands.

Clock Effect Characteristics
The create_clock and create_generated_clock commands create ideal clocks
that do not account for any board effects. This section describes how to account for
clock effect characteristics with clock latency and clock uncertainty.

Clock Latency
There are two forms of clock latency: source and network. Source latency is the
propagation delay from the origin of the clock to the clock definition point (for
example, a clock port). Network latency is the propagation delay from a clock
definition point to a register’s clock pin. The total latency (or clock propagation delay)
at a register’s clock pin is the sum of the source and network latencies in the clock
path.

Example 8–18. Asynchronous Option Example 1

set_clock_groups -asynchronous -group {clk_A clk_B} -group {clk_C}

Example 8–19. Asynchronous Option Example 2

set_clock_groups -asynchronous -group {clk_C}

Example 8–20. set_clock_groups

Clocks A and C are never active when clocks B and D are active
set_clock_groups -exclusive -group {A C} -group {B D}

Equivalent specification using false paths
set_false_path -from [get_clocks A] -to [get_clocks B]
set_false_path -from [get_clocks A] -to [get_clocks D]
set_false_path -from [get_clocks C] -to [get_clocks B]
set_false_path -from [get_clocks C] -to [get_clocks D]
set_false_path -from [get_clocks B] -to [get_clocks A]
set_false_path -from [get_clocks B] -to [get_clocks C]
set_false_path -from [get_clocks D] -to [get_clocks A]
set_false_path -from [get_clocks D] -to [get_clocks C]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–37
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 The set_clock_latency command supports only source latency. The -source
option must be specified when using the command.

Use the set_clock_latency command to specify source latency to any clock ports
in the design. Example 8–21 shows the set_clock_latency command and options.

Table 8–14 describes the options for the set_clock_latency command.

The Quartus II TimeQuest Timing Analyzer automatically computes network
latencies; therefore, the set_clock_latency command specifies only source
latencies.

Clock Uncertainty
The set_clock_uncertainty command specifies clock uncertainty or skew for
clocks or clock-to-clock transfers. Specify the uncertainty separately for setup and
hold. Specify separate rising and falling clock transitions. The Quartus II TimeQuest
Timing Analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path.

Use the set_clock_uncertainty command to specify any clock uncertainty to the
clock port. Example 8–22 shows the set_clock_uncertainty command and
options.

Example 8–21. set_clock_latency Command

set_clock_latency
-source
[-clock <clock_list>]
[-rise | -fall]
[-late | -early]
<delay>
<targets>

Table 8–14. set_clock_latency Command Options

Option Description

-source Specifies a source latency.

-clock <clock list> Specifies the clock to use if the target has more than one clock assigned to it.

-rise | -fall Specifies the rising or falling delays.

-late | -early Specifies the earliest or the latest arrival times to the clock.

<delay> Specifies the delay value.

<targets> Specifies the clocks or clock sources if a clock is clocked by more than one clock.

Example 8–22. set_clock_uncertainty Command and Options

set_clock_uncertainty
[-rise_from <rise from clock> | -fall_from <fall from clock> |

-from <from clock>]
[-rise_to <rise to clock> | -fall_to <fall to clock> | -to <to clock>]
[-setup | -hold]
<value>
-add

8–38 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–15 describes the options for the set_clock_uncertainty command.

Derive Clock Uncertainty
Use the derive_clock_uncertainty command to automatically apply
inter-clock, intra-clock, and I/O interface uncertainties. Both setup and hold
uncertainties are calculated for each clock-to-clock transfer. Example 8–23 shows the
derive_clock_uncertainty command and options.

Table 8–16 describes the options for the derive_clock_uncertainty command.

The Quartus II TimeQuest Timing Analyzer automatically applies clock uncertainties
to clock-to-clock transfers in the design.

Any clock uncertainty constraints that have been applied to source and destination
clock pairs with the set_clock_uncertainty command have a higher precedence
than the clock uncertainties derived from the derive_clock_uncertainty
command for the same source and destination clock pairs. For example, if
set_clock_uncertainty is applied between clka and clkb, the
derive_clock_uncertainty values for the clock transfer is ignored by default.
The set_clock_uncertainty constraint has priority over the
derive_clock_uncertainty constraint.

Table 8–15. set_clock_uncertainty Command Options

Option Description

-from <from clock> Specifies the from clock.

-rise_from <rise from clock> Specifies the rise-from clock.

-fall_from <fall from clock> Specifies the fall-from clock.

-to <to clock> Specifies the to clock.

-rise_to <rise to clock> Specifies the rise-to clock.

-fall_to <fall to clock> Specifies the fall-to clock.

-setup | -hold Specifies setup or hold.

<value> Uncertainty value.

-add Specifies that the uncertainty <value> should be added to the uncertainty
value derived by the derive_clock_uncertainty command.

Example 8–23. derive_clock_uncertainty Command

derive_clock_uncertainty
[-overwrite]
[-add]

Table 8–16. derive_clock_uncertainty Command Options

Option Description

-overwrite Overwrites previously performed clock uncertainty assignments.

-add Adds derived uncertainty results to any user-defined clock uncertainty assignments.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–39
Clock Specification

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The clock uncertainty value that would have been used; however, is still reported for
informational purposes. You can use the -overwrite command to overwrite
previous clock uncertainty assignments, or remove them manually with the
remove_clock_uncertainty command. You can also use the -add option to add
clock uncertainty determined by the derive_clock_uncertainty command to
any previously defined clock uncertainty value.

The following list shows the types of clock-to-clock transfers in which clock certainties
can arise. They are modeled by the derive_clock_uncertainty command
automatically.

■ Inter-clock

■ Intra-clock

■ I/O Interface

1 Altera recommends using the derive_clock_uncertainty command.

Intra-Clock Transfers
Intra-clock transfers occur when the register-to-register transfer happens in the core of
the FPGA and source and destination clocks come from the same PLL output pin or
clock port. An example of an intra-clock transfer is shown in Figure 8–25.

Inter-Clock Transfers
Inter-clock transfers occur when a register-to-register transfer happens in the core of
the FPGA and source and destination clocks come from a different PLL output pin or
clock port. An example of an inter-clock transfer is shown in Figure 8–26.

I/O Interface Clock Transfers
I/O interface clock transfers occur when data transfers from an I/O port to the core of
the FPGA (input) or from the core of the FPGA to the I/O port (output). An example
of an I/O interface clock transfer is shown in Figure 8–27.

Figure 8–25. Intra-Clock Transfer

Figure 8–26. Inter-Clock Transfer

D Q D Q

Source Register Destination Register

data_in

data_out
clk0

PLL

D Q D Q

Source Register Destination Register

data_in

clk_in
clk0

PLL

data_out

8–40 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Clock Specification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

For I/O interface uncertainty, you must create a virtual clock and constrain the input
and output ports with the set_input_delay and set_output_delay commands
that reference the virtual clock. The virtual clock is required to prevent the
derive_clock_uncertainty command from applying clock uncertainties for
either intra- or inter-clock transfers on an I/O interface clock transfer when the
set_input_delay or set_output_delay commands reference a clock port or
PLL output. If a virtual clock is not referenced in the set_input_delay or
set_output_delay commands, the derive_clock_uncertainty command
calculates intra- or inter-clock uncertainty value for the I/O interface.

Create the virtual clock with the same properties as the original clock that is driving
the I/O port. For example, Figure 8–28 shows a typical input I/O interface with the
clock specifications.

Example 8–24 shows the SDC commands to constrain the I/O interface shown in
Figure 8–28.

Figure 8–27. I/O Interface-Clock Transfer

D Q

reg1

data_in

clk_in

data_out

Figure 8–28. I/O Interface Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Qreg1Dreg1D

100 MHz

Example 8–24. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock –period 10 –name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock
driving the source register
create_clock –period 10 –name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay –clock clk_in <delay_value>
[get_ports data_in]
set_input_delay –clock virt_clk_in <delay value> [get_ports data_in]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–41
I/O Specifications

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

I/O Specifications
The Quartus II TimeQuest Timing Analyzer supports Synopsys Design Constraints
that constrain the ports in your design. These constraints allow the Quartus II
TimeQuest Timing Analyzer to perform a system static timing analysis that includes
not only the FPGA internal timing, but also any external device timing and board
timing parameters.

Input and Output Delay
Use input and output delay constraints to specify any external device or board timing
parameters. When you apply these constraints, the Quartus II TimeQuest Timing
Analyzer performs static timing analysis on the entire system.

Set Input Delay
The set_input_delay constraint specifies the data arrival time at a port (a device
I/O) with respect to a given clock. Figure 8–29 shows an input delay path.

Use the set_input_delay command to specify input delay constraints to ports in
the design. Example 8–25 shows the set_input_delay command and options.

Table 8–17 describes the options for the set_input_delay command.

Figure 8–29. Set Input Delay

Example 8–25. set_input_delay Command

set_input_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
[-source_latency_included]
<delay value>
<targets>

External Device Altera Device

Oscillator

Table 8–17. set_input_delay Command Options (Part 1 of 2)

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the arrival time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

8–42 Chapter 8: The Quartus II TimeQuest Timing Analyzer
I/O Specifications

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 A warning message appears if you specify only a -max or -min value for the input
delay value. The input minimum delay default value is equal to the input maximum
delay; the input maximum delay default value is equal to the input minimum delay, if
only one is specified. Similarly, a warning message appears if you specify only a
-rise or -fall value for the delay value, and the delay defaults in the same manner
as the input minimum and input maximum delays.

The maximum value is used for setup checks; the minimum value is used for hold
checks.

By default, a set of input delays (min/max, rise/fall) is allowed for only one -clock,
-clock_fall, -reference_pin combination. Specifying an input delay on the
same port for a different clock, -clock_fall or -reference_pin removes any
previously set input delays, unless you specify the -add_delay option. When you
specify the -add_delay option, the worst-case values are used.

The -rise and -fall options are mutually exclusive, as are the -min and -max
options.

Set Output Delay
The set_output_delay command specifies the data required time at a port (the
device pin) with respect to a given clock.

Use the set_output_delay command to specify output delay constraints to ports
in the design. Figure 8–30 shows an output delay path.

Example 8–26 shows the set_output_delay command and options.

-add_delay Adds another delay, but does not replace the existing delays assigned to the port.

-reference_pin <target> Specifies a pin or port in the design from which to determine source and network
latencies. This is useful to specify input delays relative to an output port fed by a
clock.

-source_latency_ included Specifies that the input delay value includes the source latency delay value;
therefore, any source clock latency assigned to the clock is ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

Table 8–17. set_input_delay Command Options (Part 2 of 2)

Option Description

Figure 8–30. Output Delay

External DeviceAltera Device

Oscillator

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–43
I/O Specifications

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–18 describes the options for the set_output_delay command.

1 A warning message appears if you specify only a -max or -min value for the output
delay value. The output minimum delay default value is the output maximum delay;
the output maximum delay default value is the output minimum delay, if only one is
specified.

The maximum value is used for setup checks; the minimum value is used for hold
checks.

By default, a set of output delays (min/max, rise/fall) is allowed for only one clock,
-clock_fall, port combination. Specifying an output delay on the same port for a
different clock or -clock_fall removes any previously set output delays, unless
you specify the -add_delay option. When you specify the -add_delay option, the
worst-case values are used.

The -rise and -fall options are mutually exclusive, as are the -min and -max
options.

Example 8–26. set_output_delay Command

set_output_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
<delay value>
<targets>

Table 8–18. set_output_delay Command Options

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the required time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

-add_delay Adds another delay, but does not replace the existing delays assigned to the port.

-reference_pin <target> Specifies a pin or port in the design from which to determine source and network
latencies. Use this option to specify input delays relative to an output port fed by a
clock.

-source_latency_included Specifies that the input delay value includes the source latency delay value; therefore,
any source clock latency assigned to the clock will subsequently be ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

8–44 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Delay and Skew Specifications

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Delay and Skew Specifications
The TimeQuest Timing Analyzer supports the ability to specify and report maximum,
minimum, and skew delays between a source and destination points.

set_net_delay
Use the set_net_delay command in conjunction with the report_net_delay
command to report the net delays and perform minimum or maximum analysis
across nets. Example 8–27 shows the set_net_delay command and options.

The set_net_delay and report_net_delay commands can be used when
verifying timing-critical delays for high-speed interfaces. For example, the command
can be used to report the delay across a high-speed data bus for each bit.

Table 8–19 describes the options for the set_net_delay command.

When the -min option is specified, the slack is calculated with the minimum edge
delay. When the -max option is specified, the slack is calculated with the maximum
edge delay. When the -skew option is specified, the slack is calculated across all the
valid edges that satisfy the -from and -to filters.

set_max_skew
Use the set_max_skew command to specify the maximum path-based skew
requirements for registers and ports in the design. Example 8–28 shows the
set_max_skew command and options.

Example 8–27. set_net_delay Command

set_net_delay
-from <names>
[-max]
[-to <names>]
[-min]
<delay>

Table 8–19. set_net_delay Command Options

Option Description

-from <names> Valid source pins or ports (string patterns are matched using Tcl string matching).

-max Specifies maximum delay.

-min Specifies minimum delay.

-to <names> Valid destination pins or ports (string patterns are matched using Tcl string matching). If
-to is left unspecified, the missing value or values are substituted by an “*” character.

<delay> Required delay.

Example 8–28. set_max_skew

set_max_skew
[-exclude <Tcl list>]
[-from <names>]
[-include <Tcl list>]
[-to <names>]
<skew>

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–45
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–20 describes the options for the set_max_skew command.

1 By default, the set_max_skew command excludes set_input_delay and
set_output_delay.

When this constraint is used, the results of max skew analysis are reported with the
command report_max_skew.

1 For more information about the report_max_skew command, refer to
“report_max_skew” on page 8–70.

Timing Exceptions
Timing exceptions modify the default analysis performed by the Quartus II
TimeQuest Timing Analyzer. This section describes the following available timing
exceptions:

■ “False Path” on page 8–46

■ “Minimum Delay” on page 8–47

■ “Maximum Delay” on page 8–48

■ “Multicycle Path” on page 8–49

Precedence
If a conflict of node names occurs between timing exceptions, the following order of
precedence applies:

1. False path

2. Minimum delays and maximum delays

3. Multicycle path

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. Finally,
the remaining precedence for additional conflicts is order-dependent, such that the
last assignments overwrite (or partially overwrite) earlier assignments.

Table 8–20. set_max_skew Command Options

Option Description

-exclude <list> A list of parameters to exclude during skew analysis. This list can include 1 or more of the
following: utsu, uth, utco, from_clock, to_clock, clock_uncertainty,
input_delay, output_delay.

-from <names> Valid sources (string patterns are matched using Tcl string matching)

-include <list> Tcl list of parameters to include during skew analysis. This list can include 0 or more of the
following: utsu, uth, utco, from_clock, to_clock, clock_uncertainty,
input_delay, output_delay.

-to <names> Valid destinations (string patterns are matched using Tcl string matching)

<skew> Required maximum skew

8–46 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

False Path
False paths are paths that can be ignored during timing analysis.

Use the set_false_path command to specify false paths in the design.
Example 8–29 shows the set_false_path command and options.

Table 8–21 describes the options for the set_false_path command.

When the objects are timing nodes, the false path only applies to the path between the
two nodes. When an object is a clock, the false path applies to all paths where the
source node (-from) or destination node (-to) is clocked by the clock.

Example 8–29. set_false_path Command

set_false_path
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-through <names>]
<delay>

Table 8–21. set_false_path Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path begins at the
fall from <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends at the
fall to <clocks>.

-from <names> The <names> is a collection or list of objects in the design. Specifies false path begins at the
<names>.

-hold Specifies the false path is valid during the hold analysis only.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path begins at the
rise from <clocks>.

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends at the
rise to <clocks>.

-setup Specifies the false path is valid during the setup analysis only.

-through <names> The <names> is a collection or list of objects in the design. Specifies false path passes
through <names>.

-to <names> The <names> is a collection or list of objects in the design. Specifies false path ends at
<names>.

<delay> Specifies the delay value.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–47
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Minimum Delay
Use the set_min_delay command to specify an absolute minimum delay for a
given path. Example 8–30 shows the set_min_delay command and options.

Table 8–22 describes the options for the set_min_delay command.

If the source or destination node is clocked, the clock paths are taken into account,
allowing more or less delay on the data path. If the source or destination node has an
input or output delay, that delay is also included in the minimum delay check.

When the objects are timing nodes, the minimum delay applies only to the path
between the two nodes. When an object is a clock, the minimum delay applies to all
paths where the source node (-from) or destination node (-to) is clocked by the
clock.

You can apply the set_min_delay command exception to an output port that does
not use a set_output_delay constraint. In this case, the setup summary and hold
summary report the slack for these paths. Because there is no clock associated with
the output port, no clock is reported for these paths and the Clock column is empty. In
this case, you cannot report timing for these paths.

1 To report timing using clock filters for output paths with the set_min_delay
command, you can use the set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a virtual clock as the clock
reference in the set_output_delay command.

Example 8–30. set_min_delay Command

set_min_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

Table 8–22. set_min_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum delay
begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum delay
ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the start
point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum delay at
the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum delay at
the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the through
point of the path.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the end
point of the path.

<delay> Specifies the delay value.

8–48 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Maximum Delay
Use the set_max_delay command to specify an absolute maximum delay for a
given path. Example 8–31 shows the set_max_delay command and options.

Table 8–23 describes the options for the set_max_delay command.

If the source or destination node is clocked, the clock paths are taken into account,
allowing more or less delay on the data path. If the source or destination node has an
input or output delay, that delay is also included in the maximum delay check.

When the objects are timing nodes, the maximum delay only applies to the path
between the two nodes. When an object is a clock, the maximum delay applies to all
paths where the source node (-from) or destination node (-to) is clocked by the
clock.

You can apply the set_max_delay command exception to an output port that does
not use a set_output_delay constraint. In this case, the setup summary and hold
summary report the slack for these paths. Because there is no clock associated with
the output port, no clock is reported for these paths and the Clock column is empty. In
this case, you cannot report timing for these paths.

1 To report timing using clock filters for output paths with the set_max_delay
command, you can use the set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a virtual clock as the clock
reference in the set_output_delay command.

Example 8–31. set_max_delay Command

set_max_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

Table 8–23. set_max_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum delay
begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum delay
ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the start
point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum delay at
the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum delay at
the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the through
point of the path.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the end
point of the path.

<delay> Specifies the delay value.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–49
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Multicycle Path
By default, the Quartus II TimeQuest Timing Analyzer uses a single-cycle analysis.
When analyzing a path, the setup launch and latch edge times are determined by
finding the closest two active edges in the respective waveforms. For a hold analysis,
the timing analyzer analyzes the path against two timing conditions for every
possible setup relationship, not just the worst-case setup relationship. Therefore, the
hold launch and latch times may be completely unrelated to the setup launch and
latch edges.

A multicycle constraint relaxes setup or hold relationships by the specified number of
clock cycles based on the source (-start) or destination (-end) clock. An end
multicycle constraint of 2 extends the worst-case setup latch edge by one destination
clock period.

Hold multicycle constraints are based on the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

Use the set_multicycle_path command to specify the multicycle constraints in
the design. Example 8–32 shows the set_multicycle_path command and options.

Table 8–24 describes the options for the set_multicycle_path command.

Example 8–32. set_multicycle_path Command

set_multicycle_path
[-end]
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-start]
[-through <names>]
<path multiplier>

Table 8–24. set_multicycle_path Command Options (Part 1 of 2)

Option Description

fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle begins at
the falling edge of <clocks>.

fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle ends at
the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the start
point of the path.

-hold | -setup Specifies the type of multicycle to be applied.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle at the
rising edge of <clocks>.

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle ends at
the rising edge of <clocks>.

-start | -end Specifies whether the start or end clock acts as the source or destination for the multicycle.

-through <names> The <names> is a collection or list of objects in the design. Specifies multicycle passes
through <names>.

8–50 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock.

Application Examples
This section describes specific examples for the set_multicycle_path command.

Figure 8–31 shows a register-to-register path where the source clock, src_clk, has a
period of 10 ns and the destination clock, dst_clk, has a period of 5 ns.

Figure 8–32 shows the respective timing diagrams for the source and destination
clocks and the default setup and hold relationships. The default setup relationship is
5 ns; the default hold relationship is 0 ns.

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate system requirements.

Table 8–25 shows the commands used to modify either the launch or latch edge times
that the TimeQuest Timing Analyzer uses to determine a setup relationship or hold
relationship.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the end
point of the path.

<path multiplier> Specifies the multicycle multiplier value.

Table 8–24. set_multicycle_path Command Options (Part 2 of 2)

Option Description

Figure 8–31. Register-to-Register Path

Figure 8–32. Default Setup and Hold Timing Diagram

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–51
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 8–33 shows the command used to modify the setup latch edge and the
resulting timing diagram. The command moves the latch edge time to 10 ns from the
default 5 ns.

Delay Annotation
The TimeQuest timing analyzer provides two commands that allow you to modify the
default delay values used during timing analysis. The two commands are
set_annotated_delay and set_timing_derate. Use the
set_annotated_delay command to annotate the cell delay between two or more
pins/nodes on a cell, or the interconnect delay between two or more pins on the same
net, in the current design. The annotated delay can be specified for specific transition
edges: rise-rise, fall-rise, rise-fall, and fall-fall, and can also set different minimum and
maximum values.

1 If no transition is specified, the given delay is assigned to all four values. Options
-max and -min allow users to specify maximum or minimum delay.

Example 8–33 shows the set_annotated command and options.

Table 8–26 describes the options for the set_annotated_delay command.

Table 8–25. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Launch edge time of the hold relationship

Figure 8–33. Modified Setup Diagram

latch every 2nd edge
set_multicycle_path -from [get_clocks src_clk] -to [get_clocks dst_clk] -setup -end 2

 new setup
default setup

0 10 20 30

Example 8–33. set_annotated_delay Command

set_annotated_delay
[-cell|-net]
[-from <names>]
[-max|-min]
[-operating_conditions <operating_conditions>]
[-rr|-fr|-rf|-ff]
[-to <names>]
<delay>

8–52 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

With the -operation_conditions option, different operating conditions can be
specified in a single .sdc file, removing the requirement of having multiple .sdc files
that specify different operating conditions.

The delay annotation is deferred until the next time update_timing_netlist is
called. To remove annotated delays, use the remove_annotated_delay command.

Use the set_timing_derate command to specify global derating factors for the
current design. The maxmimum and minimum delays of all timing arcs in the design
are multiplied by the specified derating factors using the -late and -early options
respectively.

1 Only positive derate factors are allowed. If neither the -cell nor -ic_delay option
is used, the derating factors apply to both cell and interconnect delays.

Specifying a derate value of less than 1.0 for the -late option or a derate value of
greater than 1.0 for the -early option reduces delay pessimisim, which might lead to
incorrectly optimistic results from timing analysis.

The effect of the set_timing_derate command is deferred until the next time
update_timing_netlist is called. To reset derate factors to original values, use
the reset_timing_derate command.

Table 8–26. set_annotated_delay Command Options

Options Description

-cell Specifies that cell delay must be set.

-ff Specifies that FF delay must be set.

-fr Specifies that FR delay must be set.

-from <names> Valid source pins or ports (string patterns are matched using Tcl string matching). If
-from value is left unspecified, the “*” character is used.

-max Specifies that only the maximum delay should be set.

-min Specifies that only the minimum delay should be set.

-net Specifies that net delay must be set.

-operating_conditions
<operating_conditions>

Specifies the operating conditions Tcl object. Refer to Table 8–56 on page 8–78 for the
operating conditions Tcl object.

-rf Specifies that RF delay must be set.

-rr Specifies that RR delay must be set.

-to <names> Valid destination pins or ports (string patterns are matched using Tcl string matching).
If -to value is left unspecified, the “*” character is used.

<delay> The delay value in default time units.

Example 8–34. set_timing_derate Command and Options

set_timing_derate
[-cell_delay]
[-early]
[-ic_delay]
[-operating_conditions <operating_conditions>]
[<cells>]
[<derate_value>]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–53
Constraint and Exception Removal

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–27 describes the options for the set_timing_derate command:

Constraint and Exception Removal
When using the Quartus II TimeQuest Timing Analyzer interactively, it is usually
necessary to remove a constraint or exception. In cases where constraints and
exceptions either become outdated or have been erroneously entered, the Quartus II
TimeQuest Timing Analyzer provides a convenient way to remove them.

Table 8–28 lists commands that allow you to remove constraints and exceptions from
a design.

Table 8–27. set_timing_derate Command Options

Options Description

-cell_delay Specifies that derating factors are only to apply to cell delays.

-early Specifies the minimum derating factor. This factor specifies how early the signal can
arrive.

-ic_delay Specifies that derating factors are only to apply to interconnect delays.

-late Specifies the maximum derating factor. This factor specifies how late the signal can
arrive.

-operating_conditions
<operating_conditions>

Operating conditions Tcl object.

<cells> List of cell type objects.

<derate_value> Timing derate value.

Table 8–28. Constraint and Exception Removal

Command Description

remove_clock [-all] [<clock list>] Removes any clocks specified by <clock list> that have been
previously created. The -all option removes all declared clocks.

remove_clock_groups -all Removes all clock groups previously created. Specific clock
groups cannot be removed.

remove_clock_latency -source
<targets>

Removes the clock latency constraint from the clock specified by
<targets>.

remove_clock_uncertainty -from
<from clock> -to <to clock>

Removes the clock uncertainty constraint from <from clock> to
<to clock>.

remove_input_delay <targets> Removes the input delay constraint from <targets>.

remove_output_delay <targets> Removes the output delay constraint from <targets>.

remove_annotated_delay -all Removes any annotated delay specified with the
set_annotated_delay command.

reset_design Removes all constraints and exceptions in the design.

reset_timing_derate Resets all timing derating factors to default values.

8–54 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Timing Reports
The Quartus II TimeQuest Timing Analyzer provides real-time static timing analysis
result reports. Reports are generated only when requested. You can customize which
report to display specific timing information, excluding those fields not required.

This section describes various report generation commands supported by the
Quartus II TimeQuest Timing Analyzer.

report_timing
Use the report_timing command to generate a setup, hold, recovery, or removal
report. Example 8–35 shows the report_timing command and options.

Table 8–29 describes the options for the report_timing command.

Example 8–35. report_timing Command

report_timing
[-append]
[-detail <summary|path_only|path_and_clock|full_path>]
[-fall_to_clock <names>|-rise_to_clock <names>]
[-to <names>|-to_clock <names>]
[-false_path]
[-file <name>]
[-from <names>]
[-from_clock <names>|-rise_from_clock <names>|-fall_from_clock <names>]
[-less_than_slack <slack limit>]
[-npaths <number>]
[-nworst <number>]
[-pairs_only]
[-panel_name <name>]
[-setup|-hold|-recovery|-removal]
[-show_routing]
[-stdout]
[-through <names>]

Table 8–29. report_timing Command Options (Part 1 of 2)

Option Description

-append If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-detail <summary|path_only|
path_and_clock|full_path>

Specifies whether or not the clock path detail is reported:

Path Only: Clock network delay is lumped together

Summary: Lists each individual path

Path and Clock: Clock network delay is shown in detail

Full Path: More clock network details, in particular for generated
clocks

-fall_from_clock <names> Specifies the falling edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-fall_to_clock <names> Specifies the falling edge of the <names> to the destination register to be
analyzed; the options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-false_path Reports only paths that are cut by a false path assignment.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–55
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The report_timing command generates a report of the specified analysis type—
either setup, hold, recovery, or removal. Each of the column descriptions are
described in the Table 8–30.

-file <names> Sends the results to an ASCII or HTML file. The extension specified in the
file name determines the file type either *.rpt, *.txt, or *.html.

-hold Specifies a clock hold analysis.

-less_than_slack <slack limit> Limits the paths to be reported to the <slack limit> value.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Restricts the number of paths per endpoint.

-panel_name <names> Specifies the name of the panel in the Reports pane.

-panel_name <names> Sends the results to the panel and specifies the name of the new panel.

-pairs_only When set, paths with the same start and end points are considered
equivalent; only the worst-case path for each unique combination is
displayed.

-recovery Specifies a recovery analysis.

-removal Specifies a removal analysis.

-rise_from_clock <names> Specifies the rising edge of the <names> from the source register to be
analyzed; the options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-rise_to_clock <names> Specifies the rising edge of the <names> to the destination register to be
analyzed; the options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-setup Specifies a clock setup analysis.

-show_routing Displays detailed routing in the path.

-stdout Indicates the report will be sent to stdout.

-through <names> Specifies the through node for analysis.

-to <names> Specifies the to node for analysis.

-to_clock <names> Specifies the destination clock for analysis.

Table 8–29. report_timing Command Options (Part 2 of 2)

Option Description

Table 8–30. Timing Report Data

Column Name Description

Total Shows the accumulated time delay.

Incr Shows the increment in delay.

RF Shows the input and output transition of the element; this can be one of the
following: R, F, RR, RF, FR, FF.

Type Shows the node type; refer to Table 8–31 of a description of the various node
types.

Fanout Shows the number of fan-outs of the element.

Location Shows the location of the element in the FPGA.

Element Shows the name of the element.

8–56 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–31 provides a description of the possible node type in the report_timing
reports.

report_exceptions
Use the report_exceptions command to generate a report that details the slack of
all paths that have the timing exceptions set_false_path, set_multicycle,
set_min_delay, or set_max_delay applied to them.

The report_exceptions command can be used to determine if all exceptions have
been applied to the applicable paths in the design.

Example 8–36 shows the report_exceptions command and options.

Table 8–31. Type Description

Type Name Description

CELL Indicates the element is either a register or a combinational element in the FPGA; t.he
CELL can be a register in the ALM, memory blocks, DSP blocks, or I/O block

COMP Indicates the PLL clock network compensation delay.

IC Indicates the element is an interconnect delay.

utco Indicates the element’s micro clock-to-out time.

utsu Indicates the element’s micro setup time.

uth Indicates the element’s micro hold time.

iext Indicates the element’s external input delay time.

oext Indicates the element’s external output delay time.

LOOP Indicates a lumped delay bypassing combinational loops.

RE Indicates a specified routing delay.

Example 8–36. report_exceptions Command

report_exceptions
[-append]
[-detail <summary|path_summary|path_only|path_and_clock|full_path>]
[-fall_from_clock <names>]
[-fall_to_clock <names>]
[-file <name>]
[-from <names>]
[-from_clock <names>]
[-hold]
[-less_than_slack <slack limit>]
[-npaths <number>]
[-nworst <number>]
[-pairs_only]
[-panel_name <name>]
[-recovery]
[-removal]
[-rise_from_clock <names>]
[-rise_to_clock <names>]
[-setup]
[-stdout]
[-through <names>]
[-to <names>]
[-to_clock <names>]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–57
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–32 describes the options for the report_exceptions command.

Table 8–32. report_exceptions Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-detail <summary|path_only|
path_and_clock|full_path>

Specifies whether or not the clock path detail is reported:

Path Only: Clock network delay is lumped together

Summary: Lists each individual path

Path and Clock: Clock network delay is shown in detail

Full Path: More clock network details, in particular for generated
clocks

-fall_from_clock <names> Specifies the falling edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-fall_to_clock <names> Specifies the falling edge of the <names> to the destination register to be
analyzed; the options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-false_path Reports only paths that are cut by a false path assignment.

-file <names> Sends the results to an ASCII or HTML file. The extension specified in the
file name determines the file type either *.rpt, *.txt, or *.html.

-hold Specifies a clock hold analysis.

-less_than_slack <slack limit> Limits the paths to be reported to the <slack limit> value.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Restricts the number of paths per endpoint.

-panel_name <names> Specifies the name of the panel in the Reports pane.

-panel_name <names> Sends the results to the panel and specifies the name of the new panel.

-pairs_only When set, paths with the same start and end points are considered
equivalent; only the worst-case path for each unique combination is
displayed.

-recovery Specifies a recovery analysis.

-removal Specifies a removal analysis.

-rise_from_clock <names> Specifies the rising edge of the <names> from the source register to be
analyzed; the options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-rise_to_clock <names> Specifies the rising edge of the <names> to the destination register to be
analyzed; the options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-setup Specifies a clock setup analysis.

-show_routing Displays detailed routing in the path.

-stdout Indicates the report will be sent to stdout.

-through <names> Specifies the through node for analysis.

-to <names> Specifies the to node for analysis.

-to_clock <names> Specifies the destination clock for analysis.

8–58 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_metastability
Use the report_metastability command to generate a report that lists the
synchronization register chains for asynchronous transfers in your design, and details
the MTBF for synchronization register chains.

To enable metastability analysis, you must set the Synchronizer Identification option
to identify the synchronization register chains in the design. You can use automatic
identification to generate a list of possible synchronizers in the metastability report,
but MTBF is not reported for automatically-identified synchronizers.

The TimeQuest Timing Analyzer can analyze metastability MTBF only if a
synchronization chain meets its timing requirements. Therefore, it is important for
your design to be correctly constrained to get an accurate MTBF report. In addition,
automatic synchronizer identification uses timing constraints to automatically detect
the signal transfers between circuitry in unrelated or asynchronous clock domains, so
clock domains must be related correctly with the timing constraints.

f For details about metastability analysis and reporting, refer to the Managing
Metastability with the Quartus II Software chapter in volume 1 of the Quartus II
Handbook. This chapter describes how to use the Synchronizer Identification option,
explains how TimeQuest timing constraints affect synchronizer chain identification
and the reported MTBF, and provides details about the information reported with the
report_metastability command.

Table 8–33 describes the options for the report_metastability command.

Example 8–37. report_metastability command

report_metastabiity
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 8–33. report_metastability Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in
the file name determines the file type—either *.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the new
panel.

-stdout Indicates the report will be sent to the standard output, via messages.
This option is required only if you have selected another output
format, such as a file, and would also like to receive messages.

www.altera.com/literature/hb/qts/qts_qii51018.pdf
www.altera.com/literature/hb/qts/qts_qii51018.pdf

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–59
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

report_clock_transfers
Use the report_clock_transfers command to generate a report that details all
clock-to-clock transfers in the design. A clock-to-clock transfer is reported if a path
exists between two registers that are clocked by two different clocks. Information such
as the number of destinations and sources is also reported.

Use the report_clock_transfers command to generate a setup, hold, recovery,
or removal report.

Example 8–38 shows the report_clock_transfers command and options.

Table 8–34 describes the options for the report_clock_transfers command.

report_clocks
Use the report_clocks command to generate a report that details all clocks in the
design. The report contains information such as type, period, waveform (rise and fall),
and targets for all clocks in the design.

Example 8–39 shows the report_clocks command and options.

Example 8–38. report_clock_transfers Command

report_clock_transfers
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-recovery]
[-removal]
[-panel_name <name>]

Table 8–34. report_clock_transfers Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type either *.txt or *.html.

-hold Creates a clock transfer summary for hold analysis.

-setup Creates a clock transfer summary for setup analysis.

-stdout Indicates the report will be sent to stdout.

-recovery Creates a clock transfer summary for recovery analysis.

-removal Creates a clock transfer summary for removal analysis.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Example 8–39. report_clocks Command

report_clocks
[-append]
[-desc]
[-file <name>]
[-stdout]
[-panel_name <name>]

8–60 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–35 describes the options for the report_clocks command.

report_min_pulse_width
The report_min_pulse_width command checks that a clock high or low pulse is
sustained long enough to be recognized as an actual change in the clock signal. A
failed minimum pulse width check indicates that the register may not recognize the
clock transition. Use the report_min_pulse_width command to generate a report
that details the minimum pulse width for all clocks in the design. The report contains
information for high and low pulses for all clocks in the design.

The report_min_pulse_width command also reports minimum period checks for
RAM and DSP, as well as I/O edge rate limits for input and output clock ports. For
output ports, the port must either have a clock (or generated clock) assigned to it or
used as the -reference_pin for input/output delays.

The report_min_pulse_width command checks the I/O edge rate limits, but does
not always perform the check for output clock ports. For the
report_min_pulse_width command to check the I/O edge rate limits for output
clock ports, the output clock port must fall into one of the following categories:

■ Have a clock or generated clock constraint assigned to it

or

■ Use a -reference_pin for an input or output delay constraint

Each register in the design is reported twice per clock that clocks the register: once for
the high pulse and once for the low pulse. Example 8–40 shows the
report_min_pulse_width command and options.

Table 8–35. report_clocks Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-desc Specifies the clock names to sort in descending order. The default is ascending order.

-stdout Indicates the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Example 8–40. report_min_pulse_width Command

report_min_pulse_width
[-append]
[-file <name>]
[-nworst <number>]
[-stdout]
[<targets>]
[-detail_<summary | full_path>]
[-panel_name <name>]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–61
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–36 describes the options for the report_min_pulse_width command.

report_net_timing
Use the report_net_timing command to generate a report that details the delay
and fan-out information about a net in the design. A net corresponds to a cell’s output
pin.

Example 8–41 shows the report_net_timing command and options.

Table 8–37 describes the options for the report_net_timing command.

Table 8–36. report_min_pulse_width Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-nworst <number> Specifies the number of pulse width checks to report. The default is 1.

-stdout Redirects the output to stdout via messages; only required if another output format, such
as a file, has been selected and is also to receive messages.

<targets> Specifies registers.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Example 8–41. report_net_timing Command

report_net_timing
[-append]
[-file <name>]
[-nworst_delay <number>]
[-nworst_fanout <number>]
[-stdout]
[-panel_name <name>]

Table 8–37. report_net_timing Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-nworst_delay <number> Specifies that <number> worst net delays be reported.

-nworst_fanout <number> Specifies that <number> worst net fan-outs be reported.

-stdout Indicates the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

8–62 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_sdc
Use the report_sdc command to generate a report of all the Synopsys design
constraints in the project.

Example 8–42 shows the report_sdc command and options.

Table 8–38 describes the options for the report_sdc command.

report_ucp
Use the report_ucp command to generate a report of all unconstrained paths in the
design.

Example 8–43 shows the report_ucp command and options.

Table 8–39 describes the options for the report_ucp command.

Example 8–42. report_sdc Command

report_sdc
[-ignored]
[-append]
[-file]
[-stdout]
[-panel_name <name>]

Table 8–38. report_sdc Command Options

Option Description

-ignored Reports assignments that were ignored.

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-stdout Indicates that the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Example 8–43. report_ucp Command

report_ucp
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-summary]
[-panel_name <name>]

Table 8–39. Option Descriptions for report_ucp (Part 1 of 2)

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–63
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–40 summarizes all reporting commands available in the Quartus II TimeQuest
Timing Analyzer.

-hold Reports all unconstrained hold paths.

-setup Reports all unconstrained setup paths.

-stdout Indicates the report be sent to stdout.

-summary Generates only the summary panel.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Table 8–39. Option Descriptions for report_ucp (Part 2 of 2)

Option Description

Table 8–40. Reports from the Tasks Pane and Tcl Commands

Task Pane Report Tcl Command Description

Report Setup
Summary

create_timing_summary -setup Generates a clock setup summary for all defined
clocks.

Report Hold
Summary

create_timing_summary -hold Generates a clock hold summary for all defined
clocks.

Report Recovery
Summary

create_timing_summary -recovery Generates a clock recovery summary for all
defined clocks.

Report Removal
Summary

create_timing_summary -removal Generates a clock removal summary for all
defined clocks.

Report Clocks report_clocks Generates a clock summary for all defined clocks.

Report Clock
Transfers

report_clock_transfers Generates a clock transfer summary for all
clock-to-clock transfers in the design.

Report SDC report_sdc Generates a summary of all .sdc file commands
read.

Report Unconstrained
Paths

report_ucp Generates a summary of all unconstrained paths
in the design.

Report Timing report_timing Generates a detailed summary for specific paths
in the design.

Report Net Timing report_net_timing Generates a detailed summary for specific nets in
the design.

Report Minimum
Pulse Width

report_min_pulse_width Generates a detailed summary for specific
registers in the design.

Create Slack
Histogram

create_slack_histogram Generates a detailed histogram for a specific
clock in the design.

8–64 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_bottleneck
Use the report_bottleneck command to report a rating per node based on the
number of failing paths through each node for the worst 1,000 setup paths.
Example 8–44 shows the report_bottleneck command and options.

By default, the report_bottleneck command reports a rating for the worst 1,000
setup paths.

In addition to the default metric, there are a few additional “standard” metrics to
choose from, such as:

■ -metric num_fanouts

■ -metric tns

You can also create a custom metric to evaluate the nodes based on the combination of
the number of fanouts, fanins, failing paths, total paths, and other keepers. The paths
to be analyzed can be specified by passing the result of any get_timing_paths call
as the last argument to report_bottleneck.

Table 8–41 describes the options for the report_bottleneck command.

Example 8–45 shows how to create a custom metric with the report_bottleneck
command.

Example 8–44. report_bottleneck Command

report_bottleneck
[-cmetric <cmetric_name>]
[-details]
[-metric <default|tns|num_paths|num_fpaths|num_fanins|num_fanouts>]
[-panel <panel_name>]
[-stdout]
[<paths>]

Table 8–41. report_bottleneck Command

Option Description

-cmetric <cmetric_name> Custom metric function to evaluate individual nodes.

-details Show the detailed information (number of failing edges,
number of fan-ins, and so forth).

-metric <default|tns|num_paths|num_fpaths|
num_fanins|num_fanouts>

Indicate the metric to use to rate individual nodes.

-panel <panel_name> Sends the results to the panel and specifies the name of the
new panel.

-stdout Indicates the report will be sent to stdout.

<paths> Paths to be analyzed.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–65
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

report_datasheet
Use the report_datasheet command to generate a datasheet report which
summarizes the timing characteristics of the entire design. It reports setup (tsu), hold
(th), clock-to-output (tco), minimum clock-to-output (mintco), propagation delay
(tpd), and minimum propagation delay (mintpd) times. Example 8–46 shows the
report_datasheet command and options.

Table 8–42 describes the options for the report_datasheet command.

The delays are reported with respect to a base clock or port for which they are
relevant. If there is a case where there are multiple paths for a clock, the maximum
delay of the longest path is taken for the tSU, tH, tCO, and tPD, and the minimum delay of
the shortest path is taken for mintCO and mintPD.

Example 8–45. report_bottleneck Custom Metric

#set the number of paths to be reported
set paths [get_timing_paths -npaths 1000 -setup]

#create the custom metric
proc report_bottleneck_custom_metric {arg} {

Description: use the number of fanins as the custom metric.
upvar $arg metric
set rating $metric(num_fanins)
return $rating

}
#reporting the results of the custom metric
report_bottleneck -cmetric report_bottleneck_custom_metric -panel
"Timing Analysis Bottleneck Report - Custom" $paths

Example 8–46. report_datasheet Command

report_datasheet
[-append]
[-file <name>]
[-stdout]
[panel_name <name>]

Table 8–42. report_datasheet Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-stdout Indicates the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

8–66 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_rskm
Use the report_rskm command to generate a report that details the receiver skew
margin for LVDS receivers.

Example 8–47 shows the report_rskm command and options.

Table 8–43 describes the options for the report_rskm command.

The receiver input skew margin (RSKM) is the time margin available before the LVDS
receiver megafunction fails to operate. RSKM is defined as the total time margin that
remains after subtracting the sampling window (SW) size and the receiver
channel-to-channel skew (RCCS) from the time unit interval (TUI), as expressed in the
formula shown in Equation 8–11:

The time unit interval is the LVDS clock period (1/fMAX). The sampling window is the
period of time that the input data must be stable to ensure that the data is successfully
sampled by the LVDS receiver megafunction. The sampling window size varies by
device speed grade; RCCS reflects channel-to-channel skew seen by the LVDS
receiver. This RCCS includes transmitter channel-to-channel skew (TCCS) of the
upstream transmitter and maximum channel-to-channel skew between the
transmitter and receiver. RCCS is equal to the difference between the maximum input
delay and minimum input delay. If no input delay is set, RCCS defaults to zero.

Example 8–47. report_rskm Command

report_rskm
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 8–43. report_rskm Command Options

Type Name Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report will be sent to stdout.

Equation 8–11.

RSKM TUI SW RCCS–– 
2

---=

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–67
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

report_tccs
Use the report_tccs command to generate a report that details the
channel-to-channel skew margin for LVDS transmitters.

Example 8–48 shows the report_tccs command and options.

Table 8–44 describes the options for the report_tccs command.

The TCCS is the timing difference between the fastest and slowest output transitions,
including tCO variations and clock skew.

report_partitions
Use the report_partitions command to generate a timing report listing the
worst-case setup checks for each partition in the design.

Example 8–49 shows the report_partitions command and options.

Table 8–45 describes the options for the report_partitions command.

Example 8–48. report_tccs Command

report_tccs
[-append]
[-file <name>]
[-panel_name <name>]
[-quiet]
[-stdout]

Table 8–44. report_tccs Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the –file option.

-file <name> Indicates that the current report is written to the file <name>.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-quiet Specifies that nothing is printed if there are no LVDS receivers in the design.

-stdout Indicates the report will be sent to stdout.

Example 8–49. report_partitions Command

report_partitions
[-nworst <number>]
[-panel_name <name>]
[-stdout]

Table 8–45. report_partitions Command Options

Type Name Description

-nworst Specifies the maximum number of paths to report for each endpoint.

-panel_name Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report will be sent to stdout.

8–68 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_path
Use the report_path command to generate a report that details the longest delay
paths between any two arbitrary keeper nodes.

Example 8–50 shows the report_path command and options.

Table 8–46 describes the options for the report_path command.

1 The delay path reported cannot pass through a keeper node; for example, a register or
port. Instead, the delay path must be from the output pin of a keeper node to the input
pin of a keeper node.

Figure 8–34 shows a simple design with a register-to-register path.

Example 8–50. report_path Command

report_path
[-append]
[-file <name>]
[-from <names>]
[-min_path]
[-npaths <number>]
[-nworst <number>]
[-panel_name <name>]
[-stdout]
[-summary]
[-through <names>]
[-to <names>]

Table 8–46. report_path Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the start
point of the path.

-min_path Displays the minimum delay paths.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Specifies the maximum number of paths to report for each endpoint.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report will be sent to stdout.

-summary Creates a single table with a summary of each path found.

-through <names> The <names> is a collection or list of objects in the design. Specifies false path passes
through <names>.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the end point
of the path.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–69
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 8–51 shows the report generated from the following command:

report_path -from [get_pins {reg1|regout}] -to [get_pins \
{reg2|datain}] -npaths 1 -panel_name "Report Path" –stdout

Example 8–52 shows the report generated from the following command:

report_path -from [get_ports data_in_a] -to [get_pins {reg2|regout}] \
-npaths 1

No paths were reported in Example 8–52 because the destination passes through an
input pin of a keeper node.

Figure 8–34. Simple Register-to-Register Path

Example 8–51. report_path from Keeper Output Pin to Keeper Input Pin

Info: ===
Info: From Node : reg1|regout
Info: To Node : reg2|datain
Info:
Info: Path:
Info:
Info: Total (ns) Incr (ns) Type Element
Info: ========== ========= == ==== ===================
Info: 0.000 0.000 reg1|regout
Info: 0.206 0.206 RR IC and2|datae
Info: 0.360 0.154 RR CELL and2|combout
Info: 0.360 0.000 RR IC reg2|datain
Info:
Info: Total Path Delay : 0.360
Info: ===

Example 8–52. report_path from Keeper-to-Keeper Output Pin

Info: Report Path: No paths were found
0 0.000

data_in_a

data_in_b

clk_i

reg1
D Q

reg2
D Q data_out

clk_out

and2

PLL

c0

c1

8–70 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

report_net_delay
Use the report_net_delay to generate a slack report for paths constrained with the
set_net_delay command. The report_net_delay command reports the results
of all set_net_delay commands in a single report. The report contains each
set_net_delay command with the worst case slack result followed by the results of
each edge matching the criteria set by that set_net_delay command. These results
are ordered based on the slack value. Example 8–53 shows the report_net_delay
command and options.

Table 8–47 describes the options for the report_net_delay command.

report_max_skew
Use the report_max_skew to generate a slack report for paths constrained with the
set_max_skew command. The report_max_skew command reports the results of
all set_max_skew commands in a single report. The report contains each
set_max_skew command with the worst case slack result followed by the results of
each path matching the criteria set by that set_max_skew command. These results
are ordered based on the slack value. Example 8–54 shows the report_max_skew
command and options.

Example 8–53. report_net_delay Command

report_net_delay
[-append]
[-file <name>]
[-nworst <number>]
[-panel_name <name>]
[-stdout]

Table 8–47. report_net_delay Command Options

Options Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file is
overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

-nworst <number> Specifies the maximum number of paths to report for each analysis. If unspecified, there is no
limit.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Send output to stdout, via messages. You only have to use this option if you have selected
another output format, such as a file, and would also like to receive messages.

Example 8–54. report_max_skew Command

report_max_skew
[-detail <summary|path_only|path_and_clock|full_path>]
[-file <name>]
[-less_than_slack <slack limit>]
[-npaths <number>]
[-panel_name <name>]
[-show_routing]
[-stdout]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–71
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–48 describes the options for the report_max_skew command.

1 No results are displayed if the -from/-from_clock and -to/-to_clock are
applied to less than two paths.

report_skew
This report performs skew analysis on specified paths. If valid set_max_skew
constraints exist, this report computes skew with respect to the latest and the earliest
arrival of each path.

1 Unlike the report_max_skew command, the report_skew command does not
depend on the existance of set_max_skew assignments.

Skew for the latest arrival is computed by comparing the latest arrival of each path
with the earliest arrival of the path that has the smallest value for early arrival of all
other paths included in the constraint. Similarly, skew for the earliest arrival is
computed by comparing the earliest arrival of each path with the latest arrival of the
path that has the largest value for late arrival of all other paths included in the
constraint. No path is compared with itself.

The return value of this command is a two-element list. The first number is the
number of paths found in the analysis. The second is the worst-case skew, in terms of
the current default time unit.

Example 8–55 shows the report_skew command and options.

Table 8–48. report_max_skew Command Options

Option Description

[-detail
<summary|path_only|
path_and_clock|full
_path>]

Specifies whether or not the clock path detail is reported:

Path Only: Clock network delay is lumped together

Summary: Lists each individual path

Path and Clock: Clock network delay is shown in detail

Full Path: More clock network details, in particular for generated clocks

[-file <name>] Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type—either *.txt or *.html.

[-less_than_slack
<slack limit>]

Limits the paths reported to the
<slack limit> value.

[-npaths <number>] Specifies the number of paths to report.

[-panel_name
<name>]

Sends the results to the panel and specifies the name of the new panel.

[-show_routing] Displays detailed routing in the path.

[-stdout] Indicates the report will be sent to stdout.

8–72 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–49 describes the options for the report_skew command.

Example 8–55. report_skew Command Options

report_skew
-detail <summary|path_only|path_and_clock|full_path>]

[-exclude <Tcl list>]
[-fall_from_clock <names>]
[-fall_to_clock <names>]
[-file <name>]
[-from <names>]
[-from_clock <names>]
[-greater_than_skew <slack limit>]
[-include <Tcl list>]
[-npaths <number>]
[-panel_name <name>]
[-rise_from_clock <names>]
[-rise_to_clock <names>]
[-show_routing]
[-stdout]
[-through <names>]
[-to <names>]
[-to_clock <names>]

Table 8–49. report_skew Command Options (Part 1 of 2)

Options Description

-detail
<summary|path_only|path_an
d_clock|full_path>

Specifies whether or not the clock path detail is reported:

■ Path Only: Clock network delay is lumped together. Summary: Lists each
individual path

■ Path and Clock: Clock network delay is shown in detail

■ Full Path: More clock network details, in particular for generated clocks

-exclude Specifies whether to exclude one or more of the following: register micro
parameters (utsu, uth, utco), clock arrival times (from_clock, to_clock),
clock uncertainty (clock_uncertainty) and input and output delays
(input_delay, output_delay). By default, max skew analysis includes data
arrival times, clock arrival times, register micro parameters and clock uncertainty.
When -exclude is used, those in the exclusion list will be removed from the
default analysis.

-fall_from_clock <names> Specifies the falling edge of the <names> from the source register for analysis
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-fall_to_clock <names> Specifies the falling edge of the <names> to the destination register to be analyzed.
The options from_clock, fall_from_clock, and rise_from_clock
are mutually exclusive.

-file <names> Sends the results to an ASCII or HTML file. The extension specified in the file name
determines the file type, either .rpt, .txt, or .html.

-from <names> Specifies the from node for analysis.

-from_clock <names> Specifies the source clock.

-greater_than_skew <slack
limit>

Limit the paths reported to those with skew values greater than the specified limit.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–73
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

check_timing
Use the check_timing command to generate a report on any potential problem with
the design or applied constraints. Not all check_timing results are serious issues.
The results should be examined to see if the results are desired. Example 8–56 shows
the check_timing command and options.

-include Specifies whether to include one or more of the following: register micro
parameters (utsu, uth, utco), clock arrival times (from_clock, to_clock),
clock uncertainty (clock_uncertainty) and input and output delays
(input_delay, output_delay). By default, max skew analysis includes data
arrival times, clock arrival times, register micro parameters and clock uncertainty.
When -include is used, those in the inclusion list will be added to the default
analysis.

-npaths <number> Specifies the number of paths to report.

-panel_name <names> Specifies the name of the panel in the Reports pane.

-rise_from_clock <names> Specifies the rising edge of the <names> from the source register to be analyzed.
The options from_clock, fall_from_clock, and rise_from_clock
are mutually exclusive.

-rise_to_clock <names> Specifies the rising edge of the <names> to the destination register to be analyzed.
The options from_clock, fall_from_clock, and rise_from_clock
are mutually exclusive.

-show_routing Displays detailed routing in the path.

-stdout Indicates the report will be sent to stdout.

-through <names> Specifies the through node for analysis.

-to <names> Specifies the to node for analysis.

-to_clock <names> Specifies the destination clock for analysis.

Table 8–49. report_skew Command Options (Part 2 of 2)

Options Description

Example 8–56. check_timing Command

check_timing
[-append]
[-file <name>]
[-include <check_list>]
[-stdout]
[-panel_name <name>]

8–74 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 8–50 describes the options for the check_timing command.

Table 8–51 describes the possible checks.

Table 8–50. check_timing Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-include Indicates that a check is to be performed with the <check_list>. Refer to Table 8–51 for a list
of checks.

-stdout Indicates the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Table 8–51. Possible Checks (Part 1 of 2)

Option Description

no_clock Checks that registers have at least one clock at their clock pin and ensures that ports
determined to be clocks have a clock assigned to them.

multiple_clock Checks that registers have at most one clock at their clock pin. When multiple clocks
reach a register's clock pin, both clocks are used for analysis.

generated_clock Checks that generated clocks are valid. Generated clocks must have a source that is
clocked by a valid clock. They must also not depend on each other in a loop (clk1
cannot have clk2 as a source if clk2 already uses clk1 as a source).

no_input_delay Checks that every input port that is not determined to be a clock has an input delay set
on it.

no_output_delay Checks that every output port has an output delay set on it.

partial_input_delay Checks that input delays are complete. Makes sure that input delays have a rise-min,
fall-min, rise-max, and fall-max portion set.

partial_output_delay Checks that output delays are complete. Makes sure that output delays have a rise-min,
fall-min, rise-max, and fall-max portion set.

reference_pin Checks if reference pins specified in set_input_delay and
set_output_delay using the reference_pin option are valid. A reference_pin is
valid if the clock option specified in the same
set_input_delay/set_output_delay command matches the clock that is in
the direct fan-in of the reference_pin. Being in the direct fan-in of the
reference_pin means that there must be no keepers between the clock and
reference_pin.

latency_override Ensures that the clock latency constraint applied on a port or pin overrides the more
generic clock latency set on a clock. Clock latency set to a clock applies to all keepers
clocked by the clock. Clock latency set to a pin or a port applies to registers in the
fan-out of the port or pin.

loops Checks that there are no strongly connected components in the design. These loops
prevent a design from being properly analyzed. Indicates that loops exist but were
marked so that they would not be traversed.

latches Checks whether there are latches in the design. The Quartus II TimeQuest Timing
Analyzer warns the user that the latches exist and cannot be properly analyzed.

pos_neg_clock_domain Checks whether any register is clocked by both the rising and falling edges of the same
clock. if this scenario is necessary, such as in a clock multiplexer, create two separate
clocks that have similar settings and are assigned to the same node.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–75
Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 8–57 shows how the check_timing command can be used.

report_clock_fmax_summary
Use the report_clock_fmax_summary to report potential fMAX for every clock in
the design, regardless of the user-specified clock periods. fMAX is only computed for
paths where the source and destination registers or ports are driven by the same
clock. Paths of different clocks, including generated clocks, are ignored. For paths
between a clock and its inversion, fMAX is computed as if the rising and falling edges
are scaled along with fMAX, such that the duty cycle (in terms of a percentage) is
maintained.

pll_cross_check Checks the clocks that are assigned to a PLL against the PLL setting defined in the
user’s design files. Inconsistent setting or an unmatched number of clocks associated
with the PLL are reported to the user.

no_uncertainty Checks that each clock-to-clock transfer has a clock uncertainty assignment set
between the two clocks.

virtual_clock Checks that each virtual clock is referenced.

partial_multicycle Checks that each setup multicycle assignment has a corresponding hold multicycle
assignment, and each hold multicycle assignment has a corresponding setup multicyle
assignment.

multicycle_consistency Checks that all of the multicycle cases in which a setup multicycle does not equal one
greater than the hold multicycle. Hold multicycle assignments are usually one cycle
fewer than setup multicycle assignments.

partial_min_max_delay Verifies that each minimum delay assignment has a corresponding maximum delay
assignment, and that each maximum delay assignment has a corresponding minimum
delay assignment.

clock_assignments_
on_output_ports

Checks that reports all of the clock assignments that have been applied to output ports.

generated_io_delay Checks that all of the I/O delays with no reference pin, generated -clock, or no
-source_atencey_included.

Table 8–51. Possible Checks (Part 2 of 2)

Option Description

Example 8–57. The check_timing Command

Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } \
[get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to \
[get_keepers out]

Check if there were any problems for combinational loops, latches, or
misssing or incomplete input delays
check_timing -include {loops latches no_input_delay
partial_input_delay}

8–76 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Example 8–58 shows the report_clock_fmax_summary command and options.

Table 8–52 describes the options for the report_clock_fmax_summary command.

The fMAX Summary report contains four columns: fMAX, Restricted fMAX, Clock Name,
and Note. The description of each column is given in Table 8–53.

create_timing_summary
Reports the worst-case clock setup and clock hold slacks and endpoint total negative
slack (TNS) per clock domain. Total negative slack is the sum of all slacks less than
zero for each destination register or port in the clock domain.

Example 8–59 shows the create_timing_summary command and options.

Example 8–58. report_clock_fmax_summary Command

report_clock_fmax_summary
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 8–52. report_clock_fmax_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-stdout Indicates the report will be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Table 8–53. fMAX Summary Report Column

Column Name Description

fMAX Shows the fastest possible frequency at which the internal register-to-register can run. This is not the
fastest the clock port can be driven.

Restricted fMAX Shows fastest possible frequency at which the clock port can run. This number may be lower than the fMAX
column for various reasons, including hold timing requirements, I/O edge rate limits for clocks (which also
depends on I/O standards), minimum pulse width checks for registers, and minimum period checks for
RAM and DSP registers.

Clock Name Shows the clock name.

Note Shows any notes related to the clock.

Example 8–59. create_timing_summary Command

create_timing_summary
[-append]
[-file <name>]
[-hold]
[-mpw]
[-panel_name <name>]
[-recovery]
[-removal]
[-setup]
[-stdout]

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–77
Timing Analysis Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 8–54 describes the options for the create_timing_summary command.

Timing Analysis Features
The TimeQuest Timing Analyzer supports many features that enhances and provides
a through analysis of your designs. This section covers the many features available in
the TimeQuest Timing Analyzer.

Multi-Corner Analysis
Multi-corner analysis allows a design to be verified under a variety of operating
conditions (voltage, process, and temperature) while performing a static timing
analysis on the design.

Use the set_operating_conditions command to change the operating
conditions or speed grade of the device used for static timing analysis.

Example 8–60 shows the set_operating_conditions command and options.

Table 8–55 describes the options for the set_operating_conditions command.

Table 8–54. create_timing_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Generates a clock hold check summary report.

-mpw Generates a minimum pulse width analysis report.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-recovery Generates a recovery check summary report.

-removal Generates a removal check summary report.

-setup Generates a clock setup check summary report.

-stdout Indicates the report will be sent to stdout.

Example 8–60. set_operating_conditions Command

set_operating_conditions
[-model <fast|slow>]
[-speed <speed grade>]
[-temperature <value in ºC>]
[-voltage <value in mV>]
[<operating condition Tcl object>]

Table 8–55. set_operating_conditions Command Options (Part 1 of 2)

Option Description

-model <fast|slow> Specifies the timing model.

-speed <speed grade> Specifies the device speed grade.

-temperature <value in ºC> Specifies the operating temperature.

8–78 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If an operating condition Tcl object is used, the model, speed, temperature, and
voltage options are not required. If an operating condition Tcl object is not used, the
model must be specified, and the -speed, -temperature, and -voltage options are
optional, using the appropriate defaults for the device where applicable.

Table 8–56 shows a few of the available operating conditions that can be set for each
device family.

1 Use the get_available_operating_conditions-all command to obtain a list
of available operating conditions for the target device.

Table 8–57 shows the operating conditions of each model for device families that
support only two operating conditions, that is, fast and slow.

A static timing analysis should be performed under all available operating conditions.
This ensures that no violations will occur under various conditions during the device
operation.

-voltage <value in mV> Specifies the operating voltage.

<operating condition Tcl object> Specifies the operating condition Tcl object that specifies the operating
conditions.

Table 8–55. set_operating_conditions Command Options (Part 2 of 2)

Option Description

Table 8–56. Device Family Operating Conditions

Device Family

Available Conditions

Operating Condition Tcl Objects
Speed
Grade Model

Voltage
(mV) Temp (°C)

Stratix III 4 Slow

Slow

Fast

1100

1100

1100

85

0

0

4_slow_1100mv_85c 4_slow_1100mv_0c

MIN_fast_1100mv_0c

Cyclone® III 7 Slow

Slow

Fast

1200

1200

1200

85

0

0

7_slow_1200mv_85c 7_slow_1200mv_0c

MIN_fast_1200mv_0c

Stratix II 4 Slow

Fast

— — 4_slow

MIN_fast

Cyclone II 6 Slow

Fast

— — 6_slow

MIN_fast

Table 8–57. Operating Conditions for Fast and Slow Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in device density Vcc minimum supply (1) Maximum TJ (1)

Fast Fastest speed grade in device density Vcc maximum supply (1) Minimum TJ (1)

Note toTable 8–57:

(1) Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for Vcc and TJ.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–79
Timing Analysis Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 8–61 shows how to set the operating conditions for a Stratix III design to the
slow model, 1100 mV, and 85° C.

Alternatively, you can set the operating conditions in Example 8–61 with the Tcl object
as shown in Example 8–62.

Advanced I/O Timing and Board Trace Model Assignments
The Quartus II TimeQuest Timing Analyzer is able to use Advanced I/O Timing and
Board Trace Model assignments to model I/O buffer delays in your design.

To turn the Advanced I/O feature on or off, in the Settings dialog box, under the
TimeQuest Timing Analyzer option, choose on or off.

If you turn the Advanced I/O Timing on or off or change Board Trace Model
assignments and do not recompile before you analyze timing, you must use the
-force_dat command when you create the timing netlist. Type the following
command in the Tcl console of the Quartus II TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you turn the Advanced I/O Timing or change Board Trace Model assignments on or
off and recompile before you analyze timing, you do not have to use the -force_dat
command when you create the timing netlist. You can create the timing netlist with
the create_timing_netlist command, or with the Create Timing Netlist task in
the Tasks pane.

f For more information about the Advanced I/O Timing feature, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Wildcard Assignments and Collections
To simplify the task of applying constraints to many nodes in a design, the Quartus II
TimeQuest Timing Analyzer accepts the “*” and “?” wildcard characters. Use these
wildcard characters to reduce the number of individual constraints you must specify
in your design.

The “*” wildcard character matches any string. For example, given an assignment
made to a node specified as reg*, the Quartus II TimeQuest Timing Analyzer
searches for and applies the assignment to all design nodes that match the prefix reg
with none, one, or several characters following, such as reg1, reg[2], regbank, and
reg12bank.

The “?” wildcard character matches any single character. For example, given an
assignment made to a node specified as reg?, the Quartus II TimeQuest Timing
Analyzer searches and applies the assignment to all design nodes that match the
prefix reg and any single character following; for example, reg1, rega, and reg4.

Example 8–61. Setting Operating Conditions with Individual Values

set_operating_conditions -model slow -temperature 85 -voltage 1100

Example 8–62. Setting Operating Conditions with a Tcl Object

set_operating_conditions 4_slow_1100mv_85c

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/lit-qts.jsp

8–80 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Both the collection commands get_cells and get_pins have three options that
allow you to refine searches that include the wildcard character. To refine your search
results, select the default behavior, the -hierarchical option, or the
-compatibility option.

1 The pipe character is used to separate one hierarchy level from the next in the
Quartus II TimeQuest Timing Analyzer. For example, <absolute full cell name>|<pin
suffix> represents a hierarchical pin name with the “|” separating the hierarchy from
the pin name.

When you use the collection commands get_cells and get_pins without an
option, the default search behavior is performed on a per-hierarchical level of the pin
name; that is, the search is performed level by level. A full hierarchical name may
contain multiple hierarchical levels where a “|” is used to separate the hierarchical
levels, and each wildcard character represents only one hierarchical level. For
example,”*” represents the first hierarchical level and “*|*” represents the first and
second hierarchical levels.

When you use the collection commands get_cells and get_pins with the
-hierarchical option, a recursive match is performed on the relative hierarchical
path name of the form <short cell name>|<pin name>. The search is performed on the
node name; for example, the last hierarchy of the name and not the hierarchy path.
Unlike the default behavior, this option does not limit the search to each hierarchy
level represented by the pipe character.

1 The pipe character cannot be used in the search with the get_cells
-hierarchical option. However, the pipe character can be used with the
get_pins collection search.

When you use the collection commands get_cells and get_pins with the
-compatibility option, the search performed is similar to that of the Quartus II
Classic Timing Analyzer. This option searches the entire hierarchical path and pipe
characters are not treated as special characters.

Assuming the following cells exist in a design:

foo
foo|bar

and the following pin names:

foo|dataa
foo|datab
foo|bar|datac
foo|bar|datad

Table 8–58 shows the results of using these search strings.

Table 8–58. Sample Search Strings and Search Results (Part 1 of 2)

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty>

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–81
Timing Analysis Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Resetting a Design
Use the reset_design command to remove all timing constraints and exceptions
from the design under analysis. The command removes all clocks, generated clocks,
derived clocks, input delays, output delays, clock latency, clock uncertainty, clock
groups, false paths, multicycle paths, min delays, and max delays.

This command provides a convenient way to return to the initial state of analysis
without the need to delete and re-create a new timing netlist.

Cross-Probing
The cross-probing feature allows you to locate paths and elements from the
TimeQuest Timing Analyzer to various tools available in the Quartus II software (and
vice versa).

From the TimeQuest GUI, you can right-click any path in the View pane and select
either Locate Path or Locate.

The source is the element in the From Node column and the destination is the element
in the To Node column.

The Locate Path option allows you to located the data arrival path, default, of the
currently selected row. To locate the data required time path select a row in the data
required path panel.

1 The Locate Required Path command is available only when there is a path to show;
unless the user reports the clock path as well, there is probably only a single node in
the required path. In this case, the command is not available.

The Locate option allows you to locate the highlighted element.

The Locate Path and Locate commands can cross-probe to either the Chip Planner,
Technology Map Viewer, or Resource Property Editor. Additionally, the Locate Path
option can cross-probe to Critical Path Settings.

From the Critical Path Settings dialog box in the Chip Planner, you can cross-probe to
the TimeQuest Timing Analyzer to report critical paths in the design.

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility *|datac foo|bar|datac

get_pins -compatibility *|*|datac foo|bar|datac

Note to Table 8–58:

(1) Due to the additional *|*| in the search string, the search result is <empty>.

Table 8–58. Sample Search Strings and Search Results (Part 2 of 2)

Search String Search Result

8–82 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Timing Analysis Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

locate
Use the locate command in the Console pane to cross-probe to the Chip Editor,
Critical Path Settings, Resource Property Editor, and the Technology Map Viewer.

Example 8–63 shows the locate command and options.

Table 8–59 describes the options for the locate command.

Example 8–64 shows how to cross-probe ten paths from TimeQuest Timing Analyzer
to the Chip Editor and locate all data ports in the Technology Map Viewer.

Example 8–63. locate Command

locate
[-chip]
[-color <black|blue|brown|green|grey|light_grey|orange|purple|red|white>]
[-cps]
[-label <label>]
[-rpe]
[-tmv]
<items>

Table 8–59. locate Options

Option Description

-chip Locates the object in the Chip Planner.

-color
<black|blue|brown|green|
grey|light_grey|orange|
purple|red|white>

Identifies the objects you are locating.

-cps Locates the object in the Critical Path Settings dialog of the Chip Planner.

-label <label> Specifies a label used to identify the objects you are locating.

-rpe Locates in the Resource Property Editor.

-tmv Locates the object in the Technology Map Viewer.

<items> Items to locate. Any collection or object (such as paths, points, nodes, nets,
keepers, registers, etc.) may be located by passing a reference to the
corresponding collection or object.

Example 8–64. Cross-probing from TimeQuest

Locate all of the nodes in the longest ten paths
into the Chip Editor
locate [get_path -npaths 10] -chip

locate all ports that begin with data to the Tech Map Viewer

locate [get_ports data*] -tmv

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–83
The TimeQuest Timing Analyzer GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The TimeQuest Timing Analyzer GUI
The Quartus II TimeQuest Timing Analyzer provides an intuitive and easy-to-use
GUI that allows you to efficiently constrain and analyze your designs. The GUI
consists of the following panes:

■ “The Quartus II Software Options and Compilation Report” described on
page 8–84

■ “View Pane” described on page 8–84

■ “Tasks Pane” described on page 8–87

■ “Console Pane” described on page 8–89

■ “Report Pane” described on page 8–89

■ “Constraints” described on page 8–89

■ “Name Finder” described on page 8–91

■ “Target Pane” described on page 8–92

■ “SDC Editor” described on page 8–93

Each pane provides features that enhance productivity (Figure 8–35).

Figure 8–35. The TimeQuest GUI

8–84 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II Software Options and Compilation Report
The Quartus II software allows you to configure various options for the Quartus II
TimeQuest Timing Analyzer report generation that are generated in the Compilation
Report for the design.

The TimeQuest Timing Analyzer settings, in the Settings dialog box, allow you to
configure the options shown in Table 8–60.

1 The options shown in Table 8–60 control only the reports generated in the
Compilation Report, and do not control the reports generated in the Quartus II
TimeQuest Timing Analyzer.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS
assignment to generate a report of the worst-case timing paths for each clock domain.
This report contains worst case timing data for setup, hold, recovery, removal, and
minimum pulse width checks.

Use the TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to
specify the number of paths to report for each clock domain.

Example 8–65 shows the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS and
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments as they
appear in a .qsf.

View Pane
The View pane is the main viewing area for the timing analysis results. Use the View
pane to view summary reports, custom reports, or histograms. Figure 8–36 shows the
View pane after you select the Summary (Setup) report from the Report pane.

Table 8–60. The Quartus II TimeQuest Timing Analyzer Settings

Options Description

.sdc files to include in the project Adds and removes .sdc files associated with the project.

Enable Advanced I/O Timing Generates advanced I/O timing results from board trace models specified for each pin.

Enable multicorner timing analysis
during compilation

Generates multiple reports for all available operating conditions of the target device.

Report worst-case paths during
compilation

Generates worst-case path reports per clock domain.

Tcl Script File for customizing
report during compilation

Specifies any custom scripts to be sourced for any custom report generation.

Example 8–65. Specifying generation of a Worst Case Timing Report

#Enable Worst Case Timing Report
set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON
#Report 10 paths per clock domain
set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–85
The TimeQuest Timing Analyzer GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

View Pane: Splitting
For analyzing the timing results properly, comparing multiple reports is extremely
important. To facilitate multiple report viewing, the View pane supports window
splitting. Window splitting divides the View pane into multiple windows, allowing
you to view different reports side-by-side.

You can split the View pane into multiple windows using the split icon located in the
upper right corner of the View pane. Drag the icon in different directions to generate
additional window views in the View pane. For example, if you drag the split icon to
the left, the View pane creates a new window to the right of the current window
(Figure 8–37).

If you drag the split icon diagonally, the View pane creates three new windows in the
View pane (Figure 8–38).

Figure 8–36. Summary (Setup) Report

Figure 8–37. Splitting the View Pane to the Left (Before and After Split Left)

8–86 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Drag the split icon downward to create a new window directly below the current
window.

View Pane: Removing Split Windows
You can remove windows that you create in the View pane using the split icon by
dragging the border of the window over the window you wish to remove
(Figure 8–39).

Figure 8–38. Splitting the View Pane Diagonally (Before and After Diagonal Split)

Figure 8–39. Removing a Split Window (Before and After Split is Removed)

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–87
The TimeQuest Timing Analyzer GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Tasks Pane
Use the Tasks pane to access common commands such as netlist setup and report
generation.

The following common commands are located in the Tasks pane: Open Project, Set
Operating Conditions, and Reset Design. The other commands, including timing
netlist setup and report generation, are contained in the following folders:

■ Netlist Setup

■ Reports

1 Each command in the Tasks pane has an equivalent Tcl command that is displayed in
the Console pane when the command runs.

Opening a Project and Writing a Synopsys Design Constraints File
To open a project in the Quartus II TimeQuest Timing Analyzer, double-click the
Open Project task. If you launch the Quartus II TimeQuest Timing Analyzer from the
Quartus II software GUI, the project opens automatically.

You can add or remove constraints from the timing netlist after the Quartus II
TimeQuest Timing Analyzer reads the initial .sdc file. After the file is read, the initial
.sdc file becomes outdated compared to the constraints in the Quartus II TimeQuest
Timing Analyzer. Use the Write SDC File command to generate an .sdc file that is
up-to-date and reflects the current state of constraints in the Quartus II TimeQuest
Timing Analyzer.

Netlist Setup Folder
The Netlist Setup folder contains tasks that are used to set up the timing netlist for
timing analysis. The three tasks located in this folder are Create Timing Netlist, Read
SDC File, and Update Timing Netlist.

Use the Create Timing Netlist task to create a netlist that the Quartus II TimeQuest
Timing Analyzer uses to perform static timing analysis. This netlist is used only for
timing analysis by the Quartus II TimeQuest Timing Analyzer.

1 You must always create a timing netlist before you perform an analysis with the
Quartus II TimeQuest Timing Analyzer.

Use the Read SDC File command to apply constraints to the timing netlist. By default,
the Read SDC File command reads the <current revision>.sdc file.

1 Use the read_sdc command to read an .sdc file that is not associated with the
current revision of the design.

Use the Update Timing Netlist command to update the timing netlist after you enter
constraints or read an .sdc file. You should use this command if any constraints are
added or removed from the design.

8–88 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Reports Folder
The Reports folder contains commands to generate timing summary reports of the
static timing analysis results. The twelve commands located in this folder are
summarized in Table 8–61.

Macros Folder
The Macros folder contains commands that perform custom tasks available in the
Quartus II TimeQuest Timing Analyzer utility package. These commands are: Report
All Summaries, Report Top Failing Paths, and Create All Clock Histograms.

Table 8–62 describes the commands available in the Macros folder.

Table 8–61. Reports Folder Commands

Report Task Description

Report Fmax Summary Generates a fMAX summary report for all clocks in the design.

Report Setup Summary Generates a clock setup summary report for all clocks in the design.

Report Hold Summary Generates a clock hold summary report for all clocks in the design.

Report Recovery Summary Generates a recovery summary report for all clocks in the design.

Report Removal Summary Generates a removal summary report for all clocks in the design.

Report Clocks Generates a summary report of all created clocks in the design.

Report Clock Transfers Generates a summary report of all clock transfers detected in the design.

Report Minimum Pulse Width Generates a summary report of all minimum pulse widths in the design.

Report SDC Generates a summary report of the constraints read from the .sdc file.

Report Unconstrained Paths Generates a summary report of all unconstrained paths in the design.

Report Ignored Constraints Generates a summary report of all ignored SDC constraints for the design.

Report Datasheet Generates a datasheet report for the design.

Table 8–62. Macros Folder Commands

Macro Task Description

Report All Summaries This command runs the Report Setup Summary, Report Hold Summary, Report Recovery
Summary, Report Removal Summary, and Minimum Pulse Width commands to generate
all summary reports.

Report Top Failing Paths This command generates a report containing a list of top failing paths.

Create All Clock Histograms This command runs the Create Slack Histogram command to generate a clock histogram
for all clocks in the design.

Report All I/O Timings This command generates a report of all timing paths that start or end at a device port.

Report All Core Timings This command generates a report of all timing paths that start and end at the device
register.

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–89
The TimeQuest Timing Analyzer GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Console Pane
The Console pane is both a message center for the Quartus II TimeQuest Timing
Analyzer and an interactive Tcl console. The Console pane has two tabs: the Console
tab and the History tab. The Console tab shows all messages, such as info and
warning messages. Also, the Console tab allows you to enter and run Synopsys
design constraints and Tcl commands. The Console tab shows the Tcl equivalent of all
commands that you run in the Tasks pane. The History tab records all the Synopsys
design constraints and Tcl commands that are run.

1 To run the commands located in the History tab after the timing netlist has been
updated, right-click the command and click Rerun.

You can copy Tcl commands from the Console and History tabs to easily generate Tcl
scripts to perform timing analysis.

Report Pane
Use the Report pane to access all reports generated from the Tasks pane, and by any
custom report commands. When you select a report in the Report pane, the report is
shown in the active window in the View pane.

1 If a report is out-of-date with respect to the current constraints, a “?” icon is shown
next to the report.

Constraints
Use the Constraints menu to access commonly used constraints, exceptions, and
commands. You can access this menu from the toolbar, click Edit and then click
Constraint menu.

The following commands are available on the Constraints menu:

■ Create Clock

■ Create Generated Clock

■ Set Clock Latency

■ Set Clock Uncertainty

■ Set Clock Groups

■ Remove Clock

For example, use the Create Clock dialog box to create clocks in your design.
Figure 8–40 shows the Create Clock dialog box.

8–90 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The following commands specify timing exceptions and are available on the
Constraints menu:

■ Set False Path

■ Set Multicycle Path

■ Set Maximum Delay

■ Set Minimum Delay

All the dialog boxes used to specify timing constraints or exceptions from commands
have an SDC command field. This field contains the SDC command that is run when
you click OK.

1 All commands and constraints created in the Quartus II TimeQuest Timing Analyzer
user interface are echoed in the Console pane.

The constraints specified with Constraints menu commands are not saved to the
current .sdc file automatically. You must run the Write SDC File command to save
your constraints.

The following commands are available on the Constraints menu in the Quartus II
TimeQuest Timing Analyzer:

■ Generate SDC File from QSF

■ Read SDC File

■ Write SDC File

The Generate SDC File from QSF command runs a Tcl script that converts the
Quartus II Classic Timing Analyzer constraints in a QSF file to an .sdc file for the
Quartus II TimeQuest Timing Analyzer. The file <current revision>.sdc is created by
this command.

f For information about the Generate SDC File from QSF command, refer to the
Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Figure 8–40. Create Clock Dialog Box

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–91
The TimeQuest Timing Analyzer GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Generate SDC File from QSF command attempts to convert all timing constraints
and exceptions in the QSF file to their equivalent .sdc file constraints. However, not all
QSF file constraints are convertible to .sdc file constraints. Review the .sdc file after it
is created to ensure that all constraints have been successfully converted.

The Read SDC File command reads the <current revision>.sdc file.

When you select the Write SDC File command, an up-to-date .sdc file that reflects the
current state of constraints in the Quartus II TimeQuest Timing Analyzer is generated.

Name Finder
Use the Name Finder dialog box to select the target for any constraints or exceptions
in the Quartus II TimeQuest Timing Analyzer GUI. The Name Finder dialog box
allows you to specify collections, filters, and filter options. The Collections field in the
Name Finder dialog box allows you to specify the type of name to select. To select the
type, in the Collection list, select the desired collection API from the following list:

■ get_cells

■ get_clocks

■ get_keepers

■ get_nets

■ get_nodes

■ get_pins

■ get_ports

■ get_registers

For more information about the various collection APIs, refer to “Collections” on
page 8–21.

The Filter field allows you to filter names based on your own criteria, including
wildcard characters. You can further refine your results using the following filter
options:

■ Case-insensitive

■ Hierarchical

■ Compatibility mode

For more information about the filter options, refer to “Wildcard Assignments and
Collections” on page 8–79.

The Name Finder dialog box also provides an SDC command field that displays the
currently selected name search command. You can copy the value from this field and
use it for other constraint target fields. The Name Finder dialog box is shown in
Figure 8–41.

8–92 Chapter 8: The Quartus II TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Target Pane
When using the TimeQuest GUI, you can split the View pane into multiple windows.
The splitting feature allows you to display multiple reports in the View pane. After
splitting the View pane, the last active window is updated with any new reports. You
can change this behavior by changing the state of each split window. To change the
window state, click the target circle in the upper right corner (Figure 8–42). Table 8–63
describes the state of each window.

Figure 8–41. Name Finder Dialog Box

Figure 8–42. Target Pane

View Pane Window State

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–93
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Clicking on the circle in the upper right corner of an active window changes the state
of the window.

SDC Editor
The TimeQuest Timing Analyzer GUI also provides an SDC editor. The SDC editor
provides an easy and convenient way to write, edit, and view .sdc files. The SDC
editor is context sensitive. After an SDC constraint or exception has been entered, a
tooltip appears that shows the options and format for the constraint or exception.

The SDC editor also provides helpful tools, including SDC templates and SDC
templates for common design structures. To find these templates, when the SDC
editor is active, look on the Edit menu.

1 On the menu bar, the Constraints menu opens the Constraints dialog box. After you
have finished entering all required parameters, the .sdc file is inserted at the current
cursor position.

Conclusion
The Quartus II TimeQuest Timing Analyzer addresses the requirements of complex
designs, resulting in increased productivity and efficiency through its intuitive user
interface, support of industry-standard constraints format, and scripting capabilities.
The Quartus II TimeQuest Timing Analyzer is a next-generation timing analysis tool
that supports the industry-standard SDC format and allows designers to create,
manage, and analyze complex timing constraints and to perform advanced timing
verification.

Referenced Documents
This chapter references the following documents:

■ AN 481: Applying Multicycle Exceptions in the TimeQuest Timing Analyzer

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ Managing Metastability with the Quartus II Software chapter of volume 1 in the
Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer Cookbook

■ SDC and TimeQuest API Reference Manual

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ TimeQuest Quick Start Tutorial

Table 8–63. View Pane Window State

State Description

Partially Filled Red Circle Indicates that the active window displays any new reports.

Fully Filled Red Circle Indicates that the window, independent of it being the active window,
displays any new reports.

Empty Circle Indicates that the window does not display any new reports.

http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf
www.altera.com/literature/hb/qts/qts_qii51018.pdf

8–94 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Understanding Metastability in FPGAs White Paper

■ Volume 4: SOPC Builder in the Quartus II Handbook

Document Revision History
Table 8–64 shows the revision history for this chapter.

Table 8–64. Document Revision History (Part 1 of 2)

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

Updated for the Quartus II software version 9.1, including:

■ Added information about commands for adding and removing items
from collections

■ Added information about the set_timing_derate and report_skew
commands

■ Added information about worst-case timing reporting

■ Minor editorial updates

Update for the Quartus II
software version 9.1 release.

November 2008
v8.1.0

Updated for the Quartus II software version 8.1, including:

■ Added the following sections:

■ “set_net_delay” on page 7–42

■ “Annotated Delay” on page 7–49

■ “report_net_delay” on page 7–66

■ Updated the descriptions of the -append and -file <name>
options in tables throughout the chapter

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates

Medium update for the
Quartus II software version
8.1 release.

www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/lit-qts.jsp

Chapter 8: The Quartus II TimeQuest Timing Analyzer 8–95
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

May 2008
v8.0.0

Updated for the Quartus II software version 8.0, including:

■ Changed the heading “Specify Design Timing Requirements” to “The
Quartus II TimeQuest Timing Analyzer Flow Guidelines” on page 7–26

■ In “SDC Constraint Files” on page 7–29, added information about
order-sensitivity

■ Added a new section on “Metastability” on page 7–19

■ Added a new section on “Common Clock Path Pessimism” on page
7–22

■ Removed information about Asynchronous clocks from “Clock
Groups” on page 7–43

■ Updated information in Example 7–28

■ Added three entries to Table 7–22

■ Added information to Table 7–24

■ Added information about the RSKM to “report_rskm” on page 7–80,
including a formulaic equation (Equation 12)

■ Added the section “Clock Groups” on page 7–43

■ Added Table 7–44 to “report_clock_fmax_summary” on page 7–86

■ Added qualifier to introduction of Table 7–46

■ Added Speed Grade information to Table 7–46

■ Removed [-dtw] and added [-add] to information about the
derive_clock_uncertainty command (“Derive Clock Uncertainty” on
page 7–47)

■ Added the section “report_metastability” on page 7–68

■ Added a new information about RSKM to “report_rskm” on page
7–80

■ Added the section “Cross-Probing” on page 7–93

■ Minor editorial updates

■ Added hyperlinks to referenced documents throughout chapter

Update for the Quartus II
software version 8.0 release.

Table 8–64. Document Revision History (Part 2 of 2)

Date and
Version Changes Made Summary of Changes

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

8–96 Chapter 8: The Quartus II TimeQuest Timing Analyzer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

9. Best Practices for the Quartus II
TimeQuest Timing Analyzer

Timing constraints and exceptions are vital to all designs that target FPGAs, because
they allow designers to specify requirements and verify timing of their systems or
FPGAs. This chapter provides the steps to fully constrain an FPGA design with the
Quartus® II TimeQuest Timing Analyzer and this chapter discusses the following
sections:

■ “Clock Requirements”

■ “I/O Requirements” on page 9–4

■ “Exceptions” on page 9–5

1 The sections are ordered in the recommended flow for applying timing constraints
and exceptions in the TimeQuest Timing Analyzer.

f For more information about constraints and exceptions supported by the TimeQuest
Timing Analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook or the SDC and TimeQuest API Reference Manual.

Clock Requirements
The TimeQuest Timing Analyzer supports the following types of clocks:

■ Base clocks

■ Derived clocks

■ Virtual clocks

Clocks are used to specify register-to-register requirements for synchronous transfers
and guide the Fitter optimization algorithms to achieve the best possible placement
and routes for your design.

Clocks should be the first constraints specified in Synopsys Design Constraint (.sdc)
files. This is important because the TimeQuest Timing Analyzer reads .sdc constraints
and exceptions from top to bottom in the file. Clocks should be defined first, because
other constraints may reference previously defined clocks.

Base Clocks
Base clocks are the primary input clocks generated into the FPGA. Unlike
phase-locked loops (PLLs) that are derived in the FPGA, base clocks are usually
generated in off-chip oscillators or forwarded from an external device. Base clocks are
defined first, because derived clocks and other constraints can reference the base
clocks.

Use the create_clock .sdc command to constrain all primary input clocks. The
target for the create_clock command is usually a FPGA device pin. When the
FPGA device pin is the target, you must use the get_ports commands. Example 9–1
shows how to specify a 100-MHz requirement on a clk_sys input clock port.

 QII53024-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl_sdctmq.pdf

9–2 Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer
Clock Requirements

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can apply multiple clocks on the same clock node with the -add option. If two
oscillators drive the same clock port on the FPGA, the following .sdc commands are
used:

create_clock -period 10 -<name> clk_100 [get_ports clk_sys] r
create_clock -period 5 -<name> clk_200 [get_ports clk_sys] -add r

Derived Clocks
Derived clocks are generated in the FPGA and can modify or synthesize a source
clock signal. Derived clocks, which are PLLs or register clock dividers, are constrained
after all base clocks are constrained in the .sdc file. Derive clocks capture all clock
delays/latency where the derive clock target is defined. This ensures that all base
clock properties are accounted for in the derived clock.

You can use the create_generated_clock command to constrain all generated
clocks in your design. The source of the create_generated_clock command
should be a node in your design and not a previously constrained clock.

The TimeQuest Timing Analyzer supports the derive_pll_clocks command to
automatically constrain all PLL outputs in the FPGA.

Example 9–2 shows a divide-by-two clock divider.

When using the create_generated_clock constraint, Altera recommends that the
-source option point to the closest clock pin of the specified target and not the clock
port. In Example 9–2, the -source option points to the clock pin of the register
instead of the clock port clk feeding the register’s reg clock pin. Use this when
multiple clock constraints are specified for the same pin in a design.

The TimeQuest provides the derive_pll_clocks command that automatically
generates derive clocks for all PLL clock outputs. The properties of the generated
clocks on the PLL outputs will match those that have been defined for the PLL.

Virtual Clocks
A virtual clock does not have a real source in your design and does not interact
directly with your design. Virtual clocks are created with the create_clock
command, but no targets are specified. Example 9–3 shows the command to create a
10 ns virtual clock.

Example 9–1. create_clock Command

create_clock -period 10 [get_ports clk_sys]

Example 9–2. Clock Divider

create_clock -period 10 [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source [get_pins reg|clk] [get_pins
reg|regout]

Example 9–3. Creating a 10 ns Virtual Clock

create_clock -period 10 -name my_virt_clk r

Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer 9–3
Clock Requirements

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 9–1 and Example 9–4 show when a virtual clock is used. If an FPGA interfaces
with an external device, and both the FPGA and external device have different clock
sources, the clock source for the external device is modeled with a virtual clock.

Altera recommends using virtual clocks if you model external delays with the
set_input_delay and set_output_delay constraints. This is important if you
use the derive_clock_uncertainty command for your design. The virtual clock
prevents the derive_clock_uncertainty command from applying clock
uncertainties for either intra- or inter-clock transfers on an I/O interface clock transfer.

Altera recommends creating an equivalent virtual clock for each clock in your design
that feeds an input or output port (refer to Figure 9–2 and Example 9–5).

Figure 9–1. Inter-Clock Transfer

Example 9–4. Virtual Clock Example 1

#create base clock for the design
create_clock -period 5 [get_ports clk_in]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports data_out]

Figure 9–2. I/O Interface Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Qreg1Dreg1D

50 MHz 100 MHz

Altera FPGAExternal Device
data_in

clk_in

Q Qreg1Dreg1D

100 MHz

9–4 Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer
I/O Requirements

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

I/O Requirements
You should specify all timing requirements to fully analyze a design. This includes
specifying internal and external timing requirements. With external timing
requirements specified, the I/O interface or periphery of the FPGA is verified against
any system specification. The TimeQuest Timing Analyzer supports input and output
external delay modeling.

You should specify I/O requirements after all clocks in your design are constrained.
When specifying I/O requirements, Altera recommends referencing a virtual clock in
the constraints.

f For guidelines to determine delay values for set_input_delay and
set_output_delay, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

Input Requirements
Input requirements allow all the external delays feeding into the FPGA to be
specified. The requirements are specified for all input ports in your design.

You can use the set_input_delay command to specify external input delay
requirements. Altera recommends that the set_input_delay command reference a
virtual clock for the -clock option. Using a virtual clock allows the TimeQuest
Timing Analyzer to correctly derive clock uncertainties for inter and intra clock
transfers. The virtual clock defines the launching clock for the input port. The latching
clock inside the chip that captures the input data is automatically determined, because
all clocks in the chip are defined. Figure 9–3 shows an example of an input delay
referencing a virtual clock.

Example 9–5. .sdc Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock –period 10 –name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock
driving the source register
create_clock –period 10 –name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay –clock clk_in <delay_value>
[get_ports data_in]
set_input_delay –clock virt_clk_in <delay value> [get_ports data_in]

Figure 9–3. Set Input Delay

External Device Altera Device

Oscillator

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer 9–5
Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Output Requirements
The output requirements allow all external delays from the FPGA to be specified for
all output ports in your design.

You can use the set_output_delay command to specify external output delay
requirements. The set_output_delay command must reference a virtual clock for
the -clock option. The virtual clock defines the latching clock for the output port.
The launching clock inside the chip that launches the output data is automatically
determined, because all clocks in the chip are defined. Figure 9–4 shows an example
of an output delay referencing a virtual clock.

Exceptions
Timing exceptions in the TimeQuest Timing Analyzer provide a way to modify the
default timing analysis behavior to match the analysis required by your design. The
TimeQuest Timing Analyzer supports the following three major categories of
exceptions:

■ False paths

■ Minimum and maximum delays

■ Multicycles

Timing exceptions are specified after clocks, and input and output delay constraints,
because timing exceptions can modify the default analysis.

False Paths
You remove a specified path from analysis when you specify a false path in your
design. This path is either a point-to-point or clock-to-clock path. An example is a
static configuration register that is written once during power-up initialization, but
will not change state again. Although these signals often cross clock domains, you
may not want to make false path exceptions to a clock-to-clock path, because some
data may transfer across those clock domains. However, you can selectively make
false path exceptions from the static configuration register to all endpoints.

Example 9–6 shows how to make false path exceptions from all registers beginning
with A to all registers beginning with B.

Figure 9–4. Output Delay

External DeviceAltera Device

Oscillator

Example 9–6. False Path

set_false_path -from [get_pins A*] -to [get_pins B*]

9–6 Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer
Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The TimeQuest Timing Analyzer assumes all clocks are related unless you specify
otherwise. Setting clock groups is an efficient way of making false path exceptions for
clock-to-clock timing relationships in your design. It requires fewer line entries to
make false path exceptions between clocks, compared to writing multiple
set_false_path exceptions between every clock transfer to be cut. Use the
set_clock_groups command to collect groups of signals related to each other, and
use -asynchronous to specify that each group of clocks is asynchronous with each
other. In the case where multiple clocks are applied to the same port for multi-mode
operation, use set_clock_groups with -exclusive to declare these clocks are
placed into separate groups and mutually exclusive to each other. The clocks cannot
physically exist in your design at the same time.

Minimum and Maximum Delays
Use the set_max_delay and set_min_delay constraints for asynchronous signals
that do not have a specific clock relationship in your design, but require a bounded
maximum and minimum path delay. This timing exception applies to paths that go
from port to port through the FPGA without a register stage in the path. If you use
this timing exception to constrain the path delay, specify both the maximum and
minimum delay of the path. Do not constrain only the maximum or the minimum
value. The set_max_delay and set_min_delay commands modify the setup and
hold relationship equal to the constraint’s value.

You can also use the set_net_delay constraint to specify the maximum, minimum,
or skew for any edge in your design. This constraint is used when no clock
relationships are defined or required.

f For more information about the set_net_delay constraint, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Multicycles
Multicycle paths are often difficult to identify in a design. You must understand the
design functionality to understand if a signal is updated or sampled on the default
clock edge relationships derived by the TimeQuest Timing Analyzer. Thorough
coverage of multicycle paths in your design can increase performance of the Fitter and
provide better quality of results during compilation, because the coverage relaxes
some invalid setup and hold edge relationships.

An example of a potential multicycle path would be long combinational paths in
which the latching register does not require data stability on every clock edge, but
only on every second clock edge. This multicycle path is dependent on the endpoint
register’s use of that signal. In this case, the set_multicycle_path -setup 2
command states that data is stable at the endpoint every two clock cycles of the
endpoint latch clock.

If you specify a multicycle path, Altera recommends defining both the setup and hold
multicycle relationships. For the preceding example, setting data at the endpoint can
take two clock cycle, and the minimum hold time relationship is defined with a
multicycle as well. The set_multicycle_path -hold value is (N – 1), in which N
is equal to the set_multicycle_path -setup value for a register-to-register path
in the same clock domain. However, if data crosses different clock domains, the phase

http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf

Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer 9–7
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

and period of the launch and latch clock may change the proper -setup and -hold
values to something different than -setup N and -hold (N – 1). Use these
multicycles with caution and examine the timing paths carefully in the TimeQuest
Timing Analyzer before and after applying the multicycle to determine if the launch
and latch clock edges are in the proper relationship.

f For more information about multicycles in the TimeQuest Timing Analyzer, refer to
AN 481: Applying Multicycle Exceptions in the TimeQuest Timing Analyzer.

Conclusion
Specifying all timing constraints and exceptions for your design is one of the most
important aspects of design implementation in the Quartus II software. Constraints
and exceptions allow the Quartus II Fitter to focus on the critical paths in your design
and reduce the amount of time spent on non-critical parts of the design. Also,
constraints and exceptions provide an easy method to verify the design’s timing
requirements. Follow the guidelines and flow in this chapter for successful design
implementation in the Quartus II software.

Referenced Documents
This chapter references the following documents:

■ AN 481: Applying Multicycle Exceptions in the TimeQuest Timing Analyzer

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ SDC and TimeQuest API Reference Manual

Document Revision History
Table 9–1 shows the revision history for this chapter.

Table 9–1. Document Revision History

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Added example to “Derived Clocks” on page 9–2.

■ Updated “Base Clocks” on page 9–1.

March 2009
v9.0.0

Initial release. —

http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_02.pdf
http://www.altera.com/literature/manual/mnl_sdctmq.pdf

9–8 Chapter 9: Best Practices for the Quartus II TimeQuest Timing Analyzer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

10. Switching to the Quartus II TimeQuest
Timing Analyzer

Introduction
The Quartus II TimeQuest Timing Analyzer provides more powerful timing analysis
features than the Quartus II Classic Timing Analyzer. This chapter describes the
benefits of switching to the Quartus II TimeQuest Timing Analyzer, the differences
between the Quartus II TimeQuest and Quartus II Classic Timing Analyzers, and the
process you should follow to switch a design from using the Quartus II Classic
Timing Analyzer to the Quartus II TimeQuest Timing Analyzer.

Benefits of Switching to the Quartus II TimeQuest Timing Analyzer
Increasing design complexity requires a timing analysis tool with greater capabilities
and flexibility. The Quartus II TimeQuest Timing Analyzer offers the following
benefits:

■ Industry-standard Synopsys Design Constraint (SDC) support increases
productivity.

■ Simple, flexible reporting uses industry-standard terminology and makes timing
sign-off faster.

f For more detailed information about the features and capabilities of the Quartus II
TimeQuest Timing Analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter
in volume 3 of the Quartus II Handbook.

These features ease constraint and analysis of modern, complex designs. SDC
constraints support complex clocking schemes, high-speed interfaces, and more logic.
An example includes designs that have multiplexed clocks, regardless of whether
they are switched on or off chip. Designs with source-synchronous interfaces, such as
DDR memory interfaces, are much simpler to constrain and analyze with the
Quartus II TimeQuest Timing Analyzer.

There are three main differences between the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers. Unlike the Quartus II Classic Timing Analyzer, the
Quartus II TimeQuest Timing Analyzer has the following three benefits:

■ All clocks are related by default. (Refer to “Related and Unrelated Clocks” on
page 10–11.)

■ The default hold multicycle value is zero. (Refer to “Hold Multicycle” on
page 10–20.)

■ You must constrain all ports and ripple clocks. (Refer to “Automatic Clock
Detection” on page 10–16.)

Chapter Contents
“Switching to the Quartus II TimeQuest Timing Analyzer” describes the four-step
process you should follow to switch a design to the Quartus II TimeQuest Timing
Analyzer.

QII53019-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–2 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Switching to the Quartus II TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

“Differences Between Quartus II TimeQuest and Quartus II Classic Timing
Analyzers” on page 10–4 covers terminology, constraints, clocks, hold multicycle, and
other differences.

“Timing Assignment Conversion” on page 10–26 is a comprehensive guide to
converting Quartus II Classic QSF timing assignments to Quartus II TimeQuest SDC
constraints.

“Conversion Utility” on page 10–44 describes a utility that helps you convert Classic
QSF timing assignments to the Quartus II TimeQuest SDC constraints.

“Notes” on page 10–54 includes notes about support for specific features in the
current version of the Quartus II TimeQuest Timing Analyzer.

Switching to the Quartus II TimeQuest Timing Analyzer
You should use the following process to switch a design from the Quartus II Classic
Timing Analyzer to the Quartus II TimeQuest Timing Analyzer. The process is
composed of the following steps, which are described in detail in the next sections:

1. Compile your design and perform timing analysis with the Quartus II Classic
Timing Analyzer (page 10–2).

2. Create a Synopsys Design Constraints (.sdc) file that contains timing constraints
(page 10–2).

3. Perform timing analysis with the Quartus II TimeQuest Timing Analyzer and
examine the reports (page 10–3).

4. Set the default timing analyzer to TimeQuest (page 10–4).

Compile Your Design
To begin, compile your design with the Quartus® II software. You should run the
Quartus II Classic Timing Analyzer during compilation because it is easier to convert
your assignments to SDC constraints when you create an .sdc file. To run the
Quartus II Classic Timing Analyzer in the Quartus II GUI, on the Processing menu,
click Start, then click Start Timing Analyzer. To run the Quartus II Classic Timing
Analyzer if you are a command-line user, type quartus_tan <project> r at a system
command prompt.

Create an .sdc File
The Quartus II TimeQuest Timing Analyzer supports SDC format constraints. If you
are familiar with SDC terminology, you can create an .sdc file with any text editor and
skip to “Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer”
on page 10–3. Name the .sdc file <revision>.sdc (<revision> is the current revision of
your project) and save it in your project directory.

f Refer to the SDC and TimeQuest Tcl API Reference Manual for a TimeQuest SDC
command reference.

Alternately, you can use a Quartus II TimeQuest conversion utility to help you
convert the timing assignments in an existing Quartus II Settings File (.qsf) to
corresponding SDC constraints.

http://www.altera.com/literature/manual/mnl_sdctmq.pdf

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–3
Switching to the Quartus II TimeQuest Timing Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conversion Utility
To run the Quartus II TimeQuest conversion utility, click Generate SDC file from
QSF on the Constraints menu. You can also run the conversion utility by typing either
of the following commands at a system command prompt:

■ quartus_tan --qsf2sdc <project name> r

or

■ quartus_sta --qsf2sdc <project name> r
The .sdc file created by the conversion utility is named <revision>.sdc.

For information about how to run the Quartus II TimeQuest Timing Analyzer, refer to
“Run the Quartus II TimeQuest Timing Analyzer”.

1 If you use the conversion utility, you must review the .sdc file to ensure it is correct
and complete, and make changes if necessary. Refer to “Constraint File Priority” on
page 10–8 for the recommended way to make changes.

The conversion utility cannot convert some types of Quartus II Classic Timing
Analyzer assignments for the following reasons:

■ No corresponding SDC constraint exists

■ Multiple SDC constraints are valid, so correct conversion requires knowledge of
the intended function of your design

You must manually convert any such assignments based on the guidelines in “Timing
Assignment Conversion” on page 10–26.

Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer
When your .sdc file is complete, use the reporting capabilities in the Quartus II
TimeQuest Timing Analyzer. If you use the Quartus II TimeQuest GUI, double-click
any of the reports listed in the Tasks pane. You can also type commands in the
Quartus II TimeQuest Tcl shell to generate reports.

You should also review “Notes” on page 10–54 to ensure the Quartus II TimeQuest
Timing Analyzer supports all stages of your design flow.

f For complete information about how to use the Quartus II TimeQuest Timing
Analyzer, and descriptions of commands and reports, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook, and the SDC and
TimeQuest Tcl API Reference Manual.

Run the Quartus II TimeQuest Timing Analyzer
If you are using the Quartus II software, to open the Quartus II TimeQuest GUI, on
the Tools menu, click TimeQuest Timing Analyzer. The Quartus II TimeQuest GUI
automatically opens the project you have open in the Quartus II GUI.

If you use the system command prompt to open the Quartus II TimeQuest Timing
Analyzer, type quartus_staw r to open the Quartus II TimeQuest GUI, or type
quartus_sta -s r to start the Quartus II TimeQuest Timing Analyzer in Tcl shell
mode. Use the project_open command to open your project, or, on the File menu,
click Open Project.

http://www.altera.com/literature/manual/mnl_sdctmq.pdf
http://www.altera.com/literature/manual/mnl_sdctmq.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–4 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Set the Default Timing Analyzer
To use the Quartus II TimeQuest Timing Analyzer as the default timing analyzer for
your project, turn on Use TimeQuest Timing Analyzer during compilation. In the
Quartus II GUI, on the Assignments menu, click Settings, then select the Timing
Analysis Settings category, and turn on Use TimeQuest Timing Analyzer during
compilation. You can make the same setting in your project’s .qsf file with the
following Tcl command:

set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON

This setting directs the Quartus II software to use the Quartus II TimeQuest Timing
Analyzer instead of the Quartus II Classic Timing Analyzer.

The setting to make the Quartus II TimeQuest Timing Analyzer the default timing
analyzer is specific to each project, so you can decide on a per-project basis whether to
use the Quartus II TimeQuest Timing Analyzer or the Quartus II Classic Timing
Analyzer.

If you want to use the Quartus II Classic Timing Analyzer instead of the Quartus II
TimeQuest Timing Analyzer, ensure Use Classic Timing Analyzer during
compilation is selected. You can delete the <revision>.sdc file, because the Quartus II
Classic Timing Analyzer does not use it.

In the Quartus II software, a timing analyzer performs two functions:

■ Processing timing constraints and exceptions that affect how your design is placed
and routed

■ Reporting after place and route is complete so you know whether the design meets
timing requirements

Although you can use one timing analyzer to process timing constraints during place
and route and the other for reporting, you should use the same timing analyzer for
both. The Quartus II Classic Timing Analyzer uses assignments in the .qsf file, and
the Quartus II TimeQuest Timing Analyzer uses constraints in the .sdc file. Any
differences between the timing assignments in the two files may cause inconsistent
results.

Differences Between Quartus II TimeQuest and Quartus II Classic
Timing Analyzers

The Quartus II TimeQuest Timing Analyzer is different from the Quartus II Classic
Timing Analyzer in the following ways:

■ “Terminology” on page 10–5

■ “Constraints” on page 10–6

■ “Clocks” on page 10–11

■ “Hold Multicycle” on page 10–20

■ “Fitter Behavior” on page 10–22

■ “Reporting” on page 10–22

■ “Scripting API” on page 10–25

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–5
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Terminology
This section introduces the industry-standard SDC terminology that the Quartus II
TimeQuest Timing Analyzer uses.

f For more detailed information about this terminology, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Netlist
The Quartus II TimeQuest Timing Analyzer uses SDC naming conventions for
netlists. Netlists consist of cells, pins, nets, ports, and clocks.

■ Cells are instances of fundamental hardware elements in Altera® FPGAs (such as
logic elements, look-up tables, and registers).

■ Pins are inputs and outputs of cells.

■ Nets are connections between output pins and input pins.

■ Ports are top-level module inputs and outputs (device inputs and outputs).

■ Clocks are abstract objects outside the netlist.

1 The terminology of pins and ports is opposite to that of the Quartus II Classic Timing
Analyzer. In the Quartus II Classic Timing Analyzer, ports are inputs and outputs of
cells, and pins are top-level module inputs and outputs (device inputs and outputs).

Figure 10–1 shows a simple design, and Figure 10–2 shows the Quartus II TimeQuest
netlist representation of the design. Netlist elements in Figure 10–2 are labeled to
illustrate the SDC terminology.

Figure 10–1. Sample Design

ina

clk

inb

inrega

inregb

ab
outreg out

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–6 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Collections
In addition to standard SDC collections, the Quartus II TimeQuest Timing Analyzer
supports the following Altera-specific collection types:

■ Keepers—Non-combinational nodes in a netlist

■ Nodes—Nodes can be combinational, registers, latches, or ports (device inputs
and outputs)

■ Registers—Registers or latches in the netlist

You can use the get_keepers, get_nodes, or get_registers commands to access these
collections.

Constraints
The Quartus II Classic and Quartus II TimeQuest Timing Analyzers store constraints
in different files, support different methods for constraint entry, and prioritize
constraints differently. The following sections detail these differences.

Constraint Files
The Quartus II TimeQuest Timing Analyzer stores all SDC timing constraints in .sdc
files. The Quartus II Classic Timing Analyzer stores all timing assignments in your
project’s .qsf file. The .qsf file contains all your project’s assignments and settings
except for the Quartus II TimeQuest Timing Analyzer constraints. The Quartus II
TimeQuest Timing Analyzer ignores the timing assignments in your .qsf file except
when the conversion utility converts Quartus II Quartus II Classic QSF timing
assignments to Quartus II TimeQuest SDC constraints. There is no automatic process
that keeps timing constraints synchronized between your .qsf and .sdc files. If you
want to keep the constraints synchronized, you must convert them manually.

Figure 10–2. Quartus II TimeQuest Timing Analyzer Netlist

inb

outreg

combout datain

clk clk~clkctrl

ina inrega

inregb

clk

regout

ab

out

datain

cell=atom/wysiwygpin = iterm
pin = oterm

inclk[0]

combout port = I/O

Sample Pin Names:
 ina|combout
 inrega|datain
 inrega|clk
 inrega|regout
 ab|combout
 ab|datac

Sample Net Names:
 ina~combout
 ab
 clk~clkctrl
 inrega

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–7
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Constraint Entry
In the Quartus II Classic Timing Analyzer, you enter timing assignments with the
Settings dialog box, the Assignment Editor, or with commands in Tcl scripts. The
Quartus II TimeQuest Timing Analyzer does not use the Assignment Editor for its
constraints, and you cannot use the Assignment Editor to enter SDC constraints. You
must use one of the following methods to enter Quartus II TimeQuest constraints:

■ Enter constraints at the Tcl prompt in the Quartus II TimeQuest Timing Analyzer

■ Enter constraints in an .sdc file with a text editor or SDC editor

■ Use the constraint entry commands on the Constraints menu in the Quartus II
TimeQuest Timing Analyzer GUI

You can enter timing assignments for the Quartus II Classic Timing Analyzer even if
no timing netlist exists for your design. The Quartus II TimeQuest Timing Analyzer
requires that a netlist exist for interactive constraint entry. Each Quartus II TimeQuest
Timing Analyzer constraint is a Tcl command evaluated in real-time, if entered
directly in the Tcl console. As part of this evaluation, the Quartus II TimeQuest Timing
Analyzer validates all names. To do this, SDC commands can only be evaluated after a
netlist is created. An .sdc file can be created at any time using the Quartus II
TimeQuest Timing Analyzer or any other text editor, but a netlist is required before an
.sdc file can be sourced. You must create a timing netlist in the Quartus II TimeQuest
Timing Analyzer before you can enter constraints with either of the following
interactive methods:

■ At the Tcl console of the Quartus II TimeQuest Timing Analyzer

■ With commands on the Constraints menu in the Quartus II TimeQuest Timing
Analyzer GUI

If you enter constraints with a text editor separate from the Quartus II TimeQuest
Timing Analyzer, no timing netlist is required.

To create a timing netlist in the Quartus II TimeQuest Timing Analyzer, use the
create_timing_netlist command, or double-click Create Timing Netlist in the Tasks
pane of the Quartus II TimeQuest GUI.

If you have never compiled your design, and you want to use the Quartus II
TimeQuest Timing Analyzer to enter constraints interactively, you must synthesize
your design before you create a timing netlist. To synthesize your design, type the
following command at a system command prompt:

quartus_map <project name> r

If you use the Quartus II GUI, ensure that your project is open, then click Start on the
Processing menu, and click Start Analysis and Synthesis.

To create the netlist, open the Quartus II TimeQuest Timing Analyzer. Then, on the
Netlist menu, click Create Timing Netlist..., select Post-map, and click OK.
Alternately, at the TCL console, type the following command:

create_timing_netlist -post_map r

Time Units

Enter time values are in default time units of nanoseconds (ns) with up to three
decimal places. Note that the Quartus II TimeQuest Timing Analyzer does not display
the default time unit when it displays time values.

10–8 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can specify a different default time unit with the set_time_format -unit <default
time unit> command, or specify another unit when you enter a time value, for
example, 300ps.

1 Specifying time units with the value is not part of the standard SDC format. This is a
Quartus II TimeQuest Timing Analyzer extension.

You can specify clock constraints with period or frequency in the Quartus II
TimeQuest Timing Analyzer. For example, you can use either of the following
constraints:

■ create_clock -period 10.000
(assuming default units and decimal places)

■ create_clock -period "100 MHz"

■ create_clock -period "10 ns"

MegaCore Functions

If you change any MegaCore function settings and regenerate the core after you
convert your timing assignments to SDC constraints, you must manually update the
SDC constraints or reconvert your assignments. You must update or reconvert,
because changes to MegaCore function settings can affect timing assignments
embedded in the hardware description language files of the core. The timing
assignments are not converted automatically when the core settings change.

1 You should make a backup copy of your .sdc file before reconverting assignments. If
you made changes to the .sdc file, you can manually copy the updated MegaCore
timing constraints to your .sdc file.

Bus Name Format

In the Quartus II Classic Timing Analyzer, you can make a timing assignment to all
bits in a bus with the bus name (or the bus name followed by an asterisk enclosed in
square brackets) as the target. For example, to make an assignment to all bits of a bus
called address, use address or address[*] as the target of the assignment.

In the Quartus II TimeQuest Timing Analyzer, you must use the bus name followed
by square brackets enclosing an asterisk, like this: address[*].

Constraint File Priority
The Quartus II TimeQuest Timing Analyzer searches for .sdc files with a specific
priority, as shown in Figure 10–3.

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–9
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If you specify constraints in multiple .sdc files, or if you use a single .sdc file with a
name other than <revision>.sdc, you must add the files to your project so the
Quartus II TimeQuest Timing Analyzer can find them. If you use the Quartus II
software, click Add/Remove Files in Project on the Project menu, and add the
appropriate .sdc files. You can also add .sdc files to your project with the following Tcl
command in your .qsf file, repeated once for each .sdc file:

set_global_assignment -name SDC_FILE <SDC file name>

The Quartus II TimeQuest Timing Analyzer reads constraint files from the files list in
the order they are listed, first to last.

1 If you use an .sdc file created by the conversion utility, you should place it before all
other .sdc files in the list of files. When conflicting constraints apply to the same node,
the last constraint has the highest priority. Therefore, .sdc files with your additions or
changes should be listed after the .sdc file created by the conversion utility, so your
constraints have higher priority.

Beginning with version 6.1, the Quartus II TimeQuest Timing Analyzer does not run
the conversion utility automatically when it cannot find an .sdc file according to the
priority shown in Figure 10–3. It may prompt you to run the conversion utility from
the Constraints menu in the Quartus II TimeQuest GUI.

1 You must review the .sdc file as you would when manually running the conversion
utility. Refer to “Reviewing Conversion Results” on page 10–51 for information about
how to review the converted constraints.

Figure 10–3. .sdc File Search Order

Are any

SDC files specified in
the Add Files project

dialog box?

No

Yes

Does the SDC file
<revision>.sdc

exist?

No

Yes

Continue with the chosen
SDC file(s)

The TimeQuest Timing
Analyzer

does not create nor
convert any constraints

10–10 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If no .sdc file exists when you run the Quartus II Fitter, and you have turned on Use
TimeQuest Timing Analyzer during compilation, the Fitter does not create an .sdc
file automatically, but it attempts to meet a default 1 GHz constraint on all clocks in
your design.

Constraint Priority
The Quartus II Classic Timing Analyzer prioritizes assignments based on the
specificity of the nodes to which they are assigned. The more specific an assignment
is, the higher its priority. The Quartus II TimeQuest Timing Analyzer simplifies these
precedence rules. When overlaps occur in the nodes to which the constraints apply,
constraints at the bottom of the file take priority over constraints at the top of the file.

As an example, in the Quartus II Classic Timing Analyzer, point-to-point multicycle
assignments have higher priority than single point multicycle assignments. The two
assignments in Example 10–1 result in a multicycle assignment of 2 between A_reg
and all nodes beginning with B, including B_reg. The single point assignment does
not apply to paths from A_reg to B_reg, because the specific point-to-point
assignment takes priority over the general single point assignment.

Example 10–2 shows SDC versions of the preceding Quartus II Classic Timing
Analyzer timing assignments. However, the Quartus II TimeQuest Timing Analyzer
evaluates the constraints from top to bottom (regardless of point-to-point or single
point), so the path from A_reg to B_reg receives a multicycle exception of 3 because
it is second in order.

Ambiguous Constraints
Because of new capabilities in the Quartus II TimeQuest Timing Analyzer, some
Quartus II Classic assignments can be ambiguous after conversion by the conversion
utility. These assignments require manual updating based on your knowledge of your
design.

Figure 10–4 shows a ripple clock circuit. The explanation that follows shows an
ambiguous constraint for that circuit, and how to edit the constraint to remove the
ambiguity in the Quartus II TimeQuest Timing Analyzer.

Example 10–1. Quartus II Classic Timing Analyzer Multicycle Assignments

set_instance_assignment -name MULTICYCLE -from A_reg -to B* 2
set_instance_assignment -name MULTICYCLE -to B_reg 3

Example 10–2. Quartus II TimeQuest Timing Analyzer Multicycle Exceptions

set_multicycle_path -from [get_keepers A_reg] -to [get_keepers B*] 2
set_multicycle_path -to [get_keepers B_reg] 3

Figure 10–4. Ripple Clock Circuit

reg_dreg_c

clk_a clk_b

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–11
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

In the Quartus II Classic Timing Analyzer, the following QSF multicycle assignment
from clk_a to clk_b with a value of 2 applies to paths transferring data from the
clk_a domain to the clk_b domain:

set_instance_assignment -name MULTICYCLE -from clk_a -to clk_b 2

In Figure 10–4, this assignment applies to the path from reg_c to reg_d. In the
Quartus II TimeQuest Timing Analyzer, the use of the clock node names in the
following equivalent multicycle exception is ambiguous:

set_multicycle_path -setup -from clk_a -to clk_b 2

The exception could apply to the path between clk_a and clk_b, or it could apply to
paths from one ripple clock domain to the other ripple clock domain (reg_c to
reg_d).

The Quartus II TimeQuest exceptions shown in Example 10–3 are not ambiguous
because they use collections to explicitly specify the targets of the exception.

Clocks
The Quartus II Classic and Quartus II TimeQuest Timing Analyzers detect, analyze,
and report clocks differently. The following sections describe these differences.

Related and Unrelated Clocks
In the Quartus II TimeQuest Timing Analyzer, all clocks are related by default, and
you must add assignments to indicate unrelated clocks. However, in the Quartus II
Classic Timing Analyzer, all base clocks are unrelated by default. All derived clocks of
a base clock are related to each other, but are unrelated to other base clocks and their
derived clocks.

1 You can change the default behavior of the Quartus II Classic Timing Analyzer to treat
all clocks as related clocks. On the Assignments menu, click Timing Analysis
Settings. Click More Settings and then select Cut paths between unrelated clock
domains. Ensure that the setting is off.

Figure 10–5 on page 10–12 shows a simple circuit with a path between two clock
domains. The Quartus II TimeQuest Timing Analyzer analyzes the path from reg_a
to reg_b because all clocks are related by default. The Quartus II Classic Timing
Analyzer does not analyze the path from reg_a to reg_b by default.

Example 10–3. Unambiguous Quartus II TimeQuest Timing Analyzer Exceptions

Applies to path from reg_c to reg_d
set_multicycle_path -setup -from [get_clocks clk_a] \

-to [get_clocks clk_b] 2
Applies to path from clk_a to clk_b
set_multicycle_path -setup -from [get_registers clk_a] \

-to [get_registers clk_b] 2

10–12 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To make clocks unrelated in the Quartus II TimeQuest Timing Analyzer, use the
set_clock_groups command with the -exclusive option. For example, the
following command makes clock_a and clock_b unrelated, so the Quartus II
TimeQuest Timing Analyzer does not analyze paths between the two clock domains.

set_clock_groups -exclusive -group {clock_a} -group {clock_b}

Clock Offset
In the Quartus II TimeQuest Timing Analyzer, clocks can have non-zero values for the
rising edge of the waveform, a feature that the Quartus II Classic Timing Analyzer
does not support. To specify an offset for your clock, use the waveform option for the
create_clock command to specify the rising and falling edge times, as shown in this
example:

-waveform {<rising edge time> <falling edge time>}

Figure 10–6 shows a clock constraint with an offset in the Quartus II TimeQuest
Timing Analyzer GUI.

Clock offset affects setup and hold relationships. Launch and latch edges are
evaluated after offsets are applied. Depending on the offset, the setup relationship can
be the offset value, or the difference between the period and offset. You should not use
clock offset to emulate latency. You should use the clock latency constraint instead.
Refer to “Offset and Latency Example” on page 10–13 for an example that illustrates
the different effects of offset and latency.

Figure 10–5. Cross Clock Domain Path

Figure 10–6. Create Clock Screen

data_out

clock_a

data_a
reg_a

clock_b

reg_b

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–13
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Clock Latency
The Quartus II TimeQuest Timing Analyzer does not ignore early clock latency and
late clock latency differences when the clock source is the same, as the Quartus II
Classic Timing Analyzer does. When you specify latencies, you should take common
clock path pessimism into account and use uncertainty to control pessimism
differences for clock-to-clock data transfers. Unlike clock offset, clock latency affects
skew, and launch and latch edges are evaluated before latencies are applied, so the
setup relationship is always equal to the period.

Offset and Latency Example
Figure 10–7 shows a simple register-to-register circuit used to illustrate the different
effects of offset and latency. The examples show why you should not use clock offset
to emulate clock latency. You should always turn on the Enable Clock Latency option
in the Quartus II Classic Timing Analyzer. This option is in the More Settings box of
the Timing Settings dialog box.

The period for clk is 10 ns, and the period for the PLL output is 10 ns. The PLL
compensation value is –2 ns. The network delay from the PLL to reg_a equals the
network delay from clk to reg_b. Finally, the delay from reg_a to reg_b is 3 ns.

Clock Offset Scenario

Treat the PLL compensation value of –2 ns as a clock offset of –2 ns with a clock skew
of 0 ns. Launch and latch edges are evaluated after offsets are applied, so the setup
relationship is 2 ns (Figure 10–8).

Equation 10–1 shows how to calculate the slack value for the path from reg_a to
reg_b.

Figure 10–7. Simple Circuit for Offset and Latency Examples

Figure 10–8. Setup Relationship Using Offset

reg_breg_a

clk

in out
3 ns

PLL

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Offset

10–14 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The negative slack requires a multicycle assignment with a value of 2 and a hold
multicycle assignment with a value of 1 to correct. With these assignments from
reg_a to reg_b, the setup relationship is then 12 ns, resulting in a slack of 9 ns.

Clock Latency Scenario

Treat the PLL compensation value of –2 ns as latency with a clock skew of 2 ns.
Because launch and latch edges are evaluated before latencies are applied, the setup
relationship is 10 ns (the period of clk and the PLL) (Figure 10–9).

Equation 10–2 shows how to calculate the slack value for the path from reg_a to
reg_b.

The slack of 9 ns is identical to the slack computed in the previous example, but
because this example uses latency instead of offset, no multicycle assignment is
required.

Clock Uncertainty
The Quartus II Classic Timing Analyzer ignores Clock Setup Uncertainty and Clock
Hold Uncertainty assignments when you specify a setup or hold relationship
between two clocks. However, the Quartus II TimeQuest Timing Analyzer does not
ignore clock uncertainty when you specify a setup or hold relationship between two
clocks. Figure 10–10 and Figure 10–11 illustrate the different behavior between the
Quartus II TimeQuest and Quartus II Classic Timing Analyzers.

Equation 10–1.

Figure 10–9. Setup Relationship Using Latency

Equation 10–2.

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 2ns 0ns 3ns–+=

slack 1ns–=

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Latency

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 10ns 2ns 3ns–+=

slack 9ns=

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–15
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

In both figures, the constraints are identical. There is a 20-ns period for clk_a and
clk_b. There is a setup relationship (a set_max_delay exception in the Quartus II
TimeQuest Timing Analyzer) of 7 ns from clk_a to clk_b, and a clock setup
uncertainty constraint of 1 ns from clk_a to clk_b. The actual setup relationship in
the Quartus II TimeQuest Timing Analyzer is 1 ns less than in the Quartus II Classic
Timing Analyzer because of the way they analyze clock uncertainty.

Derived and Generated Clocks
Generated clocks in the Quartus II TimeQuest Timing Analyzer are different than
derived clocks in the Quartus II Classic Timing Analyzer. In the Quartus II Classic
Timing Analyzer, the source of a derived clock must be a base clock. However, in the
Quartus II TimeQuest Timing Analyzer, the source of a generated clock can be any
other clock in the design (including virtual clocks), or any node to which a clock
propagates through the clock network. Because generated clocks are related through
the clock network, you can specify generated clocks for isolated modules, such as IP,
without knowing the details of the clocks outside of the module.

In the Quartus II TimeQuest Timing Analyzer, you can specify generated clocks
relative to specific edges and edge shifts of a master clock, a feature that the Quartus II
Classic Timing Analyzer does not support.

Figure 10–12 shows a simple ripple clock that you should constrain with generated
clocks in the Quartus II TimeQuest Timing Analyzer.

Figure 10–10. Quartus II Classic Timing Analyzer Behavior

Figure 10–11. Quartus II TimeQuest Timing Analyzer Behavior

0 ns 7 ns 10 ns

Setup Relationship with & without Uncertainty

0 7 106

Setup Relationship with Uncertainty

Setup Relationship without Uncertainty

Clock Setup Uncertainty

10–16 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II TimeQuest Timing Analyzer constraints shown in Example 10–4
constrain the clocks in the circuit above. Note that the source of each generated clock
can be the input pin of the register itself, not the name of another clock.

Automatic Clock Detection
The Quartus II Classic and Quartus II TimeQuest Timing Analyzers identify clock
sources of registers that do not have a defined clock source. The Quartus II Classic
Timing Analyzer traces back along the clock network, through registers and logic,
until it reaches a top-level port in your design. The Quartus II TimeQuest Timing
Analyzer also traces back along the clock network, but it stops at registers.

You can use two SDC commands in the Quartus II TimeQuest Timing Analyzer to
automatically detect and create clocks for unconstrained clock sources:

■ derive_clocks—creates clocks on sources of clock pins that do not already have at
least one clock sourcing the clock pin

■ derive_pll_clocks—identifies PLLs and creates generated clocks on the clock
output pins

derive_clocks Command

Figure 10–13 shows a simple circuit with a divide-by-2 register and indicates the clock
network delays as A, B, and C. The following explanation describes how the
Quartus II Classic and Quartus II TimeQuest Timing Analyzers detect the clocks in
Figure 10–13.

Figure 10–12. Generated Clocks Circuit

Example 10–4. Generated Clock Constraints

create_clock –period 10 –name clk clk
create_generated_clock –divide_by 2 –source reg_a|CLK -name reg_a reg_a
create_generated_clock –divide_by 2 –source reg_b|CLK -name reg_b reg_b

Figure 10–13. Circuit for derive_clocks Example

clk

reg_a reg_b

reg_creg_b

reg_a

clk

A

B

C

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–17
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Quartus II Classic Timing Analyzer detects that clk is the clock source for
registers reg_a, reg_b, and reg_c. It detects that clk is the clock source for reg_c
because it traces back along the clock network for reg_c through reg_a, until it finds
the clk port. The Quartus II Classic Timing Analyzer computes the clock arrival time
for reg_c as A  C.

The derive_clocks command in the Quartus II TimeQuest Timing Analyzer creates
two base clocks, one on the clk port and one on reg_a, because the command does
not trace through registers on the clock network. The clock arrival time for reg_c is C
because the clock starts at reg_a.

To make the Quartus II TimeQuest Timing Analyzer compute the same clock arrival
time (A  C) as the Quartus II Classic Timing Analyzer for reg_c, make the following
modifications to the clock constraints created by the derive_clocks command:

■ Change the base clock named reg_a to a generated clock

■ Make the source the clock pin of reg_a (reg_a|clk) or the port clk

■ Add a -divide_by 2 option

These modifications cause the clock arrival times to reg_c to match between the
Quartus II Classic Timing Analyzer and the Quartus II TimeQuest Timing Analyzer.
However, the clock for reg_c is shown as reg_a instead of clk, and the launch and
latch edges may change for some paths due to the divide-by-2.

You can use the derive_clocks command at the beginning of your design cycle when
you do not know all of the clock constraints for your design, but you should not use it
during timing sign-off. Instead, you should constrain each clock in your design with
the create_clock or create_generated_clocks commands.

The derive_clocks command detects clocks in your design using the following rules:

1. An input clock port is detected as a clock only if there are no other clocks feeding
the destination registers.

a. Input clock ports are not detected automatically if they feed only other base
clocks.

b. If other clocks feed the port’s register destinations, the port is assumed to be an
enable or data port for a gated clock.

c. When no clocks are defined, and multiple clocks feed a destination register, the
auto-detected clock is selected arbitrarily.

2. All ripple clocks (registers in a clock path) are detected as clocks automatically
using the same rules for input clock ports. If both an input port and a register feed
register clock pins, the input port is selected as the clock.

The following examples show how the derive_clocks command detects clocks in the
simple circuit shown in Figure 10–14.

Figure 10–14. Simple Circuit 1

ba_in

10–18 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ If you do not make any clock settings, and then you run derive_clocks, it detects
a_in as a clock according to rule 1, because there are no other clocks feeding the
register.

■ If you create a clock with b as its target, and then you run derive_clocks, it does
not detect a_in as a clock according to rule 1a, because a_in feeds only another
clock.

The following examples show how the derive_clocks command detects clocks in the
simple circuit shown in Figure 10–15.

■ If you do not make any clock settings and then you run derive_clocks, it selects a
clock arbitrarily, according to rule 1c.

■ If you create a clock with a_in as its target and then you run derive_clocks, it
does not detect b_in as a clock according to rule 1b, because another clock (a_in)
feeds the register.

derive_pll_clocks Command

The derive_pll_clocks command names the generated clocks according to the names
of the PLL output pins by default, and you cannot change these generated clock
names. If you want to use your own clock names, you must use the
create_generated_clock command for each PLL output clock and specify the names
with the -name option.

If you use the PLL clock-switchover feature, the derive_pll_clocks command creates
additional generated clocks on each output clock pin of the PLL based on the
secondary clock input to the PLL. This may require set_clock_groups or
set_false_path commands to cut the primary and secondary clock outputs. For
information about how to make clocks unrelated, refer to “Related and Unrelated
Clocks” on page 10–11.

Hold Relationship
The Quartus II TimeQuest and Quartus II Classic Timing Analyzers choose the
worst-case hold relationship differently. Refer to Figure 10–16 for sample waveforms
to illustrate the different effects.

Figure 10–15. Simple Circuit 2

a_in
b_in

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–19
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Quartus II Classic Timing Analyzer first identifies the worst-case setup
relationship. The worst-case setup relationship is Setup B. Then the Quartus II Classic
Timing Analyzer chooses the worst-case hold relationship (Hold Check B1 or Hold
Check B2) for that specific setup relationship, Setup B. The Quartus II Classic Timing
Analyzer chooses Hold Check B2 for the worst-case hold relationship.

However, the Quartus II TimeQuest Timing Analyzer calculates worst-case hold
relationships for all possible setup relationships and chooses the absolute worst-case
hold relationship. The Quartus II TimeQuest Timing Analyzer checks two hold
relationships for every setup relationship:

■ Data launched by the current launch edge not captured by the previous latch edge
(Hold Check A1 and Hold Check B1)

■ Data launched by the next launch edge not captured by the current latch edge
(Hold Check A2 and Hold Check B2)

The Quartus II TimeQuest Timing Analyzer chooses Hold Check A2 as the absolute
worst-case hold relationship.

Clock Objects
The Quartus II Classic Timing Analyzer treats nodes with clock settings assigned to
them as special objects in the timing netlist. Any node in the timing netlist with a
clock setting is treated as a clock object, regardless of its actual type, such as a register.
When a register has a clock setting assigned to it, the Quartus II Classic Timing
Analyzer does not analyze register-to-register paths beginning or ending at that
register. Figure 10–17 shows a circuit that illustrates this situation.

Figure 10–16. Worst-Case Hold

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Setup A Setup B
Hold

Check A2
Hold

Check B1

Figure 10–17. Clock Objects

clk

reg_a reg_b

reg_c reg_d

10–20 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

With no clock assignments on any of the registers, the Quartus II Classic Timing
Analyzer analyzes timing on the path from reg_a to reg_b, and from reg_c to
reg_d. If you make a clock setting assignment to reg_b, reg_b is no longer
considered a register node in the netlist, and the path from reg_a to reg_b is no
longer analyzed.

In the Quartus II TimeQuest Timing Analyzer, clocks are abstract objects that are
associated with nodes in the timing netlist. The Quartus II TimeQuest Timing
Analyzer analyzes the path from reg_a to reg_b even if there is a clock assigned to
reg_b.

Hold Multicycle
The hold multicycle value numbering scheme is different in the Quartus II Classic and
Quartus II TimeQuest Timing Analyzers. Also, you can choose between two values
for the default hold multicycle value in the Quartus II Classic Timing Analyzer but
you cannot change the default value in the Quartus II TimeQuest Timing Analyzer.
The hold multicycle value specifies which clock edge is used for hold analysis when
you change the latch edge with a multicycle assignment.

In the Quartus II Classic Timing Analyzer, the hold multicycle value is based on 1,
and is the number of clock cycles away from the setup edge. In the Quartus II
TimeQuest Timing Analyzer, the hold multicycle value is based on zero, and is the
number of clock cycles away from the default hold edge. In the Quartus II TimeQuest
Timing Analyzer, the default hold edge is one edge before or after the setup edges.
Subtract 1 from any hold multicycle value in the Quartus II Classic Timing Analyzer
to compute the equivalent value for the Quartus II TimeQuest Timing Analyzer.

In the Quartus II Classic Timing Analyzer, you can set the default value of the hold
multicycle assignment to One or Same as Multicycle. The default value applies to
any multicycle assignment in your design that does not also have a multicycle hold
assignment. Figure 10–18 illustrates the difference between One and Same as
Multicycle for a multicycle assignment of 2 using the Quartus II Classic Timing
Analyzer.

If the default value is One, the Quartus II Classic Timing Analyzer uses the clock edge
one before the setup edge for hold analysis. If the default value is Same as Multicycle,
the Quartus II Classic Timing Analyzer uses the clock edge that is <value of multicycle
assignment> edges back from the setup edge.

Figure 10–19 shows simple waveforms for a cross-clock domain transfer with the
indicated setup and hold edges.

Figure 10–18. Difference Between One and Same As Multicycle

Hold Edge for Value of
Same as Multicycle

Hold Edge for Value of One Setup Edge for Multicycle = 2

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–21
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

In the Quartus II TimeQuest Timing Analyzer, only a multicycle exception of 2 is
required to constrain the design for the indicated setup and hold relationships.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle value is
One, only a multicycle assignment of 2 is required to constrain the design.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle value is
Same as Multicycle, you must make two assignments to constrain the design:

■ A multicycle assignment of 2

■ A hold multicycle assignment of 1 to override the default value

Figure 10–20 shows simple waveforms for a different cross-clock domain transfer
with indicated setup and hold edges. The following explanation shows what
exceptions to apply to achieve the desired setup and hold relationships.

In the Quartus II TimeQuest Timing Analyzer, you must use the following two
exceptions:

■ A multicycle exception of 2

■ A hold multicycle exception of 1, because the hold edge is one edge behind the
default hold edge, which is one edge after the setup edge.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle value is
One, you must make two assignments to constrain the design:

■ A multicycle assignment of 2

■ A hold multicycle assignment of 2 to override the default value

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle value is
Same as Multicycle, only a multicycle assignment of 2 is required to constrain the
design.

Figure 10–19. First Relationship Example

Figure 10–20. Second Relationship Example

Hold Edge Setup Edge

Hold Edge Setup Edge

10–22 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 You should always add a hold multicycle assignment for every multicycle assignment
to ensure the correct exceptions are applied regardless of the timing analyzer you use,
or, for the Quartus II Classic Timing Analyzer, the Default Hold Multicycle setting.

Fitter Behavior
The behavior for one value of the Optimize hold time Fitter assignment differs
between the Quartus II TimeQuest Timing Analyzer and the Quartus II Classic
Timing Analyzer. When you set the Quartus II TimeQuest Timing Analyzer as the
default timing analyzer, the I/O Paths and Minimum TPD Paths value directs the
Fitter to optimize all hold time paths, which has the same affect as the All Paths value.

Fitter Performance
If you use the Quartus II TimeQuest Timing Analyzer as your default timing analyzer,
the Fitter memory use and compilation time may increase. However, the timing
analysis time may decrease.

Reporting
The Quartus II TimeQuest Timing Analyzer provides a more flexible and powerful
interface for reporting timing analysis results than the Quartus II Classic Timing
Analyzer. Although the interface and constraints are more flexible and powerful, both
analyzers use the same device timing models, except for device families that support
rise/fall analysis. The Quartus II Classic Timing Analyzer does not support rise/fall
analysis, but the Quartus II TimeQuest Timing Analyzer does. Therefore, you may see
slightly different delays on identical paths in device families that support rise/fall
analysis if you analyze timing in both analyzers.

This means that both analyzers report identical delays along identically constrained
paths in your design. The Quartus II TimeQuest Timing Analyzer allows you to
constrain some paths that you could not constrain with the Quartus II Classic Timing
Analyzer. Differently constrained paths result in different reported values, but for
identical paths in your design that are constrained the same way, the delays are
exactly the same. Both timing analyzers use the same timing models.

f For information about reporting with the Quartus II TimeQuest Timing Analyzer,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Paths and Pairs
In reporting, the most significant difference between the two analyzers is that the
Quartus II TimeQuest Timing Analyzer reports paths, while the Quartus II Classic
Timing Analyzer reports pairs. Path reporting means that the analyzer separately
reports every path between two registers. Pair reporting means that the analyzer
reports only the worst-case path between two registers. One benefit of path reporting
over pair reporting is that you can more easily identify common points in failing
paths that may be good targets for optimization.

If your design does not meet timing constraints, this reporting difference can give the
impression that there are many more timing failures when you use the Quartus II
TimeQuest Timing Analyzer. Figure 10–21 shows a sample circuit followed by a
description of the differences between path and pair reporting.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–23
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

There is an 8-ns period constraint on clk, resulting in two paths that fail timing:
regA C regB and regA D regB. The Quartus II Classic Timing Analyzer
reports only worst-case path regA C regB. The Quartus II TimeQuest Timing
Analyzer reports both failing paths regA C regB and regA D regB. It also
reports path regA E regB with positive slack.

Default Reports
The Quartus II TimeQuest Timing Analyzer generates only a small number of reports
by default, as compared to the Quartus II Classic Timing Analyzer, which generates
every report by default. With the Quartus II TimeQuest Timing Analyzer, you
generate desired reports on demand.

f To learn how to create custom reports, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Netlist Names
The Quartus II Classic Timing Analyzer uses register names in reporting, but the
Quartus II TimeQuest Timing Analyzer uses register pin names (with the exception of
port names of the top-level module). Buried nodes or register names are used when
necessary.

Example 10–5 shows how register names are used in Quartus II Classic Timing
Analyzer reports.

Example 10–6 shows the same information as presented in a Quartus II TimeQuest
Timing Analyzer report. In this example, register pin names are used in place of
register names.

Figure 10–21. Failing Paths

clk

node C
regA

node D

node E

10 ns

9 ns

7 ns

regB

Example 10–5. Netlist Names in the Quartus II Classic Timing Analyzer

Info: + Shortest register to register delay is 0.538 ns
Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. =

LCFF_X1_Y5_N1;
Fanout = 1; REG Node = 'inst'

Info: 2: + IC(0.305 ns) + CELL(0.149 ns) = 0.454 ns; Loc. =
LCCOMB_X1_Y5_N20; Fanout = 1; COMB Node = 'inst3~feeder'

Info: 3: + IC(0.000 ns) + CELL(0.084 ns) = 0.538 ns; Loc. =
LCFF_X1_Y5_N21; Fanout = 1; REG Node = 'inst3'

Info: Total cell delay = 0.233 ns (43.31 %)
Info: Total interconnect delay = 0.305 ns (56.69 %)

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

10–24 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between Quartus II TimeQuest and Quartus II Classic Timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Non-Integer Clock Periods
In some cases when related clock periods are not integer multiples of each other, a
lack of precision in clock period definition in the Quartus II TimeQuest Timing
Analyzer can result in reported setup or hold relationships of a few picoseconds. In
addition, launch and latch times for the relationships can be very large. If you
experience this, use the set_max_delay and set_min_delay exceptions to specify the
correct relationships. The Quartus II Classic Timing Analyzer can maintain additional
information about clock frequency that mitigates the lack of precision in clock period
definition.

When the clock period cannot be expressed as an integer in terms of picoseconds, you
have the problem detailed in Figure 10–22. This figure shows two clocks: clk_a has a
10 ns period, and clk_b has a 6.667 ns period.

There is a 1 ps setup relationship at 20 ns because you cannot specify the 6.667 ns
period beyond picosecond precision. You should apply the maximum and minimum
delay exceptions shown in Example 10–7 between the two clocks to specify the correct
relationships.

Other Features
The Quartus II TimeQuest Timing Analyzer reports time values without units. By
default, the units are nanoseconds, and three decimal places are displayed. You can
change the default time unit and decimal places with the set_time_format command.

When you use the Quartus II TimeQuest Timing Analyzer in a Tcl shell, output is
ASCII-formatted, and columns are aligned for easy reading on 80-column consoles.
Example 10–8 shows sample output from a report_timing command from the
Quartus II TimeQuest Timing Analyzer.

Example 10–6. Netlist Names in the Quartus II TimeQuest Timing Analyzer

Info: 3.788 0.250 uTco inst
Info: 3.788 0.000 RR CELL inst|regout
Info: 4.093 0.305 RR IC inst3~feeder|datad
Info: 4.242 0.149 RR CELL inst3~feeder|combout
Info: 4.242 0.000 RR IC inst3|datain
Info: 4.326 0.084 RR CELL inst3

Figure 10–22. Very Small Setup Relationship

Example 10–7. Minimum and Maximum Delay Exceptions

set_max_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 3.333
set_min_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 0

clk_a

clk_b
0 6.667 13.334 20.001

20100

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–25
Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Scripting API
In versions of the Quartus II software earlier than 6.0, the ::quartus::project Tcl
package contained the following SDC-like commands for making timing assignments:

■ create_base_clock

■ create_relative_clock

■ get_clocks

■ set_clock_latency

■ set_clock_uncertainty

■ set_input_delay

■ set_multicycle_assignment

Example 10–8. ASCII-Formatted Quartus II TimeQuest Timing Analyzer Report

tcl> report_timing -from inst -to inst5
Info: Report Timing: Found 1 setup paths (0 violated). Worst case slack
is 3.634
Info: -from [get_keepers inst]
Info: -to [get_keepers inst5]
Info: Path #1: Slack is 3.634
Info:
===
Info: From Node : inst
Info: To Node : inst5
Info: Launch Clock : clk_a
Info: Latch Clock : clk_b
Info:
Info: Data Arrival Path:
Info:
Info: Total (ns) Incr (ns) Type Node
Info: ========== ========= == ====
===================================
Info: 0.000 0.000 launch edge time
Info: 2.347 2.347 R clock network delay
Info: 2.597 0.250 uTco inst
Info: 2.597 0.000 RR CELL inst|regout
Info: 3.088 0.491 RR IC inst6|datac
Info: 3.359 0.271 RR CELL inst6|combout
Info: 3.359 0.000 RR IC inst5|datain
Info: 3.443 0.084 RR CELL inst5
Info:
Info: Data Required Path:
Info:
Info: Total (ns) Incr (ns) Type Node
Info: ========== ========= == ====
===================================
Info: 4.000 4.000 latch edge time
Info: 7.041 3.041 R clock network delay
Info: 7.077 0.036 uTsu inst5
Info:
Info: Data Arrival Time : 3.443
Info: Data Required Time : 7.077
Info: Slack : 3.634
Info:
===
Info:
1 3.634

10–26 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ set_output_delay

■ set_timing_cut_assignment

These commands are not SDC-compliant. Beginning with version 6.0, these
commands are in a new package called ::quartus::timing_assignment. To ensure
backward compatibility with existing Tcl scripts, the ::quartus::timing_assignment
package is loaded by default in the following executables:

■ quartus

■ quartus_sh

■ quartus_cdb

■ quartus_sim

■ quartus_stp

■ quartus_tan

The ::quartus::timing_assignment package is not loaded by default in the
quartus_sta executable. The ::quartus::sdc Tcl package includes SDC-compliant
versions of the commands listed above. That package is available only in the
quartus_sta executable, and it is loaded by default.

Timing Assignment Conversion
This section describes Quartus II Classic QSF timing assignments and their equivalent
Quartus II TimeQuest constraints. You can convert many Quartus II Classic timing
assignments to SDC constraints. Some Quartus II Classic timing assignments can be
converted to two different SDC constraints, and you must understand the intended
functionality of the design to make an appropriate conversion. You cannot convert
some Quartus II Classic timing assignments because there is no equivalent SDC
constraint.

This section includes the following topics, arranged alphabetically:

■ “Clock Enable Multicycle” on page 10–30

■ “Clock Latency” on page 10–27

■ “Clock Uncertainty” on page 10–28

■ “Cut Timing Path” on page 10–41

■ “Default Required fMAX Assignment” on page 10–29

■ “Hold Relationship” on page 10–27

■ “Input and Output Delay” on page 10–31

■ “Inverted Clock” on page 10–28

■ “Maximum Clock Arrival Skew” on page 10–42

■ “Maximum Data Arrival Skew” on page 10–42

■ “Maximum Delay” on page 10–41

■ “Minimum Delay” on page 10–42

■ “Minimum tCO Requirement” on page 10–38

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–27
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ “Minimum tPD Requirement” on page 10–41

■ “Multicycle” on page 10–30

■ “Not a Clock” on page 10–28

■ “Setup Relationship” on page 10–27

■ “tCO Requirement” on page 10–36

■ “tH Requirement” on page 10–34

■ “tPD Requirement” on page 10–40

■ “tSU Requirement” on page 10–32

■ “Virtual Clock Reference” on page 10–29

Setup Relationship
The Setup Relationship assignment overrides the setup relationship between two
clocks. By default, the Quartus II Classic Timing Analyzer automatically calculates the
setup relationship based on your clock settings. The QSF variable for the Setup
Relationship assignment is SETUP_RELATIONSHIP. In the Quartus II TimeQuest
Timing Analyzer, use the set_max_delay command to specify the maximum setup
relationship for a path.

The setup relationship value is the time between latch and launch edges before the
Quartus II TimeQuest Timing Analyzer accounts for clock latency, source tCO, or
destination tSU.

Hold Relationship
The Hold Relationship assignment overrides the hold relationship between two
clocks. By default, the Quartus II Classic Timing Analyzer automatically calculates the
hold relationship based on your clock settings. The QSF variable for the Hold
Relationship assignment is HOLD_RELATIONSHIP. In the Quartus II TimeQuest
Timing Analyzer, use the set_min_delay command to specify the minimum hold
relationship for a path.

Clock Latency
Table 10–1 shows the equivalent SDC constraints for each of these Quartus II Classic
assignments.

For more information about clock latency support in the Quartus II TimeQuest
Timing Analyzer, refer to “Clock Latency” on page 10–13.

Table 10–1. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Assignment

SDC ConstraintAssignment Name QSF Variable

Early Clock Latency EARLY_CLOCK_LATENCY set_clock_latency -source -late

Late Clock Latency LATE_CLOCK_LATENCY set_clock_latency -source -early

10–28 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock Uncertainty
This section describes the conversion for the following Quartus II Classic Timing
Analyzer assignments:

■ Clock Setup Uncertainty

■ Clock Hold Uncertainty

Table 10–2 shows the equivalent SDC constraints for each of these Quartus II Classic
Timing Analyzer assignments.

Inverted Clock
The Quartus II Classic Timing Analyzer detects inverted clocks automatically when
the clock inversion occurs at the input of the LCELL that contains the register
specified in the assignment. You must make an Inverted Clock assignment in all other
situations for Quartus II Classic Timing Analyzer analysis. The QSF variable for the
Inverted Clock assignment is INVERTED_CLOCK. The Quartus II TimeQuest Timing
Analyzer detects inverted clocks automatically, regardless of the type of inversion
circuit, in designs that target device families that support unateness: Stratix® II,
Cyclone® II, and HardCopy® II. For designs that target any other device family, you
must create a generated clock with the -invert option on the output of the cell that
inverts the clock.

f For more information about unateness, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Not a Clock
The Not a Clock assignment directs the Quartus II Classic Timing Analyzer that the
specified node is not a clock source when it would normally be detected as a clock
because of a global fMAX requirement. The QSF variable for the Not a Clock assignment
is NOT_A_CLOCK. This assignment is not supported in the Quartus II TimeQuest
Timing Analyzer and there is no equivalent constraint. Appropriate clock constraints
are created in the Quartus II TimeQuest Timing Analyzer only.

Table 10–2. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Analyzer Timing Assignment

SDC ConstraintAssignment Name QSF Variable

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY set_clock_uncertainty -setup

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY set_clock_uncertainty -hold

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–29
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Default Required fMAX Assignment
The Default Required fMAX assignment allows you to specify an fMAX requirement for
the Quartus II Classic Timing Analyzer for all unconstrained clocks in your design.
The QSF variable for the Default Required fMAX assignment is
FMAX_REQUIREMENT. You can use the derive_clocks command to create clocks on
sources of clock pins in your design that do not already have clocks assigned to them.
You should constrain each individual clock in your design with the create_clock or
created_generated_clock command, not the derive_clocks command. Refer to
“Automatic Clock Detection” on page 10–16 to learn why you should constrain
individual clocks in your design.

Virtual Clock Reference
The Virtual Clock Reference assignment allows you to define timing characteristics
of a reference clock outside the FPGA. The QSF variable for the Virtual Clock
Reference assignment is VIRTUAL_CLOCK_REFERENCE. The Quartus II
TimeQuest Timing Analyzer supports virtual clocks by default, while the Quartus II
Classic Timing Analyzer requires the Virtual Clock Reference assignment to indicate
that a clock setting is for a virtual clock. To create a virtual clock in the Quartus II
TimeQuest Timing Analyzer, use the create_clock or create_generated_clock
commands with the -name option and no targets.

Figure 10–23 shows a simple circuit that requires a virtual clock, and the following
example shows how to constrain the circuit. The circuit shows data transfer between
an Altera FPGA and another device, and the clocks for the two devices are not related.
You can constrain the path with an output delay assignment, but that assignment
requires a virtual clock that defines the clock characteristics of the destination device.

Assume the circuit has the following assignments in the Quartus II Classic Timing
Analyzer:

■ Clock period of 10 ns on system_clk (clock for the Altera FPGA)

■ Clock period of 8 ns on virt_clk (clock for the other device)

■ Virtual Clock Reference setting for virt_clk is on (indicates that virt_clk is a
virtual clock)

■ Output Maximum Delay of 5 ns on dataout with respect to virt_clk
(constrains the path between the two devices)

The SDC commands shown in Example 10–9 constrain the circuit the same way.

Figure 10–23. Virtual Clock Sample Circuit

reg_b

Other Device
d_in

clk_b
clk_b

reg_a

Altera FPGA

d_out

clk_a
clk_a

10–30 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock Settings
The Quartus II Classic Timing Analyzer includes a variety of assignments to describe
clock settings. These include duty cycle, fMAX, offset, and others. In the Quartus II
TimeQuest Timing Analyzer, use the create_clock and create_generated_clock
commands to constrain clocks.

Multicycle
Table 10–3 shows the equivalent SDC exceptions for each of these Quartus II Classic
Timing Analyzer timing assignments.

The default value and numbering scheme for the hold multicycle value is different in
the Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Refer to “Hold
Multicycle” on page 10–20 for more information about the difference between the
default value and numbering scheme for the hold multicycle value in the Quartus II
Classic and Quartus II TimeQuest Timing Analyzers.

f For more information about how to convert the hold multicycle value, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Clock Enable Multicycle
The Quartus II Classic Timing Analyzer supports the following clock enable
multicycle assignments. Corresponding types of multicycle assignments are applied
to all registers enabled by the targets of the specified clock.

■ Clock Enable Multicycle

■ Clock Enable Source Multicycle

Example 10–9. SDC Constraints

Clock for the Altera FPGA
create_clock -period 10 -name system_clk [get_ports system_clk]
Virtual clock for the other device, with no targets
create_clock -period 8 -name virt_clk
Constrains the path between the two devices
set_output_delay -clock virt_clk 5 [get_ports dataout]

Table 10–3. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment

SDC ExceptionAssignment Name QSF Variable

Multicycle (1) MULTICYCLE set_multicycle_path -setup -end

Source Multicycle (2) SRC_MULTICYCLE set_multicycle_path -setup -start

Multicycle Hold (3) HOLD_MULTICYCLE set_multicycle_path -hold -end

Source Multicycle Hold SRC_HOLD_MULTICYCLE set_multicycle_path -hold -start

Notes to Table 10–3:

(1) A multicycle assignment is also known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment is also known as a “source multicycle setup” assignment.
(3) A multicycle hold is also known as a “destination multicycle hold “assignment.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–31
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Clock Enable Multicycle Hold

■ Clock Enable Source Multicycle Hold

The Quartus II TimeQuest Timing Analyzer supports clock-enabled multicycle
constraints with the get_fanouts command. Use the get_fanouts command to create a
collection of nodes that have a common source signal, such as a clock enable.

I/O Constraints
FPGA I/O timing assignments have typically been made with FPGA-centric tSU and
tCO requirements for the Quartus II Classic Timing Analyzer. However, the Quartus II
Classic Timing Analyzer also supports input and output delay assignments to
accommodate industry-standard, system-centric timing constraints. Where possible,
you should use system-centric constraints to constrain your designs for the Quartus II
TimeQuest Timing Analyzer. Table 10–4 includes Quartus II Classic I/O assignments,
the equivalent FPGA-centric SDC constraints, and recommended system-centric SDC
constraints.

For setup checks (tSU and tCO), <latch – launch> equals the clock period for same-clock
transfers. For hold checks (tH and Minimum tCO), <latch – launch> equals 0 for
same-clock transfers. Conversions from Quartus II Classic assignments to
set_input_delay and set_output_delay constraints work well only when the
source and destination registers’ clocks are the same (same clock and polarity). If the
source and destination registers’ clocks are different, the conversion may not be
straightforward and you should take extra care when converting to
set_input_delay and set_output_delay constraints.

Input and Output Delay
Table 10–5 shows the equivalent SDC exceptions for each of these Quartus II Classic
Timing Analyzer timing assignments.

Table 10–4. Quartus II Classic and Quartus II TimeQuest Timing Analyzers Equivalent I/O Constraints

Classic FPGA-centric SDC System-centric SDC

tSU Requirement set_max_delay <tSU requirement> set_input_delay -max <latch  launch ?
tSU requirement>

tH Requirement set_min_delay  <tH requirement> (1) set_input_delay -min <latch ?
launch  tH requirement>

tCO Requirement set_max_delay <tCO requirement> set_output_delay -max <latch ?
launch  tCO requirement>

Minimum tCO Requirement set_min_delay <minimum tCO requirement> set_output_delay -min <latch ?
launch  minimum tCO requirement>

tPD Requirement set_max_delay <tPD requirement> (2)

Minimum tPD Requirement set_min_delay <minimum tPD requirement> (2)

Notes to Table 10–4:

(1) Refer to “tH Requirement” on page 10–34 for an explanation about why this exception uses the negative tH requirement.
(2) The input and output delays can be used for tPD paths, such that they will be analyzed as a system fMAX path. This is a feature unique to the

Quartus II TimeQuest Timing Analyzer.

10–32 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

In some circumstances, you may receive the following warning message when you
update the SDC netlist:

Warning: For set_input_delay/set_output_delay, port "<port>" does not
have delay for flag (<rise|fall>, <min|max>)

This warning occurs whenever port constraints have maximum or minimum delay
assignments, but not both. In the Quartus II Classic Timing Analyzer, device inputs
can have Input Maximum Delay assignments, Input Minimum Delay assignments,
or both, and device outputs can have Output Maximum Delay assignments, Output
Minimum Delay assignments, or both.

To avoid receiving the warning, your .sdc file must specify both the -max and -min
options for each port, or specify neither. If a device I/O in your design includes both
the maximum and minimum delay assignments in the Quartus II Classic Timing
Analyzer, the conversion utility converts both, and no warning appears about that
device I/O. If a device I/O has only maximum or minimum delay assignments in the
Quartus II Classic Timing Analyzer, you have the following options:

■ Add the missing minimum or maximum delay assignment to the device I/O
before performing the conversion.

■ Modify the SDC constraint after the conversion to add appropriate -max or -min
values.

■ Modify the SDC constraint to remove the -max or -min option so the value is used
for both by default.

tSU Requirement
The tSU Requirement assignment specifies the maximum acceptable clock setup time
for the input (data) pin. The QSF variable for the tSU Requirement assignment is
TSU_REQUIREMENT. You can convert the tSU Requirement assignment to the
set_max_delay command or the set_input_delay command with the -max option.
The delay value for the set_input_delay command is <latch – launch – tSU requirement>.
Refer to the labeled paths in Figure 10–24 to understand the names in Equation 10–3
and Equation 10–4.

Table 10–5. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment

SDC ExceptionAssignment Name QSF Variable

Input Maximum Delay INPUT_MAX_DELAY set_input_delay -max

Input Minimum Delay INPUT_MIN_DELAY set_input_delay -min

Output Maximum Delay OUTPUT_MAX_DELAY set_output_delay -max

Output Minimum Delay OUTPUT_MIN_DELAY set_output_delay -min

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–33
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Equation 10–3 shows the derivation of this conversion.

The delay value is the difference between the period of the clock source of the register
and the tSU Requirement value, as shown in Figure 10–25.

The delay value for the set_max_delay command is the tSU Requirement value.
Equation 10–4 shows the derivation of this conversion.

Figure 10–24. Path Names

Equation 10–3.

Figure 10–25. tSU Requirement

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

required arrival 0–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

input_delay board.srcclk src.clk src.utcu src.out srctodst board.dstclk–+ + + +=

required latch dst.clk dst.utsu–+=

arrival launch input_delay dst.in+ +=

latch dst.clk dst.utsu–+  launch input_delay dst.in+ +  0–

tsu requirement actual tsu– 0

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+ – 0

tsu requirement latch launch input_delay––=

input_delay latch launch– tsurequirement–=

FPGAOther Device

Input Delay

tsu

clk

10–34 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 10–6 shows the different ways you can make tSU assignments in the Quartus II
Classic Timing Analyzer, and the corresponding options for the set_max_delay
exception.

To convert a global tSU assignment to an equivalent SDC exception, use the command
shown in Example 10–10.

tH Requirement
The tH Requirement specifies the maximum acceptable clock hold time for the input
(data) pin. The QSF variable for the tH Requirement assignment is
TH_REQUIREMENT. You can convert the tH Requirement assignment to the
set_min_delay command, or the set_input_delay command with the -min option.
The delay value for the set_input_delay command is <latch – launch + tH requirement>.
Refer to the labeled paths in Figure 10–26 to understand the names in Equation 10–5
and Equation 10–6.

Equation 10–4.

Table 10–6. tSU Requirement and set_max_delay Equivalence

tSU Requirement
Options set_max_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to
<register>

-from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Notes to Table 10–6:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,
-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly.

Example 10–10. Converting a Global tSU Assignment to an Equivalent SDC Exception

set_max_delay -from [all_inputs] -to [all_registers] <tSU value>

required arrival 0–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

max_delay latch board.dstclk launch board.srcclk–– src.clk– src.out– srctodst–+ +=

required max_delay dst.clk dst.utsu–+=

arrival dst.in=

max_delay dst.clk dst.utsu–+  dst.in – 0

tsu requirement tsu– 0

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+ – 0

set_max_delay tsu requirement=

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–35
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Equation 10–5 shows the derivation of this calculation.

The delay value for the set_min_delay command is the tH Requirement value.
Equation 10–6 shows the derivation of this conversion.

Table 10–7 shows the different ways you can make tH assignments in the Quartus II
Classic Timing Analyzer, and the corresponding options for the set_min_delay
command.

Figure 10–26. Path Names

Equation 10–5.

Equation 10–6.

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

arrival required– 0

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

required latch board.dstclk dst.clk dst.uth+ + +=

input_delay board.srcclk src.clk srcutcu src.out srctodst board.dstclk–+ + + +=

arrival launch input_delay dst.in+ +=

required latch dst.clk dst.uth+ +=

launch input_delay dst.in+ +  latch dst.clk dst.uth+ + – 0

tH requirement actual tH – 0

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+ – 0

tH requirement launch latch input_delay+–=

input_delay latch launch tH requirement+–=

arrival required– 0

arrival dst.in=

required min_delay dst.clk dst.uth+ +=

dst.in min_delay dst.clk dst.uth+ + –

tH requirement actual tH – 0

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+ – 0

set_min_delay tH requirement–=

10–36 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To convert a global tH assignment to an equivalent SDC exception, use the command
shown in Example 10–11.

tCO Requirement
The tCO Requirement assignment specifies the maximum acceptable clock to output
delay to the output pin. The QSF variable for the tCO Requirement assignment is
TCO_REQUIREMENT. You can convert the tCO Requirement assignment to the
set_max_delay command or the set_output_delay with the -max option. The delay
value for the set_output_delay command is <latch – launch + tCO requirement>. Refer
to the labeled paths in Figure 10–27 to understand the names in Equation 10–7 and
Equation 10–8.

Equation 10–7 shows the derivation of this conversion.

Table 10–7. tH Requirement and set_min_delay Equivalence

tH Requirement Options set_min_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Note to Table 10–7:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers
clocked by different clocks, use set_input_delay to constrain the paths properly. Refer to“Input and Output Delay” on page 10–31 for additional
information.

Example 10–11. Converting a Global tH Assignment to an Equivalent SDC Exception

set_min_delay -from [all_inputs] -to [all registers] <negative tH value>

Figure 10–27. Path Names

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–37
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The delay value is the difference between the period of the clock source of the register
and the tCO Requirement value, as illustrated in Figure 10–28.

The delay value for the set_max_delay command is the tCO Requirement value.
Equation 10–8 shows the derivation of this conversion.

Table 10–8 shows the different ways you can make tCO assignments in the Quartus II
Classic Timing Analyzer, and the corresponding options for the set_max_delay
exception.

Equation 10–7.

Figure 10–28. tCO Requirement

Equation 10–8.

required arrival– 0

required latch output_delay–=

arrival launch src.clk src.utco src.out+ + +=

output_delay srctodst dst.in dst.utsu dst.clk– board.dstc.k board.srcclk+–+ +=

latch output_delay–  launch src.clk src.utco src.out+ + + – 0

tco requirement actual tco– 0

actual tco launch src.clk src.utco src.out+ + +=

tco requirement src.clk src.utco src.out+ + – 0

tco requirement latch launch output_delay––=

output_delay latch launch tco requirement––=

FPGA Other Device

Output Delay

tco

clk

required arrival– 0

required set_max_delay=

arrival src.clk src.utco src.out+ +=

set_max_delay src.clk src.utco src.out+ + – 0

tco requirement actual tco– 0

actual tco src.clk src.utco src.out+ +=

tco requirement src.clk src.utco src.out+ + – 0

set_max_delay tco requirement=

10–38 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To convert a global tCO assignment to an equivalent SDC exception, use the command
in Example 10–12.

Minimum tCO Requirement
The Minimum tCO Requirement assignment specifies the minimum acceptable clock
to output delay to the output pin. The QSF variable for the Minimum tCO
Requirement assignment is MIN_TCO_REQUIREMENT. You can convert the
Minimum tCO Requirement assignment to the set_min_delay command or the
set_output_delay command with the -min option. The delay value for the
set_output_delay command is <latch – launch + minimum tCO requirement>. Refer to the
labeled paths in Figure 10–29 to understand the names in Equation 10–9 and
Equation 10–10.

Equation 10–9 shows the derivation of this conversion.

Table 10–8. tCO Requirement and set_max_delay Equivalence

tCO Requirement Options set_max_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Note to Table 10–8:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,
-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain
the paths properly.

Example 10–12. Converting a Global tCO Assignment to an Equivalent SDC Exception

set_max_delay -from [all registers] -to [all_outputs] <tCO value>

Figure 10–29. Path Names

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–39
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The delay value for the set_min_delay command is the Minimum tCO Requirement.
Equation 10–10 shows the derivation of this conversion.

Table 10–9 shows the different ways you can make minimum tCO assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for the
set_min_delay exception.

To convert a global Minimum tCO Requirement to an equivalent SDC exception, use
the command shown in Example 10–13.

Equation 10–9.

Equation 10–10.

arrival required+ 0

arrival launch src.clk src.utco src.out+ + +=

required latch output_delay–=

output_delay srctodst dst.in dst.uth– dst.clk– board.dstclk– board.srcclk+ +=

launch src.clk src.utco src.out+ + +  latch output_delay– – 0

minimum tco minimum tcorequirement– 0

minimum tco launch src.clk src.utco src.out+ + +=

launch src.clk src.utco src.out+ + +  minimum tco requirement– 0

minimum tco requirement latch launch– output_delay–=

output_delay latch launch– minimum tco requirement–=

arrival required– 0

arrival src.clk src.utco src.out+ +=

required min_delay=

src.clk src.utco src.out+ +  set_min_delay – 0

minimum tco minimum tco requirement– 0

minimum tco src.clk src.utco src.out+ +=

src.clk src.utco src.out+ +  minimum tcorequirement– 0

set_min_delay minimum tco requirement=

Table 10–9. Minimum tCO Requirement and set_min_delay Equivalence

Minimum tCO Requirement Options set_min_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Note to Table 10–9:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers
clocked by different clocks, use set_output_delay to constrain the paths properly.

10–40 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

tPD Requirement
The tPD Requirement assignment specifies the maximum acceptable input to
non-registered output delay, that is, the time required for a signal from an input pin to
propagate through combinational logic and appear at an output pin. The QSF variable
for the tPD Requirement assignment is TPD_REQUIREMENT. You can use the
set_max_delay command in the Quartus II TimeQuest Timing Analyzer as an
equivalent constraint as long as you account for input and output delays. The
tPD Requirement assignment does not take into account input and output delays, but
the set_max_delay exception does, so you must modify the set_max_delay value to
take into account input and output delays.

Combinational Path Delay Scenario

Figure 10–30 shows a simple circuit followed by an example of a tPD Requirement to
set_max_delay conversion.

Assume the circuit has the following assignments in the Quartus II Classic Timing
Analyzer:

■ Clock period of 10 ns

■ tPD Requirement from a_in to comb_out of 10 ns

■ Input Max Delay on a_in relative to clk of 2 ns

■ Output Max Delay on comb_out relative to clk of 2 ns

The path from a_in to comb_out is not affected by the input and output delays. The
slack is equal to the <tPD Requirement from a_in to comb_out> – <path delay from a_in
to comb_out>.

Assume the circuit has the SDC constraints shown in Example 10–14 in the Quartus II
TimeQuest Timing Analyzer.

Example 10–13. Converting a Global Minimum tCO Requirement to an Equivalent SDC Exception

set_min_delay -from [all_registers] -to [all_outputs] <minimum tCO value>

Figure 10–30. tPD Example

Example 10–14. SDC Constraints

create_clock -period 10 –name clk [get_ports clk]
set_max_delay -from a_in -to comb_out 10
set_input_delay -clk clk 2 [get_ports a_in]
set_output_delay –clk clk 2 [get_ports comb_out]

clk

reg_out

comb_out

b_in

a_in

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–41
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The path from a_in to comb_out is affected by the input and output delays. The
slack is equal to:

<set_max_delay value from a_in to comb_out> ? <input delay> ? <output
delay> ? <path delay from a_in to comb_out>

To convert a global tPD Requirement assignment to an equivalent SDC exception, use
the command shown in Example 10–15. You should add the input and output delays
to the value of your converted tPD Requirement (set_max_delay exception value) to
achieve an equivalent SDC exception.

Minimum tPD Requirement
The Minimum tPD Requirement assignment specifies the minimum acceptable input
to non-registered output delay, that is, the minimum time required for a signal from
an input pin to propagate through combinational logic and appear at an output pin.
The QSF variable for the Minimum tPD Requirement assignment is
MIN_TPD_REQUIREMENT. You can use the set_min_delay command in the
Quartus II TimeQuest Timing Analyzer as an equivalent constraint as long as you
account for input and output delays. The Minimum tPD Requirement assignment
does not take into account input and output delays, but the set_min_delay exception
does.

Refer to “Combinational Path Delay Scenario” on page 10–40 to see how input and
output delays affect minimum and maximum delay exceptions.

To convert a global Minimum tPD Requirement assignment to an equivalent SDC
exception, use the command shown in Example 10–16.

Cut Timing Path
The Cut Timing Path assignment in the Quartus II Classic Timing Analyzer is
equivalent to the set_false_path command in the Quartus II TimeQuest Timing
Analyzer. The QSF variable for the Cut Timing Path assignment is CUT.

Maximum Delay
The Maximum Delay assignment specifies the maximum required delay for the
following types of paths:

■ Pins to registers

■ Registers to registers

■ Registers to pins

The QSF variable for the Maximum Delay assignment is MAX_DELAY. This
overwrites the requirement computed from the clock setup relationship and clock
skew. There is no equivalent constraint in the Quartus II TimeQuest Timing Analyzer.

Example 10–15. Converting a Global tPD Requirement Assignment to an Equivalent SDC Exception

set_max_delay -from [all_inputs] -to [all_outputs] <value>

Example 10–16. Converting a Global Minimum tPD Requirement Assignment to an Equivalent SDC
Exception

set_min_delay -from [all_inputs] -to [all_outputs] <value>

10–42 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 The Maximum Delay assignment for the Quartus II Classic Timing Analyzer is not
related to the set_max_delay exception in the Quartus II TimeQuest Timing Analyzer.

Minimum Delay
The Minimum Delay assignment specifies the minimum required delay for the
following types of paths:

■ Pins to registers

■ Registers to registers

■ Registers to pins

The QSF variable for the Minimum Delay assignment is MIN_DELAY. This
overwrites the requirement computed from the clock hold relationship and clock
skew. There is no equivalent constraint in the Quartus II TimeQuest Timing Analyzer.

1 The Minimum Delay assignment for the Quartus II Classic Timing Analyzer is not
related to the set_min_delay exception in the Quartus II TimeQuest Timing Analyzer.

Maximum Clock Arrival Skew
The Maximum Clock Arrival Skew assignment specifies the maximum clock skew
between a set of registers. The QSF variable for the Maximum Clock Arrival Skew
assignment is MAX_CLOCK_ARRIVAL_SKEW. In the Quartus II Classic Timing
Analyzer, this assignment is specified between a clock node name and a set of
registers. Maximum Clock Arrival Skew is not supported in the Quartus II
TimeQuest Timing Analyzer.

Maximum Data Arrival Skew
The Maximum Data Arrival Skew assignment specifies the maximum data arrival
skew between a set of registers, pins, or both. The QSF variable for the Maximum
Data Arrival Skew assignment is MAX_DATA_ARRIVAL_SKEW. In this case, the
data arrival delay represents the tCO from the clock to the given register, pin, or both.
This assignment is specified between a clock node and a set of registers, pins, or both.

The Quartus II TimeQuest Timing Analyzer does not support a constraint to specify
maximum data arrival skew, but you can specify setup and hold times relative to a
clock port to constrain an interface like this. Figure 10–31 shows a simplified
source-synchronous interface used in the following example.

Constraining Skew on an Output Bus
This example constrains the interface so that all bits of the data_out bus go off-chip
between 2 and 3 ns after the clk_out signal. Assume that clk_in and clk_out
have a period of 8 ns.

Figure 10–31. Source-Synchronous Interface Diagram

data_in Input Controller Output Controller

clk_in PLL

data_out

clk_out

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–43
Timing Assignment Conversion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following equations and example show how to create timing requirements that
satisfy the timing relationships shown in Figure 10–32.

Equation 10–11 shows how to compute the value for the set_output_delay -min
command that creates the 2 ns hold requirement on the destination. For hold
requirement calculations in which source and destination clocks are the same,
<latch> – <launch> = 0.

Equation 10–12 shows how to compute the value for the set_output_delay command
that creates the 3 ns setup requirement on the destination. For setup requirement
calculations in which source and destination clocks are the same, <latch> – <launch> =
clock period.

Refer to “I/O Constraints” on page 10–31 for an explanation of the above equations.

Example 10–17 shows the three constraints together.

Figure 10–32. Source-Synchronous Timing Diagram

Equation 10–11.

Equation 10–12.

Example 10–17. Constraining a DDR Interface

set period 8.000
create_clock -period $period \

-name clk_in \
[get_ports data_out*]

derive_pll_clocks
set_output_delay -add_delay \

-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-min -2.000 \
[get_ports data_out*]

set_output_delay -add_delay \
-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-max [expr $period - 3.000] \
[get_ports data_out*]

clk_out

data_out

0 2 3 4 8 10 11 12

latch launch– 0ns=

output delay latch launch– 2ns–=

output delay 2ns–=

latch launch– 8ns=

output delay latch launch– 3ns–=

output delay 5ns=

10–44 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Conversion Utility
The Quartus II TimeQuest Timing Analyzer includes a conversion utility to help you
convert Quartus II Classic timing assignments in a .qsf file to SDC constraints in an
.sdc file. The utility can use information from your project report database (in the \db
folder), if it exists, so you should compile your design before the conversion.

1 The conversion utility ignores all disabled QSF assignments. Disabled assignments
show No in the Enabled? column of the Assignment Editor, and include the
-disable option in the .qsf file.

Refer to “Conversion Utility” on page 10–3 to learn how to run the conversion utility.

Unsupported Global Assignments
The conversion utility checks whether any of the global timing assignments in
Table 10–10 exist in your project. Any global assignments not supported by the
conversion utility are ignored during the conversion. Refer to the indicated page for
information about each assignment, and how to manually convert these global
assignments to SDC commands.

Recommended Global Assignments
When any unsupported assignments have been identified, the conversion utility
checks the global assignments in Table 10–11 to ensure they match the specified
values.

The following assignments are checked to ensure the functionality of the Quartus II
Classic Timing Analyzer with the specified values corresponds to the behavior of the
Quartus II TimeQuest Timing Analyzer.

Table 10–10. Global Timing Assignments

Assignment Name QSF Variable More Information

tSU Requirement TSU_REQUIREMENT page 10–32

tH Requirement TH_REQUIREMENT page 10–34

tCO Requirement TCO_REQUIREMENT page 10–36

Minimum tCO Requirement MIN_TCO_REQUIREMENT page 10–38

tPD Requirement TPD_REQUIREMENT page 10–40

Minimum tPD Requirement MIN_TPD_REQUIREMENT page 10–41

Table 10–11. Recommended Global Assignments

Quartus II Classic Assignment Name QSF Variable Value

Cut off clear and preset signal paths CUT_OFF_CLEAR_AND_PRESET_PATHS ON

Cut off feedback from I/O pins CUT_OFF_IO_PIN_FEEDBACK ON

Cut off read during write signal paths CUT_OFF_READ_DURING_WRITE_PATHS ON

Analyze latches as synchronous elements ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Enable Clock Latency ENABLE_CLOCK_LATENCY ON

Display Entity Name PROJECT_SHOW_ENTITY_NAME ON

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–45
Conversion Utility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Cut off clear and preset signal paths— The Quartus II TimeQuest Timing
Analyzer does not support this functionality. You should use Recovery and
Removal analysis instead to analyze register control paths. The Quartus II Classic
Timing Analyzer does not support this option.

■ Cut off feedback from I/O pins—The Quartus II TimeQuest Timing Analyzer
does not match the functionality of the Quartus II Classic Timing Analyzer when
this assignment is OFF.

■ Cut off read during write signal paths—The Quartus II TimeQuest Timing
Analyzer does not match the functionality of the Quartus II Classic Timing
Analyzer when this assignment is OFF.

■ Analyze latches as synchronous elements—The Quartus II TimeQuest Timing
Analyzer analyzes latches as synchronous elements by default and does not match
the functionality of the Quartus II Classic Timing Analyzer when this assignment
is OFF. Beginning with version 5.1 of the Quartus II software, the Quartus II
Classic Timing Analyzer analyzes latches as synchronous elements by default.

■ Enable Clock Latency—The Quartus II TimeQuest Timing Analyzer includes
clock latency in its calculations. The Quartus II TimeQuest Timing Analyzer does
not match the functionality of the Quartus II Classic Timing Analyzer when this
assignment is OFF. Latency on a clock can be viewed as a simple delay on the clock
path, and affects clock skew. This is in contrast to an offset, which alters the setup
and hold relationship between two clocks. Refer to “Offset and Latency Example”
on page 10–13 for an example of the different effects of offset and latency. When
you turn on Enable Clock Latency in the Quartus II Classic Timing Analyzer, it
affects the following aspects of timing analysis:

■ Early Clock Latency and Late Clock Latency assignments are honored

■ The compensation delay of a PLL is analyzed as latency

■ For clock settings where you do not specify an offset, the automatically
computed offset is treated as latency.

■ Display Entity Name—Any entity-specific assignments are ignored in the
Quartus II TimeQuest Timing Analyzer because they do not include the entity
name when this option is ON.

If your design meets timing requirements in the Quartus II Classic Timing Analyzer
without all of the settings recommended in Table 10–11 on page 10–44, you should
perform one of the following actions:

■ Change the settings and re-constrain and re-verify as necessary.
or

■ Add or modify SDC constraints as appropriate because analysis in the Quartus II
TimeQuest Timing Analyzer may be different after conversion.

Clock Conversion
Next, the conversion utility adds the derive_pll_clocks command to the .sdc file. This
command creates generated clocks on all PLL outputs in your design each time the
.sdc file is read. The command does not add a clock on the FPGA port that drives the
PLL input.

10–46 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The conversion utility includes the derive_pll_clocks -use_tan_name command in
the .sdc file it creates. The -use_tan_name option overrides the default clock
naming behavior (the PLL pin name) so the clock name is the same as the net name in
the Quartus II Classic Timing Analyzer.

Including the -use_tan_name option ensures that the conversion utility converts
clock-to-clock exceptions properly. If you remove the -use_tan_name option, you
must also edit references to the clock names in other SDC commands so they match
the PLL pin names.

If your design includes a global fMAX assignment, the assignment is converted to a
derive_clocks command. The behavior of a global fMAX assignment is different from
the behavior of clocks created with the derive_clocks command, and you should use
the report_clocks command when you review conversion results to evaluate the clock
settings. Refer to “Automatic Clock Detection” on page 10–16 for an explanation of
the differences. As soon as you know the appropriate clock settings, you should use
the create_clock or create_generated_clock command instead of the derive_clocks
command.

1 The conversion utility adds a post_message command before the derive_clocks
command to remind you that the clocks are derived automatically. The Quartus II
TimeQuest Timing Analyzer displays the reminder the first time it reads the .sdc file.
Remove or comment out the post_message command to prevent the message from
displaying.

Next, the conversion utility identifies and converts clock settings in the .qsf file. If a
project database exists, the utility also identifies and converts any additional clocks in
the report file that are not in the .qsf, such as PLL base clocks.

1 If you change the PLL input frequency, you must modify the SDC constraint
manually.

The conversion utility ignores clock offsets on generated clocks. Refer to “Clock
Offset” on page 10–12 for information about how to use offset values in the Quartus II
TimeQuest Timing Analyzer.

Instance Assignment Conversion
Next, the conversion utility converts the instance assignments shown in Table 10–12.
Refer to the indicated page for information about each assignment.

Table 10–12. Instance Timing Assignments (Part 1 of 2)

Assignment Name QSF Variable More Information

Late Clock Latency LATE_CLOCK_LATENCY page 10–27

Early Clock Latency EARLY_CLOCK_LATENCY

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY page 10–28

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–47
Conversion Utility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Depending on input and output delay assignments, you may receive a warning
message when the .sdc file is read. The message warns that the set_input_delay
command, set_output_delay command, or both are missing the -max option, -min
option, or both. Refer to “Input and Output Delay” on page 10–31 for an explanation
of why the warning occurs and how to avoid it.

Beginning in version 7.1 of the Quartus II software, the conversion utility
automatically adds multicycle hold exceptions for each multicycle setup assignment.
The value of each multicycle hold exception depends on the Default hold multicycle
assignment value in your project. If the value is One, the conversion utility uses a
value of 0 (zero) for each multicycle hold exception it adds. If the value is Same as
multicycle, the conversion utility uses a value one less than the corresponding
multicycle setup assignment value for each multicycle hold exception it adds. Refer to
“Hold Multicycle” on page 10–20 for more information on hold multicycle differences
between the Quartus II Classic and Quartus II TimeQuest Timing Analyzers.

Next, the conversion utility converts the instance assignments shown in Table 10–13.
Refer to the indicated page for information about each assignment. If the tPD and
minimum tPD assignment targets also have input or output delays that apply to them,
the tPD and minimum tPD conversion values may be incorrect. This is described in more
detail on the indicated pages for the appropriate assignments.

Multicycle (1) MULTICYCLE page 10–30

Source Multicycle (2) SRC_MULTICYCLE

Multicycle Hold (3) HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Clock Enable Multicycle CLOCK_ENABLE_MULTICYCLE page 10–30

Clock Enable Source Multicycle CLOCK_ENABLE_SOURCE_MULTICYCLE

Clock Enable Multicycle Hold CLOCK_ENABLE_MULTICYCLE_HOLD

Clock Enable Source Multicycle Hold CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD

Cut Timing Path CUT page 10–41

Input Maximum Delay INPUT_MAX_DELAY page 10–31

Input Minimum Delay INPUT_MIN_DELAY

Output Maximum Delay OUTPUT_MAX_DELAY

Output Minimum Delay OUTPUT_MIN_DELAY

Notes to Table 10–12:

(1) A multicycle assignment can also be known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment can also be known as a “source multicycle setup” assignment.
(3) A multicycle hold can also be known as a “destination multicycle hold” assignment.

Table 10–12. Instance Timing Assignments (Part 2 of 2)

Assignment Name QSF Variable More Information

Table 10–13. Instance Timing Assignments (Part 1 of 2)

Assignment Name QSF Variable More Information

tPD Requirement (1) TPD_REQUIREMENT page 10–40

Minimum tPD Requirement (1) MIN_TPD_REQUIREMENT page 10–41

Setup Relationship SETUP_RELATIONSHIP page 10–27

10–48 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The conversion utility converts Quartus II Classic I/O timing assignments to
FPGA-centric SDC constraints. Table 10–14 includes Quartus II Classic assignments,
the equivalent FPGA-centric SDC constraints, and recommended system-centric SDC
constraints.

The conversion utility can convert Quartus II Classic I/O timing assignments only to
the FPGA-centric constraints without additional information about your design.
Making system-centric constraints requires information about the external circuitry
interfacing with the FPGA such as external clocks, clock latency, board delay, and
clocking exceptions. You cannot convert Quartus II Classic timing assignments to
system-centric constraints without that information. If you use the conversion utility,
you can modify the SDC constraints to change the FPGA-centric constraints to
system-centric constraints as appropriate.

PLL Phase Shift Conversion
The conversion utility does not account for PLL phase shifts when it converts values
of the following FPGA-centric I/O timing assignments:

■ tSU Requirement

■ tH Requirement

■ tCO Requirement

■ Minimum tCO Requirement

If any of your paths go through PLLs with a phase shift, you must correct the
converted values for those paths according to the following formula:

Hold Relationship HOLD_RELATIONSHIP page 10–27

Note to Table 10–13:

(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 10–56 for more information about how the
conversion utility converts single-point tPD and minimum tPD assignments.

Table 10–14. Quartus II Classic and Quartus II TimeQuest Equivalent Constraints

Quartus II Classic FPGA-Centric SDC System-Centric SDC More Information

tSU Requirement (1) set_max_delay set_input_delay -max page 10–32

tH Requirement (1) set_min_delay set_input_delay -min page 10–34

tCO Requirement (2) set_max_delay set_output_delay -max page 10–36

Minimum tCO Requirement
(2)

set_min_delay set_output_delay -min page 10–38

Notes to Table 10–14:

(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 10–56 for more information about how the
conversion utility converts this type of assignment.

(2) Refer to “tCO Requirement Conversion” on page 10–49 for more information about how the conversion utility
converts this type of assignment.

Equation 10–13.

Table 10–13. Instance Timing Assignments (Part 2 of 2)

Assignment Name QSF Variable More Information

<correct value> <converted value> <pll output period> <phase shift> 
360

--–=

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–49
Conversion Utility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 10–18 shows the incorrect conversion result for a tCO assignment and how to
correct it. For the example, assume the PLL output frequency is 200 MHz (period is
5 ns), the phase shift is 90 degrees, the tCO Requirement value is 1 ns, and it is made to
data[0]. The .qsf file contains the following assignment:

The conversion utility generates the SDC command shown in Example 10–19.

To correct the value, use the formula and values above, as shown in the following
example:

Then, change the value so the SDC command looks like Example 10–20.

tCO Requirement Conversion
The conversion utility uses a special process to convert tCO Requirement and
Minimum tCO Requirement assignments. In addition to the set_max_delay or
set_min_delay commands, the conversion utility adds a set_output_delay constraint
relative to a virtual clock named N/C (Not a Clock). It also creates the virtual clock
named N/C with a period of 10 ns. Adding the virtual clock allows you to report
timing on the output paths. Without the virtual clock N/C, the clock used for
reporting would be blank. Example 10–21 shows how the conversion utility converts
a tCO Requirement assignment of 5.0 ns to data[0].

Entity-Specific Assignments
Next, the conversion utility converts the entity-specific assignments listed in
Table 10–15 that exist in the Timing Analyzer Settings report panel. This usually
occurs if you have any timing assignments in your Verilog HDL or VHDL source,
which can include MegaCore function files. These entity-specific assignments cannot
be automatically converted unless your project is compiled and a \db directory exists.

Example 10–18. Assignment

set_instance_assignment -name TCO_REQUIREMENT -to data[0] 1.0

Example 10–19. SDC Command

set_max_delay -from [get_registers *] -to [get_ports data[0]] 1.0

Example 10–20. SDC Command with Correct Values

set_max_delay -from [get_registers *] -to [get_ports data[0]] -0.25

Example 10–21. Converting a tCO Requirement Assignment of 5.0 ns to data[0]

set_max_delay -from [get_registers *] -to [get_ports data[0]]
set_output_delay -clock "N/C" 0 [get_ports data[0]]

1.0 5 90 
360

--------------------– 0.25–=

10–50 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 You must manually convert all other entity-specific timing assignments.

Paths Between Unrelated Clock Domains
Beginning in version 7.1 of the Quartus II software, the conversion utility can create
exceptions that cut paths between unrelated clock domains, which matches the
default behavior of the Quartus II Classic Timing Analyzer. When Cut paths between
unrelated clock domains is on, the conversion utility creates clock groups with the
set_clock_groups command and uses the -exclusive option to cut paths between
the clock groups.

Unsupported Instance Assignments
Finally, the conversion utility checks for the unsupported instance assignments listed
in Table 10–16 and warns you if any exist. Refer to the indicated page for information
about each assignment.

1 You can manually convert some of the assignments to SDC constraints.

Table 10–15. Entity-Specific Timing Assignments

Quartus II Classic QSF Variable More Information

Multicycle MULTICYCLE page 10–30

Source Multicycle SRC_MULTICYCLE

Multicycle Hold HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Setup Relationship SETUP_RELATIONSHIP page 10–27

Hold Relationship HOLD_RELATIONSHIP page 10–27

Cut Timing Path CUT page 10–41

Table 10–16. Instance Timing Assignments

Assignment Name QSF Variable
More

Information

Inverted Clock INVERTED_CLOCK page 10–28

Maximum Clock Arrival Skew MAX_CLOCK_ARRIVAL_SKEW page 10–42

Maximum Data Arrival Skew MAX_DATA_ARRIVAL_SKEW page 10–42

Maximum Delay MAX_DELAY page 10–41

Minimum Delay MIN_DELAY page 10–42

Virtual Clock Reference VIRTUAL_CLOCK_REFERENCE page 10–29

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–51
Conversion Utility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Reviewing Conversion Results
You must review the messages that are generated during the conversion process, and
review the .sdc file for correctness and completeness. Warning and critical warning
messages identify significant differences between the Quartus II Classic Timing
Analyzer and Quartus II TimeQuest Timing Analyzer behaviors. In some cases,
warning messages indicate that the conversion utility ignored assignments because it
could not determine the intended functionality of your design. You must add to or
modify the SDC constraints as necessary based on your knowledge of the design.

The conversion utility creates an .sdc file with the same name as your current revision,
<revision>.sdc, and it overwrites any existing <revision>.sdc file. If you use the
conversion utility to create an .sdc file, you should make additions or corrections in a
separate .sdc file, or a copy of the .sdc file created by the conversion utility. That way,
you can re-run the conversion utility later without overwriting your additions and
changes. If you have constraints in multiple .sdc files, refer to“Constraint File
Priority” on page 10–8 to learn how to add constraints to your project.

Warning Messages
The conversion utility may generate any of the following warning messages. Refer to
the information provided for each warning message to learn what to do in that
instance.

Ignored QSF Variable <assignment>

The conversion utility ignored the specified assignment. Determine whether an
equivalent constraint is necessary and manually add one if appropriate. Refer to
“Timing Assignment Conversion” on page 10–26 for information about conversions
for all QSF timing assignments.

Global <name> = <value>

The conversion utility ignored the global assignment <name>. Manually add an
equivalent constraint if appropriate. Refer to “Unsupported Global Assignments” on
page 10–44 for information about conversions for these assignments.

QSF: Expected <name> to be set to <expected value> but it is set to <actual value>

The behavior of the Quartus II TimeQuest Timing Analyzer is closest to the Quartus II
Classic Timing Analyzer when the value for the specified assignment is the expected
value. Because the actual assignment value is not the expected value in your project,
the Quartus II TimeQuest Timing Analyzer analysis may be different from the
Quartus II Classic Timing Analyzer analysis. Refer to “Recommended Global
Assignments” on page 10–44 for an explanation about the indicated QSF variable
names.

QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks

Your design includes a global fMAX requirement, and the requirement is converted to
the derive_clocks command. Refer to “Default Required fMAX Assignment” on
page 10–29 for information about how to convert to an SDC constraint.

10–52 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

TAN Report Database not found. HDL based assignments will not be migrated

You did not analyze your design with the Quartus II Classic Timing Analyzer before
running the conversion utility. As a result, the conversion utility did not convert any
timing assignments in your HDL source code to SDC constraints. If you have timing
assignments in your HDL source code, you must find and convert them manually, or
analyze your design with the Quartus II Classic Timing Analyzer and rerun the
conversion utility.

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>

The conversion utility ignored the specified entity assignment because the utility
cannot automatically convert the assignment. Table 10–15 on page 10–50 lists the
entity-specific assignments the script can convert automatically.

Refer to “Timing Assignment Conversion” on page 10–26 for information about how
to convert the entity assignment manually.

Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock>

In some cases, this assignment is used to work around a limitation in how the
Quartus II Classic Timing Analyzer handles some forms of clock inversion. The
conversion script ignores the assignment because it cannot determine whether the
assignment is used as a workaround. Review your clock setting and add the
assignment in your .sdc file if appropriate. Refer to “Clock Offset” on page 10–12 for
more information about converting clock offset.

Clock <clock> has no FMAX_REQUIREMENT - No clock was generated

The conversion utility did not convert the clock named <clock> because it has no fMAX
requirement. You should add a clock constraint with an appropriate period to your
.sdc file.

No Clock Settings defined in QSF file

If your .qsf file has no clock settings, ignore this message. You must add clock
constraints in your .sdc file manually.

Clocks
Ensure that the conversion utility converted all clock assignments correctly. Run
report_clocks, or double-click Report Clocks in the Tasks pane in the Quartus II
TimeQuest Timing Analyzer GUI. Make sure that the right number of clocks is
reported. If any clock constraints are missing, you must add them manually with the
appropriate SDC commands (create_clock or create_generated_clock). Confirm that
each option for each clock is correct.

The Quartus II TimeQuest Timing Analyzer can create more clocks, such as:

■ derive_clocks selecting ripple clocks

■ derive_pll_clocks, adding

■ Extra clocks for PLL switchover

■ Extra clocks for LVDS pulse-generated clocks (~load_reg)

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–53
Conversion Utility

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Clock Transfers
After you confirm that all clock assignments are correct, run report_clock_transfers,
or double-click Report Clock Transfers in the Tasks pane in the Quartus II TimeQuest
Timing Analyzer GUI. The command generates a summary table with the number of
paths between each clock domain. If the number of cross-clock domain paths seems
high, remember that all clock domains are related in the Quartus II TimeQuest Timing
Analyzer. You must cut unrelated clock domains. Refer to “Related and Unrelated
Clocks” on page 10–11 for information about how to cut unrelated clock domains.

Path Details
If you have unexpected differences between the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers on some paths, follow these steps to identify the cause
of the difference.

1. List the path in the Quartus II Classic Timing Analyzer.

2. Report timing on the path in the Quartus II TimeQuest Timing Analyzer.

3. Compare slack values.

4. Compare source and destination clocks.

5. Compare the launch/latch times in the Quartus II TimeQuest Timing Analyzer to
the setup/hold relationship in the Quartus II Classic Timing Analyzer. The times
are absolute in the Quartus II TimeQuest Timing Analyzer and relative in the
Quartus II Classic Timing Analyzer.

6. Compare clock latency values.

Unconstrained Paths
Next, run report_ucp, or double-click Report Unconstrained Paths in the Tasks
pane in the Quartus II TimeQuest Timing Analyzer GUI. This command generates a
series of reports that detail any unconstrained paths in your design. If your design
was completely constrained in the Quartus II Classic Timing Analyzer but there are
unconstrained paths in the Quartus II TimeQuest Timing Analyzer, some assignments
may not have been converted properly. Also, some of the assignments could be
ambiguous. The Quartus II TimeQuest Timing Analyzer analyzes more paths than the
Quartus II Classic Timing Analyzer does, so any unconstrained paths might be paths
you could not constrain in the Quartus II Classic Timing Analyzer.

Bus Names
If your design includes Quartus II Classic Timing Analyzer timing assignments to
buses, and the bus names do not include square brackets enclosing an asterisk, such
as: address[*], you should review the SDC constraints to ensure the conversion is
correct. Refer to “Bus Name Format” on page 10–8 for more information.

Other
Review the notes listed in “Conversion Utility” on page 10–56.

10–54 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Notes

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Re-Running the Conversion Utility
You can force the conversion utility to run even if it can find an .sdc file according to
the priority described in “Constraint File Priority” on page 10–8. Any method
described in “Conversion Utility” on page 10–3 forces the conversion utility to run
even if it can find an .sdc file.

Notes
This section describes notes for the Quartus II TimeQuest Timing Analyzer.

Output Pin Load Assignments
The Quartus II TimeQuest Timing Analyzer takes Output Pin Load values into
account when it analyzes your design. If you change Output Pin Load assignments
and do not recompile before you analyze timing, you must use the -force_dat
option when you create the timing netlist. Type the following command at the Tcl
console of the Quartus II TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you change Output Pin Load assignments and recompile before you analyze
timing, do not use the -force_dat option when you create the timing netlist. You
can create the timing netlist with the create_timing_netlist command, or with the
Create Timing Netlist task in the Tasks pane.

Also note that the SDC set_output_load command is not supported, so you must
make all output load assignments in the Quartus II Settings File (.qsf).

Constraint Target Types
In version 6.0 of the Quartus II software, the Quartus II TimeQuest Timing Analyzer
did not support constraints between clocks and non-clocks. Beginning with version
6.1, the Quartus II TimeQuest Timing Analyzer supports mixed exception types; you
can apply an exception of any clock/node combination.

DDR Constraints with the DDR Timing Wizard
The DDR Timing Wizard (DTW) creates an .sdc file that contains constraints for a
DDR interface. You can use that .sdc file with the Quartus II TimeQuest Timing
Analyzer to analyze only the DDR interface part of a design.

You should use the .sdc file created by DTW for constraining a DDR interface in the
Quartus II TimeQuest Timing Analyzer. Additionally, your .qsf file should not
contain timing assignments for the DDR interface if you plan to use the conversion
utility to create an .sdc file. You should run the conversion utility before you use DTW,
and you should choose not to apply assignments to the .qsf file.

However, if you used DTW and chose to apply assignments to a .qsf file, before you
used the conversion utility, you should remove the DTW-generated QSF timing
assignments and re-run the conversion utility. The conversion utility creates some
incompatible SDC constraints from the DTW QSF assignments.

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–55
Notes

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

HardCopy Stratix Device Handoff
If you target the HardCopy device family, you should not use the Quartus II
TimeQuest Timing Analyzer. The Quartus II TimeQuest Timing Analyzer is not
supported for the HardCopy Stratix design process. The Quartus II TimeQuest
Timing Analyzer supports HardCopy II series devices.

Unsupported SDC Features
Some SDC commands and features are not supported by the current version of the
Quartus II TimeQuest Timing Analyzer. The following commands are included:

■ The get_designs command, because the Quartus II software supports a single
design, so this command is not necessary

■ True latch analysis with time-borrowing feature; it can, however, convert latches to
negative-edge-triggered registers

■ The case analysis feature

■ Loads, clock transitions, input transitions, and other features

Constraint Passing
The Quartus II software can read constraints generated by other EDA software, and
write constraints to be read by other EDA software.

Other synthesis software can generate constraints that target the .qsf file. If you
change timing constraints in synthesis software after creating an .sdc file for the
Quartus II TimeQuest Timing Analyzer, you must update the SDC constraints. You
can use the conversion utility, or update the .sdc file manually.

Optimization
Gate-level re-timing is not supported if you turn on the Quartus II TimeQuest Timing
Analyzer as your default timing analyzer.

If you use physical synthesis with the Quartus II TimeQuest Timing Analyzer, the
design may have lower performance.

Clock Network Delay Reporting
In the Quartus II software version 6.0, the Quartus II TimeQuest Timing Analyzer
reports delay on the clock network as a single number, rather than node-to-node
segments, as the Quartus II Classic Timing Analyzer does. Beginning with version 6.0
SP1, the TimeQuest Timing Analyzer reports delay on the clock network by
node-to-node segments.

PowerPlay Power Analysis
You must perform the following steps to generate an Early Power Estimator output
file when you use the Quartus II TimeQuest Timing Analyzer and your design targets
one of the following device families:

■ Cyclone

■ Stratix

■ HardCopy Stratix

10–56 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Referenced Documents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To generate an Early Power Estimator output file for designs targeting those families,
you must perform the following steps.

1. Turn off the Quartus II TimeQuest Timing Analyzer. Refer to “Set the Default
Timing Analyzer” on page 10–4 to learn how to turn off the Quartus II TimeQuest
Timing Analyzer.

2. Manually convert your Quartus II TimeQuest Timing Analyzer timing constraints
in the .sdc file to Quartus II Classic Timing Analyzer timing assignments. You can
use the Assignment Editor to enter your Quartus II Classic Timing Analyzer
timing assignments in your .qsf file.

3. Perform Quartus II Classic timing analysis.

4. Generate an Early Power Estimator output file.

5. Turn on the Quartus II TimeQuest Timing Analyzer.

Project Management
If you use the project_open Tcl command in the Quartus II TimeQuest Timing
Analyzer to open a project compiled with an earlier version of the Quartus II
software, the Quartus II TimeQuest Timing Analyzer overwrites the compilation
results (\db folder) without warning. Opening a project any other way results in a
warning, and you can choose not to open the project.

Conversion Utility
This section describes the notes for the QSF assignment to SDC constraint conversion
utility.

tPD and Minimum tPD Requirement Conversion
The conversion utility treats the targets of single-point tPD and minimum tPD
assignments as device outputs. It does not correctly convert targets of single-point tPD
and minimum tPD assignments that are device inputs. The following QSF assignment
applies to an a device input named d_in:

set_intance_assignment -name TPD_REQUIREMENT -to d_in "3 ns"

The conversion utility creates the following SDC command, regardless of whether
d_in is a device input or device output:

set_max_delay "3 ns" -from [get_ports *] -to [get_ports d_in]

You must update any incorrect SDC constraints manually.

Referenced Documents
This chapter references the following documents:

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ SDC and TimeQuest Tcl API Reference Manual

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf

Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer 10–57
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Document Revision History

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 10–17. Document Revision History

Date and Version Changes Made Summary of Changes

November 2009
v9.1.0

No change to content. —

March 2009
v9.0.0

This was chapter 8 in version 8.1. Updated for the Quartus II 9.0
software release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 8.1
software release.

May 2008

v8.0.0

■ Updated to Quartus II software version 8.0 and date.

■ Added hyperlinks to referenced Altera documentation throughout
the chapter.

—

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10–58 Chapter 10: Switching to the Quartus II TimeQuest Timing Analyzer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

11. Quartus II Classic Timing Analyzer

This chapter details the aspects of timing analysis using the Quartus® II Classic timing
analyzer.

Introduction
Static timing analysis is a method for analyzing, debugging, and validating the timing
performance of a design. Static timing analysis, used in conjunction with functional
simulation, allows you to verify overall design operation. As part of the compilation
flow, the Classic Timing Analyzer of the Quartus II software automatically performs a
static timing analysis so you do not have to use a third-party timing analysis tool. The
Quartus II software also includes the TimeQuest timing analyzer, which provides
advanced constraints and analysis capabilities that cater to all designs. Like the
Classic timing analyzer, the TimeQuest timing analyzer can also be an automatic part
of your compilation flow, and should be used for all new designs.

f For more information about switching to the Quartus II TimeQuest timing analyzer,
refer to the Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3
of the Quartus II Handbook.

This chapter assumes you have some Tcl expertise; Tcl commands are used
throughout this chapter to describe the alternative methods for making timing
analysis assignments. For more information about GUI-equivalent timing constraints,
refer to “Timing Analysis Using the Quartus II GUI” on page 11–35.

1 New device families are not supported in the Quartus II Classic timing analyzer.
Altera recommends using the TimeQuest timing analyzer for all new designs.

This chapter discusses the following topics:

■ “Timing Analysis Tool Setup” on page 11–2

■ “Static Timing Analysis Overview” on page 11–2

■ “Clock Settings” on page 11–8

■ “Clock Types” on page 11–9

■ “Clock Uncertainty” on page 11–10

■ “Clock Latency” on page 11–11

■ “Timing Exceptions” on page 11–13

■ “I/O Analysis” on page 11–21

■ “Asynchronous Paths” on page 11–24

■ “Skew Management” on page 11–28

■ “Generating Timing Analysis Reports with report_timing” on page 11–30

■ “Other Timing Analyzer Features” on page 11–31

QII53004-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

11–2 Chapter 11: Quartus II Classic Timing Analyzer
Timing Analysis Tool Setup

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ “Timing Analysis Using the Quartus II GUI” on page 11–35

■ “Scripting Support” on page 11–39

■ “MAX+PLUS II Timing Analysis Methodology” on page 11–43

Timing Analysis Tool Setup
The Quartus II software version 6.0 and onwards include two static timing analysis
tools:

■ Classic timing analyzer

■ TimeQuest timing analyzer

Use the Timing Analysis option under the Settings menu to set the timing analyzer
that is used in the compilation process.

1 Altera recommends using the TimeQuest timing analyzer for new designs. The
TimeQuest timing analyzer provides advanced constraints and analysis capabilities
that cater to all designs.

If you must use the Quartus II Classic timing analyzer for a legacy design project,
perform the following steps to set the Quartus II Classic timing analyzer as the timing
analysis tool for your project:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click the “+” icon to expand Timing Analysis Settings and
select Use Classic Timing Analyzer during compilation.

f For more information about the advanced features available in the Quartus II
TimeQuest timing analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter
in volume 3 of the Quartus II Handbook.

Static Timing Analysis Overview
This section provides information about the static timing analysis concepts used
throughout this chapter and used by the Quartus II Classic timing analyzer. A
complete understanding of the concepts presented in this section allows you to take
advantage of the static timing analysis features available in the Quartus II software.

Various paths exist in any given design which connect design elements together,
including the path from an output of a register to the input of another register. Timing
paths play a significant role during a static timing analysis. Understanding the types
of timing paths is important for timing closure and optimization. Some of the
commonly analyzed paths are described in this section and are shown in Figure 11–1.

■ Clock paths—Clock paths are the paths from device pins or internally generated
clocks (nodes designated as a clock via a clock setting) to the clock ports of
sequential elements such as registers.

■ Data paths—Data paths are the paths from the data output port of a sequential
element to the data input port of another sequential element.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 11: Quartus II Classic Timing Analyzer 11–3
Static Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Asynchronous paths—Asynchronous paths are paths from a node to the
asynchronous set or clear port of a sequential element.

Figure 11–1 shows the commonly analyzed paths types.

After the path types are identified, the Quartus II Classic timing analyzer computes
data and clock arrival times for all valid register-to-register paths. Data arrival time is
the delay from the source clock to the destination register. The Quartus II Classic
timing analyzer calculates this delay by adding the clock path delay to the source
register, the micro clock-to-out (tCO) of the source register, and the data path delay
from the source register to the destination register. Clock arrival time is the delay from
the destination clock node to the destination register.

Figure 11–2 shows a data arrival path and a clock arrival path.

In addition to identifying various paths within a design, the Quartus II Classic timing
analyzer analyzes clock characteristics to compute the worst-case requirement
between any two registers in a single register-to-register path. You must use timing
constraints to specify the characteristics of all clock signals in the design before this
analysis occurs.

The active clock edge that sends data out of a sequential element, acting as a source
for the data transfer, is the launch edge. The active clock edge that captures data at the
data port of a sequential element, acting as a destination for the data transfer, is the
latch edge.

Figure 11–3 shows a single-cycle system that uses consecutive clock edges to transmit
and capture data, a register-to-register path, and the corresponding launch and latch
edges timing diagram. In this example, the launch edge sends the data out of register
reg1 at 0 ns, and register reg2 latch edge captures the data at 5 ns.

Figure 11–1. Path Types

Figure 11–2. Data Arrival and Clock Arrival

CLRN

D Q

Clock Path Data Path

Async Path

clk

rst

CLRN

D Q

D QD Q

Data Arrival

Clock Arrival

11–4 Chapter 11: Quartus II Classic Timing Analyzer
Static Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

By analyzing specific paths relative to the launch and latch edges, the Quartus II
Classic timing analyzer performs clock setup and clock hold checks, validating them
against your timing assignments.

Clock Analysis
A comprehensive static timing analysis includes analysis of register-to-register, I/O,
and asynchronous reset paths. Static Timing Analysis tools use data required times,
data arrival times, and clock arrival times to verify circuit performance and detect
possible timing violations. The Quartus II Classic timing analyzer determines the
timing relationships that must be met for the design to correctly function, and checks
arrival times against required times to verify timing.

Clock Setup Check
To determine if a design meets performance, the Quartus II Classic timing analyzer
calculates clock timing, timing requirements, and timing exceptions to perform a
clock setup check at each destination register based on the source and destination
clocks and timing constraints, or exceptions that are applicable to those paths. A clock
setup check ensures that data launched by a source register is latched correctly by the
destination register. To perform a clock setup check, the Quartus II Classic timing
analyzer determines the clock arrival time and data arrival time at the destination
register by using the longest path for the data arrival time and the shortest path for
the clock arrival time. The Quartus II Classic timing analyzer then checks that the
difference is greater than or equal to the micro setup (tSU) of the destination register as
shown in Equation 11–1.

1 By default, the Quartus II Classic timing analyzer assumes the launched and latched
edges happen on consecutive active clock edges.

Figure 11–3. Launch Edge and Latch Edge

D QD Q

clk

reg1 reg2

0 ns 5 ns 15 ns10 ns

Latch Edge at Destination Register reg2
Launch Edge at Source Register reg1

clk

Equation 11–1.

Clock Arrival Time Data Arrival Time– micro tSU

Chapter 11: Quartus II Classic Timing Analyzer 11–5
Static Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The results of clock setup checks are reported in terms of slack. Slack is the margin by
which a timing requirement is met or not met. Positive slack indicates the margin by
which a requirement is met, and negative slack indicates the margin by which a
requirement is not met. The Quartus II Classic timing analyzer determines clock setup
slack using Equation 11–2 through Equation 11–5.

The Quartus II Classic timing analyzer reports clock setup slack using Equation 11–6
through Equation 11–9 (which are equivalent to Equation 11–2 through
Equation 11–5).

Both sets of equations are used to determine the slack value of any path.

Equation 11–2.

Equation 11–3.

Equation 11–4.

Equation 11–5.

Equation 11–6.

Equation 11–7.

Equation 11–8.

Equation 11–9.

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Required Clock Arrival Time micro tSU Setup Uncertainty––=

Clock Arrival Time Latch Edge Shortest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Longest Clock Path to Source Register
micro tCO Longest Data Delay

+
+ +

=

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Delay–=

Largest Register-to-Register Requirement Setup Relationship between Source and Destination
largest clock skew micro tCO of Source Register micro tSU of Destination Register––+

=

Setup Relationship between Source & Destination Register
Latch Edge Launch Edge Setup Uncertainty–

=

Largest Clock Skew Shortest Clock Path to Destination Register
Longest Clock Path to Source Register–

=

11–6 Chapter 11: Quartus II Classic Timing Analyzer
Static Timing Analysis Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock Hold Check
To prevent hold violations, the Quartus II Classic timing analyzer calculates clock
timing, timing requirements, and timing exceptions to perform a clock hold check at
each destination register. A clock hold check ensures data launched from the source
register is not captured by an active clock edge earlier than the setup latch edge, and
that the destination register does not capture data launched from the next active
launch edge. To perform a clock hold check, the Quartus II Classic timing analyzer
determines the clock arrival time and data arrival time at the destination register
using the shortest path for the data arrival time and the longest path for the clock
arrival time. The Quartus II Classic timing analyzer checks that the difference is
greater than or equal to the micro hold time (tH) of the destination register, as shown
in Equation 11–10.

The Quartus II Classic timing analyzer determines clock hold slack using
Equation 11–11 through Equation 11–14.

The Quartus II Classic timing analyzer reports clock hold slack using Equation 11–15
through Equation 11–18.

Equation 11–10.

Equation 11–11.

Equation 11–12.

Equation 11–13.

Equation 11–14.

Equation 11–15.

Equation 11–16.

Data Arrival Time Clock Arrival Time tH–

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Required Time Clock Arrival Time micro tH Hold Uncertainty+ +=

Clock Arrival Time Latch Edge Longest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Shortest Clock Path to Source Register
micro tCO Shortest Data Delay

+
+ +

=

Clock Hold Slack Shortest Register-to-Register Delay
Smallest Register-to-Register Requirement–

=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew micro tco of Source Register micro tH of Destination Register+–

+=

Chapter 11: Quartus II Classic Timing Analyzer 11–7
Static Timing Analysis Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

These equations can be used to determine the slack value of any path.

Multicycle Paths
Multicycle paths are data paths that require more than one clock cycle to latch data at
the destination register. For example, a register may be required to capture data on
every second or third rising clock edge.

Figure 11–4 shows an example of a multicycle path between a multiplier’s input
registers and output register where the destination latches data on every other clock
edge. For more information about multicycle exceptions, refer to “Multicycle” on
page 11–13.

Equation 11–17.

Equation 11–18.

Hold Relationship between Source and Destination Register Latch Launch Hold Uncertainty+–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register–

=

Figure 11–4. Example Diagram of a Multicycle Path

D Q

ENA

D Q

ENA

D Q

D Q

ENA

2 cycles

11–8 Chapter 11: Quartus II Classic Timing Analyzer
Clock Settings

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 11–5 shows the default clock setup analysis launch and latch edges where
multicycle assignment is equal to 1.

Figure 11–6 shows an analysis similar to Figure 11–5, but with a multicycle of 2.

Clock Settings
You can use individual and default clock settings to define the clocks in your design.
You can base these clock settings on other clock settings already defined in your
design.

1 To ensure the Quartus II Fitter achieves the desired performance requirements and the
Quartus II Classic timing analyzer performs a thorough static timing analysis, you
must specify all timing assignments prior to compiling the design.

Individual Clock Settings
Individual clock settings allow you to specify clock properties including performance
requirements, offsets, duty cycles, and other properties for individual clock signals in
your design.

You can define individual clock settings using the create_base_clock Tcl
command. The following example defines an individual clock setting named
sys_clk with a requirement of 100 MHz (10 ns), and assigns it to clock node clk.

create_base_clock -fmax 100MHz -target clk sys_clk

Default Clock Settings
You can assign a project-wide clock requirement to constrain all detected clocks in a
design that do not have individual clock settings.

The set_global_assignment -name FMAX_REQUIREMENT Tcl command
specifies a global default requirement assignment. The following example defines a
100 MHz default clock requirement:

set_global_assignment -name FMAX_REQUIREMENT "100.0 MHz"

Figure 11–5. Default Clock Setup Analysis

Figure 11–6. Multicycle = 2 Clock Setup Analysis

src_clk

dst_clk

src_clk

dst_clk

Chapter 11: Quartus II Classic Timing Analyzer 11–9
Clock Types

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 For best placement and routing results, apply individual clock settings to all clocks in
your design. All clocks adopting the default fMAX are by default unrelated.

Clock Types
This section describes the types of clocks recognized by the timing analyzer:

■ Base clocks

■ Derived clocks

■ Undefined clocks

■ PLL clocks

Base Clocks
A base clock is independent of other clocks in a design. For example, a base clock is
typically a clock signal driven directly by a device pin. A base clock is defined by
individual clock settings, or automatically detected using the default clock setting.

You can use the create_base_clock Tcl command to define a base clock setting
and assign the clock setting to a clock node. The following Tcl command creates a
clock setting called sys_clk with a requirement of 5 ns (200 MHz) and applies the
clock setting to clock node main_clk:

create_base_clock -fmax 5ns –target main_clk sys_clk

Derived Clocks
A derived clock is based on a previously defined base clock. For a derived clock, you
can specify the phase shift, offset, multiplication and division factors, and duty cycle
relative to the base clock.

You can use the create_relative_clock Tcl command to define and assign a
derived clock setting. The following example creates a derived clock setting named
system_clockx2 that is twice as fast as the base clock system_clock applied to
clock node clkx2.

create_relative_clock -base_clock system_clock -duty_cycle 50 \
-multiply 2 -target clkx2 system_clockx2

Undefined Clocks
The Quartus II Classic timing analyzer detects undeclared clocks in your design and
displays a warning similar to the following:

Warning: Found pins functioning as undefined clocks and/or memory
enables
 Info: Assuming node "clk_src" is an undefined clock
 Info: Assuming node "clk_dst" is an undefined clock

The Quartus II Classic timing analyzer reports actual data delay for undefined clocks,
but because no clock requirements exist for undefined clocks, the Quartus II Classic
timing analyzer does not report slack for any register-to-register paths driven by an
undefined clock.

11–10 Chapter 11: Quartus II Classic Timing Analyzer
Clock Uncertainty

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

PLL Clocks
Phase-locked loops (PLLs) are used for clock synthesis in Altera® devices. This device
feature is configured and connected to your design using the ALTPLL megafunction
included with the Quartus II software. Using the MegaWizard™ Plug-In Manager, you
can customize the input clock frequency, multiplication factors, division factors, and
other parameters of the ALTPLL megafunction.

f For more information about using the PLL feature in your design, refer to the ALTPLL
Megafunction User Guide or the handbook for the targeted device family.

For PLLs, the Quartus II Classic timing analyzer automatically creates derived clock
settings based on the parameterization of the PLL and automatically creates a base
clock setting for the input clock pin. For example, if the input clock frequency to a PLL
is 100 MHz and the multiplication and division ratio is 5:2, the clock period of the PLL
clock is set to 4.0 ns and is automatically calculated by the Quartus II Classic timing
analyzer.

For the Stratix® and Cyclone® device families, you can override the PLL input clock
frequency by applying a clock setting to the input clock pin of the PLL. For example, if
the PLL input clock period is set to 10 ns (100 MHz) with a multiplication and
division ratio of 5:2, but a clock setting of 20 ns (50 MHz) is applied to the input clock
pin of the PLL, the setup relationship is 8.0 ns (125 MHz) and not 4.0 ns (250 MHz).
The Quartus II Classic timing analyzer issues a message similar to the following:

Warning: ClockLock PLL "mypll_test:inst|altpll:altpll_component|_clk1"
input frequency requirement of 200.0 MHz overrides default required fmax
of 100.0 MHz -- Slack information will be reported

1 You cannot override the PLL output clock frequency with a clock setting in the
Quartus II Classic timing analyzer.

Clock Uncertainty
You can use Clock Setup Uncertainty and Clock Hold Uncertainty assignments to
model jitter, skew, or add a guard band associated with clock signals.

When a clock uncertainty assignment exists for a clock signal, the timing analyzer
performs the most conservative setup and hold checks. For clock setup check, the
setup uncertainty is subtracted from the data required time. Figure 11–7 shows an
example of clock sources with a clock setup uncertainty applied.

Figure 11–7. Clock Setup Uncertainty

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 11: Quartus II Classic Timing Analyzer 11–11
Clock Latency

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

You can create clock uncertainty assignments using the Tcl command
set_clock_uncertainty. The set_clock_uncertainty assignment used with
the switch –setup specifies a clock setup uncertainty assignment. The following
example creates a Clock Setup Uncertainty assignment with a value of 2 ns applied
to clock signal clk:

set_clock_uncertainty -to clk -setup 2ns

For the clock hold check, the hold uncertainty is added to the data required time.
Figure 11–8 shows an example of clock setup check with a clock setup uncertainty and
clock hold uncertainty applied.

You can use the set_clock_uncertainty Tcl command with the option –hold to
specify a Clock Hold Uncertainty assignment. The following example creates a Clock
Hold Uncertainty assignment with a value of 2 ns for clock signal clk.

set_clock_uncertainty -to clk -hold 2ns

You can also apply the clock uncertainty assignments between two clock sources. The
following example creates a Clock Setup Uncertainty assignment for clock setup
checks where clk1 is the source clock and clk2 is the destination clock:

set_clock_uncertainty -from clk1 -to clk2 -setup 2ns

Clock Latency
You can use clock latency assignments to model delays from the clock source. For
example, you can use clock latency to model an external delay from an ideal clock
source, such as an oscillator, to the clock pin or port of the device.

The Early Clock Latency assignment allows you to specify the shortest or earliest
delay of the clock source. Conversely, the Late Clock Latency assignment allows you
to specify the longest or latest delay of the clock source.

During setup analysis, the Quartus II Classic timing analyzer adds the Late Clock
Latency assignment value to the source clock path delay and adds the Early Clock
Latency assignment value to the destination clock path delay when determining clock
skew for the path. During clock hold analysis, the Quartus II Classic timing analyzer
adds the Early Clock Latency assignment value to the source clock path delay and
adds the Late Clock Latency assignment value to the destination clock path delay
when determining clock skew for the path.

Figure 11–8. Clock Hold Uncertainty

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

11–12 Chapter 11: Quartus II Classic Timing Analyzer
Clock Latency

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Early Clock Latency and Late Clock Latency assignments do not change the
latch and launch edges defined by the clock setting and therefore does not change the
setup or hold relationships between source and destination clocks. The clock latency
assignments add only delay to the clock network and therefore only affects clock
skew.

Figure 11–9 shows the clock edges used to calculate clock skew for a setup check
when the Early Clock Latency and Late Clock Latency assignments are used.

Figure 11–10 shows the clock edges used to calculate clock skew for a hold check
when the Early Clock Latency and Late Clock Latency assignments are used.

1 The Quartus II Classic timing analyzer ignores clock latency if the clock signal at the
source and destination registers are the same.

You can use the set_clock_latency Tcl command with the switches -early or
-late to specify an Early Clock Latency assignment or Late Clock Latency
assignment, respectively. Example 11–1 specifies that the clock signal at clk2 arrives
as early as 1.8 ns and as late as 2.0 ns.

Figure 11–9. Clock Setup Check Clock Skew

Figure 11–10. Clock Hold Check Clock Skew

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

Example 11–1. Specifying Early or Late Clock Latency at clk2

set_clock_latency -early -to clk2 1.8ns
set_clock_latency -late -to clk2 2ns

Chapter 11: Quartus II Classic Timing Analyzer 11–13
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 The early clock latency default value is the same as the late clock latency delay, and
the late clock latency default value is the same as the early clock latency delay, if only
one is specified.

The Enable Clock Latency option must be set to ON for the Quartus II Classic timing
analyzer to analyze clock latency. When this option is set to ON, the Quartus II Classic
timing analyzer reports clock latency as part of the clock skew calculation for either
the source or destination clock path depending upon the analysis performed. To set
the Enable Clock Latency option to ON, you can use the following Tcl command:

set_global_assignment -name ENABLE_CLOCK_LATENCY ON

When the Enable Clock Latency option is enabled, the Quartus II Classic timing
analyzer automatically calculates latencies for derived clocks instead of automatically
calculating offsets; for example, PLL compensation delays. These clock path delays
are accounted for as clock skew instead of part of the setup or hold relationship as
done with offsets.

f For more information about clock latency, refer to AN 411: Understanding PLL Timing
for Stratix II Devices.

Timing Exceptions
Timing exceptions allow you to modify the default behavior of the Quartus II Classic
timing analyzer. This section describes the following timing exceptions:

■ Multicycle

■ Setup relationship and hold relationship

■ Maximum delay and minimum delay

■ False paths

1 Not all timing exceptions presented in this chapter are applicable to the HardCopy® II
devices. If you are designing for the HardCopy II device family, refer to the Timing
Constraints for HardCopy II Devices chapter in the HardCopy II Handbook.

Multicycle
By default, the Quartus II Classic timing analyzer performs a single-cycle analysis for
all valid register-to-register paths in the design. Multicycle assignments specify the
number of clock periods before a source register launches the data or a destination
register latches the data. Multicycle assignments adjust the latch or launch edges,
which relaxes the required clock setup check or clock hold check between the source
and destination register pairs. You can specify multicycles separately for setup and
hold, and multicycles can be based on the source clock or destination clock. Apply
Multicycle exception to time groups, clock nodes, or common clock enables.

http://www.altera.com/literature/an/an411.pdf
http://www.altera.com/literature/an/an411.pdf
http://www.altera.com/literature/hb/hrd/hc_h51028.pdf
http://www.altera.com/literature/hb/hrd/hc_h51028.pdf

11–14 Chapter 11: Quartus II Classic Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Destination Multicycle Setup Exception
A destination multicycle setup, referred to as a Multicycle exception, specifies the
minimum number of clock cycles required before a register should latch a value. A
Multicycle exception changes the latch edge by relaxing the required setup
relationship. Figure 11–11 shows a timing diagram for a multicycle path that exists in
a design with related clocks, and with the latch edge label for a clock setup check.

1 By default, the Multicycle exception value is 1.

You can apply Multicycle exception between any two registers or between any two
clock domains. Use the Tcl command set_multicycle_assingment, and the
switch –setup and –end. For example, to apply a Multicycle exception of 2 between
all registers clocked by source clock clk_src, and all registers clocked by destination
clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

To apply a Multicycle exception of 2 between the source register reg1 and the
destination register reg2, enter the following Tcl command:

set_multicycle_assignment –setup –end –from reg1 –to reg2 2

Destination Multicycle Hold Exception
A destination multicycle hold, referred to as a Multicycle Hold exception, modifies
the latch edge used for a clock hold check for the register-to-register path based on the
destination clock. A Multicycle Hold exception changes the latch edge by relaxing the
required hold relationship. Figure 11–12 shows a timing diagram labeling the latching
edge for a clock setup check.

1 If no Multicycle Hold value is specified, the Multicycle Hold value defaults to the
value of the multicycle exception.

Figure 11–11. Multicycle Setup

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Default Clock Setup Check Latch Edge Multicycle = 2

Figure 11–12. Multicycle Hold

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Multicycle Hold = 2 Default Clock Hold
Check Latch Edge

Chapter 11: Quartus II Classic Timing Analyzer 11–15
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

You can create Multicycle Hold exceptions with the Tcl command
set_multicycle_assingment and the switch –hold and –end. The following
example specifies a Multicycle Hold exception of 3 from register reg1 to register
reg2:

set_multicycle_assignment –hold –end –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle value along
the same path. For example, if a setup multicycle of 2 has been applied to a register-to-
register path without a separate hold multicycle, the hold multicycle value would be
set to 2. The default hold multicycle value can also be changed to a value of 1. This
forces all paths with a setup multicycle assignment to have a default hold multicycle
of 1. To change the default hold multicycle value, in the Settings dialog box, click the
More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup multicycle or 1,
you must explicitly apply a hold multicycle assignment to the path.

Source Multicycle Setup Exception
A source multicycle setup, referred to as Source Multicycle Setup exception, is used to
extend the required delay by adjusting the source clock’s launch edge rather than the
destination clock’s latch edge; for example, multicycle setup. Source Multicycle
exceptions are useful when the source and destination registers are clocked by related
clocks at different frequencies.

Figure 11–13 shows an example of a Source Multicycle exception with the launch edge
labeled for a clock setup check.

You can create Source Multicycle Setup exceptions with the Tcl command
set_multicycle_assignment and the switches -setup and -start. The
following example specifies a Source Multicycle exception of 3 from register reg1 to
register reg2:

set_multicycle_assignment –setup –start –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle value along
the same path. For example, if a setup multicycle of 2 has been applied to a
register-to-register path without a separate hold multicycle, the hold multicycle value
would be set to 2. The default hold multicycle value can also be changed to a value
of 1. This forces all paths with a setup multicycle assignment to have a default hold
multicycle of 1. To change the default hold multicycle value, in the Settings dialog
box, click the More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup multicycle or 1,
you must explicitly apply a hold multicycle assignment to the path.

Figure 11–13. Source Multicycle

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle = 2
Default Launch Edge for a
Clock Setup Check

11–16 Chapter 11: Quartus II Classic Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Source Multicycle Hold Exception
The Source Multicycle Hold exception modifies the latch edge used for a clock hold
check for the register-to-register path based on the source clock. Source Multicycle
Hold exceptions increase the required hold delay by adding source clock cycles.

Figure 11–14 shows an example of a source multicycle hold with launch edge labeled
for a clock hold check.

You can create Source Multicycle Hold exceptions with the Tcl command
set_multicycle_assingment and the switch –setup and –start. The
following example specifies a Source Multicycle Hold exception of 3 from register
reg1 to register reg2:

set_multicycle_assignment –hold –start –from reg1 –to reg2 3

Default Hold Multicycle
The Quartus II Classic timing analyzer sets the hold multicycle value to equal the
multicycle value when a multicycle exception has been entered without a
corresponding hold multicycle. You can change the behavior with the
DEFAULT_HOLD_MULTICYCLE assignment. The value of the assignment can either be
"ONE" or "SAME AS MULTICYCLE".

The assignment has the following syntax:

set_global_assignment -name DEFAULT_HOLD_MULTICYCLE "<value>"

Clock Enable Multicycle
For all enable-driven registers, the setup relationship or hold relationship can be
modified with the Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock
Enable Source Multicycle, or Clock Enable Multicycle Source Hold.

The Clock Enable Multicycle modifies the latching edge when a clock setup check is
performed for all registers driven by the specified clock enables, and the Clock
Enable Multicycle Hold modifies the latching edge when a clock hold check is
performed for all registers driven by the specified clock enable. The Clock Enable
Source Multicycle modifies the launching edge when a clock setup check is
performed for all enabled driven registers, and the Clock Enable Source Multicycle
Hold modifies the launching edge when a clock hold check is performed for all
enabled driven registers.

1 Clock enable-based multicycle exceptions apply only to registers using dedicated
clock enable circuitry. If the enable is synthesized into a logic cell; for example, due to
signal prioritization, the multicycle does not apply.

Figure 11–14. Source Multicycle Hold

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle Hold = 2
Default Clock Hold

Check Launch Edge

Chapter 11: Quartus II Classic Timing Analyzer 11–17
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock Enable Source
Multicycle, and Clock Enable Multicycle Source Hold can be either a single-point or
a point-to-point assignment.

Figure 11–15 shows an example of a single-point assignment. In this example, register
Reg A has the single-point assignment applied. This has the affect of modifying a
register-to-register latching edge whose enable port is driven by register Reg A. All
register-to-register paths with enables driven by the single-point assignment are
affected, even those driven by different clock sources.

Point-to-point assignments apply to all paths where the source registers’ enable ports
are driven by the source (from) node and the destination registers’ enable ports are
driven by the destination (to) node.

Figure 11–16 shows an example of a point-to-point assignment made to different
source and destination registers. In this example, register Reg A is specified as the
source, and register Reg B is specified as the destination for the assignment. Only
register-to-register paths that have their enables driven by the assigned point-to-point
registers have their latching edges modified.

Figure 11–15. Single-Point Clock Enable Multicycle

Figure 11–16. Different Source and Destination Point-to-Point Assignment Clock Enable Multicycle

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects all Enable-Driven Registers
Paths of Assigned Register:
 Reg C to Reg B
 Reg C to Reg D
 Reg F to Reg GSingle-Point

Assignment to Reg A

D Q

ENA

Reg A
D Q

ENA

Reg B

D Q

ENA

Reg C
D Q

ENA

Reg D

Point-to-point Assignment Made to Source & Destination
Register Feeding Enable-Driven Register(s)
 (Reg A to Reg B)

Affected Path: Reg C to Reg D

11–18 Chapter 11: Quartus II Classic Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 11–17 shows an example of a point-to-point assignment made to the same
source and destination register. In this example, register Reg A has been specified as
both the source and register for the assignment. Only register-to-register paths that
have both the source-enable port and destination-enable port has the
latching edge modified by the assigned point-to-point assignment.

You can use the set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE and set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE_HOLD Tcl commands to specify either a Clock Enable
Multicycle or a Clock Enable Multicycle Hold assignment, respectively. The
following example specifies a single-point Clock Enable Multicycle assignment of
2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE 2 -to reg1

The following example specifies a point-to-point Clock Enable Multicycle Hold
assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_HOLD 2 \
-from reg1 -to reg2

You can use the set_instance_assignment -name
CLOCK_ENABLE_SOURCE_MULTICYCLE and set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE_SOURCE_HOLD Tcl commands to specify either a
Clock Enable Multicycle or Clock Enable Multicycle Hold assignment, respectively.
The following example specifies a single-point Clock Enable Multicycle assignment
of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_SOURCE_MULTICYCLE 2 \
-to reg1

The following example specifies a point-to-point Clock Enable Multicycle Hold
assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name \
CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD 2 -from reg1 -to reg2

Figure 11–17. Same Source and Destination Point-to-Point Assignment Clock Enable Multicycle

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects Paths in Which Both
Source & Destination are Controlled by
the Same Clock Enable Signal:
 Reg C to Reg B
 Reg C to Reg D

Point-to-Point Assignment
From Reg A to Reg A
(From Reg A to Reg A)

Chapter 11: Quartus II Classic Timing Analyzer 11–19
Timing Exceptions

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Setup Relationship and Hold Relationship
By default, the Quartus II Classic timing analyzer determines all setup and hold
relationships based on clock settings. The Setup Relationship and Hold Relationship
exceptions allow you to override any default setup or hold relationships.
Example 11–2 shows the path details of a register-to-register path that has a 10 ns
clock setting applied to the clock signal driving the 2 registers.

In Example 11–3, a 15 ns Setup Relationship exception is applied to the
register-to-register path, overriding the default 10 ns setup relationship.

You can create a Setup Relationship exception with the Tcl command
set_instance_assignment -name SETUP_RELATIONSHIP. The following
example specifies a Setup Relationship exception of 5 ns from register reg1 to register
reg2:

set_instance_assignment -name SETUP_RELATIONSHIP 5ns -from reg1 \
-to reg2

You can use Hold Relationship exception to override the default hold relationship of
any register-to-register paths.

You can use the set_instance_assignment -name HOLD_RELATIONSHIP Tcl
command to specify a hold relationship assignment. The following example specifies
a Hold Relationship exception of 1 ns from register reg1 to register reg2:

set_instance_assignment -name HOLD_RELATIONSHIP 1ns -from reg1 \
-to reg2

Example 11–2. Default Setup Relationship with 10 ns Clock Setting

Info: Slack time is 9.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"

Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
Info: + Largest register to register requirement is 9.816 ns

Info: + Setup relationship between source and destination is 10.000 ns
Info: + Latch edge is 10.000 ns
Info: - Launch edge is 0.000 ns

Info: + Largest clock skew is 0.000 ns
Info: - Micro clock to output delay of source is 0.094 ns
Info: - Micro setup delay of destination is 0.090 ns

Info: - Longest register to register delay is 0.411 ns

Example 11–3. Setup Relationship Assignment of 15 ns

Info: Slack time is 14.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"

Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
Info: + Largest register to register requirement is 14.816 ns

Info: + Setup relationship between source and destination is 15.000 ns
Info: Setup Relationship assignment value is 15.000 ns between source "reg9" and
destination "reg10"
Info: + Largest clock skew is 0.000 ns
Info: Total interconnect delay = 1.583 ns (51.31 %)

Info: - Micro clock to output delay of source is 0.094 ns
Info: - Micro setup delay of destination is 0.090 ns

Info: - Longest register to register delay is 0.411 ns

11–20 Chapter 11: Quartus II Classic Timing Analyzer
Timing Exceptions

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Maximum Delay and Minimum Delay
You can use Maximum Delay and Minimum Delay assignments to specify delay
requirements for pin-to-register, register-to-register, and register-to-pin paths. The
Maximum Delay assignment overrides any setup relationship for any path. The
Minimum Delay assignment overrides any hold relationship for any path.

1 The Quartus II Classic timing analyzer ignores the effects of clock skew when
checking a design against Maximum Delay and Minimum Delay assignments.

You can use the set_instance_assignment –name MAX_DELAY and
set_instance_assignment –name –MIN_DELAY Tcl commands to specify a
Maximum Delay assignment or a Minimum Delay assignment, respectively. The
following example specifies a maximum delay of 2 ns between source register reg1
and destination register reg2:

set_instance_assignment -name MAX_DELAY 2ns -from reg1 -to reg2

The following example specifies a minimum delay of 1 ns between input pin
data_in to destination register dst_reg:

set_instance_assignment -name MIN_DELAY 1ns -from data_in -to dst_reg

False Paths
A false path is any path that is not relevant to a circuit’s operation, such as test logic.
There are several global assignments to cut different classes of paths, such as
unrelated clock domains and paths through bidirectional pins, but you can also cut an
individual timing path to a specific false path.

The timing analyzer provides the following three global options that allow you to
remove false paths from your design:

■ Cut off feedback from I/O pins

■ Cut off read-during-write signal paths

■ Cut paths between unrelated clock domains

You can use the set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK
ON Tcl command to cut the feedback path when a bidirectional I/O pin is connected
directly or indirectly to both the input and output of a latch.

You can use the set_global_assignment -name
CUT_OFF_READ_DURING_WRITE_PATHS ON Tcl command to cut the path from the
write-enable register through memory element to a destination register.

You can use the set_global_assignment -name
CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS ON Tcl command to cut paths
between register-to-register where the source and destination clocks are different.

You can use the set_timing_cut_assignment Tcl command to cut specific timing
paths. In Figure 11–18, the path from inst1 through the multiplexer to inst2 is used
only for design testing. This false path is not required under normal operation and
does not need to be analyzed during static timing analysis.

Chapter 11: Quartus II Classic Timing Analyzer 11–21
I/O Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 11–18 shows an example of a false path.

To cut the timing path from source register inst1 to destination register inst2, enter
the following Tcl command:

set_timing_cut_assignment -from inst1 -to inst2

You can also use the set_timing_cut_assignment Tcl command as a single point
assignment. When you use the single point assignment, all fanout of the node is cut.
For example, the following Tcl command cuts all timing paths originating for node
src_reg:

set_timing_cut_assignment -to src_reg

I/O Analysis
The I/O analysis performed by the Quartus II Classic timing analyzer ensures your
Altera FPGA design meets all timing specifications for interfacing with external
devices. This section describes assignments relevant to I/O analysis and other I/O
analysis features and options available with the Quartus II Classic timing analyzer.

External Input Delay and Output Delay Assignments
External input and output delays represent delays from or to external devices or
boards traces. You can make Input Delay and Output Delay assignments to ensure
the Quartus II Classic timing analyzer can perform a full system analysis. By
providing Input Delays and Output Delays, the Quartus II Classic timing analyzer is
able to perform clock setup and clock hold checks for these paths. This also allows
other timing assignments, such as multicycle or clock uncertainty, to be applied to
input and output paths.

1 Do not combine individual or global tSU, tH, tPD, tCO, minimum tCO, or minimum tPD
assignments with Input Delay or Output Delay assignments.

Figure 11–18. False Path Signal

D Q

DFF

D Q

DFF

inst

inst1

BUSMX

inst3 sel

result[]
dataa[]

datab[]
0

1
D Q

DFF

Test Enable

Clock

11–22 Chapter 11: Quartus II Classic Timing Analyzer
I/O Analysis

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Input Delay Assignment
External input delays are specified with either Input Maximum Delay or Input
Minimum Delay assignments. Make Input Maximum Delay assignments to specify
the maximum delay of a signal from an external register to a specified input or
bidirectional pin on the FPGA relative to a specified clock source. Make Input
Minimum Delay assignments to specify the minimum delay of a signal from an
external register to a specified input or bidirectional pin on the FPGA relative to a
specified clock source.

When performing a clock setup check, the Quartus II Classic timing analyzer adds the
Input Maximum Delay assignment value to the data arrival time (or subtracts the
assignment value from the point-to-point requirement).

When performing a clock hold check, the Quartus II Classic timing analyzer adds the
Input Minimum Delay assignment value to the data arrival time (or subtracts the
assignment value from the point-to-point requirement).

The value of the input delay assignment usually represents the sum of the tCO of the
external device, the actual board delay to the input pin of the Altera device, and the
board clock skew.

1 The Input Minimum Delay defaults to the Input Maximum Delay and the Input
Maximum Delay defaults to the Input Minimum Delay if only one is specified.

For example, the Input Maximum Delay and Input Minimum Delay can be used to
model the delay associated with an external device driving into an Altera FPGA.
Figure 11–19 shows an example of the input delay path. For Figure 11–19, the Input
Maximum Delay can be calculated as shown in Equation 11–19.

Use the Tcl command set_input_delay to specify an input delay. The following
example specifies an Input Maximum Delay assignment of 1.5 ns from clock node
clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -max 1.5ns

The following example specifies an Input Minimum Delay assignment of 1 ns from
clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -min 1ns

Equation 11–19.

Figure 11–19. Input Delay

Input Maximum Delay External Device Board Clock Path External Device tco
External Device to Altera Device Board Delay External Clock Path to Altera Device–

+ +=

External Device

Oscillator

Altera Device

Chapter 11: Quartus II Classic Timing Analyzer 11–23
I/O Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

When using Input Delay assignments, specify a particular clock reference. The clock
reference is the clock that feeds the external register’s clock port that feeds the Altera
device. This allows the Quartus II Classic timing analyzer to perform the proper
analysis for the input path.

1 The tSU, tH, tPD, and min tPD timing paths reported for input pins, where input delay
internal to the Altera FPGA assignments has been applied, include only the data
delay from these pins and do not account for any clock setup relationships, clock hold
relationships, or slack.

Output Delay Assignment
You can specify external output delays with either Output Maximum Delay or
Output Minimum Delay assignments. Make Output Maximum Delay assignments
to specify the maximum delay of a signal from the specified FPGA output pin to an
external register, relative to a specified clock source. Make Output Minimum Delay
assignments to specify the minimum delay of a signal from the specified FPGA
output pin to an external register relative to a specified clock source.

When performing a clock setup check, the Quartus II Classic timing analyzer
subtracts the Output Maximum Delay assignment value from the data required time
(or subtracts the assignment value from the point-to-point requirement).

When performing a clock hold check, the Quartus II Classic timing analyzer subtracts
the Output Minimum Delay assignment value from the data required time (or
subtracts the assignment value from the point-to-point requirement).

The value of this assignment usually represents the sum of the tSU of the external
device, the actual board delay from the output pin of the Altera device, and the board
clock skew.

1 The Output Minimum Delay default value is the same as the Output Maximum Delay,
and the Output Maximum Delay default value is the same as the Output Minimum
Delay if only one is specified.

For example, use the Output Maximum Delay and Output Minimum Delay to model
the delay associated with outputs for an Altera FPGA driving into an external device.
Figure 11–20 shows an example of an output delay path. For Figure 11–20 the Output
Maximum Delay can be calculated, as shown in Equation 11–20.

Equation 11–20.

Figure 11–20. Output Delay

Output Maximum Delay Altera Device to External Device Board Delay External Device tsu
External Clock Path to Altera Device External Device Board Clock Path–

+ +=

External DeviceAltera Device

Oscillator

11–24 Chapter 11: Quartus II Classic Timing Analyzer
Asynchronous Paths

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Tcl command set_output_delay specifies an Output Delay assignment. The
following example specifies an Output Maximum Delay assignment of 2 ns from
clock clk to output pin data_out:

set_output_delay -clk_ref clk -to data_out -max 2ns

The following example specifies an Output Minimum Delay assignment of 1 ns from
clock clk to output pin data_out:

set_output_delay -clk_ref clk -to data_out -min 1ns

When using output delay assignments, specify a specific clock reference. The clock
reference is the clock that feeds the external register’s clock port that is fed by the
Altera device. This allows the Quartus II Classic timing analyzer to perform the
correct static timing analysis on the output path.

1 The tCO, minimum tCO, tPD, and minimum tPD timing paths reported for output pins,
where output delay assignments have been applied include only the data delay
internal to the Altera FPGA to those pins, and do not account for any clock setup
relationships, clock hold relationships, or slack.

Virtual Clocks
You can use virtual clocks to model clock signals outside of the Altera FPGA, that is,
clocks that do not directly drive anything within the Altera FPGA. For example, you
can use a virtual clock to model a clock signal feeding an external output register that
feeds the Altera FPGA.

Using the -virtual option of the create_base_clock Tcl command specifies a
virtual clock assignment.

1 Before a you can use virtual clock for either an input or output delay assignment, the
virtual clock must have the Virtual Clock Reference assignment enabled for the
virtual clock setting.

The code in Example 11–4 creates a virtual clock named virt_clk, with a 200 MHz
requirement, and uses the virtual clock setting as the clock reference for the input
delay assignment.

Asynchronous Paths
The Quartus II Classic timing analyzer can analyze asynchronous signals that connect
to the clear, preset, or load ports of a register. This section explains how the Quartus II
Classic timing analyzer analyzes asynchronous paths.

Example 11–4. Creating a Virtual Clock Named virt_clk

#create the virtual clock setting
create_base_clock -fmax 200MHz -virtual virt_clk

#enable the virtual clock reference for the virtual clock setting
set_instance_assignment -name VIRTUAL_CLOCK_REFERENCE On -to virt_clk

#use the virtual clock setting as the clock reference for the input delay assignment
set_input_delay –clk_ref virt_clk –to data_in –max 2ns

Chapter 11: Quartus II Classic Timing Analyzer 11–25
Asynchronous Paths

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Recovery and Removal
Recovery time is the minimum length of time an asynchronous control signal; for
example, clear and preset, must be stable before the active clock edge. Removal time is
the minimum length of time an asynchronous control signal must be stable after the
active clock edge. The Enable Recovery/Removal analysis option reports the results
of recovery and removal checks for paths that end at an asynchronous clear, preset, or
load signal of a register.

Enable the recovery and removal analysis with the following Tcl command:

set_global_assignment -name ENABLE_RECOVERY_REMOVAL_ANALYSIS ON

With this option enabled, the Quartus II Classic timing analyzer reports the result of
the recovery analysis and removal analysis.

1 By default, the recovery and removal analysis is disabled. You should enable his
option for all designs that contain asynchronous controls signals.

Recovery Report
When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the Quartus II
Classic timing analyzer determines the recovery time as the minimum amount of time
required between an asynchronous control signal becoming inactive and the next
active clock edge, compares this to your design, and reports the results as slack. The
Recovery report alerts you to conditions where an active clock edge occurs too soon
after the asynchronous input becomes inactive, rendering the register’s data
uncertain.

The recovery slack time calculation is similar to the calculation for clock setup slack,
which is based on data arrival time and data required time except for asynchronous
control signals. If the asynchronous control is registered, the Quartus II Classic timing
analyzer calculates the recovery slack time using Equation 11–21
through Equation 11–23.

Equation 11–21.

Equation 11–22.

Equation 11–23.

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Longest Clock Path to Source Register
micro tco of Source Register Longest Register-to-Register Delay

+ +
+

=

Data Required Time Latch Edge Longest Clock Path to Source Register
micro tsu of Destination Register

+ +=

11–26 Chapter 11: Quartus II Classic Timing Analyzer
Asynchronous Paths

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Example 11–5 shows recovery time as reported by the timing analyzer.

If the asynchronous control is not registered, the Quartus II Classic timing analyzer
uses Equation 11–24 through Equation 11–26 to calculate the recovery slack time.

Example 11–6 shows recovery time as reported by the timing analyzer.

1 If the asynchronous reset signal is from a device pin, an Input Maximum Delay
assignment must be made to the asynchronous reset pin for the Quartus II Classic
timing analyzer to perform recovery analysis on that path.

Example 11–5. Recovery Time Reporting for a Registered Asynchronous Reset Signal

Info: Slack time is 8.947 ns for clock "a_clk" between source register "async_reg1" and
destination register "reg_1"

Info: Requirement is of type recovery
Info: - Data arrival time is 4.028 ns

Info: + Launch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk" to source register is 3.067 ns

Info: + Micro clock to output delay of source is 0.094 ns
Info: + Longest register to register delay is 0.867 ns

Info: + Data required time is 12.975 ns
Info: + Latch edge is 10.000 ns

Info: + Shortest clock path from clock "a_clk" to destination register is 3.065 ns
Info: - Micro setup delay of destination is 0.090 ns

Equation 11–24.

Equation 11–25.

Equation 11–26.

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Maximum Input Delay Maximum Pin-to-Register Delay+ +=

Data Required Time Latch Edge Shortest Clock Path to Destination Register Delay
micro tSU of Destination Register

–+=

Example 11–6. Recovery Time Reporting for a Non-Registered Asynchronous Reset Signal

Info: Slack time is 8.744 ns for clock "a_clk15" between source pin "a_arst2" and
destination register "inst5"

Info: Requirement is of type recovery
Info: - Data arrival time is 4.787 ns

Info: + Launch edge is 0.000 ns
Info: + Max Input delay of pin is 1.500 ns
Info: + Max pin to register delay is 3.287 ns

Info: + Data required time is 13.531 ns
Info: + Latch edge is 10.000 ns
Info: + Shortest clock path from clock "a_clk15" to destination register is 3.542 ns

Info: - Micro setup delay of destination is 0.011 ns

Chapter 11: Quartus II Classic Timing Analyzer 11–27
Asynchronous Paths

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Removal Report
When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the Quartus II
Classic timing analyzer determines the removal time as the minimum amount of time
required between an active clock edge that occurs while an asynchronous input is
active, and the deassertion of the asynchronous control signal. The Quartus II Classic
timing analyzer then compares this to your design and reports the results as slack.
The Removal report alerts you to a condition in which an asynchronous input signal
goes inactive too soon after a clock edge, thus rendering the register’s data uncertain.

The removal time slack calculation is similar to the one used to calculate clock hold
slack, which is based on data arrival time and data required time except for
asynchronous control signals. If the asynchronous control is registered, the Quartus II
Classic timing analyzer uses Equation 11–27 through Equation 11–29 to calculate the
removal slack time.

Example 11–7 shows removal time as reported by the Quartus II Classic timing
analyzer.

If the asynchronous control is not registered, the Quartus II Classic timing analyzer
uses Equation 11–30 through Equation 11–32 to calculate the removal slack time.

Equation 11–27.

Equation 11–28.

Equation 11–29.

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Shortest Clock Path from Source Register Delay
micro t

+

co of Source Register Shortest Register-to-Register Delay+
+=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

Example 11–7. Removal Time Reporting for a Registered Asynchronous Reset Signal

Info: Minimum slack time is 814 ps for clock "a_clk" between source register "async_reg1"
and destination register "reg_1"

Info: Requirement is of type removal
Info: + Data arrival time is 4.028 ns

Info: + Launch edge is 0.000 ns
Info: + Shortest clock path from clock "a_clk" to source register is 3.067 ns
Info: + Micro clock to output delay of source is 0.094 ns
Info: + Shortest register to register delay is 0.867 ns

Info: - Data required time is 3.214 ns
Info: + Latch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk" to destination register is 3.065 ns
Info: + Micro hold delay of destination is 0.149 ns

Equation 11–30.

Removal Slack Time Data Arrival Time Data Required Time–=

11–28 Chapter 11: Quartus II Classic Timing Analyzer
Skew Management

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Example 11–8 shows removal time as reported by the Quartus II Classic timing
analyzer.

1 If the asynchronous reset signal is from a device pin, an Input Minimum Delay
assignment must be made to the asynchronous reset pin for the Quartus II Classic
timing analyzer to perform a removal analysis on this path.

Skew Management
Clock skew is the difference in the arrival times of a clock signal at two different
registers, which can be caused by path length differences between two clock paths, or
by using gated or rippled clocks. As clock periods become shorter and shorter, the
skew between data arrival times and clock arrival times becomes more significant.
The Quartus II Classic timing analyzer provides two assignments for analyzing and
constraining skew for data and clock signals.

Maximum Clock Arrival Skew
Make Maximum Clock Arrival Skew assignments to specify the maximum allowable
clock arrival skew between a clock signal and various destination registers. The
Quartus II Classic timing analyzer compares the longest clock path to the registers’
clock port and the shortest clock path to the registers’ clock port to determine if your
maximum clock arrival skew is achieved. Maximum clock arrival skew is calculated
using Equation 11–33.

Equation 11–31.

Equation 11–32.

Data Arrival Time Launch Edge Input Minimum Delay of Pin
Minimum Pin-to-Register Delay

+ +=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

Example 11–8. Removal Time Reporting for a Non-Registered Asynchronous Reset Signal

Info: Minimum slack time is 1.131 ns for clock "a_clk15" between source pin "a_arst2"
and destination register "inst5"

Info: Requirement is of type removal
Info: + Data arrival time is 4.787 ns

Info: + Launch edge is 0.000 ns
Info: + Min Input delay of pin is 1.500 ns
Info: + Min pin to register delay is 3.287 ns

Info: - Data required time is 3.656 ns
Info: + Latch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk15" to destination register is 3.542 ns

Info: + Micro hold delay of destination is 0.114 ns

Equation 11–33.

Maximum Clock Arrival Skew Longest Clock Path Shortest Clock Path–=

Chapter 11: Quartus II Classic Timing Analyzer 11–29
Skew Management

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

For example, if the delay from clock pin clk to the clock port of register reg1 is
1.0 ns, and the delay from clock pin clk to the clock port of register reg2 is 3.0 ns, as
shown in Figure 11–21, the Quartus II Classic timing analyzer provides a clock skew
slack time of 2.0 ns.

1 You should apply the Maximum Clock Arrival Skew assignment to a clock node and
a group of registers. When you make a Maximum Clock Arrival Skew assignment,
the Fitter attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name
max_clock_arrival_skew Tcl command to specify a Maximum Clock Arrival
Skew assignment. The following example specifies a maximum clock arrival skew of
1 ns from clock signal clk to the bank of registers matching reg*:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk \
-to reg*

Maximum Data Arrival Skew
Make Maximum Data Arrival Skew assignments to specify the maximum allowable
data arrival skew to various destination registers or pins. The Quartus II Classic
timing analyzer compares the longest data arrival path to the shortest data arrival
path to determine if your specified maximum data arrival skew is achieved.
Maximum data arrival skew is calculated using Equation 11–34.

For example, if the data arrival time to output pin out1 is 2.0 ns, the data arrival time
to output pin out2 is 1.5 ns, and the data arrival time to output pin out3 is 1.0 ns, as
shown in Figure 11–22, the Quartus II Classic timing analyzer provides a maximum
data arrival skew slack time of 1.0 ns.

Figure 11–21. Clock Arrival Paths

data out1reg1 reg2

clk

Equation 11–34.

Figure 11–22. Data Arrival Paths

Maximum Data Arrival Skew Longest Data Arrival Path Shortest Data Arrival Path–=

out3reg3

clk

out2reg2

out1reg1

11–30 Chapter 11: Quartus II Classic Timing Analyzer
Generating Timing Analysis Reports with report_timing

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 When you make a Maximum Data Arrival Skew assignment, the Fitter attempts to
satisfy the skew requirement.

You can use the set_instance_assignment -name max_data_arrival_skew
Tcl command to specify a maximum data arrival skew value. The following example
specifies a maximum data arrival skew of 1 ns from clock signal clk to the bank of
output pins dout:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk \
-to dout[*]

Generating Timing Analysis Reports with report_timing
The Quartus II Classic timing analyzer includes the report_timing Tcl command
for generating text-based timing analysis reports. You can customize the output of
report_timing using multiple switches that allow the generation of both detailed
and general timing reports on any path in the design.

1 The report_timing Tcl command is available in the quartus_tan executable.

Prior to using the report_timing Tcl command, you must open a Quartus II project
and create a timing netlist. For example, the following two Tcl commands accomplish
this:

project_open my_project
create_timing_netlist

The report_timing Tcl command provides -from and -to switches for filtering
specific source and destination nodes. For example, the following report_timing
Tcl command reports all clock setup paths, with the switch –clock_setup, between
registers src_reg* and dst_reg*. The –npaths 20 switch limits the report to 20
paths.

report_timing –clock_setup –from src_reg* -to dst_reg* -npaths 20

The switches -clock_filter and -src_clock_filter are also available for
filtering based on specific clock sources. For example, the following report_timing
Tcl command reports all clock setup paths where the destination registers are clocked
by clk:

report_timing -clock_setup -clock_filter clk

The following example reports clock setup paths where the destination registers are
clocked by clk, and the source registers are clocked by src_clock.

report_timing -clock_setup -clock_filter clk -src_clock_filter src_clk

Chapter 11: Quartus II Classic Timing Analyzer 11–31
Other Timing Analyzer Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 11–9 is an example script that can be sourced by the quartus_tan
executable:

Other Timing Analyzer Features
The Quartus II Classic timing analyzer provides many features for customizing and
increasing the efficiency of static timing analysis, including:

■ Wildcard assignments

■ Assignment groups

■ Fast corner analysis

■ Early timing estimation

■ Timing constraint checker

■ Latch analysis

Wildcard Assignments
To simplify the tasks of making assignments to many node assignments, the
Quartus II software accepts the * and ? wildcard characters. Use these wildcard
characters to reduce the number of individual assignments you need to make for your
design.

The “*” wildcard character matches any string. For example, given an assignment
made to a node specified as reg*, the Quartus II Classic timing analyzer searches and
applies the assignment to all design nodes that match the prefix reg with none, one,
or several characters following, such as reg1, reg[2], regbank, and reg12bank.

The “?” wildcard character matches any single character. For example, given an
assignment made to a node specified as reg?, the Quartus II Classic timing analyzer
searches and applies the assignment to all design nodes that match the prefix reg and
any single character following, such as reg1, rega, and reg4.

Example 11–9. Source for the quartus_tan Executable

Open a project
project_open my_project
Always create the netlist first
create_timing_netlist
List clock setup paths for clock clk
from registers abc* to registers xyz*
report_timing -clock_setup -clock_filter clk -from abc* -to xyz*
List the top 5 pin-to-pin combinational paths
report_timing -tpd -npaths 5
List the top 5 pin-to-pin combinational paths and
write output to an out.tao file
report_timing -tpd -npaths 5 -file out.tao
Compute min tpd and append results to existing out.tao
report_timing -min_tpd -npaths 5 -file out.tao -append
Show longest path (register to register data path) between a* and b*
report_timing -longest_paths -npaths 1
delete_timing_netlist
project close

11–32 Chapter 11: Quartus II Classic Timing Analyzer
Other Timing Analyzer Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Assignment Groups
Assignment groups, also known as time groups, allow you to define a custom group
of nodes to which you can assign timing assignments. You can also exclude specific
nodes, wildcards, and time groups from a time group.

Use the timegroup Tcl command to create an assignment group. The following
example creates an assignment group srcgrp and adds nodes with names that match
src1* to the group:

timegroup srcgrp –add_member src1*

For example, Figure 11–23 has false paths between source register reg1 and
destination register bank sram_reg, external_reg, internal_reg, and
cam_reg that need to be cut. Without the use of assignment groups, the assignments
required are:

set_timing_cut_assignment –from reg1 to sram_reg
set_timing_cut_assignment –from reg1 to external_reg
set_timing_cut_assignment –from reg1 to internal_reg
set_timing_cut_assignment –from reg1 to cam_reg

With an assignment group called dst_reg_bank, the assignments required are:

#create a time group called dst_reg
timegroup dst_reg_bank –add_member sram_reg
timegroup dst_reg_bank –add_member external_reg
timegroup dst_reg_bank –add_member internal_reg
timegroup dst_reg_bank –add_member cam_reg
#cut timing paths
set_timing_cut_assignment –from reg1 to dst_reg_bank

Once an assignment group has been defined, applicable timing assignment can be
made to the time group without redefining the assignment group.

1 Assigning individual nodes to time groups and applying timing assignments to these
time groups can improve the performance of the Quartus II Classic timing analyzer.

Figure 11–23. False Path

reg1

sram_reg

external_reg

internal_reg

cam_reg

sram

external

internal

cam

clk

Chapter 11: Quartus II Classic Timing Analyzer 11–33
Other Timing Analyzer Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Fast Corner Analysis
Fast Corner Analysis uses timing models generated under best-case conditions
(voltage, process, and temperature) for the fastest speed-grade device.

1 Both Fast Corner and Slow Corner static timing analysis reports are saved to the
<project name>.tan.rpt file, potentially overwriting previous timing analysis reports.
To preserve a copy of your reports, save the file with a new name before the next
compilation or static timing analysis, or use the Combined Fast/Slow Analysis report
feature.

The Quartus II software also reports minimum delay checks after a slow corner
(default) analysis. These results are generated by reporting minimum delay checks
using worst-case timing models.

To perform fast corner static timing analysis with the best-case timing models, you
can use the switch -–fast_model=on with the quartus_tan executable. The
following Tcl command enables the fast timing models:

quartus_tan <project_name> --fast_model=on

Early Timing Estimation
The majority of Quartus II software compilation time is consumed by the place-and-
route process used to obtain optimal design results. To accelerate the design process
for large designs, the Quartus II software provides Early Timing Estimation. This
feature provides a quick static timing analysis in a fraction of the time required for a
full compilation by performing a preliminary place-and-route on the design without
full optimizations, which reduces total compile time by up to five times compared to a
fully fitted design.

1 An Early Timing Estimate fit is not fully optimized or legally routed. The timing delay
report is only an estimate. Typically, the estimated delays are within 10% of those
obtained with a full fit when the realistic setting is used.

The Early Timing Estimate has three settings for generating timing estimates:
Realistic, Optimistic, and Pessimistic. Table 11–1 describes these settings.

To use the Early Timing Estimate feature, enter the following Tcl command when
performing a fit:

quartus_fit \
--early_timing_estimate[=<realistic|optimistic|pessimistic>]

Table 11–1. Early Timing Estimate Setting Options

Setting Description

Realistic (default setting: estimates final timing
using standard fitting)

Generates timing estimates that are likely to be closest to full
compilation results.

Optimistic (estimates best-case final timing) Generates timing estimates that are unlikely to be exceeded by full
compilation.

Pessimistic (estimates worst-case final timing) Generates timing estimates that are likely to be exceeded by full
compilation.

11–34 Chapter 11: Quartus II Classic Timing Analyzer
Other Timing Analyzer Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

After Early Timing Estimate is complete, a full timing report is generated based on
the early placement and routing delays. In addition, you can view the preliminary
logic placement in the Timing Closure floorplan. The early timing placement allows
you to perform initial placement and view the timing interaction of various placement
topology.

Timing Constraint Checker
Altera recommends that you enter all timing constraints into the Quartus II software
prior to performing a full compilation. This ensures that the Fitter targets the correct
timing requirements and ensures that the Quartus II Classic timing analyzer reports
the correct violations for all timing paths in the design. To ensure that all constraints
have been applied to design nodes, the Timing Constraint Check feature reports all
unconstraint paths in your design. Example 11–10 shows the timing constraint check
summary generated after a full compilation.

To perform a timing constraint check, use the switch –-check_constraints with
the quartus_tan executable. The following Tcl command performs a timing
constraint check on both setup and hold on the design system:

quartus_tan block1 --check_constraints=both

Latch Analysis
Latches are implemented in the Quartus II software as look-up-tables (LUTs) feeding
back onto themselves. The Quartus II Classic timing analyzer can analyze these
latches as synchronous elements rather than as combinational elements. The clock
enables are analyzed as inverted clocks. The Quartus II Classic timing analyzer
reports the results of setup and hold analysis on these latches.

You can turn on the Analyze Latches As Synchronous Elements option with the
following Tcl command:

set_global_assignment -name ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Example 11–10. Timing Constraint Check Summary

+--+
; Timing Constraint Check Summary ;
+--+---+
; Timing Constraint Check Status ; Analyzed - Tue Feb 28 11:42:31 2006 ;
; Quartus II Version ; 6.1 Internal Build 143 02/20/2006 SJ Full Version ;
; Revision Name ; test ;
; Top-level Entity Name ; Block1 ;
; Unconstrained Clocks ; 0 ;
; Unconstrained Paths (Setup) ; 22 ;
; Unconstrained Reg-to-Reg Paths (Setup) ; 0 ;
; Unconstrained I/O Paths (Setup) ; 22 ;
; Unconstrained Paths (Hold) ; 12 ;
; Unconstrained Reg-to-Reg Paths (Hold) ; 0 ;
; Unconstrained I/O Paths (Hold) ; 12 ;
+--+---+

Chapter 11: Quartus II Classic Timing Analyzer 11–35
Timing Analysis Using the Quartus II GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Timing Analysis Using the Quartus II GUI
In addition to the extensive scripting support available in the Quartus II Classic
timing analyzer, the Quartus II software provides the Assignment Editor and other
user interface tools, giving you access to the Quartus II Classic timing analyzer
features and assignments.

Assignment Editor
The Assignment Editor is a spreadsheet-style interface used for adding, modifying,
and deleting timing assignments.

To make timing assignments in the Assignment Editor, choose Timing from the
category list to cause the Assignment Name column to display only timing
assignments. Double-click <<new>> in the Assignment Name field, the Assignment
Name list displays. Figure 11–24 shows the Assignment Editor with the Assignment
Name list displaying timing assignment types.

f For more information about the Assignment Editor, refer to the Assignment Editor
chapter in volume 2 of the Quartus II Handbook.

Figure 11–24. Assignment Editor

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

11–36 Chapter 11: Quartus II Classic Timing Analyzer
Timing Analysis Using the Quartus II GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Timing Settings
You can specify delay requirements and clock settings with the Timing Analysis
Settings page of the Settings dialog box.

To access this page, on the Assignments menu, click Settings. In the Category list,
click the “+” icon next to Timing Analysis Settings to expand the folder. (Be sure that
the Use Classic Timing Analyzer during compilation radio button is turned on.)
Select Classic Timing Analyzer Settings. The Classic Timing Analysis Settings page
appears.

Clock Settings Dialog Box
You can create or modify base clock settings or derived clock settings using the Clock
Settings dialog box. To access this page, on the Assignments menu, click Settings. In
the Category list, click the “+” icon next to Timing Analysis Settings to expand the
folder. (Be sure that the Use Classic Timing Analyzer during compilation radio
button is turned on.) Click on Classic Timing Analyzer Settings. The Timing
Analysis Settings page displays. Under Clock Settings, click Individual Clocks. The
Individual Clock dialog box appears.

Click the New button in the Individual Clocks dialog box to access the New Clock
Settings dialog box and create a base or derived clock setting.

More Timing Settings Dialog Box
On the Timing Analysis Settings page of the Settings dialog box, click More Settings
to display the More Timing Settings dialog box. The More Timing Settings dialog
box provides access to many global timing analysis options.

Timing Reports
The Quartus II Classic timing analyzer report is a section of the Compilation Report
containing the static timing analysis results. The Quartus II Classic timing analyzer
report includes clock setup and clock hold measurements for all clock sources. The
report also shows tCO for all output pins, tSU and tH for all input pins, and tPD for any
pin-to-pin combinational paths in the design. Other reports are created for different
analyses and device features.

In the Settings dialog box, you can specify the range of information to be reported in
the timing analysis of the Compilation Report. To access this page, on the
Assignments menu, click Settings. In the Category list, click the icon next to
Timing Analysis Settings to expand the folder. (Be sure that the Use Classic Timing
Analyzer during compilation radio button is turned on.) Click the icon next to
Classic Timing Analyzer Settings to expand the folder. Click Classic Timing
Analyzer Reporting. The Classic Timing Analyzer Reporting dialog box appears.

If there are no timing assignments for the design, the Quartus II Classic timing
analyzer does not generate slack reports for any detected clock nodes. The Quartus II
Classic timing analyzer only reports slack measurements for pins with individual or
global tSU, tH, or tCO assignments. A positive slack indicates the margin by which the
path surpasses the clock timing requirements. A negative slack indicates the margin
by which the path fails the clock timing requirements.

Chapter 11: Quartus II Classic Timing Analyzer 11–37
Timing Analysis Using the Quartus II GUI

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 This Timing Analysis report is also available in text format located in the design
directory with the file name <revision name>.tan.rpt.

In the Compilation Report, select an analysis type under the timing analyzer folder to
display the analysis report; for example, Clock Setup or Clock Hold. Figure 11–25
shows an example of a Clock Setup report for clock signal clk.

Advanced List Path
The Advanced List Paths dialog box provides detailed information about a specific
path, such as interconnect and cell delays between any two valid register-to-register
paths (Figure 11–26).

The Advanced List Paths dialog box allows you to select the type of paths you want
listed. For example, you can obtain detailed information for Clock Setup and Clock
Hold for a specific clock. In addition, the Tcl command field in the window matches
the equivalent Tcl command you can use in either a custom Tcl script or in the Tcl
console.

Figure 11–25. Timing Analysis Report

Figure 11–26. Advanced List Paths Dialog Box

11–38 Chapter 11: Quartus II Classic Timing Analyzer
Timing Analysis Using the Quartus II GUI

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can perform a list path command directly from the Timing Analysis report. To do
this, right click a path and click List Path (Figure 11–27). To launch the Advanced List
Paths dialog box, right-click a path and in the menu that appears, and select
Advanced List Paths.

The Advanced List Paths dialog box displays only paths that are visible in the Timing
Analysis report. To increase the amount of paths reported by the Quartus II Classic
timing analyzer, on the Assignments menu, click Timing Analysis Settings. In the
Category list, expand Timing Analysis Settings and select Timing Analyzer
Reporting. In the Timing Analyzer Reporting page, specify the range of information
to be reported by the Quartus II Classic timing analyzer.

1 Both the Advanced List Paths and the List Path commands display the path
information in the System message window.

1 If the Combined Fast/Slow Timing option is enabled, the List Path Tcl command
displays only path delays reported in the Slow Model section.

Early Timing Estimate
To start an Early Timing Estimate, on the Processing menu, point to Start and click
Start Early Timing Estimate. To specify the Early Timing Estimate mode, on the
Assignments menu, click Settings. In the Category list, select Compilation Processes
Settings, select Early Timing Estimate and click the desired timing estimate mode.
For more information about the Early Timing Estimate feature, refer to “Early Timing
Estimation” on page 11–33.

Assignment Groups
To define, modify, and delete assignment groups, also known as time groups, from a
single dialog box, on the Assignments menu, click Assignment (Time) Groups. The
Assignment Groups dialog box appears.

Figure 11–27. List Path in the Message Window

Chapter 11: Quartus II Classic Timing Analyzer 11–39
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp

f For more information in PDF form, refer to the Quartus II Scripting Reference Manual.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For information about all settings and constraints in the Quartus II software, refer to
the Quartus II Settings File Reference Manual.

f For more information about command-line scripting, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

Creating Clocks
There are two Tcl commands that allow you to define clocks in a design,
create_base clock and create_relative_clock.

Base Clocks
Use the create_base_clock Tcl command to define a base clock:

create_base_clock [-h | -help] [-long_help] -fmax <fmax> \
[-duty_cycle <integer>] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>

To define a base clock setting named sys_clk with a 100 MHz requirement applied
to node clk_src, enter the following Tcl command:

create_base_clock –fmax 100MHz –target clk_src sys_clk

Derived Clocks
Use the create_relative_clock Tcl command to define a relative clock:

create_relative_clock [-h | -help] [-long_help] \
-base_clock <Base clock> [-duty_cycle <integer>] \
[-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] \
[-no_target] [-entity <entity>] [-disable] \
[-comment <comment>] <clock_name>

To define a relative clock named aux_clk based upon base clock setting sys_clk
with a multiplication factor of 2 applied to node rel_clk, enter the following Tcl
command:

create_relative_clock –base_clock sys_clk –multiply 2 \
–target rel_clk aux_clk

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

11–40 Chapter 11: Quartus II Classic Timing Analyzer
Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock Latency
You can use the set_clock_latency Tcl command to create either an early or late
clock latency assignment:

set_clock_latency [-h | -help] [-long_help] [-early] [-late] \
-to <to> [<value>]

To apply an early clock latency of 1 ns and a late clock latency of 2 ns to clock node
clk, enter the following Tcl commands:

set_clock_latency -early -to clk 2ns

Clock Uncertainty
You can use the set_clock_uncertainty Tcl command to create clock uncertainty
assignments as shown in the following example:

set_clock_uncertainty [-h] [-help] [-long_help [-from \
<source clock name>] -to <destination clock name> [-setup] [-hold] \
[-remove] [-disable] [-comment <comment>] <value>

To apply a clock setup uncertainty of 50 ps between source clock node clk_src and
destination clock node clk_dst, enter the following Tcl command:

set_clock_uncertainty –from clk_src –to clk_dst –setup 50ps

To apply a clock hold uncertainty of 25 ps between to clock node clk_sys, enter the
following Tcl command:

set_clock_uncertainty –to clk_sys –setup 25ps

Cut Timing Paths
You can use the set_timing_cut_assignment Tcl command to create cut timing
assignments:

set_timing_cut_assignment [-h | -help] [-long_help] \
[-from <from_node_list>] [-to <to_node_list>] [-remove] [-disable] \
[-comment <comment>]

To cut the timing path from source register reg1 to destination register reg2, enter
the following Tcl command:

set_timing_cut_assignment -from reg1 -to reg2

Input Delay Assignment
You can use the Tcl command set_input_delay to create input delay assignments:

set_input_delay [-h | -help] [-long_help] [-clk_ref <clock>] \
-to <input_pin> [-min] [-max] [-clock_fall] [-remove] [-disable] \
[-comment <comment>] [<value>]

To apply an input maximum delay of 2 ns to an input pin named data_in that feeds
a register clocked by clock source clk, enter the following Tcl command:

set_input_delay -clk_ref clk -to data_in –max 2ns

Chapter 11: Quartus II Classic Timing Analyzer 11–41
Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Maximum and Minimum Delay
The following Tcl commands create the Maximum Delay and Minimum
Relationship assignments, respectively:

set_instance_assignment -name MAX_delay <value> -from <node> -to <node>
set_instance_assignment -name MIN_delay <value> -from <node> -to <node>

To apply a maximum delay of 8 ns and a minimum of 5 ns between source register
reg1 and destination register reg2, enter the following Tcl command:

set_instance_assignment -name MAX_DELAY 8ns -from reg1 -to reg2
set_instance_assignment -name MIN_DELAY 5ns -from reg1 -to reg2

To apply a maximum delay of 10 ns for all paths from source clock clk_src to
destination clock clk_dst, enter the following Tcl command:

set_instance_assignment -name MAX_DELAY 10ns -from clk_src -to clk_dst

Maximum Clock Arrival Skew
The following Tcl command defines the Maximum Clock Arrival Skew assignment:

set_instance_assignment -name max_clock_arrival_skew <value> \
-from <clock> -to <node>

To apply a maximum clock arrival skew of 1 ns for clock source clk to a predefined
timegroup called reg_group, enter the following Tcl command:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk \
-to reg_group

Maximum Data Arrival Skew
To create Maximum Data Arrival Skew assignments, use the Tcl command
set_instance_assignment -name max_data_arrival:

set_instance_assignment -name max_data_arrival_skew <value> \
-from <clock> -to <node>

To apply a maximum data arrival skew of 1 ns for clock source clk to a predefined
timegroup of pins called pin_group, enter the following Tcl command:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk \
-to pin_group

Multicycle
Use the set_multicycle_assignment Tcl command to create Multicycle
assignments:

set_multicycle_assignment [-h | -help] [-long_help] [-setup] [-hold] \
[-start] [-end] [-from <from_list>] [-to <to_list>] [-remove] \
[-disable] [-comment <comment>] <path_multiplier>

To apply a multicycle setup of 2 and a hold multicycle of 1 between source register
reg1 and destination register reg2, enter the following Tcl commands:

set_multicycle_assignment –setup -end –from reg1 –to reg2 2
set_multicycle_assignment –hold -end –from reg1 –to reg2 1

To apply a Source Multicycle Setup of 2 between source register reg1 and destination
register reg2, enter the following Tcl command:

11–42 Chapter 11: Quartus II Classic Timing Analyzer
Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

set_multicycle_assignment –setup -start –from reg1 –to reg2 1

To apply a multicycle setup of 2 for all paths from source clock clk_src to
destination clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

Output Delay Assignment
Use the Tcl command set_output_delay to create Output Delay assignments:

set_output_delay [-h | -help] [-long_help] [-clk_ref <clock>] \
-to <output_pin> [-min] [-max] [-clock_fall] [-remove] [-disable] \
[-comment <comment>] [<value>]

To apply an output maximum delay of 3 ns to an output pin named data_out that is
fed to a register clocked by clock source clk, enter the following Tcl command:

set_output_delay -clk_ref clk -to data_out –max 3ns

Report Timing
Use the report_timing Tcl command to generate timing reports:

report_timing [-h | -help] [-long_help] [-npaths <number>] [-tsu] \
[-th] [-tco] [-tpd] [-min_tco] [-min_tpd] [-clock_setup] \
[-clock_hold] [-clock_setup_io] [-clock_hold_io] [-clock_setup_core] \
[-clock_hold_core] [-recovery] [-removal] [-dqs_read_capture] \
[-stdout] [-file <name>] [-append] [-table <name>] [-from <names>] \
[-to <names>] [-clock_filter <names>] [-src_clock_filter <names>] \
[-longest_paths] [-shortest_paths] [-all_failures]

The following example generates a list of all clock setup paths for clock source clk
from registers src_reg* to registers dst_reg*:

report_timing -clock_setup -clock_filter clk -from src_reg* \
-to dst_reg*

Setup and Hold Relationships
The following Tcl commands create Setup Relationship and Hold Relationship
assignments, respectively:

set_instance_assignment -name SETUP_RELATIONSHIP <value> -from <node> \
-to <node>
set_instance_assignment -name HOLD_RELATIONSHIP <value> -from <node> \
-to <node>

To apply a setup relationship of 12 ns and a hold relationship of 2 ns between source
register reg1 and destination registers reg2, enter the following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 12ns -from reg1 \
-to reg2
set_instance_assignment -name HOLD_RELATIONSHIP 2ns -from reg1 -to reg2

To apply a setup relationship of 10 ns for all paths from source clock clk_src to
destination clock clk_dst, enter the following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 10ns -from clk_src \
-to clk_dst

Chapter 11: Quartus II Classic Timing Analyzer 11–43
MAX+PLUS II Timing Analysis Methodology

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Assignment Group
Use the timegroup Tcl command to create assignment groups:

timegroup [-h | -help] [-long_help] [-add_member <name>] \
[-add_exception <name>] [-remove_member <name>] [-remove_exception \
<name>] [-get_members] [-get_exceptions] [-overwrite] [-remove] \
[-disable] [-comment <comment>] <group_name>

The following example creates an assignment group called reg_bank with members
dst_reg*, and excludes register dst_reg5.

timegroup reg_bank -add_member dst_reg* -add_exception dst_reg5

Virtual Clock
Use the create_relative_clock with the –virtual switch to create Virtual
Clock assignments:

create_relative_clock [-h | -help] [-long_help] -base_clock \
<Base clock> [-duty_cycle <integer>] [-multiply <integer>] \
[-divide <integer>] [-offset <offset>] [-phase_shift <integer>] \
[-invert] [-virtual] [-target <name>] [-no_target] [-entity <entity>] \
[-disable] [-comment <comment>] <clock_name>

To define a virtual clock derived from the base clock setting clk_aux named
brd_sys, enter the following Tcl command:

create_relative_clock –base_clock clk_aux -virtual brd_sys

MAX+PLUS II Timing Analysis Methodology
This section describes the basic static timing analysis and assignments available in the
Quartus II software that originated in the MAX+PLUS® II design software.

fMAX Relationships
Maximum clock frequency is the fastest speed at which the design clock can run
without violating internal setup and hold time requirements. The Quartus II software
performs static timing analysis on both single- and multiple-clock designs.

1 Apply clock settings to all clock nodes in a design to ensure that you meet all
performance requirements. Refer to “Clock Settings” on page 11–8 for more
information.

Slack
Slack is the margin by which a timing requirement such as fMAX is met or not met.
Positive slack indicates the margin by which a requirement is met. Negative slack
indicates the margin by which a requirement is not met. The Quartus II software
determines slack using Equation 11–35 through Equation 11–38.

Equation 11–35.

Clock Setup Slack Longest Register-to-Register Requirement Longest Register-to-Register Delay–=

11–44 Chapter 11: Quartus II Classic Timing Analyzer
MAX+PLUS II Timing Analysis Methodology

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 11–28 shows a slack calculation diagram.

I/O Timing
This section describes the basic measurements made for I/O timing in the Quartus II
software.

tSU Timing
tSU specifies the length of time data needs to arrive and be stable at an external input
pin prior to a clock transition on an associated clock I/O pin. A tSU requirement
describes this relationship for an input register relative to the I/O pins of the FPGA.

Equation 11–36.

Equation 11–37.

Equation 11–38.

Figure 11–28. Slack Calculation Diagram

Register-to-Register Requirement Setup Relationship Largest Clock Skew
micro tco of Source Register micro tsu of Destination Register–

–+=

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

Shortest Register-to-Register Requirement Hold Relationship Smallest Clock Skew
micro tco of Source Register micro tH of Destination Register–

–+=

tSUtCO

Register 1 Register 2

Data

clk1 clk2

clk1

clk2

 Slack
Clock Period

Latching Edge

Launching Edge

Point to Point Delay

Logic

Chapter 11: Quartus II Classic Timing Analyzer 11–45
MAX+PLUS II Timing Analysis Methodology

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 11–29 shows a diagram of clock setup time.

Micro tSU is the internal setup time of the register. It is a characteristic of the register
and is unaffected by the signals feeding the register. Equation 11–39 calculates the tSU
of data with respect to clk for the circuit shown in Figure 11–29.

tH Timing
tH specifies the length of time data needs to be held stable on an external input pin
after a clock transition on an associated clock I/O pin. A tH requirement describes this
relationship for an input register relative to the I/O pins of the FPGA. Figure 11–30
shows a diagram of clock hold time.

Micro tH is the internal hold time of the register. Equation 11–40 calculates the tH of
data with respect to clk for the circuit shown in Figure 11–30.

tCO Timing
Clock-to-output delay is the maximum time required to obtain a valid output at an
output pin fed by a register, after a clock transition on the input pin that clocks the
register. Micro tCO is the internal clock-to-output delay of the register.

Figure 11–29. Clock Setup Time (tSU)

Equation 11–39.

Figure 11–30. Clock Hold Time (tH)

Equation 11–40.

tSU

Data Delay

Micro tSU

Clock Delay

data

clk

tsu Longest Data Delay Shortest Clock Delay micro tsu of Input Register+–=

tH

Data Delay

Micro tH

Clock Delay

data

clk

tH Longest Clock Delay Shortest Data Delay micro tH of Input Register+–=

11–46 Chapter 11: Quartus II Classic Timing Analyzer
MAX+PLUS II Timing Analysis Methodology

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 11–31 shows a diagram of clock-to-output delay.

Equation 11–41 calculates the tCO for output pin data_out with respect to clock node
clk for the circuit shown in Figure 11–31.

Minimum tCO (min tCO)
Minimum clock-to-output delay is the minimum time required to obtain a valid
output at an output pin fed by a register, after a clock transition on the input pin that
clocks the register. Micro tCO is the internal clock-to-output delay of registers in Altera
FPGAs. Unlike the tCO assignment, the min tCO assignment looks at the shortest delay
paths (refer to Equation 11–42).

tPD Timing
Pin-to-pin delay (tPD) is the time required for a signal from an input pin to propagate
through combinational logic and appear at an external output pin (refer to
Equation 11–43).

1 In the Quartus II software, you can make tPD assignments between an input pin and an
output pin.

Minimum tPD (min tPD)
The minimum pin-to-pin delay (tPD) is the time required for a signal from an input pin
to propagate through combinational logic and appear at an external output pin.
Unlike the tPD assignment, the min tPD assignment applies to the shortest pin-to-pin
delay (refer to Equation 11–44).

Figure 11–31. Clock-to-Output Delay (tCO)

Equation 11–41.

Equation 11–42.

Equation 11–43.

Data Delay

Micro tCO

Clock Delay

tCO

clk

data_out

tco Longest Clock Delay micro tco of Output Register+=

min tco Shortest Clock Delay Shortest Data Delay micro tco of Output Register+ +=

tPD Longest Pin-to-Pin Delay=

Chapter 11: Quartus II Classic Timing Analyzer 11–47
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Timing Analyzer Tool
To facilitate the classic static timing analysis flow and constraint, the Quartus II
software provides a MAX+PLUS II-style timing analyzer tool available on the Tools
menu. The timing analyzer tool provides a simple interface, similar to the timing
analyzer tool in MAX+PLUS II, that reports register-to-register performance, I/O
timing, and custom delay values (Figure 11–32).

Conclusion
Static timing analysis is important to help you verify design timing requirements.
Without full design constraints and a complete static timing analysis, you risk circuit
failure in complex designs. The Quartus II Classic timing analyzer provides legacy
static timing analysis features to analyze your design.

1 For more advanced constraints and analysis capabilities, Altera recommends that you
switch to the Quartus II TimeQuest timing analyzer.

Equation 11–44.

min tPD Shortest Pin-to-Pin Delay=

Figure 11–32. Timing Analyzer Tool

11–48 Chapter 11: Quartus II Classic Timing Analyzer
Referenced Documents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ ALTPLL Megafunction User Guide

■ AN 411: Understanding PLL timing for Stratix II Devices

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 11–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 11–2. Document Revision History

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated the “Introduction” section.

■ Updated “Timing Analysis Tool Setup” on page 11–2.

Updated for the Quartus II 9.1
software release.

March 2009

v9.0.0

■ This was chapter 9 in version 8.1. —

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

■ Added hyperlinks to referenced documents throughout the chapter.
No other substantive changes were made.

—

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/an/an411.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

12. Synopsys PrimeTime Support

Introduction
PrimeTime is an industry standard sign-off tool that performs static timing analysis
on ASIC designs. The Quartus® II software makes it easy for designers to analyze
their Quartus II projects using the PrimeTime software. The Quartus II software
exports a netlist, design constraints (in the PrimeTime format), and libraries to the
PrimeTime software environment. Figure 12–1 shows the PrimeTime flow diagram.

This chapter contains the following sections:

■ “Quartus II Settings for Generating the PrimeTime Software Files”

■ “Files Generated for the PrimeTime Software Environment” on page 12–2

■ “Running the PrimeTime Software” on page 12–7

■ “PrimeTime Timing Reports” on page 12–8

■ “Static Timing Analyzer Differences” on page 12–18

Quartus II Settings for Generating the PrimeTime Software Files
To set the Quartus II software to generate files for the PrimeTime software, perform
the following steps:

1. In the Quartus II software, on the Assignments menu, click EDA Tool Settings.

2. In the Category list, under EDA Tool Settings, select Timing Analysis.

3. In the Tool name list, select PrimeTime, and in the Format for output netlist list,
select either Verilog or VHDL, depending on the HDL language you chose for use
with the PrimeTime software (Figure 12–2).

Figure 12–1. PrimeTime Software Flow Diagram

Design Netlist
(Verilog or

VHDL Format)

Constraints in
PrimeTime

Format

Standard Delay
Format Output

File (Timing
Information)

Timing Reports Generated

The Quartus II Software

The PrimeTime Software

DB lib
HDL lib

QII53005-9.1.0

12–2 Chapter 12: Synopsys PrimeTime Support
Files Generated for the PrimeTime Software Environment

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

When you compile your project after making these settings, the Quartus II software
runs the EDA Netlist Writer to create three files for the PrimeTime software. These
files are saved in the <revision_name>/timing/primetime directory by default, where
<revision_name> is the name of your Quartus II software revision. If it is not, you have
used the wrong variable name.

Files Generated for the PrimeTime Software Environment
The Quartus II software generates a flattened netlist, a Standard Delay Output File
(.sdo), and a Tcl script that prepares the PrimeTime software for timing analysis of the
Quartus II project. These files are saved in the <project directory>/timing/primetime
directory.

The Quartus II software uses the EDA Netlist Writer to generate PrimeTime files
based on either the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest
Timing Analyzer static timing analysis results. When you run the EDA Netlist Writer,
the PrimeTime SDO files are based on delays generated by the currently selected
timing analysis tool in the Quartus II software.

To specify the timing analyzer, on the Assignments menu, click Settings. The Settings
dialog box appears. Under Category, click Timing Analysis Settings. Select the
timing analyzer of your choice.

Figure 12–2. Setting the Quartus II Software to Generate the PrimeTime Software Files

Chapter 12: Synopsys PrimeTime Support 12–3
Files Generated for the PrimeTime Software Environment

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For more information about specifying the Quartus II timing analyzers, refer to either
the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
chapters in volume 3 of the Quartus II Handbook. Also, refer to the Switching to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook to
help you decide which timing analyzer is most appropriate for your design.

The Netlist
Depending on whether Verilog or VHDL is selected as the Format for output netlist
option, in the Tool name list on the Timing Analysis page of the Settings dialog box,
the netlist is written and saved as either <project name>.vo or <project name>.vho,
respectively. This file contains the flattened netlist representing the entire design.

1 When the Quartus II TimeQuest Timing Analyzer is selected, only a Verilog
PrimeTime netlist is generated.

The SDO File
The Quartus II software saves the Standard Delay Format Output (.sdo) File as either
<revision_name>_v.sdo or <revision_name>_vhd.sdo, depending on whether you
selected Verilog or VHDL in the Tool name list on the Timing Analysis page of the
Settings dialog box.

This file contains the timing information for each timing path between any two nodes
in the design.

When the Quartus II Classic Timing Analyzer is enabled, the slow-corner (worst case)
timing models are used by default when generating the SDO file. To generate the SDO
file using the fast-corner (best case) timing models, perform the following steps:

1. In the Quartus II software, on the Processing menu, point to Start and click Start
Classic Timing Analyzer (Fast Timing Model).

2. After the fast-corner timing analysis is complete, on the Processing menu, point to
Start and click Start EDA Netlist Writer to create a <revision_name>_v_fast.sdo or
<revision_name>_vhd_fast.sdo file, which contains the best-case delay values for
each timing path.

1 If you are running a best-case timing analysis, the Quartus II software generates a Tcl
script similar to the following: <revision_name>_pt_v_fast.tcl.

When TimeQuest is run with the fast-corner netlist or when the Optimize fast-corner
timing check box is selected in the Fitter Settings dialog box, the fast-corner SDC file
is generated.

After the EDA Netlist Writer has finished, two SDO files are created:
<revision_name>_v.sdo (slow-corner) or <revision_name>_v_fast.sdo (fast-corner).

Generating Multiple Operating Conditions with TimeQuest
Different operating conditions can be specified to the EDA Netlist Writer for
PrimeTime analysis. The different operating conditions are reflected in the .sdo file
generated by the EDA Netlist Writer.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

12–4 Chapter 12: Synopsys PrimeTime Support
Files Generated for the PrimeTime Software Environment

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 12–1 shows the available operating conditions that can be set for a few of
Altera’s device families.

1 From the TimeQuest Console pane, use the command
get_available_operating_conditions to obtain a list of available operating
conditions for the target device.

The following steps show how to generate the .sdo files for the three different
operating conditions for a Stratix III design. Each command must be entered at the
command prompt.

1 The --tq2pt option for quartus_sta is required only if the project does not specify
that the PrimeTime tool will be used as the timing analysis tool.

1. Generate the first slow corner model at the operating conditions: slow, 1100 mV,
and 85º C.

quartus_sta --model=slow --voltage=1100 --temperature=85
<project name>

2. Generate the fast corner model at the operating conditions: fast, 1100 mV, and 0º C.

quartus_sta --model=fast --voltage=1100 --temperature=0
--tq2pt <project name>

3. Generate the PrimeTime output files for the corners specified above. The output
files will be generated in the primetime_two_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog
--output_directory=primetime_two_corner_files
--write_settings_files=off <project name>

4. Generate the second slow corner model at the operating conditions: slow, 1100 mV,
and 0º C.

quartus_sta --model=slow --voltage=1100 --temperature=0
--tq2pt <project name>

Table 12–1. Available Operating Condition Combinations

Device Family
Available Conditions

(Model, Voltage, Temperature)

Stratix® III (slow, 1100 mV, 85º C),

(slow, 1100 mV, 0º C),

(fast, 1100 mV, 0º C)

Cyclone® III (slow, 1200 mV, 85º C),

(slow, 1200 mV, 0º C),

(fast, 1200 mV, 0º C)

Stratix II (slow, N/A, N/A), (fast, N/A, N/A)

Cyclone II (slow, N/A, N/A), (fast, N/A, N/A)

Chapter 12: Synopsys PrimeTime Support 12–5
Files Generated for the PrimeTime Software Environment

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Generate the PrimeTime output files for the second slow corner. The output files
will be generated in the primetime_one_slow_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog
--output_directory=primetime_one_slow_corner_files
--write_settings_files=off $revision

To summarize, the previous steps generate the following files for the three operating
conditions:

■ First slow corner (slow, 1100 mV, 85º C):
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v.sdo

■ Fast corner (fast, 1100 mV, 0º C):
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v_fast.sdo

■ Second slow corner (slow, 1100 mV, 0º C):
VO File—primetime_one_slow_corner_files/<project name>.vo
SDO File—primetime_one_slow_corner_files/<project name>_v.sdo

1 The directory primetime_one_slow_corner_files may also have files for fast corner.
These files can be ignored because they were already generated in the
primetime_two_corner_files directory.

The Tcl Script
The Tcl script generated by the Quartus II software contains information required by
the PrimeTime software to analyze the timing and set up your post-fit design. This
script specifies the search path and the names of the PrimeTime database library files
provided with the Quartus II software. The search_path and link_path variables
are defined at the beginning of the Tcl file. The link_path variable is a
space-delimited list that contains the names of all database files used by the
PrimeTime software.

Depending on whether you selected Verilog or VHDL in the Format for output
netlist list on the Timing Analysis page of the Settings dialog box, when the
Quartus II Classic Timing Analyzer is enabled, the EDA Netlist Writer generates and
saves the script as either <revision_name>_pt_v.tcl or <revision_name>_pt_vhd.tcl.

To access the EDA Settings dialog box, on the Assignments menu, click EDA Tool
Settings, then expand EDA Tool Settings under the Category list. In the dialog box,
you can specify VHDL or Verilog for the format for the output netlist.

1 The script also directs the PrimeTime software to use the <device family>_all_pt.v or
<device family>_all_pt.vhd file, which contains the Verilog or VHDL description of
library cells for the targeted device family.

12–6 Chapter 12: Synopsys PrimeTime Support
Files Generated for the PrimeTime Software Environment

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Example 12–1 shows the search_path and link_path variables defined in the Tcl
script:

The EDA Netlist Writer converts any Quartus II Classic Timing Analyzer timing
assignments to the PrimeTime software constraints and exceptions when it generates
the PrimeTime files. The converted constraints are saved to the Tcl script. The Tcl
script also includes a PrimeTime software command that reads the Standard Delay
Format Output (.sdo) file generated by the Quartus II software. You can place
additional commands in the Tcl script to analyze or report on timing paths.

Table 12–2 shows some examples of timing assignments converted by the Quartus II
software for the PrimeTime software. For example, the set_input_delay -max
command sets the input delay on an input pin.

When the Quartus II TimeQuest Timing Analyzer is turned on, the EDA Netlist Writer
generates and saves the script as <revision_name>.pt.tcl.

The EDA Netlist Writer converts all Quartus II TimeQuest Timing Analyzer SDC
constraints and exceptions into compatible PrimeTime software constraints and
exceptions when it generates the PrimeTime files. The constraints and exceptions are
saved to the <revision_name>.constraints.sdc file.

Generated File Summary
The files that are generated by the EDA Netlist Writer for the PrimeTime software
depend on the Quartus II timing analysis tool you selected.

Example 12–1. Sample PrimeTime Setup Script

set quartus_root "altera/quartus/"
set search_path [list . [format "%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

set link_path [list * stratixii_lcell_comb_lib.db stratixii_lcell_ff_lib.db
stratixii_asynch_io_lib.db stratixii_io_register_lib.db stratixii_termination_lib.db
bb2_lib.db stratixii_ram_internal_lib.db stratixii_memory_register_lib.db
stratixii_memory_addr_register_lib.db stratixii_mac_out_internal_lib.db
stratixii_mac_mult_internal_lib.db stratixii_mac_register_lib.db
stratixii_lvds_receiver_lib.db stratixii_lvds_transmitter_lib.db
stratixii_asmiblock_lib.db stratixii_crcblock_lib.db stratixii_jtag_lib.db
stratixii_rublock_lib.db stratixii_pll_lib.db stratixii_dll_lib.db alt_vtl.db]

read_vhdl -vhdl_compiler stratixii_all_pt.vhd

Table 12–2. Equivalent Quartus II and PrimeTime Software Constraints

Quartus II Equivalent PrimeTime Constraint

Clock defined on input pin, clock of 10 ns
period and 50% duty cycle

create_clock -period 10.000 -waveform {0 5.000} \
[get_ports clk] -name clk

Input maximum delay of 1 ns on input pin, din set_input_delay -max -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Input minimum delay of 1 ns on input pin, din set_input_delay -min -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Output maximum delay of 3 ns on output pin,
out

set_output_delay -max -add_delay 3.000 -clock \
[get_clocks clk] [get_ports out]

Chapter 12: Synopsys PrimeTime Support 12–7
Running the PrimeTime Software

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 12–3 shows the files that are generated for the PrimeTime software when the
Quartus II Classic Timing Analyzer is selected.

Table 12–4 shows the files that are generated for the PrimeTime software when the
Quartus II TimeQuest Timing Analyzer is selected. The EDA Netlist Writer supports
the output netlist format only when the TimeQuest Timing Analyzer is enabled.

Running the PrimeTime Software
The PrimeTime software runs only on UNIX operating systems. If the Quartus II
output files for the PrimeTime software were generated by running the Quartus II
software on a PC/Windows-based system, follow these steps to run the PrimeTime
software using Quartus II output files:

1. Install the PrimeTime libraries on a UNIX system by installing the Quartus II
software on UNIX.

The PrimeTime libraries are located in the <Quartus II installation
directory>/eda/synopsys/primetime/lib directory.

2. Copy the Quartus II output files to the appropriate UNIX directory. You may need
to run a PC to UNIX program, such as dos2unix, to remove any control
characters.

3. Modify the Quartus II path in Tcl scripts to point to the PrimeTime libraries, as
described in Step 1. In Example 12–1, the first line is:

Table 12–3. Quartus II Classic Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vho |
<revision_name>.vo

The PrimeTime software output netlist. Either a VHDL Output file or a Verilog Output file
is generated, depending on the output netlist language set.

<revision_name>_vhd.sdo |
<revision_name>_v.sdo

The PrimeTime software standard delay file. Either a VHDL Standard Delay Output file or
a Verilog Standard Delay Output file is generated, depending on the output netlist
language set.

<revision_name>_pt_vhd.tcl |
<revision_name>_pt_v.tcl

PrimeTime setup and constraint script. Either a VHDL Tcl script or a Verilog Tcl script is
generated, depending on the output netlist language set.

Table 12–4. Quartus II TimeQuest Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vo The PrimeTime software output netlist. When the Quartus II TimeQuest Timing
Analyzer is enabled, only PrimeTime (Verilog) is supported.

<revision_name>_v.sdo |
<revision_name>_v_fast.sdo

The PrimeTime software standard delay file. When the Quartus II TimeQuest Timing
Analyzer is enabled, only PrimeTime (Verilog) is supported.

<revision_name>.pt.tcl PrimeTime setup and constraint script. When the Quartus II TimeQuest Timing
Analyzer is enabled, only PrimeTime (Verilog) is supported.

<revision_name>.collections.sdc Contains the mapping from the Quartus II TimeQuest Timing Analyzer netlist to the
PrimeTime netlist.

<revision_name>.constraints.sdc Contains the converted Quartus II TimeQuest Timing Analyzer constraints for the
PrimeTime software.

12–8 Chapter 12: Synopsys PrimeTime Support
PrimeTime Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

set quartus_root "c:/altera/quartus51/" set search_path [list . [format
"%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

This is the Tcl script that should be modified.

Analyzing Quartus II Projects
The PrimeTime software is controlled with Tcl scripts and can be run through
pt_shell. You can run the <revision_name>_pt_v.tcl script file. For example, type the
following at a UNIX system command prompt:

pt_shell -f <revision_name>_pt_v.tcl r
When the Quartus II TimeQuest Timing Analyzer is selected, type the following at a
UNIX system command prompt:

pt_shell -f <revision_name>.pt.tcl r
After all Tcl commands in the script are interpreted, the PrimeTime software returns
control to the pt_shell prompt, which allows you to use other commands.

Other pt_shell Commands
You can run additional pt_shell commands at the pt_shell prompt, including the
man program. For example, to read documentation about the report_timing
command, type the following at the pt_shell prompt:

man report_timing r
You can list all commands available in pt_shell by typing the following at the
pt_shell prompt:

help r
Type quit r at the pt_shell prompt to close pt_shell.

1 You can also run pt_shell without a script file by typing pt_shellr at the UNIX
command line prompt.

PrimeTime Timing Reports
This section describes PrimeTime timing reports.

Sample of the PrimeTime Software Timing Report
After running the script, the PrimeTime software generates a timing report. If the
timing constraints are not met, Violated is displayed at the end of the timing report.
The timing report also gives the negative slack.

The PrimeTime software report is similar to the sample shown in Example 12–2. The
starting point in this report is a register clocked by clock signal, clock, the endpoint
is another register, inst3-I.lereg.

Chapter 12: Synopsys PrimeTime Support 12–9
PrimeTime Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the
PrimeTime Software

Both the Quartus II Classic Timing Analyzer and the Quartus II TimeQuest Timing
Analyzer generate a static timing analysis report for every successful design
compilation. The timing report lists all of the timing paths in your design that were
analyzed, and indicates whether these paths have met or violated their timing
requirements. Violations are reported only if timing constraints were specified.

The Quartus II TimeQuest Timing Analyzer uses an equivalent set of equations as
PrimeTime when reporting the static timing analysis result for a design. However, the
Quartus II Classic Timing Analyzer uses slightly different reporting equations when
reporting the static timing analysis results for a design. This section describes these
differences between the Quartus II Classic Timing Analyzer and the PrimeTime
software.

The timing report generated by the Quartus II Classic Timing Analyzer differs from
the report generated by the PrimeTime software. Both tools provide the same data but
present in different formats. The following sections show how the PrimeTime
software reports the following slack values differently from the Quartus II Classic
Timing Analyzer report:

■ “Clock Setup Relationship and Slack” on page 12–10

■ “Clock Hold Relationship and Slack” on page 12–13

■ “Input Delay and Output Delay Relationships and Slack” on page 12–16

Example 12–2. Hold Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: min
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <- 0.176* 3.342r
inst2~I.regout (stratix_lcell) 0.000* 3.342r
inst3~I.datac (stratix_lcell) 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 3.002r
library hold time 0.100* 3.102
data required time 3.102

data required time 3.102
data arrival time -6.755

slack (MET) 3.653

12–10 Chapter 12: Synopsys PrimeTime Support
PrimeTime Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock Setup Relationship and Slack
The Quartus II Classic Timing Analyzer performs a setup check that ensures that the
data launched by source registers is latched correctly at the destination registers. The
Quartus II Classic Timing Analyzer does this by determining the data arrival time and
clock arrival time at the destination registers, and compares this data with the setup
time delay of the destination register. Equation 12–1 expresses the inequality that is
used for a setup check. The data arrival time includes the longest path from the clock
to the source register, the clock-to-out micro delay of the source register, and the
longest path from the source register to the destination register. The clock arrival time
is the shortest delay from the clock to the destination register.

Slack is the margin by which a timing requirement is met or not met. Positive slack
indicates the margin by which a requirement is met. Negative slack indicates the
margin by which a requirement was not met. The Quartus II Classic Timing Analyzer
determines the clock setup slack, as shown in Equation 12–2:

1 The longest register-to-register delay in the previous equation is equal to the
register-to-register data delay.

For a simple three-register design, refer to Figure 12–3.

The Quartus II Classic Timing Analyzer generates a report for the design, as shown in
Figure 12–4.

Equation 12–1.

Equation 12–2.

Clock Arrival Data Arrival tsu–

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Delay–=

Equation 12–3.

Largest Register-to-Register Requirement
Setup Relationship between Source and Destination Largest Clock Skew
Micro tco of Destination Register Micro tsu of Destination Register–

–+
=

Setup Relationship between Source and Destination Latch Edge Launch Edge–=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

Figure 12–3. Simple Three-Register Design

Chapter 12: Synopsys PrimeTime Support 12–11
PrimeTime Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Equation 12–1, Equation 12–2, and Equation 12–3 are similar to those found in other
static timing analysis tools, such as the PrimeTime software. Equation 12–4 to
Equation 12–7, used by the PrimeTime software, are essentially the same as those
used by the Quartus II Classic Timing Analyzer, but they are rearranged.

1 The longest data delay in the previous equation is equal to
register-to-register data delay.

Figure 12–5 shows a clock setup check in the Quartus II software.

Figure 12–4. Timing Analyzer Report from Figure 12–3

Equation 12–4.

Equation 12–5.

Equation 12–6.

Equation 12–7.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Shortest Clock Path to Destination+=

Data Required Clock Arrival Micro tsu–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Longest Data Delay++ +=

12–12 Chapter 12: Synopsys PrimeTime Support
PrimeTime Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The results in Equation 12–8 are obtained by extracting the numbers from the
Quartus II Classic Timing Analyzer report and applying them to the clock setup slack
equations from the Quartus II Classic Timing Analyzer:

Figure 12–5. Clock Setup Check Reporting with the Quartus II Classic Timing Analyzer

Equation 12–8.

Setup Relationship between Source and Destination Latch Edge Launch Edge
Clock Setup Uncertainty

––=

8.0 0.0– 0.0– 8.0ns=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

3.002 3.166– 0.164ns–=

Largest Register-to-Register Requirement
Setup Relationship between Source & Destination Largest Clock Skew

Micro tco of Source Register– Micro tsu of Destination Register–
+

=

8 0.164–  0.176– 0.010–+ 7.650ns=

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Delay–=

7.650 3.413– 4.237ns=

Chapter 12: Synopsys PrimeTime Support 12–13
PrimeTime Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

For the same register-to-register path, the PrimeTime software generates a clock setup
report as shown in Example 12–3:

Clock Hold Relationship and Slack
The Quartus II Classic Timing Analyzer performs a hold time check along every
register-to-register path in the design to ensure that no hold time violations have
occurred. The hold time check verifies that data from the source register does not
reach the destination until after the hold time of the destination register. The condition
used for a hold check is shown in Equation 12–9:

The Quartus II Classic Timing Analyzer determines the clock hold slack with
Equation 12–10, Equation 12–11, Equation 12–12, and Equation 12–13:

Example 12–3. Setup Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: max
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <- 0.176* 3.342r
inst2~I.regout (stratix_lcell) <- 0.000* 3.342r
inst3~I.datac (stratix_lcell) <- 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755
clock clock (rise edge) 8.000 8.000
clock network delay (propagated) 3.002 11.002
inst3~I.lereg.clk (stratix_lcell_register 11.002r
library setup time -0.010* 10.992
data required time 10.992
--
data required time 10.992
data arrival time -6.755
--
slack (MET) 4.237

Equation 12–9.

Equation 12–10.

Equation 12–11.

Data Arrival Clock Arrival– tH

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tsu of Source Micro tH of Destination+–

+=

12–14 Chapter 12: Synopsys PrimeTime Support
PrimeTime Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 12–6 shows a simple three-register design.

The Quartus II Classic Timing Analyzer generates a report as shown in Figure 12–7.

The previous equations are similar to those found in the Quartus II software. The
following equations are the same equations that are used by the PrimeTime software,
but they are rearranged.

Equation 12–12.

Equation 12–13.

Hold Relationship between Source & Destination Latch Edge Launch Edge–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

Figure 12–6. A Simple Three-Register Design

Figure 12–7. Timing Analyzer Report Generated from the Three-Register Design

Equation 12–14.

Equation 12–15.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Longest Clock Path to Destination+=

Chapter 12: Synopsys PrimeTime Support 12–15
PrimeTime Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 The shortest register-to-register delay in the previous equation is equal to
register-to-register data delay.

Figure 12–8 shows a clock setup check with the Quartus II Classic Timing Analyzer.

The following results are obtained by extracting the numbers from the Timing
Analysis report and applying the clock setup slack equations from the Quartus II
Classic Timing Analyzer.

Equation 12–16.

Equation 12–17.

Figure 12–8. Clock Hold Check Reporting with the Quartus II Classic Timing Analyzer

Equation 12–18.

Data Required Clock Arrival Micro tH–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Shortest Data Delay++ +=

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

3.413 0.240– – 3.653ns=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tco of Source Micro tH of Destination+–

+=

0 0.164–  0.176– 0.100+ + 0.240ns–=

Hold Relationship between Source & Destination Latch Launch–=

0.0 0.0ns–

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

3.002 3.166– 0.164ns–=

12–16 Chapter 12: Synopsys PrimeTime Support
PrimeTime Timing Reports

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

For the same register-to-register path, the PrimeTime software generates the report
shown in Example 12–4:

Both sets of hold slack equations can be used to determine the hold slack value of any
path.

Input Delay and Output Delay Relationships and Slack
Input delay and output delay reports generated by the Quartus II Classic Timing
Analyzer are similar to the clock setup and clock hold relationship reports.
Figure 12–9 shows the input delay and output delay report for the design shown in
Figure 12–6 on page 12–14.

Example 12–4. Hold Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: min
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register)<- 0.176* 3.342r
inst2~I.regout (stratix_lcell) 0.000* 3.342r
inst3~I.datac (stratix_lcell) 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755

clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 3.002r
library hold time 0.100* 3.102
data required time 3.102
--
data required time 3.102
data arrival time -6.755
--
slack (MET) 3.653

Figure 12–9. Input and Output Delay Reporting with the Quartus II Classic Timing Analyzer

Chapter 12: Synopsys PrimeTime Support 12–17
PrimeTime Timing Reports

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 12–10 shows the fully expanded view for the output delay path.

For the same output delay path, the PrimeTime software generates a report similar to
Example 12–5:

To generate a list of the 100 worst paths and place this data into a file called
file.timing, type the following command at the pt_shell prompt:

report_timing -nworst 100 > file.timing r

Figure 12–10. Output Delay Path Reporting with the Quartus II Classic Timing Analyzer

Example 12–5. Setup Path Report in PrimeTime

Startpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: data_out
(output port clocked by clock)

Path Group: clock
Path Type: max
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 0.000 3.002r
inst3~I.lereg.regout (stratix_lcell_register)<- 0.176* 3.178r
inst3~I.regout (stratix_lcell)<- 0.000 3.178r
data_out~I.datain (stratix_io)<- 0.000 3.178r
data_out~I.out_mux3.A (mux21)<- 0.000 3.178r
data_out~I.out_mux3.MO (mux21)<- 0.000 3.178r
data_out~I.and2_22.IN1 (AND2)<- 0.000 3.178r
data_out~I.and2_22.Y (AND2)<- 0.000 3.178r
data_out~I.out_mux1.A (mux21)<- 0.000 3.178r
data_out~I.out_mux1.MO (mux21)<- 0.000 3.178r
data_out~I.inst1.datain (stratix_asynch_io)<- 0.902* 4.080r
data_out~I.inst1.padio (stratix_asynch_io)<- 2.495* 6.575r
data_out~I.padio (stratix_io)<- 0.000 6.575r
data_out (out) 0.000 6.575r
data arrival time 6.575
clock clock (rise edge) 8.000 8.000
clock network delay (propagated) 0.000 8.000
output external delay 1.250 6.750
data required time 6.750

data required time 6.750
data arrival time 6.575

slack (MET) 0.175

12–18 Chapter 12: Synopsys PrimeTime Support
Static Timing Analyzer Differences

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Timing paths in the PrimeTime software are listed in the order of most-negative-slack
to most-positive-slack. The PrimeTime software does not categorize failing paths by
default. Timing setup (tsu) and timing hold (th) times are not listed separately. In the
PrimeTime software, each path is shown with a start and end point; for example, if it
is a register-to-register or input-to-register type of path. If you only use the
report_timing part of the command without adding a -delay option, only the
setup-time-related timing paths are reported.

The following command is used to create a minimum timing report or a list of
hold-time-related violations:

report_timing -delay_type min r
Ensure that the correct SDO file, either minimum or maximum delays, is loaded
before running this command.

Static Timing Analyzer Differences
Under certain design conditions, several static timing analysis differences can exist
between the Classic Timing Analyzer and the TimeQuest Timing Analyzer, and the
PrimeTime software. The following sections explain the differences between the two
static timing analysis engines and the PrimeTime software.

The Quartus II Classic Timing Analyzer and the PrimeTime Software
The following section describes the differences between the Quartus II Classic Timing
Analyzer and the PrimeTime software.

Rise/Fall Support
The Quartus II Classic Timing Analyzer does not support rise/fall analysis. However,
rise/fall support is available in PrimeTime.

Minimum and Maximum Delays
TimeQuest calculates minimum and maximum delays for all device components with
the exception of clock routing. PrimeTime does not model these delays. This can result
in different slacks for a given path on average by 2–3%.

Recovery/Removal Analysis
TimeQuest performs a more pessimistic recovery/removal analysis for asynchronous
path than PrimeTime. This can result in different delays reported between the two
tools.

Chapter 12: Synopsys PrimeTime Support 12–19
Static Timing Analyzer Differences

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Encrypted Intellectual Property Blocks
The Quartus II software has the capability to decrypt all intellectual property (IP)
blocks designed for Altera® devices that have been encrypted by their vendors. The
decryption process allows the Quartus II software to perform a full compilation of the
design that contains an encrypted IP block. This also allows the Quartus II Classic
Timing Analyzer to perform a complete static timing analysis on the design. However,
when the PrimeTime software is designated as the static timing analysis tool, the
Quartus II EDA Netlist Writer does not generate either a VHDL Output File (.vho) or
Verilog Output File (.vo) netlist file for designs that contain encrypted IP blocks for
which the license does not permit generation of output netlists for third-party tools.

Registered Clock Signals
Registered clock signals are clock signals that pass through a register before reaching
the clock port of a sequential element. Figure 12–11 shows an example of a registered
clock signal.

If no clock setting is applied to the register on the clock path (shown as register reg_1
in Figure 12–11), the Quartus II Classic Timing Analyzer treats the register in the clock
path as a buffer. The delay of the buffer is equal to the CELL delay of the register plus
the tCO of the register. The PrimeTime software does not treat the register as a buffer.

1 For more information about creating clock settings, refer to the Quartus II Classic
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Multiple Source and Destination Register Pairs
In any design, multiple paths may exist from a source register to a destination register.
Each path from the source register to the destination register may have a different
delay value due to the different routes taken. For example, Figure 12–12 shows a
sample design that contains multiple path pairs between the source register and
destination register.

Figure 12–11. Registered Clock Signal

D Q

D Q

reg1

reg2

Logic

Figure 12–12. Multiple Source and Destination Pairs

D Q

Path 2

Path 1

D Q

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

12–20 Chapter 12: Synopsys PrimeTime Support
Static Timing Analyzer Differences

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II Classic Timing Analyzer analyzes all source and destination pairs, but
reports only the source and destination register pair with the worst slack. For
example, if the Path 2 pair delay is greater than the Path 1 pair delay in Figure 12–12,
the Quartus II Classic Timing Analyzer reports the slack value of the Path 2 pair and
not the Path 1 pair. The PrimeTime software reports all possible source and
destination register pairs.

Latches
By default, the Quartus II software implements all latches as combinational loops. The
Quartus II Classic Timing Analyzer can analyze such latches by treating them as
registers with inverted clocks or analyze latches as a combinational loop modeled as a
combinational delay.

1 For more information about latch analysis, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational loops, as
defined in the netlist file.

LVDS I/O
When it analyzes the dedicated LVDS transceivers in your design, the Quartus II
Classic Timing Analyzer generates the Receiver Skew Margin (RSKM) report and a
Channel-to-Channel Skew (TCCS) report. The PrimeTime software does not generate
these reports.

Clock Latency
When a single clock signal feeds both the source and destination registers of a
register-to-register path, and either an Early Clock Latency or a Late Clock Latency
assignment has been applied to the clock signal, the Quartus II Classic Timing
Analyzer does not factor in the clock latency values when it calculates the clock skew
between the two registers. The Quartus II Classic Timing Analyzer factors in the clock
latency values when the clock signal to the source and destination registers of a
register-to-register path are different. The PrimeTime software applies the clock
latency values when a single clock signal or different clock signals feeds the source
and destination registers of a register-to-register path.

Input and Output Delay Assignments
When a purely combinational (non-registered) path exists between an input pin and
output pin of the Altera FPGA and both pins have been constrained with an input
delay and an output delay assignment applied, respectively, the Quartus II Classic
Timing Analyzer does not perform a clock setup or clock hold analysis. The
PrimeTime software analyzes these paths.

Generated Clocks Derived from Generated Clocks
The Quartus II Classic Timing Analyzer does not support a generated clock derived
from a generated clock. This situation might occur if a generated clock feeds the input
clock pin of a PLL. The output clock of the PLL is a generated clock.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 12: Synopsys PrimeTime Support 12–21
Static Timing Analyzer Differences

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software
The following sections describe the static timing analysis differences between the
Quartus II TimeQuest Timing Analyzer and the PrimeTime software.

Encrypted Intellectual Property Blocks
The Quartus II software has the capability to decrypt all IP blocks, designed for Altera
devices that have been encrypted by their vendors. The decryption process allows the
Quartus II software to perform a full compilation on the design containing an
encrypted IP block. This also allows the Quartus II TimeQuest Timing Analyzer to
perform a complete static timing analysis on the design. However, when the
PrimeTime software is designated as the static timing analysis tool, the Quartus II
EDA Netlist Writer does not generate .vho or .vo netlist files for designs that contain
encrypted IP blocks whose license does not permit generation of output netlists for
other tools.

Latches
By default, the Quartus II software implements all latches as combinational loops. The
Quartus II TimeQuest Timing Analyzer can analyze such latches by treating them as
registers with inverted clocks. The Quartus II TimeQuest Timing Analyzer analyzes
latches as a combinational loop modeled as a combinational delay.

f For more information about latch analysis, refer to the Quartus II Classic Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational loops, as
defined in the netlist file.

LVDS I/O
When it analyzes the dedicated LVDS transceivers in your design, the Quartus II
TimeQuest Timing Analyzer generates a Receiver Skew Margin (RSKM) report and a
Channel-to-Channel Skew (TCCS) report. The PrimeTime software does not generate
these reports.

The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility
Because of differences between node naming conventions with the netlist generated
by the EDA Netlist Writer and the internal netlist used by the Quartus II software,
SDC files generated for the Quartus II software or the Quartus II TimeQuest Timing
Analyzer are not compatible with the PrimeTime software.

Run the EDA Netlist Writer to generate a compatible SDC file from the TimeQuest
SDC file for the PrimeTime software. After the files <revision_name>.collections.sdc
and <revision_name>.constraints.sdc have been generated, both files can be read in by
the PrimeTime software for compatibility of constraints between the Quartus II
TimeQuest Timing Analyzer and the PrimeTime software.

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

12–22 Chapter 12: Synopsys PrimeTime Support
Conclusion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Clock and Data Paths
If a timing path acts both as a clock path (a path that connects to a clock pin with a
clock associated to it), and a data path (a path that feeds into the data in port of a
register), the Quartus II TimeQuest Timing Analyzer will report the data paths,
whereas PrimeTime will not.

Inverting and Non-Inverting Propagation
TimeQuest always propagates non-inverting sense for clocks through non-unate
paths in the clock network.

PrimeTime’s default behavior is to propagate both inverting and non-inverting senses
through a non-unate path in the clock network.

Multiple Rise/Fall Numbers For a Timing Arc
For a given timing path with a corresponding set of pins/ports that make up the path
(including source and destination pair), if the individual components of that path
have different rise/fall delays, there can potentially be many timing paths with
different delays using the same set of pins. If this occurs, TimeQuest reports only one
timing path for the set of pins that make up the path.

Virtual Generated Clocks
PrimeTime does not support generated clocks that are virtual. To maintain
compatibility between TimeQuest and PrimeTime, all generated clocks should have
an explicit target specified.

Generated Clocks Derived from Generated Clocks
The Quartus II Classic Timing Analyzer does not support the creation of a generated
clock derived from a generated clock. This situation might occur if a generated clock
feeds the input clock pin of another generated clock. The output clock of the PLL is a
generated clock.

Conclusion
The Quartus II software can export a netlist, constraints, and timing information for
use with the PrimeTime software. The PrimeTime software can use data from either
best-case or worst-case Quartus II timing models to measure timing. The PrimeTime
software is controlled using a Tcl script generated by the Quartus II software that you
can customize to direct the PrimeTime software to produce violation and slack
reports.

Referenced Documents
This chapter references the following documents:

■ Quartus II Handbook

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 12: Synopsys PrimeTime Support 12–23
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

Document Revision History
Table 12–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 12–5. Document Revision History

Date and
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Updated “Setting the Quartus II Software to Generate the
PrimeTime Software Files” figure for changes in the Quartus II
software version 9.1

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

This was chapter 10 in version 8.1. Updated for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Updated to Quartus II software version 8.0 and date.

■ Added hyperlinks to referenced Altera documentation
throughout the chapter.

—

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

12–24 Chapter 12: Synopsys PrimeTime Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section III. Power Estimation and Analysis

As FPGA designs grow larger and processes continue to shrink, power becomes an
ever-increasing concern. When designing a PCB, the power consumed by a device
must be accurately estimated to develop an appropriate power budget, and to design
the power supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by your current
design during timing simulation. The power consumption of your design can be
calculated using the Microsoft Excel-based power calculator, or the Simulation-Based
Power Estimation features in the Quartus II software. This section explains how to use
both.

This section includes the following chapter:

■ Chapter 13, PowerPlay Power Analysis

This chapter describes the Altera® Quartus II PowerPlay power analysis tools and
how to use the tools to accurately estimate device power consumption.

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

3–2 Section III: Power Estimation and Analysis

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

13. PowerPlay Power Analysis

This chapter describes how to use the Altera® Quartus® II PowerPlay Power Analysis
tools to accurately estimate device power consumption.

Introduction
As designs grow larger and process technology continues to shrink, power becomes
an increasingly important design consideration. When designing a PCB, the power
consumed by a device must be accurately estimated to develop an appropriate power
budget and to design the power supplies, voltage regulators, heat sink, and cooling
system. As shown in Figure 13–1, the PowerPlay Power Analysis tools provide the
ability to estimate power consumption from early design concept through design
implementation.

Early in your design cycle, you can use Microsoft Excel-based PowerPlay Early Power
Estimation (EPE) spreadsheets to provide preliminary power consumption and heat
dissipation estimates for Arria® GX, Cyclone®, HardCopy®, MAX® II, and Stratix®

series devices. To calculate the estimates, you must enter information about
environmental conditions and the number of device resources (such as clocks, DSP
blocks) that you expect to use in your design. When your design is partially complete,
you can generate a PowerPlay Early Power Estimator file with the Quartus II software
to provide the EPE spreadsheets with the design's device resource profile. You can use
the Quartus II software to generate a PowerPlay EPE file for Arria GX, Cyclone,
MAX II, and Stratix series devices. Late in your design cycle, you can use the
PowerPlay Power Analyzer in the Quartus II software to provide the most accurate
estimate of device power consumption and heat dissipation.

The PowerPlay Power Analyzer is available for Arria GX, Cyclone, HardCopy,
MAX II, and Stratix series devices.

Figure 13–1. PowerPlay Power Analysis

User Input

Quartus II
Design Profile

Placement and
Routing
Results

Simulation
Results

Design Concept Design Implementation

PowerPlay Early Power Estimators Quartus II PowerPlay Power Analyzer

Lower PowerPlay Power Analysis Input Higher

Es
tim

at
io

n
Ac

cu
ra

cy

Higher

QII53013-9.1.0

13–2 Chapter 13: PowerPlay Power Analysis
Creating PowerPlay EPE Spreadsheets

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about acquiring the PowerPlay EPE spreadsheet, refer to
PowerPlay Early Power Estimators (EPE) and Power Analyzer on the Altera website.

This chapter discusses the following topics:

■ “Creating PowerPlay EPE Spreadsheets”

■ “Types of Power Analysis” on page 13–5

■ “Factors Affecting Power Consumption” on page 13–5

■ “PowerPlay Power Analyzer Flow” on page 13–8

■ “Using Simulation Files in Modular Design Flows” on page 13–11

■ “Using the PowerPlay Power Analyzer” on page 13–18

■ “Conclusion” on page 13–30

■ “Referenced Documents” on page 13–30

■ “Document Revision History” on page 13–31

Creating PowerPlay EPE Spreadsheets
You can use PowerPlay EPE spreadsheets to perform a preliminary thermal analysis
and power consumption estimate for your design. You can enter the data manually, or
you can use the tools in the Quartus II software to assist you in generating the device
resources usage information for your design.

If you manually enter data into the EPE spreadsheet, you must enter the device
resources, operating frequency, toggle rates, and other parameters for your design. If
you do not have an existing design, you must estimate the number of device resources
used in your design and enter them manually.

If you have an existing design or a partially completed design, you can use the
Quartus II software to generate the PowerPlay EPE file to assist you in completing the
PowerPlay EPE spreadsheet.

To generate the power estimation file, you must first compile your design in the
Quartus II software. After compilation is complete, on the Project menu, click
Generate PowerPlay Early Power Estimator File. The PowerPlay Early Power
Estimator file is a Comma-Separated Value File (.csv) named <name of Quartus II
project>_early_power.csv. If your design targets a Cyclone, Stratix, or Stratix GX
devices, the PowerPlay Early Power Estimator file is in Tab-Separated Value File (.txt)
named <name of Quartus II project>_early_power.txt.

Figure 13–2 shows an example of the contents of a power estimation file generated for
a design that targets a Stratix II device.

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp

Chapter 13: PowerPlay Power Analysis 13–3
Creating PowerPlay EPE Spreadsheets

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the power estimation file and transfers it into the spreadsheet. If you
do not want to use the macro, you can manually transfer the data into the EPE
spreadsheet.

For example, after importing the PowerPlay EPE file information into the PowerPlay
EPE spreadsheet, you can add additional devices resource information at any time. If
the existing Quartus II project represents only a portion of your full design, you must
manually enter the additional device resources used in the final design.

PowerPlay EPE File Generator Compilation Report
After successfully generating the power estimation file, a PowerPlay EPE File
Generator report is created under the Compilation Report section. This report is
divided into different sections, such as Summary, Settings, Generated Files,
Confidence Metric Details, and Signal Activities. For more information about the
PowerPlay EPE File Generator report, refer to “PowerPlay Power Analyzer
Compilation Report” on page 13–26.

Figure 13–2. Example of a PowerPlay Power Estimation File

13–4 Chapter 13: PowerPlay Power Analysis
Creating PowerPlay EPE Spreadsheets

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 13–1 lists the main differences between the PowerPlay EPE and the Quartus II
PowerPlay Power Analyzer.

The result of the PowerPlay Power Analyzer is only an estimation of power and must
not be treated as a specification. The purpose of the estimation is to help you to
establish a guide for the power budget of your design. Altera recommends measuring
the actual power on the board. You must measure the total dynamic current of your
design during device operation because the estimate is design dependent and
depends on many variable factors, including input vector quantity, quality, and exact
loading conditions of a PCB design. Static power consumption must not be based on
empirical observation. The values reported by the PowerPlay Power Analyzer or data
sheet must be used because the tested devices might not exhibit worst-case behavior.

Table 13–1. Comparison of the PowerPlay EPE and Quartus II PowerPlay Power Analyzer

Characteristic PowerPlay EPE Quartus II PowerPlay Power Analyzer

Phase in the design cycle Any time After fitting

Tool requirements Spreadsheet program or the Quartus II
software

The Quartus II software

Accuracy Medium Medium to very high

Data inputs ■ Resource usage estimates

■ Clock requirements

■ Environmental conditions

■ Toggle rate

■ Design after fitting

■ Clock requirements

■ Register transfer level (RTL) simulation
results (optional)

■ Post-fitting simulation results (optional)

■ Signal activities per node or entity
(optional)

■ Signal activity defaults

■ Environmental conditions

Data outputs (1) ■ Total thermal power dissipation

■ Thermal static power

■ Thermal dynamic power

■ Off-chip power dissipation

■ Current drawn from voltage supplies(2)

■ Total thermal power

■ Thermal static power

■ Thermal dynamic power

■ Thermal I/O power

■ Thermal power by design hierarchy

■ Thermal power by block type

■ Thermal power dissipation by clock
domain

■ Off-chip (non-thermal) power dissipation

■ Device supply currents (2)

Notes to Table 13–1:

(1) EPE output varies by device family as some features might not be available.
(2) Available only for Arria GX, Cyclone II, Cyclone III, Hardcopy II, MAX II, Stratix II, Stratix II GX, Stratix III, and Stratix IV device families.

Chapter 13: PowerPlay Power Analysis 13–5
Types of Power Analysis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Types of Power Analysis
Understanding the uses of power analysis and the factors affecting power
consumption helps you to effectively use the PowerPlay Power Analyzer. Power
analysis meets two significant planning requirements:

■ Thermal planning—You must ensure that the cooling solution is sufficient to
dissipate the heat generated by the device. The computed junction temperature
must fall within normal device specifications.

■ Power supply planning—Power supplies must provide adequate current to
support device operation.

The two types of analyses are closely related because much of the power supplied to
the device is dissipated as heat from the device. However, in some situations, the two
types of analyses are not identical. For example, if you are using terminated I/O
standards, some of the power drawn from the power supply of the device is
dissipated in termination resistors, rather than in the device.

Power analysis also addresses the activity of your design over time as a factor that
impacts the power consumption of the device. Static power is defined as the power
consumed regardless of design activity. Dynamic power is the additional power
consumed due to signal activity or toggling.

1 For power supply planning, you can use the PowerPlay EPE at the early stages of
your design cycle, or use the Quartus II PowerPlay Power Analyzer reports when
your design is completed to get an estimate of your design power requirement.

Factors Affecting Power Consumption
This section describes the factors affecting power consumption. Understanding these
factors lets you use the PowerPlay Power Analyzer and interpret its results effectively.

Device Selection
Different device families have different power characteristics. Many parameters affect
the device family power consumption, including choice of process technology, supply
voltage, electrical design, and device architecture. For example, the Cyclone II device
family architecture is designed to consume less static power than the
high-performance and full-featured Stratix II device family.

Power consumption also varies in a single device family. A larger device typically
consumes more static power than a smaller device in the same family, due to its larger
transistor count. Dynamic power can also increase with device size in devices that
employ global routing architectures, such as the MAX device family. Cyclone, Max II,
and Stratix devices do not exhibit significantly increased dynamic power as device
size increases.

The choice of device package also affects the ability of the device to dissipate heat.
This choice can impact your cooling solution choice required to meet junction
temperature constraints.

13–6 Chapter 13: PowerPlay Power Analysis
Factors Affecting Power Consumption

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Process variation can affect power consumption. Process variation primarily impacts
static power, because sub-threshold leakage current varies exponentially with
changes in transistor threshold voltage. As a result, it is critical to consult device
specifications for static power and not rely on empirical observation. Process variation
has a weak effect on dynamic power.

Environmental Conditions
Operating temperature primarily affects device static power consumption. Higher
junction temperatures result in higher static power consumption. The device thermal
power and cooling solution that you use must result in the device junction
temperature remaining within the maximum operating range for the device. The main
environmental parameters affecting junction temperature are the cooling solution and
ambient temperature.

Air Flow
Air flow is a measure of how quickly heated air is removed from the vicinity of the
device and replaced by air at ambient temperature. Air flow can either be specified as
“still air” when no fan is used, or as the linear feet per minute rating of the fan used in
the system. Higher air flow decreases thermal resistance.

Heat Sink and Thermal Compound
A heat sink allows more efficient heat transfer from the device to the surrounding area
because of its large surface area exposed to the air. The thermal compound that
interfaces the heat sink to the device also influences the rate of heat dissipation. The
case-to-ambient thermal resistance (CA) parameter describes the cooling capacity of
the heat sink and thermal compound employed at a given airflow. Larger heat sinks
and more effective thermal compounds reduce CA.

Junction Temperature
The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · JA

in which JA is the total thermal resistance from the device transistors to the
environment, having units of degrees Celsius per watt. The value JA is equal to the
sum of the junction-to-case (package) thermal resistance (JC) and the case-to-ambient
thermal resistance (CA) of your cooling solution.

Board Thermal Model
The thermal resistance of the path through the board is referred to as the
junction-to-board thermal resistance (JB) (the units are in degrees Celsius per watt).
This is used in conjunction with the board temperature, as well as the top-of-chip JA
and ambient temperatures, to compute junction temperature.

Chapter 13: PowerPlay Power Analysis 13–7
Factors Affecting Power Consumption

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Device Resource Usage
The number and types of devices resources used greatly affects power consumption.

Number, Type, and Loading of I/O Pins
Output pins drive off-chip components, resulting in high-load capacitance that leads
to a high-dynamic power per transition. Terminated I/O standards require external
resistors that generally draw constant (static) power from the output pin.

Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
A design with more logic elements (LEs), multiplier elements, and memory blocks
tends to consume more power than a design with fewer such circuit elements. The
operating mode of each circuit element also affects its power consumption. For
example, a digital signal processing (DSP) block performing 18 × 18 multiplications
and a DSP block performing multiply-accumulate operations consume different
amounts of dynamic power due to different amounts of internal capacitance being
charged on each transition. Static power is also affected, to a small degree, by the
operating mode of a circuit element.

Number and Type of Global Signals
Global signal networks span large portions of the device and have high capacitance,
resulting in significant dynamic power consumption. The type of global signal is
important as well. For example, Stratix II devices support several kinds of global clock
networks that span either the entire device or a specific portion of the device (a
regional clock network covers a quarter of the device). Clock networks that span
smaller regions have lower capacitance and tend to consume less power. The location
of the logic array blocks (LABs) driven by the clock network can also have an impact,
because the Quartus II software automatically disables unused branches of a clock.

Signal Activities
The final important factor in estimating power consumption is the behavior of each
signal in your design. The two vital statistics are the toggle rate and the static
probability.

The toggle rate of a signal is the average number of times that the signal changes
value per unit of time. The units for toggle rate are transitions per second, and a
transition is a change from 1 to 0, or 0 to 1.

The static probability of a signal is the fraction of time that the signal is logic 1 during
the period of device operation that is being analyzed. Static probability ranges from 0
(always at ground) to 1 (always at logic-high).

Dynamic power increases linearly with the toggle rate as the capacitive load is
charged more frequently for logic and routing. The Quartus II models assume full
rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins, the
circuit can transition before fully charging the downstream capacitance. The result is a
slightly conservative prediction of power by the Quartus II PowerPlay Power
Analyzer.

13–8 Chapter 13: PowerPlay Power Analysis
PowerPlay Power Analyzer Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The static power consumed by both routing and logic can sometimes be affected by
the static probabilities of their input signals. This effect is due to state-dependent
leakage, and has a larger effect on smaller process geometries. The Quartus II
software models this effect on devices at 90 nm (or smaller) if it is deemed important
to the power estimate. The static power also varies with the static probability of a
logic 1 or 0 on the I/O pin when output I/O standards drive termination resistors.

1 To get accurate results from the power analysis, the signal activities used for analysis
must be representative of the actual operating behavior of your design. Inaccurate
signal toggle rate data is the largest source of power estimation error.

PowerPlay Power Analyzer Flow
The PowerPlay Power Analyzer supports accurate power estimation by allowing you
to specify all the important design factors affecting power consumption. Figure 13–3
shows the high-level PowerPlay Power Analyzer flow.

The PowerPlay Power Analyzer requires your design to be synthesized and fitted to
the target device. You must specify the electrical standard used by each I/O cell and
the capacitive load on each I/O standard in your design to obtain accurate I/O power
estimates.

Figure 13–3. PowerPlay Power Analyzer High-Level Flow

Note to Figure 13–3:

(1) Operating condition specifications are available only for Arria II GX, Arria GX, Cyclone II, Cyclone III series,
Cyclone IV, HardCopy series, MAX II, Stratix II, Stratix II GX, Stratix III, and Stratix IV device families.

PowerPlay
Power Analyzer

Operating
Conditions (1)

User Design
(After Fitting)

Power Analysis
Report

Signal
Activities

Chapter 13: PowerPlay Power Analysis 13–9
PowerPlay Power Analyzer Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Operating Conditions
For Arria II GX, Arria GX, Cyclone II, Cyclone III series, Cyclone IV, HardCopy series,
MAX II, Stratix II, Stratix II GX, Stratix III, and Stratix IV device families, you can
specify the operating conditions for power analysis in the Quartus II software.

 The following settings are available in the Settings dialog box:

■ Device power characteristics—You can specify that the device has Typical power
consumption characteristics or Maximum power consumption characteristics. The
Typical setting is useful for comparing to empirical data measured on an average
device. The Maximum setting uses worst-case data to provide a boundary to the
worst-case device that you receive. This setting impacts the static power estimate.

■ Selectable Core Voltage—You can select a suitable core supply voltage for your
design based on performance and power requirements using the Core Supply
Voltage option, available for Stratix III devices with variable voltage support. The
power consumption of a device is heavily dependent on voltage, so it is very
important to choose the right core supply voltage for your design. The core supply
voltage provides power to device logic resources such as LABs, memory logic
array blocks (MLABs), DSP functions, memory, and interconnects.

■ Environmental conditions and junction temperature—The PowerPlay Power
Analyzer automatically computes the junction temperature based on the specified
ambient temperature and the cooling solution that you selected. For a more
accurate analysis, enter the thermal resistance of your cooling solution. For some
cooling solutions, such as a heat sink with no forced airflow, the thermal resistance
varies with the amount of thermal power that is dissipated. Air convection
increases as the difference between the device temperature and the ambient
temperature increases, reducing thermal resistance. If you are entering a thermal
resistance in such cases, it is important to use the thermal resistance that occurs
when the heat flow (Q) is equal to the thermal power generated by the device.

1 You can also specify a junction temperature in the PowerPlay Power
Analyzer. However, Altera does not recommend this because the
PowerPlay Power Analyzer provides more accurate results by computing
the junction temperature.

■ Board Thermal Modeling—If you want the PowerPlay Power Analyzer thermal
model to take the JB into consideration, set the board thermal model to either
Typical or Custom. This feature produces more accurate thermal power
estimation.

A Typical board thermal model automatically sets JB to a value based on the
package and device selected. You must specify a board temperature. If you choose
a Custom board thermal model, you must specify a value for JB and a board
temperature. If you do not want the PowerPlay Power Analyzer thermal model to
take the JB resistance into consideration, set the Board thermal model option to
None (conservative). In this case, the path through the board and the path through
power dissipation are not considered, and a more conservative thermal power
estimate is obtained.

13–10 Chapter 13: PowerPlay Power Analysis
PowerPlay Power Analyzer Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Board thermal model option is only available if you select the Auto compute
junction temperature option with the pre-set cooling solution set to a heat sink
solution option or custom solution. The Auto compute junction temperature
option is disabled when a cooling solution with no heat sink is selected, as thermal
conduction through the board is included in the JA value used to compute a
junction temperature.

Signal Activities Data Sources
The PowerPlay Power Analyzer provides a flexible framework for specifying signal
activities. This reflects the importance of using representative signal activity data
during power analysis. You can use the following sources to provide information
about signal activity:

■ Simulation results

■ User-entered node, entity, and clock assignments

■ User-entered default toggle rate assignment

■ Vectorless estimation

The PowerPlay Power Analyzer allows you to mix and match the signal activity data
sources on a signal-by-signal basis. Figure 13–4 shows the priority scheme. The data
sources are described in the following sections.

Figure 13–4. Signal Activity Data Source Priority Scheme

Note to Figure 13–4:

(1) Vectorless estimation is available only for the Arria II GX, Arria GX, Cyclone II, Cyclone III series, MAX II, Stratix II, Stratix II GX, Stratix III, and
Stratix IV device families.

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?

Use vectorless
estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

(1)

Chapter 13: PowerPlay Power Analysis 13–11
Using Simulation Files in Modular Design Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Simulation Results
The PowerPlay Power Analyzer directly reads the waveforms generated by a design
simulation. The static probability and toggle rate for each signal is calculated from the
simulation waveform. Power analysis is most accurate when simulations are
generated using representative input stimuli.

The PowerPlay Power Analyzer reads results generated by the following simulators:

■ Quartus II Simulator

■ ModelSim® VHDL, Active HDL, ModelSim Verilog HDL, ModelSim-Altera
VHDL, ModelSim-Altera Verilog

■ NC-Verilog, NC-VHDL

■ VCS

Signal activity and static probability information, described in “Signal Activities” on
page 13–7, are stored in a Signal Activity File (.saf) or are derived from a Verilog Value
Change Dump File (.vcd). The Quartus II Simulator generates a .saf or a .vcd, which is
read by the PowerPlay Power Analyzer.

For third-party simulators, use the Quartus II EDA Tool Settings for Simulation to
specify a Generate Value Change Dump file script. These scripts instruct the
third-party simulators to generate a .vcd that encodes the simulated waveforms. The
Quartus II PowerPlay Power Analyzer reads this file directly to derive the toggle rate
and static probability data for each signal.

Third-party EDA simulators, other than those listed above, can generate a .vcd that
can then be used with the PowerPlay Power Analyzer. For those simulators, it is
necessary to manually create a simulation script to generate the appropriate .vcd.

1 You can use a .saf or .vcd created for power analysis to optimize your design for
power during fitting by utilizing the appropriate settings in the PowerPlay power
optimization list, available in Fitter Settings page of the Settings dialog box.

f For more information about power optimization, refer to the Power Optimization
chapter in volume 2 of the Quartus II Handbook.

f For more information about how to create a .vcd in other third-party EDA simulation
tools, refer to Section I. Simulation in volume 3 of the Quartus II Handbook.

Using Simulation Files in Modular Design Flows
A common design practice is to create modular or hierarchical designs in which you
develop each design entity separately and then instantiate it in a higher-level entity,
forming a complete design. Simulation is performed on a complete design or on each
modular design for verification. The Quartus II PowerPlay Power Analyzer supports
modular design flows when reading the signal activities generated from these
simulation files. An example of a modular design flow is shown in Figure 13–5.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Power%20Optimization
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Section%20I.%20Simulation
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Power%20Optimization

13–12 Chapter 13: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

When specifying a simulation file, an associated design entity name is given, such that
the signal activities derived from the simulation file (.vcd or .saf) are imported into
the PowerPlay Power Analyzer for that particular design entity. The PowerPlay
Power Analyzer also supports the specification of multiple .saf for power analysis,
with each having an associated design entity name to allow the integration of partial
design simulations into a complete design power analysis. When specifying multiple
.saf for your design, it is possible that more than one simulation file contains signal
activity information for the same signal. When you apply multiple .saf to the same
design entity, the signal activity used in the power analysis is the equal-weight
arithmetic average of each .saf. When you apply multiple simulation files to design
entities at different levels in your design hierarchy, the signal activity used in the
power analysis is derived from the simulation file that is applied to the most specific
design entity.

Figure 13–6 shows an example of a hierarchical design. The top-level module of your
design, called “top”, consists of three 8b/10b decoders, followed by a multiplexer
whose output is then encoded again before being output from your design. There is
also an error-handling module that handles any 8b/10b decoding errors. The top
contains the top-level entity of your design and any logic not defined as part of
another module. The design file for the top-level module might be just a wrapper for
the hierarchical entities below it, or it might contain its own logic. The following
usage scenarios show common ways that you can simulate your design and import
.saf into the PowerPlay Power Analyzer.

Figure 13–5. Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface

Timing
Control

system.vcd

video_gizmo.saf

output_driver.vcd

video_input.vcd

Chapter 13: PowerPlay Power Analysis 13–13
Using Simulation Files in Modular Design Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Complete Design Simulation
You can simulate the entire design top, generating a .vcd if you use a third-party
simulator or generating a .saf or .vcd if you use the Quartus II Simulator. The .vcd or
.saf can then be imported (specifying entity top) into the PowerPlay Power Analyzer.
The resulting power analysis uses all the signal activities information from the
generated .vcd or .saf, including those that apply to submodules, such as decode
[1-3], err1, mux1, and encode1.

Modular Design Simulation
You can independently simulate submodules of the design top and then import all the
resulting .saf into the PowerPlay Power Analyzer. For example, you can simulate the
8b10b_dec independent of the entire design, as well as multiplexer, 8b10b_rxerr,
and 8b10b_enc. You can then import the .vcd or .saf generated from each simulation
by specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and mux.saf, the
import specifications in Table 13–2 are used.

The resulting power analysis applies the simulation vectors found in each file to the
assigned entity. Simulation provides signal activities for the pins and for the outputs
of functional blocks. If the inputs to an entity instance are input pins for the entire
design, the simulation file associated with that instance does not provide signal
activities for the inputs of that instance. For example, an input to an entity such as
mux1 has its signal activity specified at the output of one of the decode entities.

Figure 13–6. Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Table 13–2. Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.saf Top|mux:mux1

13–14 Chapter 13: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Multiple Simulations on the Same Entity
You can perform multiple simulations of an entire design or specific modules of a
design. For example, in the process of verifying the design top, you can have three
different simulation testbenches: one for normal operation, and two for corner cases.
Each of these simulations produces a separate .vcd or .saf. In this case, apply the
different .vcd or .saf names to the same top-level entity, shown in Table 13–3.

The resulting power analysis uses an arithmetic average the signal activities
calculated from each simulation file to obtain the final signal activities used. If a signal
err_out has a toggle rate of zero toggles per second in normal.saf, 50 toggles per
second in corner1.vcd, and 70 toggles per second in corner2.vcd, the final toggle rate
that is used in the power analysis is 40 toggles per second.

Overlapping Simulations
You can perform a simulation on the entire design top and more exhaustive
simulations on a sub-module, such as 8b10b_rxerr. Table 13–4 shows the import
specification for overlapping simulations.

In this case, signal activities from error_cases.vcd are used for all of the nodes in the
generated .saf and signal activities from full_design.vcd are used for only those
nodes that do not overlap with nodes in error_cases.vcd. In general, the more specific
hierarchy (the most bottom-level module) is used to derive signal activities for
overlapping nodes.

Partial Simulations
You can perform a simulation in which the entire simulation time is not applicable to
signal activity calculation. For example, if you run a simulation for 10,000 clock cycles
and reset the chip for the first 2,000 clock cycles. If the signal activity calculation is
performed over all 10,000 cycles, the toggle rates are typically only 80% of their steady
state value (because the chip is in reset for the first 20% of the simulation). In this case,
you must specify the useful parts of the .vcd for power analysis. The Limit VCD
Period option enables you to specify a start and end time to be used when performing
signal activity calculations.

Table 13–3. Multiple Simulation File Names and Entities

File Name Entity

normal.saf Top

corner1.vcd Top

corner2.vcd Top

Table 13–4. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

Chapter 13: PowerPlay Power Analysis 13–15
Using Simulation Files in Modular Design Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Node Name Matching Considerations
Node name mismatches happen when you have .saf or .vcd applied to entities other
than the top-level entity. In a modular design flow, the gate-level simulation files
created in different Quartus II projects may not match their node names with the
current Quartus II project.

For example, if you have a file named 8b10b_enc.vcd, which was generated in a
separate project called 8b10b_enc and is simulating the 8b10b encoder, and you
import that .vcd into another project called Top, you might encounter name
mismatches when applying the .vcd to the 8b10b_enc module in the Top project.
This is because all the combinational nodes in the 8b10b_enc.vcd might be named
differently in the Top project.

You can avoid name mismatching with only RTL simulation data, in which register
names usually do not change, or with an incremental compile flow that preserves
node names in conjunction with a gate-level simulation.

1 To ensure the best accuracy, Altera recommends using an incremental compilation
flow to preserve the node names of your design.

f For more information about the incremental compile flow, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Glitch Filtering
The PowerPlay Power Analyzer defines a glitch as two signal transitions so closely
spaced in time that the pulse, or glitch, occurs faster than the logic and routing
circuitry can respond. The output of a transport delay model simulator (the default
mode of the Quartus II simulator) generally contains glitches for some signals. The
logic and routing structures of the device form a low-pass filter that filters out glitches
tens to hundreds of picoseconds long, depending on the device family.

Some third-party simulators use different models than the transport delay model as
default model. Different models cause differences in signal activity and power
estimation. The inertial delay model, which is the ModelSim default model, filters out
more glitches than the transport delay model and it usually yields a lower power
estimate.

1 Altera recommends using the transport simulation model when using Quartus II
glitch filtering support with third-party simulators. If the inertial simulation model is
used, simulation glitch filtering has little effect.

f For more information about how to set the simulation model type for your specific
simulator, refer to the Quartus II Help.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

13–16 Chapter 13: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Glitch filtering in a simulator can also filter a glitch on one LE (or other circuit
element) output from propagating to downstream circuit elements to ensure that the
glitch does not affect simulated results. This prevents a glitch on one signal from
producing non-physical glitches on all downstream logic, which would result in a
signal toggle rate and a power estimate that are too high. Circuit elements in which
every input transition produces an output transition, including multipliers and logic
cells configured to implement XOR functions, are especially prone to glitches.
Therefore, circuits with such functions can have power estimates that are too high
when glitch filtering is not used.

Altera recommends using the glitch filtering feature to obtain the most accurate
power estimates. For .vcd, the PowerPlay Power Analyzer flows support two levels of
glitch filtering, both of which are recommended for power estimation.

In the first level of glitch filtering, glitches are filtered during simulation. To enable
this level of glitch filtering in the Quartus II software for supported third-party
simulators, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page appears.

3. Select the Tool Name to use for the simulation.

4. Turn on the Enable glitch filtering option.

1 To enable this level of glitch filtering in the Quartus II software using the
Quartus II simulator, refer to “Generating a .saf or .vcd Using the Quartus II
Simulator” on page 13–20.

The second level of glitch filtering occurs while the PowerPlay Power Analyzer is
reading the .vcd generated by the Quartus II simulator or a third-party simulator. To
enable this level of glitch filtering, perform the following steps:

On the Assignments menu, click Settings. The Settings dialog box appears.

1. In the Category list, select PowerPlay Power Analyzer Settings. The PowerPlay
Power Analyzer Settings page appears.

2. Under Input File(s), turn on the Perform glitch filtering on VCD files option.

The .vcd file reader performs complementary filtering to the filtering performed
during simulation and is often not as effective. While the .vcd file reader can remove
glitches on logic blocks, it has no way of determining how downstream logic and
routing are affected by a given glitch, and may eliminate the impact of the glitch
completely. Filtering the glitches during simulation avoids switching downstream
routing and logic automatically.

1 When running simulation for design verification (rather than to produce input to the
Quartus PowerPlay Power Analyzer), Altera recommends turning off the glitch
filtering option. This produces the most rigorous and conservative simulation from a
functionality viewpoint. When performing simulation to produce input for the
Quartus II PowerPlay Power Analyzer, Altera recommends turning on the glitch
filtering option to produce the most accurate power estimates.

Chapter 13: PowerPlay Power Analysis 13–17
Using Simulation Files in Modular Design Flows

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Node and Entity Assignments
You can assign specific toggle rates and static probabilities to individual nodes and
entities in the design. These assignments have the highest priority, overriding data
from all other signal activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle
Rate and Power Static Probability assignments. You can specify the power toggle
rate as an absolute toggle rate in transitions using the Power Toggle Rate assignment
or you can use the Power Toggle Rate Percentage assignment to specify a toggle rate
relative to the clock domain of the assigned node for more specific assignment made
in terms of hierarchy level.

1 If the Power Toggle Rate Percentage assignment is used, and the given node does not
have a clock domain, a warning is issued and the assignment is ignored.

f For more information about how to use the Assignment Editor in the Quartus II
software, refer to the Assignment Editor chapter in volume 2 of the Quartus II Handbook.

This method is appropriate for signals in which you have specific knowledge of the
signal or entity being analyzed. For example, if you know that a 100-MHz data bus or
memory output produces data that is essentially random (uncorrelated in time), you
can directly enter a 0.5 static probability and a toggle rate of 50 million transitions per
second.

Bidirectional I/O pins are treated specially. The combinational input port and the
output pad for a given pin share the same name. However, those ports might not
share the same signal activities. For the purpose of reading signal activity
assignments, the PowerPlay Power Analyzer creates a distinct name
<node_name~output> when the bidirectional signal is configured as an output and
<node_name~result> when the signal is configured as an input. For example, if a
design has a bidirectional pin named MYPIN, assignments for the combinational input
use the name MYPIN~result, and the assignments for the output pad use the name
MYPIN~output.

1 When creating the logic assignment in the Assignment Editor, you will not find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to
create the logic assignment, you must manually enter the two differentiating node
names to create the specific assignment for the input and output port of the
bidirectional pin.

Timing Assignments to Clock Nodes
For clock nodes, the PowerPlay Power Analyzer uses the timing requirements to
derive the toggle rate when neither simulation data nor user entered signal activity
data is available. fMAX requirements specify full cycles per second, but each cycle
represents a rising transition and a falling transition. For example, a clock fMAX
requirement of 100 MHz corresponds to 200 million transitions per second.

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

13–18 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Default Toggle Rate Assignment
You can specify a default toggle rate for primary inputs and all other nodes in the
design. The default toggle rate is used when no other method has specified the signal
activity data.

The toggle rate is specified in absolute terms (transitions per second) or as a fraction
of the clock rate in effect for each particular node. The toggle rate for a given clock is
derived from the timing settings for the clock. For example, if a clock is specified with
an fMAX constraint of 100 MHz and a default relative toggle rate of 20%, nodes in this
clock domain transition in 20% of the clock periods, or 20 million transitions occur per
second. In some cases, the PowerPlay Power Analyzer cannot determine the clock
domain for a given node because there is either no clock domain for the node or it is
ambiguous. In these cases, the PowerPlay Power Analyzer substitutes and reports a
toggle rate of zero.

Vectorless Estimation
For some device families, the PowerPlay Power Analyzer automatically derives
estimates for signal activity on nodes with no simulation or user-entered signal-
activity data. Vectorless estimation is available and enabled by default for Arria GX,
Cyclone II, Cyclone III, HardCopy II, MAX II, Stratix II, Stratix II GX, Stratix III, and
Stratix IV device families. Vectorless estimation statistically estimates the signal
activity of a node based on the signal activities of all nodes feeding that node, and on
the actual logic function implemented by the node. The PowerPlay Power Analyzer
Settings dialog box lets you disable vectorless estimation. When enabled, vectorless
estimation takes priority over default toggle rates. Vectorless estimation does not
override clock assignments.

1 Vectorless estimation cannot derive signal activities for primary inputs. Vectorless
estimation is generally accurate for combinational nodes, but not for registered nodes.
Therefore, simulation data for at least the registered nodes and I/O nodes is required
for accuracy.

Using the PowerPlay Power Analyzer
For all the flows that use the PowerPlay Power Analyzer, synthesize your design first
and then fit it to the target device. You must either provide timing assignments for all
the clocks in the design or use a simulation-based flow to generate activity data. The
I/O standard used on each device input or output and the capacitive load on each
output must be specified in the design.

Chapter 13: PowerPlay Power Analysis 13–19
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Common Analysis Flows
You can use the analysis flows in this section with the PowerPlay Power Analyzer.
However, vectorless activity estimation is only available for some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation
This flow provides the highest accuracy because all node activities reflect actual
design behavior, provided that supplied input vectors are representative of typical
design operation. Results are better if the simulation filters glitches. The disadvantage
of this method is that the simulation time is long.

Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation
The zero delay simulation flow is used with designs for which signal activities from a
full post-fit netlist (timing) simulation are not available. Zero delay simulation is as
accurate as timing simulation in 95% of designs (designs with no glitches).

1 If your design has glitches, power may be underestimated. Altera recommends using
the signal activities from a full post-fit netlist (timing) simulation to achieve accurate
power estimation of your design.

The following designs might exhibit glitches:

■ Designs with many XOR gates, (for example, an encryption core)

■ Designs with arithmetic blocks without input and output registers (DSPs and
carry chains)

For more information about creating zero delay simulation signal activities, refer
to the “Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation” on
page 13–23.

Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless
Estimation
In this flow, simulation provides toggle rates and static probabilities for all pins and
registers in the design. Vectorless estimation fills in the values for all the
combinational nodes between pins and registers. This method yields good results,
because vectorless estimation is accurate, given that the proper pin and register data
is provided. This flow usually provides a compilation time benefit to the user in the
third-party RTL simulator.

1 RTL simulation may not provide signal activities for all registers in the post-fitting
netlist because some register names might be lost during synthesis. For example,
synthesis might automatically transform state machines and counters, thus changing
the names of registers in those structures.

13–20 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
This option provides a low level of accuracy, because vectorless estimation for
registers is not entirely accurate.

Signal Activities from User Defaults Only
This option provides the lowest degree of accuracy.

Generating a .saf or .vcd Using the Quartus II Simulator
While performing a timing or functional simulation using the Quartus II simulator,
you can generate a .saf or .vcd. These files store the toggle rate and static probability
for each connected output signal based on the simulation vectors entered in the Vector
Waveform File (.vwf) or the Vector File (.vec). You can use the .saf or .vcd as input to
the PowerPlay Power Analyzer to estimate power for your design. For accurate
results, use the .saf created in the Quartus II simulator as the input to the PowerPlay
power analyzer.

To create a .saf or .vcd for your design, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Simulator Settings.

3. In the Simulation mode list, select either Timing or Functional. For a description
of the difference in accuracy between the two types of simulation modes, refer
to“Common Analysis Flows” on page 13–19.

4. (Optional) Click More Settings. The More Simulator Settings dialog box appears.

5. (Optional) Turn on glitch filtering. To turn on glitch filtering, in the Glitch
filtering options list, select Always.

6. In the Category list, click the “+” icon to expand Simulator Settings and select
Simulation Output Files.

7. Turn on Generate Signal Activity File and enter the file name for the .saf. When
generating a .vcd from the Quartus simulator, ensure that you add all nodes to the
input vector wave file. Only the nodes that have been added to your vector file are
output to the Quartus-generated .vcd. This is not the case when generating a .saf.
The Quartus II simulator creates a .saf, including all the internal nodes of your
design, even if the stimuli file contains only the input vectors for your simulation.

f For more information about the Quartus II simulator and how to create a
.saf, refer to the Quartus II Simulator chapter in volume 3 of the Quartus II
Handbook.

8. (Optional) Click Signal Activity File Options. The Signal Activity File Options
dialog box appears. Turn on the Limit signal activity period option to specify the
simulation period to use when calculating the signal activities.

Power estimation is performed for the entire simulation time or for a portion of the
simulation time. This allows you to look at the power consumption at different
points in your overall simulation without having to rework your testbenches. This
feature is also useful when multiple clock cycles are necessary to initialize the state
of the design, but you want to measure the signal activity only during the normal

http://www.altera.com/literature/hb/qts/qts_qii53017.pdf

Chapter 13: PowerPlay Power Analysis 13–21
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

operation of the design and not during its initialization phase. You can specify the
start time and end time in the Signal Activity File Options dialog box by turning
on the Limit signal activity period option. Simulation information is used during
this time interval only to calculate toggle rates and static probabilities. If no time
interval is specified, the whole simulation is used to compute signal activity data.

9. After the simulation is complete, a .saf is generated with the specified filename
and stored in the main project directory.

f For more information about how to perform simulations in the Quartus II
software, refer to the Quartus II Help.

Generating a .vcd Using a Third-Party Simulator
You can use other EDA simulation tools, such as the ModelSim® software, to perform
a simulation and create a .vcd. You can use this file as the input to the PowerPlay
Power Analyzer to estimate power for your design. You must instruct the Quartus II
software to generate a script file that is used as input to the third-party simulator. This
script tells the third-party simulator to generate a .vcd that contains all the output
signals. For more information about the supported third-party simulators, refer to
“Simulation Results” on page 13–11.

To create a .vcd for your design, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page appears.

3. In the Tool name list, select the appropriate EDA simulation tool.

4. In the Format for output netlist list, select VHDL or Verilog.

5. Turn on Generate Value Change Dump (VCD) file script.

1 This turns on the Map illegal HDL characters and Enable glitch filtering
options.

6. (Optional) The Map illegal HDL characters option ensures that all signals have
legal names and that signal toggle rates are available later in the PowerPlay Power
Analyzer.

7. (Optional) By turning on Enable glitch filtering, glitch filtering logic is the output
when you generate an EDA netlist for simulation. This option is always available,
regardless of whether or not you want to generate the .vcd scripts. For more
information about glitch filtering, refer to “Glitch Filtering” on page 13–15.

1 When performing simulation using ModelSim, the +nospecify option for
the vsim command disables the specify path delays and timing checks
option in ModelSim. By enabling glitch filtering on the Simulation page,
the simulation models include specified path delays. Thus, ModelSim can
fail to simulate a design if glitch filtering is enabled, and the +nospecify
option is specified. Altera recommends removing the +nospecify option
from the ModelSim vsim command to ensure accurate simulation for
power estimation.

13–22 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

8. Click Script Settings. The Script Settings dialog box appears.

Select which signals must be output to the .vcd. With All signals selected, the
generated script instructs the third-party simulator to write all connected output
signals to the .vcd. With All signals except combinational lcell outputs selected,
the generated script tells the third-party simulator to write all connected output
signals to the .vcd, except logic cell combinational outputs.

1 The file can become extremely large if you write all output signals to the file
(because its size depends on the number of output signals being monitored
and the number of transitions that occur).

9. Click OK.

10. Type a name for your testbench in the Design instance name box.

11. Compile your design with the Quartus II software and generate the necessary
EDA netlist and script that tells the third-party simulator to generate a .vcd.

f For more information about NativeLink use, refer to Section I. Simulation in
volume 3 of the Quartus II Handbook.

12. Perform a simulation with the third-party EDA simulation tool. Call the generated
script in the simulation tool before running the simulation. The simulation tool
generates the .vcd and places it in the project directory.

Generating a .vcd from ModelSim Software
To successfully produce a .vcd with the ModelSim software, perform the following
steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, point to EDA Tools Settings and select Simulation. On the
Simulation page, choose the appropriate ModelSim selection in the Tool Name
list, and turn on the Generate Value Change Dump File Script option.

3. To generate the .vcd, perform a full compilation.

4. In the ModelSim software, compile the files necessary for simulation.

5. Load your design by clicking Start Simulation on the Tools menu, or use the vsim
command.

6. Use the .vcd script created in step 3 using the following command:
source <design>_dump_all_vcd_nodes.tcl

7. Run the simulation (for example, run 2000ns or run -all).

8. Quit the simulation using the quit -sim command, if required.

9. Exit the ModelSim software. If you do not exit the software, the ModelSim
software might end the writing process of the .vcd improperly, resulting in a
corrupted .vcd.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf

Chapter 13: PowerPlay Power Analysis 13–23
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation
To successfully generate a .vcd from the full post-fit Netlist (zero delay) simulation,
perform the following steps:

1. Perform design compilation in the Quartus II software to generate the Netlist
<project_name>.vo.

2. In <project_name>.vo, search for the include statement for <project_name>.sdo,
comment the statement out, and save the file.

3. Generate a .vcd for power estimation by performing the steps in “Generating a
.vcd Using a Third-Party Simulator” on page 13–21.

1 Standard Delay Format Output File (.sdo) is required for gate-level timing
simulation. The .sdo contains the delay information of each architecture
primitive and routing element specific to your design. You must exclude
the .sdo for zero delay simulation.

f For more information about how to create a .vcd in other third-party EDA
simulation tools, refer to Section I. Simulation in volume 3 of the Quartus II
Handbook.

Running the PowerPlay Power Analyzer Using the Quartus II GUI
To run the PowerPlay Power Analyzer using the Quartus II GUI, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select PowerPlay Power Analyzer Settings.

3. (Optional) If you want to use either .saf or .vcd, or both as an input to the
PowerPlay Power Analyzer, turn on the Use input file(s) to initialize toggle rates
and static probabilities during power analysis option.

4. Click Add. The Add Power Input File dialog box appears.

5. Add your .saf or .vcd by clicking browse for the File name field.

6. The Entity field enables you to specify the design entity (hierarchy) to which the
entered power input file applies. To enter the entity, you can type in the box or
browse through the list of your design entities. To browse your design entities,
click browse. The Select Hierarchy dialog box appears. You can specify multiple
entities in the entity text box with comma delimiters. You can specify whether the
input file is a .vcd or .saf under Input File Type. The Limit VCD period option is
turned on only when VCD file is selected. Turning on the Limit VCD period
option enables you to specify the simulation period when calculating the signal
activities. For more information, refer to “Generating a .saf or .vcd Using the
Quartus II Simulator” on page 13–20.

7. Click OK. The Add Power Input File dialog box appears.

8. Click OK.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf

13–24 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

9. (Optional) Turn on the Write out signal activities used during power analysis
option. In the Output file name list, select the output file name. The output file
contains all the signal activities information used during the power estimation of
your design. Altera recommends turning on the Write out signal activities used
during power analysis option you use a .vcd as input into the PowerPlay Power
Analyzer, because it reduces the run time of any subsequent power estimation.
You can use the generated .saf as input instead of the original .vcd.

10. (Optional) Turn on the Write signal activities to report file option.

11. (Optional) Turn on the Write power dissipation by block to report file option to
enable the output of detailed thermal power dissipation by block to be included in
the PowerPlay Power Analyzer report.

12. (Optional) You can also use the Assignment Editor to enter the Power Toggle Rate
or Power Toggle Rate Percentage, and the Power Static Probability assignments
for a node or entity in your design, shown in Figure 13–7.

f For more information about how to use the Assignment Editor in the
Quartus II software, refer to the Assignment Editor chapter in volume 2 of
the Quartus II Handbook. For information about scripting, refer to the Tcl
Scripting chapter in volume 2 of the Quartus II Handbook.

13. Specify the toggle rate in the Default toggle rate used for input I/O signals field.
This toggle rate is used for all unspecified input I/O signal toggle rates regardless
of whether or not the device family supports vectorless estimation. By default, its
value is set to 12.5%. The default static probability for unspecified input I/O
signals is 0.5 and cannot be changed.

Figure 13–7. Assignment Editor (Notes 1), (2)

Notes to Figure 13–7:

(1) The assignments made with the Assignment Editor override the existing values in the .saf or .vcd.
(2) You can also use Tcl script commands to create these assignments.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 13: PowerPlay Power Analysis 13–25
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

14. Select either Use default value or Use vectorless estimation for Arria GX,
Cyclone II, Cyclone III, HardCopy II, MAX II, Stratix II, Stratix II GX, Stratix III,
and Stratix IV device families. For all other device families, only Use default value
is available. This setting controls how the remainders of the unspecified signal
activities are calculated. For more information, refer to “Vectorless Estimation” on
page 13–18 and “Default Toggle Rate Assignment” on page 13–18.

15. In the Category list, select Operating Settings and Conditions. This option is only
available for the Arria GX, Cyclone II, Cyclone III, HardCopy II, MAX II, Stratix II,
Stratix II GX, Stratix III, and Stratix IV device families.

16. In the Device power characteristics list, select Typical or Maximum.

17. In the Category list, click the “+” icon to expand Operating Settings and
Conditions and click Voltage. The Voltage page appears.

18. For the devices with selectable core voltage support, in the Core supply voltage
list, select the core supply voltage for your device. This option is available for the
latest devices with variable voltage selection.

19. In the Category list, under Operating Settings and Conditions, select
Temperature. The Temperature page appears.

20. Under Junction temperature range, specify a junction temperature in degrees
Celsius and specify the junction temperature range. Select the Low temperature
and High temperature range for your selected device.

21. Specify the junction temperature and cooling solution settings. You can select
Specify junction temperature or Auto compute junction temperature using
cooling solution.

22. (Optional) Under Board thermal modeling, select the Board thermal model and
type the Board temperature. This feature can only be turned on when you have
selected Auto compute junction temperature using cooling solution.

For more information about how to use the operating condition settings, refer to
“Operating Conditions” on page 13–9.

26. Click OK.

27. On the Processing menu, click PowerPlay Power Analyzer Tool. The PowerPlay
Power Analyzer Tool dialog box appears.

28. Click Start to run the PowerPlay Power Analyzer. Be sure that all the settings are
correct.

1 You can also change some of your settings in the PowerPlay Power
Analyzer Tool dialog box. For example, click Add Power Input File(s) to
make changes to your input files, or click the Cooling Solution and
Temperature to make changes to your design temperature and cooling
solution selection.

29. Click OK.

30. In the PowerPlay Power Analyzer Tool dialog box, click Report to open the
PowerPlay Power Analyzer Summary window. You can also view the summary in
the PowerPlay Power Analyzer Summary page of the Compilation Report
(Figure 13–8).

13–26 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

PowerPlay Power Analyzer Compilation Report
The PowerPlay Power Analyzer section of the Compilation Report is divided into the
following sections.

Summary
This section of the report shows the estimated total thermal power consumption of
your design. This includes dynamic, static, and I/O thermal power consumption. The
I/O thermal power consumption is the total I/O power contributed by both the VCCIO
power supplies and some portion of the VCCINT. The report also includes a confidence
metric that reflects the overall quality of the data sources for the signal activities. For
example, a Low power estimation confidence value reflects that you have provided
insufficient toggle rate data, or most of the signal activity information used for power
estimation is from default or vectorless estimation settings (For more information
about the input data, refer to the PowerPlay Power Analyzer Confidence Metric
report).

Settings
This section of the report shows the PowerPlay Power Analyzer settings information
of your design, including the default input toggle rates, operating conditions, and
other relevant setting information.

Simulation Files Read
This section of the report lists simulation output files (.vcd or .saf) used for power
estimation. This section also includes the file ID, file type, entity, VCD start time, VCD
end time, the unknown percentage, and the toggle percentage. The unknown
percentage indicates the portion of the design module that is not exercised by the
simulation vectors.

Figure 13–8. PowerPlay Power Analyzer Summary

Chapter 13: PowerPlay Power Analysis 13–27
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Operating Conditions Used
This section of the report shows device characteristics, voltages, temperature, and
cooling solution, if any, that were used during the power estimation. This section also
shows the entered junction temperature or auto-computed junction temperature that
was used during the power analysis. This page is created only for Arria GX,
Cyclone II, Cyclone III, HardCopy II, MAX II, Stratix II, Stratix II GX, Stratix III, and
Stratix IV device families.

Thermal Power Dissipated by Block
This section of the report shows estimated thermal dynamic power and thermal static
power consumption categorized by atoms. This information provides you with
estimated power consumption for each atom in their design.

Thermal Power Dissipation by Block Type (Device Resource Type)
This section of the report shows the estimated thermal dynamic power and thermal
static power consumption categorized by block types. This information is further
categorized by estimated dynamic and static power that was used, as well as
providing an average toggle rate by block type. Thermal power is the power
dissipated as heat from the FPGA device.

Thermal Power Dissipation by Hierarchy
This section of the report shows estimated thermal dynamic power and thermal static
power consumption categorized by design hierarchy. This is further categorized by
the dynamic and static power that was used by the blocks and routing in that
hierarchy. This information is very useful in locating problem modules in your design.

Core Dynamic Thermal Power Dissipation by Clock Domain
This section of the report shows the estimated total core dynamic power dissipation
by each clock domain. This provides designs with estimated power consumption for
each clock domain in their design. If the clock frequency for a domain is unspecified
by a constraint, the clock frequency is listed as “unspecified.” For all the
combinational logic, the clock domain is listed as no clock with zero MHz.

Current Drawn from Voltage Supplies
This section of the report lists the current that was drawn from each voltage supply.
The VCCIO voltage supply is further categorized by I/O bank and by voltage. The
minimum safe power supply size (current supply ability) is also listed for each supply
voltage. This page is created only for Arria GX, Cyclone II, Cyclone III, HardCopy II,
MAX II, Stratix II, Stratix II GX, Stratix III, and Stratix IV device families.

The transceiver-based devices have multiple voltage supplies which are VCCH, VCCT,
VCCR, VCCA, and VCCP. The report also shows the static and dynamic current (in mA)
drawn from each voltage supply. Total static and dynamic power consumed by the
transceivers on all voltage supplies is listed under the “Thermal Power Dissipation by
Block Type” report section, which contains a row that starts with “GXB Transceiver.”

13–28 Chapter 13: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The I/O thermal power dissipation which is listed on the summary page does not
correlate directly to the power drawn from the VCCIO voltage supply listed in this
report. This is because the I/O thermal power dissipation value also includes portions
of the VCCINT power, such as the I/O element (IOE) registers which are modeled as I/O
power, but do not draw from the VCCIO supply.

Confidence Metric Details
The confidence metric indicates the quality of the signal toggle rate data used to
compute a power estimate. The confidence metric is low if the signal toggle rate data
comes from sources that are considered poor predictors of real signal toggle rates in
the device during an operation. Toggle rate data that comes from simulation,
user-entered assignments on specific signals, or entities are considered reliable.
Toggle rate data from default toggle rates (for example, 12.5% of the clock period) or
vectorless estimation are considered relatively inaccurate. This section gives an
overall confidence rating in the toggle rate data, from low to high. This section also
summarizes how many pins, registers, and combinational nodes obtained their toggle
rates from each of simulation, user entry, vectorless estimation, or default toggle rate
estimations. This detailed information helps you understand how to increase the
confidence metric, letting you decide on your own confidence in the toggle rate data.

Signal Activities
This section lists toggle rate and static probabilities assumed by power analysis for all
signals with fan-out and pins. The signal type is provided (pin, registered, or
combinational), as well as the data source for the toggle rate and static probability. By
default, all signal activities are reported. This can be turned off by turning off the
Write signal activities to report file option on the PowerPlay Power Analyzer
Settings page.

1 Altera recommends turning off the Write signal activities to report file option for a
large design because of the large number of signals present. You can use the
Assignment Editor to specify that activities for individual nodes or entities are
reported by assigning an on value to those nodes for the Power Report Signal
Activities assignment.

Messages
This section lists the messages generated by the Quartus II software during the
analysis.

Specific Rules for Reporting
In a Stratix GX device, the XGM II state machine block is always used together with
GXB transceivers, so its power is lumped into the power for the transceivers.
Therefore, the power for the XGM II state machine block is reported as zero Watts.

Chapter 13: PowerPlay Power Analysis 13–29
Using the PowerPlay Power Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For more information about
scripting command options, refer to the Quartus II Command-Line and Tcl API Help
browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelpr
The Quartus II Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Running the PowerPlay Power Analyzer from the Command Line
The separate executable that is used to run the PowerPlay Power Analyzer is
quartus_pow. For a complete listing of all command line options supported by
quartus_pow, type the following at a system command prompt:

quartus_pow --help or quartus_sh --qhelp r
The following is an example of using the quartus_pow executable with project
sample.qpf:

■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE file, type
the following at a system command prompt:

quartus_pow sample --output_epe=sample.csv r
■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE file

without performing the power estimate, type the following command at a system
command prompt:

quartus_pow sample --output_epe=sample.csv --
estimate_power=off r

■ To instruct the PowerPlay Power Analyzer to use a .saf as input (sample.saf), type
the following at a system command prompt:

quartus_pow sample --input_saf=sample.saf r
■ To instruct the PowerPlay Power Analyzer to use two .vcd files as input files

(sample1.vcd and sample2.vcd), perform glitch filtering on the .vcd and use a
default input I/O toggle rate of 10,000 transitions per second, type the following at
a system command prompt:

quartus_pow sample --input_vcd=sample1.vcd --
input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s r

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

13–30 Chapter 13: PowerPlay Power Analysis
Conclusion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ To instruct the PowerPlay Power Analyzer to not use any input file, a default input
I/O toggle rate of 60%, no vectorless estimation, and a default toggle rate of 20%
on all remaining signals, type the following at a system command prompt:

quartus_pow sample --no_input_file --
default_input_io_toggle_rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20% r

1 There are no command line options to specify the information found on the
PowerPlay Power Analyzer Settings Operating Conditions page. The
easiest way to specify these options is to use the Quartus II GUI.

A report file, <revision name>.pow.rpt, is created by the quartus_pow executable
and saved in the main project directory. The report file contains the same
information as described in the “PowerPlay Power Analyzer Compilation Report”
on page 13–26.

Conclusion
PowerPlay power analysis tools are designed for accurate estimation of power
consumption from early design concept through design implementation. You can use
the PowerPlay EPE to estimate power consumption during the design concept stage.
Power estimations are refined during design implementation using the Quartus II
PowerPlay Power Analyzer tool. The Quartus II PowerPlay Power Analyzer produces
detailed reports that you can use to optimize designs for lower power consumption
and verify that the design is in your power budget.

Referenced Documents
This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Power Optimization chapter in volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual

■ Quartus II Simulator chapter in volume 3 of the Quartus II Handbook

■ Section I. Simulation in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53017.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 13: PowerPlay Power Analysis 13–31
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Document Revision History
Table 13–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 13–5. Document Revision History

Date and Version Changes Made Summary of Changes

November 2009

v9.1.0

■ Updated “Creating PowerPlay EPE Spreadsheets” on page 13–2 and
“Simulation Results” on page 13–11.

■ Added “Signal Activities from Full Post-Fit Netlist (Zero Delay)
Simulation” on page 13–19 and “Generating a .vcd from Full Post-Fit
Netlist (Zero Delay) Simulation” on page 13–23.

■ Minor changes to “Generating a .vcd from ModelSim Software” on
page 13–22.

■ Updated Figure 13–2 on page 13–3 and Figure 13–8 on page 13–26.

Updated for the
Quartus II software
version 9.1.

March 2009
v9.0.0

■ This chapter was chapter 11 in version 8.1.

■ Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1
version.

Updated for the
Quartus II software
version 9.0.

November 2008
v8.1.0

■ Updated for the Quartus II software version 8.1.

■ Replaced Figure 11-3.

■ Replaced Figure 11-14.

Updated for the
Quartus II software
version 8.1.

May 2008

v8.0.0

■ Updated Figure 11–5.

■ Updated “Types of Power Analyses” on page 11–5.

■ Updated “Operating Conditions” on page 11–9.

■ Updated “PowerPlay Power Analyzer Compilation Report” on
page 11–31.

■ Updated “Current Drawn from Voltage Supplies” on page 11–32.

Updated for the
Quartus II software
version 8.0.

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

13–32 Chapter 13: PowerPlay Power Analysis
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section IV. In-System Design Debugging

Introduction
Debugging today’s FPGA designs can be a daunting task. As your product
requirements continue to increase in complexity, the time you spend on design
verification continues to rise. To get your product to market as quickly as possible,
you must minimize design verification time. To help alleviate the time-to-market
pressure, a set of verification tools that are powerful and easy to use are required.

The Quartus® II software provides a portfolio of in-system design debugging tools for
real-time verification of your design. Each tool in the on-chip debugging portfolio
uses a combination of available memory, logic, and routing resources to assist in the
debugging process. The tools provide visibility by routing (or “tapping”) signals in
your design to debugging logic. The debugging logic is then compiled with your
design and downloaded into the FPGA or CPLD for analysis. Because different
designs can have different constraints and requirements, such as the number of spare
pins available or the amount of logic or memory resources remaining in the physical
device, you can choose a tool from the available debugging tools that matches the
specific requirements for your design.

This section provides a quick overview on the tools available in the on-chip
debugging suite and discusses the criteria for selecting the best tool for your design.

On-Chip Debugging Ecosystem
Table IV–1 summarizes the tools in the In-System verification tool suite that are
covered in this section of the Quartus II Handbook.

Table IV–1.Available Tools in the In-System Verification Tools Suite (Part 1 of 2)

Tool Description Typical Circumstances of Use

SignalTap® II Logic
Analyzer

This embedded logic analyzer uses FPGA
resources to sample tests nodes and outputs the
information to the Quartus II software for display
and analysis.

You have spare on-chip memory and you want
functional verification of your design running in
hardware.

SignalProbe This tool incrementally routes internal signals to
I/O pins while preserving results from your last
place-and-routed design.

You have spare I/O pins and you would like to
check the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.

Logic Analyzer
Interface (LAI)

This tool multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI allows you
to select which signals are switched onto the I/O
pins over a JTAG connection.

You have limited on-chip memory, and have a
large set of internal data buses that you would
like to verify using an external logic analyzer.
Logic analyzer vendors, such as Tektronics and
Agilent, provide integration with the tool to
improve the usability.

In-System Memory
Content Editor

This tool displays and allows you to edit on-chip
memory.

You would like to view and edit the contents of
the either the instruction cache or data cache of
a Nios® II processor application.

http://www.altera.com/literature/lit-qts.jsp

IV–2 Section IV: In-System Design Debugging

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

With the exception of SignalProbe, each of the on-chip debugging tools uses the JTAG
port to control and read back data from debugging logic and signals under test. The
JTAG resource is shared among all of the on-chip debugging tools. The Quartus II
software compiles logic into your design automatically to distinguish between data
and control information and each of the debugging logic blocks when the JTAG
resource is required. This arbitration logic, also known as the System-Level
Debugging (SLD) infrastructure, is shown in the design hierarchy of your compiled
project as sld_hub:sld_hub_inst. The SLD logic allows you to instantiate multiple
debugging blocks into your design and run them simultaneously.

To maximize debugging closure, the Quartus II software allows you to use a
combination of the debugging tools in tandem to fully exercise and analyze the logic
under test. All of the tools described in Table IV–1 have basic analysis features built in;
that is, all of the tools enable you to read back information collected from the design
nodes that are connected to the debugging logic. Out of the set of debugging tools, the
SignalTap II Logic Analyzer, the LAI, and the SignalProbe feature are general-purpose
debugging tools optimized for probing signals in your RTL netlist. In-System Sources
and Probes, the Virtual JTAG Interface, and In-System Memory content editor, in
addition to being able to read back data from the debugging points, allow you to
input values into your design during runtime. Taken together, the set of on-chip
debugging tools form a debugging ecosystem. The set of tools can generate a stimulus
to and solicit a response from the logic under test, providing a complete debugging
solution (Figure IV–1).

In-System Sources
and Probes

This feature provides an easy way to drive and
sample logic values to and from internal nodes
using the JTAG interface.

You want to prototype a front panel with virtual
buttons for your FPGA design.

Virtual JTAG
Interface

This megafunction opens up the JTAG interface
so that you can develop your own custom
applications.

You want to generate a large set of test vectors
and send them to your device over the JTAG port
to functionally verify your design running in
hardware.

Table IV–1.Available Tools in the In-System Verification Tools Suite (Part 2 of 2)

Tool Description Typical Circumstances of Use

Section IV: In-System Design Debugging IV–3

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The tools in the toolchain offer different advantages and different trade-offs. To
understand the selection criteria between the different tools, the following sections
analyze the tools according to their typical applications.

The first section, “Analysis Tools for RTL Nodes”, compares the SignalTap II Logic
Analyzer, SignalProbe, and the LAI. These three tools are logically grouped since they
are intended for debugging nodes from your RTL netlist at system speed.

The next section, “Stimulus-Capable Tools” on page 14–8, compares the In-System
Memory Content Editor, Virtual JTAG Interface Megafunction, and In-System Sources
and Probes. These tools are logically grouped since they offer the ability to both read
and write transactions through the JTAG port.

Analysis Tools for RTL Nodes
The SignalTap II Embedded Logic Analyzer, the SignalProbe feature, and the LAI are
designed specifically for probing and debugging RTL signals at system speed. They
are general-purpose analysis tools that enable you to tap and analyze any routable
node from the FPGA or CPLD. These three tools satisfy a range of requirements. If
you have spare logic and memory resources, the SignalTap II Logic Analyzer is useful
for providing fast functional verification of your design running on actual hardware.

On the other hand, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
SignalProbe feature make it easy to view internal design signals using external
equipment.

Figure IV–1.Quartus II Debugging Ecosystem (Note 1)

Note to Figure IV–1:

(1) The set of debugging tools offer end-to-end debugging coverage.

In-System Sources and Probes
In-System Memory Content Editor

VJI

SignalTap II Logic Analyzer
In-System Memory Content Editor

LAI

Design
Under Test

JTAG

FPGA

Quartus II SoftwareQuartus II Software

IV–4 Section IV: In-System Design Debugging

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The most important selection criteria for these three tools are the available resources
remaining on your device after implementing your design and the number of spare
pins available. It is worthwhile to evaluate your preferred debugging option early on
in the design planning process to ensure that your board, your Quartus II project, and
your design are all set up to support the appropriate options. Planning early can
reduce time spent during debugging and eliminate the necessary late changes to
accommodate your preferred debugging methodologies. The following two sections
provide information to assist you in choosing the appropriate tool by comparing the
tools according to their resource usage and their pin consumption.

1 The SignalTap II Logic Analyzer is not supported on CPLDs, because there are no
memory resources available on these devices.

Resource Usage
Any debugging tool that requires the use of a JTAG connection requires the SLD
infrastructure logic mentioned earlier, for communication with the JTAG interface and
arbitration between any instantiated debugging modules. This overhead logic uses
around 200 LEs, a small fraction of the resources available in any of the supported
devices. The overhead logic is shared between all available debugging modules in
your design. Both the SignalTap II Logic Analyzer and the LAI use a JTAG connection.

SignalProbe requires very few on-chip resources. Because it requires no JTAG
connection, SignalProbe uses no logic or memory resources—it uses only routing
resources to route an internal signal to a debugging test point.

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

The SignalTap II Logic Analyzer requires both logic and memory resources. The
number of logic resources used depends on the number of signals tapped and the
complexity of the trigger logic. However, the amount of Logic Resources that the
SignalTap II Logic Analyzer uses is typically a small percentage of most designs. A
baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300–400 logic elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure
your SignalTap II Logic Analyzer instance to capture data and the sample depth that
your design requires for debugging. For the SignalTap II Logic Analyzer, there is the
added benefit of requiring no external equipment, as all of the triggering logic and
storage is on the chip.

Figure IV–2 shows a conceptual graph of the resource usage of the three analysis tools
relative to each other.

Section IV: In-System Design Debugging IV–5

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The resource estimation feature for the SignalTap II Logic Analyzer and the LAI
allows you to quickly judge if enough on-chip resources are available before
compiling the tool with your design. Figure IV–3 shows the resource estimation
feature for the SignalTap II Logic Analyzer and the Logic Analyzer Interface.

Pin Usage
The ratio of the number of pins used to the number of signals tapped for the
SignalProbe feature is one-to-one. Because this feature can consume free pins quickly,
a typical application for this feature is for routing control signals to spare debugging
pins for debugging.

The ratio of the number of pins used to the number of signals tapped for the LAI is
many-to-one. It can map up to 256 signals to each debugging pin, depending on
available routing resources. The control of the active signals that are mapped to the
the spare I/O pins is performed via the JTAG port. The LAI is ideal for routing data
buses to a set of test pins for analysis.

Other than the JTAG test pins, the SignalTap II Logic Analyzer uses no additional
pins. All data is buffered using on-chip memory and communicated to the
SignalTap II GUI via the JTAG test port.

Figure IV–2.Resource Usage per Debugging Tool (Note 1)

Note to Figure IV–2:

(1) Though resource usage is highly dependent on the design, this graph provides a rough guideline for tool selection.

Figure IV–3.Resource Estimator

Memory

Lo
gi

c

SignalTap II

Signal
Probe

Lo
gi

c
An

al
yz

er
In

te
rfa

ce

IV–6 Section IV: In-System Design Debugging

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Usability Enhancements
The SignalTap II Embedded Logic Analyzer, the SignalProbe feature, and the LAI
tools can be added to your existing design with minimal effects. With the node finder,
you can find signals to route to a debugging module without making any changes to
your HDL. SignalProbe inserts signals directly from your post-fit database. The
SignalTap II Logic Analyzer and LAI support inserting signals from both pre-
synthesis and post-fit netlists. All three tools allow you to find and configure your
debugging setup quickly. In addition, the Quartus II incremental compilation feature
and the Quartus II incremental routing feature allow for a fast turnaround time for
your programming file, increasing productivity and enabling fast debugging closure.

Both LAI and the SignalTap II Logic Analyzer support incremental compilation. With
incremental compilation, you can add a SignalTap II Logic Analyzer instance or an
LAI instance incrementally into your placed-and-routed design. This has the benefit
of both preserving your timing and area optimizations from your existing design, and
decreasing the overall compilation time when any changes are necessary during the
debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

SignalProbe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This also leaves your compiled design
untouched, except for the newly routed node or nodes. With SignalProbe, you can
save as much as 90% compile time of a full compilation.

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the SignalTap II Logic
Analyzer and the LAI, scripting enables user-defined automation for data collection
while debugging in the lab.

In addition, the JTAG server allows you to debug a design that is running on a device
attached to a PC in a remote location. This allows you to set up your hardware in the
lab environment, download any new .sof files, and perform any analysis from your
desktop.

Table IV–2 compares common debugging features between these tools and provides
suggestions about which is the best tool to use for a given feature.

Table IV–2.Suggested On-Chip Debugging Tools for Common Debugging Features (Part 1 of 2) (Note 1)

Feature SignalProbe

Logic Analyzer
Interface

(LAI)

SignalTap II
Logic

Analyzer Description

Large Sample

Depth
N/A v —

An external logic analyzer used with the LAI has
a bigger buffer to store more captured data
than the SignalTap II Logic Analyzer. No data is
captured or stored with SignalProbe.

Ease in Debugging

Timing Issue
v v —

External equipment, such as oscilloscopes and
Mixed Signal Oscilloscopes (MSOs), can be
used with either LAI or SignalProbe used with
the LAI to provide you with access to timing
mode, enabling you to debug combined
streams of data.

Section IV: In-System Design Debugging IV–7

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Minimal Effect

on Logic Design
v v(2) v (2)

The LAI adds minimal logic to a design,
requiring fewer device resources. The
SignalTap II Logic Analyzer has little effect on
the design, as it is set as a separate design
partition. SignalProbe incrementally routes
nodes to pins, not affecting the design at all.

Short Compile and

Recompile Time
v v (2) v (2)

SignalProbe attaches incrementally routed
signals to previously reserved pins, requiring
very little recompilation time to make changes
to source signal selections. The SignalTap II
Logic Analyzer and the LAI can take advantage
of incremental compilation to refit their own
design partitions to decrease recompilation
time.

Triggering

Capability
N/A N/A v

The SignalTap II Logic Analyzer offers
triggering capabilities that are comparable to
commercial logic analyzers.

I/O Usage — — v
No additional output pins are required with the
SignalTap II Logic Analyzer. Both the LAI and
SignalProbe require I/O pin assignments.

Acquisition

Speed
N/A — v

The SignalTap II Logic Analyzer can acquire
data at speeds of over 200 MHz. The same
acquisition speeds are obtainable with an
external logic analyzer used with the LAI, but
signal integrity issues may limit this.

No JTAG

Connection

Required

v — —

An FPGA design with the SignalTap II Logic
Analyzer or the LAI requires an active JTAG
connection to a host running the Quartus II
software. SignalProbe does not require a host
for debugging purposes.

No External

Equipment Required
— — v

The SignalTap II Logic Analyzer logic is
completely internal to the programmed FPGA
device. No extra equipment is required other
than a JTAG connection from a host running
the Quartus II software or the stand-alone
SignalTap II software. SignalProbe and the LAI
require the use of external debugging
equipment, such as multimeters, oscilloscopes,
or logic analyzers.

Notes to Table IV–2:

(1) v indicates the recommended tools for the feature.
— indicates that while the tool is available for that feature, that tool may not give the best results.
N/A indicates that the feature is not applicable for the selected tool.

(2) When used with incremental compilation.

Table IV–2.Suggested On-Chip Debugging Tools for Common Debugging Features (Part 2 of 2) (Note 1)

Feature SignalProbe

Logic Analyzer
Interface

(LAI)

SignalTap II
Logic

Analyzer Description

IV–8 Section IV: In-System Design Debugging

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Stimulus-Capable Tools
The In-System Memory Content Editor, the In-System Sources and Probes, and the
Virtual JTAG interface each enable you to use the JTAG interface as a general-purpose
communication port. Though all three tools can be used to achieve the same results,
there are some considerations that make one tool easier to use in certain applications
than others. In-System Sources and Probes is ideal for toggling control signals. The
In-System Memory Content Editor is useful for inputting large sets of test data.
Finally, the Virtual JTAG megafunction is well suited for more advanced users who
want to develop their own customized JTAG solution.

In-System Sources and Probes
In-System Sources and Probes is an easy way to access JTAG resources to both read
and write to your design. You can start by instantiating a megafunction into your
HDL. The megafunction contains source ports and probe ports for driving values into
and sampling values from the signals that are connected to the ports, respectively.
Transaction details of the JTAG interface are abstracted away by the megafunction.
During runtime, a GUI displays each source and probe port by instance and allows
you to read from each probe port and drive to each source port. The GUI makes this
tool ideal for toggling a set of control signals during the debugging process.

A good application of In-System Sources and Probes is to use the GUI as a
replacement for the push buttons and LEDs used during the development phase of a
project. Furthermore, In-System Sources and Probes supports a set of scripting
commands for reading and writing using quartus_stp. When used with the Tk
toolkit, you can build your own graphical interfaces—a feature that is ideal for
building a virtual front panel during the prototyping phase of the design.

In-System Memory Content Editor
The In-System Memory Content Editor allows you to quickly view and modify
memory contents either through a GUI interface or through Tcl scripting commands.
The In-System Memory Content Editor works by turning single-port RAM blocks into
dual-port RAM blocks. One port is connected to your clock domain and data signals,
and the other port is connected to the JTAG clock and data signals for editing or
viewing.

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side), and
create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

Section IV: In-System Design Debugging IV–9

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Virtual JTAG Interface Megafunction
The Virtual JTAG Interface megafunction provides the finest level of granularity for
manipulating the JTAG resource. This megafunction allows you to build your own
JTAG scan chain by exposing all of the JTAG control signals and configuring your
JTAG Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API. This feature is meant for users who have a
thorough understanding of the JTAG interface and want precise control over the
number and type of resources used.

Conclusion
The Quartus II on-chip debugging tool suite allows you to reach debugging closure
quickly by providing you a set of powerful analysis tools and a set of tools that open
up the JTAG port as a general purpose communication interface. The Quartus II
software further broadens the scope of applications by giving you a comprehensive
Tcl/Tk API. With the Tcl/Tk API, you cannot only increase the level of automation for
all of the analysis tools, but you can also build virtual front panel applications quickly
early in the prototyping phase.

In addition, all of the on-chip debugging tools have a tight integration with the rest of
the productivity features within the Quartus II software. The incremental compile and
incremental routing features enable a fast turnaround time for programming file
generation. The cross-probing feature allows you to find and identify nodes quickly.
The SignalTap II Logic Analyzer, when used with the TimeQuest Timing Analyzer, is
a best-in-class timing verification suite that allows fast functional and timing
verification.

This section contains the detailed usage for each of the On-Chip Debugging tools.
This section contains the following chapters:

■ Chapter 14, Quick Design Debugging Using SignalProbe

■ Chapter 15, Design Debugging Using the SignalTap II Embedded Logic Analyzer

■ Chapter 16, In-System Debugging Using External Logic Analyzers

■ Chapter 17, In-System Updating of Memory and Constants

■ Chapter 18, Design Debugging Using In-System Sources and Probes

IV–10 Section IV: In-System Design Debugging

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

14. Quick Design Debugging Using
SignalProbe

This chapter provides detailed instructions about how to use SignalProbe to quickly
debug your design.

Introduction
Hardware verification can be a lengthy and expensive process. The SignalProbe
incremental routing feature helps reduce the hardware verification process and
time-to-market for system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in the design or debugging process.
The SignalProbe feature makes design verification more efficient by routing internal
signals to I/O pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The SignalProbe feature is fully functional with Arria® GX, Stratix® series, Cyclone®
series, and MAX® II, device families.

If you are using the SignalProbe feature to debug your Stratix series, Cyclone series, or
MAX II device, refer to “Debugging Using the SignalProbe Feature”.

f The Quartus® II software provides a portfolio of on-chip debugging solutions. For an
overview and comparison of all of the tools available in the Quartus II software
on-chip debugging tool suite, refer to Section V. In-System Design Debugging in
volume 3 of the Quartus II Handbook.

Debugging Using the SignalProbe Feature
The SignalProbe feature allows you to reserve available pins and route internal
signals to those reserved pins, while preserving the behavior of your design.
SignalProbe is an effective debugging tool that provides visibility into your FPGA.

1 This section describes the SignalProbe process for the Stratix series, Cyclone series,
and MAX II device families.

You can reserve pins for SignalProbe and assign I/O standards before or after a full
compilation. Each SignalProbe-source to SignalProbe-pin connection is implemented
as an ECO change that is applied to your netlist after a full compilation.

To route the internal signals to the device’s reserved pins for SignalProbe, perform the
following tasks:

1. Reserve the SignalProbe Pins, described on page 14–2.

2. Perform a Full Compilation, described on page 14–3.

3. Assign a SignalProbe Source, described on page 14–3.

4. Add Registers to the Pipeline Path to SignalProbe Pin, described on page 14–4.

5. Perform a SignalProbe Compilation, described on page 14–5.

QII53008-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

14–2 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

6. Analyze the Results of the SignalProbe Compilation, described on page 14–5.

Reserve the SignalProbe Pins
SignalProbe pins can be reserved before or after compiling your design. Reserving
SignalProbe pins before a compilation is optional. You can also reserve any unused
I/Os of the device for SignalProbe pins after compilation. Assigning sources is a
simple process after reserving SignalProbe pins. The sources for SignalProbe pins are
the internal nodes and registers in the post-compilation netlist that you want to probe.

1 Although you can reserve SignalProbe pins using many features within the Quartus II
software, including the Pin Planner and the Tcl interface, you should use the
SignalProbe Pins dialog box to create and edit your SignalProbe pins.

To reserve an available package pin as a SignalProbe pin using the SignalProbe Pins
dialog box, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins dialog box
appears (Figure 14–1). The Pin name and I/O Standard appear as the only fields
that are editable if place-and-route or fitting have not been performed.

2. In the Current and potential SignalProbe pins list, click a pin from the Number
column and type your SignalProbe pin name in the Pin name box.

3. Select an I/O standard from the I/O standard list.

4. To add a new SignalProbe pin, click Add. To edit or change a previously reserved
pin for SignalProbe, click Change. (Figure 14–1 shows how to use the the dialog
box to edit a previously reserved pin; if you were adding a new SignalProbe pin,
the Add button appears instead of the Change button.)

Figure 14–1. Reserving a SignalProbe Pin in the SignalProbe Pins Dialog Box

Chapter 14: Quick Design Debugging Using SignalProbe 14–3
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Click OK.

Perform a Full Compilation
You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe to a SignalProbe outpin.

To perform a full compilation, on the Processing menu, click Start Compilation.

Assign a SignalProbe Source
A SignalProbe source can be any combinational node, register, or pin in your
post-compilation netlist. To find a SignalProbe source, in the Node Finder, use the
SignalProbe filter to remove all sources that cannot be probed. You might not be able
to find a particular internal node because the node can be optimized away during
synthesis, or the node cannot be routed to the SignalProbe pin, as it is untappable. For
example, internal nodes and registers within the Gigabit transceivers cannot be
probed because there are no physical routes to the pins available.

1 To probe virtual I/O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the Virtual Pin as your
SignalProbe source pin.

To assign a SignalProbe source to your SignalProbe reserved pin, perform the
following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins dialog box
appears (Figure 14–1 on page 14–2).

2. If a SignalProbe reserved pin is shown, in the Current and potential SignalProbe
pins list, click the pin. Alternately, you can click an available pin number in the
Current and potential SignalProbe pins list and type a new SignalProbe pin name
in the Pin name box.

3. In the Source box, specify the source name. Click the browse button. The Node
Finder dialog box appears.

4. When you open the Node Finder dialog box from the SignalProbe Pins dialog
box, SignalProbe is selected by default in the Filter list. To show a set of nodes that
can be probed in the Nodes Found list, click List.

5. In the Nodes Found list, select your source node and click the > button. The
selected node appears in the Selected Nodes list.

6. Click OK.

7. After a source is selected, the SignalProbe enable option is turned on. Click
Change or Add to accept the changes.

1 Because SignalProbe pins are implemented and routed as ECOs, turning the
SignalProbe enable option on or off is the same as selecting Apply Selected Change
or Restore Selected Change in the Change Manager window. (If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.)

14–4 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about the Change Manager for the Chip Planner and Resource
Property Editor, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

Add Registers to the Pipeline Path to SignalProbe Pin
You can specify the number of registers placed between a SignalProbe source and a
SignalProbe pin to synchronize the data with a clock and to control the latency of the
SignalProbe outputs. The SignalProbe feature automatically inserts the number of
registers specified into the SignalProbe path.

Figure 14–2 shows a single register between the SignalProbe source Reg_b_1 and
SignalProbe SignalProbe_Output_2 output pin added to synchronize the data
between the two SignalProbe output pins.

1 When you add a register to a SignalProbe pin, the SignalProbe compilation attempts
to place the register to best fit timing requirements. You can place SignalProbe
registers either near the SignalProbe source to meet fMAX requirements, or near the I/O
to meet tCO requirements.

To pipeline an existing SignalProbe connection, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins dialog box
appears.

2. Select a SignalProbe pin and in the Clock dialog box, type the clock name used to
drive your registers, or click the browse button to use the Node Finder to select
your clock source.

3. In the Registers dialog box, specify the number of registers you want to add in
between the SignalProbe source and the SignalProbe output.

4. Click Change.

5. Click OK.

Figure 14–2. Synchronizing SignalProbe Outputs with a SignalProbe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 14: Quick Design Debugging Using SignalProbe 14–5
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp, as described in “Scripting Support” on page 14–11.

Perform a SignalProbe Compilation
Perform a SignalProbe compilation to route your SignalProbe pins. A SignalProbe
compilation saves and checks all netlist changes without recompiling the other parts
of the design and completes compilation in a fraction of the time of a full compilation.
The design’s current placement and routing are preserved.

To perform a SignalProbe compilation, on the Processing menu, point to Start and
click Start SignalProbe Compilation.

Analyze the Results of the SignalProbe Compilation
After a SignalProbe compilation, the results are available in the compilation report
file. Each SignalProbe pin is displayed in the SignalProbe Fitting Result page in the
Fitter section of the Compilation Report. To view the status of each SignalProbe pin in
the SignalProbe Pins dialog box, on the Tools menu, click SignalProbe Pins.

The status of each SignalProbe pin appears in the Change Manager window
(Figure 14–3). (If the Change Manager window is not visible at the bottom of your
GUI, from the View menu, point to Utility Windows and click Change Manager.)

f For more information about how to use the Change Manager, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

To view the timing results of each successfully routed SignalProbe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

SignalProbe ECO Flows
SignalProbe pins are implemented using the same flow as other post-compilation
changes made as ECOs. The following section describes SignalProbe ECO flows with
and without the Quartus II incremental compilation feature.

Figure 14–3. Change Manager Window with SignalProbe Pins

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

14–6 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

SignalProbe ECO Flow with Quartus II Incremental Compilation
The incremental compilation feature is turned on by default. The top-level design is
automatically set to a design partition when the incremental compilation feature is on.
A design partition during incremental compilation can have different netlist types.
(Netlist types can be set to source HDL, post synthesis, or post-fit.) The netlist type
indicates whether that partition should be resynthesized or refit during Quartus II
incremental compilation. Incremental compilation saves you time and preserves the
placement of unchanged partitions in your design if small changes must be made to
some partitions late in the design cycle.

f For more information about the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation Feature for Hiearchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

The behavior of SignalProbe pins during an incremental compilation depends on the
Netlist Type setting. When the top-level partition netlist type is set to post-fit,
SignalProbe ECOs are retained if the partition being probed is preserved when you
recompile the design.

SignalProbe connections always link the partition being probed with the top-level
partition. As such, a SignalProbe connection might change the preservation attributes
in a lower-level partition. This is known as partition linking. When partition linking
occurs, all partitions that become linked share the attribute for the preservation level
that is the strictest among all of the affected partitions. As a result, when you tap any
partitions that are not post-fit and the top level is set to a netlist type of post-fit, your
SignalProbe connection is preserved.

The behavior is different in the case that your top-level partition netlist type is set to
post-synthesis and you have no other lower-level partitions defined. In this case, the
partition with the strictest preservation type is set to post-synthesis. If you create
SignalProbe ECOs and recompile the design, your SignalProbe ECOs are not retained
and a warning message appears in the Messages window. The warning indicates that
ECO modifications are discarded; however, all of the ECO information is retained in
the Change Manager. In this case, apply SignalProbe ECOs from the Change Manager
and perform the Check and Save All Netlist Changes step, as described in
“SignalProbe ECO Flow Without Quartus Incremental Compilation” on page 14–6.

SignalProbe ECO Flow Without Quartus Incremental Compilation
If you do not use the Quartus II incremental compilation feature and you implement
SignalProbe pins after the initial compilation of your design, SignalProbe ECOs are
not retained during recompilation. However, all of the SignalProbe ECOs remain in
the Change Manager.

To apply a SignalProbe ECO, right-click in the Change Manager and select Apply
Selected Change (Figure 14–4). (If the Change Manager window is not visible at the
bottom of your screen, from the View menu, point to Utility Windows and click
Change Manager.)

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 14: Quick Design Debugging Using SignalProbe 14–7
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Alternately, you can use the SignalProbe Pins dialog box to enable the ECOs, as
shown in Figure 14–5. This has the same effect as applying the SignalProbe ECOs
within the Change Manager.

After applying the selected SignalProbe ECO, either right-click anywhere in the
Change Manager and select Check and Save All Netlist Changes (Figure 14–6), or, on
the Processing menu, point to Start and click Start Check and Save All Netlist
Changes to perform the ECO compilation.

Figure 14–4. Applying SignalProbe ECOs

Figure 14–5. Enabling ECOs in the SignalProbe Pins Dialog Box

SignalProbe Enable
Checkbox

14–8 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Common Questions About the SignalProbe Feature
The following are answers to common questions about the SignalProbe feature.

Why Did I Get the Following Error Message, “Error: There are No Enabled
SignalProbes to Process”?
This error message is generated when a SignalProbe compilation was attempted with
either no SignalProbe pins to route, or with all SignalProbe pins disabled.

This might occur if you perform a SignalProbe compilation after a full compilation.
For example, when a full compilation is performed, all SignalProbe pins are disabled.
You can create or re-enable your SignalProbe pins in the SignalProbe Pins dialog box.

How Can I Retain My SignalProbe ECOs During Re-Compilation of My Design?
To retain your existing ECOs during recompilation of your design, you must use
Quartus II incremental compilation. To learn more about the flow, refer to
“SignalProbe ECO Flow with Quartus II Incremental Compilation” on page 14–6.

Why Did My SignalProbe Source Disappear in the Change Manager?
The SignalProbe source information for each SignalProbe connection is stored in the
project database (db directory). SignalProbe pins are post-compilation changes to
your netlist and are interpreted as ECOs. These changes are stored in the project db
and if the project database is removed, the SignalProbe source information is lost and
does not appear in the SignalProbe Pins dialog box. To restore your SignalProbe pins
after the design compilation step, source the signalprobe_qsf.tcl script located in
your project directory.

To restore your SignalProbe source information after compilation, type the following
command from a command-line prompt:

quartus_cdb -t signalprobe_qsf.tcl r

1 Before typing this command, you must close your design project. When the command
finishes, you can open your design project again. The Change Manager shows the
sources for SignalProbe pins.

What is an ECO and Where Can I Find More Information about ECOs?
ECOs are late design cycle changes made to your design that do not alter functionality
and timing.

Figure 14–6. Check and Save All Netlist Changes

Chapter 14: Quick Design Debugging Using SignalProbe 14–9
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For more information about ECOs and using the Change Manager, refer to the
Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook.

How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software
Version 5.1 and Earlier to Version 6.0 and Later?
In earlier versions of the Quartus II software, SignalProbe pins were stored in the
Quartus II Settings File (.qsf). These assignments are automatically converted into
ECO changes when you open the SignalProbe dialog box or when you start a
SignalProbe compilation in the Quartus II software versions 6.0 and higher.

For example, the SignalProbe source assignment from a .qsf file is removed and
added to the Change Manager as an ECO after the SignalProbe dialog box is opened,
or when you perform a SignalProbe compilation. Example 14–1 shows SignalProbe
assignments in the .qsf file. Example 14–2 shows the same assignments after opening
the SignalProbe Pins dialog box.

What are all the Changes for the SignalProbe Feature between the Quartus II
Software Version 5.1 and Earlier, and Version 6.0 and Later?
The following list highlights the changes that affect users of the SignalProbe feature in
the Quartus II software versions 5.1 and earlier. This applies to Stratix series, Cyclone
series, and MAX II device families.

f For more information about the changes that pertain to each release of the Quartus II
software, refer to the Release Notes on the Altera website (www.altera.com).

■ In Quartus II software versions 5.1 and earlier, the SignalProbe Pins dialog box
was accessed on the Assignments menu. To access it with the Quartus II software
version 6.0 and later, on the Tools menu, click SignalProbe Pins.

■ A full compilation is required before making SignalProbe connections. However,
you can still reserve pins before compilation for later use by SignalProbe. You can
reserve pins by creating a SignalProbe in the SignalProbe dialog box without
specifying a source. This is the same behavior as in the Quartus II software version
5.1.

Example 14–1. SignalProbe Assignments in the Quartus II Settings File

set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_SOURCE inst5[0] -to my_signalprobe_pin

Example 14–2. SignalProbe Assignments in the Quartus II Settings File after Opening the SignalProbe Pins Dialog Box

set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin

http://www.altera.com/literature/lit-rn-q2_archive.jsp
http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

14–10 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ To route the SignalProbe pins, you must perform a SignalProbe compilation after a
full compilation. The Automatically route SignalProbe signals during
compilations and Modify latest fitting results during SignalProbe compilation
options are no longer supported.

■ After subsequent compiles, full or incremental, existing SignalProbe pins are
disabled and are not present in the post-compilation netlist. To add them back,
enable the SignalProbe pins and perform a SignalProbe compilation.

■ SignalProbe pins are not controlled via assignments in the .qsf file because they
are now ECOs. Existing .qsf files automatically convert to ECOs when a
SignalProbe compilation is performed or when the SignalProbe dialog box is
opened.

■ The Tcl interface for creating SignalProbe pins has improved and is a part of the
Chip Planner package ::quartus::chip_editor. Refer to “Scripting Support”
on page 14–11.

■ Previously, the quartus_fit --signalprobe command was used to perform
a SignalProbe compilation. This is not supported in the Quartus II software
version 6.0 and later, and is replaced by the improved Tcl interface and the
check_netlist_and_save Tcl command.

■ The SignalProbe timing report generated after a successful SignalProbe
compilation is not available in the Quartus II software version 6.0 and later. You
can view the timing results of your SignalProbe pins in the SignalProbe Fitting
Results, under the Fitter report, or in the tCO results page of the Timing report.

■ You cannot make SignalProbe pins in the Assignment Editor. Use the SignalProbe
Pins dialog box to make and edit your SignalProbe pins.

Why Can't I Reserve a SignalProbe Pin?
If you cannot reserve a SignalProbe pin in the Quartus II software, it is likely that one
of the following is true:

■ You have selected multiple pins.

■ A compile is running in the background. Wait until the compilation is complete
before reserving the pin.

■ You have the Quartus II Web Edition software, in which the SignalProbe feature is
not enabled by default. You must turn on TalkBack to enable the SignalProbe
feature in the Quartus II Web Edition software.

■ You have not set the pin reserve type to As Signal Probe Output. To reserve a pin,
on the Assignments menu, in the Assign Pins dialog box, select As SignalProbe
Output.

■ The pin is reserved from a previous compilation. During a compilation, the
Quartus II software reserves each pin on the targeted device. If you end the
Quartus II process during a compilation, for example, with the Windows Task
Manager End Process command or the UNIX kill command, perform a full
recompilation before reserving pins as SignalProbe outputs.

■ The pin does not support the SignalProbe feature. Select another pin.

■ The current family does not support the SignalProbe feature.

Chapter 14: Quick Design Debugging Using SignalProbe 14–11
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Scripting Support
Running procedures and make settings using a Tcl script are described in this chapter.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Make a SignalProbe Pin
To make a SignalProbe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name> r

Delete a SignalProbe Pin
To delete a SignalProbe pin, type the following command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name> r

Enable a SignalProbe Pin
To enable a SignalProbe pin, type the following command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Disable a SignalProbe Pin
To disable a SignalProbe pin, type the following command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Perform a SignalProbe Compilation
To perform a SignalProbe compilation, type the following command:

check_netlist_and_save r

Migrate Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
To migrate previous SignalProbe pins to the Quartus II software versions 6.0 and later,
type the following command:

convert_signal_probes r

Script Example
Example 14–3 shows a script that creates a SignalProbe pin called sp1 and connects
the sp1 pin to source node reg1 in a project that was already compiled.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

14–12 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Adding SignalProbe Sources
A SignalProbe source is a signal in the post-compilation design database with a
possible route to an output pin. To assign a SignalProbe source to a SignalProbe pin or
an unused output pin, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins dialog box
appears.

2. In the Current and potential SignalProbe pins list, select the SignalProbe pin to
which you want to add a SignalProbe source.

3. Click Browse and select a SignalProbe source.

4. Click OK.

5. In the Assign SignalProbe Pins dialog box, if a source has not been assigned to the
SignalProbe pin, click Add. If a SignalProbe pin has been already assigned, click
Change.

6. Click OK.

The Node Finder dialog box appears with the SignalProbe filter selected
(Figure 14–7). Click List to view all of the available SignalProbe sources. If you cannot
find a specific node with the SignalProbe filter, the node has either been removed by
the Quartus II software during optimization or placed in the device where there are
no possible routes to a pin.

1 When the source of the SignalProbe pin is added or changed, the SignalProbe pin is
automatically enabled. To disable a SignalProbe pin, turn off SignalProbe enable.

Example 14–3. Creating a SignalProbe Pin Called sp1

Package require ::quartus::chip_editor
Project_open project
Read_netlist
Make_sp -pin_name sp1 -src_name reg1
Check_netlist_and_save
Project_close

Figure 14–7. Available SignalProbe Sources in the Node Finder

Chapter 14: Quick Design Debugging Using SignalProbe 14–13
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Performing a SignalProbe Compilation
After a full compilation, you can start a SignalProbe compilation either manually or
automatically. A SignalProbe compilation performs the following functions:

■ Validates SignalProbe pins

■ Validates your specified SignalProbe sources

■ If applicable, adds registers into SignalProbe paths

■ Attempts to route from SignalProbe sources through registers to SignalProbe pins

To run the SignalProbe compilation automatically after a full compilation, on the
Tools menu, click SignalProbe Pins. In the SignalProbe Pins dialog box, turn on
Automatically route SignalProbe signals during compilation.

To run a SignalProbe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start SignalProbe Compilation.

1 You must run the Fitter before a SignalProbe compilation. The Fitter generates a list of
all internal nodes that can be used as SignalProbe sources.

To enable or disable each SignalProbe pin, in the SignalProbe Pins dialog box, turn
the SignalProbe enable option on or off.

Running SignalProbe with Smart Compilation
Running a smart compilation reduces compilation time by running only necessary
modules during compilation. However, a full compilation is required if any design
files, Analysis and Synthesis settings, or Fitter settings have changed.

To turn on smart compilation, on the Assignments menu, click Settings. In the
Category list, select Compilation Process Settings and turn on Use Smart
compilation.

If you run a SignalProbe compilation with smart compilation turned on, and there are
changes to a design file or settings related to the Analysis and Synthesis or Fitter
modules, the following message is displayed:

Error: Can't perform SignalProbe compilation because design requires a
full compilation.

1 You should turn smart compilation on, which allows you to work with the latest
settings and design files.

Understanding the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results appear in two sections of the compilation
report file. The fitting results and status (Table 14–1) of each SignalProbe pin is
displayed in the SignalProbe Fitting Result screen in the Fitter section of the
Compilation Report (Figure 14–8).

Table 14–1. Status Values (Part 1 of 2)

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

14–14 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The timing results of each successfully routed SignalProbe pin is displayed in the
SignalProbe source to output delays screen in the Timing Analysis section of the
Compilation Report (Figure 14–9).

1 After a SignalProbe compilation, the processing screen of the Messages window also
provides the results of each SignalProbe pin and displays slack information for each
successfully routed SignalProbe pin.

Analyzing SignalProbe Routing Failures
The SignalProbe can begin compilation; however, one of the following reasons can
prevent complete compilation:

■ Route unavailable—the SignalProbe compilation failed to find a route from the
SignalProbe source to the SignalProbe pin because of routing congestion

■ Invalid or nonexistent SignalProbe source—you entered a SignalProbe source
that does not exist or is invalid

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

Figure 14–8. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 14–9. SignalProbe Source to Output Delays Page in the Compilation Report Window

Table 14–1. Status Values (Part 2 of 2)

Status Description

Chapter 14: Quick Design Debugging Using SignalProbe 14–15
Debugging Using the SignalProbe Feature

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ Unusable output pin—the output pin selected is found to be unusable

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts with other
I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you can allow
the compiler to modify routing to the specified SignalProbe source. On the Tools
menu, click SignalProbe Pins and turn on Modify latest fitting results during
SignalProbe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

1 Turning on Modify latest fitting results during SignalProbe compilation can change
the performance of your design.

SignalProbe Scripting Support
Running procedures and making settings using a Tcl script are described in this
chapter. You can also run some procedures at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser. To run the Help browser, type the following command at
the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Reference Manual for
information about all settings and constraints in the Quartus II software. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Reserving SignalProbe Pins
To reserve a SignalProbe pin, type the commands shown in Example 14–4.

Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to “Reserve the
SignalProbe Pins” on page 14–2.

Example 14–4. Reserving a SignalProbe Pin

set_location_assignment <location> -to <SignalProbe pin name> r
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name> r

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

14–16 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Adding SignalProbe Sources
Use the following Tcl commands to add SignalProbe sources. For more information
about adding SignalProbe sources, refer to “Adding SignalProbe Sources” on
page 14–12.

To assign the node name to a SignalProbe pin, type the following command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> -to \
<SignalProbe pin name> r
The next command turns on SignalProbe routing. To turn off individual SignalProbe
pins, specify OFF instead of ON with the following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON -to \
<SignalProbe pin name> r

Assigning I/O Standards
To assign an I/O standard to a pin, type the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to \
<SignalProbe pin name> r

f For a list of valid I/O standards, refer to the I/O Standards general description in the
Quartus II Help.

Adding Registers for Pipelining
To add registers for pipelining, type the following Tcl commands:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> -to \
<SignalProbe pin name> r
set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> -to \
<SignalProbe pin name> r

Run SignalProbe Automatically
To run SignalProbe automatically after a full compile, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON r
For more information about running SignalProbe automatically, refer to “Performing
a SignalProbe Compilation” on page 14–13.

Run SignalProbe Manually
To run SignalProbe manually with a Tcl command or the quartus_fit command,
type the following at a command prompt.

execute_flow -signalprobe r
The execute_flow command is in the flow package. At a command prompt, type
the following command:

quartus_fit <project name> --signalprobe r
For more information about running SignalProbe manually, refer to “Performing a
SignalProbe Compilation” on page 14–13.

Chapter 14: Quick Design Debugging Using SignalProbe 14–17
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Enable or Disable All SignalProbe Routing
Use the Tcl command in Example 14–5 to turn on or turn off SignalProbe routing.
When using this command, to turn SignalProbe routing on, specify ON. To turn
SignalProbe routing off, specify OFF.

For more information about enabling or disabling SignalProbe routing, refer to
page 14–13.

Running SignalProbe with Smart Compilation
To turn on Smart Compilation, type the following Tcl command:

set_global_assignment -name SMART_RECOMPILE ON r
For more information, refer to “Running SignalProbe with Smart Compilation” on
page 14–13.

Allow SignalProbe to Modify Fitting Results
To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON r
For more information, refer to “Analyzing SignalProbe Routing Failures” on
page 14–14.

Conclusion
Using the SignalProbe feature can significantly reduce the time required compared to
a full recompilation. Use the SignalProbe feature for quick access to internal design
signals to perform system-level debugging.

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook

■ Release Notes on the Altera website (www.altera.com)

■ Section V. In-System Design Debugging in volume 3 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hiearchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual

Example 14–5. Turning SignalProbe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {

set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF> } r

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/lit-rn-q2_archive.jsp
http://www.altera.com

14–18 Chapter 14: Quick Design Debugging Using SignalProbe
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 14–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 14–2. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v.9.1.0

■ Removed all references and procedures for APEX devices.

■ Style changes.

Updated for the Quartus II
software verison 9.1
release.

March 2009
v9.0.0

■ Removed the “Generate the Programming File” section

■ Removed unnecessary screenshots

■ Minor editorial updates

Updated for the Quartus II
software version 9.0
release.

November 2008
v8.1.0

■ Modified description for preserving SignalProbe connections when
using Incremental Compilation

■ Added plausible scenarios where SignalProbe connections are not
reserved in the design

Updated for the Quartus II
software version 8.1
release.

May 2008
v8.0.0

■ Added “Arria GX” to the list of supported devices

■ Removed the “On-Chip Debugging Tool Comparison” and replaced with
a reference to the Section V Overview on page 13–1

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates

Organizational changes for
the Quartus II software
version 8.0 release.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

15. Design Debugging Using the
SignalTap II Embedded Logic Analyzer

Introduction
To help with the process of design debugging, Altera provides a solution that allows
you to examine the behavior of internal signals, without using extra I/O pins, while
the design is running at full speed on an FPGA device.

The SignalTap II Embedded Logic Analyzer is scalable, easy to use, and is included
with the Quartus II software subscription. This logic analyzer helps debug an FPGA
design by probing the state of the internal signals in the design without the use of
external equipment. Defining custom trigger-condition logic provides greater
accuracy and improves the ability to isolate problems. The SignalTap II Embedded
Logic Analyzer does not require external probes or changes to the design files to
capture the state of the internal nodes or I/O pins in the design. All captured signal
data is conveniently stored in device memory until you are ready to read and analyze
the data.

The topics in this chapter include:

■ “Design Flow Using the SignalTap II Embedded Logic Analyzer” on page 15–4

■ “SignalTap II Embedded Logic Analyzer Task Flow” on page 15–4

■ “Add the SignalTap II Embedded Logic Analyzer to Your Design” on page 15–6

■ “Configure the SignalTap II Embedded Logic Analyzer” on page 15–14

■ “Define Triggers” on page 15–33

■ “Compile the Design” on page 15–53

■ “Program the Target Device or Devices” on page 15–59

■ “Run the SignalTap II Embedded Logic Analyzer” on page 15–60

■ “View, Analyze, and Use Captured Data” on page 15–66

■ “Other Features” on page 15–71

■ “SignalTap II Scripting Support” on page 15–76

■ “Design Example: Using SignalTap II Embedded Logic Analyzers in SOPC Builder
Systems” on page 15–79

■ “Custom Triggering Flow Application Examples” on page 15–79

The SignalTap II Embedded Logic Analyzer is a next-generation, system-level
debugging tool that captures and displays real-time signal behavior in a
system-on-a-programmable-chip (SOPC) or any FPGA design. The SignalTap II
Embedded Logic Analyzer supports the highest number of channels, largest sample
depth, and fastest clock speeds of any embedded logic analyzer in the programmable
logic market. Figure 15–1 shows a block diagram of the components that make up the
SignalTap II Embedded Logic Analyzer.

QII53009-9.1.0

15–2 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Introduction

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

This chapter is intended for any designer who wants to debug their FPGA design
during normal device operation without the need for external lab equipment. Because
the SignalTap II Embedded Logic Analyzer is similar to traditional external logic
analyzers, familiarity with external logic analyzer operations is helpful but not
necessary. To take advantage of faster compile times when making changes to the
SignalTap II Embedded Logic Analyzer, knowledge of the Quartus II incremental
compilation feature is helpful.

f For information about using the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Hardware and Software Requirements
The following components are required to perform logic analysis with the
SignalTap II Embedded Logic Analyzer:

■ Quartus II design software

or
Quartus II Web Edition (with the TalkBack feature enabled)
or
SignalTap II Embedded Logic Analyzer standalone software

■ Download/upload cable

■ Altera development kit or user design board with JTAG connection to device
under test

Figure 15–1. SignalTap II Embedded Logic Analyzer Block Diagram (Note 1)

Note to Figure 15–1:

(1) This diagram assumes that the SignalTap II Embedded Logic Analyzer was compiled with the design as a separate design partition using the
Quartus II incremental compilation feature. This is the default setting for new projects in the Quartus II software. If incremental compilation is
disabled or not used, the SignalTap II logic is integrated with the design. For information about the use of incremental compilation with
SignalTap II, refer to “Faster Compilations with Quartus II Incremental Compilation” on page 15–53.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG

Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–3
Introduction

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 The Quartus II software Web Edition does not support the SignalTap II
Embedded Logic Analyzer with the incremental compilation feature.

Captured data is stored in the device’s memory blocks and transferred to the
Quartus II software waveform display with a JTAG communication cable, such as
EthernetBlaster or USB-BlasterTM. Table 15–1 summarizes some of the features and
benefits of the SignalTap II Embedded Logic Analyzer.

f The Quartus II software offers a portfolio of on-chip debugging solutions. For an
overview and comparison of all of the tools available in the In-System Verification
Tool set, refer to Section V. In-System Design Debugging.

Table 15–1. SignalTap II Features and Benefits

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same time.

Multiple logic analyzers in multiple devices in
a single JTAG chain

Simultaneously captures data from multiple devices in a JTAG chain.

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as the
Nios II embedded processor.

Up to 10 basic or advanced trigger conditions
for each analyzer instance

Enables more complex data capture commands to be sent to the logic
analyzer, providing greater accuracy and problem isolation.

Power-Up Trigger Captures signal data for triggers that occur after device programming but
before manually starting the logic analyzer.

State-based Triggering Flow Enables you to organize your triggering conditions to precisely define what
your embedded logic analyzer will capture.

Incremental compilation Modifies the SignalTap II Embedded Logic Analyzer monitored signals and
triggers without performing a full compilation, saving time.

Flexible buffer acquisition modes The buffer acquisition control allows you to precisely control the data that is
written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard data
samples that are not relevant to the debug of your design.

MATLAB integration with included MEX
function

Collects the SignalTap II Embedded Logic Analyzer captured data into a
MATLAB integer matrix.

Up to 2,048 channels per logic analyzer
instance

Samples many signals and wide bus structures.

Up to 128K samples in each device Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the
logic under test.

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Embedded Logic Analyzer configurations.

No additional cost The SignalTap II Embedded Logic Analyzer is included with a Quartus II
subscription and with the Quartus II Web Edition (with TalkBack enabled).

Compatibility with other on-chip debugging
utilities

The SignalTap II Embedded Logic Analyzer can be used in tandem with any
JTAG based on-chip debugging tool, such as an in-system memory content
editor. This ability to share the JTAG chain allows you to change signal
values in real-time while you are running an analysis with the SignalTap II
Embedded Logic Analyzer.

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

15–4 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Design Flow Using the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Design Flow Using the SignalTap II Embedded Logic Analyzer
Figure 15–2 shows a typical overall FPGA design flow for using the SignalTap II
Embedded Logic Analyzer in your design. A SignalTap II file (.stp) is added to and
enabled in your project, or a SignalTap II HDL function, created with the
MegaWizard™ Plug-In Manager, is instantiated in your design. The diagram shows
the flow of operations from initially adding the SignalTap II Embedded Logic
Analyzer to your design to final device configuration, testing, and debugging.

SignalTap II Embedded Logic Analyzer Task Flow
To use the SignalTap II Embedded Logic Analyzer to debug your design, you perform
a number of tasks to add, configure, and run the logic analyzer. Figure 15–3 shows a
typical flow of the tasks you complete to debug your design. Refer to the appropriate
section of this chapter for more information about each of these tasks.

Figure 15–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Analysis and Synthesis

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Assembler

Timing Analyzer

Yes

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

Configuration

Functionality
Satisfied?

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–5
SignalTap II Embedded Logic Analyzer Task Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Add the SignalTap II Embedded Logic Analyzer to Your Design
Create an .stp file or create a parameterized HDL instance representation of the logic
analyzer using the MegaWizard Plug-In Manager. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

Configure the SignalTap II Embedded Logic Analyzer
After the SignalTap II Embedded Logic Analyzer is added to your design, configure it
to monitor the signals you want. You can manually add signals or use a plug-in, such
as the Nios II embedded processor plug-in, to quickly add entire sets of associated
signals for a particular intellectual property (IP). You can also specify settings for the
data capture buffer, such as its size, the method in which data is captured and stored,
and the device memory type to use for the buffer in devices that support memory
type selection.

Figure 15–3. SignalTap II Embedded Logic Analyzer Task Flow

End

Create New Project or
Open Existing Project

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Add SignalTap II
to Design

Configure
SignalTap II

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Adjust Options,
Triggers, or both

Continue Debugging

Recompilation
Necessary?

Yes

15–6 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Add the SignalTap II Embedded Logic Analyzer to Your Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Define Trigger Conditions
The SignalTap II Embedded Logic Analyzer captures data continuously while it is
running. To capture and store specific signal data, set up triggers that tell the logic
analyzer under what conditions to stop capturing data. The SignalTap II Embedded
Logic Analyzer lets you define trigger conditions that range from very simple, such as
the rising edge of a single signal, to very complex, involving groups of signals, extra
logic, and multiple conditions. Power-Up Triggers give you the ability to capture data
from trigger events occurring immediately after the device enters user-mode after
configuration.

Compile the Design
With the .stp file configured and trigger conditions defined, compile your project as
usual to include the logic analyzer in your design. Because you may need to change
monitored signal nodes or adjust trigger settings frequently during debugging, Altera
recommends that you use the incremental compilation feature built into the
SignalTap II Embedded Logic Analyzer, along with Quartus II incremental
compilation, to reduce recompile times.

Program the Target Device or Devices
When you are debugging a design with the SignalTap II Embedded Logic Analyzer,
you can program a target device directly from the .stp file without using the
Quartus II Programmer. You can also program multiple devices with different designs
and simultaneously debug them.

Run the SignalTap II Embedded Logic Analyzer
In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp file for analysis.

View, Analyze, and Use Captured Data
After you have captured data and read it into the .stp file, it is available for analysis
and use in the debugging process. Either manually or with a plug-in, set up
mnemonic tables to make it easier to read and interpret the captured signal data. To
speed up debugging, use the Locate feature in the SignalTap II node list to find the
locations of problem nodes in other tools in the Quartus II software. Save the captured
data for later analysis, or convert it to other formats for sharing and further study.

Add the SignalTap II Embedded Logic Analyzer to Your Design
Because the SignalTap II Embedded Logic Analyzer is implemented in logic on your
target device, it must be added to your FPGA design as another part of the design
itself. There are two ways to generate the SignalTap II Embedded Logic Analyzer and
add it to your design for debugging:

■ Create an .stp file and use the SignalTap II Editor to configure the details of the
logic analyzer

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–7
Add the SignalTap II Embedded Logic Analyzer to Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

or

■ Create and configure the .stp file with the MegaWizard Plug-In Manager and
instantiate it in your design

Creating and Enabling a SignalTap II File
To create an embedded logic analyzer, use an existing .stp file or create a new file.
After a file is created or selected, it must be enabled in the project where it is used.

Creating a SignalTap II File
The .stp file contains the SignalTap II Embedded Logic Analyzer settings and the
captured data for viewing and analysis. To create a new .stp file, perform the
following steps:

1. On the File menu, click New.

2. In the New dialog box, click the Other Files tab and select SignalTap II Logic
Analyzer File.

3. Click OK.

To open an existing .stp file already associated with your project, on the Tools menu,
click SignalTap II Logic Analyzer. You can also use this method to create a new .stp
file if no .stp file exists for the current project.

To open an existing file, on the File menu, click Open and select an .stp file
(Figure 15–4).

15–8 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Add the SignalTap II Embedded Logic Analyzer to Your Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Enabling and Disabling a SignalTap II File for the Current Project
Whenever you save a new .stp file, the Quartus II software asks you if you want to
enable the file for the current project. However, you can add this file manually, change
the selected .stp file, or completely disable the logic analyzer by performing the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select SignalTap II Logic Analyzer. The SignalTap II Logic
Analyzer page appears.

3. Turn on Enable SignalTap II Logic Analyzer. Turn off this option to disable the
logic analyzer, completely removing it from your design.

4. In the SignalTap II File name box, type the name of the .stp file you want to
include with your design, or browse to and select a file name.

5. Click OK.

Figure 15–4. SignalTap II Editor

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–9
Add the SignalTap II Embedded Logic Analyzer to Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Embedding Multiple Analyzers in One FPGA
The SignalTap II Editor includes support for adding multiple logic analyzers using a
single .stp file. This feature is well-suited for creating a unique logic analyzer for each
clock domain in the design.

To create multiple analyzers, on the Edit menu, click Create Instance, or right-click in
the Instance Manager window and click Create Instance.

You can configure each instance of the SignalTap II Embedded Logic Analyzer
independently. The icon in the Instance Manager for the currently active instance that
is available for configuration is highlighted by a blue box. To configure a different
instance, double-click the icon or name of another instance in the Instance Manager.

Monitoring FPGA Resources Used by the SignalTap II Embedded Logic Analyzer
The SignalTap II Embedded Logic Analyzer has a built-in resource estimator that
calculates the logic resources and amount of memory that each logic analyzer instance
uses. Furthermore, because the most demanding on-chip resource for the embedded
logic analyzer is memory usage, the resource estimator reports the ratio of total RAM
usage in your design to the total amount of RAM available, given the results of the
last compilation. The resource estimator provides a warning if a potential for a
“no-fit” occurs.

You can see resource usage of each logic analyzer instance and total resources used in
the columns of the Instance Manager section of the SignalTap II Editor. Use this
feature when you know that your design is running low on resources.

The logic element value reported in the resource usage estimator may vary by as
much as 10% from the actual resource usage.

Table 15–2 shows the SignalTap II Embedded Logic Analyzer M4K memory block
resource usage for the listed devices per signal width and sample depth.

Table 15–2. SignalTap II Embedded Logic Analyzer M4K Block Utilization for Stratix II, Stratix,
Stratix GX, and Cyclone Devices (Note 1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 15–2:

(1) When you configure a SignalTap II Embedded Logic Analyzer, the Instance Manager reports an estimate of the
memory bits and logic elements required to implement the given configuration.

15–10 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Add the SignalTap II Embedded Logic Analyzer to Your Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer
You can create a SignalTap II Embedded Logic Analyzer instance by using the
MegaWizard Plug-In Manager. The MegaWizard Plug-In Manager generates an HDL
file that you instantiate in your design.

1 The State-based trigger flow, the state machine debugging feature, and the storage
qualification feature are not supported when using the MegaWizard Plug-In Manager
to create the embedded logic analyzer. These features are described in the following
sections:

■ “Adding Finite State Machine State Encoding Registers” on page 15–20

■ “Using the Storage Qualifier Feature” on page 15–25

■ “Custom State-Based Triggering” on page 15–38

Creating an HDL Representation Using the MegaWizard Plug-In Manager
The Quartus II software allows you to easily create your SignalTap II Embedded Logic
Analyzer using the MegaWizard Plug-In Manager. To implement the SignalTap II
megafunction, perform the following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager. Page 1 of the
MegaWizard Plug-In Manager appears.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. In the Installed Plug-Ins list, expand the JTAG-accessible Extensions folder and
select SignalTap II Embedded Logic Analyzer. Select an output file type and enter
the desired name of the SignalTap II megafunction. You can choose AHDL (.tdf),
VHDL (.vhd), or Verilog HDL (.v) as the output file type (Figure 15–5).

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–11
Add the SignalTap II Embedded Logic Analyzer to Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Click Next.

6. Configure the analyzer by specifying the Sample depth, RAM Type, Data input
port width, Trigger levels, Trigger input port width, whether to enable an
external Trigger in or Trigger out, whether to enable the Segmented memory
buffer option, and whether to enable the Storage Qualifier for non-segmented
buffers (Figure 15–6).

For information about these settings, refer to “Configure the SignalTap II
Embedded Logic Analyzer” on page 15–14 and “Define Triggers” on page 15–33.

Figure 15–5. Creating the SignalTap II Embedded Logic Analyzer in the MegaWizard Plug-In
Manager

15–12 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Add the SignalTap II Embedded Logic Analyzer to Your Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

7. Click Next.

8. Set the Trigger level options by selecting Basic or Advanced (Figure 15–7). If you
select Advanced for any trigger level, the next page of the MegaWizard Plug-In
Manager displays the Advanced Trigger Condition Editor. You can configure an
advanced trigger expression using the number of signals you specified for the
trigger input port width.

1 You cannot define a Power-Up Trigger using the MegaWizard Plug-In
Manager. Refer to “Define Triggers” on page 15–33 to learn how to do this
using the .stp file.

Figure 15–6. Select Embedded Logic Analyzer Parameters

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–13
Add the SignalTap II Embedded Logic Analyzer to Your Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

9. On the final page of the MegaWizard Plug-In Manager, select any additional files
you want to create and click Finish to create an HDL representation of the
SignalTap II Embedded Logic Analyzer.

For information about the configuration settings options in the MegaWizard Plug-In
Manager, refer to “Configure the SignalTap II Embedded Logic Analyzer” on
page 15–14. For information about defining triggers, refer to “Define Triggers” on
page 15–33.

SignalTap II Megafunction Ports
Table 15–3 provides information about the SignalTap II megafunction ports.

f For the most current information about the ports and parameters for this
megafunction, refer to the latest version of the Quartus II Help.

Figure 15–7. MegaWizard Basic and Advanced Trigger Options

Table 15–3. SignalTap II Megafunction Ports (Part 1 of 2)

Port Name Type Required Description

acq_data_in Input No This set of signals represents signals that are monitored in the
SignalTap II Embedded Logic Analyzer.

acq_trigger_in Input No This set of signals represents signals that are used to trigger the analyzer.

15–14 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Instantiating the SignalTap II Embedded Logic Analyzer in Your HDL
Add the code from the files that are generated by the MegaWizard Plug-In Manager to
your design, mapping the signals in your design to the appropriate SignalTap II
megafunction ports. You can instantiate up to 127 analyzers in your design, or as
many as physically fit in the FPGA. Once you have instantiated the .stp file in your
HDL file, compile your Quartus II project to fit the logic analyzer in the target FPGA.

To capture and view the data, create an .stp file from your SignalTap II HDL output
file. To do this, on the File menu, point to Create/Update and click Create
SignalTap II File from Design Instance(s).

c If you make any changes to your design or the SignalTap II instance, recreate or
update the .stp file using the Create/Update command. This ensures that the .stp file
is always compatible with the SignalTap II instance in your design. If the .stp file is
not compatible with the SignalTap II instance in your design, you may not be able to
control the SignalTap II Embedded Logic Analyzer after it is programmed into your
device.

For information about .stp file compatibility with programmed SignalTap II instances,
refer to “Program the Target Device or Devices” on page 15–59.

Configure the SignalTap II Embedded Logic Analyzer
The .stp file provides many options for configuring instances of the logic analyzer.
Some of the settings are similar to those found on traditional external logic analyzers.
Other settings are unique to the SignalTap II Embedded Logic Analyzer because of the
requirements for configuring an embedded logic analyzer. All settings give you the
ability to configure the logic analyzer the way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing Run-Time Trigger
conditions instead of Power-Up Trigger conditions. To learn about Power-Up Triggers
and viewing different trigger conditions, refer to “Creating a Power-Up Trigger” on
page 15–49.

Assigning an Acquisition Clock
Assign a clock signal to control the acquisition of data by the SignalTap II Embedded
Logic Analyzer. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock. You can use any signal in your design as the
acquisition clock. However, for best results, Altera recommends that you use a global,
non-gated clock synchronous to the signals under test for data acquisition. Using a

acq_clk Input Yes This port represents the sampling clock that the SignalTap II Embedded
Logic Analyzer uses to capture data.

trigger_in Input No This signal is used to trigger the SignalTap II Embedded Logic Analyzer.

trigger_out Output No This signal is enabled when the trigger event occurs.

storage_enable Input No This signal is used to enable a write transaction into the acquisition buffer.

Table 15–3. SignalTap II Megafunction Ports (Part 2 of 2)

Port Name Type Required Description

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–15
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

gated clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II static timing analysis
tools show the maximum acquisition clock frequency at which you can run your
design. Refer to the Timing Analysis section of the Compilation Report to find the
maximum frequency of the logic analyzer clock.

To assign an acquisition clock, perform the following steps:

1. In the SignalTap II Logic Analyzer window, click the Setup tab.

2. In the Signal Configuration pane, next to the Clock field, click Browse. The Node
Finder dialog box appears.

3. From the Filter list, select SignalTap II: post-fitting
or
SignalTap II: pre-synthesis.

4. In the Named field, type the exact name of a node that you want to use as your
sample clock, or search for a node using a partial name and wildcard characters.

5. To start the node search, click List.

6. In the Nodes Found list, select the node that represents the design’s global clock
signal.

7. Add the selected node name to the Selected Nodes list by clicking “>” or by
double-clicking the node name.

8. Click OK. The node is now specified as the acquisition clock in the SignalTap II
Editor.

If you do not assign an acquisition clock in the SignalTap II Editor, the Quartus II
software automatically creates a clock pin called auto_stp_external_clk.

You must make a pin assignment to this pin independently from the design. Ensure
that a clock signal in your design drives the acquisition clock.

f For information about assigning signals to pins, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File
While configuring the logic analyzer, add signals to the node list in the .stp file to
select which signals in your design you want to monitor. Selected signals are also used
to define triggers. You can assign the following two types of signals to your .stp file:

■ Pre-synthesis—This signal exists after design elaboration, but before any
synthesis optimizations are done. This set of signals should reflect your Register
Transfer Level (RTL) signals.

■ Post-fitting—This signal exists after physical synthesis optimizations and
place-and-route.

1 If you are not using incremental compilation, add only pre-synthesis signals to your
.stp file. Using pre-synthesis is particularly useful if you want to add a new node after
you have made design changes. Source file changes appear in the Node Finder after
an Analysis and Elaboration has been performed. On the Processing Menu, point to
Start and click Start Analysis & Elaboration.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

15–16 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II software does not limit the number of signals available for monitoring
in the SignalTap II window waveform display. However, the number of channels
available is directly proportional to the number of logic elements (LEs) or adaptive
logic modules (ALMs) in the device. Therefore, there is a physical restriction on the
number of channels that are available for monitoring. Signals shown in blue text are
post-fit node names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, the signals shown in red text are invalid
signals. Unless you are certain that these signals are valid, remove them from the .stp
file for correct operation. The SignalTap II Status Indicator also indicates if an invalid
node name exists in the .stp file.

As a general guideline, signals can be tapped if a routing resource (row or column
interconnects) exists to route the connection to the SignalTap II instance. For example,
signals that exist in the I/O element (IOE) cannot be directly tapped because there are
no direct routing resources from the signal in an IOE to a core logic element. For input
pins, you can tap the signal that is driving a logic array block (LAB) from an IOE, or,
for output pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, all connections made to the SignalTap II
Embedded Logic Analyzer are made prior to synthesis. Logic and routing resources
are allocated during recompilation to make the connection as if a change in your
design files had been made. As such, pre-synthesis signal names for signals driving to
and from IOEs coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II
Embedded Logic Analyzer are the signal names from the actual atoms in your post-fit
netlist. A connection can only be made if the signals are part of the existing post-fit
netlist and existing routing resources are available from the signal of interest to the
SignalTap II Embedded Logic Analyzer. In the case of post-fit output signals, tap the
COMBOUT or REGOUT signal that drives the IOE block. For post-fit input signals,
signals driving into the core logic coincide with the signal name assigned to the pin.

1 If you are tapping the signal from the atom that is driving an IOE, be aware that the
signal may be inverted due to NOT-gate push back. You can check this by locating the
signal in either the Resource Property Editor or the Technology Map Viewer. The
Technology Map viewer and the Resource Property Editor are also helpful in finding
post-fit node names.

f For information about cross-probing to source design file and other Quartus II
windows, refer to the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the SignalTap II
Embedded Logic Analyzer, refer to “Faster Compilations with Quartus II Incremental
Compilation” on page 15–53.

Signal Preservation
Many of the RTL signals are optimized during the process of synthesis and
place-and-route. RTL signal names frequently may not appear in the post-fit netlist
after optimizations. For example, the compilation process can add tildes (“~”) to nets
that are fanning out from a node, making it difficult to decipher which signal nets
they actually represent. This can cause a problem when you use the incremental

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–17
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

compilation flow with the SignalTap II Embedded Logic Analyzer. Because only
post-fitting signals can be added to the SignalTap II Embedded Logic Analyzer in
partitions of type post-fit, RTL signals that you want to monitor may not be available,
preventing their usage. To avoid this issue, use synthesis attributes to preserve signals
during synthesis and place-and-route. When the Quartus II software encounters these
synthesis attributes, it does not perform any optimization on the specified signals,
forcing them to continue to exist in the post-fit netlist. However, if you do this, you
could see an increase in resource utilization or a decrease in timing performance. The
two attributes you can use are:

■ keep—Ensures that combinational signals are not removed

■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to make them available for debugging
with the SignalTap II Embedded Logic Analyzer. This is often necessary when a
plug-in is used to add a group of signals for a particular IP.

To prevent the Quartus II software from optimizing away debugging signals on IP
cores, perform the following steps:

1. In the Quartus II GUI, on the Assignments menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings.

3. Turn on Create debugging nodes for IP cores to make these nodes available to the
SignalTap II Embedded Logic Analyzer.

Assigning Data Signals Using the Node Finder
To assign data signals, perform the following steps:

1. Perform Analysis and Elaboration, Analysis and Synthesis, or fully compile your
design.

2. In the SignalTap II Logic Analyzer window, click the Setup tab.

3. Double-click anywhere in the node list of the SignalTap II Editor to open the Node
Finder dialog box.

4. In the Fitter list, select SignalTap II: pre-synthesis or SignalTap II: post-fitting.
Only signals listed under one of these filters can be added to the SignalTap II
node list. Signals cannot be selected from any other filters.

1 Altera recommends that you do not add a mix of pre-synthesis and post-fitting signals
within the same partition. For more details, refer to “Using Incremental Compilation
with the SignalTap II Embedded Logic Analyzer” on page 15–55.

If you use incremental compilation flow with the SignalTap II Embedded Logic
Analyzer, pre-synthesis nodes may not be connected to the SignalTap II Embedded
Logic Analyzer if the affected partition is of the post-fit type. A critical warning is
issued for all pre-synthesis node names that are not found in the post-fit netlist.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

15–18 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1. In the Named field, type a node name, or search for a particular node by entering a
partial node name along with wildcard characters. To start the node name search,
click List.

2. In the Nodes Found list, select the node or bus you want to add to the .stp file.

3. Add the selected node name(s) to the Selected Nodes list by clicking “>” or by
double-clicking the node name(s).

4. To insert the selected nodes in the .stp file, click OK. With the default colors set for
the SignalTap II Embedded Logic Analyzer, a pre-synthesis signal in the list is
shown in black; a post-fitting signal is shown in blue.

1 You can also drag and drop signals from the Node Finder dialog box into
an .stp file.

Assigning Data Signals Using the Technology Map Viewer
Starting with Quartus II software version 8.0, you can easily add post-fit signal names
that you find in the Technology map viewer. To do so, launch the Technology map
viewer (post-fitting) after compiling your design. When you find the desired node,
copy the node to either the active .stp file for your design or a new .stp file.
Figure 15–8 shows the right-click menu for adding a node using the Technology map
viewer.

Node List Signal Use Options
When a signal is added to the node list, you can select options that specify how the
signal is used with the logic analyzer. You can turn off the ability of a signal to trigger
the analyzer by disabling the Trigger Enable option for that signal in the node list in
the .stp file. This option is useful when you want to see only the captured data for a
signal and you are not using that signal as part of a trigger.

Figure 15–8. Finding Data Signals Using the Technology Map Viewer

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–19
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

You can turn off the ability to view data for a signal by disabling the Data Enable
column. This option is useful when you want to trigger on a signal, but have no
interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II trigger
conditions, refer to “Define Triggers” on page 15–33.

Untappable Signals
Not all of the post-fitting signals in your design are available in the SignalTap II:
post-fitting filter in the Node Finder dialog box. The following signal types cannot be
tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

■ Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS)
signals.

■ ALTGXB megafunction—You cannot directly tap any ports of an ALTGXB
instantiation.

■ LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

■ DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a
DDR/DDRII design.

Adding Signals with a Plug-In
Instead of adding individual or grouped signals through the Node Finder, you can
add groups of relevant signals of a particular type of IP through the use of a plug-in.
The SignalTap II Embedded Logic Analyzer comes with one plug-in already installed
for the Nios II processor. Besides easy signal addition, plug-ins also provide a number
of other features, such as pre-designed mnemonic tables, useful for trigger creation
and data viewing, as well as the ability to disassemble code in captured data.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and two
tables in the Data tab:

■ Nios II Instruction (Setup tab)—Capture all the required signals for triggering on
a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed instructions in
hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from the
corresponding address.

For information about the other features plug-ins provided, refer to “Define Triggers”
on page 15–33 and “View, Analyze, and Use Captured Data” on page 15–66.

15–20 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To add signals to the .stp file using a plug-in, perform the following steps after
running Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In submenu, click the
name of the plug-in you want to use, such as the included plug-in named Nios II.

1 If the IP for the selected plug-in does not exist in your design, a message
appears informing you that you cannot use the selected plug-in.

2. The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design (Figure 15–9). Select the IP that contains the signals you want to monitor
with the plug-in and click OK.

3. If all the signals in the plug-in are available, a dialog box might appear, depending
on the plug-in selected, where you can set any available options for the plug-in.
With the Nios II plug-in, you can optionally select an .elf file containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Set options for the selected plug-in as desired and click OK.

1 To make sure all the required signals are available, in the Quartus II Analysis &
Synthesis settings, turn on the Create debugging nodes for IP cores option.

All the signals included in the plug-in are added to the node list.

Adding Finite State Machine State Encoding Registers
Finding the signals to debug Finite State Machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, as FSM encoding signals may be
changed or optimized away during synthesis and place-and-route. If you are able to
find all of the relevant nodes in the post-fit netlist or you used the nodes from the
pre-synthesis netlist, an additional step is required to find and map FSM signal values
to the state names that you specified in your HDL.

Beginning with Quartus II software version 8.0, the SignalTap II GUI can detect FSMs
in your compiled design. The SignalTap II configuration automatically tracks the FSM
state signals as well as state encoding through the compilation process. Right-click
dialog boxes from the SignalTap II GUI allow you to add all of the FSM state signals to
your embedded logic analyzer with a single command. For each FSM added to your

Figure 15–9. IP Hierarchy Selection

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–21
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

SignalTap II configuration, the FSM debugging feature adds a mnemonic table to map
the signal values to the state enumeration that you provided in your source code. The
mnemonic tables enable you to visualize state machine transitions in the waveform
viewer easily. The FSM debugging feature supports adding FSM signals from both the
pre-synthesis and post-fit netlists.

Figure 15–10 shows the waveform viewer with decoded signal values from a state
machine added with the FSM debugging feature.

f For coding guidelines for specifying FSM in Verilog and VHDL, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

To add pre-synthesis FSM signals to the configuration file, perform the following
steps after running Analysis and Elaboration on your design:

1. Create a new .stp file or use an existing .stp file.

1 Any .stp files that the MegaWizard Plug-In Manager creates from
instantiations are not supported for this feature.

2. In the SignalTap II setup tab, right-click anywhere on the node list and select Add
State Machine Nodes. The Add State Machine Nodes dialog box appears. This
dialog box lists all the FSMs that have been found in your design.

1 For the SignalTap II GUI to detect pre-synthesis state-machine signals,
perform Analysis and Elaboration of your design.

3. From the Netlist pull-down menu, select Pre-Synthesis.

4. Select the desired FSM.

5. Click OK. This adds the FSM nodes to the configuration file. A mnemonic table is
automatically applied to the FSM signal group.

To add post-fit FSM signals to the configuration file, perform the following steps after
performing a full compile of your design:

1. Set the design partition of the FSM that you want to debug to post-fit.

2. Enable the .stp file for the Quartus II project using the SignalTap II Embedded
Logic Analyzer page of the Settings dialog box. You can either create a new .stp
file or use an existing .stp file.

1 For the SignalTap II GUI to detect post-fit state-machine signals, perform a
full compile of your design.

3. In the SignalTap II setup tab, right-click anywhere on the node list and select Add
State Machine Nodes. The Add State Machine Nodes dialog box appears. This
dialog box lists all the FSMs that have been found in your design.

Figure 15–10. Decoded FSM Mnemonics

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

15–22 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

4. From the Netlist pull-down menu, select Post-Fit.

5. Select the desired FSM.

6. Click OK. This adds the FSM nodes to the configuration file. A mnemonic table is
automatically applied to the FSM signal group.

Modifying and Restoring Mnemonic Tables for State Machines
When you add FSM state signals via the FSM debugging feature, the SignalTap II GUI
creates a mnemonic table using the format <StateSignalName>_table, where
StateSignalName is the name of the state signals that you have declared in your RTL.
You can edit any mnemonic table using the Mnemonic Table Setup dialog box.

If you want to restore a mnemonic table that was modified, right-click anywhere in
the node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you
modified. If you would like to restore a FSM mnemonic table to a new record,
uncheck the Overwrite existing mnemonic table option in the Recreate State
Machine Mnemonics dialog box.

1 If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

For more information about using Mnemonics, refer to “Creating Mnemonics for Bit
Patterns” on page 15–69.

Additional Considerations
The SignalTap II configuration GUI recognizes state machines from your design only
if you use Quartus II Integrated Synthesis (QIS). The state machine debugging feature
is not able to track the FSM signals or state encoding if you have used a third-party
synthesis tool.

If you are adding post-fit FSM signals, the SignalTap II FSM debug feature may not be
able to track all of the optimization changes that are a part of the compilation process.
If the following two specific optimizations are enabled, the SignalTap II FSM debug
feature may not list mnemonic tables for state machines in the design:

■ If you have physical synthesis turned on, state registers may be resource balanced
(register retiming) to improve fMAX. The FSM debug feature does not list post-fit
FSM state registers if register retiming occurs.

■ The FSM debugging feature does not list state signals that have been packed into
RAM and DSP blocks during QIS or Fitter optimizations.

You are still able to use the FSM debugging feature to add pre-synthesis state signals.

Specifying the Sample Depth
The sample depth specifies the number of samples that are captured and stored for
each signal in the captured data buffer. To set the sample depth, select the desired
number of samples to store in the Sample Depth list. The sample depth ranges from
0 to 128K.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–23
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.

Capturing Data to a Specific RAM Type
When you use the SignalTap II Embedded Logic Analyzer with some devices, you
have the option to select the RAM type where acquisition data is stored. RAM
selection allows you to preserve a specific memory block for your design and allocate
another portion of memory for SignalTap II data acquisition. For example, if your
design implements a large buffering application such as a system cache, it is ideal to
place this application into M-RAM blocks so that the remaining M512 or M4K blocks
are used for SignalTap II data acquisition.

To select the RAM type to use for the SignalTap II buffer, select it from the RAM type
list. Use this feature when the acquired data (as reported by the SignalTap II resource
estimator) is not larger than the available memory of the memory type that you have
selected in the FPGA.

Choosing the Buffer Acquisition Mode
The Buffer Acquisition Type Selection feature in the SignalTap II Embedded Logic
Analyzer lets you choose how the captured data buffer is organized and can
potentially reduce the amount of memory that is required for SignalTap II data
acquisition. There are two types of acquisition buffer within the SignalTap II
Embedded Logic Analyzer—a non-segmented buffer and a segmented buffer. With a
non-segmented buffer, the SignalTap II Embedded Logic Analyzer treats entire
memory space as a single FIFO, continuously filling the buffer until the embedded
logic analyzer reaches a defined set of trigger conditions. With a segmented buffer, the
memory space is split into a number of separate buffers. Each buffer acts as a separate
FIFO with its own set of trigger conditions. Only a single buffer is active during an
acquisition. The SignalTap II Embedded Logic Analyzer advances to the next segment
after the trigger condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space. Figure 15–11 illustrates the
differences between the two buffer types.

15–24 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

For more information about the storage qualification feature, refer to “Using the
Storage Qualifier Feature” on page 15–25.

Non-Segmented Buffer
The non-segmented buffer (also known as a circular buffer) shown in Figure 15–11 (a)
is the default buffer type used by the SignalTap II Embedded Logic Analyzer. While
the logic analyzer is running, data is stored in the buffer until it fills up, at which point
new data replaces the oldest data. This continues until a specified trigger event—that
is, a set of trigger conditions—occurs. When this happens, the logic analyzer
continues to capture data after the trigger event until the buffer is full, based on the
trigger position setting in the Signal Configuration pane in the .stp file. Select a
setting from the list to choose whether to capture the majority of the data before (Post
trigger position), after (Pre-trigger position) the trigger occurs, or to center the
trigger position in the data (Center trigger position). Alternatively, use the custom
State-based triggering flow to define a custom trigger position within the capture
buffer.

For more information, refer to “Specifying the Trigger Position” on page 15–48.

Segmented Buffer
A segmented buffer makes it easier to debug systems that contain relatively
infrequent recurring events. The acquisition memory is split into a set of evenly sized
segments, with a set of trigger conditions defined for each segment. Each segment acts
as a non-segmented buffer. Figure 15–12 shows an example of this type of buffer
system.

Figure 15–11. Buffer Type Comparison in the SignalTap II Embedded Logic Analyzer (Note 1)

Note to Figure 15–11:

(1) Both non-segmented and segmented buffers can use a predefined trigger (Pre-Trigger, Center Trigger, Post-Trigger) position or define a custom
trigger position using the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 15–48 for more details.

(2) Each segment is treated like a FIFO, and behaves as the non-segmented buffer shown in (a).

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–25
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The SignalTap II Embedded Logic Analyzer verifies the functionality of the design
shown in Figure 15–12 to ensure that the correct data is written to the SRAM
controller. Buffer acquisition in the SignalTap II Embedded Logic Analyzer allows you
to monitor the RDATA port when H'0F0F0F0F is sent into the RADDR port. You can
monitor multiple read transactions from the SRAM device without running the
SignalTap II Embedded Logic Analyzer again. The buffer acquisition feature allows
you to segment the memory so you can capture the same event multiple times
without wasting allocated memory. The number of cycles that are captured depends
on the number of segments specified under the Data settings.

To enable and configure buffer acquisition, select Segmented in the SignalTap II Editor
and select the number of segments to use. In the example, selecting sixty-four
64-sample segments allows you to capture 64 read cycles when the RADDR signal is
H'0F0F0F0F.

f For more information about buffer acquisition mode, refer to Setting the Buffer
Acquisition Mode in the Quartus II Help.

Using the Storage Qualifier Feature
Both non-segmented and segmented buffers described in the previous section offer a
snapshot in time of the data stream being analyzed. The default behavior for writing
into acquisition memory with the SignalTap II Embedded Logic Analyzer is to sample
data on every clock cycle. With a non-segmented buffer, there is one data window that
represents a contiguous snapshot of the datastream. Similarly, segmented buffers use
several smaller sampling windows spread out over a larger time scale, with each
sampling window representing a contiguous data set.

With carefully chosen trigger conditions and a generous sample depth for the
acquisition buffer, analysis using segmented and non-segmented buffers captures a
majority of functional errors in a chosen signal set. However, each data window can
have a considerable amount of redundancy associated with it; for example, a capture
of a data stream containing long periods of idle signals between data bursts. With
default behavior using the SignalTap II Embedded Logic Analyzer, there is no way to
discard the redundant sample bits.

Figure 15–12. Example System that Generates Recurring Events

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

15–26 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Storage Qualification feature allows you to filter out individual samples not
relevant to debugging the design. With this feature, a condition acts as a write enable
to the buffer each clock cycle during a data acquisition. Through fine tuning the data
that is actually stored in acquisition memory, the Storage Qualification feature allows
for a more efficient use of acquisition memory and covers a larger time scale.

Use of the Storage Qualification feature is similar to an acquisition using a segmented
buffer, in that you can create a discontinuity in the capture buffer. Because you can
create a discontinuity between any two samples in the buffer, the Storage
Qualification feature is equivalent to being able to create a customized segmented
buffer in which the number and size of segment boundaries are adjustable.
Figure 15–13 illustrates three ways the SignalTap II Embedded Logic Analyzer writes
into acquisition memory.

1 The Storage Qualification feature can only be used with a non-segmented buffer. The
MegaWizard Plug-In Manager instantiated flow only supports the Input Port mode
for the Storage Qualification feature.

Figure 15–13. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to Figure 15–13:

(1) Non-segmented Buffers capture a fixed sample window of contiguous data.
(2) Segmented buffers divide the buffer into fixed sized segments, with each segment having an equal sample depth.
(3) Storage Qualification allows you to define a custom sampling window for each segment you create with a qualifying condition. Storage

qualification potentially allows for a larger time scale of coverage.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–27
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

There are five types available under the Storage Qualification feature:

■ Continuous

■ Input port

■ Transitional

■ Conditional

■ Start/Stop

■ State-based

Continuous (the default mode selected) turns the Storage Qualification feature off.

Each selected storage qualifier type is active when an acquisition starts. Upon the start
of an acquisition, the SignalTap II Embedded Logic Analyzer examines each clock
cycle and writes the data into the acquisition buffer based upon storage qualifier type
and condition. The acquisition stops when a defined set of trigger conditions occur.

1 Trigger conditions are evaluated independently of storage qualifier conditions. The
SignalTap II Embedded Logic Analyzer evaluates the data stream for trigger
conditions on every clock cycle after the acquisition begins.

Trigger conditions are defined in “Define Trigger Conditions” on page 15–6.

The storage qualifier operates independently of the trigger conditions.

The following subsections describe each storage qualification mode from the
acquisition buffer.

Input Port Mode
When using the Input port mode, the SignalTap II Embedded Logic Analyzer takes
any signal from your design as an input. When the design is running, if the signal is
high on the clock edge, the SignalTap II Embedded Logic Analyzer stores the data in
the buffer. If the signal is low on the clock edge, the data sample is ignored. A pin is
created and connected to this input port by default if no internal node is specified.

If you are using an .stp file to create a SignalTap II Embedded Logic Analyzer
instance, specify the storage qualifier signal using the input port field located on the
Setup tab. This port must be specified for your project to compile.

If you are using the MegaWizard Plug-In Manager flow, the storage qualification
input port, if specified, will appear in the MegaWizard-generated instantiation
template. This port can then be connected to a signal in your RTL.

Figure 15–14 shows a data pattern captured with a segmented buffer. Figure 15–15
shows a capture of the same data pattern with the storage qualification feature
enabled.

Figure 15–14. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate Input port mode)

15–28 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Transitional Mode
In Transitional mode, you choose a set of signals for inspection using the node list
check boxes in the storage qualifier column. During acquisition, if any of the signals
marked for inspection have changed since the previous clock cycle, new data is
written to the acquisition buffer. If none of the signals marked have changed since the
previous clock cycle, no data is stored. Figure 15–16 shows the transitional storage
qualifier setup. Figure 15–17 and Figure 15–18 show captures of a data pattern in
continuous capture mode and a data pattern using the Transitional mode for storage
qualification.

Figure 15–15. Data Acquisition of a Recurring Data Pattern Using an Input Signal as a Storage Qualifier

Figure 15–16. Transitional Storage Qualifier Setup

Figure 15–17. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate
Transitional mode)

Figure 15–18. Data Acquisition of Recurring Data Pattern Using a Transitional Mode as a Storage
Qualifier

Node List Storage Enable Transitional Enable
Storage Qualifier
Dialog Box

Redundant idle samples discarded

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–29
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conditional Mode
In Conditional mode, the SignalTap II Embedded Logic Analyzer evaluates a
combinational function of storage qualifier enabled signals within the node list to
determine whether a sample is stored. The SignalTap II Embedded Logic Analyzer
writes into the buffer during the clock cycles in which the condition you specify
evaluates TRUE.

There are two types of conditions that you can specify: basic and advanced. A basic
storage condition matches each signal to one of the following:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Either Edge

If a Basic Storage condition is specified for more than one signal, the SignalTap II
Embedded Logic Analyzer evaluates the logical AND of the conditions.

Any other combinational or relational operators that you may want to specify with
the enabled signal set for storage qualification can be done with an advanced storage
condition. Figure 15–19 details the conditional storage qualifier setup in the .stp file.

You can set up storage qualification conditions similar to the manner in which trigger
conditions are set up. For details about basic and advanced trigger conditions, refer to
the sections “Creating Basic Trigger Conditions” on page 15–33 and “Creating
Advanced Trigger Conditions” on page 15–34. Figure 15–20 and Figure 15–21 show a
data capture with continuous sampling, and the same data pattern using the
conditional mode for analysis, respectively.

Figure 15–19. Conditional Storage Qualifier Setup

Basic or Advanced storage
condition

Node List Storage Enable

15–30 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Start/Stop Mode
The Start/Stop mode is similar to the Conditional mode for storage qualification.
However, in this mode there are two sets of conditions, one for start and one for stop.
If the start condition evaluates to TRUE, data begins to be stored in the buffer every
clock cycle until the stop condition evaluates to TRUE, which then pauses the data
capture. Additional start signals received after the data capture has started are
ignored. If both start and stop evaluate to TRUE at the same time, a single cycle is
captured.

1 You can force trigger to the buffer by pressing the Stop button if the buffer fails to fill
to completion due to a stop condition.

Figure 15–22 shows the Start/Stop mode storage qualifier setup. Figure 15–23 and
Figure 15–24 show captures data pattern in continuous capture mode and a data
pattern in using the Start/Stop mode for storage qualification.

Figure 15–20. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate
Conditional capture)

Figure 15–21. Data Acquisition of a Recurring Data Pattern in Conditional Capture Mode

(1) Storage Qualifier condition is set up to pause acquisition when the following occurs:

data_out[6] AND data_out[7] = True. Resultant capture with storage qualifier enabled is shown in Figure 14-21.

Figure 15–22. Start/Stop Mode Storage Qualifier Setup

Storage Qualifier Storage Qualifier
Start Condition

Storage Qualifier
Stop Condition

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–31
Configure the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

State-Based
The State-based storage qualification mode is used with the State-based triggering
flow. The state based triggering flow evaluates an if-else based language to define
how data is written into the buffer. With the State-based trigger flow, you have
command over boolean and relational operators to guide the execution flow for the
target acquisition buffer. When the storage qualifier feature is enabled for the
State-based flow, two additional commands are available, the start_store and
stop_store commands. These commands operate similarly to the Start/Stop
capture conditions described in the previous section. Upon the start of acquisition,
data is not written into the buffer until a start_store action is performed. The
stop_store command pauses the acquisition. If both start_store and
stop_store actions are performed within the same clock cycle, a single sample is
stored into the acquisition buffer.

For more information about the State-based flow and storage qualification using the
State-based trigger flow, refer to the section “Custom State-Based Triggering” on
page 15–38.

Showing Data Discontinuities
When you enable the check box option Record data discontinuities, the SignalTap II
Embedded Logic Analyzer marks the samples during which the acquisition paused
from a storage qualifier. This marker is displayed in the waveform viewer after
acquisition completes.

Disable Storage Qualifier
The Disable Storage Qualifier check box allows you to turn off the storage qualifier
quickly and perform a continuous capture. This option is run-time reconfigurable;
that is, the setting can be changed without recompiling the project. Changing storage
qualifier mode from the Type field requires a recompilation of the project.

1 For a detailed explanation of Runtime Reconfigurable options available with the
SignalTap II Embedded Logic Analyzer, and storage qualifier application examples
using runtime reconfigurable options, refer to “Runtime Reconfigurable Options” on
page 15–63.

Figure 15–23. Data Acquisition of a Recurring Data Pattern in Continuous Mode (to illustrate
Start/Stop mode)

Figure 15–24. Data Acquisition of a Recurring Data Pattern with Start/Stop Storage Qualifier Enabled

15–32 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Configure the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Managing Multiple SignalTap II Files and Configurations
In some cases you may have more than one .stp file in one design. Each file potentially
has a different group of monitored signals. These signal groups make it possible to
debug different blocks in your design. In turn, each group of signals can also be used
to define different sets of trigger conditions. Along with each .stp file, there is also an
associated programming file (SRAM Object File [.sof]). The settings in a selected
SignalTap II file must match the SignalTap II logic design in the associated .sof file for
the logic analyzer to run properly when the device is programmed. Managing all of
the .stp files and their associated settings and programming files is a challenging task.
To help you manage everything, use the Data Log feature and the SOF Manager.

The Data Log allows you to store multiple SignalTap II configurations within a single
.stp file. Figure 15–25 shows two signal set configurations with multiple trigger
conditions in one .stp file. To toggle between the active configurations, double-click
on an entry in the Data Log. As you toggle between the different configurations, the
signal list and trigger conditions change in the Setup tab of the .stp file. The active
configuration displayed in the .stp file is indicated by the blue square around the
signal set in the Data Log. To store a configuration in the Data Log, on the Edit menu,
click Save to Data Log or click the Save to Data Log button at the top of the Data Log.

The SOF Manager allows you to embed multiple SOFs into one .stp file. Embedding
an SOF in an .stp file lets you move the .stp file to a different location, either on the
same computer or across a network, without the need to include the associated .sof as
a separate file. To embed a new SOF in the .stp file, right-click in the SOF Manager,
and click Attach SOF File (Figure 15–26).

Figure 15–25. Data Log

Figure 15–26. SOF Manager

Save to Data Log

Enable
Data Log

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–33
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that particular configuration and use the programmer in the
SignalTap II Embedded Logic Analyzer to download the new SOF to the FPGA. In
this way, you ensure that the configuration of your .stp file always matches the design
programmed into the target device.

Define Triggers
When you start the SignalTap II Embedded Logic Analyzer, it samples activity
continuously from the monitored signals. The SignalTap II Embedded Logic Analyzer
“triggers”—that is, stops and displays the data—when a condition or set of conditions
that you specified has been reached. This section describes the various types of trigger
conditions that you can set using the SignalTap II Embedded Logic Analyzer.

Creating Basic Trigger Conditions
The simplest kind of trigger condition is a basic trigger. Select this from the list at the
top of the Trigger Conditions column in the node list in the SignalTap II Editor. With
the trigger type set to Basic, set the trigger pattern for each signal you have added in
the .stp file. To set the trigger pattern, right-click in the Trigger Conditions column
and click the desired pattern. Set the trigger pattern to any of the following
conditions:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Rising Edge

■ Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals added to the
.stp file that have an associated mnemonic table, you can right-click and select an
entry from the table to set pre-defined conditions for the trigger.

For more information about creating and using mnemonic tables, refer to “View,
Analyze, and Use Captured Data” on page 15–66, and to the Quartus II Help.

For signals added with certain plug-ins, you can create basic triggers easily using
predefined mnemonic table entries. For example, with the Nios II plug-in, if you have
specified an .elf file from your Nios II IDE design, you can type the name of a function
from your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the
signals for a given trigger condition evaluates to TRUE.

15–34 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Creating Advanced Trigger Conditions
With the SignalTap II Embedded Logic Analyzer’s basic triggering capabilities, you
can build more complex triggers utilizing extra logic that enables you to capture data
when a particular combination of conditions exist. If you set the trigger type to
Advanced at the top of the Trigger Conditions column in the node list of the
SignalTap II Editor, a new tab named Advanced Trigger appears where you can build
a complex trigger expression using a simple GUI. To build the complex trigger
condition in an expression tree, drag-and-drop operators into the Advanced Trigger
Configuration Editor window. To configure the operators’ settings, double-click or
right-click the operators that you have placed and select Properties. Table 15–4 lists
the operators you can use.

Table 15–4. Advanced Triggering Operators (Note 1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 15–4:

(1) For more information about each of these operators, refer to the Quartus II Help.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–35
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the right-click menu and select Arrange All Objects.
You can also use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

Examples of Advanced Triggering Expressions
The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb (Figure 15–27).

■ Trigger when bus outa is greater than or equal to bus outb, and when the enable
signal has a rising edge (Figure 15–28).

Figure 15–27. Bus outa is Greater Than or Equal to Bus outb

Figure 15–28. Enable Signal has a Rising Edge

15–36 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Trigger when bus outa is greater than or equal to bus outb, or when the enable
signal has a rising edge. Or, when a bitwise AND operation has been performed
between bus outc and bus outd, and all bits of the result of that operation are
equal to 1 (Figure 15–29).

Trigger Condition Flow Control
The SignalTap II Embedded Logic Analyzer offers multiple triggering conditions to
give you precise control of the method data is captured into the acquisition buffers.
Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. The SignalTap II Embedded Logic Analyzer offers two flow
control mechanisms for organizing trigger conditions:

■ Sequential Triggering—This is the default triggering flow. Sequential triggering
allows you to define up to 10 triggering levels that must be satisfied before the
acquisition buffer finishes capturing.

■ Custom State-Based Triggering—This flow allows you the greatest control over
your acquisition buffer. Custom-based triggering allows you to organize trigger
conditions into states based on a conditional flow that you define.

You can use either method with either a segmented or a non-segmented buffer.

Sequential Triggering
Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. The SignalTap II Embedded Logic Analyzer sequentially evaluates each of
the triggering conditions. When the last triggering condition evaluates to TRUE, the
SignalTap II Embedded Logic Analyzer triggers the acquisition buffer. For segmented
buffers, every acquisition segment after the first segment triggers on the last
triggering condition that you have specified. Use the Simple Sequential Triggering
feature with basic triggers, advanced triggers, or a mix of both. Figure 15–30
illustrates the simple sequential triggering flow for non-segmented and segmented
buffers.

Figure 15–29. Bitwise AND Operation

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–37
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

To configure the SignalTap II Embedded Logic Analyzer for Sequential triggering, in
the SignalTap II editor on the Trigger flow control list, select Sequential. Select the
desired number of trigger conditions by using the Trigger Conditions pull-down list.
After you select the desired number of trigger conditions, configure each trigger
condition in the node list. To disable any trigger condition, click the check box next to
the trigger condition at the top of the column in the node list. Figure 15–31 shows the
Setup tab for Sequential Triggering.

Figure 15–30. Sequential Triggering Flow (Note 1), (2)

Notes to Figure 15–30:

(1) The acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, is evaluated before all other defined trigger conditions are evaluated. For more information about external

triggers, refer to “Using External Triggers” on page 15–51.

Non-segmented Buffer Segmented Buffer

Acquisition Segment 1
trigger

Acquisition Segment 2
trigger

Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n 10

15–38 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Custom State-Based Triggering
Custom State-based triggering gives you the most control of triggering condition
arrangement. This flow gives you the ability to describe the relationship between
triggering conditions precisely, using an intuitive GUI and the SignalTap II Trigger
Flow Description Language, a simple description language based upon conditional
expressions. Tooltips within the custom triggering flow GUI allow you to describe
your desired flow quickly. The custom State-based triggering flow allows for more
efficient use of the space available in the acquisition buffer because only specific
samples of interest are captured.

Figure 15–32 illustrates the custom State-based triggering flow. Events that trigger the
acquisition buffer are organized by a user-defined state diagram. All actions
performed by the acquisition buffer are captured by the states and all transition
conditions between the states are defined by the conditional expressions that you
specify within each state.

Figure 15–31. Setup Tab

Setup Tab

Trigger Conditions Pull-Down List

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–39
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression dependent on a combination of triggering
conditions (configured within the Setup tab), counters, and status flags. Counters and
status flags are resources provided by the SignalTap II custom-based triggering flow.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides you
with an optional count that specifies the number of samples to be captured before
stopping acquisition of the current segment. The count argument allows you to
control the amount of data captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The counter and status flag resources are used as optional
inputs in conditional expressions. Counters and status flags are useful for counting
the number of occurrences of particular events and for aiding in triggering flow
control.

This SignalTap II custom State-based triggering flow allows you to capture a sequence
of events that may not necessarily be contiguous in time; for example, capturing a
communication transaction between two devices that includes a handshaking
protocol containing a sequence of acknowledgements.

The State-Based Trigger Flow tab is the control interface for the custom state-based
triggering flow. To enable this tab, on the Trigger Flow Control pull-down list, select
State-based. (Note that when the Trigger Flow Control option is set to Sequential,
the State-Based Trigger Flow tab is hidden.)

Figure 15–33 shows the State-Based Trigger Flow tab.

Figure 15–32. Custom State-Based Triggering Flow (Note 1), (2)

Notes to Figure 15–32:
(1) You are allowed up to 20 different states.
(2) An external trigger input, if defined, is evaluated before any conditions in the custom State-based triggering flow are evaluated. For more

information, refer to “Using External Triggers” on page 15–51.

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition Condition i

Transition Condition j

Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

Next Acquisition Segment

15–40 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The State-Based Trigger Flow tab is partitioned into the following three panes:

■ State Diagram Pane

■ Resources Pane

■ State Machine Pane

State Diagram Pane

The State Diagram pane provides a graphical overview of the triggering flow that
you define. It shows the number of states available and the state transitions between
all of the states. You can adjust the number of available states by using the pull-down
menu above the graphical overview.

State Machine Pane

The State Machine pane contains the text entry boxes where you can define the
triggering flow and actions associated with each state. You can define the triggering
flow using the SignalTap II Trigger Flow Description Language, a simple language
based on “if-else” conditional statements. Tooltips appear when you move the mouse
over the cursor, to guide command entry into the state boxes. The GUI provides a
syntax check on your flow description in real-time and highlights any errors in the
text flow.

Figure 15–33. State-Based Trigger Flow Tab

State-Based Trigger Flow Tab

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–41
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

1 For a full description of the SignalTap II Trigger Flow Description Language, refer to
“SignalTap II Trigger Flow Description Language” on page 15–42. You can also refer
to the Quartus II Help.

The State Machine description text boxes default to show one text box per state. You
can optionally have the entire flow description shown in a single text field. This
option can be useful when copying and pasting a flow description from a template or
an external text editor. To toggle between one window per state, or all states in one
window, select the appropriate option under State Display mode.

Resources Pane

The Resources pane allows you to declare Status Flags and Counters for use in the
conditional expressions in the Custom Triggering Flow. Actions to decrement and
increment counters or to set and clear status flags are performed within the triggering
flow that you define.

You can set up to 20 counters and 20 status flags. Counter and status flags values may
be initialized by right-clicking the status flag or counter name after selecting a number
of them from the respective pull-down list, and selecting Set Initial Value. To set
counter width, right-click the counter name and select Set Width. Counters and flag
values are updated dynamically after acquisition has started to assist in debugging
your trigger flow specification.

Runtime Reconfigurability—The configurable at runtime options in the Resources
pane allows you to configure the custom-flow control options that can be changed at
runtime without requiring a recompilation. Table 15–5 contains a description of
options for the State-based trigger flow that can be reconfigured at runtime.

1 For a broader discussion about all options that can be changed without incurring a
recompile refer to “Runtime Reconfigurable Options” on page 15–63.

You can restrict changes to your SignalTap configuration to include only the options
that do not require a recompilation by using the pull-down menu above the trigger
list in the Setup tab. The option Allow trigger condition changes only restricts
changes to only the configuration settings that have the configurable at runtime set.
With this option enabled, to modify Trigger Flow conditions in the Custom Trigger
Flow tab, click the desired parameter in the text box and select a new parameter from
the menu that appears.

Table 15–5. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows comparison values in Boolean expressions to be modifiable at runtime. In addition, it
allows the segment_trigger and trigger action post-fill count argument to be modifiable
at runtime.

Comparison operators Allows comparison operators in Boolean expressions to be modifiable at runtime.

Logical operators Allows the logical operators in Boolean expressions to be modifiable at runtime.

15–42 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 The runtime configurable settings for the Custom Trigger Flow tab are on by default.
You may get some performance advantages by disabling some of the runtime
configurable options. For details about the effects of turning off the runtime
modifiable options, refer to “Performance and Resource Considerations” on
page 15–57.

SignalTap II Trigger Flow Description Language
The Trigger Flow Description Language is based on a list of conditional expressions
per state to define a set of actions. Each line in Example 15–1 shows a language
format. Keywords are shown in bold. Non-terminals are delimited by “<>” and are
further explained in the following sections. Optional arguments are delimited by
“[]“ (Example 15–1).

1 Examples of Triggering Flow descriptions for common scenarios using the
SignalTap II Custom Triggering Flow are provided in “Custom Triggering Flow
Application Examples” on page 15–79.

The priority for evaluation of conditional statements is assigned from top to bottom.
The <boolean_expression> in an if statement can contain a single event, or it can contain
multiple event conditions. The action_list embedded within an if or an else
if clause must be delimited by the begin and end tokens when the action list contains
multiple statements. When the boolean expression is evaluated TRUE, the logic
analyzer analyzes all of the commands in the action list concurrently. The possible
actions include:

■ Triggering the acquisition buffer

■ Manipulating a counter or status flag resource

■ Defining a state transition

State Labels
State labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated when this state
is reached.

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

Example 15–1. Trigger Flow Description Language Format (Note 1)

state <State_label>:
<action_list>

if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
<action_list>] (1)
[else
<action_list>]

Note to Example 15–1:

(1) Multiple else if conditions are allowed.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–43
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Boolean_expression
Boolean_expression is a collection of logical operators, relational operators, and
their operands that evaluate into a Boolean result. Depending on the operator, the
operand can be a reference to a trigger condition, a counter and a register, or a
numeric value. Within an expression, parentheses can be used to group a set of
operands.

Logical operators accept any boolean expression as an operand. The supported
logical operators are shown in Table 15–6.

Relational operators are performed on counters or status flags. The comparison
value—the right operator—must be a numerical value. The supported relational
operators are shown in Table 15–7.

Action_list
Action_list is a list of actions that can be performed when a state is reached and a
condition is also satisfied. If more than one action is specified, they must be enclosed
by begin and end. The actions can be categorized as resource manipulation actions,
buffer control actions, and state transition actions. Each action is terminated by a
semicolon (;).

Resource Manipulation Action
The resources used in the trigger flow description can be either counters or status
flags. Table 15–8 shows the description and syntax of each action.

Table 15–6. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 15–7. Relational Operators

Operator Description Syntax (Note 1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 15–7:

(1) <identifier> indicates a counter or status flag.
(2) <numerical_value> indicates an integer.

Table 15–8. Resource Manipulation Action (Part 1 of 2)

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

15–44 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Buffer Control Action
Buffer control actions specify an action to control the acquisition buffer. Table 15–9
shows the description and syntax of each action.

Both trigger and segment_trigger actions accept an optional post-fill count
argument. If provided, the current acquisition acquires the number of samples
provided by post-fill count and then stops acquisition. If no post-count value is
specified, the trigger position for the affected buffer defaults to the trigger position
specified in the Setup tab.

1 In the case of segment_trigger, acquisition of the current buffer stops immediately
if a subsequent triggering action is issued in the next state, regardless of whether or
not the post-fill count has been satisfied for the current buffer. The remaining unfilled
post-count acquisitions in the current buffer are discarded and displayed as
grayed-out samples in the data window.

State Transition Action
The State Transition action specifies the next state in the custom state control flow. It is
specified by the goto command. The syntax is as follows:

goto <state_label>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status Flag to 1 set <register_flag_identifier>;

clear Sets a status Flag to 0 clear <register_flag_identifier>;

Table 15–8. Resource Manipulation Action (Part 2 of 2)

Action Description Syntax

Table 15–9. Buffer Control Action

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger Ends the acquisition of the current segment.
The SignalTap II Embedded Logic Analyzer
starts acquiring from the next segment on
evaluating this command. If all segments are
filled, the oldest segment is overwritten with
the latest sample. The acquisition stops when
a trigger action is evaluated.

This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

start_store Asserts the write_enable to the
SignalTap II acquisition buffer. This command
is active only when the State-based storage
qualifier mode is enabled.

start_store

stop_store De-asserts the write_enable signal to the
SignalTap II acquisition buffer. This command
is active only when the State-based storage
qualifier mode is enabled.

stop_store

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–45
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using the State-Based Storage Qualifier Feature
When you select State-based for the storage qualifier type, the start_store and
stop_store actions are enabled in the State-based trigger flow. These commands,
when used in conjunction with the expressions of the State-based trigger flow, give
you maximum flexibility to control data written into the acquisition buffer.

1 The start_store and stop_store commands can only be applied to a
non-segmented buffer.

The start_store and stop_store commands function similar to the start and
stop conditions when using the start/stop storage qualifier mode conditions. If
storage qualification is enabled, the start_store command must be issued for
SignalTap II to write data into the acquisition buffer. No data is acquired until the
start_store command is performed. Also, a trigger command must be included
as part of the trigger flow description. The trigger command is necessary to
complete the acquisition and display the results on the waveform display.

The following examples illustrate the behavior of the State-based trigger flow with the
storage qualification commands.

Figure 15–34 shows a hypothetical scenario with three trigger conditions that happen
at different points in time after the run analysis button is pushed. The trigger flow
description in Example 15–2, when applied to the scenario shown in Figure 15–34,
illustrates the functionality of the storage qualification feature for the state-based
trigger flow.

In this example, the SignalTap II Embedded Logic Analyzer does not write into the
acquisition buffer until sample a, when Condition 1 occurs. Once sample b is reached,
the trigger value command is evaluated. The logic analyzer continues to write
into the buffer to finish the acquisition. The trigger flow specifies a stop_store
command at sample c, m samples after the trigger point occurs.

Example 15–2. Trigger Flow Description 1

State 1: ST1:
if (condition1)

start_store;
else if (condition2)

trigger value;
else if (condition3)

stop_store;

Figure 15–34. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

15–46 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The logic analyzer will be able to finish the acquisition and display the contents of the
waveform if it can successfully finish the post-fill acquisition samples before
Condition 3 occurs. In this specific case, the capture ends if the post-fill count value is
less than m.

If the post-fill count value specified in Trigger Flow description 1 is greater than m
samples, the buffer pauses acquisition indefinitely, provided there is no recurrence of
Condition 1 to trigger the logic analyzer to start capturing data again. The SignalTap II
Embedded Logic Analyzer continues to evaluate the stop_store and start_store
commands even after the trigger command is evaluated. If the acquisition has paused,
you can manually stop and force the acquisition to trigger by using the Stop Analysis
button. You can use counter values, flags, and the State diagram to help you gauge the
execution of the trigger flow. The counter values, flags, and the current state are
updated in real-time during a data acquisition.

Figure 15–35 and Figure 15–36 show a real data acquisition of the scenario described
in Figure 15–33. Figure 15–35 illustrates a scenario where the data capture finishes
successfully. It uses a buffer with a sample depth of 64, m = n = 10, and the post-fill
count value = 5. Figure 15–36 illustrates a scenario where the logic analyzer pauses
indefinitely even after a trigger condition occurs due to a stop_store condition.
This scenario uses a sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 15–35. Storage Qualification with Post-Fill Count Value Less than m (Acquisition successfully
completes)

Condition 1 Condition 2 post-fill count

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–47
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that get written into the acquisition buffer.
Example 15–3 shows a trigger flow description that skips three clock cycles of samples
after hitting condition 1. Figure 15–37 shows the data transaction on a continuous
capture and Figure 15–39 shows the data capture with the Trigger flow description in
Example 15–3 applied.

Figure 15–36. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
indefinitely paused)

Condition 1 Condition 2 Condition 3

(1) Flags added to trigger flow description to help gauge the execution during runtime.
(2), (3) Status bar and current value fields update during an acquisition to provide real time status of the data acquisition.

(1)

(1)

(1)

(3)

(2)

Waveform after forcing the analysis to stop

15–48 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Specifying the Trigger Position
The SignalTap II Embedded Logic Analyzer allows you to specify the amount of data
that is acquired before and after a trigger event. You can set the trigger position
independently between a Runtime and Power-Up Trigger. Select the desired ratio of
pre-trigger data to post-trigger data by choosing one of the following ratios:

■ Pre—This selection saves signal activity that occurred after the trigger (12%
pre-trigger, 88% post-trigger).

■ Center—This selection saves 50% pre-trigger and 50% post-trigger data.

■ Post—This selection saves signal activity that occurred before the trigger (88%
pre-trigger, 12% post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

Example 15–3. Trigger Flow Description 2

State 1: ST1
start_store
if (condition1)
begin

stop_store;
goto ST2;

end

State 2: ST2
if (c1 < 3)

increment c1; //skip three clock cycles; c1 initialized to 0

else if (c1 == 3)
begin

start_store; //start_store necessary to enable writing to finish
//acquisition

trigger;
end

Figure 15–37. Continuous Capture of Data Transaction for Example 2

Figure 15–38. Capture of Data Transaction with Trigger Flow Description Applied

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–49
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If you use the custom-state based triggering flow, you can specify a custom trigger
position. The segment_trigger and trigger actions accept a post-fill count
argument. The post-fill count specifies the number of samples to capture before
stopping data acquisition for the non-segmented buffer or a data segment when using
the trigger and segment_trigger commands, respectively. When the captured
data is displayed in the SignalTap II data window, the trigger position appears as the
number of post-count samples from the end of the acquisition segment or buffer.
Refer to Equation 15–1:

In this case, N is the sample depth of either the acquisition segment or non-segmented
buffer.

For segmented buffers, the acquisition segments that have a post-count argument
defined use the post-count setting. Segments that do not have a post-count setting
default to the trigger position ratios defined in the Setup tab.

For more details about the custom State-based triggering flow, refer to “Custom
State-Based Triggering” on page 15–38 and “Custom State-Based Triggering” on
page 15–38.

Creating a Power-Up Trigger
Typically, the SignalTap II Embedded Logic Analyzer is used to trigger on events that
occur during normal device operation. You start an analysis manually once the target
device is fully powered on and the device’s JTAG connection is available. However,
there may be cases when you would like to capture trigger events that occur during
device initialization, immediately after the FPGA is powered on or reset. With the
SignalTap II Power-Up Trigger feature, you arm the SignalTap II Embedded Logic
Analyzer and capture data immediately after device programming.

Enabling a Power-Up Trigger
You can add a different Power-Up Trigger to each logic analyzer instance in the
SignalTap II Instance Manager. To enable the Power-Up Trigger for a logic analyzer
instance, right-click the instance and click Enable Power-Up Trigger, or select the
instance, and on the Edit menu, click Enable Power-Up Trigger. To disable a
Power-Up Trigger, click Disable Power-Up Trigger in the same locations. Power-Up
Trigger is shown as a child instance below the name of the selected instance with the
default trigger conditions set in the node list. Figure 15–39 shows the SignalTap II
Editor when Power-Up Trigger is enabled.

Equation 15–1.

Sample Number of Trigger Position N Post-Fill Count– =

15–50 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Managing and Configuring Power-Up and Runtime Trigger Conditions
When the Power-Up Trigger is enabled for a logic analyzer instance, you can create
basic and advanced trigger conditions for it in the same way you do with the regular
trigger, also called the Run-Time Trigger. Power-Up Trigger conditions that you can
adjust are color coded light blue, while Run-Time Trigger conditions remain white.
Since each instance now has two sets of trigger conditions—the Power-Up Trigger
and the Run-Time Trigger—you can differentiate between the two with color coding.
To switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally
require a full recompile with Runtime Trigger conditions, such as adding signals,
deleting signals, or changing between basic and advanced triggers. For these changes
to be applied to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

1 Any change made to the Power-Up Trigger conditions requires that the SignalTap II
Embedded Logic Analyzer be recompiled, even if a similar change to the Runtime
Trigger conditions does not require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger
or the Power-Up Trigger, you may want to copy these conditions to the other trigger.
This enables you to look for the same trigger during both power-up and runtime. To
do this, right-click the instance name or the Power-Up Trigger name in the Instance
Manager and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and on the Edit menu, click Duplicate Trigger.

Figure 15–39. SignalTap II Editor with Power-Up Trigger Enabled

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–51
Define Triggers

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

For information about running the SignalTap II Embedded Logic Analyzer instance
with a Power-Up Trigger enabled, refer to “Running with a Power-Up Trigger” on
page 15–62.

Using External Triggers
You can create a trigger input that allows you to trigger the SignalTap II Embedded
Logic Analyzer from an external source. The external trigger input behaves like
trigger condition 1. It is evaluated and must be TRUE before any other configured
trigger conditions are evaluated. The analyzer can also supply a signal to trigger
external devices or other SignalTap II instances. These features allow you to
synchronize external logic analysis equipment with the internal logic analyzer.
Power-Up Triggers can use the external triggers feature, but they must use the same
source or target signal as their associated Run-Time Trigger.

Trigger In
To use Trigger In, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up Trigger is enabled, ensure you are viewing the Runtime Trigger
conditions.

3. In the Signal Configuration pane, turn on Trigger In.

4. In the Pattern list, select the condition you want to act as your trigger event. You
can set this separately for Runtime or Power-Up Trigger.

5. Click Browse next to the Source field in the Trigger In pane (Figure 15–41 on
page 15–53). The Node Finder dialog box appears.

6. In the Node Finder dialog box, select the signal (either an input pin or an internal
signal) that you want to drive the Trigger In source and click OK.

If you type a new signal name in the Source field, you create a new node that you
can assign to an input pin in the Pin Planner or Assignment editor. If you leave the
Source field blank, a default name is entered in the form
auto_stp_trigger_in_<SignalTap instance number>.

Trigger Out
To use Trigger Out, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up trigger is enabled, ensure you are viewing the Runtime Trigger
conditions.

3. To signify that the trigger event is occurring, in the Signal Configuration pane,
turn on Trigger Out (refer to Figure 15–40 on page 15–52).

4. In the Level list, select the condition you want. You can set this separately for a
Run-Time or a Power-Up Trigger.

15–52 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Define Triggers

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

5. Type a new signal name in the Target field. A new node name is created that you
must assign to an output pin in the Pin Planner or Assignment Editor.

If you leave the Target field blank, a default name is entered in the form
auto_stp_trigger_out_<SignalTap instance number>. When the logic analyzer
triggers, a signal at the level you indicated is output on the pin you assigned to the
new node.

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer
An advanced feature of the SignalTap II Embedded Logic Analyzer is the ability to
use the Trigger Out of one analyzer as the Trigger In to another analyzer. This feature
allows you to synchronize and debug events that occur across multiple clock
domains.

To perform this operation, first enable the Trigger Out of the source logic analyzer
instance. On the Trigger Out Target list, select the targeted logic analyzer instance. For
example, if the instance named auto_signaltap_0 should trigger
auto_signaltap_1, select auto_signaltap_1|trigger_in from the list
(Figure 15–40).

■ This automatically enables the Trigger In of the targeted logic analyzer instance
and fills in the Trigger In Source field with the Trigger Out signal from the source
logic analyzer instance. In this example, auto_signaltap_0 is targeting
auto_signaltap_1. The Trigger In Source field of auto_signaltap_1 is
automatically filled in with auto_signaltap_0|trigger_out (Figure 15–41).

Figure 15–40. Configuring the Trigger Out Signal

Target Set to Trigger in of
auto_signaltap_1

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–53
Compile the Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Compile the Design
When you add an .stp file to your project, the SignalTap II Embedded Logic Analyzer
becomes part of your design. You must compile your project to incorporate the
SignalTap II logic and enable the JTAG connection that is used to control the logic
analyzer. When you are debugging with a traditional external logic analyzer, it is
often necessary to make changes to the signals monitored as well as the trigger
conditions. Because these adjustments often translate into recompilation time when
using the SignalTap II Embedded Logic Analyzer, use the SignalTap II Embedded
Logic Analyzer feature along with incremental compilation in the Quartus II software
to reduce time spent recompiling.

Faster Compilations with Quartus II Incremental Compilation
To use incremental compilation with the SignalTap II Embedded Logic Analyzer,
perform the following steps:

1. Enable Full Incremental Compilation for your design.

2. Assign design partitions.

3. Set partitions to the proper preservation levels.

4. Enable SignalTap for your design.

5. Add signals to SignalTap using the appropriate netlist filter in the node finder
(either SignalTap II: pre-synthesis or SignalTap II: post-fitting).

Figure 15–41. Configuring the Trigger In Signal

Source Set to Trigger out of
auto_signaltap_1

Enabling
Trigger in

15–54 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Compile the Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

When you compile your design with an .stp file, the sld_signaltap and sld_hub
entities are automatically added to the compilation hierarchy. These two entities are
the main components of the SignalTap II Embedded Logic Analyzer, providing the
trigger logic and JTAG interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Embedded Logic Analyzer to your
design without recompiling your original source code. This feature is also useful
when you want to modify the configuration of the .stp file. For example, you can
modify the buffer sample depth or memory type without performing a full
compilation after the change is made. Only the SignalTap II Embedded Logic
Analyzer, configured as its own design partition, must be recompiled to reflect the
changes.

To use incremental compilation, first enable Full Incremental Compilation for your
design if it is not already enabled, assign design partitions if necessary, and set the
design partitions to the correct preservation levels. Incremental compilation is the
default setting for new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to create any
design partitions to use the SignalTap II incremental compilation feature. When your
design is set up to use full incremental compilation, the SignalTap II Embedded Logic
Analyzer acts as its own separate design partition. You can begin taking advantage of
incremental compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.

Enabling Incremental Compilation for Your Design
To enable incremental compilation if it is not already enabled, perform the following
steps:

1. On the Assignments menu, click the Design Partitions window.

2. In the Incremental Compilation list, select Full Incremental Compilation.

3. Create user-defined partitions if desired and set the Netlist Type to Post-fit for all
partitions.

1 The netlist type for the top-level partition defaults to source. To take
advantage of incremental compilation, set the Netlist types for the
partitions you wish to tap as Post-fit.

4. On the Processing menu, click Start Compilation, or, on the toolbar, click Start
Compilation.

Your project is fully compiled the first time, establishing the design partitions you
have created. When enabled for your design, the SignalTap II Embedded Logic
Analyzer is always a separate partition. After the first compilation, you can use the
SignalTap II Embedded Logic Analyzer to analyze signals from the post-fit netlist. If
your partitions are set correctly, subsequent compilations due to SignalTap II settings
are able to take advantage of the shorter compilation times.

f For more information about configuring and performing incremental compilation,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–55
Compile the Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using Incremental Compilation with the SignalTap II Embedded Logic Analyzer
The SignalTap II Embedded Logic Analyzer is automatically configured to work with
the incremental compilation flow. For all signals that you want to connect to the
SignalTap II Embedded Logic Analyzer from the post-fit netlist, set the netlist type of
the partition containing the desired signals to Post-Fit or Post-Fit (Strict) with a Fitter
Preservation Level of Placement and Routing using the Design Partitions window.
Use the SignalTap II: post-fitting filter in the Node Finder to add the signals of
interest to your SignalTap II configuration file. If you want to add signals from the
pre-synthesis netlist, set the netlist type to Source File and use the SignalTap II:
pre-synthesis filter in the Node Finder. Do not use the netlist type Post-Synthesis
with the SignalTap II Embedded Logic Analyzer.

c Be sure to conform to the following guidelines when using post-fit and pre-synthesis
nodes:

■ Read all incremental compilation guidelines to ensure the proper partition of a
project.

■ To speed compile time, use only post-fit nodes for partitions set to
preservation-level post-fit.

■ Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap
pre-synthesis nodes for a particular partition, make all tapped nodes in that
partition pre-synthesis nodes and change the netlist type to source in the
design partitions window.

Node names may be different between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of
combinational signals in your RTL. If the type of node name chosen does not match
the netlist type, the compiler may not be able to find the signal to connect to your
SignalTap II Embedded Logic Analyzer instance for analysis. The compiler issues a
critical warning to alert you of this scenario. The signal that is not connected is tied to
ground in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Embedded Logic
Analyzer and source file changes are necessary, be aware that you may have to
remove compiler-generated post-fit net names. Source code changes force the affected
partition to go through resynthesis. During synthesis, the compiler cannot find
compiler-generated net names from a previous compilation.

1 Altera recommends using only registered and user-input signals as debugging taps in
your .stp file whenever possible.

Both registered and user-supplied input signals share common node names in the
pre-synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp file limits the changes you need to make to your SignalTap
configuration.

15–56 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Compile the Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can check the nodes that are connected to each SignalTap II instance using the
In-System Debugging compilation reports. These reports list each node name you
selected to connect to a SignalTap II instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If incremental compile
is turned off, the In-System Debugging reports are located in the Analysis & Synthesis
folder. If incremental compile is turned on, this report is located in the Partition Merge
folder. Figure 15–42 shows an example of an In-System Debugging compilation report
for a design using incremental compilation.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report. Figure 15–43 shows an example of
the messages displayed.

Figure 15–42. Compilation Report Showing Connectivity to SignalTap II Instance

Figure 15–43. Compilation Report Messages

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–57
Compile the Design

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Unless you make changes to your design partitions that require recompilation, only
the SignalTap II design partition is recompiled. If you make subsequent changes to
only the .stp file, only the SignalTap II design partition must be recompiled, reducing
your recompilation time.

Preventing Changes Requiring Recompilation
You can configure the .stp file to prevent changes that normally require recompilation.
To do this, select a lock mode from above the node list in the Setup tab. To lock your
configuration, choose to allow only trigger condition changes, regardless of whether
you use incremental compilation.

f For more information about the use of lock modes, refer to the Quartus II Help.

Timing Preservation with the SignalTap II Embedded Logic Analyzer
In addition to verifying functionality, timing closure is one of the most crucial
processes in successfully completing a design. When you compile a project with a
SignalTap II Embedded Logic Analyzer without the use of incremental compilation,
you add IP to your existing design. Therefore, you can affect the existing placement,
routing, and timing of your design. To minimize the effect that the SignalTap II
Embedded Logic Analyzer has on your design, Altera recommends that you use
incremental compilation for your project. Incremental compilation is the default
setting in new designs and can be easily enabled and configured in existing designs.
With the SignalTap II Embedded Logic Analyzer in its own design partition, it has
little to no affect on your design.

In addition to using the incremental compilation flow for your design, you can use the
following techniques to help maintain timing:

■ Avoid adding critical path signals to your .stp file.

■ Minimize the number of combinational signals you add to your .stp file and add
registers whenever possible.

■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Embedded Logic
Analyzer, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Performance and Resource Considerations
There is an inherent trade-off between runtime flexibility of the SignalTap II
Embedded Logic Analyzer, timing performance of the SignalTap II Embedded Logic
Analyzer, and resource usage. The SignalTap II Embedded Logic Analyzer allows you
to select the runtime configurable parameters to balance the need for runtime
flexibility, speed, and area. The default values have been chosen to provide maximum
flexibility so you can reach debugging closure as quickly as possible; however, you
can adjust these settings to determine whether there is a more optimal configuration
for your design.

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

15–58 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Compile the Design

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The suggestions in this section provide some tips to provide extra timing slack if you
have determined that the SignalTap II logic is in your critical path, or to alleviate the
resource requirements that the SignalTap II Embedded Logic Analyzer consumes if
your design is resource-constrained.

If SignalTap II logic is part of your critical path, the following suggestions can help to
speed up the performance of the SignalTap II Embedded Logic Analyzer:

■ Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you are using either advanced triggers or
State-based triggering flow, disable runtime configurable parameters for a boost in
fMAX of the SignalTap II logic. If you are using State-based triggering flow, try
disabling the Goto state destination option and performing a recompilation
before disabling the other runtime configurable options. The Goto state
destination option has the greatest impact on fMAX, as compared to the other
runtime configurable options.

■ Minimize the number of signals that have Trigger Enable selected—All of the
signals that you add to the .stp file have Trigger Enable turned on. Turn off Trigger
Enable for signals that you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a large number of
triggering signals enabled (greater than the number of inputs that would fit in a
LAB) that fan-in to logic gate-based triggering condition, such as a basic trigger
condition or a logical reduction operator in the advanced trigger tab, turn on the
Perform register retiming option. This can help balance combinational logic
across LABs.

If your design is resource constrained, the following suggestions can help to reduce
the amount of logic or memory used by the SignalTap II Embedded Logic Analyzer:

■ Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in using fewer LEs.

■ Minimize the number of segments in the acquisition buffer—You can reduce the
number of logic resources used for the SignalTap II Embedded Logic Analyzer by
limiting the number of segments in your sampling buffer to only those required.

■ Disable the Data Enable for signals that are used for triggering only—By
default, both the data enable and trigger enable options are selected for all
signals. Turning off the data enable option for signals used as trigger inputs only
saves on memory resources used by the SignalTap II Embedded Logic Analyzer.

Because performance results are design-dependent, try these options in different
combinations until you achieve the desired balance between functionality,
performance, and utilization.

f For more information about area and timing optimization, refer the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–59
Program the Target Device or Devices

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Program the Target Device or Devices
After your project, including the SignalTap II Embedded Logic Analyzer, is compiled,
configure the FPGA target device. When you are using the SignalTap II Embedded
Logic Analyzer for debugging, configure the device from the .stp file instead of the
Quartus II Programmer. Because you configure from the .stp file, you can open more
than one .stp file and program multiple devices to debug multiple designs
simultaneously.

The settings in an .stp file must be compatible with the programming .sof file used to
program the device. An .stp file is considered compatible with an .sof file when the
settings for the logic analyzer, such as the size of the capture buffer and the signals
selected for monitoring or triggering, match the way the target device will be
programmed. If the files are not compatible, you can still program the device, but you
cannot run or control the logic analyzer from the SignalTap II Editor.

To ensure programming compatibility, make sure to program your device with the
latest .sof file created from the most recent compilation.

Before starting a debugging session, do not make any changes to the .stp file settings
that would require the project to be recompiled. You can check the SignalTap II status
display at the top of the Instance Manager to verify whether a change you made
requires the design to be recompiled, producing a new .sof file. This gives you the
opportunity to undo the change, so that a recompilation is not necessary. To prevent
any such changes, enable lock mode in the .stp file.

Although the Quartus II project is not required, it is recommended. The project
database contains information about the integrity of the current SignalTap II session.
Without the project database, there is no way to verify that the current .stp file
matches the .sof file that is downloaded to the device. If you have an .stp file that does
not match the .sof file, you will see incorrect data captured in the SignalTap II
Embedded Logic Analyzer.

Programming a Single Device
To configure a single device for use with the SignalTap II Embedded Logic Analyzer,
perform the following steps:

1. In the JTAG Chain Configuration pane in the SignalTap II Editor, select the
connection you use to communicate with the device from the Hardware list. If you
need to add your communication cable to the list, click Setup to configure your
connection.

2. In the JTAG Chain Configuration pane, click Browse and select the .sof file that
includes the compatible SignalTap II Embedded Logic Analyzer.

3. Click Scan Chain. The Scan Chain operation enumerates all of the JTAG devices
within your JTAG chain.

4. In the Device list, select the device to which you want to download the design.
The device list shows an ordered list of all devices in the JTAG chain.

All of the devices are numbered sequentially according to their position in the
JTAG chain, prefixed with the “@”. For example: @1 : EP3C25 (0x020F30DD)
lists a Cyclone III device as the first device in the chain with the JTAG ID code of
0x020F30DD.

15–60 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Run the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

5. Click the Program Device icon.

Programming Multiple Devices to Debug Multiple Designs
You can simultaneously debug multiple designs using one instance of the Quartus II
software by performing the following steps:

1. Create, configure, and compile each project that includes an .stp file.

2. Open each .stp file.

1 You do not have to open a Quartus II project to open an .stp file.

3. Use the JTAG Chain Configuration pane controls to select the target device in
each .stp file.

4. Program each FPGA.

5. Run each analyzer independently.

Figure 15–44 shows a JTAG chain and its associated .stp files.

Run the SignalTap II Embedded Logic Analyzer
After the device is configured with your design that includes the SignalTap II
Embedded Logic Analyzer, perform debugging operations in a manner similar to the
use of an external logic analyzer. You “arm” the logic analyzer by starting an analysis.
When your trigger event occurs, the captured data is stored in the memory buffer on
the device and then transferred to the .stp file over the JTAG connection. You can also
perform the equivalent of a “force trigger” that lets you view the captured data
currently in the buffer without a trigger event occurring. Figure 15–45 illustrates a
flow that shows how you operate the SignalTap II Embedded Logic Analyzer. The
flowchart indicates where Power-Up and Runtime Trigger events occur and when
captured data from these events is available for analysis.

Figure 15–44. JTAG Chain

Stratix FPGA1

STP1

Stratix FPGA2

STP2

Stratix FPGA3

STP3

Communication
Cable

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–61
Run the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The SignalTap II toolbar in the Instance Manager has four options for running the
analyzer:

■ Run Analysis—The SignalTap II Embedded Logic Analyzer runs until the trigger
event occurs. When the trigger event occurs, monitoring and data capture stops
when the acquisition buffer is full.

■ AutoRun Analysis—The SignalTap II Embedded Logic Analyzer continuously
captures data until the Stop Analysis button is clicked, ignoring all trigger event
conditions.

■ Stop Analysis—SignalTap II analysis stops. The acquired data does not appear
automatically if the trigger event has not occurred.

■ Read Data—Captured data is displayed. This button is useful to view the acquired
data, even if the trigger has not occurred.

Figure 15–45. Power-Up and Runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

Data
Downloaded?

15–62 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Run the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Running with a Power-Up Trigger
If you have enabled and set up a Power-Up Trigger for an instance of the SignalTap II
Embedded Logic Analyzer, the captured data may already be available for viewing if
the trigger event occurred after device configuration. To download the captured data
or to check if the Power-Up Trigger is still running, in the Instance Manager, click Run
Analysis. If the Power-Up Trigger occurred, the logic analyzer immediately stops,
and the captured data is downloaded from the device. The data can now be viewed
on the Data tab of the SignalTap II Editor. If the Power-Up Trigger did not occur, no
captured data is downloaded, and the logic analyzer continues to run. You can wait
for the Power-Up Trigger event to occur, or, to stop the logic analyzer, click Stop
Analysis.

Running with Runtime Triggers
You can arm and run the SignalTap II Embedded Logic Analyzer manually after
device configuration to capture data samples based on the Runtime Trigger. You can
do this immediately if there is no Power-Up Trigger enabled. If a Power-Up Trigger is
enabled, you can do this after the Power-Up Trigger data is downloaded from the
device or once the logic analyzer is stopped because the Power-Up Trigger event did
not occur. Click Run Analysis in the SignalTap II Editor to start monitoring for the
trigger event. You can start multiple SignalTap II instances at the same time by
selecting all of the required instances before you click Run Analysis on the toolbar.

Unless the logic analyzer is stopped manually, data capture begins when the trigger
event evaluates to TRUE. When this happens, the captured data is downloaded from
the buffer. You can view the data in the Data tab of the SignalTap II Editor.

Performing a Force Trigger
Sometimes when you use an external logic analyzer or oscilloscope, you want to see
the current state of signals without setting up or waiting for a trigger event to occur.
This is referred to as a “force trigger” operation, because you are forcing the test
equipment to capture data without regard to any set trigger conditions. With the
SignalTap II Embedded Logic Analyzer, you can choose to run the analyzer and
capture data immediately or run the analyzer and capture data when you want.

To run the analyzer and immediately capture data, disable the trigger conditions by
turning off each Trigger Condition column in the node list. This operation does not
require a recompilation. In the Instance Manager, click Run Analysis. The
SignalTap II Embedded Logic Analyzer immediately triggers, captures, and
downloads the data to the Data tab of the SignalTap II Editor. If the data does not
download automatically, click Read Data in the Instance Manager.

If you want to choose when to capture data manually, it is not required that you
disable the trigger conditions. To start the logic analyzer, click Autorun Analysis; to
capture data, click Stop Analysis. If the data does not download to the Data tab of the
SignalTap II Editor automatically, click Read Data.

f You can also use In-System Sources and Probes in conjunction with the SignalTap II
Embedded Logic Analyzer to force trigger conditions. The In-System Sources and
Probes feature allows you to drive and sample values on to selected nets over the
JTAG chain. For more information, refer to the Design Debugging Using In-System
Sources and Probes chapter in volume 3 of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53021.pdf
http://www.altera.com/literature/hb/qts/qts_qii53021.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–63
Run the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Runtime Reconfigurable Options
Certain settings in the .stp file are changeable without incurring a recompilation when
you are using Runtime Trigger mode. All Runtime Reconfigurable features are
described in Table 15–10.

Runtime Reconfigurable options can potentially save time during the debugging cycle
by allowing you to cover a wider possible scenario of events without the need to
recompile the design. The trade-off is that there may be a slight impact to the
performance and logic utilization of the SignalTap II IP core. Runtime
re-configurability for Advanced Trigger Conditions and the State-based trigger flow
parameters can be turned off, boosting performance and decreasing area utilization.

You can configure the .stp file to prevent changes that normally require recompilation.
To do this, in the Setup tab, select Allow Trigger Condition changes only above the
node list.

Example 15–4 illustrates a potential use case for Runtime Reconfigurable features.
This example provides a storage qualified enabled State-based trigger flow
description and shows how you can modify the size of a capture window at runtime
without a recompile. This example gives you equivalent functionality to a segmented
buffer with a single trigger condition where the segment sizes are runtime
reconfigurable.

Table 15–10. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic
Storage Qualifier Conditions

All signals that have the trigger check box enabled can be
changed to any basic trigger condition value without
recompiling.

Advanced Trigger Conditions and
Advanced Storage Qualifier
Conditions

Many operators include runtime configurable settings. For
example, all comparison operators are
runtime-configurable. Configurable settings are shown with
a white background in the block representation.This
runtime reconfigurable option is enabled through the
Object Properties dialog box.

Switching between a storage-qualified
and a continuous acquisition

Within any storage-qualified mode, you can switch between
to continuous capture mode easily without recompiling the
design. You enable this feature by selecting the check box
for disable storage qualifier.

State-based trigger flow parameters Refer to Table 15–5 for a list of Reconfigurable State-based
trigger flow options.

15–64 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Run the SignalTap II Embedded Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 15–46 depicts a segmented buffer described by the trigger flow in
Example 15–4.

During runtime, the values m and n are runtime reconfigurable. By changing the m
and n values in the preceding trigger flow description, you can dynamically adjust the
segment boundaries without incurring a recompile.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

Example 15–4. Trigger Flow Description Providing Runtime Reconfigurable “Segments”

state ST1:
if (condition1 && (c1 <= m)) // each "segment" triggers on condition

//1
begin // m = number of total "segments"

start_store;
increment c1;
goto ST2:

End

else (c1 > m) //This else condition handles the last
//segment.

begin
start_store
Trigger (n-1)

end

state ST2:
if (c2 >= n) //n = number of samples to capture in each

//segment.
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end

Note to Example 15–4:

(1) m x n must equal the sample depth to efficiently use the space in the sample buffer.

Figure 15–46. Segmented Buffer Created with Storage Qualifier and State-Based Trigger (Note 1)

Note to Figure 15–46:

(1) Total sample depth is fixed, where m x n must equal sample depth.

Segment 1 Segment 2 Segment m

1 n 1 n 1 n

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–65
Run the SignalTap II Embedded Logic Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 15–5 shows a modified description of Example 15–4 with an additional state
inserted. This extra state is used to specify a different trigger condition that does not
use the storage qualifier feature. Status flags are inserted into the conditional
statements to control the execution of the trigger flow.

SignalTap II Status Messages
Table 15–11 describes the text messages that might appear in the SignalTap II Status
Indicator in the Instance Manager before, during, and after a data acquisition. Use
these messages to know the state of the logic analyzer or what operation it is
performing.

Example 15–5. Modified Trigger Flow Description of Example 15–4 with Status Flags to Selectively Enable States

state ST1 :

if (condition2 && f1) //additional state added for a non-segmented
//acquisition Set f1 to enable state

begin
 start_store;
 trigger
end

else if (! f1)
 goto ST2;

state ST2:
if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state. Set f2

//to enable.
begin

start_store;
increment c1;
goto ST3:

end

else (c1 > m)
start_store
Trigger (n-1)

end

state ST3:
if (c2 >= n)
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end

15–66 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
View, Analyze, and Use Captured Data

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

.

1 In segmented acquisition mode, pre-trigger and post-trigger do not apply.

View, Analyze, and Use Captured Data
Once a trigger event has occurred or you capture data manually, you can use the
SignalTap II interface to examine the data, and use your findings to help debug your
design.

Viewing Captured Data
You can view captured SignalTap II data in the Data tab of the .stp file (Figure 15–47).
Each row of the Data tab displays the captured data for one signal or bus. Buses can
be expanded to show the data for each individual signal on the bus. Click on the data
waveforms to zoom in on the captured data samples; right-click to zoom out.

Table 15–11. Text Messages in the SignalTap II Status Indicator

Message Message Description

Not running The SignalTap II Logic Analyzer is not running. There is no connection to a
device or the device is not configured.

(Power-Up Trigger) Waiting
for clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or Power-Up Trigger
acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected
if using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met Trigger In condition has occurred. The SignalTap II Embedded Logic Analyzer is
waiting for the condition of the first trigger condition to occur. This can appear if
Trigger In is specified.

Waiting for (Power-up)
trigger (1)

The SignalTap II Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II Embedded
Logic Analyzer is waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up)
post-trigger data (1)

The entire trigger event has occurred. The SignalTap II Embedded Logic
Analyzer is acquiring the post-trigger data. The amount of post-trigger data
collected is user-defined between 12%, 50%, and 88% when the
non-segmented buffer acquisition mode is selected.

Offload acquired (Power-Up)
data (1)

Data is being transmitted to the Quartus II software through the JTAG chain.

Ready to acquire The SignalTap II Embedded Logic Analyzer is waiting for the user to arm the
analyzer.

Note to Table 15–11:

(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in parentheses is
added.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–67
View, Analyze, and Use Captured Data

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

When viewing captured data, it is often useful to know the time interval between two
events. Time bars enable you to see the number of clock cycles between two samples
of captured data in your system. There are two types of time bars:

■ Master Time Bar—The master time bar’s label displays the absolute time of its
location in bold. The master time bar is a thick black line in the Data tab. The
captured data has only one master time bar.

■ Reference Time Bar—The reference time bar’s label displays the time relative to
the master time bar. You can create an unlimited number of reference time bars.

To help you find a transition of signals relative to the master time bar location, use
either the Next Transition or the Previous Transition button. This aligns the master
time bar with the next or previous transition of a selected signal or group of selected
signals. This feature is very useful when the sample depth is very large and the rate at
which signals toggle is very low.

To find bus values within the waveform quickly, use the Find bus value option. After
you select the bus, right-click and select Find bus value. A dialog box appears to enter
search parameters.

Capturing Data Using Segmented Buffers
Segmented Acquisition buffers allow you to perform multiple captures with a
separate trigger condition for each acquisition segment. This feature allows you to
capture a recurring event or sequence of events that span over a long period time
efficiently. Each acquisition segment acts as a non-segmented buffer, continuously
capturing data when it is activated. When you run an analysis with the segmented
buffer option enabled, the SignalTap II Embedded Logic Analyzer performs
back-to-back data captures for each acquisition segment within your data buffer. The
trigger flow, or the type and order in which the trigger conditions evaluate for each
buffer, is defined by either the Sequential trigger flow control or the Custom
State-based trigger flow control. Figure 15–48 shows a segmented acquisition buffer
with four segments represented as four separate non-segmented buffers.

Figure 15–47. Captured SignalTap II Data

Master Time Bar Reference Time BarTrigger Position

Previous Transition Next Transition
Sample Numbers

15–68 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
View, Analyze, and Use Captured Data

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The SignalTap II Embedded Logic Analyzer finishes an acquisition with a segment,
and advances to the next segment to start a new acquisition. Depending when on a
trigger condition occurs, it may affect the way the data capture appears in the
waveform viewer. Figure 15–48 illustrates the method data is captured. The Trigger
markers in Figure 15–48—Trigger 1, Trigger 2, Trigger 3 and Trigger 4—refer to the
evaluation of the segment_trigger and trigger commands in the Custom
State-based trigger flow. If you are using a sequential flow, the Trigger markers refer
to trigger conditions specified within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the SignalTap II
Embedded Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition
for Segment 2 buffer starts when either Segment Buffer 1 finishes its post-fill count, or
when Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger
conditions associated with the next buffer in the data capture sequence can preempt
the post-fill count of the current active buffer. This is necessary so the SignalTap II
Embedded Logic Analyzer can capture accurately all of the trigger conditions that
have occurred. Samples that have not been used appear as a blank space in the
waveform viewer.

Figure 15–49 shows an example of a capture using sequential flow control with the
trigger condition for each segment set to “don’t care”. Each segment before the last
captures only one sample, because the next trigger condition immediately preempts
capture of the current buffer. The trigger position for all segments is set to pre-trigger
(10% of the data is before the trigger condition and 90% of the data is after the trigger
position). Because the last segment starts immediately with the trigger condition, the
segment contains only post-trigger data. The three empty samples in the last segment
is the space left over from the pre-trigger samples that the SignalTap II Embedded
Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on how the trigger position is defined, use the
custom state-based trigger flow. By adjusting the trigger position that is specific to
your debugging scenario, you can help maximize the use of the allocated buffer space.

Figure 15–48. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre

Figure 15–49. Segmented Capture with Preemption of Acquisition Segments (Note 1)

Note to Figure 15–49:

(1) A segmented acquisition buffer using the sequential trigger flow with a trigger condition set to “don’t care”. All segments, with the exception of
the last segment, capture only one sample because the next trigger condition preempts the current buffer from filling to completion.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–69
View, Analyze, and Use Captured Data

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Creating Mnemonics for Bit Patterns
The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp file and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once you
have created a mnemonic table, assign it to a group of signals. To assign a mnemonic
table, right-click on the group, click Bus Display Format and select the desired
mnemonic table.

The labels you create in a table are used in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by
right-clicking an entry in any Trigger Conditions column and selecting a label from
the table you assigned to the signal group. On the Data tab, if any captured data
matches a bit pattern contained in an assigned mnemonic table, the signal group data
is replaced with the appropriate label, making it easy to see when expected data
patterns occur.

Automatic Mnemonics with a Plug-In
When you use a plug-in to add signals to an .stp file, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. If
you ever need to enable these mnemonic tables manually, right-click on the name of
the signal or signal group. On the Bus Display Format submenu, click the name of the
mnemonic table that matches the plug-in.

As an example, the Nios II plug-in makes it easy to monitor your design’s signal
activity as code is executed. If you have set up the logic analyzer to trigger on a
function name in your Nios II code based on data from an .elf file, you can see the
function name in the Instance Address signal group at the trigger sample, along with
the corresponding disassembled code in the Disassembly signal group, as shown in
Figure 15–50. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Locating a Node in the Design
When you find the source of an error in your design using the SignalTap II Embedded
Logic Analyzer, you can use the node locate feature to locate that signal in many of
the tools found in the Quartus II software, as well as in your design files. This lets you
find the source of the problem quickly so you can modify your design to correct the
flaw. To locate a signal from the SignalTap II Embedded Logic Analyzer in one of the
Quartus II software tools or your design files, right-click on the signal in the .stp file,
and click Locate in <tool name>.

Figure 15–50. Data Tab when the Nios II Plug-In is Used

15–70 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
View, Analyze, and Use Captured Data

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can locate a signal from the node list in any of the following locations:

■ Assignment Editor

■ Pin Planner

■ Timing Closure Floorplan

■ Chip Planner

■ Resource Property Editor

■ Technology Map Viewer

■ RTL Viewer

■ Design File

f For more information about using these tools, refer to each of the corresponding
chapters in the Quartus II Handbook.

Saving Captured Data
The data log shows the history of captured data and the triggers used to capture the
data. The analyzer acquires data, stores it in a log, and displays it as waveforms.
When the logic analyzer is in auto-run mode and a trigger event occurs more than
once, captured data for each time the trigger occurred is stored as a separate entry in
the data log. This allows you to go back and review the captured data for each trigger
event. The default name for a log is based on the time when the data was acquired.
Altera recommends that you rename the data log with a more meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured data are
grouped together in trigger sets. If the Data Log pane is closed, on the View menu,
select Data Log to reopen it. To enable data logging, turn on Enable data log in the
Data Log (Figure 15–25). To recall a data log for a given trigger set and make it active,
double-click the name of the data log in the list.

The Data Log feature is useful for organizing different sets of trigger conditions and
different sets of signal configurations. For more information, refer to “Managing
Multiple SignalTap II Files and Configurations” on page 15–32.

Converting Captured Data to Other File Formats
You can export captured data in the following file formats, some of which can be used
with other EDA simulation tools:

■ Comma Separated Values File (.csv)

■ Table File (.tbl)

■ Value Change Dump File (.vcd)

■ Vector Waveform File (.vwf)

■ Graphics format files (.jpg, .bmp)

To export the SignalTap II Embedded Logic Analyzer’s captured data, on the File
menu, click Export and specify the File Name, Export Format, and Clock Period.

http://www.altera.com/literature/lit-qts.jsp

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–71
Other Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Creating a SignalTap II List File
Captured data can also be viewed in an .stp list file. An .stp list file is a text file that
lists all the data captured by the logic analyzer for a trigger event. Each row of the list
file corresponds to one captured sample in the buffer. Columns correspond to the
value of each of the captured signals or signal groups for that sample. If a mnemonic
table was created for the captured data, the numerical values in the list are replaced
with a matching entry from the table. This is especially useful with the use of a
plug-in that includes instruction code disassembly. You can immediately see the order
in which the instruction code was executed during the same time period of the trigger
event. To create an .stp list file, on the File menu, select Create/Update and click
Create SignalTap II List File.

Other Features
The SignalTap II Embedded Logic Analyzer has other features that do not necessarily
belong to a particular task in the task flow.

Using the SignalTap II MATLAB MEX Function to Capture Data
If you use MATLAB for DSP design, you can call the MATLAB MEX function
alt_signaltap_run, built into the Quartus II software, to acquire data from the
SignalTap II Embedded Logic Analyzer directly into a matrix in the MATLAB
environment. If you use the MEX function repeatedly in a loop, you can perform as
many acquisitions as you can when using SignalTap II in the Quartus II software
environment in the same amount of time.

1 The SignalTap II MATLAB MEX function is available only in the Windows version of
the Quartus II software. It is compatible with MATLAB Release 14 Original Release
Version 7 and later.

To set up the Quartus II software and the MATLAB environment to perform
SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create an .stp file (refer to “Creating and Enabling a
SignalTap II File” on page 15–7).

2. In the node list in the Data tab of the SignalTap II Editor, organize the signals and
groups of signals into the order in which you want them to appear in the MATLAB
matrix. Each column of the imported matrix represents a single SignalTap II
acquisition sample, while each row represents a signal or group of signals in the
order they are organized in the Data tab.

1 Signal groups acquired from the SignalTap II Embedded Logic Analyzer
and transferred into the MATLAB environment with the MEX function are
limited to a width of 32 signals. If you want to use the MEX function with a
bus or signal group that contains more than 32 signals, split the group into
smaller groups that do not exceed the 32-signal limit.

3. Save the .stp file and compile your design. Program your device and run the
SignalTap II Embedded Logic Analyzer to ensure your trigger conditions and
signal acquisition are working correctly.

15–72 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Other Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

4. In the MATLAB environment, add the Quartus II binary directory to your path
with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run r
Use the MEX function in the MATLAB environment to open the JTAG connection to
the device and run the SignalTap II Embedded Logic Analyzer to acquire data. When
you finish acquiring data, close the connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]); r

When capturing data, <stp filename> is the name of the .stp file you want to use. This
is required for using the MEX function. The other MEX function options are defined in
Table 15–12.

You can enable or disable verbose mode to see the status of the logic analyzer while it
is acquiring data. To enable or disable verbose mode, use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, close the JTAG connection. Use the following
command to close the connection:

alt_signaltap_run('END_CONNECTION'); r

f For more information about the use of MEX functions in MATLAB, refer to the
MATLAB Help.

Table 15–12. SignalTap II MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit
two’s-complement signed integers. The MSB of the group as
defined in the SignalTap II Data tab is the sign bit. The unsigned
option keeps the data as an unsigned integer. The default is signed.

<instance name> 'auto_signaltap_0' Specify a SignalTap II instance if more than one instance is defined.
The default is the first instance in the .stp file,
auto_signaltap_0.

<signal set name>

<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the SignalTap II data log if
multiple configurations are present in the .stp file. The default is
the active signal set and trigger in the file.

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–73
Other Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using SignalTap II in a Lab Environment
You can install a stand-alone version of the SignalTap II Embedded Logic Analyzer.
This version is particularly useful in a lab environment in which you do not have a
workstation that meets the requirements for a complete Quartus II installation, or if
you do not have a license for a full installation of the Quartus II software. The
stand-alone version of the SignalTap II Embedded Logic Analyzer is included with
the Quartus II stand-alone Programmer and is available from the Downloads page of
the Altera website (www.altera.com).

Remote Debugging Using the SignalTap II Embedded Logic Analyzer
You can use the SignalTap II Embedded Logic Analyzer to debug a design that is
running on a device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

■ The Quartus II software installed on the local PC

■ Stand-alone SignalTap II Embedded Logic Analyzer or the full version of the
Quartus II software installed on the remote PC

■ Programming hardware connected to the device on the PCB at the remote location

■ TCP/IP protocol connection

Equipment Setup
On the PC in the remote location, install the stand-alone version of the SignalTap II
Embedded Logic Analyzer or the full version of the Quartus II software. This remote
computer must have Altera programming hardware connected, such as the
EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This local PC must
be connected to the remote PC across a LAN with the TCP/IP protocol.

Software Setup on the Remote PC
To set up the software on the remote PC, perform the following steps:

1. In the Quartus II programmer, click Hardware Setup.

2. Click the JTAG Settings tab (Figure 15–51).

http://www.altera.com

15–74 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Other Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

3. Click Configure local JTAG Server.

4. In the Configure Local JTAG Server dialog box (Figure 15–52), turn on Enable
remote clients to connect to the local JTAG server and in the password box, type
your password. In the Confirm Password box, type your password again and
click OK.

Software Setup on the Local PC
To set up your software on your local PC, perform the following steps:

1. Launch the Quartus II programmer.

2. Click Hardware Setup.

3. On the JTAG settings tab, click Add server.

4. In the Add Server dialog box (Figure 15–53), type the network name or IP address
of the server you want to use and the password for the JTAG server that you
created on the remote PC.

Figure 15–51. Configure JTAG on Remote PC

Figure 15–52. Configure Local JTAG Server on Remote

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–75
Other Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Click OK.

SignalTap II Setup on the Local PC
To connect to the hardware on the remote PC, perform the following steps:

1. Click the Hardware Settings tab and select the hardware on the remote PC
(Figure 15–54).

2. Click Close.

You can now control the logic analyzer on the device attached to the remote PC as if it
was connected directly to the local PC.

Using the SignalTap II Embedded Logic Analyzer in Devices with Configuration Bitstream
Security

Certain device families support bitstream decryption during configuration using an
on-device AES decryption engine. You can still use the SignalTap II Embedded Logic
Analyzer to analyze functional data within the FPGA. However, note that JTAG
configuration is not possible after the security key has been programmed into the
device.

Figure 15–53. Add Server Dialog Box

Figure 15–54. Selecting Hardware on Remote PC

15–76 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
SignalTap II Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Altera recommends that you use an unencrypted bitstream during the prototype and
debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the SignalTap II Embedded Logic Analyzer with an encrypted
bitstream, first configure the device with an encrypted configuration file using
Passive Serial (PS), Fast Passive Parallel (FPP), or Active Serial (AS) configuration
modes. The design must contain at least one instance of the SignalTap II Embedded
Logic Analyzer. After the FPGA is configured with a SignalTap II Embedded Logic
Analyzer instance in the design, when you open the SignalTap II Embedded Logic
Analyzer window/GUI in the Quartus II software, you then scan the chain and it will
be ready to acquire data over JTAG.

Backward Compatibility with Previous Versions of Quartus II Software
You can open an old STP file in a current version of the Quartus II software. However,
opening an STP file modifies it so that it cannot be opened in a previous version of the
Quartus II software.

If you have a Quartus project file from a previous version of the software, you may
have to update the STP configuration file if you wish to recompile the project. You can
update the configuration file by invoking the SignalTap II GUI. If any updates to your
configuration are necessary, a prompt will appear asking if you would like to update
the .stp file to match the current version of the Quartus II software.

SignalTap II Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f The Quartus II Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For more information about command-line scripting, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Command-Line Options
To compile your design with the SignalTap II Embedded Logic Analyzer using the
command prompt, use the quartus_stp command. Table 15–13 shows the options
that help you better understand how to use the quartus_stp executable.

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–77
SignalTap II Scripting Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 15–6 illustrates how to compile a design with the SignalTap II Embedded
Logic Analyzer at the command line.

The quartus_stp --stp_file stp1.stp --enable command creates the QSF
variable and instructs the Quartus II software to compile the stp1.stp file with your
design. The --enable option must be applied for the SignalTap II Embedded Logic
Analyzer to compile properly into your design.

Example 15–7 shows how to create a new .stp file after building the SignalTap II
Embedded Logic Analyzer instance with the MegaWizard Plug-In Manager.

Table 15–13. SignalTap II Command-Line Options

Option Usage Description

stp_file quartus_stp

--stp_file <stp_filename>

Assigns the specified .stp file to the
USE_SIGNALTAP_FILE in the .qsf file.

enable quartus_stp --enable Creates assignments to the specified .stp
file in the .qsf file and changes
ENABLE_SIGNALTAP to ON. The
SignalTap II Embedded Logic Analyzer is
included in your design the next time the
project is compiled. If no .stp file is
specified in the .qsf file, the --stp_file
option must be used. If the --enable
option is omitted, the current value of
ENABLE_SIGNALTAP in the .qsf file is
used.

disable quartus_stp --disable Removes the .stp file reference from the
.qsf file and changes
ENABLE_SIGNALTAP to OFF. The
SignalTap II Embedded Logic Analyzer is
removed from the design database the next
time you compile your design. If the --
disable option is omitted, the current
value of ENABLE_SIGNALTAP in the .qsf
file is used.

create_signaltap_hdl_file quartus_stp

--create_signaltap_hdl_file

Creates an .stp file representing the
SignalTap II instance in the design
generated by the SignalTap II Embedded
Logic Analyzer megafunction created with
the MegaWizard Plug-In Manager. The file
is based on the last compilation. You must
use the --stp_file option to create an
.stp file properly. Analogous to the Create
SignalTap II File from Design Instance(s)
command in the Quartus II software.

Example 15–6.

quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_tan filtref r
quartus_asm filtref r

15–78 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
SignalTap II Scripting Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For information about the other command line executables and options, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Tcl Commands
The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Quartus II GUI. You cannot execute SignalTap II Tcl commands
from within the Tcl console in the GUI. They must be run from the command line with
the quartus_stp executable. To run a Tcl file that has SignalTap II Tcl commands, use
the following command:

quartus_stp -t <Tcl file> r
Table 15–14 shows the Tcl commands that you can use with SignalTap II Embedded
Logic Analyzer.

f For more information about SignalTap II Tcl commands, refer to the Quartus II Help.

Example 15–7.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

Table 15–14. SignalTap II Tcl Commands

Command Argument Description

open_session -name <stp_filename> Opens the specified .stp file. All captured data is stored in
this file.

run -instance <instance_name>

-signal_set <signal_set>
(optional)

-trigger <trigger_name>
(optional)

-data_log <data_log_name>
(optional)

-timeout <seconds>
(optional)

Starts the analyzer. This command must be followed by
all the required arguments to properly start the analyzer.
You can optionally specify the name of the data log you
want to create. If the Trigger condition is not met, you can
specify a timeout value to stop the analyzer.

run_multiple_start None Defines the start of a set of run commands. Use this
command when multiple instances of data acquisition are
started simultaneously. Add this command before the set
of run commands that specify data acquisition. You must
use this command with the run_multiple_end
command. If the run_multiple_end command is
not included, the run commands do not execute.

run_multiple_end None Defines the end of a set of run commands. Use this
command when multiple instances of data acquisition are
started simultaneously. Add this command after the set of
run_commands.

stop None Stops data acquisition.

close_session None Closes the currently open .stp file. You cannot run the
analyzer after the .stp file is closed.

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–79
Design Example: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 15–8 is an excerpt from a script that is used to continuously capture data.
Once the trigger condition is met, the data is captured and stored in the data log.

When the script is completed, open the .stp file that you used to capture data to
examine the contents of the Data Log.

Design Example: Using SignalTap II Embedded Logic Analyzers in SOPC
Builder Systems

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. In this example, the Nios processor executes a simple C program
from on-chip memory and waits for a button push. After a button is pushed, the
processor initiates a DMA transfer, which you analyze using the SignalTap II
Embedded Logic Analyzer.

f For more information about this example and using the SignalTap II Embedded Logic
Analyzer with SOPC builder systems, refer to AN 323: Using SignalTap II Embedded
Logic Analyzers in SOPC Builder Systems and AN 446: Debugging Nios II Systems with the
SignalTap II Logic Analyzer.

Custom Triggering Flow Application Examples
The custom triggering flow in the SignalTap II Embedded Logic Analyzer is most
useful for organizing a number of triggering conditions and for precise control over
the acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the SignalTap II Embedded Logic Analyzer. Both
examples can be easily copied and pasted directly into the state machine description
box by using the state display mode All states in one window.

1 For additional triggering flow design examples, refer to the Quartus II On-Chip
Debugging Design Examples page for on-chip debugging.

Example 15–8.

#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

15–80 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Custom Triggering Flow Application Examples

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Design Example 1: Specifying a Custom Trigger Position
Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer. Example 15–9 shows an example that applies a
trigger position to all segments in the acquisition buffer. The example describes a
triggering flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will be at sample
#34. The acquisition stops after all four segments are filled once.

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values. The last acquisition before stopping the buffer is
displayed on the Data tab as the last sample number in the affected segment. The
trigger position in the affected segment is then defined by N – post count fill, where N
is the number of samples per segment. Figure 15–55 illustrates the triggering position.

Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2
and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. Example 15–10 shows such a sample flow.
This example uses three basic triggering conditions configured in the SignalTap II
Setup tab.

Example 15–9.

if (c1 == 3 && condition1)
trigger 30;

else if (condition1)
begin

segment_trigger 30;
increment c1;

end

Figure 15–55. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer 15–81
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs
prior to ten repetitions of condition1, the state machine transitions to a permanent
wait state.

Conclusion
As the FPGA industry continues to make technological advancements, outdated
methodologies need to be replaced with new technologies that maximize
productivity. The SignalTap II Embedded Logic Analyzer gives you the same benefits
as a traditional logic analyzer, without the many shortcomings of a piece of dedicated
test equipment. This version of the SignalTap II Embedded Logic Analyzer provides
many new and innovative features that allow you to capture and analyze internal
signals in your FPGA, allowing you to find the source of a design flaw in the shortest
amount of time.

Referenced Documents
This chapter references the following documents:

■ AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder System

■ AN 446: Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Design Debugging Using In-System Sources and Probes chapter in volume 3 of the
Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

■ In-System Debugging Using External Logic Analyzers chapter in volume 3 of the
Quartus II Handbook

Example 15–10.

state ST1:

if (condition2)
begin

reset c1;
goto ST2;

end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53021.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an323.pdf

15–82 Chapter 15: Design Debugging Using the SignalTap II Embedded Logic Analyzer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Reference Manual

■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 15–15 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 15–15. Document Revision History

Date and
Document

Version Changes Made
Summary of

Changes

November 2009
v9.1.0

No change to content. —

March 2009
v9.0.0

■ Updated Table 15–1

■ Updated “Using Incremental Compilation with the SignalTap II Embedded
Logic Analyzer” on page 15–55

■ Added new Figure 15–42

■ Made minor editorial updates

Updated for the
Quartus II software
version 9.0 release.

November 2008
v8.1.0

Updated for the Quartus II software version 8.1 release:

■ Added new section “Using the Storage Qualifier Feature” on page 14–25

■ Added description of start_store and stop_store commands in
section “Trigger Condition Flow Control” on page 14–36

■ Added new section “Runtime Reconfigurable Options” on page 14–63

Updated for the
Quartus II software
version 8.1 release.

May 2008
v8.0.0

Updated for the Quartus II software version 8.0:

■ Added “Debugging Finite State machines” on page 14-24

■ Documented various GUI usability enhancements, including improvements to
the resource estimator, the bus find feature, and the dynamic display updates
to the counter and flag resources in the State-based trigger flow control tab

■ Added “Capturing Data Using Segmented Buffers” on page 14–16

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates

Updated for the
Quartus II software
version 8.0 release.

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

16. In-System Debugging Using External
Logic Analyzers

The Quartus II Logic Analyzer Interface (LAI) allows you to use an external logic
analyzer anda minimal number of FPGA I/O pins to examine the behavior of internal
signals while your design is running at full speed on your FPGA.

Introduction
The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Quartus II LAI, the internal signals are grouped together, distributed
to a user-configurable multiplexer, and then output to available I/O pins on your
FPGA. Instead of having a one-to-one relationship between internal signals and
output pins, the Quartus II LAI enables you to map many internal signals to a smaller
number of output pins. The exact number of internal signals that you can map to an
output pin varies based on the multiplexer settings in the Quartus II LAI.

This chapter details the following topics:

■ “Choosing a Logic Analyzer”

■ “Debugging Your Design Using the Logic Analyzer Interface” on page 16–3

■ “Advanced Features” on page 16–10

1 This chapter’s use of the term “logic analyzer” includes both logic analyzers and
oscilloscopes equipped with digital channels, commonly referred to as mixed signal
analyzers or MSOs.

Choosing a Logic Analyzer
The Quartus II software offers the following two general purpose on-chip debugging
tools for debugging a large set of RTL signals from your design:

■ The SignalTap® II Logic Analyzer

■ An external logic analyzer, which connects to internal signals in your FPGA by
using the Quartus II LAI

Table 16–1 describes the advantages of each debugging technology.

QII53016-9.1.0

16–2 Chapter 16: In-System Debugging Using External Logic Analyzers
Choosing a Logic Analyzer

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f The Quartus II software offers a portfolio of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook.

Required Components
You must have the following components to perform analysis using the Quartus II
LAI:

■ The Quartus II software starting with version 5.1 and later

■ The device under test

■ An external logic analyzer

■ An Altera® communications cable

■ A cable to connect the FPGA to the external logic analyzer

Figure 16–1 shows the LAI and the hardware setup.

Table 16–1. Comparing the SignalTap II Logic Analyzer with the Logic Analyzer Interface

Feature and Description

Logic
Analyzer
Interface

SignalTap II
Logic

Analyzer

Sample Depth

You have access to a wider sample depth with an external logic analyzer. In the
SignalTap II Logic Analyzer, the maximum sample depth is set to 128 Kb, which is a device
constraint. However, with an external logic analyzer, there are no device constraints,
providing you a wider sample depth.

v —

Debugging Timing Issues

Using an external logic analyzer provides you with access to a “timing” mode, which
enables you to debug combined streams of data.

v —

Performance

You frequently have limited routing resources available to place and route when you use
the SignalTap II Logic Analyzer with your design. An external logic analyzer adds minimal
logic, which removes resource limits on place-and-route.

v —

Triggering Capability

The SignalTap II Logic Analyzer offers triggering capabilities that are comparable to
external logic analyzers.

v v

Use of Output Pins

Using the SignalTap II Logic Analyzer, no additional output pins are required. Using an
external logic analyzer requires the use of additional output pins.

— v

Acquisition Speed

With the SignalTap II Logic Analyzer, you can acquire data at speeds of over 200 MHz. You
can achieve the same acquisition speeds with an external logic analyzer; however, you
must consider signal integrity issues.

— v

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 16: In-System Debugging Using External Logic Analyzers 16–3
Debugging Your Design Using the Logic Analyzer Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

FPGA Device Support
You can use the Quartus II Logic Analyzer Interface (LAI) with the following FPGA
device families:

■ Arria® GX

■ Stratix® series

■ Cyclone® series

■ MAX® II

Debugging Your Design Using the Logic Analyzer Interface
Figure 16–2 shows the steps you must follow to debug your design with the
Quartus II LAI.

Figure 16–1. Logic Analyzer Interface and Hardware Setup

Notes to Figure 16–1:

(1) Configuration and control of the LAI using a computer loaded with the Quartus II software via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by

vendor.

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus II Software

External Logic Analyzer
Board

16–4 Chapter 16: In-System Debugging Using External Logic Analyzers
Debugging Your Design Using the Logic Analyzer Interface

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Creating an LAI File
The Logic Analyzer Interface (.lai) file defines the interface that builds a connection
between internal FPGA signals and your external logic analyzer. Figure 16–3 shows
an example of an .lai editor.

To define the Quartus II LAI, you can create a new .lai file or use an existing .lai file.

Figure 16–2. LAI Process Flow

Enable Logic Analyzer
Interface File

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus II Software

Figure 16–3. The LAI Editor

Chapter 16: In-System Debugging Using External Logic Analyzers 16–5
Debugging Your Design Using the Logic Analyzer Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Creating a New Logic Analyzer Interface File
To create a new .lai file, perform the following steps:

1. In the Quartus II software, on the File menu, click New. The New dialog box
displays.

2. Click the Other Files tab.

3. Select Logic Analyzer Interface File.

4. Click OK. The LAI editor appears. The file name is assigned by the Quartus II
software (refer to Figure 16–3 on page 16–4). When you save the file, you will be
prompted for a file name. Refer to “Saving the External Analyzer Interface File” on
page 16–5.

Opening an Existing External Analyzer Interface File
To open an existing .lai file, on the Tools menu, click Logic Analyzer Interface Editor.
If no .lai file is enabled for the current project, the editor automatically creates a new
.lai file. If an .lai file is currently enabled for the project, that file opens when you
select the Logic Analyzer Interface Editor.

Alternatively, on the File menu, click Open, and select the .lai file you want to open.

Saving the External Analyzer Interface File
To save the .lai file, perform the following steps:

1. In the Quartus II software, on the File menu, click Save As. The Save As dialog
box appears.

2. In the File name box, enter the desired file name.

3. Click Save.

Configuring the Logic Analyzer Interface File Core Parameters
After you have created the .lai file, you must configure the .lai file core parameters.

To configure the .lai file core parameters, from the Setup View list, select Core
Parameters. Refer to Figure 16–4.

Figure 16–4. Logic Analyzer Interface File Core Parameters

16–6 Chapter 16: In-System Debugging Using External Logic Analyzers
Debugging Your Design Using the Logic Analyzer Interface

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Table 16–2 lists the .lai file core parameters.

Mapping the Logic Analyzer Interface File Pins to Available I/O Pins
To configure the .lai file I/O pins parameters, select Pins in the Setup View list
(Figure 16–5).

To assign pin locations for the LAI, double-click the Location column next to the
reserved pins in the Name column, and the Pin Planner opens.

Table 16–2. Logic Analyzer Interface File Core Parameters

Parameter Description

Pin Count The Pin Count parameter signifies the number of pins you want dedicated to your LAI. The pins
must be connected to a debug header on your board. Within the FPGA, each pin is mapped to a
user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 255 pins.

Bank Count The Bank Count parameter signifies the number of internal signals that you want to map to each
pin. For example, a Bank Count of 8 implies that you will connect eight internal signals to each pin.

The Bank Count parameter can range from 1 to 255 banks.

Output/Capture Mode The Output/Capture Mode parameter signifies the type of acquisition you perform. There are two
options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your FPGA, you must determine the sample frequency you should use to debug
and verify your system. This mode is effective if you want to measure timing information, such as
channel-to-channel skew. For more information about the sampling frequency and the speeds at
which it can run, refer to the data sheet for your external logic analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine when
to sample. Because Registered/State acquisition samples data synchronously with your FPGA, it
provides you with a functional view of your FPGA while it is running. This mode is effective when
you verify the functionality of your design.

Clock The Clock parameter is available only when Output/Capture Mode is set to Registered State. You
must specify the sample clock in the Core Parameters view. The sample clock can be any signal in
your design. However, for best results, Altera recommends that you use a clock with an operating
frequency fast enough to sample the data you would like to acquire.

Power-Up State The Power-Up State parameter specifies the power-up state of the pins you have designated for use
with the LAI. You have the option of selecting tri-stated for all pins, or selecting a particular bank
that you have enabled.

Figure 16–5. Logic Analyzer Interface File Pins Parameters

Chapter 16: In-System Debugging Using External Logic Analyzers 16–7
Debugging Your Design Using the Logic Analyzer Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

f For information about how to use the Pin Planner, refer to the Pin Planner section in
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Mapping Internal Signals to the Logic Analyzer Interface Banks
After you have specified the number of banks to use in the Core Parameters settings
page, you must assign internal signals for each bank in the LAI. Click the Setup View
arrow and select Bank n or All Banks (Figure 16–6).

To view all of your bank connections, click Setup View and select All Banks
(Figure 16–7).

Using the Node Finder
Before making bank assignments, on the View menu, point to Utility Windows and
click Node Finder. Find the signals that you want to acquire, then drag and drop the
signals from the Node Finder dialog box into the bank Setup View. When adding
signals, use SignalTap II: pre-synthesis for non-incrementally routed instances and
SignalTap II: post-fitting for incrementally routed instances.

Figure 16–6. Logic Analyzer Interface Bank Parameters

Figure 16–7. Logic Analyzer Interface All Bank Parameters

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

16–8 Chapter 16: In-System Debugging Using External Logic Analyzers
Debugging Your Design Using the Logic Analyzer Interface

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

As you continue to make assignments in the bank Setup View, the schematic of your
LAI in the Logical View of your .lai file begins to reflect your assignments
(Figure 16–8).

Continue making assignments for each bank in the Setup View until you have added
all of the internal signals for which you wish to acquire data.

1 You can right-click to switch between the LAI schematic and the LAI Setup view.

Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project
Compile your project after you have completed the following steps:

■ Configure your LAI parameters

■ Map the LAI pins to available I/O pins

■ Map the internal signals to the LAI banks

Compiling Your Quartus II Project
Before compiling your project, you must enable the LAI. Perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Logic Analyzer Interface. The Logic Analyzer Interface
appears.

3. Turn on Enable Logic Analyzer Interface.

4. Click Logic Analyzer Interface file name and specify the full path name to your
.lai file.

After you have specified the name of your .lai file, you must compile your project. To
compile your project, on the Processing menu, click Start Compilation.

To ensure that the LAI is properly compiled with your project, expand the entity
hierarchy in the Project Navigator. (To display the Project Navigator, on the View
menu, point to Utility Windows and click Project Navigator.) If the LAI is compiled
with your design, the sld_hub and sld_multitap entities are shown in the project
navigator (Figure 16–9).

Figure 16–8. A Logical View of the Logic Analyzer Interface Schematic

Chapter 16: In-System Debugging Using External Logic Analyzers 16–9
Debugging Your Design Using the Logic Analyzer Interface

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Programming Your FPGA Using the Logic Analyzer Interface
After compilation completes, you must configure your FPGA before using the LAI. To
configure a device for use with the LAI, perform the following steps:

1. Open the .lai file (Figure 16–10).

2. Under the JTAG Chain Configuration pane, under Hardware, select your
hardware communications device. You may have to click Setup to configure your
hardware.

3. Click Scan Chain, which interrogates the JTAG chain for devices contained on the
chain.

4. Under Device, select the FPGA device you want to download to your design.

5. If desired, turn on Incremental Compilation.

6. Save the .lai file.

7. Click the Program Device icon to program the device.

Using the Logic Analyzer Interface with Multiple Devices
You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can
also consist of devices that do not support the LAI or non-Altera, JTAG-compliant
devices. To use the LAI in more than one FPGA, create an LAI and configure an .lai
file for each FPGA that you want to analyze. To perform multi-FPGA analysis,
perform the following steps:

Figure 16–9. Project Navigator

Figure 16–10. The JTAG Section of the Logic Analyzer Interface File

16–10 Chapter 16: In-System Debugging Using External Logic Analyzers
Advanced Features

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1. Open the Quartus II software.

2. Create, configure, and compile an .lai file for each design.

3. Open one .lai file at a time.

1 You do not have to open a Quartus II project to open an .lai file.

4. Follow Steps 2 through 6 under “Programming Your FPGA Using the Logic
Analyzer Interface” on page 16–9.

5. Click the Program Device icon to program the device.

6. Control each .lai file independently.

Configuring Banks in the Logic Analyzer Interface File
When you have programmed your FPGA, you can control which bank is mapped to
the reserved .lai file output pins. To control which bank is mapped, in the schematic in
the logical view, right-click the bank and click Connect Bank (Figure 16–11).

Acquiring Data on Your Logic Analyzer
To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer.

f For more information about this process and for guidelines about how to establish
connections between debugging headers and logic analyzers, refer to the
documentation for your logic analyzer.

Advanced Features
This section describes the following advanced features:

■ Using the Logic Analyzer Interface with Incremental Compilation

■ Creating Multiple Logic Analyzer Interface Instances in One FPGA

Figure 16–11. Configuring Banks

Chapter 16: In-System Debugging Using External Logic Analyzers 16–11
Advanced Features

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Using the Logic Analyzer Interface with Incremental Compilation
Using the LAI with Incremental Compilation enables you to preserve the synthesis
and fitting of your original design, and add the LAI to your design without
recompiling your original source code.

To use the LAI with Incremental Compilation, perform the following steps:

1. Start the Quartus II software.

2. Enable design partitions. To enable partitions, perform the following steps:

a. On the Assignments menu, click Design Partitions Window.

b. Click Incremental Compilation under Compilation Process Settings in the
Settings dialog box, and turn on Full incremental compilation.

c. To create design partitions for the entities in your design, in the Partition
Name column, double-click the cell that contains the <<new>> text. In the
Create New Partitions dialog box, click any instance in the hierarchy to
designate the instance as a design partition, and then click OK.

d. Set the Netlist Type to Post-fit.

e. On the Processing menu, click Start Compilation.

3. Enable LAI Incremental Compilation by performing the following steps:

a. In your .lai file, under Instance Manager, click Incremental Compilation.

1 When you enable Incremental Compilation, all existing presynthesis
signals are converted into post-fitting signals. Only post-fitting signals can
be used with the LAI with Incremental Compilation.

b. Add Post-Fitting nodes to your .lai file.

c. On the Processing menu, click Start Compilation.

Creating Multiple Logic Analyzer Interface Instances in One FPGA
The LAI includes support for multiple interfaces in one FPGA. This feature is
particularly useful when you want to build LAI configurations that contain different
settings. For example, you can build one LAI instance to perform Registered/State
analysis and build another instance that performs Combinational/Timing analysis on
the same set of signals.

Another example would be performing Registered/State analysis on portions of your
design that are in different clock domains.

To create multiple LAIs, on the Edit menu, click Create Instance. Alternatively, you
can right-click the Instance Manager window and click Create Instance
(Figure 16–12).

16–12 Chapter 16: In-System Debugging Using External Logic Analyzers
Conclusion

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Conclusion
As the FPGA industry continues to make technological advancements, outdated
debugging methodologies must be replaced with new technologies that maximize
productivity. The LAI feature enables you to connect many internal signals within
your FPGA to an external logic analyzer with the use of a small number of I/O pins.
This new technology in the Quartus II software enables you to use feature-rich
external logic analyzers to debug your FPGA design, ultimately enabling you to
deliver your product in the shortest amount of time.

Referenced Documents
This chapter references the following documents:

■ Section V. In-System Debugging in volume 3 of the Quartus II Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 16–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Figure 16–12. Creating Multiple Logic Analyzer Interface Instances in One FPGA

Table 16–3. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed references to APEX devices.

■ Editorial updates.

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

■ Minor editorial updates.

■ Removed Figures 15–4, 15–5, and 15–11 from 8.1 version.

Updated for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Updated device support list on page 15–3

■ Added links to referenced documents throughout the chapter

■ Added “Referenced Documents”

■ Added reference to Section V. In-System Debugging

■ Minor editorial updates

Updated for the Quartus II software
version 8.0 release.

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

17. In-System Updating of Memory and
Constants

This chapter explains how to use the Quartus II In-System Memory Content Editor as
part of your FPGA design and verification flow.

Introduction
The In-System Memory Content Editor allows you to view and update memories and
constants with the JTAG port connection.

The In-System Memory Content Editor allows access to dense and complex FPGA
designs. When you program devices, you have read and write access to the memories
and constants through the Joint Test Action Group (JTAG) interface. You can then
identify, test, and resolve issues with your design by testing changes to memory
contents in the FPGA while your design is running.

Overview
This chapter contains the following sections:

■ “Device Megafunction Support” on page 17–2

■ “Updating Memory and Constants in Your Design” on page 17–2

■ “Creating In-System Modifiable Memories and Constants” on page 17–3

“Running the In-System Memory Content Editor” on page 17–3

When you use the In-System Memory Content Editor in conjunction with the
SignalTap® II Embedded Logic Analyzer, you can more easily view and debug your
design in the hardware lab.

f For more information about the SignalTap II Embedded Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

The ability to read data from memories and constants allows you to quickly identify
the source of problems. The write capability allows you to bypass functional issues by
writing expected data. For example, if a parity bit in your memory is incorrect, you
can use the In-System Content Editor to write the correct parity bit values into your
RAM, allowing your system to continue functioning. You can also intentionally write
incorrect parity bit values into your RAM to check the error handling functionality of
your design.

f The Quartus II software offers a variety of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook.

QII53012-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

17–2 Chapter 17: In-System Updating of Memory and Constants
Device Megafunction Support

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Device Megafunction Support
The following tables list the devices and types of memories and constants that are
currently supported by the Quartus II software. Table 17–1 lists the types of memory
supported by the MegaWizard™ Plug-In Manager and the In-System Memory Content
Editor.

Table 17–2 lists support for in-system updating of memory and constants for the
Stratix® series, Arria® GX, and Cyclone® series device families.

Updating Memory and Constants in Your Design
To use the In-System Updating of Memory and Constants feature, perform the
following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Table 17–1. MegaWizard Plug-In Manager Support

Installed Plug-Ins Category Megafunction Name

Gates LPM_CONSTANT

Memory Compiler RAM: 1-PORT, ROM: 1-PORT

Storage ALTSYNCRAM, LPM_RAM_DQ, LPM_ROM

Table 17–2. Supported Megafunctions

Megafunction

Arria GX / Stratix Series

Cyclone
Series

M512
Blocks

M4K
Blocks

MegaRAM
Blocks

LPM_CONSTANT Read/
Write

Read/
Write

Read/
Write

Read/
Write

LPM_ROM Write Read/
Write

N/A Read/
Write

LPM_RAM_DQ N/A Read/
Write

Read/
Write

Read/
Write

ALTSYNCRAM (ROM) Write Read/
Write

N/A Read/
Write

ALTSYNCRAM (Single-Port RAM Mode)
(1)

N/A Read/
Write

Read/
Write

Read/
Write

Note to Table 17–2:

(1) Only write-only mode is applicable for this single-port RAM. In read-only mode, use LPM_ROM instead of
LPM_RAM_DQ.

Chapter 17: In-System Updating of Memory and Constants 17–3
Creating In-System Modifiable Memories and Constants

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Creating In-System Modifiable Memories and Constants
When you specify that a memory or constant is run-time modifiable, the Quartus II
software changes the default implementation. A single-port RAM is converted to
dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the
functionality of your design. For a list of run-time modifiable megafunctions, refer to
Table 17–1.

To enable your memory or constant to be modifiable, perform the following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. If you are creating a new megafunction, select Create a new custom megafunction
variation. If you have an existing megafunction, select Edit an existing custom
megafunction variation.

3. To customize the megafunction based on the characteristics required by your
design, turn on Allow In-System Memory Content Editor to capture and update
content independently of the system clock, and type a value in the Instance ID
text box. These parameters can be found on the last page of the wizard for
megafunctions that support in-system updating.

1 The Instance ID is a four-character string value used to distinguish the
megafunction from other in-system memories and constants.

4. Click Finish.

5. On the Processing menu, click Start Compilation.

If you instantiate a memory or constant megafunction directly with ports and
parameters in VHDL or Verilog HDL, add or modify the lpm_hint parameter as
follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor
The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor (Figure 17–1).

17–4 Chapter 17: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Altera® device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within
the Quartus II software to access the memories and constants in each of the devices.
Each In-System Memory Content Editor can access the in-system memories and
constants in a single device.

Instance Manager
When you scan the JTAG chain to update the Instance Manager pane, you can view a
list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

You can read and write to in-system memory with the Instance Manager pane, as
shown in Figure 17–2.

Figure 17–1. In-System Memory Content Editor

Chapter 17: In-System Updating of Memory and Constants 17–5
Running the In-System Memory Content Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The following buttons are provided in the Instance Manager pane:

■ Read data from In-System Memory—Reads the data from the device
independently of the system clock and displays the data in the Hex Editor pane

■ Continuously Read Data from In-System Memory—Continuously reads the data
asynchronously from the device and displays the data in the Hex Editor pane

■ Stop In-System Memory Analysis—Stops the current read or write operation

■ Write Data to In-System Memory—Asynchronously writes data present in the
Hex Editor pane to the device

1 In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right button pop-
up menu in the Instance Manager pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,
or Updating data. The health monitor provides information about the status of the
editor.

The Quartus II software assigns a different index number to each in-system memory
and constant to distinguish between multiple instances of the same memory or
constant function. View the In-System Memory Content Editor Settings section of
the Compilation Report to match an index with the corresponding instance ID
(Figure 17–3).

Figure 17–2. Instance Manager Pane Controls

Read Data from In-System Memory
Continuously Read Data from In-System Memory

Stop In-System Memory Analysis
Write Data to In-System Memory

17–6 Chapter 17: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Editing Data Displayed in the Hex Editor Pane
You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

To modify the data displayed in the Hex Editor pane, click a location in the editor and
type or paste in the new data. The new data appears in blue, indicating modified data
that has not been written into the FPGA. On the Edit menu, choose Value, and click
Fill with 0's, Fill with 1's, Fill with Random Values, or Custom Fills to update a
block of data that you have selected.

Importing and Exporting Memory Files
The In-System Memory Content Editor allows you to import and export data values
for memories that have the In-System Updating feature enabled. Importing from a
data file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

To import a file to memory with the In-System Memory Content Editor, select the
memory or constant that you want to target from the Instance Manager pane. On the
Edit menu, click Import Data from File, and specify the data file that you want to
load to the targeted memory or constant. You can only import a memory file that is in
either a Hexadecimal (Intel-Format) File (.hex) or Memory Initialization File (.mif)
format.

Similarly, to export the contents of memory to a file with the In-System Memory
Content Editor, select the memory or constant that you want to target from the
Instance Manager pane. From the Edit menu, click Export Data from File, and specify
the file name to which you want to save the data. You can export data to a .hex, .mif,
Verilog Value Change Dump file (.vcd), or RAM Initialization File (.rif) format.

Figure 17–3. Compilation Report In-System Memory Content Editor Settings Section

Chapter 17: In-System Updating of Memory and Constants 17–7
Running the In-System Memory Content Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Viewing Memories and Constants in the Hex Editor Pane
For each instance of an in-system memory or constant, the Hex Editor pane displays
data in hexadecimal representation and ASCII characters (if the word size is a
multiple of 8 bits). The arrangement of the hexadecimal numbers depends on the
dimensions of the memory. For example, if the word width is 16 bits, the Hex Editor
pane displays data in columns of words that contain columns of bytes (Figure 17–4).

Unprintable ASCII characters are represented by a period (.). The color of the data
changes as you perform reads and writes. Data displayed in black indicates the data
in the Hex Editor pane was the same as the data read from the device. If the data in
the Hex Editor pane changes color to red, the data previously shown in the Hex
Editor pane was different from the data read from the device.

As you analyze the data, you can use the cursor and the status bar to quickly identify
the exact location in memory. The status bar is located at the bottom of the In-System
Memory Content Editor and displays the selected instance name, word position, and
bit offset.

The bit offset is the bit position of the cursor within the word. In the following
example, a word is set to 8 bits.

With the cursor in the position shown in Figure 17–5, the word location is 0x0000 and
the bit position is 0x0007.

Figure 17–4. Editing 16-Bit Memory Words with the Hex Editor Pane

Figure 17–5. Hex Editor Cursor Positioned at Bit 0×0007

17–8 Chapter 17: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

With the cursor in the position shown in Figure 17–6, the word location remains
0x0000, but the bit position is 0x0003.

Scripting Support
The In-System Memory Content Editor supports reading and writing of memory
contents via a Tcl script or Tcl commands entered at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content Editor are as
follows:

■ Reading from memory:

read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

■ Writing to memory:

write_content_to_memory

■ Save memory contents to file:

save_content_from_memory_to_file

■ Update memory contents from File:

update_content_to_memory_from_file

f For descriptions about the command options and scripting examples, refer to the Tcl
API Help Browser and the Quartus II Scripting Reference Manual.

Programming the Device with the In-System Memory Content Editor
If you make changes to your design, you can program the device from within the
In-System Memory Content Editor. To program the device, perform the following
steps:

1. On the Tools menu, click In-System Memory Content Editor.

Figure 17–6. Hex Editor Cursor Positioned at Bit 0×0003

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

Chapter 17: In-System Updating of Memory and Constants 17–9
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

2. In the JTAG Chain Configuration pane of the In-System Memory Content Editor,
select the SRAM object file (.sof) that includes the modifiable memories and
constants.

3. Click Scan Chain.

4. In the Device list, select the device you want to program.

5. Click Program Device.

Example: Using the In-System Memory Content Editor with the SignalTap II Embedded
Logic Analyzer

The following scenario describes how you can use the In-System Updating of
Memory and Constants feature with the SignalTap II Embedded Logic Analyzer to
efficiently debug your design in-system. You can use the In-System Content Editor
and the SignalTap II Embedded Logic Analyzer simultaneously with the JTAG
communication interface.

After completing your FPGA design, you find that the characteristics of your FIR filter
design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be
in-system modifiable and instantiate the SignalTap II Embedded Logic Analyzer.

2. Using the SignalTap II Embedded Logic Analyzer to tap and trigger on internal
design nodes, you find the FIR filter to be functioning outside of the expected
cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the FIR
filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

In this scenario, you can quickly locate the source of the problem using both the In-
System Memory Content Editor and the SignalTap II Embedded Logic Analyzer. You
can also verify the functionality of your device by changing the coefficient values
before modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

Conclusion
The In-System Updating of Memory and Constants feature provides access into a
device for efficient debugging in a hardware lab. You can use In-System Updating of
Memory and Constants with the SignalTap II Embedded Logic Analyzer to maximize
the visibility into an Altera FPGA. By increasing visibility and access to internal logic
of the device, you can identify and resolve problems with your design more easily.

17–10 Chapter 17: In-System Updating of Memory and Constants
Referenced Documents

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 17–3 shows the revision history of this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 17–3. Document Revision History

Date and Version Changes Made Summary of Changes

November 2009 v9.1.0 ■ Delete references to APEX devices.

■ Style changes.

Updated for the Quartus II
software 9.1 release.

March 2009
v9.0.0

No change to content. Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

■ Added reference to Section V. In-System Debugging in
volume 3 of the Quartus II Handbook on page 16-1.

■ Removed references to the Mercury device, as it is now
considered to be a “Mature” device

■ Added links to referenced documents throughout document

■ Minor editorial updates

Updated for the Quartus II
software version 8.0 release.

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

18. Design Debugging Using In-System
Sources and Probes

This chapter provides detailed instructions about how to use the In-System Sources
and Probes Editor and Tcl scripting in the Quartus® II software to debug your design.

Introduction
Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run
time. The SignalTap® II Logic Analyzer and SignalProbe allow you to read or “tap”
internal logic signals during run time as a way to debug your logic design. You can
make the debugging cycle more efficient when you can drive any internal signal
manually within your design, which allows you to perform the following actions:

■ Force the occurrence of trigger conditions set up in the SignalTap II Logic Analyzer

■ Create simple test vectors to exercise your design without using external test
equipment

■ Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Quartus II software extends the
portfolio of verification tools, and allows you to easily control any internal signal and
provides you with a completely dynamic debugging environment. Coupled with
either the SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

f The Virtual JTAG Megafunction and the In-System Memory Content Editor also give
you the capability to drive virtual inputs into your design. The Quartus II software
offers a variety of on-chip debugging tools. For an overview and comparison of all the
tools available in the Quartus II software on-chip debugging tool suite, refer to Section
V. In-System Debugging in volume 3 of the Quartus II Handbook.

Overview
This chapter includes the following topics:

■ “Design Flow Using the In-System Sources and Probes Editor” on page 18–3

■ “Running the In-System Sources and Probes Editor” on page 18–6

■ “Tcl interface for the In-System Sources and Probes Editor” on page 18–9

■ “Design Example: Dynamic PLL Reconfiguration” on page 18–12

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE
megafunction and an interface to control the ALTSOURCE_PROBE megafunction
instances during run time. Each ALTSOURCE_PROBE megafunction instance
provides you with source output ports and probe input ports, where source ports
drive selected signals and probe ports sample selected signals. When you compile

QII53021-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

18–2 Chapter 18: Design Debugging Using In-System Sources and Probes
Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

your design, the ALTSOURCE_PROBE megafunction sets up a register chain to either
drive or sample the selected nodes in your logic design. During run time, the In-
System Sources and Probes Editor uses a JTAG connection to shift data to and from
the ALTSOURCE_PROBE megafunction instances. Figure 18–1 shows a block
diagram of the components that make up the In-System Sources and Probes Editor.

The ALTSOURCE_PROBE megafunction hides the detailed transactions between the
JTAG controller and the registers instrumented in your design to give you a basic
building block for stimulating and probing your design. Additionally, the In-System
Sources and Probes Editor provides single-cycle samples and single-cycle writes to
selected logic nodes. You can use this feature to input simple virtual stimuli and to
capture the current value on instrumented nodes. Because the In-System Sources and
Probes Editor gives you access to logic nodes in your design, you can toggle the
inputs of low-level components during the debugging process. If used in conjunction
with the SignalTap II Logic Analyzer, you can force trigger conditions to help isolate
your problem and shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

■ Creating virtual push buttons

■ Creating a virtual front panel to interface with your design

■ Emulating external sensor data

■ Monitoring and changing run time constants on the fly

Figure 18–1. In-System Sources and Probes Editor Block Diagram

D QD QD QD Q

D QD QD QD Q

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

Altera
Programming

Hardware

Quartus II
Software

FPGA

Chapter 18: Design Debugging Using In-System Sources and Probes 18–3
Design Flow Using the In-System Sources and Probes Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE megafunction instances to increase the level of
automation.

Hardware and Software Requirements
The following components are required to use the In-System Sources and Probes
Editor:

■ Quartus II software

or

■ Quartus II Web Edition (with the TalkBack feature turned on)

■ Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

■ Altera® development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

■ Arria® GX

■ Stratix® series

■ HardCopy® II

■ Cyclone® series

■ MAX® II

Design Flow Using the In-System Sources and Probes Editor
The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of the
ALTSOURCE_PROBE megafunction. After you compile the design, you can control
each ALTSOURCE_PROBE instance via the In-System Sources and Probes Editor
pane or via a Tcl interface. The complete design flow is shown in Figure 18–2.

18–4 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Flow Using the In-System Sources and Probes Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Configuring the ALTSOURCE_PROBE Megafunction
To use the In-System Sources and Probes Editor in your design, you must first
instantiate the ALTSOURCE_PROBE megafunction variation file. You can configure
the ALTSOURCE_PROBE megafunction with the MegaWizard™ Plug-In Manager.
Each source or probe port can be up to 256 bits. You can have up to 128 instances of
the ALTSOURCE_PROBE megafunction in your design.

To configure the ALTSOURCE_PROBE megafunction, performing the following
steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. Select Create a new custom megafunction variation.

3. Click Next.

Figure 18–2. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project
or Open an Existing

Project

Configure
altsource_probe

Megafunction

Instrument selected logic
nodes by Instantiating the

altsource_probe
Megafunction variation file

into the HDL Design

Compile the design

Program Target
Device(s)

Control Source and
Probe Instance(s)

Debug/Modify HDL

Chapter 18: Design Debugging Using In-System Sources and Probes 18–5
Design Flow Using the In-System Sources and Probes Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

4. On page 2a of the MegaWizard Plug-In Manager, make the following selections:

a. In the Installed Plug-Ins list, expand the JTAG-accessible Extensions folder
and select In-System Sources and Probes.

1 Verify that the currently selected device family matches the device you are
targeting.

b. Select an output file type and enter the name of the ALTSOURCE_PROBE
megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v)
as the output file type.

5. Click Next.

6. On page 3 of the MegaWizard Plug-In Manager, make the following selections:

a. Under Do you want to specify an Instance Index?, turn on Yes.

b. Specify the ‘Instance ID’ of this instance.

c. Specify the width of the probe port. The width can be from 1 bit to 256 bits.

d. Specify the width of the source port. The width can be from 1 bit to 256 bits.

7. On page 3 of the MegaWizard Plug-In Manager, you can click Advanced Options
and specify other options, including the following:

■ What is the initial value of the source port, in hexadecimal?—Allows you to
specify the initial value driven on the source port at run time.

■ Write data to the source port synchronously to the source clock—Allows you
to synchronize your source port write transactions with the clock domain of
your choice.

■ Create an enable signal for the registered source port—When turned on,
creates a clock enable input for the synchronization registers. You can turn on
this option only when the Write data to the source port synchronously to the
source clock option is turned on.

1 The In-System Sources and Probes Editor does not support simulation. You must
remove the ALTSOURCE_PROBE megafunction instantiation before you create a
simulation netlist.

Instantiating the ALTSOURCE_PROBE Megafunction
The MegaWizard Plug-In Manager produces the necessary variation file and the
instantiation template based on your inputs to the MegaWizard. Use the template to
instantiate the ALTSOURCE_PROBE megafunction variation file in your design. The
port information is shown in Table 18–1.

18–6 Chapter 18: Design Debugging Using In-System Sources and Probes
Running the In-System Sources and Probes Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can include up to 128 instances of the ALTSOURCE_PROBE megafunction in
your design, if your device has available resources. Each instance of the
ALTSOURCE_PROBE megafunction uses a pair of registers per signal for the width of
the widest port in the megafunction. Additionally, there is some fixed overhead logic
to accommodate communication between the ALTSOURCE_PROBE instances and the
JTAG controller. You can also specify an additional pair of registers per source port for
synchronization.

Compiling the Design
When you compile your design with the In-System Sources and Probes megafunction
instantiated, an instance of the ALTSOURCE_PROBE instance and SLD_HUB
megafunctions are added to your compilation hierarchy automatically. These
instances provide communication between the JTAG controller and your
instrumented logic.

You can modify the number of connections to your design by editing the
ALTSOURCE_PROBE megafunction. To open the design instance you want to modify
in the MegaWizard Plug-In Manager, double-click the instance in the Project
Navigator. You can then modify the connections in the HDL source file. You must
recompile your design after you make changes.

You can use the Quartus II incremental compilation feature to reduce compilation
time. Incremental compilation allows you to organize your design into logical
partitions. During recompilation of a design, incremental compilation preserves the
compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

f For more information about the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Running the In-System Sources and Probes Editor
The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE megafunction instances within your design. The editor allows
you to view all available run time controllable instances of the ALTSOURCE_PROBE
megafunction in your design, provides a push-button interface to drive all your
source nodes, and provides a logging feature to store your probe and source data.

Table 18–1. ALTSOURCE_PROBE Megafunction Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is
required if you turn on Source Clock in the Advanced Options box in
the MegaWizard Plug-In Manager.

source_ena No Input Clock enable signal for source_clk. This input is required if
specified in the Advanced Options box in the MegaWizard Plug-In
Manager.

source[] No Output Used to drive inputs to user design.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 18: Design Debugging Using In-System Sources and Probes 18–7
Running the In-System Sources and Probes Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

To run the In-System Sources and Probes Editor, on the Tools menu, click In-System
Sources and Probes Editor.

The In-System Sources and Probes Editor contains three panes:

■ JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

■ Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

■ In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Quartus II software project. The In-System Sources and Probes Editor retrieves all
instances of the ALTSOURCE_PROBE megafunction by scanning the JTAG chain and
sending a query to the device selected in the JTAG Chain Configuration pane. You
can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE megafunction instances in a single device. If you have more
than one device containing megafunction instances in a JTAG chain, you can launch
multiple In-System Sources and Probes Editor panes to access the megafunction
instances in each device.

Programming Your Device With JTAG Chain Configuration
After you compile your project, you must configure your FPGA before you use the
In-System Sources and Probes Editor. To configure a device to use with the In-System
Sources and Probes Editor, perform the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances. (The
.sof may be automatically detected).

5. Click Program Device to program the target device.

Instance Manager
The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design and allows you to configure how data is acquired from or written to those
instances.

18–8 Chapter 18: Design Debugging Using In-System Sources and Probes
Running the In-System Sources and Probes Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The following buttons and sub-panes are provided in the Instance Manager pane:

■ Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

■ Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read interval
setting.

■ Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

■ Write Source Data—Writes data to all source nodes of the selected instance.

■ Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by
clicking Manual.

■ Event Log—Controls the event log in the In-System Sources and Probes Editor
pane.

■ Write Source Data—Allows you to manually or continuously write data to the
system.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running Offloading data,
Updating data, or if an Unexpected JTAG communication error occurs. This status
indicator provides information about the sources and probes instances in your design.

In-System Sources and Probes Editor Pane
The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design. The data is organized according to the index
number of the instance. The editor provides an easy way to manage your signals, and
allows you to rename signals or group them into buses. All data collected from
in-system source and probe nodes is recorded in the event log and you can view the
data as a timing diagram.

Reading Probe Data
You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data. This action produces a single sample of
the probe data and updates the data column of the selected index in the In-System
Sources and Probes Editor pane. You can save the data to an event log by turning on
the Save data to event log option in the Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously read
probe data. While reading, the status of the active instance shows Unloading. You can
read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

Chapter 18: Design Debugging Using In-System Sources and Probes 18–9
Tcl interface for the In-System Sources and Probes Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

To adjust the probe read interval, in the Instance Manager pane, turn on the Manual
option in the Probe read interval sub-pane, and specify the sample rate in the text
field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You can
adjust the event log window buffer size in the Maximum Size box.

Writing Data
To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer. Modified values that are not
written out to the ALTSOURCE_PROBE instances appear in red. To update the
ALTSOURCE_PROBE instance, highlight the instance in the Instance Manager pane
and click Write source data. The Write source data function is also available via the
shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications
you make to the source data buffer to also write immediately to the
ALTSOURCE_PROBE instances. To continuously update the ALTSOURCE_PROBE
instances, change the Write source data field from Manually to Continuously.

Organizing Data
The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal. To
rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains all
the modifications you made to the signal groups, as well as the current data event log.

Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

18–10 Chapter 18: Design Debugging Using In-System Sources and Probes
Tcl interface for the In-System Sources and Probes Editor

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 18–2 shows the Tcl commands you can use instead of the In-System Sources and
Probes Editor.

Example 18–1 shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in Figure 18–3. The example
design contains a DCFIFO with ALTSOURCE_PROBE instances to read from and
write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in Example 18–1, provide visibility into the contents of the
FIFO by performing single sample write and read operations and reporting the state
of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the SignalTap II Logic Analyzer.

Table 18–2. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source
_probe

-device_name <device name>
-hardware_name <hardware
name>

Opens a handle to a device with the
specified hardware.

Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware
name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:

{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.

A string is returned that specifies the status
of each probe, with the MSB as the
left-most bit.

read_source_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.

A string is returned that specifies the status
of each source, with the MSB as the
left-most bit.

write_source_data -instance_index
<instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_interactive_probe None Releases the JTAG chain.

Issue this command when all transactions
are finished.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 18: Design Debugging Using In-System Sources and Probes 18–11
Tcl interface for the In-System Sources and Probes Editor

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 18–3. A DCFIFO Example Design Controlled by the Tcl Script in Example 18–1

D Q

D Q

Write_clock

Write_req
Data[7..0]

Write_clock

Read_req

Read_clock

Wr_full

Q[7..0]

Rd_empty

Data_out

Read_clock

Source_read_sel

S_read_req

S_write_req

Rd_req_in

Wr_req_in

Data_in[7..0]

altsource_probe
(instance 1)

altsource_probe
(instance 0)

Source_write_sel

S_data[7..0]

Example 18–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 18–3 (Part 1 of 2)

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb
variable full

start_insystem_source_probe -device_name $device_name -hardware_name $usb

#read full flag
set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}

18–12 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Example: Dynamic PLL Reconfiguration

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Design Example: Dynamic PLL Reconfiguration
The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to provide
a GUI to dynamically reconfigure a Stratix PLL.

##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]

##clear transaction

write_source_data -instance_index 0 -value 0

end_insystem_source_probe
}

proc read {} {

global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb

##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag

set empty [read_probe_data -instance_index 1]

if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }

toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1

pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x
}

Example 18–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 18–3 (Part 2 of 2)

Chapter 18: Design Debugging Using In-System Sources and Probes 18–13
Design Example: Dynamic PLL Reconfiguration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG megafunction provides an easy
interface to access the register chain counters. The ALTPLL_RECONFIG
megafunction provides a cache that contains all modifiable PLL parameters. After you
update all the PLL parameters in the cache, the ALTPLL_RECONFIG megafunction
drives the PLL register chain to update the PLL with the updated parameters.
Figure 18–4 shows a Stratix-enhanced PLL with reconfigurable coefficients.

1 Stratix II and Stratix III devices also allow you to dynamically reconfigure PLL
parameters. For more information about these families, refer to the appropriate data
sheet. For more information about dynamic PLL reconfiguration, refer to AN 282:
Implementing PLL Reconfiguration in Stratix & Stratix GX Devices or AN 367:
Implementing PLL Reconfiguration in Stratix II Devices.

The following design example uses an ALTSOURCE_PROBE instance to update the
PLL parameters in the ALTPLL_RECONFIG megafunction cache. The
ALTPLL_RECONFIG megafunction connects to an enhanced PLL in a Stratix FPGA to
drive the register chain containing the PLL reconfigurable coefficients. This design
example uses a Tcl/Tk script to generate a GUI where you can enter in new m and n
values for the enhanced PLL. The Tcl script extracts the m and n values from the GUI,

Figure 18–4. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δtm÷m

÷g0 Δtg0

÷e3 Δte3

÷g3 Δtg3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an367.pdf
http://www.altera.com/literature/an/an367.pdf

18–14 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Example: Dynamic PLL Reconfiguration

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

shifts the values out to the ALTSOURCE_PROBE instances to update the values in the
ALTPLL_RECONFIG megafunction cache, and asserts the reconfiguration signal on
the ALTPLL_RECONFIG megafunction. The reconfiguration signal on the
ALTPLL_RECONFIG megafunction starts the register chain transaction to update all
PLL reconfigurable coefficients. A block diagram of a design example is shown in
Figure 18–5. The Tk GUI is shown in Figure 18–6.

This design example was created using a Nios® II Development Kit, Stratix Edition.
The file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

■ Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in Figure 18–6.

■ Interactive_Reconfig.qar—The archived Quartus II project for this design
example.

f Download the sourceprobe_DE_dynamic_pll.zip file from the Literature: Quartus II
Handbook page of the Altera website.

Figure 18–5. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 18–6. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl Package

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA

50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction
In-System

Sources and Probes

Chapter 18: Design Debugging Using In-System Sources and Probes 18–15
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conclusion
The In-System Sources and Probes Editor provides stimuli and receives responses
from the target design during run time. With the simple and intuitive interface, you
can add virtual inputs to your design during run time without using external
equipment. When used in conjunction with the SignalTap II Logic Analyzer, you can
use the In-System Sources and Probes Editor to obtain greater control of the signals in
your design, and thus help shorten the verification cycle.

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Settings File Manual

■ Section V. In-System Debugging in volume 3 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 18–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 18–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Removed references to obsolete devices.

■ Style changes.

Updated for the Quartus II
software version 9.1 release.

March 2009
v9.0.0

No change to content. —

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II
software version 8.1 release.

May 2008
v8.0.0

■ Documented that this feature does not support simulation on
page 17–5

■ Updated Figure 17–8 for Interactive PLL reconfiguration
manager

■ Added hyperlinks to referenced documents throughout the
chapter

■ Minor editorial updates

Updated for the Quartus II
software version 8.0 release.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

18–16 Chapter 18: Design Debugging Using In-System Sources and Probes
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section V. Formal Verification

The Quartus® II software easily interfaces with EDA formal design verification tools
such as the Cadence Encounter Conformal and Synopsys Synplify software. In
addition, the Quartus II software has built-in support for verifying the logical
equivalence between the synthesized netlist from Synopsys Synplify and the post-fit
Verilog Quartus Mapped (.vqm) files using Cadence Encounter Conformal software.

This section discusses formal verification, how to set-up the Quartus II software to
generate the .vqm file and Cadence Encounter Conformal script, and how to compare
designs using Cadence Encounter Conformal software.

This section includes the following chapter:

■ Chapter 19, Cadence Encounter Conformal Support

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

V–2 Section V: Formal Verification

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

19. Cadence Encounter Conformal
Support

Introduction
The Quartus® II software provides formal verification support for Altera® designs
through interfaces with a formal verification EDA tool, the Cadence Encounter
Conformal software.

Use the Encounter Conformal software to verify the functional equivalence of a
post-synthesis Verilog Quartus Mapping (.vqm) netlist file from Synopsys Synplify
Pro software, a post-fit Verilog Output File (.vo) from the Quartus II software, or both.
You can also use the Encounter Conformal software to verify the functional
equivalence of the register transfer level (RTL) source code and post-fit .vo file with
the Quartus II software when using Quartus II integrated synthesis. These formal
verification flows support designs for the Arria® GX, Stratix® IV, Stratix III, Stratix II,
Stratix, Stratix II GX, Stratix GX, Cyclone® III, Cyclone II, Cyclone, and HardCopy® II
device families.

The two types of formal verification are equivalence checking and model checking.
This chapter discusses equivalence checking with the Cadence Encounter Conformal
software.

This chapter contains the following sections:

■ “Formal Verification Design Flow” on page 19–2

■ “RTL Coding Guidelines for Quartus II Integrated Synthesis” on page 19–4

■ “Black Boxes in the Encounter Conformal Flow” on page 19–8

■ “Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup
Files” on page 19–10

■ “Understanding the Formal Verification Scripts for Encounter Conformal” on
page 19–15

■ “Comparing Designs Using Encounter Conformal” on page 19–17

■ “Known Issues and Limitations” on page 19–19

■ “Black Box Models” on page 19–21

■ “Conformal Dofile/Script Example” on page 19–23

Equivalence checking uses mathematical techniques to compare the logical
equivalence of two versions of the same design rather than using test vectors to
perform simulation. The two compared versions could be post-map design and
post-fit design, or RTL design and post-fit design. Equivalence checking greatly
shortens the verification cycle of the design.

Formal Verification Versus Simulation
Formal verification cannot be considered as a replacement to the vector-based
simulation. Formal verification only complements the existing vector-based
simulation techniques to speed up the verification cycle. Vector-based simulation
techniques of gate level designs can take a considerable amount of time.

QII53011-9.1.0

19–2 Chapter 19: Cadence Encounter Conformal Support
Formal Verification Design Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can use Vector-based simulation techniques to perform the following functions:

■ Verify design functionality

■ Verify timing specifications

■ Debug designs

Formal Verification: What You Need to Know
If you use formal verification techniques to verify logic equivalence of your design,
you can save time by forgoing a comprehensive vector-based simulation of the gate
level design. However, there might be an impact on area and performance during
recompilation of your design with the Quartus II software if you choose to use formal
verification flow for Cadence Conformal LEC software. The area and performance of
your design might be affected by the following factors:

■ Hierarchy preservation

■ ROM implementation by logic elements (LEs)

■ Disabled retiming is disabled

Refer to “Known Issues and Limitations” on page 19–19 before you consider using the
formal verification flow in your design methodology.

Formal Verification Design Flow
Altera supports formal verification using the Encounter Conformal software for the
following two synthesis tools:

■ “Quartus II Integrated Synthesis”

■ “Synplify Pro” on page 19–3

The following sections describe the supported design flows for these synthesis tools.

Quartus II Integrated Synthesis
The design flow for formal verification using the Quartus II integrated synthesis is
shown in Figure 19–1. This flow performs equivalency checking for the RTL source
code and the post-fit netlist generated by the Quartus II software. The RTL source
code can be in Verilog HDL or VHDL format. The post-fit netlist generated by the
Quartus II software is always in Verilog HDL format.

Chapter 19: Cadence Encounter Conformal Support 19–3
Formal Verification Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

EDA Tool Support for Quartus II Integrated Synthesis
The formal verification flow using the Quartus II software and Cadence Encounter
Conformal software supports the following software versions and operating systems:

■ Quartus II software beginning with version 4.2

■ Cadence Encounter Conformal software beginning with 4.3.5A

■ Solaris and Linux operating systems

Synplify Pro
The design flow for formal verification using Synplify Pro Synthesis performs
equivalency checking for the post-synthesis netlist from Synplify Pro and the post fit
netlist generated by Quartus II software, as shown in Figure 19–2.

f For additional information about performing equivalency checking between RTL and
post-synthesis netlist generated from Synplify Pro software, refer to the Synplify Pro
documentation.

Figure 19–1. Formal Verification Using Quartus II Integrated Synthesis and the Encounter Conformal
Software

Synthesis

Place-and-Route

Equivalence
Checking

RTL

Quartus II
Software

Post-Fit
Verilog Output

Encounter Conformal
Software

Formal Verification
Library

Figure 19–2. Formal Verification Flow Using Synplify Pro and the Encounter Conformal Software

Synplify Pro

Quartus II

Synthesized
Netlist

Equivalence Checking/
Encounter Conformal

Equivalence Checking/
Encounter Conformal

Formal Verification
 Library

P&R
Netlist

RTL

19–4 Chapter 19: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

EDA Tool Support for Synplify Pro
The formal verification flow using the Quartus II software, the Synopsys Synplify Pro,
and the Cadence Encounter Conformal software supports the software versions and
operating systems shown in Table 19–1.

RTL Coding Guidelines for Quartus II Integrated Synthesis
The Cadence Encounter Conformal software can compare the RTL code against the
post-fit netlist generated by the Quartus II software. The Encounter Conformal
software and the Quartus II integrated synthesis parse and compile the RTL
description in slightly different ways. The Quartus II software supports some RTL
features that the Encounter Conformal software does not support and vice versa. The
style of the RTL code is of particular concern because neither tool supports some
constructs, leading to potential formal verification mismatches; for example, state
machine extraction, wherein different encoding mechanisms can result in different
structures. Therefore, for successful verification, both tools must interpret the RTL
code in the same manner.

The following section provides information about recognizing and preventing
problems that can arise in the formal verification flow.

f For more details about RTL coding styles for Quartus II integrated synthesis, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

1 Some of the coding guidelines apply to both the Quartus II integrated synthesis and
Synplify Pro flow, as indicated in each of the guidelines in the following sections.

Table 19–1. Compatible Software Versions

Quartus II
Software Version

Cadence Conformal
LEC Version Synplify Pro Version

4.1 4.3.0.a 7.6.1

4.2 4.3.5.a 8.0

5.0 5.1 8.1

5.1 5.1 8.4

6.0 5.2 8.5

6.1 6.1 8.6.2

7.0 6.1 8.6.2

7.1 6.2 8.8.1

7.2 7.1 9.0

8.0 7.1 9.4

8.1 7.2 9.6.2

9.0 7.2 C2009.03

9.1 8.1 C2009.06

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 19: Cadence Encounter Conformal Support 19–5
RTL Coding Guidelines for Quartus II Integrated Synthesis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Synthesis Directives and Attributes
Synthesis directives, also known as pragmas, play an important role in successful
verification of RTL against the post-fit .vo netlist file from the Quartus II software.

Pragmas and trigger keywords that are supported in Quartus II integrated synthesis
and Encounter Conformal are also supported in the formal verification flow. The
Quartus II integrated synthesis and Encounter Conformal both support the trigger
keywords “synthesis” and “synopsys.” When the Quartus II software does not
recognize a keyword (such as “verplex“), the keyword is disabled in the formal
verification scripts produced for use with the Cadence Conformal software.
Therefore, it is important to use caution with unsupported pragmas because they can
lead to verification mismatches.

For example, you can use the Quartus II integrated synthesis to synthesize RTL code
with the synthesis directive read_comments_as_HDL (Example 19–1 and
Example 19–2).

1 The Encounter Conformal software does not support the synthesis directive
read_comments_as_HDL, and the directive has no affect on the Encounter
Conformal software.

Table 19–2 lists supported pragmas and trigger keywords for formal verification.

Example 19–1. Verilog HDL Example of Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 19–2. VHDL Example of Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Table 19–2. Supported Pragmas and Trigger Keywords for Formal Verification

Pragmas (1) Trigger Keywords

full_case

parallel_case

pragma

synthesis_off

synthesis_on

translate_off

translate_on

synthesis

synopsys

Note to Table 19–2:

(1) Do not use Verilog 2001-style pragma declarations. The Quartus II software and the Encounter Conformal software
support this style of pragma in different manners.

19–6 Chapter 19: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Stuck-at Registers
Quartus II integrated synthesis eliminates registers that have their output stuck at a
constant value. Quartus II integrated synthesis gives a warning message and adds an
entry to the corresponding report panel in the formal verification folder of the
Analysis & Synthesis section of the Compilation Report. If Conformal LEC does not
find the same optimizations, it can lead to unmapped points in the golden netlist.
Example 19–3 illustrates the issue.

In this module description, registers e and g are tied to logic 0. In this example, the
Quartus II software generates the following warning message:

Warning: Reduced register "g" with stuck data_in port to stuck value GND
Warning: Reduced register "e" with stuck data_in port to stuck value GND

Quartus II integrated synthesis then adds a command to the formal verification
scripts telling Conformal LEC that a register is stuck at a constant value, as shown in
Example 19–4.

The command is commented in the formal verification script, forcing the Encounter
Conformal software to treat the register as stuck at a constant value and potentially
hiding a compilation error. You must verify that input to the e and g registers is
constant in the design and uncomment the command to obtain accurate results.

1 Altera recommends recoding your design to eliminate “stuck-at” registers.

The stuck-at register information in this section also applies to the Synplify Pro flow.

ROM, LPM_DIVIDE, and Shift Register Inference
For the purpose of formal verification, the Quartus II integrated synthesis implements
both ROM and shift registers in the form of LEs instead of using dedicated on-chip
memory resources. Using LEs can be less area-efficient than inferring a megafunction
that can be implemented in a RAM block. However, the Quartus II software generates
a warning message indicating that the megafunction was not inferred. Quartus II

Example 19–3. Verilog HDL Example Showing Stuck at Registers

module stuck_at_example {clk, a,b,c,d,out};
input a,b,c,d,clk;
output out;
reg e,f,g;

always @(posedge clk) begin
e <= a and g;// e is stuck at 0
g <= c and e;// g is stuck at 0
f <= e | b;

end
assign out = f and d;
endmodule

Example 19–4. Conformal LEC Script Showing Commands for Instance Equivalence

// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden

Chapter 19: Cadence Encounter Conformal Support 19–7
RTL Coding Guidelines for Quartus II Integrated Synthesis

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

integrated synthesis also reports a suggested ROM or shift register instantiation that
enables you to either use the MegaWizard™ Plug-In Manager to create the appropriate
megafunction explicitly, or to isolate the corresponding logic in a separate entity that
you can set as a black box. By setting black box properties on a particular module or
entity, you are telling the formal verification tool not to look inside the module or
entity for formal verification. If the black box properties are set on the corresponding
megafunction before synthesis, you can verify the megafunction with the Encounter
Conformal software. For details about setting black box properties on a particular
module, refer to Table 19–3 on page 19–9.

If the design contains division functionality, the Quartus II software infers an
LPM_DIVIDE megafunction, which is treated as a black box for the purpose of formal
verification.

RAM Inference
When the Quartus II software infers the LPM ALTSYNCRAM megafunction from the
RTL code, the Quartus II software generates the following warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram
megafunction to implement register logic with M512 or M4K memory block
or M-RAM. Expect to get an error or a mismatch for this block in the
formal verification tool.

This warning is generated because the memory block (altsyncram) is a new
instance in the post-fit netlist that is handled as a black box by the formal verification
tool. However, no such instance exists in the original RTL design, resulting in
mismatch or error reporting in the formal verification tool.

Latch Inference
A latch is implemented in the Quartus II integrated synthesis using a combinational
feedback loop. The Encounter Conformal software infers a latch primitive in the
Encounter Conformal library (DLAT) to implement a latch. This results in having a
DLAT on the golden side and a combinational loop with a cut point on the revised
side, leading to verification mismatches. The Quartus II software issues a warning
message whenever a latch is inferred, and the Quartus II software adds an entry to the
report panel in the Formal Verification folder of the Analysis & Synthesis report.
Altera recommends that you avoid latches in your design; however, if latches are
necessary, Altera recommends using the corresponding LPM_LATCH megafunction.

f For more information about the problems related to latches, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Combinational Loops
If the design consists of an intended combinational loop, you must define an
appropriate cut point for both the RTL and the post-fit .vo netlist file. A warning that
a combinational loop exists in the design is found in the Formal Verification subfolder
of the Quartus II software Analysis & Synthesis report.

For more information on issues with combinational loops, refer to “Known Issues and
Limitations” on page 19–19.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

19–8 Chapter 19: Cadence Encounter Conformal Support
Black Boxes in the Encounter Conformal Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Finite State Machine Coding Styles
When a state machine is inferred by the Encounter Conformal software, it uses
sequential encoding as the default encoding when no user encoding is present. The
Quartus II software selects the encoding most suited for the inferred state machine if
the State Machine Processing settings is set to the default value Auto. To do this,
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

4. Under Option, in the Name list, select State Machine Processing. In the Setting
list, select Auto.

5. Click OK.

6. Click OK.

Use the coding style described in the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook on RTL when writing finite state Machines
(FSMs). This allows the Quartus II integrated synthesis and the Encounter Conformal
software to infer a similar state machine for the same RTL code.

Black Boxes in the Encounter Conformal Flow
The Quartus II software usually generates a flattened netlist; however, you must treat
some modules in the design as black boxes. The following is a list of some of these
modules:

■ LPMs and megafunctions without formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version consisting of the
modules listed above and its implemented version, the modules must be treated as
black boxes by the Encounter Conformal software. To facilitate the formal verification
flow, the Quartus II software reconstructs the hierarchy on the black boxes with a port
interface that is identical to the module on the golden side of the design.

If your golden netlist (.vqm netlist file from Synplify Pro or RTL) includes any design
entity not having a corresponding formal verification model, that entity is handled as
a black box with its boundary interface preserved. There are three types of black boxes
and required user actions, depending upon circumstances. Table 19–4 describes these
three types of black boxes and the required user actions in detail.

Verilog Output netlist files written by the Quartus II software contain the black box
hierarchy when you make an EDA Formal Verification Hierarchy assignment with the
value BLACKBOX.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 19: Cadence Encounter Conformal Support 19–9
Black Boxes in the Encounter Conformal Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If this assignment is not made for a module, the Quartus II software implements that
module with logic cells. When this happens, the .vo netlist file no longer contains the
black box hierarchy and does not preserve the port interface, resulting in a mismatch
within the Encounter Conformal software.

You can also use Tcl commands or Quartus II GUI to set the black box property on the
entities, which the formal verification tool does not compare.

Tcl Command
Use the Tcl command shown in Example 19–5 to preserve the boundary interface of a
black box entity: dram.

GUI
To preserve the boundary interface of an entity using the GUI, make an EDA Formal
Verification Hierarchy assignment to the entity with the value BLACKBOX as shown in
Figure 19–3.

Table 19–3. Black Boxes and Required User Action

Type of Black Box Required User Action

Altera library of parameterized modules (LPMs) and
megafunctions (refer to Table 19–5 on page 19–21 for a
complete list).

No action required. The Quartus II software automatically creates
a black box list of components and preserves the hierarchy.

Any parametrized entity other than those listed in
Table 19–5 on page 19–21.

User must designate the wrapper that instantiates the
parameterized entity as a black box.

Non-parameterized entities that the user wants
designate as a black box.

User can designate the entity itself as a black box.

Example 19–5. Tcl Command to Create a Black Box

set_instance_assignment -name EDA_FV_HIERARCHY BLACKBOX -to | -entity dram

Figure 19–3. Setting the Black-Box Property on a Module

19–10 Chapter 19: Cadence Encounter Conformal Support
Generating the Post-Fit Netlist Output File and the Encounter Conformal

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Generating the Post-Fit Netlist Output File and the Encounter
Conformal Setup Files

The following steps describe how to set up the Quartus II software environment to
generate the post-fit .vo netlist file and the Encounter Conformal script for use in
formal verification. With the exception of step 2, the steps are identical for both of the
Synthesis tools:

To create a new Quartus II project or open an existing project, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings dialog box
appears.

2. In the Category list, click EDA Tool Settings.

If you are using the Quartus II integrated synthesis, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select <None> from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list (Figure 19–4).

Chapter 19: Cadence Encounter Conformal Support 19–11
Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

If you are using Synplify Pro, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select Synplify Pro from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list.

3. In the Category list, click the “+” icon to expand Compilation Process Settings,
and select Incremental Compilation. The Incremental Compilation page appears.

4. Select Full Incremental Compilation to turn on Incremental Compilation.

or

Turn on Incremental Compilation by typing the following Tcl command in the
Quartus II software Tcl console:

set_global_assignment -name INCREMENTAL_COMPILATION FULL_INCREMENTAL_COMPILATION

1 Altera requires that Incremental Compilation be turned on for Formal
Verification, and that your design does not contain any user-created
partitions. Starting with Quartus II software version 6.1 and later, the
incremental compilation feature is on by default.

5. In the Category list, click the “+” icon to expand Analysis and Synthesis Settings
and click Synthesis Netlist Optimizations. The Synthesis Netlist Optimizations
page appears.

6. Turn off Perform gate-level register retiming (Figure 19–5).

Figure 19–4. Compilation Process Settings

19–12 Chapter 19: Cadence Encounter Conformal Support
Generating the Post-Fit Netlist Output File and the Encounter Conformal

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

1 If Perform gate-level register retiming is not turned off, the Encounter
Conformal script can display a different set of compare points, making the
resulting netlist difficult to compare against the reference netlist file.

7. In the Category list, click the “+” icon to expand Fitter Settings, and select
Physical Synthesis Optimizations. The Physical Synthesis Optimizations page
appears.

a. Under Physical synthesis for registers, turn off Perform register retiming.

b. Under Physical Synthesis for Fitting, turn off both Perform physical
synthesis for combinational logic and Perform logic to memory mapping to
prevent logic from being mapped to RAMs (Figure 19–6).

Figure 19–5. Synthesis Netlist Optimizations

Chapter 19: Cadence Encounter Conformal Support 19–13
Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Retiming a design, either during the synthesis step or during the fitting step,
usually results in moving and merging registers along the critical path and is not
well-supported by the equivalence checking tools. Because equivalence checkers
compare the cone of logic terminating at registers, do not use retiming to move the
registers during optimization in the Quartus II software.

1 If the Perform gate-level register retiming (Figure 19–5) and Perform
register retiming options (Figure 19–6) are not turned off, the Encounter
Conformal script displays a different set of compare points, making the
resulting netlist difficult to compare against the reference netlist file. If you
use retiming in your design during compilation, you cannot generate a
netlist for formal verification.

f For more information about physical synthesis, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

8. Perform a full compilation of the design. On the Processing menu, click Start
Compilation, or click the Start Compilation icon on the Toolbar.

Figure 19–6. Fitter Settings

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

19–14 Chapter 19: Cadence Encounter Conformal Support
Generating the Post-Fit Netlist Output File and the Encounter Conformal

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II Software Generated Files, Formal Verification Scripts, and Directories
After successful compilation, the Quartus II software generates a list of files, formal
verification scripts, and directories in the <project_directory>/fv/conformal/ directory
(Table 19–4).

The script file contains the setup and constraints information to use with the formal
verification tool. The file <entity>.v in the blackboxes directory contains the module
description of entities that are not defined in the formal verification library. The file
also contains entities that you specify as black boxes. For example, if there is a
reference to a black box for an instance of the ALTDPRAM megafunction in the
design, the blackboxes directory does not contain a module description for the
ALTDPRAM megafunction because it is defined in the altdpram.v file of the formal
verification library. When a module does not have an RTL description, or the

Table 19–4. The Quartus II Software Compiler-Generated Files and Directories

File or
Directory Name Details

.vo file <proj rev>.vo The Quartus II software-generated netlist for formal verification.

Script file <proj rev>.ctc The <proj rev>.ctc file references <proj rev>.clg and <proj rev>.clr that read the
library files and black box descriptions. The <proj rev>.ctc file also references
the <proj rev>.cmc file containing information about the mapped points. (1)

<proj rev>.cec The <proj rev>.cec file contains the information for instance equivalences.

<proj rev>.cep The <proj rev>.cep file contains the information for black box pin equivalences
in the design.

<proj rev>.cmp The <proj rev>.cmp file contains the information for the black box pin mapping
between the golden and revised sides. (2)

<proj rev>.cmc The <proj rev>.cmc file contains information about the additional points to be
mapped in addition to the points selected by the tool.

<proj rev>_trivial.cmc This <proj rev>_trivial.cmc file contains mapping information for all the key
points in the design. (3)

<proj rev>.clr The <proj rev>.clr file contains information about the macros and libraries for
the revised design.

<proj rev>.clg The <proj rev>.clg file contains information about the macros and libraries for
the golden design.

blackboxes
directory

<project directory>/fv/
conformal/<project rev>_
blackboxes

This directory contains top-level module descriptions for all the user-defined
black box entities and contains modules with definitions other than Verilog HDL
or VHDL, for example, Block Design File (.bdf) in the design directory
<project directory>/fv/conformal/<project rev>_blackboxes

Notes to Table 19–4:

(1) This file is used with the Encounter Conformal software.
(2) This file is called from the <proj rev>.ctc script file. By default, the line where this file is called is commented out. These files are only useful

for HardCopy II device families.
(3) In some cases, Encounter Conformal software performs incorrect key point mapping, resulting in formal verification mismatches. To overcome

the verification mismatches, the Quartus II software writes out the <proj rev>_trivial.cmc file that contains mapping information for all the key
points in the design. Reading this file during the formal verification setup can result in increased run time. Therefore, the Quartus II software
writes out the top-level script file <proj rev>.ctc with the command to read the <proj rev>_trivial.cmc file commented out. If the formal
verification results are not acceptable, the user can uncomment the command and read the <proj rev>_trivial.cmc file. The command in the
<proj rev>.ctc file is:
//Trivial mappings with same name registers
//read mapped points $PROJECT/fv/conformal/<proj rev>_trivial.cmc

Chapter 19: Cadence Encounter Conformal Support 19–15
Understanding the Formal Verification Scripts for Encounter Conformal

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

description exists only in the formal verification library and you do not want to
compare the module using formal verification, a file containing only the top-level
module description with port declaration is written out to the blackboxes directory
and read into the Encounter Conformal software. To learn more about black boxes,
refer to “Black Boxes in the Encounter Conformal Flow” on page 19–8.

Understanding the Formal Verification Scripts for Encounter Conformal
The Quartus II software generates scripts to use with the Encounter Conformal Logic
Equivalence Check (LEC) software. This section elaborates on the details of the
Encounter Conformal commands used within the scripts to help you compare the
revised netlist with the golden netlist. In most cases, you do not have to add any more
Encounter Conformal constraints to verify your netlists.

A sample script generated by the Quartus II software is provided in “Conformal
Dofile/Script Example” on page 19–23.

The Encounter Conformal Commands within the Quartus II Software-Generated Scripts
The value for the variable QUARTUS is the path to the Quartus II software installation
directory:

setenv QUARTUS <Quartus Installation Directory>

The Quartus II software assigns the current working directory of the project to the
PROJECT variable. Use this variable to change the project directory to the directory
where the design files are installed when moving from a UNIX to a Windows
environment, or vice versa:

setenv PROJECT <Quartus Project Directory>

The following command reads both the golden and the revised netlists, along with the
appropriate library models:

read design <design files>

1 You must update the project location when the files are moved from the Windows
environment to the UNIX environment.

The post place-and-route netlist from the Quartus II software might contain net and
instance names that are slightly different from those of the golden netlist. By using the
following command, the Quartus II software defines temporary substitute string
patterns enabling the Encounter Conformal software to automatically map key points
when the names are not the same:

add renaming rule <rule>

The Encounter Conformal LEC software employs three name-based methods to map
key points to compare the revised netlist with the golden netlist. Scripts set the correct
method to get the best results.

set mapping method <mapping_rule>

19–16 Chapter 19: Cadence Encounter Conformal Support
Understanding the Formal Verification Scripts for Encounter Conformal

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

The Quartus II software performs several optimizations, including optimizing the
registers whose input is driven by a constant. Under these circumstances, for the
formal verification software to compare the netlists properly, the command set
flatten model is used with the option seq_constant.

set flatten model <flattening_rule>

When you use the command report black box, verify that the following modules
are listed as black boxes, along with any of the modules black boxed by the user, in
both the golden and revised netlists:

■ LPMs and megafunctions without the formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on multipliers for both
the golden and revised netlists:

set multiplier implementation <implementation_name>

If there are any combinational loops or instances of LPM_LATCH, the Quartus II
software cuts the loop at the same point using the following command on both the
golden and revised netlists:

add cut point

The Encounter Conformal software does not always automatically map all of the
keypoints, or can incorrectly map some keypoints. To help the Encounter Conformal
software successfully complete the mapping process, the Quartus II software records
optimizations performed on the netlist as a series of add mapped points in the
Encounter Conformal <file_name>.cmc script.

add mapped points <key_points>

There are situations in which the inverter in front of the register is moved after the
register. In this situation, the following command is used:

add mapped points <key_points> -invert

The following command reads in the mapped point information from the specified
file:

read mapped points <file_name>.cmc

Figure 19–7. Instance Equivalence

Golden Revised

U1

U2

DFF

DFF

PO PO
DFF

U1

Chapter 19: Cadence Encounter Conformal Support 19–17
Comparing Designs Using Encounter Conformal

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

During the process of optimization, the Quartus II software might merge two registers
into one (Figure 19–7). The Quartus II software informs the formal verification tool
that the U1 and U2 registers are equivalent to each other using the following
command:

add instance equivalence <instance_pathname ..> [-Golden]

If the register duplication takes place, the following command is used:

add instance equivalence <instance_pathname ..> [-revised]

The following command is used when the inverter is moved beyond the register
along with either register duplication or merging:

add instance equivalences <instance_pathname>
[-invert <instance_pathname>]

At times, the register output is driven to a constant, either logic 0 or logic 1. The
Quartus II software sets the value of the register to a constraint using the add
instance constraint command. For more information about this command, refer
to “Stuck-at Registers” on page 19–6.

add instance constraint <constraint_value>

Comparing Designs Using Encounter Conformal
This section addresses using the Encounter Conformal software to compare designs;
that is, how to prove logical equivalence between two versions of the design.

Running the Encounter Conformal Software from the GUI
To run the Encounter Conformal software from the GUI, follow these steps:

1. Open the Encounter Conformal software.

2. On the File menu, click Do Dofile.

3. Select the file <path to project directory>/fv/conformal/<proj rev>.ctc.

The Encounter Conformal software GUI displays the comparison results
(Figure 19–8). The Golden window displays the original RTL description or the post
synthesis .vqm netlist file from Synplify Pro, and the Revised window displays the
information of the post-fit netlist generated by the Quartus II software. The message
section at the bottom of the window reports the verification results and the number of
unmapped and non-equivalent points found in the design.

19–18 Chapter 19: Cadence Encounter Conformal Support
Comparing Designs Using Encounter Conformal

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To investigate the verification results, click the Mapping Manager icon in the toolbar,
or on the Tools menu, click Mapping Manager. The Encounter Conformal software
reports the mapped, unmapped, and compared points in the Mapped Points,
Unmapped Points, and Compared Points windows, respectively.

f For more information about how to diagnose non-equivalent points, refer to the
Encounter Conformal software user documentation.

Running the Encounter Conformal Software From a System Command Prompt
To run the Encounter Conformal Software without using the GUI, type the command
shown in Example 19–6 at a system command prompt.

To get a downloadable design example showing the formal verification flow with
Quartus II software, go to www.altera.com/support/examples/quartus/exm-formal-
verification.html.

f For more information about the latest debugging tips and solutions for formal
verification flow between Cadence Conformal LEC tool and Quartus II software, go to
www.altera.com and perform an advanced search with keywords “formal
verification”.

Figure 19–8. Encounter Conformal Software GUI Display of Functional Comparisons

Example 19–6. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui

www.altera.com/support/examples/quartus/exm-formal-verification.html
www.altera.com/support/examples/quartus/exm-formal-verification.html
www.altera.com

Chapter 19: Cadence Encounter Conformal Support 19–19
Known Issues and Limitations

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Known Issues and Limitations
The following known issues and limitations can occur when using the formal
verification flow described in this chapter:

■ When a port on a black box entity drives two or more signals within the black box,
the Quartus II software pushes the connections outside of the black box, and
creates that many ports on the black box. This problem is only associated with
Stratix II and HardCopy II designs.

The additional ports on the black box are named _unassoc_inputs_[] and
_unassoc_outputs_[] (Figure 19–9). This issue is generally associated with
reset and enable signals. Figure 19–9 shows an example in which the reset pin is
split into two ports outside of the black box and the _unassoc_inputs_[] port
is driven by the clkctrl block. In such situations, the .vo netlist file generated by
the Quartus II software has signals driving these black box ports, but golden RTL
does not contain any signals to drive the _unassoc_inputs_[] port, resulting in
a formal verification mismatch of the black box. The black box module definition
generated by the Quartus II software in the directory
<Quartus_project>\fv\conformal*_blackboxes contains these additional
_unassoc_inputs_[] and _unassoc_outputs_[] ports. This black box
module is read on both the golden and revised sides of the design, which results in
unconnected ports on the golden side and formal verification mismatches.

Figure 19–9 shows the creation of the _unassoc_inputs_[] and
_unassoc_outputs_[] ports for the reset signal.

Another common occurrence of this issue is in HardCopy II designs. Whenever a
port drives large fan-out within the black box, the Quartus II software inserts a
buffer on the net and moves the logic outside of the black box (Figure 19–10).

To fix the problem of _unassoc_input_[] ports causing black box mismatches,
use Cadence Conformal commands to change the type of the black box
_unassoc_input_[] keypoint to a primary output keypoint, and then marking
the appropriate pin equivalences. Similarly, to fix the problem of register
mismatches due to _unassoc_output_[] pins from black boxes, use Conformal
commands to change the type of the blackbox _unassoc_output_[] keypoint
to a primary input, and then marking equivalent pins as such. The commands to
perform these actions are written in the <proj rev>.cep file.

Figure 19–10 shows the creation of _unassoc_inputs_[] for a signal with large
fan-out.

Figure 19–9. Creation of _unassoc_inputs_[] and _unassoc_outputs_[]

reset

clkctrl _unassoc_inputs_[]

reset

_unassoc_outputs_[]

19–20 Chapter 19: Cadence Encounter Conformal Support
Known Issues and Limitations

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ In designs with combinational feedback loops, the Encounter Conformal software
can insert extra cut points in the revised netlist, causing unmapped points and
ultimately verification mismatches.

■ For Cyclone II designs, Conformal LEC might report non-equivalent flipflops and
extra cut points for the revised (post-fit) design when your HDL source code
instantiates the lpm_ff primitive with an asynchronous load signal aload (with
or without any other asynchronous control signals) and when the asynchronous
clear signal aclr and asynchronous set signal aset are used together. To avoid
this problem, ensure that there is a wrapper module or entity around the lpm_ff
instantiation, and black box the module or entity that instantiates the lpm_ff
primitive.

■ For Stratix III designs, the Cadence Conformal LEC software creates cut points for
the combinational loops on the golden side and might fail equivalence checking
due to improper mapping. The combinational loops are due to logic around the
registers emulating multiple set, resets, or both. These cut points are also reported
during the mapping step in Quartus II software with warning messages. You can
add Cadence Conformal commands manually to add cut points, which can result
in proper mapping and formal verification.

■ To perform formal verification, certain synthesis optimization options (such as
register retiming, optimization through black box hierarchy boundaries, and
disabling the ROM and shift register inference) are turned off, which can have an
impact on the area resource and performance.

■ RAM and ROM instantiations, inferences, or both are not verified using formal
verification.

■ Incremental Compilation for the purpose of formal verification does not support
user-created design partitions.

■ Formal verification does not support clear box netlists due to unconnected ports
on its WYSIWYG instances.

■ Formal verification does not support VHDL megafunction variations due to
undriven ports on the megafunctions.

■ When a black box contains bidirectional ports, the Quartus II software fails to
reconstruct the hierarchy. For this reason, the black box is represented by a flat
netlist, resulting in formal verification mismatches.

■ ROMs in the design must be black boxed before compilation using Quartus II
integrated synthesis, because the Quartus II software might perform some
optimizations on the ROM, resulting in Formal Verification mismatches.

Figure 19–10. Creation of _unassoc_inputs_[] for a Signal with Large Fan-out

Signal A

_unassoc_inputs_[] Black Box

Signal A

Chapter 19: Cadence Encounter Conformal Support 19–21
Black Box Models

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

■ The Conformal software might report mismatches or abort comparison of some
key points when a DSP megafunction is implemented in LEs by the Quartus II
software, due to implicit optimizations within the DSP and the complexity of the
multiplier logic in terms of LEs.

■ Unused logic optimized within and around a black box by the Quartus II software
can result in a black-box interface different from the interface in the synthesized
.vqm netlist file.

Black Box Models
The black box models are interface definitions of entities, such as primitives, atoms,
LPMs, and megafunctions. These models have a parameterized interface, and do not
contain any definition of behavior. They are designed and tested specifically to work
with the Encounter Conformal software, which uses these models along with your
design to generate black boxes for instances of the entity with varying sets of
parameters in the design. Table 19–5 describes the supported black box models.
Besides these black box models, you can set a black box property on a specific module
or entity as explained earlier in this chapter.

Table 19–5. Supported Black Box Models (Part 1 of 3)

Entity Type Entity Names

Megafunctions ALT3PRAM, ALTACCUMULATE, ALTFP_MULT, ALTSQRT, ALTLVDS_RX, ALTLVDS_TX, ALTSHIFT_TAPS,
SLD_VIRTUAL_JTAG, SLD_VIRTUAL_JTAG_BASIC, DCFIFO, SCFIFO, ALTSYNCRAM, ALTSQRT

LPMs lpm_add_sub, lpm_divide

19–22 Chapter 19: Cadence Encounter Conformal Support
Black Box Models

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Atoms (1)

Cyclone:

cyclone_crcblock, cyclone_jtag, cyclone_pll, cyclone_ram_block,
cyclone_asmiblock, cyclone_dll

Stratix:

stratix_crcblock, stratix_jtag, stratix_lvds_receiver,
stratix_lvds_transmitter, stratix_pll, stratix_rublock,
stratix_ram_block, stratix_dll

Stratix II:

stratixii_crcblock, stratixii_jtag, stratixii_lvds_receiver,
stratixii_lvds_transmitter, stratixii_pll, stratixii_rublock,
stratixii_ram_block, stratixii_asm_block, stratixii_dll,
stratixii_termination, stratixii_asmiblock

Stratix GX:

stratixgx_crcblock, stratixgx_jtag, stratixgx_lvds_receiver,
stratixgx_lvds_transmitter, stratixgx_pll, stratixgx_rublock,
stratixgx_ram_block, stratixgx_dll

Stratix II GX:

stratixiigx_hssi_receiver, stratixiigx_hssi_transmitter,
stratixiigx_hssi_central_management_unit, stratixiigx_hssi_cmu_pll,
stratixiigx_hssi_cmu_clock_divider, stratixiigx_hssi_refclk_divider,
stratixiigx_hssi_calibration_block, stratixiigx_crcblock,
stratixiigx_ram_block, stratixiigx_lvds_transmitter,
stratixiigx_lvds_receiver, stratixiigx_pll, stratixiigx_dll,
stratixiigx_jtag, stratixiigx_asmiblock, stratixiigx_termination,
stratixiigx_rublock

Cyclone II:

cycloneii_asmiblock, cycloneii_clk_delay_ctrl, cycloneii_clkctrl,
cycloneii_jtag, cycloneii_pll, cycloneii_ram_block

Arria GX:

arriagx_asmiblock, arriagx_crcblock, arriagx_dll,
arriagx_hssi_calibration_block, arriagx_hssi_central_management_unit,
arriagx_hssi_cmu_clock_divider, arriagx_hssi_cmu_pll,
arriagx_hssi_receiver, arriagx_hssi_refclk_divider,
arriagx_hssi_transmitter, arriagx_jtag, arriagx_lvds_receiver,
arriagx_lvds_transmitter, arriagx_pll, arriagx_ram_block,
arriagx_rublock, arriagx_termination

HardCopy II:

hardcopyii_crcblock, hardcopyii_dll, hardcopyii_jtag,
hardcopyii_lvds_receiver, hardcopyii_lvds_transmitter, hardcopyii_pll,
hardcopyii_ram_block, hardcopyii_termination

Table 19–5. Supported Black Box Models (Part 2 of 3)

Entity Type Entity Names

Chapter 19: Cadence Encounter Conformal Support 19–23
Conformal Dofile/Script Example

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conformal Dofile/Script Example
The following example script (Example 19–7), generated by the Quartus II software,
lists some of the setup commands used in Conformal LEC software:

Atoms (1)

Stratix III:

stratixiii_asmiblock, stratixiii_crcblock, stratixiii_jtag,
stratixiii_lvds_receiver, stratixiii_lvds_transmitter,
stratixiii_mlab_cell, stratixiii_pll, stratixiii_ram_block,
stratixiii_rublock, stratixiii_termination, stratixiii_tsdblock

Cyclone III:

cycloneiii_apfcontroller, cycloneiii_clkctrl, cycloneiii_crcblock,
cycloneiii_ddio_oe, cycloneiii_ddio_out, cycloneiii_ff,
cycloneiii_io_ibuf, cycloneiii_io_obuf, cycloneiii_io_pad,
cycloneiii_jtag, cycloneiii_lcell_comb,cycloneiii_mac_mult,
cycloneiii_mac_out, cycloneiii_oscillator,cycloneiii_pll,
cycloneiii_pseudo_diff_out, cycloneiii_ram_block,cycloneiii_rublock,
cycloneiii_termination

Stratix IV:

stratixiv_asmiblock, stratixiv_bias_block, stratixiv_crcblock,
stratixiv_jtag, stratixiv_lvds_receiver, stratixiv_lvds_transmitter,
stratixiv_mlab_cell, stratixiv_pll, stratixiv_ram_block,
stratixiv_rublock, stratixiv_termination, stratixiv_tsdblock

Note to Table 19–5:

(1) The entity names are given for the specific device family listed.

Table 19–5. Supported Black Box Models (Part 3 of 3)

Entity Type Entity Names

Example 19–7. Conformal LEC Script (Part 1 of 3)

// Copyright (C) 1991-2008 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.

// Script generated by the Quartus II software

reset
set system mode setup
set log file mfs_3prm_1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable

19–24 Chapter 19: Cadence Encounter Conformal Support
Conformal Dofile/Script Example

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion_library black_box clock_hold compile_off compile_on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem_rowselect multi_port multiplier operand state_vector template
add notranslate module alt3pram -golden
add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT /net/quark/build/ajaishan/quartus_regtest/eda/fv/conformal/synplify/
stratix/mfs_3prm_1a_v1_/mfs_3prm_1a/qu_allopt
read design \

$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -golden

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
$PROJECT/p3rm_block.v \
$PROJECT/mfs_3prm_1a.v \
-verilog2k -merge none -golden

read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -revised

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clr \
$PROJECT/fv/conformal/mfs_3prm_1a.vo \
-verilog2k -merge none -revised

// add ignored inputs _unassoc_inputs_* -all -revised
add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 "_I\/" "\/" -revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport_unreach
set mapping method -nobbox_name_match
set flatten model -seq_constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs_3prm_1a.cec
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs_3prm_1a.cmc

Example 19–7. Conformal LEC Script (Part 2 of 3)

Chapter 19: Cadence Encounter Conformal Support 19–25
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Conclusion
Formal verification software enables verification of the design during all stages from
RTL to placement and routing. Verifying designs takes more time as designs increase
in size. Formal verification is a technique that helps reduce the time needed for your
design verification cycle.

Referenced Documents
This chapter references the following documents:

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook

Document Revision History
Table 19–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cmp
map key points
remodel -seq_constant -repeat
add compare points -all
compare
usage
// exit -f

Example 19–7. Conformal LEC Script (Part 3 of 3)

Table 19–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

Updated “Black Boxes in the Encounter Conformal Flow” on
page 18–8.

Updated for the Quartus II software
version 9.1 release.

March 2009
v9.0.0

Updated Table 19–1 on page 19–4. Updated for the Quartus II software
version 9.0 release.

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added support for Stratix IV devices.

■ Added support for Cadence Conformal LEC version 7.2 and
Synplify Pro version 9.6.2.

Updated for the Quartus II software
version 8.1 release.

May 2008
v8.0.0

■ Added support for Cyclone III devices.

■ Updated “Black Boxes in the Encounter Conformal Flow” on
page 18–8.

■ Updated Table 18–1 and Table 18–5.

Updated for the Quartus II software
version 8.0.

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

19–26 Chapter 19: Cadence Encounter Conformal Support
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Section VI. Device Programming

The Quartus® II software offers a complete software solution for system designers
who design with Altera® FPGA and CPLD devices. The Quartus II Programmer is
part of the Quartus II software package that allows you to program Altera CPLD and
configuration devices, and configure Altera FPGA devices. This section describes how
you can use the Quartus II Programmer to program or configure your device after you
successfully compile your design.

This section includes the following chapter:

■ Chapter 20, Quartus II Programmer

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

VI–2 Section VI: Device Programming

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

20. Quartus II Programmer

Introduction
The Quartus® II software offers a complete software solution for system designers
who design with Altera® FPGA and CPLD devices. The Quartus II Programmer is
part of the Quartus II software package that allows you to program Altera CPLD and
configuration devices and configure Altera FPGA devices. After your design
successfully compiles, you can use the Quartus II Programmer to program or
configure your device.

This chapter contains the following sections:

■ “Programming Flow”

■ “Programming and Configuration Modes” on page 20–4

■ “Programmer Overview” on page 20–6

■ “Hardware Setup” on page 20–11

■ “Device Programming and Configuration” on page 20–12

■ “Optional Programming Files” on page 20–17

■ “Flash Loaders” on page 20–19

■ “JTAG Chain Debugger Tool” on page 20–20

■ “Other Programming Tools” on page 20–30

■ “Scripting Support” on page 20–30

Programming Flow
The programming flow begins with design compilation, in which the Quartus II
Assembler generates the programming or configuration file, then proceeds with the
programming or configuration file conversion for different configuration devices, or
optional programming and configuration file creation. The flow ends with the
configuration or programming of the FPGA, CPLD, or configuration devices with the
programming or configuration file using the Quartus II Programmer.

QII53022-9.1.0

20–2 Chapter 20: Quartus II Programmer
Programming Flow

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 20–1 shows the programming file generation flow. This flow covers the types
of configuration and programming files that are used by the Quartus II Programmer.
Refer to “Optional Programming Files” on page 20–17 for information on other
optional programming files.

Table 20–1 shows the programming and configuration file formats supported by
Altera FPGAs, CPLDs, configuration devices, enhanced configuration devices, and
serial configuration devices. Chain description files (.cdf) are described in “Chain
Description File” on page 20–16.

Figure 20–1. Programming File Generation Flow

Quartus II Assembler

FPGA
.sof

CPLD
.pof

Create Optional
Programming Files

Convert
Programming Files

EPC or
EPCS
.pof

.jam
.jbc

Quartus II Programmer
.cdf

Table 20–1. Programming and Configuration File Format

File Format FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

SRAM Object File (.sof) v — — —

Programmer Object File (.pof) — v v v
Jam File (.jam) v v v —

Jam Byte-Code File (.jbc) v v v —

Chapter 20: Quartus II Programmer 20–3
Programming Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Figure 20–2 shows the programming flow using the Quartus II Programmer. Refer to
“Generating Optional Programming Files” on page 20–19 for detailed information
about converting or creating different programming files. Refer to “Device
Programming and Configuration” on page 20–12 for information about programming
or configuring the device.

Figure 20–2. Programming Flow

Open the Quartus II
Programmer

Hardware Setup

Specify Programming/
Configuration File

Add device to
the programmer

Start Operation

Select Programming/
Configuration Mode

Select Programming/
Configuration Options

Finish

Yes

No

Need to bypass
other device
in the chain?

Start

20–4 Chapter 20: Quartus II Programmer
Programming and Configuration Modes

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Programming and Configuration Modes
The Quartus II Programmer supports the following four programming or
configuration modes: JTAG, passive serial, active serial, and in-socket programming.

JTAG Mode
You can use the Joint Test Action Group (JTAG) mode to configure FPGA devices and
program CPLDs, configuration devices, or enhanced configuration devices. The JTAG
mode allows multiple FPGAs, CPLDs, and configuration devices connected in a JTAG
chain to be configured or programmed at the same time. JTAG programming or
configuration uses four JTAG pins: TCK, TDI, TMS, and TDO. The JTAG interface also
allows you to perform boundary-scan test using third-party boundary scan tools.

.pof files are used for programming CPLDs, and configuration or enhanced
configuration devices, while .sof files are used for configuring FPGA devices. .jam
and .jbc files are used for both programming and configuration. Serial configuration
devices do not support JTAG programming.

f For more information about JTAG configuration or programming mode and JTAG pin
connections, refer to the Configuration Handbook, or the device handbook or data sheet
for the respective FPGA, CPLD, or configuration device.

Passive Serial Mode
You can use the passive serial (PS) mode to configure Altera FPGAs. PS configuration
uses the DCLK, CONF_DONE, nCONFIG, nSTATUS, and DATA0 configuration pins.
Unlike the JTAG scheme, the PS configuration scheme is used to configure the FPGA
with a configuration device or enhanced configuration device, not necessarily
through a download cable. If you use the configuration device or enhanced
configuration device to configure the FPGA through PS mode, you can route the
configuration signals out to a header so that you can also configure the FPGA through
the download cable with the Quartus II Programmer. Configuration through PS mode
with a download cable is useful in the design stage. This configuration method allows
you to configure your FPGA device directly from the Quartus II Programmer as you
make changes to your design for debugging and testing.

PS mode supports configuration of an FPGA chain. .sof files are used for
configuration through PS mode. Every FPGA device in the chain requires an .sof file,
so the number of .sof files used depends on the number of FPGA devices in the chain.

f For more information about PS configuration mode and PS pin connection, refer to
the Configuration Handbook or the chapter on configuration in the appropriate FPGA
device handbook.

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 20: Quartus II Programmer 20–5
Programming and Configuration Modes

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Active Serial Mode
You can use the active serial (AS) mode to program serial configuration devices. After
programming is completed, the serial configuration device configures the FPGA. AS
programming uses the DATA, DCLK, nCS, and ASDI pins. If the download cable is
connected to the nCONFIG and nCE pins of the FPGA, the download cable disables
the FPGA’s access to the AS interface by holding the nCE pin high and the nCONFIG
pin low. Upon completion of the programming, the nCE and nCONFIG pins are
released and the FPGA configuration begins.

f For more information about programming the serial configuration device,
configuring the FPGA with the serial configuration device through AS mode, or the
AS pin connections, refer to the Serial Configuration Data Sheet in the Configuration
Handbook or the chapter on configuration in the appropriate FPGA device handbook.

In-Socket Programming Mode
The in-socket programming mode is used for programming a single device. This
programming mode supports programming the MAX® 7000 and MAX 3000 CPLD
families, configuration devices, enhanced configuration devices, and serial
configuration devices. Instead of using a download cable, in-socket programming
mode uses the Altera Programming Unit (APU) hardware together with the
programming adapter for the corresponding device to program the device. The
programming unit with the programming adapter has a socket for the device and the
hardware powers the device for programming. In-socket programming is normally
used in the production environment to pre-program devices before they are mounted
on the printed circuit boards on the assembly line.

1 Refer to www.altera.com or the Quartus II Help for a list of programming adapters
available for Altera devices.

Table 20–2 shows the programming and configuration modes supported by Altera
devices.

Table 20–2. Programming and Configuration Modes

Mode FPGA CPLD

Configuration Device
and Enhanced

Configuration Device
Serial Configuration

Device

JTAG v v v —

PS v — — —

AS — — — v
In-Socket Programming — v(1) v v
Note to Table 20–2:

(1) MAX II CPLDs do not support in-socket programming mode.

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com

20–6 Chapter 20: Quartus II Programmer
Programmer Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Programmer Overview
The Quartus II Programmer GUI is a window in which you can add your
programming and configuration files, specify the programming options and
hardware, and then proceed with the programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer. Figure 20–3
shows the programmer GUI. The status of each operation, whether programming is
successful or not, is reported in the Quartus II message window. Figure 20–4 shows a
typical programming message after the programmer has successfully programmed a
device.

Figure 20–3. The Programmer Window

Figure 20–4. Status Report in the Message Window

Setup Progress IndicatorProgramming
 Options

Action
Buttons

File/Chain
Information

Chapter 20: Quartus II Programmer 20–7
Programmer Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 20–3 describes the items available in the programmer window.

Table 20–3. Programmer Window Items (Part 1 of 2)

Items Description

Hardware Setup Opens the Hardware Setup dialog box in the programmer and enables you to perform the
following functions:

■ Add and remove hardware items from the Hardware list

■ Add and remove JTAG servers from the JTAG Servers list

■ Configure your local JTAG server

■ Specify a programming hardware or download cable for device programming and
configuration

Mode Specifies the programming or configuration mode (either JTAG, In-Socket Programming,
Passive Serial, or Active Serial Programming).

Progress Shows the progress of a specific operation.

Action Buttons

Start Starts the operations of the specified programming options.

Stop Stops all operations in progress.

Auto Detect Scans the JTAG chain to check for devices in the chain and the chain connection.

Delete Removes the selected programming or configuration files from the programmer.

Add File Adds programming or configuration files to the programmer.

Change File Replaces the selected programming or configuration file with another file.

Save File Allows you to save the data read out from CPLD or configuration devices using the
“examine” process into a .pof file.

Add Device Adds a device into the JTAG device chain in the programmer. If no programming or
configuration file is specified, the programmer bypasses this device during programming or
configuration. You can also add your user-defined device into the chain.

Up Moves the selected programming/configuration file or device up in the programmer window.

Down Moves the selected programming/configuration file or device down in the programmer
window.

File or Device Chain Information

File Displays the programming or configuration file name.

Device The Device column shows the following items:

■ The target device of the file, if you add a programming or configuration file into the
programmer

■ The devices in the JTAG chain detected by the programmer, if you click Auto Detect in
JTAG mode

■ The device added to the programmer, if you manually add a device into the programmer

Checksum The Checksum column shows the following items:

■ The checksum of the file, if you add a programming or configuration file into the
programmer

■ The checksum for the data read out, if you examine a device

The checksum is calculated by the Quartus II software. The programmer does not display the
checksum for the .jam or .jbc files generated for a multi-device JTAG chain.

20–8 Chapter 20: Quartus II Programmer
Programmer Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Usercode The Usercode column shows the following items:

■ The usercode of the file, if you add a programming or configuration file into the
programmer

■ The usercode read out from the device, if you examine a device

You can specify the usercode before design compilation, or use the Auto usercode feature
that uses the checksum as the usercode. The programmer does not show the usercode
information in PS configuration mode or for the Jam or .jbc files generated for a multi-device
JTAG chain.

Programming Options

Enable real-time ISP to
allow background
programming

Can only be turned on if you are targeting a MAX II device, and is turned off for all other
device families. When this option is turned on, you can do the real-time in-system
programming (ISP) for the MAX II device. The existing design in the MAX II device functions
normally during and after the real-time ISP is completed. The new design starts to function
after a power cycle to the device occurs.

Program or Configure Can be used for programming CPLDs, configuration devices, or configuring FPGA devices.

Verify Verifies the content of the CPLD and all configuration devices against the respective
programming files. This option is not available for FPGAs. Verification fails if the data in the
file is different from the data in the device. Stand-alone verification for the CPLD with the
programming file used for the programming fails if the security bit is set when the device is
programmed initially.

Blank-Check Checks whether the CPLD or configuration device is blank.

Examine Reads back the contents of the CPLD or configuration device. You can then save the
examined data as a .pof file. Examining a CPLD with the security bit set does not produce a
usable .pof file. This option is not available for MAX 7000S devices.

Security Bit Protects the design in the CPLD from being examined. If the security bit is set when the
CPLD is programmed, you cannot read the correct data out using the examine process.
Security bits cannot be set for the configuration devices or FPGAs.

Erase Erases the contents of the CPLD and all configuration devices. You can also erase the user
flash memory (UFM) of the MAX II CPLD. This option is not available for MAX 7000S
devices.

ISP Clamp Allows the MAX II or MAX 7000B CPLD’s I/O pins to be clamped to certain states during
normal programming. ISP Clamp can only be turned on if certain pins of the device have the
ISP Clamp State assignment enabled, or you have added an I/O Pin State (.ips) file in the
programmer.

IPS File Shows the IPS file used for ISP Clamp of the MAX II or MAX 7000B CPLDs. The IPS File
column only appears if your programmer window has a MAX II or MAX 7000B .pof file. To
add the .ips file, click once on the row of the programming file and on the Edit menu, click
Add IPS File.

Table 20–3. Programmer Window Items (Part 2 of 2)

Items Description

Chapter 20: Quartus II Programmer 20–9
Programmer Overview

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Table 20–4 shows the programming and configuration options supported by Altera
devices.

Tools Menu
More programmer options are available from the Tools menu. On the Tools menu,
click Options. In the Category list, click Programmer. For descriptions of these
options, refer to Table 20–5.

Table 20–4. Programming and Configuration Options

Option FPGA CPLD

Configuration Device
and Enhanced

Configuration Device
Serial Configuration

Device

Program or Configure v v v v
Verify — v v v
Blank-Check — v v v
Examine — v v v
Security Bit — v — —

Erase — v v v
ISP Clamp — v(1) — —

IPS File (2) — v — —

Real-time ISP — v(3) — —

Notes to Table 20–4:

(1) Only MAX II and MAX 7000B CPLDs support the ISP Clamp feature.
(2) .ips file is used for ISP Clamp.
(3) Only MAX II CPLDs support the real-time ISP feature.

Table 20–5. Programmer Options (Part 1 of 2)

Option Description

Show checksum without usercode Determines whether the checksum values displayed in the programmer are
calculated with or without JTAG user codes. This option allows you to have multiple
versions of a programming or configuration file with different user codes, but share
the same checksum.

Initiate configuration after
programming

Specifies that configuration devices configure attached FPGA devices automatically
after the programmer completes programming the configuration devices.

Display message when
programming finishes

Displays a message when programming or other operation such as examining or
blank-checking is complete.

Enable real-time ISP to allow
background programming (for
MAX II devices)

Can only be turned on if you are targeting a MAX II device. This option is turned off
for all other device families. When this option is turned on, you can do the real-time
in-system programming (ISP) for the MAX II device. The existing design in the
MAX II device functions normally during and after the real-time ISP is completed.
The new design starts to function after a power cycle to the device occurs.

This option is also available in the programmer window.

20–10 Chapter 20: Quartus II Programmer
Programmer Overview

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Halt on-chip configuration controller Halts the on-chip auto-configuration controller of the FPGA device for AS
configuration, or the configuration device for PS or Fast Passive Parallel (FPP)
configuration to allow JTAG configuration through a download cable. If you want to
configure your FPGA through JTAG while the FPGA MSEL pins are set to AS mode,
you should halt the on-chip configuration controller if any of the following
circumstances occur:

■ The active serial configuration device connected to your FPGA is blank

■ The active serial configuration device is not present

■ An error occurs during AS configuration prior to JTAG configuration

If the MSEL pins are set to PS or FPP mode, halt the configuration controller of the
configuration device if an error occurs during PS or FPP configuration prior to JTAG
configuration. The FPGA pulls the nSTATUS pin (which is connected to the OE pin
of the configuration device) low to disable the configuration device.

Automatically check the
Program/Configure checkbox when
adding SOF

Automatically enables the program or configuration operation when adding an .sof
file to the file list in the programmer window.

Configure volatile design security
key (for Stratix III/IV devices)

Stratix III and Stratix IV GX devices support both volatile and nonvolatile design
security keys. Checking this box before programming the key allows the volatile key
to be programmed into the device.

Use bitstream compression to
configure devices when available

Some Altera FPGAs support bitstream compression for PS configuration mode. To
reduce configuration time, this option allows the devices to be configured with
compressed configuration data from the Quartus II Programmer through PS mode.

Automatically open as detached
window

Allows the Quartus II Programmer window to be detached from the Quartus II GUI
when launched.

Use the enhanced mode Serial Flash
Loader (SFL) IP for the factory
default helper image

Allows the Quartus II Programmer to increase the speed of the programming and
verification by filtering the extra paddings that are introduced by third-party
programmer tools. In addition, this option increases the speed of programming and
verification.

Check block CRCs to accelerate
PFL/SFL verification when available

Reduces the time required to verify the data programmed into a flash device through
the PFL. This option allows the Quartus II Programmer to verify the flash data by
checking the cyclic redundancy code (CRC) generated from the data of the
programming file, as well as of the flash device.

This option can be used only with PFL designs created with the Quartus II software
version 8.1 and later.

Table 20–5. Programmer Options (Part 2 of 2)

Option Description

Chapter 20: Quartus II Programmer 20–11
Hardware Setup

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Hardware Setup
The Quartus II Programmer provides the flexibility to choose a download cable or the
programming hardware. Before you can program or configure your device, you must
have the correct hardware setup.

Hardware Settings
Click Hardware Setup to bring up the Hardware Setup dialog box. On the Hardware
Settings tab (Figure 20–5), you can select a download cable or programming
hardware available from the Currently selected hardware list. If the download cable
or programming hardware you require is not displayed, click Add Hardware and
specify the download cable or programming hardware. Make sure that you have
installed the download cable driver before adding the hardware.

1 You do not have to manually add the USB-Blaster™ download cable to the list. After
installing the driver, simply connect the download cable to the PC before opening the
Hardware Setup dialog box. The USB-Blaster appears automatically in the list when
the dialog box is opened.

f More information about programming hardware driver installation is available in the
Design Software Support page on the Altera website.

JTAG Settings
The JTAG server allows programs such as the Quartus II Programmer to access the
JTAG hardware. This application software is installed together with the Quartus II
software. You can also access the JTAG download cable or programming hardware
connected to a remote computer through the JTAG server of that computer. With the
JTAG server, you can control the programming or configuration of devices from a
single computer through other computers at remote locations. The JTAG server uses
the TCP/IP communications protocol.

Figure 20–5. Hardware Settings

http://www.altera.com/support/software/sof-index.html

20–12 Chapter 20: Quartus II Programmer
Device Programming and Configuration

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To view the Hardware Setup dialog box, click Hardware Setup. On the JTAG
Settings tab (Figure 20–6), you can add or remove JTAG servers from the list. By
default, you have only the local JTAG server (which is on your computer) in the list.
By adding a remote JTAG server, you can access the JTAG hardware in that remote
computer from your computer. You must have the password of the remote JTAG
server to add the server to your list. Click Add Server, then enter the IP address of
that computer in the Server name box and the password in the Server password box.

You can also allow remote clients to access the JTAG server on your computer and
program or configure devices connected to your computer through the JTAG interface
of your computer. Click Configure Local JTAG Server to enable the server and then
enter the password that the remote clients require to access your JTAG server.

Device Programming and Configuration
The Quartus II Programmer supports single- or multi-device programming and
configuration. This section describes the steps required to program or configure
Altera devices, as well as how to bypass Altera and non-Altera devices in a JTAG
chain.

Single Device Programming and Configuration
To program or configure a single device with the Quartus II Programmer, perform the
following steps:

1. On the Tools menu, click Programmer to open the Programmer window.

2. Click Hardware Setup and select the programming hardware or download cable.
If you are using JTAG mode, you can specify the correct JTAG settings for
programming or configuration involving remote JTAG servers.

3. Click Close.

4. From the Mode list, select the programming or configuration mode.

Figure 20–6. JTAG Settings

Chapter 20: Quartus II Programmer 20–13
Device Programming and Configuration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

5. Click Add File to add the .pof or .sof file to the programmer (you can omit this
step if the file is already displayed). To change the file, select it and click Change
File. To remove the file from the programmer, select it and click Delete.

1 If you use JTAG, AS, or in-socket programming mode, after the file has been
added to the programmer, select the programming or configuration option
by turning on the corresponding check box in the programmer.

6. Click Start.

Multi-Device Programming and Configuration
JTAG and PS modes allow you to program or configure a device chain. A JTAG chain
can consist of a combination of FPGA, CPLD, and configuration devices that support
JTAG mode. A PS chain consists of FPGAs that support PS mode. The steps for
programming or configuring a device chain are similar to the steps for programming
or configuring a single device. One exception is that in a device chain you must
specify all the programming or configuration files for the devices you want to
program or configure. JTAG mode allows you to bypass some of the devices in the
JTAG chain while programming or configuring the rest of the devices. PS mode does
not allow you to bypass devices in the FPGA chain.

Bypassing an Altera Device
If you do not want to program an Altera device in the chain, turn off all the options in
the row of that device. If you do not have the programming or configuration file for
that device, click Add Device to specify the device.

Bypassing a Non-Altera Device
The JTAG chain you want to program or configure may contain non-Altera devices.
To program or configure your Altera device in the JTAG chain, you must bypass those
non-Altera devices. If the non-Altera devices are not in the list of devices that you can
select, click Add Device in the programmer.

20–14 Chapter 20: Quartus II Programmer
Device Programming and Configuration

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To bypass the devices, you must manually enter each device name and its JTAG
instruction register length and JTAG ID code. Click Add Device to open the Select
Device dialog box. Click New to define a device. In the New Device dialog box
(Figure 20–7), enter the name of the device and the JTAG instruction register length of
the device. You can find the JTAG instruction register length in the device’s data sheet.
You can also specify the JTAG ID code for the device by clicking Add JTAG ID. This is
optional and you can turn on Allow none to set the ID code to all zeros. If you do not
specify the JTAG ID code, the default value is all zeros.

Figure 20–7. New Device Dialog Box

Chapter 20: Quartus II Programmer 20–15
Device Programming and Configuration

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

After defining the device, the device appears in the device list (Figure 20–8). Click
Export to save the information in a Quartus User-Defined Device (.qud) file. This file
saves the information for the user-defined devices that appear under Device name in
the dialog box and can be used by other Quartus II projects as well. To obtain
information on the user-defined devices from the .qud file, click Import and the
devices are listed under Device name.

Figure 20–8. Select Devices

20–16 Chapter 20: Quartus II Programmer
Device Programming and Configuration

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 20–9 shows the programmer window for a JTAG chain.

Chain Description File
All the information in the Quartus II Programmer, including the programming or
configuration mode, programming or configuration files used, device chain
information, and the programming options specified can be saved in a chain
description file (.cdf). You do not have to specify the information each time you
program the device chain. Simply open the .cdf file in the Quartus II software and the
information appears in the Quartus II Programmer GUI.

Design Security Key Programming
The Quartus II Programmer supports the generation of encryption key programming
files and encrypted configuration files for Altera FPGAs that support the design
security feature. You can also use the Quartus II Programmer to program the
encryption key into the FPGA.

f For more information about using the design security feature with the Quartus II
software, refer to AN 341: Using the Design Security Feature in Stratix II and Stratix II GX
Devices and AN 512: Using the Design Security Feature in Stratix III Devices.

Figure 20–9. Multi-Device JTAG Chain

Program MAX II CPLD
Bypass Stratix II FPGA

Configure Cyclone FPGA
Bypass MAX 7000AE CPLD

Bypass User-Defined Device

http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/an/an512.pdf

Chapter 20: Quartus II Programmer 20–17
Optional Programming Files

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Optional Programming Files
The Quartus II software can generate optional programming or configuration files in
various formats to be used with programming tools other than the Quartus II
Programmer. In addition, you can convert the FPGA configuration files to
programming files for configuration devices.

Types of Programming and Configuration Files
The Quartus II software generates programming files of various formats for use with
different programming tools. Table 20–6 shows the programming and configuration
files generated by the Quartus II software.

Table 20–6. Types of Programming and Configuration Files (Part 1 of 2)

File Format

Generated by the
Quartus II
Software

Supported by the
Quartus II

Programmer Description

.sof v v
This configuration data file is used for configuring FPGA
devices. The Quartus II Assembler generates this file when you
compile your FPGA design.

.pof v v

This programming data file is used for programming CPLDs
and configuration devices. The Quartus II Assembler generates
the CPLD .pof file when you compile your CPLD design. The
configuration device .pof file is converted from the FPGA .sof
file.

.jam v v

This ASCII-format file is used for configuring or programming
one or more FPGAs, CPLDs, and configuration devices in a
JTAG chain. The .jam file includes both programming algorithm
and data.

Apart from the Quartus II Programmer, you can use Altera’s
Jam Standard Test and Programming Language (STAPL) player,
the quartus_jli executable, or other third-party
programming tools together with the .jam file. The .jam file is
also suitable for embedded processor-type programming
environments.

.jbc v v

Similar to the .jam file, this binary-format file is used for
configuring or programming one or more FPGAs, CPLDs, and
configuration devices in a JTAG chain. The .jbc file includes
both the programming algorithm and data, and the size is
smaller than the .jam file.

In addition to the Quartus II Programmer, you can use Altera’s
Jam Byte-Code player, the quartus_jli executable, or other
third-party programming tools together with the .jbc file. The
.jbc file is also suitable for embedded processor-type
programming environments.

Serial Vector
Format File
(.svf)

v —

This ASCII-format file is used for configuring, programming,
blank-checking, and verifying one or more FPGAs, CPLDs, and
configuration devices in a JTAG chain. The .svf file, which
includes programming algorithm and data, is suitable for an
automated test equipment (ATE) environment that requires a
fixed programming algorithm.

20–18 Chapter 20: Quartus II Programmer
Optional Programming Files

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

f Refer to the Quartus II Help or the Configuration File Formats chapter of the
Configuration Handbook for more information about the programming and
configuration file formats.

f For more information about using the .jam and .jbc programming files with the Jam
STAPL Player, Jam STAPL Byte-Code Player, and the quartus_jli command-line
executable, refer to AN 425: Using Command-Line Jam STAPL Solution for Device
Programming.

In-System
Configuration
File (.isc)

v —

This data file is used with the IEEE 1532 BSDL file for
programming a single device that supports IEEE 1532
programming.

The Quartus II software supports the .isc file for MAX 7000AE,
MAX 7000B, and MAX 3000A CPLDs.

Hexadecimal
Intel-Format
Output File
(.hexout)

v —

The .hexout file is used for programming FPGA configuration
data into enhanced configuration devices or other storage
devices. For enhanced configuration devices, use the enhanced
configuration device .pof file to generate the .hexout file. Use
the FPGA .sof file to generate the .hexout file for other storage
devices (for example, the flash or EEPROM devices). You can
use a microcontroller to read back the data from the storage
device and configure the FPGA.

To program the enhanced configuration device or other storage
devices with the .hexout file, you can use other third-party
programming tools.

Raw Binary
File (.rbf) v —

This binary file contains configuration data for one or more
FPGAs. You can use Microblaster or Altera’s JRunner software
to configure your FPGA device with the .rbf file. The .rbf file is
also suitable for embedded processor configuration
environments.

Tabular Text
File (.ttf) v —

This ASCII file contains configuration data for one or more
FPGAs. The .ttf file is used for embedded processor-type
configuration.

Raw
Programming
Data (.rpd)

v —

This binary file is used for programming serial configuration
devices. Use the serial configuration device .pof file to generate
this file. You can use Altera’s SRunner software to program
your serial configuration device with the .rpd file.

JTAG Indirect
Configuration
File (.jic)

v v
The .jic file is used for programming serial configuration
devices through JTAG with the Quartus II Programmer and
Altera FPGAs that support AS configuration mode.

Table 20–6. Types of Programming and Configuration Files (Part 2 of 2)

File Format

Generated by the
Quartus II
Software

Supported by the
Quartus II

Programmer Description

http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 20: Quartus II Programmer 20–19
Flash Loaders

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Generating Optional Programming Files
When you compile your design, the Quartus II Assembler generates the .sof file for an
FPGA or a .pof file for a CPLD. With the .sof or .pof file for your design, you can then
create other optional programming or configuration files, or convert the .sof file to
target a particular configuration device.

Create Programming Files
The Quartus II software allows you to create .jam, .jbc, .svf, or .isc programming or
configuration files. In addition, you can create .jam, .jbc, and .svf files for a JTAG
chain that consists of more than one device.

To create the files, open the Quartus II Programmer, set the programming or
configuration mode to JTAG, and then add the programming or configuration files or
devices to the programmer. On the File menu, click Create/Update and then click
Create JAM, SVF, or ISC File. Select the file format and name the file accordingly.

An .svf file can only be created for programming or verification. In addition, you can
specify whether or not to do the optional blank-check operation with the .svf file.

Convert Programming Files
To store the FPGA data into configuration devices, you can convert the .sof data to
another format and program the configuration device. The Quartus II software
supports converting the data into .pof, .hexout, .rbf, .ttf, .rpd, or .jic format.

f For more information about converting programming files with the Quartus II
software, refer to the Configuration File Formats chapter of the Configuration Handbook.

Generating Optional Programming or Configuration Files During Compilation
The Quartus II software can generate optional programming or configuration files
automatically when you compile your design. To select the format of the optional
programming or configuration files to be generated during compilation, on the
Assignments menu, click Settings. Under Device, click Device and Pin Options.

You can select the configuration device from the Configuration tab for the .pof file
generation. For other optional programming and configuration file generation, you
can select the file format under the Programming Files tab.

Flash Loaders
Serial configuration devices and the common flash interface (CFI) flash devices do not
support the JTAG interface and cannot be programmed directly through the normal
JTAG programming. Flash loaders allow the programming of the serial configuration
device and the CFI flash from the Quartus II Programmer through JTAG.

Parallel Flash Loader
The parallel flash loader (PFL) performs two functions:

■ Allows the programming of the CFI flash through the JTAG interface

■ Acts as the configuration controller that reads the configuration data from the CFI
flash and configures the FPGA

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

20–20 Chapter 20: Quartus II Programmer
JTAG Chain Debugger Tool

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

To program the CFI flash, the PFL uses the MAX II device as a bridge between the
JTAG interface of the Quartus II Programmer and the CFI of the CFI flash device. You
can program FPGA configuration data and user data into the flash with a flash .pof
file generated by the Quartus II software. After the flash is programmed with the
FPGA configuration data, the PFL is then used to read the configuration data back
from the CFI flash to configure the FPGA.

f For more information about the PFL, refer to AN 386: Using the MAX II Parallel Flash
Loader with the Quartus II Software.

Serial Flash Loader
The serial flash loader (SFL) allows programming of the serial configuration devices
through JTAG. The SFL uses the FPGA device that supports AS configuration mode as
a bridge between the active serial memory interface (ASMI) of the serial configuration
device and the JTAG interface of the programmer. The Quartus II Programmer uses
the .jic file converted from the FPGA .sof file to program the serial configuration
device though JTAG.

f For more information about the SFL, refer to AN 370: Using the Serial Flash Loader with
the Quartus II Software.

JTAG Chain Debugger Tool
The JTAG Chain Debugger tool is a Quartus II Programmer feature that allows you to
test the JTAG chain integrity and detect intermittent failures of the JTAG chain. In
addition, the tool allows you to shift in JTAG instructions and data through the JTAG
interface as well as stepping through the test access port (TAP) controller state
machine for debugging purpose.

To launch the JTAG Chain Debugger, open the Quartus II Programmer. From the
Processing menu, click JTAG Chain Debugger. The Quartus II programmer also
prompts you to launch the JTAG Chain Debugger if the Auto Detect operation fails to
detect the device chain.

The JTAG Chain Debugger GUI is divided into two sections: the JTAG Chain Integrity
section and the JTAG Chain Debugging section.

http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an370.pdf
http://www.altera.com/literature/an/an370.pdf

Chapter 20: Quartus II Programmer 20–21
JTAG Chain Debugger Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

JTAG Chain Integrity
From the JTAG Chain Integrity tab in the JTAG Chain Debugger tool, you can
perform the JTAG chain integrity test and the IDCODE iteration test. Figure 20–10
shows the JTAG Chain Integrity tab in the JTAG Chain Debugger tool.

Figure 20–10. JTAG Chain Integrity Tab

20–22 Chapter 20: Quartus II Programmer
JTAG Chain Debugger Tool

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

JTAG Chain Integrity Test
The JTAG chain integrity test performs a simple test to ensure that there is tDO-to-tCO
connectivity for the JTAG chain under test. When you click the Test JTAG Chain
button, the tool attempts to read out the 32-bit IDCODE of the device or devices in the
chain. If the JTAG chain connection is good, the device IDCODEs are shifted out from
the chain through the TDO output. The Device chain box displays the device or
devices detected in the chain based on the IDCODEs shifted out, and the Session log
message box reports the test result. Figure 20–11 shows that the tool has detected
three devices in the JTAG chain and the connection is good.

The IDCODE of the device cannot be shifted out through the chain if one or both of
the following two circumstances exist:

■ There is a connection problem between the TDO pin of a device in the chain and the
TDI pin of the subsequent device in the chain (in which case the connection might
be open)

■ The device has TCK or TMS connection problems

Figure 20–11. Good JTAG Chain Connection

Chapter 20: Quartus II Programmer 20–23
JTAG Chain Debugger Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The tool can detect only the subsequent devices in the chain and report the potential
problems in the chain. Figure 20–12 shows that the tool detects only two devices in the
chain, and the first device in the chain has a connection problem.

Figure 20–12. Incomplete JTAG Chain Detected

20–24 Chapter 20: Quartus II Programmer
JTAG Chain Debugger Tool

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

If there is a connection problem between the TDO pin of the last device in the chain
and the download cable, the JTAG Chain Debugger is not able to capture any data
from the chain. The tool reports the error, as shown in Figure 20–13. In addition to the
TDO connection problem, the tool also reports this problem if the devices in the chain
are not powered up or the download cable is not connected to the JTAG chain.

IDCODE Iteration Test
You can perform the IDCODE iteration test to check the consistency of the JTAG
chain. The operation is similar to the JTAG chain integrity test, except that the test can
be repeated a number of times. The IDCODE test is able to detect intermittent failures
that might happen in the chain based on the number of tests done. The tool reports
whether the chain is consistent by checking for chain intermittent discontinuity, apart
from showing the device detected.

You can specify the number of iterations to run (up to 9999 iterations) or manually
stop the test by selecting Run until stopped. Press the Stop button to stop the test if
the Run until stopped option is selected.

Figure 20–13. No Devices Detected

Chapter 20: Quartus II Programmer 20–25
JTAG Chain Debugger Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

The Auto Detect, JTAG chain integrity test, and IDCODE iteration test features are
used for checking the JTAG chain connection and detecting the devices in the chain.
However, there are some differences between the three features. Table 20–7 shows the
differences between the Auto Detect, JTAG chain integrity test, and IDCODE
iteration test features.

JTAG Chain Debugging
The JTAG Chain Debugging tab allows you to shift the JTAG instructions and data
manually into the JTAG chain, as well as control the test access port (TAP) state
machine of the device or devices in the JTAG chain.

Table 20–7. Differences between Auto Detect, JTAG Chain Integrity Test, and IDCODE Iteration Test

Auto Detect JTAG Chain Integrity Test IDCODE Iteration Test

Does not list any device detected in the
chain if there is any connection
problem in the chain

Lists device or devices detected in the
chain, regardless of whether any of the
following circumstances exist:

■ Connection problem between the
download cable and the TDI input
of the first device in the chain

■ TDO and TDI connection problem
between the devices in the chain

■ TCK or TMS connection problem of
devices in the chain other than the
last device in the chain.

Lists device(s) detected in the chain,
regardless of whether any of the
following circumstances exist:

■ Connection problem between the
download cable and the TDI input
of the first device in the chain

■ TDO and TDI connection problem
between the devices in the chain

■ TCK or TMS connection problem of
devices in the chain other than the
last device in the chain.

Error reporting more general; does not
report what problem in the chain is

Error reporting more specific; reports
the potential problem in the chain

Error reporting more specific; reports
the potential problem in the chain

Test is only performed once Test is only performed once Test can be repeated based on the
number specified, or until stopped by
the user

Not for detecting intermittent chain
connection problem

Not for detecting intermittent chain
connection problem

For detecting intermittent chain
connection problem

20–26 Chapter 20: Quartus II Programmer
JTAG Chain Debugger Tool

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Figure 20–14 shows the JTAG Chain Debugging tab.

Figure 20–14. JTAG Chain Debugging Tab

Chapter 20: Quartus II Programmer 20–27
JTAG Chain Debugger Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

There are four JTAG chain debugging commands. Table 20–8 lists the commands and
the descriptions.

To perform JTAG chain debugging with the tool, perform the following steps:

1. In the Command pull-down list, select the appropriate JTAG command
(Figure 20–14).

2. Depending on the command you selected, make the following specifications:

■ The TAP state that is related to the JTAG command

■ The number of TCK cycles

■ The value to be scanned into the chain, through TDI, expressed as a hex value

3. To execute the command selected, click Run.

When you shift the instructions or data into the JTAG chain, the scanned-out value is
displayed in hex by the tool.

The tool shows the current and target TAP state in the TAP state diagram. The target
TAP state shown in the TAP state diagram depends on the state specified in the TAP
State pull-down list. This is where the TAP state machine stops upon the successful
execution of the JTAG command.

Table 20–8. JTAG Chain Debugging Commands

Command Description

Run Test Forces the TAP state machine to run for a specific number of TCK cycles in one of the
following states.

■ TLR (Test-Logic-Reset)

■ RTI (Run-Test-Idle)

■ Pause-DR

■ Pause-IR

You must specify the number of TCK cycles the TAP state machine needs to run in the
specified state.

Scan Instruction Register Allows you to shift the JTAG instruction(s) into the instruction register(s) of the device(s) in
the chain. You can specify one of the following states in which the TAP state machine stops
when finished shifting in the instructions:

■ RTI

■ Pause-IR

■ TLR

You must specify the instruction to be shifted in through TDI, and the number of TCK cycles

Scan Data Register Allows you to shift the data into the device(s) in the chain. You can specify one of the
following states in which the TAP state machine stops when it has completed shifting in the
data:

■ RTI

■ Pause-DR

■ TLR

You must specify the data to be shifted in through TDI, and the number of TCK cycles.

Goto State Forces the TAP state machine to any one of the specified states.

20–28 Chapter 20: Quartus II Programmer
JTAG Chain Debugger Tool

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

You can also double-click on a specific state in the state diagram, causing the TAP
state machine to go to that state. This is similar to selecting Goto State from the
Command pull-down list and clicking Run.

Bypassing Devices in the Chain
For a multi-device JTAG chain, you can isolate one device on the chain and perform
your debugging on that device only.

1. Perform the JTAG chain integrity test before initiating the debug session. The tool
displays the devices detected in the chain.

2. In the JTAG Chain Debugging tab, right-click the one device in the Device chain
box that you do not want to bypass.

3. Select Only activate this device, as shown in Figure 20–15. Only the active device
is in dark blue. All other devices are in bypass mode.

When only one device is enabled in the chain, the JTAG Chain Debugger
automatically pads the additional bits for the bypassed devices when scanning the
value into the chain. You can debug the chain as if this was the only one device in the
chain.

Figure 20–15. Activating Only One Device in the JTAG Chain

Chapter 20: Quartus II Programmer 20–29
JTAG Chain Debugger Tool

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

To enable all of the bypassed devices in the chain, right-click the area inside the
Device chain box (other than on the devices), and select Activate all devices, as
shown in Figure 20–16.

JTAG Chain Log
In addition to the test results and messages, all of the JTAG chain debugging
operations you performed are listed in the Session log window. You can save the
session log so you can play back the debugging sequences later. The commands,
messages, and test results are saved in the session log file.

To save the session log, right-click the session log and select Save Session Log. Name
the file accordingly. To clear the session log, right-click the session log and select Clear
Session Log.

To play back the previously saved session log, click the Open JTAG Chain Log button
and open the saved file. The JTAG Chain Debugger then executes the debug sequence
commands in the file. Click the Stop button to stop the execution of the file.

Figure 20–16. Activating All Devices in the Chain

20–30 Chapter 20: Quartus II Programmer
Other Programming Tools

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Other Programming Tools
This section covers other programming tools that are related to the Quartus II
Programmer and can be used for programming or debugging programming
problems.

Quartus II Stand-Alone Programmer
If you do not have the full version of the Quartus II software, Altera offers the free
Quartus II Stand-Alone Programmer. This stand-alone programmer has the full
function of the normal Quartus II Programmer, and enables you to create or convert
programming files from the .sof or .pof file of your design. You can download the
Quartus II Stand-Alone Programmer from the Download Center on the Altera
website.

jtagconfig Debugging Tool
The jtagconfig command-line utility is included with the Quartus II software. You
can use this utility (which is similar to the auto detect operation in the Quartus II
Programmer) to check the devices in a JTAG chain and the user-defined devices.

For more information about the jtagconfig utility, type one of the following
commands at the command prompt:

jtagconfig –h r
jtagconfig –-help r

Scripting Support
In addition to the Quartus II Programmer GUI, you can use the Quartus II
command-line programmer (quartus_pgm) to enter commands. The quartus_pgm
command-line programmer comes with the Quartus II Programmer. You can run this
programmer separately from the Quartus II software. You can also run the procedures
for the programmer in a Tcl script. The programmer accepts the .pof, .sof, and .jic
programming or configuration files. You can also use the .cdf file.

For more information about the command-line syntax, type one of the following
commands at the command prompt:

quartus_pgm -h r
quartus_pgm --help r
For more information about a specific programmer option or topic, type the following
command at the command prompt:

quartus_pgm --help=<option|topic> r

https://www.altera.com/support/software/download/sof-download_center.html

Chapter 20: Quartus II Programmer 20–31
Conclusion

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Example 20–1 shows a command that programs a device:

The programmer automatically executes the erase operation before programming the
device.

For detailed information about scripting command options, you can also refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help browser, type
the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Conclusion
The Quartus II Programmer offers you a wide variety of options to program and
configure your Altera devices. With the Quartus II Programmer, the Quartus II
software provides you with a complete solution for your FPGA or CPLD design
prototyping, which can even be performed in the production environment.

Referenced Documents
This chapter references the following documents:

■ AN 341: Using the Design Security Feature in Stratix II and Stratix II GX Devices

■ AN 370: Using the Serial FlashLoader with the Quartus II Software

■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II Software

■ AN 425: Using Command-Line Jam STAPL Solution for Device Programming

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Configuration File Formats chapter of the Configuration Handbook

■ Configuration Handbook

■ Quartus II Scripting Reference Manual

■ Quartus II Settings File Manual

Example 20–1. Programming a Device

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof r
Where:

-c byteblasterII specifies the ByteBlaster II download cable
-m jtag specifies the JTAG programming mode
-o bpv represents the blank-check, program, and verify operations
design.pof represents the .pof file used for the programming

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/cfg/cfg_cf52007.pdf
http://www.altera.com/literature/an/an370.pdf
http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an341.pdf

20–32 Chapter 20: Quartus II Programmer
Document Revision History

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

■ Serial Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data
Sheet of the Configuration Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 20–9 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 20–9. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009
v9.1.0

No change to content. —

March 2009
v9.0.0

■ Added a row to Table 20–5 on page 20–9

■ Changed references from “JTAG Chain Debug” to “JTAG Chain
Debugger”

■ Updated Figure 20–10 through Figure 20–16

Updated for the Quartus II
software version 9.0 release.

November 2008
v8.1.0

Added the new section “JTAG Chain Debug Tool” on page 19–20 and
associated sub-headings, including:

■ “JTAG Chain Integrity” on page 19–21

■ “JTAG Chain Integrity Test” on page 19–22

■ “IDCODE Iteration Test” on page 19–24

■ “JTAG Chain Debugging” on page 19–25

■ “Bypassing Devices in the Chain” on page 19–28

■ “JTAG Chain Log” on page 19–29

Minor editorial updates

Updated entire chapter using 8½” × 11” chapter template

Updated according to
Quartus II software version
8.1 release, including the
JTAG Chain Debugging Tool,
which is new with the current
release.

May 2008
v8.0.0

Updated date and part number and added hypertext links. Also
updated file format naming conventions.

—

http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 3: Verification

Additional Information

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 9.1.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.1 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information

Quartus II Handbook Version 9.1 Volume 3: Verification © November 2009 Altera Corporation

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-
SIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is impor-
tant, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Handbook Version 9.1
Volume 4: SOPC Builder

QII5V4-9.1

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and
logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All oth-
er product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork
rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications be-
fore relying on any published information and before placing orders for products or services.

ii Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Contents

Chapter Revision Dates .vii

Section I. SOPC Builder Features

Chapter 1. Introduction to SOPC Builder
Quick Start Guide . 1-1
Overview . 1-1
Architecture of SOPC Builder Systems . 1-2

SOPC Builder Modules . 1-2
Functions of SOPC Builder . 1-5

Defining and Generating the System Hardware . 1-5
Creating a Memory Map for Software Development . 1-6
Creating a Simulation Model and Test Bench . 1-6

Visualization of SOPC Builder Systems . 1-6
Operating System Support . 1-6
Talkback Support . 1-7
Document Revision History . 1-7

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
High-Level Description . 2-1
Fundamentals of Implementation . 2-3
Functions of System Interconnect Fabric . 2-3
Address Decoding . 2-4
Datapath Multiplexing . 2-5
Wait State Insertion . 2-5
Pipelined Read Transfers . 2-6
Dynamic Bus Sizing and Native Address Alignment . 2-7

Dynamic Bus Sizing . 2-7
Native Address Alignment . 2-8

Arbitration for Multimaster Systems . 2-9
Traditional Shared Bus Architectures . 2-9
Slave-Side Arbitration . 2-10
Arbiter Details . 2-11
Arbitration Rules . 2-12

Burst Adapters . 2-14
Interrupts . 2-15

Individual Requests IRQ Scheme . 2-15
Priority Encoded Interrupt Scheme . 2-15
Assigning IRQs in SOPC Builder . 2-16

Reset Distribution . 2-16
Document Revision History . 2-17

Chapter 3. System Interconnect Fabric for Streaming Interfaces
High-Level Description . 3-1
Avalon Streaming and Avalon Memory-Mapped Interfaces . 3-2

ii Contents

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Adapters . 3-3
Data Format Adapter . 3-3
Timing Adapter . 3-4
Channel Adapter . 3-4
Error Adapter . 3-4

Multiplexer Examples . 3-5
Example to Double Clock Frequency . 3-5
Example to Double Data Width and Maintain Frequency . 3-5
Example to Boost the Frequency . 3-6

Document Revision History . 3-7

Chapter 4. SOPC Builder Components
Component Providers . 4-1
Component Hardware Structure . 4-2

Component Instances Inside the SOPC Builder System . 4-2
Components Outside the SOPC Builder System . 4-3

Exported Connection Points—Conduit Interfaces . 4-3
SOPC Builder Component Search Path . 4-4
Installing Additional Components . 4-4

Copy to the IP Root Directory . 4-5
Reference Components in an .ipx File . 4-6
Understanding IPX File Syntax . 4-7
Upgrading from Earlier Versions . 4-8

Component Structure . 4-8
Component Description File (_hw.tcl) . 4-8
Component File Organization . 4-9

Classic Components in SOPC Builder . 4-9
Document Revision History . 4-10

Chapter 5. Using SOPC Builder with the Quartus II Software
Quartus II IP File . 5-1
Quartus II Incremental Compilation . 5-1
TimeQuest Timing Analyzer . 5-2

Analyzing PLLs . 5-2
Analyzing Slow Asynchronous I/O Paths . 5-3
Analyzing Single Data Rate SDRAM and SSRAM . 5-4
Analyzing Tristate Bridges and Asynchronous Devices . 5-6
Analyzing DDR and DDR2 Memories . 5-6

Document Revision History . 5-7

Chapter 6. Component Editor
Component Hardware Structure . 6-2
Starting the Component Editor . 6-2
HDL Files Tab . 6-2

Bottom-Up Design . 6-3
Top-Down Design . 6-3

Signals Tab . 6-3
Naming Signals for Automatic Type and Interface Recognition . 6-4
Templates for Interfaces to External Logic . 6-5

Interfaces Tab . 6-6
Component Wizard Tab . 6-6

Identifying Information . 6-6
Parameters . 6-7

Contents iii

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Saving a Component . 6-8
Editing a Component . 6-8
Software Assignments . 6-8
Component Parameterization . 6-8
Document Revision History . 6-9

Chapter 7. Component Interface Tcl Reference
Information in a Hardware Component Description File . 7-1
Component Phases . 7-2
Writing a Hardware Component Description File . 7-3

Providing Basic Information . 7-3
Declaring Parameters . 7-4
Declaring Interfaces . 7-5
Adding Files and Guiding Generation . 7-5

Default Behaviors . 7-6
Validation Phase Behavior . 7-6
Elaboration Phase Behavior . 7-6
Generation Phase Behavior . 7-7
Edit Phase Behavior . 7-7

Overriding Default Behaviors . 7-8
Validation Callback . 7-8
Elaboration Callback . 7-9
Generation Callback . 7-10
Editor Callback . 7-11

Hardware Tcl Command Reference . 7-12
Module Definition . 7-14
Parameters . 7-20
Display Items . 7-27
Interfaces and Ports . 7-29
Generation . 7-35

Deprecated Commands and Properties . 7-37
Document Revision History . 7-38

Chapter 8. Archiving SOPC Builder Projects
Limitations . 8-1
Required Files . 8-2
Document Revision History . 8-3

Section II. Building Systems with SOPC Builder

Chapter 9. SOPC Builder Memory Subsystem Development Walkthrough
Example Design . 9-1

Example Design Starting Point . 9-3
Hardware and Software Requirements . 9-3
Design Flow . 9-4

Component-Level Design in SOPC Builder . 9-4
SOPC Builder System-Level Design . 9-4
Simulation . 9-5
Quartus II Project-Level Design . 9-5
Board-Level Design . 9-5
Simulation Considerations . 9-5

iv Contents

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

On-Chip RAM and ROM . 9-6
Component-Level Design for On-Chip Memory . 9-6
SOPC Builder System-Level Design for On-Chip Memory . 9-8
Simulation for On-Chip Memory . 9-8
Quartus II Project-Level Design for On-Chip Memory . 9-8
Board-Level Design for On-Chip Memory . 9-8
Example Design with On-Chip Memory . 9-8

EPCS Serial Configuration Device . 9-9
Component-Level Design for an EPCS Device . 9-9
SOPC Builder System-Level Design for an EPCS Device . 9-9
Simulation for an EPCS Device . 9-10
Quartus II Project-Level Design for an EPCS Device . 9-10
Board-Level Design for an EPCS Device . 9-10
Example Design with an EPCS Device . 9-10

SDR SDRAM . 9-11
Component-Level Design for SDRAM . 9-11
SOPC Builder System-Level Design for SDRAM . 9-11
Simulation for SDRAM . 9-12
Quartus II Project-Level Design for SDRAM . 9-12
Board-Level Design for SDRAM . 9-13
Example Design with SDR SDRAM . 9-13

DDR SDRAM . 9-14
DDR2 SDRAM . 9-14
Off-Chip SRAM and Flash Memory . 9-15

Component-Level Design for SRAM and Flash Memory . 9-15
SOPC Builder System-Level Design for SRAM and Flash Memory . 9-17
Simulation for SRAM and Flash Memory . 9-18
Quartus II Project-Level Design for SRAM and Flash Memory . 9-18
Board-Level Design for SRAM and Flash Memory . 9-19
Example Design with SRAM and Flash Memory . 9-20

Document Revision History . 9-24

Chapter 10. SOPC Builder Component Development Walkthrough
SOPC Builder Components and the Component Editor . 10-1
Prerequisites . 10-1
Hardware and Software Requirements . 10-2
Component Development Flow . 10-2

Typical Design Steps . 10-2
Hardware Design . 10-3

Design Example: Checksum Hardware Accelerator . 10-4
Software Design . 10-5
Verifying the Component . 10-6

Sharing Components . 10-6
System Information Files (.sopcinfo) . 10-7
Document Revision History . 10-8

Section III. Interconnect Components

Chapter 11. Avalon Memory-Mapped Bridges
Structure of a Bridge . 11-1

Reasons for Using a Bridge . 11-2
Address Mapping for Systems with Avalon-MM Bridges . 11-5

Contents v

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Avalon-MM Pipeline Bridge . 11-7
Component Overview . 11-7
Functional Description . 11-8

Clock Crossing Bridge . 11-10
Choosing Clock Crossing Methodology . 11-10
Functional Description . 11-11
Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder . 11-14

Clock Domain Crossing Logic . 11-15
Description of Clock Domain Adapter . 11-15
Location of Clock Domain Adapter . 11-16
Duration of Transfers Crossing Clock Domains . 11-17
Implementing Multiple Clock Domains in SOPC Builder . 11-17

Avalon-MM DDR Memory Half-Rate Bridge . 11-18
Resource Usage and Performance . 11-19
Functional Description . 11-19
Instantiating the Core in SOPC Builder . 11-20
Example System . 11-21

Device Support . 11-22
Hardware Simulation Considerations . 11-22
Software Programming Model . 11-22
Document Revision History . 11-23

Chapter 12. Avalon Streaming Interconnect Components
Interconnect Component Usage . 12-1
Address Mapping . 12-2
Timing Adapter . 12-3

Resource Usage and Performance . 12-4
Instantiating the Timing Adapter in SOPC Builder . 12-4

Data Format Adapter . 12-6
Resource Usage and Performance . 12-6
Instantiating the Data Format Adapter in SOPC Builder . 12-7

Channel Adapter . 12-8
Resource Usage and Performance . 12-8
Instantiating the Channel Adapter in SOPC Builder . 12-8

Error Adapter . 12-9
Instantiating the Error Adapter in SOPC Builder . 12-9

Installation and Licensing . 12-10
Hardware Simulation Considerations . 12-10
Software Programming Model . 12-10
Document Revision History . 12-11

Additional Information
About this Handbook . Info-1
How to Contact Altera . Info-1
Third-Party Software Product Information . Info-1
Typographic Conventions . Info-2

vi Contents

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Chapter Revision Dates

The chapters in this book, Quartus II Handbook Version 9.1 Volume 4: SOPC Builder,
were revised on the following dates. Where chapters or groups of chapters are
available separately, part numbers are listed.

Chapter 1 Introduction to SOPC Builder
Revised: November 2009
Part Number: QII54001-9.1.0

Chapter 2 System Interconnect Fabric for Memory-Mapped Interfaces
Revised: November 2009
Part Number: QII54003-9.1.0

Chapter 3 System Interconnect Fabric for Streaming Interfaces
Revised: November 2009
Part Number: QII54019-9.1.0

Chapter 4 SOPC Builder Components
Revised: November 2009
Part Number: QII54004-9.1.0

Chapter 5 Using SOPC Builder with the Quartus II Software
Revised: November 2009
Part Number: QII54023-9.1.0

Chapter 6 Component Editor
Revised: November 2009
Part Number: QII54005-9.1.0

Chapter 7 Component Interface Tcl Reference
Revised: November 2009
Part Number: QII54022-9.1.0

Chapter 8 Archiving SOPC Builder Projects
Revised: November 2009
Part Number: QII54017-9.1.0

Chapter 9 SOPC Builder Memory Subsystem Development Walkthrough
Revised: November 2009
Part Number: QII54006-9.1.0

Chapter 10 SOPC Builder Component Development Walkthrough
Revised: November 2009
Part Number: QII54007-9.1.0

Chapter 11 Avalon Memory-Mapped Bridges
Revised: November 2009
Part Number: QII54020-9.1.0

Chapter 12 Avalon Streaming Interconnect Components
Revised: November 2009
Part Number: QII54021-9.1.0

viii Chapter Revision Dates

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Section I. SOPC Builder Features

This section introduces the SOPC Builder system integration tool. Chapters in this
section answer the following questions:

■ What is SOPC Builder?

■ What features does SOPC Builder provide?

This section includes the following chapters:

■ Chapter 1, Introduction to SOPC Builder

■ Chapter 2, System Interconnect Fabric for Memory-Mapped Interfaces

■ Chapter 3, System Interconnect Fabric for Streaming Interfaces

■ Chapter 4, SOPC Builder Components

■ Chapter 5, Using SOPC Builder with the Quartus II Software

■ Chapter 6, Component Editor

■ Chapter 7, Component Interface Tcl Reference

■ Chapter 8, Archiving SOPC Builder Projects

1 For information about the revision history for chapters in this section, refer to each
individual chapter’s revision history.

I–2 Chapter :

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

1. Introduction to SOPC Builder

Quick Start Guide
For a quick introduction on how to use SOPC Builder, follow these general steps:

■ Install the Quartus® II software, which includes SOPC Builder. This is available at
www.altera.com.

■ Take advantage of the one-hour online course, Using SOPC Builder.

■ Download and run the checksum sample design described in the SOPC Builder
Memory Subsystem Development Walkthrough chapter in volume 4 of the Quartus II
Handbook.

Overview
SOPC Builder is a powerful system development tool. SOPC Builder enables you to
define and generate a complete system-on-a-programmable-chip (SOPC) in much less
time than using traditional, manual integration methods. SOPC Builder is included as
part of the Quartus II software.

You may have used SOPC Builder to create systems based on the Nios® II processor.
However, SOPC Builder is more than a Nios II system builder; it is a general-purpose
tool for creating systems that may or may not contain a processor and may include a
soft processor other than the Nios II processor.

SOPC Builder automates the task of integrating hardware components. Using
traditional design methods, you must manually write HDL modules to wire together
the pieces of the system. Using SOPC Builder, you specify the system components in a
GUI and SOPC Builder generates the interconnect logic automatically. SOPC Builder
generates HDL files that define all components of the system, and a top-level HDL file
that connects all the components together. SOPC Builder generates either Verilog
HDL or VHDL equally.

In addition to its role as a system generation tool, SOPC Builder provides features to
ease writing software and to accelerate system simulation. This chapter includes the
following sections:

■ “Architecture of SOPC Builder Systems” on page 1–2

■ “Functions of SOPC Builder” on page 1–5

■ “Operating System Support” on page 1–6

■ “Talkback Support” on page 1–7

QII54001-9.1.0

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/education/training/courses/OEMB1115

1–2 Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Architecture of SOPC Builder Systems
An SOPC Builder component is a design module that SOPC Builder recognizes and
can automatically integrate into a system. You can also define and add custom
components or select from a list of provided components. SOPC Builder connects
multiple modules together to create a top-level HDL file called the SOPC Builder
system. SOPC Builder generates system interconnect fabric that contains logic to
manage the connectivity of all modules in the system.

SOPC Builder Modules

1 This document refers to components as the class definition for a module, for example a
Nios® II processor. An instance is a parameterization of a component that's been added
to a system, for example cpu_0.

SOPC Builder modules are the building blocks for creating an SOPC Builder system.
SOPC Builder modules use Avalon® interfaces, such as memory-mapped, streaming,
and IRQ, for the physical connection of components. You can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon interface.
There are different types of Avalon interfaces, as described in the Avalon Interface
Specifications.

f For details on the Avalon-MM interface refer to System Interconnect Fabric for
Memory-Mapped Interfaces in chapter in volume 4 of the Quartus II Handbook. For
details on the Avalon-ST interface, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook. For details about the
Avalon-ST interface protocol, refer to Avalon Interface Specifications.

Example System
Figure 1–1 shows an FPGA design that includes an SOPC Builder system and custom
logic modules. You can integrate custom logic inside or outside the SOPC Builder
system. In this example, the custom component inside the SOPC Builder system
communicates with other modules through an Avalon-MM master interface. The
custom logic outside of the SOPC Builder system is connected to the SOPC Builder
system through a PIO interface. The SOPC Builder system includes two SOPC Builder
components with Avalon-ST source and sink interfaces. The system interconnect
fabric connects all of the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnect as appropriate.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 1: Introduction to SOPC Builder 1–3
Architecture of SOPC Builder Systems

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

A component can be a logical device that is entirely contained within the SOPC
Builder system, such as the processor component shown in Figure 1–1. Alternately, a
component can act as an interface to an off-chip device, such as the DDR2 interface
component in Figure 1–1. In addition to the Avalon interface, a component can have
other signals that connect to logic outside the SOPC Builder system. Non-Avalon
signals can provide a special-purpose interface to the SOPC Builder system, such as
the PIO in Figure 1–1. These non-Avalon signals are described in Conduit Interface
chapter in the Avalon Interface Specifications.

Available Components
Altera and third-party developers provide ready-to-use SOPC Builder components,
including:

■ Microprocessors, such as the Nios II processor

Figure 1–1. Example of an FPGA with a SOPC Builder System Generated by SOPC Builder

FPGA

Custom
Logic

Printed Circuit Board

System Module

System Interconnect Fabric

Co-Processor 2
Bus Bridge

DDR2
Memory

DDR2
Memory

M Avalon-MM Master Port

S Avalon-MM Slave Port

S

SNK

S SRC

SNK

SRC Avalon-ST Source Port

Avalon-ST Sink Port

Custom
Component

M M

Processor
(32-bit
Master)

Streaming
Data
Sink

DDR2
Memory

Controller

PIO
(8-bit
slave)

Streaming
Data

Source

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–4 Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

■ Microcontroller peripherals, such as a Scatter-Gather DMA Controller and timer

■ Serial communication interfaces, such as a UART and a serial peripheral interface
(SPI)

■ General purpose I/O

■ Communications peripherals, such as a 10/100/1000 Ethernet MAC

■ Interfaces to off-chip devices

Custom Components
You can import HDL modules and entities that you write using Verilog HDL or
VHDL into SOPC builder as custom components. You use the following design flow
to integrate custom logic into an SOPC Builder system:

1. Determine the interfaces used to interact with your custom component.

2. Create the component logic using either Verilog HDL or VHDL.

3. Use the SOPC Builder component editor to create an SOPC Builder component
with your HDL files.

4. Instantiate your component in the system.

Once you have created an SOPC Builder component, you can use the component in
other SOPC Builder systems, and share the component with other design teams.

f For instructions on developing a custom SOPC Builder component, the details about
the file structure of a component, or the component editor, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

f For further details, refer to the System Interconnect Fabric for Memory-Mapped Interfaces
and System Interconnect Fabric for Streaming Interfaces chapters in volume 4 of the
Quartus II Handbook.

Third-Party Components
You can also use SOPC-ready components that were developed by third-parties.
Altera awards the SOPC Builder Ready certification to IP functions that are ready to
integrate with the Nios II embedded processor or the system interconnect fabric via
SOPC Builder. These cores support the Avalon-MM interface or the Avalon Streaming
(Avalon-ST) interface and may include constraints, software drivers, simulation
models, and reference designs when applicable.

To find SOPC Builder Ready third-party components that you can purchase and use
in SOPC Builder systems, complete the following steps:

1. On the Tools menu in SOPC Builder, click Download Components.

2. On the Intellectual Property Solutions web page, type SOPC Builder ready r
in the box labeled Search for IP, Development Kits and Reference Designs.

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 1: Introduction to SOPC Builder 1–5
Functions of SOPC Builder

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Functions of SOPC Builder
This section describes the functions of SOPC Builder.

Defining and Generating the System Hardware
SOPC Builder allows you to design the structure of a hardware system. The GUI
allows you to add components to a system, configure the components, and specify
connectivity.

After you add and parameterize components, SOPC Builder generates the system
interconnect fabric, and outputs HDL files to your project directory. During system
generation, SOPC Builder creates the following items:

■ An HDL file for the top-level SOPC Builder system and for each component in the
system. The top-level HDL file is named <system_name>.v for Verilog HDL
designs and <system_name>.vhd for VHDL designs.

■ Synopsis Design Constraints file (.sdc) for timing analysis.

■ A Block Symbol File (.bsf) representation of the top-level SOPC Builder system for
use in Quartus II Block Diagram Files (.bdf).

■ An example of an instance of the top-level HDL file,
<SOPC_project_name_inst>.v or <SOPC_project_name_inst>.vhd, which
demonstrates how to instantiate the top-level HDL file in your code.

■ A data sheet called <system_name>.html that provides a system overview
including the following information:

■ All external connections for the system

■ A memory map showing the address of each Avalon-MM slave with respect to
each Avalon-MM master to which it is connected

■ All parameter assignments for each component

■ A functional test bench for the SOPC Builder system and ModelSim® simulation
project files

■ SOPC information file (.sopcinfo) that describes all of the components and
connections in your system. This file is a complete system description, and is used
by downstream tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently, you can parse its
contents to get requirements when developing software drivers for SOPC Builder
components.

■ A Quartus II IP File (.qip) that provides the Quartus II software with all required
information about your SOPC Builder system. The .qip file includes references to
the following information:

■ HDL files used in the SOPC Builder system

■ TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files

■ Component definition files for archiving purposes

After you generate the SOPC Builder system, you can compile it with the Quartus II
software, or you can instantiate it in a larger FPGA design.

1–6 Chapter 1: Introduction to SOPC Builder
Visualization of SOPC Builder Systems

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Creating a Memory Map for Software Development
When your SOPC Builder system includes a Nios II processor, SOPC Builder
generates a header file, cpu.h, that provides the base address of each Avalon-MM
slave component. In addition, each slave component can provide software drivers
and other software functions and libraries for the processor. You can create C header
files for your system using the sopc-create-header-files utility.

f For details type sopc-create-header-files --help in a Nios II Command
shell.

f For more details about how to provide Nios II software drivers for components, refer
to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. The Nios II EDS is separate from SOPC Builder, but it
uses the output of SOPC Builder as the foundation for software development.

Creating a Simulation Model and Test Bench
You can simulate your system after generating it with SOPC Builder. During system
generation, SOPC Builder outputs a simulation test bench and a ModelSim setup
script that eases the system simulation effort. The test bench does the following:

■ Instantiates the SOPC Builder system

■ Drives all clocks and resets

■ Instantiates simulation models for off-chip devices when available

Visualization of SOPC Builder Systems
You can use the Filters dialog box to customize the display of your system in the
connections panel. You can filter the display of your system by interface type, instance
name, interface type, or using custom tags. For example, you can use filtering to view
only instances that include an Avalon-MM interface or instances that are connected to
a particular Nios II processor. For more information, refer to Quartus II online Help.

Operating System Support
SOPC Builder supports all of the operating systems that the Quartus II software
supports.

f For details on installation and licensing, refer to the Altera Software Installation and
Licensing Manual.

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 1: Introduction to SOPC Builder 1–7
Talkback Support

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Talkback Support
Talkback is a Quartus II software feature that provides feedback to Altera on tool and
IP feature usage. Altera uses the data to help guide future product planning efforts.
Talkback sends Altera information on the Altera components you use, including:
interface types, interface properties, parameter names and values, clocking, and
software assignments. For components from Altera, Talkback sends the component
parameter values to help understand what features of the component are being used.
For non-Altera components, Talkback collects information about how interfaces such
as Avalon-MM are being used. Connectivity between components is not sent. The
Talkback file does not include information about system connectivity, interrupts, or
the memory map seen by each master in the system. Talkback collects the same very
general information about your proprietary components.

The Talkback feature is enabled by default. You can disable Talkback from within the
Quartus II software if you do not wish to share your usage data with Altera.

Document Revision History
Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009,
v9.1.0

■ Clarified information collected by Talkback. —

March 2009,
v9.0.0

■ Added sopc-create-header-files command

■ Added description of Generate HTML Data Sheet

■ Added instructions for downloading third-party IP.

■ Named top-level HDL system files that SOPC Builder generates.

■ Added paragraph introducing the filtering for visualization of
large systems.

Updated to reflect new
functionality in the 9.0 release.

November 2008,
v8.1.0

■ Expanded description of.sopcinfo file

■ Changed page size to 8.5 x 11 inches

—

May 2008, v8.0.0 ■ Updated references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

■ Add Quick Start Guide.

■ Add list of OS support.

The two specifications have
been combined into one for all
Avalon interfaces.

October 2007, v7.2.0 ■ Updated with new 7.2 functionality and terminology. Deleted
unneeded description of SOPC Builder Ready Components.

—

1–8 Chapter 1: Introduction to SOPC Builder
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

May 2007,

v7.1.0

■ Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

■ Added new information on Avalon Streaming (Avalon-ST)
interface.

■ Revised SOPC Builder system block diagram

■ Added Referenced Documents section.

This chapter was revised to
introduce the Avalon
streaming interface in addition
to the Avalon Memory-Mapped
interface. The block diagram
was made more
comprehensive.

March 2007,

v7.0.0

No change from previous release —

November 2007,

v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 No change from previous release. —

February 2005, v1.0 Initial release. —

Table 1–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

2. System Interconnect Fabric for
Memory-Mapped Interfaces

The system interconnect fabric for memory-mapped interfaces is a high-bandwidth
interconnect structure for connecting components that use the Avalon®
Memory-Mapped (Avalon-MM) interface. The system interconnect fabric consumes
less logic, provides greater flexibility, and higher throughput than a typical shared
system bus. It is a cross-connect fabric and not a tristated or time domain multiplexed
bus. This chapter describes the functions of system interconnect fabric for
memory-mapped interfaces and the implementation of those functions.

High-Level Description
The system interconnect fabric is the collection of interconnect and logic resources
that connects Avalon-MM master and slaves on components in a system. SOPC
Builder generates the system interconnect fabric to match the needs of the
components in a system. The system interconnect fabric implements the connection
details of a system. It guarantees that signals are routed correctly between master and
slaves, as long as the ports adhere to the rules of the Avalon Interface Specifications. This
chapter provides information on the following topics:

■ “Address Decoding” on page 2–4

■ “Datapath Multiplexing” on page 2–5

■ “Wait State Insertion” on page 2–5

■ “Pipelined Read Transfers” on page 2–6

■ “Dynamic Bus Sizing and Native Address Alignment” on page 2–7

■ “Arbitration for Multimaster Systems” on page 2–9

■ “Burst Adapters” on page 2–14

■ “Interrupts” on page 2–15

■ “Reset Distribution” on page 2–16

f For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.

System interconnect fabric for memory-mapped interfaces supports the following
items:

■ Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

■ On-chip components.

■ Interfaces to off-chip devices.

■ Master and slaves of different data widths.

■ Components operating in different clock domains.

■ Components using multiple Avalon-MM ports.

QII54003-9.1.0

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2–2 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
High-Level Description

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Figure 2–1 shows a simplified diagram of the system interconnect fabric in an
example memory-mapped system with multiple masters.

1 All figures in this chapter are simplified to show only the particular function being
discussed. In a complete system, the system interconnect fabric might alter the
address, data, and control paths beyond what is shown in any one particular figure.

SOPC Builder supports components with multiple Avalon-MM interfaces, such as the
processor component shown in Figure 2–1. Because SOPC Builder can create system
interconnect fabric to connect components with multiple interfaces, you can create
complex interfaces that provide more functionality than a single Avalon-MM
interface. For example, you can create a component with two different Avalon-MM
slaves, each with an associated interrupt interface.

System interconnect fabric can connect any combination of components, as long as
each interface conforms to the Avalon Interface Specifications. It can, for example,
connect a system comprised of only two components with unidirectional dataflow
between them. Avalon-MM interfaces are suitable for random address transactions,
such as to memories or embedded peripherals.

Figure 2–1. System Interconnect Fabric—Example System

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbiter

Data
Memory

SS

Tri-State Bridge

S

Instruction

M

Data

MM

Control

Read Write

Arbiter

Instruction
Memory

System
Interconnect

Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

MUX

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–3
Fundamentals of Implementation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Generating system interconnect fabric is SOPC Builder’s primary purpose. In most
cases, you are not required to modify the generated HDL; however, a basic
understanding of how HDL works can help you optimize your system. For example,
knowledge of the arbitration algorithm can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation
System interconnect fabric for memory-mapped interfaces implements a partial
crossbar interconnect structure that provides concurrent paths between master and
slaves. System interconnect fabric consists of synchronous logic and routing resources
inside the FPGA.

For each component interface, system interconnect fabric manages Avalon-MM
transfers, interacting with signals on the connected component. Master and slave
interfaces can contain different signals and the system interconnect fabric handle any
adaptation necessary between them. In the path between master and slaves, the
system interconnect fabric might introduce registers for timing synchronization, finite
state machines for event sequencing, or nothing at all, depending on the services
required by the specific interfaces.

f For more information, refer to the Avalon Memory-Mapped Design Optimizations
chapter in the Embedded Design Handbook.

Functions of System Interconnect Fabric
System interconnect fabric logic provides the following functions:

■ “Address Decoding” on page 2–4

■ “Datapath Multiplexing” on page 2–5

■ “Wait State Insertion” on page 2–5

■ “Pipelined Read Transfers” on page 2–6

■ “Arbitration for Multimaster Systems” on page 2–9

■ “Burst Adapters” on page 2–14

■ “Interrupts” on page 2–15

■ “Reset Distribution” on page 2–16

The behavior of these functions in a specific SOPC Builder system depends on the
design of the components in the system and the settings made in SOPC Builder. The
remaining sections of this chapter describe how SOPC Builder implements each
function.

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

2–4 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Address Decoding

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Address Decoding
Address decoding logic in the system interconnect fabric forwards an appropriate
address and produces a chipselect signal for each slave. Address decoding logic
simplifies component design in the following ways:

■ The system interconnect fabric selects a slave whenever it is being addressed by a
master. Slave components do not need to decode the address to determine when
they are selected.

■ Slave addresses are properly aligned to the slave interface.

■ Changing the system memory map does not involve manually editing HDL.

Figure 2–2 shows a block diagram of the address-decoding logic for one master and
two slaves. Separate address-decoding logic is generated for every master in a system.

As Figure 2–2 shows, the address decoding logic handles the difference between the
master address width (<M>) and the individual slave address widths (<S> and <T>).
It also maps only the necessary master address bits to access words in each slave’s
address space.

In SOPC Builder, the user-configurable aspects of address decoding logic are
controlled by the Base setting in the list of active components on the System Contents
tab, as shown in Figure 2–3.

Figure 2–2. Block Diagram of Address Decoding Logic

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

chipselect1
address [S..0]

read/write

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

Figure 2–3. Base Settings in SOPC Builder Control Address Decoding

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–5
Datapath Multiplexing

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Datapath Multiplexing
Datapath multiplexing logic in the system interconnect fabric drives the writedata
signal from the granted master to the selected slave, and the readdata signal from
the selected slave back to the requesting master.

Figure 2–4 shows a block diagram of the datapath multiplexing logic for one master
and two slaves. SOPC Builder generates separate datapath multiplexing logic for
every master in the system.

In SOPC Builder, the generation of datapath multiplexing logic is specified using the
connections panel on the System Contents tab.

Wait State Insertion
Wait states extend the duration of a transfer by one or more cycles. Wait state insertion
logic accommodates the timing needs of each slave, and causes the master to wait
until the slave can proceed. System interconnect fabric inserts wait states into a
transfer when the target slave cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read_enable and
write_enable signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal
sequencing between the slave side and the master side. Figure 2–5 shows a block
diagram of the wait state insertion logic between one master and one slave.

Figure 2–4. Block Diagram of Datapath Multiplexing Logic

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Data
Path

Multiplexer

Slave
Port 2

Slave
Port 1

2–6 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Pipelined Read Transfers

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

System interconnect fabric can force a master to wait for several reasons in addition to
the wait state needs of a slave. For example, arbitration logic in a multimaster system
can force a master to wait until it is granted access to a slave.

SOPC Builder generates wait state insertion logic based on the properties of all slaves
in the system.

Pipelined Read Transfers
The Avalon-MM interface supports pipelined read transfers, allowing a pipelined
master to start multiple read transfers in succession without waiting for the prior
transfers to complete. Pipelined transfers allow master-slave pairs to achieve higher
throughput, even though the slave requires one or more cycles of latency to return
data for each transfer.

SOPC Builder generates system interconnect fabric with pipeline management logic
to take advantage of pipelined components wherever possible, based on the pipeline
properties of each master-slave pair in the system. Regardless of the pipeline latency
of a target slave, SOPC Builder guarantees that read data arrives at each master in the
order requested. Because master and slaves often have mismatched pipeline latency,
system interconnect fabric often contains logic to reconcile the differences. Many cases
of pipeline latency are possible, as shown in Table 2–1.

Figure 2–5. Block Diagram of Wait State Insertion Logic

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

Table 2–1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No pipeline The system interconnect fabric does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with fixed
or variable latency

The system interconnect fabric forces the master to wait through any slave-side
latency cycles. This master-slave pair gains no benefits of pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.

Pipelined No pipeline The system interconnect fabric carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data.

Pipelined Pipelined with fixed
latency

The system interconnect fabric allows the master to capture data at the exact
clock cycle when data from the slave is valid. This process enables the
master-slave pair to achieve maximum throughput performance.

Pipelined Pipelined with
variable latency

This is the simplest pipelined case, in which the slave asserts a signal when its
readdata is valid, and the master captures the data. This case enables this
master-slave pair to achieve maximum throughput.

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–7
Dynamic Bus Sizing and Native Address Alignment

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

SOPC Builder generates logic to handle pipeline latency based on the properties of the
master and slaves in the system. When configuring a system in SOPC Builder, there
are no settings that directly control the pipeline management logic in the system
interconnect fabric.

Dynamic Bus Sizing and Native Address Alignment
SOPC Builder generates system interconnect fabric to accommodate master and
slaves with unmatched data widths. Address alignment affects how slave data is
aligned in a master's address space, in the case that the master and slave data widths
are different. Address alignment is a property of each slave, and can be different for
each slave in a system. A slave can declare itself to use one of the following:

■ Dynamic bus sizing

■ Native address alignment

The following sections explain the implications of the address alignment property
slave devices.

Dynamic Bus Sizing
Dynamic bus sizing hides the details of interfacing a narrow component device to a
wider master, and vice versa. When an <N>-bit master accesses a slave with dynamic
bus sizing, the master operates exclusively on full <N>-bit words of data, without
awareness of the slave data width.

1 When using dynamic bus sizing, the slave data width in units of bytes must be a
power of two.

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware manually.

■ Reduces design complexity of the master component.

■ Enables any master to access any memory device, regardless of the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes a small
finite state machine that reconciles the difference between master and slave data
widths. The behavior is different depending on whether the master data width is
wider or narrower than the slave.

Wider Master
In the case of a wider master, the dynamic bus-sizing logic accepts a single, wide
transfer on the master side, and then performs multiple narrow transfers on the slave
side. For a data-width ratio of <N>:1, the dynamic bus-sizing logic generates up to
<N> slave transfers for each master transfer. The master waits while multiple
slave-side transfers complete; the master transfer ends when all slave-side transfers
end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to generate
appropriate slave transfers. The dynamic bus-sizing logic performs as many
slave-side transfers as necessary to write or read the specified byte lanes.

2–8 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Dynamic Bus Sizing and Native Address Alignment

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Narrower Master
In the case of a narrower master, one transfer on the master side generates one
transfer on the slave side. In this case, multiple master word addresses map to a single
offset in the slave memory space. The dynamic bus-sizing logic maps each master
address to a subset of byte lanes in the appropriate slave offset. All bytes of the slave
memory are accessible in the master address space.

Table 2–2 demonstrates the case of a 32-bit master accessing a 64-bit slave with
dynamic bus sizing. In the table, offset refers to the offset into the slave memory
space.

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the appropriate
byte lanes of the slave data to the narrow master. In the case of a write transfer, the
dynamic bus-sizing logic uses slave-side byte-enable signals to write only to the
appropriate byte lanes.

1 Altera recommends that you select dynamic bus sizing whenever possible. Dynamic
bus sizing offers more flexibility when the master and slave components in your
system have different widths.

Native Address Alignment
Table 2–3 demonstrates native address alignment and dynamic bus sizing for a 32-bit
master connected to a 16-bit slave (a 2:1 ratio). In this example, the slave is mapped to
base address <BASE> in the master’s address space. In Table 2–3, OFFSET refers to the
offset into the 16-bit slave address space.

When connecting a wide master to a narrow slave port that uses native addressing,
the following addressing formula should be used to determine what address to
present to the system interconnect fabric:

<master address> = <slave base address> + (<slave word offset> *
<master data width in bytes>)

Table 2–2. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing

32-bit Address Data

0×00000000 (word 0) OFFSET[0]31..0

0×00000004 (word 1) OFFSET[0]63..32

0×00000008 (word 2) OFFSET[1]31..0

0×0000000C (word 3) OFFSET[1]63..32

Table 2–3. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0×0000:OFFSET[0] OFFSET[1]:OFFSET[0]

BASE + 0x4 (word 1) 0×0000:OFFSET[1] OFFSET[3]:OFFSET[2]

BASE + 0x8 (word 2) 0×0000:OFFSET[2] OFFSET[5]:OFFSET[4]

BASE + 0xC (word 3) 0×0000:OFFSET[3] OFFSET[7]:OFFSET[6]

...

BASE + 4N (word N) 0×0000:OFFSET[N] OFFSET[2N+1]:OFFSET[2N]

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–9
Arbitration for Multimaster Systems

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

For example, a 64-bit master needs to write to the second word of a 32-bit slave that
uses native addressing the formula would reduce to:

<master address> = <slave base address> + (1 * 8)

SOPC Builder generates appropriate address-alignment logic based on the properties
of the master and slaves in the system. When configuring a system in SOPC Builder,
there are no settings that directly control the address alignment in the system
interconnect fabric.

Arbitration for Multimaster Systems
System interconnect fabric supports systems with multiple master components. In a
system with multiple masters, such as the system pictured in Figure 2–1 on page 2–2,
the system interconnect fabric provides shared access to slaves using a technique
called slave-side arbitration. Slave-side arbitration moves the arbitration logic close to
the slave, such that the algorithm that determines which master gains access to a
specific slave in the event that multiple masters attempt to access the same slave at the
same time.

The multimaster architecture used by system interconnect fabric offers the following
benefits:

■ Eliminates having to create arbitration hardware manually.

■ Allows multiple masters to transfer data simultaneously. Unlike traditional
host-side arbitration architectures where each master must wait until it is granted
access to the shared bus, multiple Avalon-MM masters can simultaneously
perform transfers with independent slaves. Arbitration logic stalls a master only
when multiple masters attempt to access the same slave during the same cycle.

■ Eliminates unnecessary master-slave connections. The connection between a
master and a slave exists only if it is specified in SOPC Builder. If a master never
initiates transfers to a specific slave, no connection is necessary, and therefore
SOPC Builder does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each slave is
specified independently. For example, you can grant one master more arbitration
shares than others, allowing it to gain more access cycles to the slave. The
arbitration share settings are defined for each slave independently.

■ Simplifies master component design. The details of arbitration are encapsulated
inside the system interconnect fabric. Each Avalon-MM master connects to the
system interconnect fabric as if it is the only master in the system. As a result, you
can reuse a component in single-master and multimaster systems without
requiring design changes to the component.

Traditional Shared Bus Architectures
This section discusses the architecture of the system interconnect fabric generated by
SOPC Builder for multimaster systems. As a frame of reference for the discussion of
multiple masters and arbitration, this section describes traditional bus architectures.

2–10 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

In traditional bus architectures, one or more bus masters and bus slaves connect to a
shared bus, consisting of wires on a printed circuit board or on-chip routing. A single
arbiter controls the bus (that is, the path between bus masters and bus slaves), so that
multiple bus masters do not simultaneously drive the bus. Each bus master requests
control of the bus from the arbiter, and the arbiter grants access to a single master at a
time. Once a master has control of the bus, the master performs transfers with any bus
slave. When multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master, forcing all other masters to wait.

Figure 2–6 illustrates the bus architecture for a traditional processor system. Access to
the shared system bus becomes the bottleneck for throughput: only one master has
access to the bus at a time, which means that other masters are forced to wait and only
one slave can transfer data at a time.

Slave-Side Arbitration
The system interconnect fabric uses multimaster architecture to eliminate the
bottleneck for access to a shared bus. Multiple masters can be active at the same time,
simultaneously transferring data with independent slaves. For example, Figure 2–1
on page 2–2 demonstrates a system with two masters (a CPU and a DMA controller)
sharing a slave (an SDRAM controller). Arbitration is performed at the SDRAM slave;
the arbiter dictates which master gains access to the slave if both masters initiate a
transfer with the slave in the same cycle.

Figure 2–7 focuses on the two masters and the shared slave and shows additional
detail of the data, address, and control paths. The arbiter logic multiplexes all address,
data, and control signals from a master to a shared slave.

Figure 2–6. Bus Architecture in a Traditional Microprocessor System

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbiter

System Bus

Masters

Slaves

Bottleneck

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–11
Arbitration for Multimaster Systems

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Arbiter Details
SOPC Builder generates an arbiter for every slave, based on arbitration parameters
specified in SOPC Builder. The arbiter logic performs the following functions for its
slave:

■ Evaluates the address and control signals from each master and determines which
master, if any, gains access to the slave next.

■ Grants access to the chosen master and forces all other requesting masters to wait.

■ Uses multiplexers to connect address, control, and datapaths between the multiple
masters and the slave.

Figure 2–8 shows the arbiter logic in an example multimaster system with two
masters, each connected to two slaves.

Figure 2–7. Detailed View of Multimaster Connections

Master 1

Master 2

Slave

A
rb

ite
r

Write Data

Control

Request Control

M1 Write Data

M2 Write Data

Request Control

Slave Read Data

Address

M2 Address

M1 Address

2–12 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Arbitration Rules
This section describes the rules by which the arbiter grants access to masters when
they contend.

Setting Arbitration Parameters in SOPC Builder
You specify the arbitration shares for each master using the connection panel on the
System Contents tab of SOPC Builder, as shown in Figure 2–9.

The arbitration settings are hidden by default. To see them, on the View menu, click
Show Arbitration.

Figure 2–8. Block Diagram of Arbiter Logic

Master 1
(M1)

Data-Path
Multiplexing

Logic

Slave 1
(S1)

Slave 2
(S2)

Master 2
(M2)

M1 Address, Write
Data & Control

M2 Address, Write
Data & Control

S1 Read Data & Control

S2 Read Data & Control

Data-Path
Multiplexing

Logic

Slave 1
Arbiter Master Select

 M1 wait
 M2 wait

Slave 2
Arbiter Master Select

 M1 wait

 M2 wait

Figure 2–9. Arbitration Settings on the System Contents Tab

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–13
Arbitration for Multimaster Systems

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Fairness-Based Shares
Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based arbitration
scheme, each master pair has an integer value of transfer shares with respect to a slave.
One share represents permission to perform one transfer.

For example, assume that two masters continuously attempt to perform back-to-back
transfers to a slave. Master 1 is assigned three shares and Master 2 is assigned four
shares. In this case, the arbiter grants Master 1 access for three transfers, then Master 2
for four transfers. This cycle repeats indefinitely. Figure 2–10 demonstrates this case,
showing each master’s transfer request output, wait request input (which is driven by
the arbiter logic), and the current master with control of the slave.

If a master stops requesting transfers before it exhausts its shares, it forfeits all its
remaining shares, and the arbiter grants access to another requesting master. Refer to
Figure 2–11. After completing one transfer, Master 2 stops requesting for one clock
cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished
supply of shares.

Round-Robin Scheduling
When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Round-robin scheduling drives a request interface according to
space available and data available credit interfaces. At every slave transfer, only
requesting masters are included in the arbitration.

Figure 2–10. Arbitration of Continuous Transfer Requests from Two Masters

Figure 2–11. Arbitration of Two Masters with a Gap in Transfer Requests

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

2–14 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Burst Adapters

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Burst Transfers
Avalon-MM burst transfers grant a master uninterrupted access to a slave for a
specified number of transfers. The master specifies the number of transfers when it
initiates the burst. Once a burst begins between a master-slave pair, arbiter logic does
not allow any other master to access the slave until the burst completes. For burst
masters, the size of the burst determines the number of cycles that the master has
access to the slave, and the selected arbitration shares have no effect.

Burst Adapters
System interconnect fabric provides burst adaptation logic to accommodate the burst
capabilities of each port in the system, including ports that do not support burst
transfers. Burst adaptation logic consists of a finite state machine that translates the
sequencing of address and control signals between the slave side and the master side.

The maximum burst length for each port is determined by the component design and
is independent of other ports in the system. Therefore, a particular master might be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst management logic translates the master burst into smaller slave
bursts, or into individual slave transfers if the slave does not support bursts. Until the
master completes the burst, the arbiter logic prevents other masters from accessing
the target slave.

For example, if a master initiates a burst of 16 transfers to a slave with maximum burst
length of 8, the burst adapter logic initiates two bursts of length 8 to the slave. If the
master initiates a burst of 14, the burst adapter logic segments the burst transfer into a
burst of 8 words followed by a burst of 6 words, because the slave can only handle a
maximum burst length of 8. If a master initiates a burst of 16 transfers to a slave that
does not support bursts, the burst management logic initiates 16 separate transfers to
the slave.

1 The burst adapter inserts one idle cycle at the start of each burst. System throughput is
maximized when burst sizes are as large as possible.

In the case of a non-linewrap burst master connected to a slave with the
linewrapBursts property set to TRUE, it is not always possible to issue the
maximum-sized burst to the slave. In these cases the burst adapter is not capable of
adapting the master and slave pairing. An adapter is generated; however, if the
master performs a burst transaction to the slave that crosses the slave burst boundary
data corruption can occur. To avoid a functional failure, you should ensure the master
posts bursts of length one until the master burst boundary has been reached. The
master burst boundary has an alignment of <master_data_width> ×
<master_maximum_burst_length>.

Any burst transaction that begins on a master burst boundary is guaranteed to not
cross the burst boundary of the slave port regardless of the slave port's maximum
burst length. Typically the only Avalon-MM interfaces that support burst wrapping
are burst capable SDRAM controllers.

f For more information about the linewrapBursts property, refer to the Avalon
Memory-Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–15
Interrupts

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Interrupts
In systems where components have interrupt request (IRQ) sender interfaces, the
system interconnect fabric includes interrupt controller logic. A separate interrupt
controller is generated for each interrupt receiver. The interrupt controller aggregates
IRQ signals from all interrupt senders, and maps them to user-specified values on the
receiver inputs.

f For further information, refer to the Interrupt Interfaces chapter in the Avalon Interface
Specifications.

Individual Requests IRQ Scheme
In the individual requests IRQ scheme, the system interconnect fabric passes IRQs
directly from the sender to the receiver, without making any assumptions about IRQ
priority. In the event that multiple senders assert their IRQs simultaneously, the
receiver logic (presumably under software control) determines which IRQ has highest
priority, then responds appropriately.

Using individual requests, the interrupt controller can handle up to 32 IRQ inputs.
The interrupt controller generates a 32-bit signal irq[31:0] to the receiver, and
simply maps slave IRQ signals to the bits of irq[31:0]. Any unassigned bits of
irq[31:0] are disabled. Figure 2–12 shows an example of the interrupt controller
mapping the IRQs on four senders to irq[31:0] on a receiver.

Priority Encoded Interrupt Scheme
In the priority encoded interrupt scheme, in the event that multiple slaves assert their
IRQs simultaneously, the system interconnect fabric provides the interrupt receiver
with a 1-bit interrupt signal, and the number of the highest priority active interrupt.
An IRQ of lesser priority is undetectable until all IRQs of higher priority have been
serviced.

Figure 2–12. IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2–16 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Reset Distribution

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Using priority encoded interrupts, the interrupt controller can handle up to 64 slave
IRQ signals. The interrupt controller generates a 1-bit irq signal to the receiver,
signifying that one or more senders have generated an IRQ. The controller also
generates a 6-bit irqnumber signal, which outputs the encoded value of the highest
pending IRQ. See Figure 2–13.

Assigning IRQs in SOPC Builder
You specify IRQ settings on the System Contents tab of SOPC Builder. After adding
all components to the system, you make IRQ settings for all interrupt senders, with
respect to each interrupt receiver. For each slave, you can either specify an IRQ
number, or specify not to connect the IRQ.

Reset Distribution
SOPC Builder generates the logic used in the system interconnect fabric, which drives
the reset pulse to all the logic. The system interconnect fabric distributes the reset
signal conditioned for each clock domain. The duration of the reset signal is at least
one clock period.

The system interconnect fabric asserts the system-wide reset in the following
conditions:

■ The global reset input to the SOPC Builder system is asserted.

■ Any component asserts its resetrequest signal.

The global reset and reset requests are ORed together. This signal is then synchronized
to each clock domain associated to an Avalon-MM port, which causes the
asynchronous resets to be de-asserted synchronously.

Figure 2–13. IRQ Mapping Using Hardware Priority

Interrupt
Controller

Receiver

irq

irq

irq

irq

irq1
irq2

irq4
irq5
irq6

irq3

irq0

irq63

Priority
Encoder

irqnumber [5..0]

irqSender
1

Sender
2

Sender
3

Sender
4

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2–17
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 2–4 shows the revision history for this chapter.

Table 2–4. Document Revision History (Sheet 1 of 2)

Date and
Document

Version Changes Made Summary of Changes

November 2009,
v9.1.0

■ Revised discussion of a non-linewrap burst master connected
to a slave with the linewrapBursts property set to TRUE.

—

March 2009,
v9.0.0

■ Added table showing the behavior of the burst adapter for
master and slaves with and without linewrapBursts set to
TRUE.

Clarification of burst behavior.

November 2008,
v8.1.0

■ Added discussion of a non-bursting Avalon-MM master
connected to a Avalon-MM slave with linewrapBursts =
TRUE. Removed discussion on minimum arbitration shares;
this feature is no longer supported.

■ Changed page size to 8.5 x 11 inches

Minor update to reflect software
changes.

May 2008, v8.0.0 ■ Updated references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

■ Moved clock-crossing bridge section from this chapter to
chapter 11.

The two specifications have been
combined into one for all Avalon
interfaces.

October 2007
v7.2.0

■ Updated to match 7.2 features. Deleted paragraphs discussing
“Pipelining for High Performance”, “Endian Conversion”, and
added new screenshots.

■ Moved clock-crossing bridge discussion to this chapter from
chapter 10.

—

2–18 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

May 2007,

v7.1.0

■ Chapter 3 was previously titled Avalon Switch Fabric.

■ Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

■ Rearranged content in section “Introduction” on page 2–1 to
enhance clarity and to acknowledge the existence of the new
Avalon Streaming interface.

■ In section “Pipelining for High Performance” on page 2–7,
noted that automatic pipelining for high performance is a
deprecated feature. Added the recommendation to use the
Avalon-MM Pipeline Bridge component instead.

■ Updated Table 2–2 on page 2–9 for improved clarity.

■ Updated section “Dynamic Bus Sizing” on page 2–9 to reflect
new behavior of system interconnect fabric with respect to byte
enables during read transfers. For a master-to-slave data-width
ratio of N:1, the system interconnect fabric might not need to
perform N slave-side read transfers, depending on how the
master asserts its byte-enable signals.

■ Added three paragraphs explaining when clock signals are
automatically connected to SOPC Builder components.

■ Added paragraph referencing the higher performance Avalon-
MM Clock-Crossing Bridge which can be used instead of the
CDC logic for systems requiring higher throughput.

For the 7.1 release, Altera released
the Avalon Streaming Interface,
which necessitated some
rephrasing of existing Avalon
terminology.

The newly-released Avalon-MM
Pipeline Bridge component
provides a more effective means
to improve fMAX performance
than the traditional pipeline option
in SOPC Builder. The behavior of
byteenable signals in the
Avalon Interface Specifications
was updated, necessitating
changes to this document.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005,
v5.1.0

No change from previous release. —

August 2005,
v5.0.1

Updated for the Quartus II software version 5.1. —

May 2005, v5.0.0 ■ Added burst transfer management details.

■ Updated pipeline management details.

—

February 2005,
v1.0

Initial release. —

Table 2–4. Document Revision History (Sheet 2 of 2)

Date and
Document

Version Changes Made Summary of Changes

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

3. System Interconnect Fabric for
Streaming Interfaces

The interconnect fabric for Avalon® Streaming connects high-bandwidth, low latency
components that use the Avalon Streaming (Avalon-ST) interface. This interconnect
fabric creates datapaths for unidirectional traffic including multichannel streams,
packets, and DSP data. This chapter describes the Avalon-ST interconnect fabric and
its use in connecting components with Avalon-ST interfaces. Descriptions of specific
adapters and their use in streaming systems can be found in the following sections:

■ “Adapters” on page 3–3

■ “Multiplexer Examples” on page 3–5

High-Level Description
Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using SOPC
Builder, you specify how Avalon-ST source and sink ports connect. SOPC Builder
then creates a high performance point-to-point interconnect between the two
components. The Avalon-ST interconnect is flexible and can be used to implement
on-chip interfaces for industry standard telecommunications and data
communications cores, such as Ethernet IEEE 802.3 MAC and SPI 4.2. In all cases, bus
widths, packets, and error conditions are custom-defined.

Figure 3–1 illustrates the simplest system example that generates an interconnect
between the source and sink. This source-sink pair includes only the data and valid
signals.

Figure 3–2 illustrates a more extensive interface that includes signals indicating the
start and end of packets, channel numbers, error conditions, and back pressure.

All data transfers using Avalon-ST interconnect occur synchronously to the rising
edge of the associated clock interface. All outputs from the source interface, including
the data, channel, and error signals, must be registered on the rising edge of the clock.

Figure 3–1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Figure 3–2. Avalon Streaming Interface for Packet Data

Data
Sink

valid
data

Data
Source

Data
Source

Data
Sink

valid

data

ready

channel
startofpacket
endofpacket
empty
error

QII54019-9.1.0

3–2 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Avalon Streaming and Avalon Memory-Mapped Interfaces

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Registers are not required for inputs at the sink interface. Registering signals only at
the source provides for high frequency operation while eliminating back-to-back reg-
istration with no intervening logic. There is no inherent maximum performance of the
interconnect. Throughput for a system depends on the components and how they are
connected.

f For details about the Avalon-ST interface protocol, refer to the Avalon Interface
Specifications.

Avalon Streaming and Avalon Memory-Mapped Interfaces
The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces are
complementary. High bandwidth components with streaming data typically use
Avalon-ST interfaces for the high throughput datapath. These components can also
use Avalon-MM connection interfaces to provide an access point for control. In
contrast to the Avalon-MM interconnect, which can be used to create a wide variety of
topologies, the Avalon-ST interconnect fabric always creates a point-to-point between
a single data source and data sink, as Figure 3–3 illustrates. There are two connection
pairs in this figure:

■ The data source in the Rx Interface transfers data to the data sink in the FIFO.

■ The data source in the FIFO transfers data to the Tx Interface data sink.

In Figure 3–3, the Avalon-MM interface allows a processor to access the data source,
FIFO or data sink to provide system control.

Figure 3–3. Use of the Avalon Memory-Mapped and Streaming Interfaces

 FIFO

Data

Sink

Data

Source

Data

Source channel

Data Source

(Rx Interface)

Data Sink

(Tx Interface)

Data

Sink

Data

Source

ready

valid

data

ready

valid

data

channel

Control

Slave

Control

Slave

Control

Slave

Processor UART Timer

Control Plane : Avalon Memory Mapped Inteface

Data Plane : Avalon Streaming Interface

RAM

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3–3
Adapters

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Adapters
Adapters are configurable SOPC Builder components that are part of the streaming
interconnect fabric. They are used to connect source and sink interfaces that are not
exactly the same without affecting the semantics of the data. SOPC Builder includes
the following four adapters:

■ Data Format Adapter

■ Timing Adapter

■ Channel Adapter

■ Error Adapter

You can add Avalon-ST adapters between two components with mismatched
interfaces. The adapter allows you to connect a data source to a data sink of differing
byte sizes. If you connect mismatched Avalon-ST sources and sinks in SOPC Builder
without inserting adapters, SOPC Builder generates error messages. Inserting
adapters into the system does not change the types of components that SOPC Builder
allows you to connect. The Insert Avalon-ST Adapters command on the System
menu attempts to correct these errors automatically, if possible, by inserting the
appropriate adapter types.

f For complete information about these adapters, refer to the Avalon Streaming
Interconnect Components chapter in volume 4 of the Quartus II Handbook.

The following sections provide an overview of these adapters.

Data Format Adapter
The data format adapter allows you to connect interfaces that have different values
for the parameters defining the data signal. One of the most common uses of this
adapter is to convert data streams of different widths. Figure 3–4 shows an adapter
that allows a connection between a 128-bit input data stream and three 32-bit output
data streams.

http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

3–4 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Adapters

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Timing Adapter
The timing adapter allows you to connect component interfaces that require a
different number of cycles before driving or receiving data. This adapter inserts a
FIFO between the source and sink to buffer data or pipeline stages to delay the back
pressure signals. The timing adapter can also be used to connect interfaces that
support the ready signal and those that do not.

Channel Adapter
The channel adapter provides adaptations between interfaces that have different
support for the channel signal or channel-related parameters. For example, if the
source channel is narrower than the sink channel, you can use this adapter to connect
them. The high-order bits of the sink channel are connected to zero. You can also use
this adapter to connect a source with a wider channel to a sink with a narrower
channel. If the source provides data for a channel that the sink cannot receive, the data
is not transferred.

Error Adapter
The error adapter ensures that per-bit error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Matching
error conditions handled by the source and sink are connected. If the source has an
error condition that is not supported by the sink, the signal is left unconnected; the
adapter provides a simulation error message and an error indication if this error is
ever asserted. If the sink has an error condition that is not supported by the source, the
sink’s input is tied to zero.

Figure 3–4. Avalon Streaming Interconnect Fabric with Data Format Adapter

128 bits

128 bits

128-bit RX
Interface

Data
 Format
Adapter

Data
 Format
Adapter

Data
 Format
Adapter

128 bits

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3–5
Multiplexer Examples

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Multiplexer Examples
You can combine these adapters with streaming components to create datapaths
whose input and output streams have different properties. The following sections
provide examples of datapaths constructed using SOPC Builder in which the output
stream is higher performance than the input stream:

■ The first example shows an output with double the throughput of each interface
with a corresponding doubling of the clock frequency.

■ The second example doubles the data width.

■ The third example boosts the frequency of a stream by 10% by multiplexing input
data from two sources.

Example to Double Clock Frequency
Figure 3–5 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory and Avalon-ST channel multiplexer to merge the 100 MHz input from two
streaming data sources into a single 200 MHz streaming output. As Figure 3–5
illustrates, this example increases throughput by increasing the frequency and
combining inputs.

Example to Double Data Width and Maintain Frequency
Figure 3–6 illustrates a datapath that uses the data format adapter and Avalon-ST
channel multiplexer to convert two, 8-bit inputs running at 100 MHz to a single 16-bit
output at 100 MHz.

Figure 3–5. Datapath that Doubles the Clock Frequency

sinksrc

Data Source

sink src100 MHz 200 MHz

sink
src

Data Source

100 MHz 200 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink sink

input

input

output
200 MHz

src

3–6 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Multiplexer Examples

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Example to Boost the Frequency
Figure 3–7 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory to boost the frequency of input data from 100 MHz to 110 MHz by sampling
two input streams at differential rates. In this example, the on-chip FIFO memory has
an input clock frequency of 100 MHz and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time and the second 72.7 percent of the time.

You do not need to know what the typical and maximum input channel utilizations
are before attempting this. For example, if the first channel hits 50% utilization, the
output stream exceeds 100% utilization.

Figure 3–6. Datapath to Double Data Width and Maintain Original Frequency

sinksrc

Data Source

sink src8 bits
@100 MHz

sink
src

Data Source

Data Format
Adapter

srcData Format
Adaptersink sink

input

input

16 bits
@100 MHz

src

8 bits
@100 MHz

16 bits
@100 MHz

16 bits
@100 MHz

Figure 3–7. Datapath to Boost the Clock Frequency

src

Data Source

sink src8 bits
@100 MHz

110 MHz

sink
src

Data Source

8 bits
@100 MHz

110 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink

input

input

27.3%
sample rate

72.7%
sample rate

output
110 MHz

src

sink

sink

30%
channel utilization

80%
channel utilization

100%
channel

utilization

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3–7
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2009, v9.1.0 No changes from previous release. —

March 2009, v9.0.0 No changes from previous release. —

November 2008, v8.1.0 ■ Added information on error adapter.

■ Changed page size to 8.5 x 11 inches
—

May 2008, v8.0.0 Updated references to Avalon
Memory-Mapped and Streaming Interface
Specifications and changed to Avalon
Interface Specifications.

—

October 2007, v7.2.0 No changes for this release. —

May 2007,

v7.1.0

Initial release. The Avalon-ST Data Format Adapter,
Timing Adapter and Channel Adapter are
new components provided in the Quartus II
software v7.1 release.

3–8 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

4. SOPC Builder Components

An SOPC Builder component is a hardware design block available within SOPC
Builder that can be instantiated in an SOPC Builder system. This chapter defines
SOPC Builder components, with emphasis on the structure of custom components.

A component includes the following:

■ The HDL description of the component’s hardware.

■ A description of the interface to the component hardware, such as the names and
types of I/O signals.

■ A description of the parameters that determine the operation of the component.

■ A GUI for parameterizing an instance of the component in SOPC Builder.

■ Scripts and other information SOPC Builder requires to generate the HDL files for
the component and integrate the component instance into the SOPC Builder
system.

■ Other component-related information, such as reference to software drivers,
necessary for development steps downstream of SOPC Builder.

This chapter discusses the design flow for new and classic custom-defined SOPC
Builder components, in the following sections:

■ “Component Providers” on page 4–1

■ “Component Hardware Structure” on page 4–2

■ “Exported Connection Points—Conduit Interfaces” on page 4–3

■ “SOPC Builder Component Search Path” on page 4–4

■ “Component Structure” on page 4–8

■ “Classic Components in SOPC Builder” on page 4–9

Component Providers
SOPC Builder components can be obtained from many providers, including the
following:

■ The components automatically installed with the Quartus® II software.

■ Third-party IP developers can provide IP blocks as SOPC Builder-ready
components, including software drivers and documentation. A list of third-party
components can be found in SOPC Builder by clicking IP MegaStore on the Tools
menu.

■ Altera development kits, such as the Nios® II Development Kit, can provide SOPC
Builder components as features.

■ You can use the SOPC Builder component editor to convert your own HDL files
into custom components.

QII54004-9.1.0

4–2 Chapter 4: SOPC Builder Components
Component Hardware Structure

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

f For more information about the _hw.tcl file, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

Component Hardware Structure
There are the following types of components in an SOPC Builder system, based on
where the associated component logic resides:

■ Components that include their associated logic inside the SOPC Builder system

■ Components that interface to logic outside the SOPC Builder system

Figure 4–1 shows an example of both types of components.

Component Instances Inside the SOPC Builder System
For components that are instantiated inside the SOPC Builder system, the component
defines its logic in an associated HDL file. During system generation, SOPC Builder
instantiates the component and connects it to the rest of the system. The component
can include exported signals in conduit interfaces. Conduit interfaces become ports
on the system, so they can be connected to logic outside the SOPC Builder system in
the board-level schematic.

f For more information about conduit interfaces, refer to the Conduit Interfaces chapter
in the Avalon Interface Specifications.

Figure 4–1. Component Logic Inside and Outside the SOPC Builder System

Exported Signals
from Component

System Module

Component
Logic

(HDL Files)

External
Logic

or
Off-Chip
Device

Signals
Unrelated
to SOPC
Builder

Avalon Interface
(Automatically Connected
by SOPC Builder)

Avalon Interface
(Manually Connected
by System Designer)

Conduit-Ports
(or Interface) for
Exporting Signals

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

Rest of
the System

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

Chapter 4: SOPC Builder Components 4–3
Exported Connection Points—Conduit Interfaces

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

In general, components connect to the system interconnect fabric using the Avalon®
Memory-Mapped (Avalon-MM) interface or the Avalon Streaming (Avalon-ST)
interface. A single component can provide more than one Avalon port. For example, a
component might provide an Avalon-ST source port for high-throughput data, in
addition to an Avalon-MM slave for control.

Static HDL Components
You can define SOPC Builder components that accept Verilog HDL parameters or
VHDL generics. Examples of parameters that can be expressed as Verilog HDL
parameters or VHDL generics are address and data widths and FIFO depths. These
components have HDL files that are not generated as a function of the
parameterization, and are referred to as static HDL components. SOPC Builder
automatically generates the top-level HDL wrapper file to apply parameter values for
static components.

Generated HDL Components
Alternatively, you can also define a component whose HDL is generated based on the
value of its declared parameters. These components use a custom generation callback
to generate the HDL for each use of the component, instead of having SOPC Builder
create an HDL wrapper that specifies these values. An example of a parameter that
requires generated HDL is a parameter that controls the number of interfaces.

Composed HDL Components
Composed components are constructed from combinations of other components.You
can use a compose callback to connect and parameterize a composed component;
however, a custom compose callback may not be necessary for very simple composed
components.

f For more information about defining your own generation or compose callback
procedure, refer to the Generation Callback and Compose Callback sections in the
Component Interface Tcl Reference chapter in volume 4 of the Quartus II Handbook.

Components Outside the SOPC Builder System
For components that interface to external logic or off-chip devices with
Avalon-compatible signals outside the SOPC Builder system, the component files
describe only the interface to the external logic. During system generation, SOPC
Builder exports an interface for the component in the top-level SOPC Builder system.
You must manually connect the signals at the top-level of SOPC Builder to pins or
logic defined outside the system that already has Avalon-compatible signals.

1 This type of component is deprecated and will not be available in future versions of
the Quartus II software.

Exported Connection Points—Conduit Interfaces
Conduit interfaces are brought to the top level of the system as additional ports.
Exported signals are usually either application-specific signals or the Avalon interface
signals.

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

4–4 Chapter 4: SOPC Builder Components
SOPC Builder Component Search Path

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Application-specific signals are exported to the top level of the system by the conduit
interface(s) defined in the _hw.tcl file. These are I/O signals in a component’s HDL
logic that are not part of any Avalon interfaces and connect to an external device, for
example DDR SDRAM memory, or logic defined outside of the SOPC Builder system.
You use conduit interfaces to connect application-specific signals of the external
device and the SOPC Builder system.

You can also export the Avalon interfaces to manually connect them to external
devices or logic defined outside a system with Avalon-compatible signals. This
method allows a direct connection to the Avalon interface from any device that has
Avalon-compatible signals. You can also export the Avalon interface in either an HDL
file using conduit interfaces, or in the _hw.tcl file without an HDL file.

You export the Avalon interface signals as an HDL file with simple wire connections
in the HDL description. The Avalon interface port signals are directly connected to
external I/O signals in the HDL description. The conduit interface in the _hw.tcl file
exports the external I/O signals to the top level of the system.

In the _hw.tcl file, no HDL files are specified and only the Avalon signals and
interface ports are declared in the file.

SOPC Builder Component Search Path
Each time SOPC Builder starts, it searches for component files. The components that
SOPC Builder finds are displayed in the list of available components on the SOPC
Builder System Contents tab. When you launch SOPC Builder the directories in the IP
search path are searched for two kinds of files:

■ _hw.tcl files. Each _hw.tcl file defines a single component.

■ IP Index (.ipx) files. Each file indexes a collection of available components.

In general, .ipx files facilitate faster startup for SOPC Builder and other tools because
fewer files need to be read and analyzed.

Some directories are searched recursively; others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

■ $$PROJECT_DIR/*

■ $$PROJECT_DIR/ip/**/*

■ $QUARTUS_ROOTDIR/../ip/**/*

In SOPC Builder, you can extend the default search path by including additional
directories by clicking Options, then clicking IP Search Path and Add. These
additional paths apply to all projects; that is, the paths are global to the current
version of SOPC Builder. The search path is ultimately defined by the file,
<$QUARTUS_ROOTDIR>/sopc_builder/bin/root_components.ipx.

Installing Additional Components
There are a few different ways to make your components available to SOPC Builder
projects. The following sections describe some of these methods.

Chapter 4: SOPC Builder Components 4–5
Installing Additional Components

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Copy to the IP Root Directory
The simplest strategy is to copy your components into the standard IP directory
provided by Altera. Figure 4–2 illustrates this approach.

In Figure 4–2, the circled numbers identify three steps of the algorithm that SOPC
follows during initialization. These steps are explained in the following paragraphs.

1. SOPC Builder recursively searches the <install_dir>/ip/ directory by default. It
finds the file in the altera subdirectory, which tells it about all of the Altera
components. library.ipx includes listings for all components found in its
subdirectories. The recursive search stops when SOPC Builder finds this .ipx file.

2. As part of its recursive search, SOPC Builder also looks in the adjacent
user_components directory. One level down SOPC Builder finds the component1
directory, which contains component1_hw.tcl. When SOPC Builder finds that
component, the recursive descent stops so that no components in subdirectories of
component1 are found.

3. SOPC Builder then searches in the adjacent component2 directory, which includes
component2_hw.tcl. If SOPC Builder finds that component, the recursive descent
stops.

1 If you save your _hw.tcl file in the <install_dir>/ip/ directory, SOPC Builder finds
your _hw.tcl file and stops. SOPC Builder does not conduct the search just described.

Figure 4–2. User Library Included In Subdirectory of $IP_ROOTDIR

library.ipx
<components>

.

 user_components

 component1

component2

<install_dir>

 quartus

 ip

altera

component1_hw.tcl
component1.v

component2_hw.tcl
component2.v

2

1

3

4–6 Chapter 4: SOPC Builder Components
Installing Additional Components

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Reference Components in an .ipx File
A second approach is to specify your IP directory in a user_components.ipx file
under <install_dir>/ip path. Figure 4–3 illustrates this approach.

The user_components.ipx file includes a single line of code redirecting SOPC Builder
to the location of the user library. Example 4–1 shows the code for this redirection.

1 For both of these approaches, if you install a new version of the Quartus II software,
you must also update the installation to include your libraries.

You can verify that components are available and also decrease the time it takes to
launch SOPC Builder by using two utilities, ip-catalog and ip-make-ipx. The
following sections describe these utilities.

ip–catalog
Shows the a catalog of components in either plain text or XML format.

Usage
ip-catalog --project-dir[=<directory>] --name[=<value>]
--verbose[=<true|false>] --xml[=<true|false>] --help

Options

■ --project-dir[=<directory>]. Optional. Components can be found in
certain locations relative to the project, if any. By default, the current directory,
‘.’ is used. To exclude any project directory, use “.

■ --name[=<value>]. Optional. This argument provides a pattern to filter the
names of the components found. To show all components, use a * or ‘ ‘. By
default, all components are shown. The argument is not case sensitive.

Figure 4–3. Specifying A User .ipx directory

Example 4–1. Redirect to User Library

<library>
 <path path="c:/<user_install_dir>/user_ip/**/*" />
/<library>

library.ipx
<components>

user_components.ipx
 user_components

<install_dir>

 ip

altera

quartus

Chapter 4: SOPC Builder Components 4–7
Installing Additional Components

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

■ --verbose[=<true|false>]. Optional. When true, reports the progress of
the command.

■ --xml[=<true|false>]. Optional. When true, prints the output in XML
format instead of a line- and colon-delimited format.

■ --help. Shows help for the ip-catalog command.

ip-make-ipx
This command creates an index file for the directory specified. It returns a 0 for
successful completion and a non-zero value for failure.

Usage
ip-make-ipx --source-directory[=<directory>] --output[=<file>]
--relative-vars[=<value>] --thorough-descent
--message-before[=<value>] --message-after[=<value>] --help

Options

■ --source-directory=<directory>. Optional. The directory to index. The
default directory is “.”. You can also provide a comma separated list of
directories.

■ --output[=<file>]. Optional. The name of the file to generate. The default
name is ./components.ipx.

■ --relative-vars[=<value>]. Optional. Causes the output file to include
references relative to the specified variable or variables where possible. You
can specify multiple variables as a comma-separated list.

■ --thorough-descent[=<true|false>]. Optional. If set, a component or
.ipx file in a directory does not prevent subdirectories from being searched.

■ --message-before[=<value>]. Optional. A message to print to stdout
when indexing begins

■ --message-after[=<value>]. Optional. A message to print to stdout
when indexing completes

■ --help. Show help for this command

Understanding IPX File Syntax
An .ipx file is an XML file whose top-level element is <library> with a <path>
subelements are <path> and <component>.

A <path> element contains a single attribute, also called path and may reference a
directory with a wildcard, (*), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

■ .ipx—additional index files

■ _hw.tcl—SOPC Builder component definitions

■ _sw.tcl—Nios II board support package (BSP) software component definitions

4–8 Chapter 4: SOPC Builder Components
Component Structure

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
SOPC Builder is less than if SOPC Builder must discover the files in a directory.
Example 4–2 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Upgrading from Earlier Versions
If you specified a custom search path in SOPC Builder prior to v8.1 using the IP
Search Path option, or by adding it to the $SOPC_BUILDER_PATH, SOPC Builder
automatically adds those directories to the user_components.ipx file in your home
directory. This file is saved in
<home_dir>/altera.quartus/ip/8.1/ip_search_path/user_components.ipx. Go to the IP
Search Path option in the Options dialog box to see the directories listed here.

Component Structure
Most components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the components in to SOPC Builder. You can add a
component to SOPC Builder by either writing a Tcl description or you can use the
component editor to generate an automatic Tcl description of it. This section describes
the structure of Tcl components and how they are stored.

f For details about the SOPC Builder component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook. For details about the SOPC Builder Tcl
commands, refer to the Component Interface Tcl Reference chapter in volume 4 of the
Quartus II Handbook.

Component Description File (_hw.tcl)
A Tcl component consists of:

■ A component description file, which is a Tcl file with file name of the form <entity
name>_hw.tcl.

■ Verilog HDL or VHDL files that define the top-level module of the custom
component (optional).

Example 4–2. Component Elements

<library>
 <component
 name="An SOPC Component"
 displayName="SOPC Component"
 version="2.1"
 file="./components/sopc_component/sc_hw.tcl"
 />
 <component

name="legacy_component"
 displayName="Legacy Component (Classic Edition!)"
 version="0.9"
 file="./components/legacy/old_component/class.ptf"
 />
</library>

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

Chapter 4: SOPC Builder Components 4–9
Classic Components in SOPC Builder

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

The _hw.tcl file defines everything that SOPC Builder requires about the name and
location of component design files.

The SOPC Builder component editor saves components in the _hw.tcl format. You can
use these Tcl files as a template for editing components by hand. When you edit a
previously saved _hw.tcl file, SOPC Builder automatically saves the earlier version as
_hw.tcl~.

For more information about the information that you can include in the _hw.tcl file,
refer to the Component Interface Tcl Reference chapter in volume 4 of the Quartus II
Handbook.

Component File Organization
A typical component uses the following directory structure. The precise names of the
directories are not significant.

■ <component_directory>/

■ <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file

■ <component name>_hw.tcl—the component description file

■ <component name>.v or .vhd—the HDL file that contains the top-level module

■ <component_name>_sw.tcl—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

■ <software>/—a directory that contains software drivers or libraries related to
the component, if any. Altera recommends that the software directory be
subdirectory of the directory that contains the _hw.tcl file.

f For information on writing a device driver or software package suitable
for use with the Nios® II IDE design flow, refer to the Hardware Abstraction
Layer section of the Nios II Software Developer’s Handbook. The Nios II
Software Build Tool Reference chapter of the Nios II Software Developer’s
Handbook describes the commands you can use in the Tcl script.

Classic Components in SOPC Builder
If you use classic components created with an version 7.2 of SOPC Builder or earlier,
read through this section to familiarize yourself with the differences. This document
uses the term classic components to refer to class.ptf-based components created with a
previous version of the Quartus II software. If you do not use classic components, skip
this section.

Classic components are compatible with newer versions of SOPC Builder, but be
aware of the following caveats:

■ Classic components configured with the More Options tab in SOPC Builder, such
as complex IP components provided by third-party IP developers, are not
supported in the Quartus II software in version 7.1 and beyond. If your
component has a bind program, you cannot use the component without recreating
it with the component editor or with Tcl scripting.

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–10 Chapter 4: SOPC Builder Components
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

■ To make changes to a classic component with the component editor, you must first
upgrade the component by editing the classic component and saving it in the
_hw.tcl component format in the component editor.

Document Revision History
Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History (Sheet 1 of 2)

Date and Document
Version

Changes Made
Summary of Changes

November 2009, V9.1.0 ■ Added ip-catalog and ip-make-ipx
commands.

■ Updated description of static components. Changed
the term to describe components that use a
generation callback to set the value of parameters
from dynamic component to generated component.

■ Added description of composed components.

Updated to add 2 new commands
and expand component types.

March 2009, v9.0.0 ■ Added 2 paragraphs introducing custom
generations for dynamic components.

Updated component descriptions.

November 2008, v8.1.0 ■ Revised section on component search paths.

■ Added meaning of green and gray dots next to
components on the System Contents tab.

■ Changed page size to 8.5 x 11 inches

Revised to reflect changes to the
component search path in 8.1.

May 2008, v8.0.0 ■ Added paragraph about IP Search Path. —

October 2007,

v7.2.0

■ Description added of Tcl components and removal
of custom-defined components.

■ Added warning that SOPC Builder does not support
parameter values > 31 bits

—

May 2007,

v7.1.0

■ Described the new structure of components which is
new in 7.1.

■ Added and updated the sources of components list.

■ Reorganized content of the chapter.

■ Updated Avalon terminology because of changes to
Avalon technologies. Changed old “Avalon switch
fabric” term to “system interconnect fabric.”
Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface.”

■ Removed description of SOPC Builder
MegaWizardTM Plug-In Manager component
discovery mechanism that was inaccurate.

Version 7.1 of the Quartus II
software provides a new mechanism
for storing and finding SOPC Builder
component files located on your
computer, which necessitates
significant changes to this chapter.

March 2007,

v.7.0.0

No change from previous release. —

November 2006,

v.6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

Chapter 4: SOPC Builder Components 4–11
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

August 2005, v5.0.1 Corrected reference to figure. —

May 2005,

v5.0.0

No change from previous release. —

February 2005, v1.0 Initial release. —

Table 4–1. Document Revision History (Sheet 2 of 2)

Date and Document
Version

Changes Made
Summary of Changes

4–12 Chapter 4: SOPC Builder Components
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

5. Using SOPC Builder with the Quartus II
Software

This chapter describes the Quartus® II software features that are used with SOPC
Builder, including the following:

■ “Quartus II IP File”

■ “Quartus II Incremental Compilation” on page 5–1

■ “TimeQuest Timing Analyzer” on page 5–2

Quartus II IP File
The Quartus II IP File (.qip) generated by SOPC Builder provides the Quartus II
software with all required information about your SOPC Builder system. SOPC
Builder creates the .qip during system generation and adds a reference to it in the
Quartus II Settings File (.qsf).

The .qip file includes references to the following information:

■ HDL files used in the SOPC Builder system

■ TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files

■ Component definition files for archiving purposes

The .qip file is based on Tcl scripting syntax and is similar to the .qsf file. The
information required to process most components is included in the system's single
.qip file. Some complex components provide their own .qip file, in which case the
system's .qip file references the component .qip file.

1 The .qip file is normally added to your project automatically by SOPC Builder. If it
does not get added automatically you can add the file in the same way that you add
other source files to your project. You can also have a .qip file for each component in
your design. When you generate a design, each .qip is pulled into the main .qip file
for your system by reference.

Quartus II Incremental Compilation
SOPC Builder supports the Quartus II incremental compilation feature, which allows
you to separately compile isolated portions, or partitions, of a design. From within the
Quartus II software, you can designate an entire SOPC Builder system as a design
partition, or you can designate individual SOPC Builder components as design
partitions.

1 Changing the parameters of a component and regenerating your system only prompts
other partitions within the same system to recompile if the HDL in that partition
depends on the changed parameters. The HDL you generate for the Nios® II processor
is optimized as related to components to which the Nios II processor is connected.

QII54023-9.1.0

5–2 Chapter 5: Using SOPC Builder with the Quartus II Software
TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

f For more information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

TimeQuest Timing Analyzer
Altera recommends the TimeQuest Timing Analyzer in the Quartus II software for
analysis of all new designs. SOPC Builder automatically generates a TimeQuest .sdc
constraints file for SOPC Builder systems and components. In most cases, you use the
TimeQuest constraints to declare false paths for signals that cross clock domains
within a component, so that the TimeQuest Timing Analyzer does not perform
normal setup and hold analysis for them. You can add .sdc files for custom
components, using Add Files command on HDL Files tab in the Component Editor.
Turn on the Synth option and turn off the Synth option.

The Classic Timing Analyzer was primary in earlier versions of the Quartus II
software. However, Altera now recommends that you constrain designs before
compilation, because the TimeQuest Timing Analyzer reports any unconstrained
paths by default during the compilation process.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook for further description of the TimeQuest Timing Analyzer. Refer to the
Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook for a description of the benefits of using the TimeQuest Timing
Analyzer rather than the Classic Timing Analyzer. Refer to TimeQuest Example: Basic
SDC Example on www.altera.com for a working example of using the TimeQuest
Timing Analyzer. Refer to TimeQuest Design Examples on www.altera.com for further
details about how to constrain different types of circuits for the TimeQuest Timing
Analyzer.

Analyzing PLLs
You must constrain PLL clocks for proper analysis by the TimeQuest Timing
Analyzer. You can define clocks generated by PLLs using one of the following
methods:

■ Use the derive_pll_clocks command to derive clocks for all PLL outputs in
the design. This is the best method.

■ Use the create_generated_clock command to designate each clock output.

■ Use the -create_base_clocks option of the derive_pll_clock assignments
to designate the base clock feeding the PLL.

The following example focuses on the use of the derive_pll_clocks assignment,
because this method automatically defines clock frequencies and phase shifts.

1 derive_pll_clocks generates clocks for all PLLs in the Quartus II hardware
project, not just for the PLLs in the SOPC Builder system.

The SOPC system shown in Figure 5–1 illustrates the use of the
derive_pll_clocks assignment in the case of a single clock input and one PLL
using a single output.

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com
http://www.altera.com

Chapter 5: Using SOPC Builder with the Quartus II Software 5–3
TimeQuest Timing Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

After running the following commands in the TimeQuest Timing Analyzer, two clocks
are generated:

create_clock -name master_clk -period 20 [get_ports {clk}]
derive_pll_clocks

The TimeQuest Timing Analyzer analyzes and reports performance of the constrained
clocks in the Clocks Summary report. This displays a report as shown in Figure 5–2.

master_clk is defined by the create_clock command, and the_my_pll clock is
derived from the derive_pll_clocks command.

Analyzing Slow Asynchronous I/O Paths
If you use slow asynchronous I/O in an SOPC Builder system, such as PIO and UART
peripherals, you do not have to analyze these paths because they are asynchronous to
the clock that is used to capture or output data. In this case you must designate false
paths to produce an accurate analysis.

For outputs, set a false path between the launch clock and the output. For inputs, a
false path should be set between the input and the latching clock. For bidirectional
signals, set a false path from the launching clock to the bidirectional pin and also from
the bidirectional pin to the latching clock. Launch and latch clocks are typically the
clocks associated with the SOPC Builder module that includes the I/O.

Figure 5–1. Example SOPC System

Figure 5–2. Clocks Summary Report

5–4 Chapter 5: Using SOPC Builder with the Quartus II Software
TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

For the system described in the PLL section, the following command sets false paths
for the PLL outputs:

set_false_path -to [get_ports {*_pio[*]}]

Because design contains a 4-bit PIO, filter *_pio[*] includes the following I/O
pins.

■ out_port_from_the_pio[0]

■ out_port_from_the_pio[1]

■ out_port_from_the_pio[2]

■ out_port_from_the_pio[3]

Analyzing Single Data Rate SDRAM and SSRAM
Single data SDRAM interfaces in SOPC Builder typically use the type of circuit shown
in Figure 5–3. You can use a PLL to fine tune the phase shift to the external memory to
meet I/O timing requirements.

To constrain this interface, you must create a clock that is recognized by the external
SDRAM; then you must set the I/O timing relative to that clock.

Example 5–1 shows how to constrain a PLL output clock and set a Tcl variable for that
clock.

You can then use the create_generated_clock command to define a clock as
recognized by the external memory. This generated clock automatically adds delays
associated with routing to the clock output pin and the delay of the pin itself. You
must also account for some board delay due to the PCB trace between the FPGA and
SDRAM by using the offset option.

The following command shows the creation of the sdram_clk_pin generated clock
derived from the output pin sdram_clk clock. A 0.5 ns offset accounts for PCB
routing delay.

Figure 5–3. Typical Single Data Rate SDRAM Circuit

PLL

SDRAM
Controller

FPGA SDRAM
SDRAM clk

Addr & Ctrl

Data

Exernal
Clock

Example 5–1. Constraining PLL Output Clock

create_clock -period 20.000 -name ext_clk [get_ports {clk}]
derive_pll_clocks
set sdram_clk\my_pll_inst|altpll_component|auto_generated|pll1|clk[0]

Chapter 5: Using SOPC Builder with the Quartus II Software 5–5
TimeQuest Timing Analyzer

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

create_generated_clock -name sdram_clk_pin -source $sdram_clk \
-offset 0.5 [get_ports {sdram_clk}]

There may be some uncertainty associated with the PCB delay not accounted for in
this command. The uncertainty can be included in the I/O constraints that are specific
to input or output and minimum or maximum delays.

The I/O constraints must be defined in relation to the data sheet for the external
memory. Figure 5–4 shows part of a data sheet for an SDRAM device with the worst
case input and output timing highlighted for a CAS latency of 3.

The mapping of external memory timing to FPGA I/O delays is shown in Table 5–1.
This table also shows whether the minimum or maximum PCB routing delay should
be used, which must be added to the FPGA delay constraints.

Figure 5–4. AC Characteristics from SDRAM Device Data sheet

Table 5–1. External Memory Timing

Memory Timing FPGA Timing PCB Routing

Max clock to out Max input delay Max

Min clock to out Min input delay Min

Min setup Max output delay Max

Min hold Min output delay (-ve) Min

Note to Table 5–1:

(1) The constraint for minimum output delay is actually 0 – Min hold.

5–6 Chapter 5: Using SOPC Builder with the Quartus II Software
TimeQuest Timing Analyzer

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

You can use the set_input_delay and set_output_delay commands to set the
I/O constraints. In the following examples, a common PCB routing delay of
0.5ns ± 0.1 ns is used, which adds a 0.4 ns or 0.6 ns delay to the paths. Example 5–2
illustrates the use of these commands.

In this example, <ports> represent a list of I/O ports for the relevant constraints as
shown in Example 5–3.

You can use multiple set_input_delay and set_output_delay commands to set
different delays for different I/O.

Analyzing Tristate Bridges and Asynchronous Devices
This section discusses the timing constraints associated with the Avalon tristate
bridge and asynchronous external devices, such as the CFI Flash and user tristate
components. These components typically have slower performance requirements
compared with the FPGA, and SOPC Builder generates logic within the interface to
control timing across multiple clock cycles. You define the tristate component’s timing
parameters by entering data for setup, wait, and hold times.

For the interface types previously discussed, the timing is controlled by a state
machine that is generated based on setup, wait, and hold settings you specify in the
component editor. Because data sheet values for the FPGA are used in calculating the
timing, the constraints simply ensure the data sheet timing is met. Adding these
constraints ensures that issues associated with data sheet misinterpretation and fitting
problems that affect I/O timing are captured.

The TimeQuest Timing Analyzer uses constraints that are based upon the timing of
the external device.

f For further information on how to convert older FPGA-centric constraints into
system-centric constraints, refer to Switching to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Analyzing DDR and DDR2 Memories
When using DDR, DDR2, or DDR3 memory with Cyclone® III, Stratix® III, and
Stratix IV families, you must use the corresponding High-Performance Controller
MegaCore® function. You can use the MegaWizardTM Plug-In Manager interface to
parameterize these functions and generate timing constraints in the form of .sdc files.
You must ensure that the constraints file associated with the MegaCore function is
included in the project for timing analysis. You can add an .sdc file to the project by
clicking Add/Remove Files in Project on the Project menu in the Quartus II software.

Example 5–2. set_input_delay and set_output_delay commands

set_input_delay -clock sdram_clk_pin -max [expr 5.5 + 0.6] <ports>
set_input_delay -clock sdram_clk_pin -min [expr 2.5 + 0.4] <ports>
set_output_delay -clock sdram_clk_pin -max [expr 2.0 + 0.6] <ports>
set_output_delay -clock sdram_clk_pin -min [expr -1 + 0.4)]<ports>

Example 5–3. <ports>

set_output_delay -clock sdram_clk_pin -max [expr 2.0 + 1.2] \
[get_ports {cas_n ras_n cs_n we_n addr[*]}]

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 5: Using SOPC Builder with the Quartus II Software 5–7
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

1 As these MegaCore functions make use of the derive_pll_clocks command,
conflicts may occur if your .sdc file also uses these constraints.

f For more design examples, refer to TimeQuest Design Examples on www.altera.com.
Also, AN: 433 Constraining and Analyzing Source-Synchronous Interfaces describes
source synchronous constraints for the TimeQuest Timing Analyzer.

Document Revision History
Table 5–2 shows the revision history for this chapter.

Table 5–2. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009
v9.1.0

■ Corrected set_output_delay expression for the SDRAM
clock pin minimum in Example 5–2 on page 5–6.

March 2009,
v9.0.0

■ No changes to content from previous release. —

November 2008,
v8.1.0

■ No changes to content from previous release.

■ Changed page size to 8.5 x 11 inches

—

May 2008, v8.0.0 Initial release. Information moved from other
chapters and consolidated here.

http://www.altera.com/literature/an/an433.pdf
http://www/support/examples/timequest/exm-timequest.html

http://www.altera.com

5–8 Chapter 5: Using SOPC Builder with the Quartus II Software
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

6. Component Editor

This chapter describes the SOPC Builder component editor. The component editor
provides a GUI to support the creation and editing of the Hardware Component
Description File (_hw.tcl) file that describes a component to SOPC Builder. You use
the component editor to do the following:

■ Specify the Verilog HDL or VHDL files that describe the modules in your
component hardware.

■ Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

■ Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

■ Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

■ Declare any parameters that alter the component structure or functionality, and
define a user interface to let users parameterize instances of the component.

f For information about using the component editor in a development flow, refer to the
following pages on the Altera® website: SOPC Builder Component Development Flow
Using the Component Editor Overview. For information about Avalon® component
interfaces, refer to Avalon Component Interfaces Supported in the Component Editor
Version 7.2 and Later. For examples of changes to typical Avalon interfaces, refer to
Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2 and
Later. For information about upgrading components, refer to Upgrading Your
Component with SOPC Builder Component Editor Version 7.2 and Later.

For information about the use of the component editor, see the following sections:

■ “Starting the Component Editor” on page 6–2.

■ “HDL Files Tab” on page 6–2.

■ “Signals Tab” on page 6–3.

■ “Interfaces Tab” on page 6–6.

■ “Component Wizard Tab” on page 6–6.

■ “Saving a Component” on page 6–8.

■ “Editing a Component” on page 6–8.

■ “Component Parameterization” on page 6–8.

f For more information about components, refer to the Component Interface Tcl Reference
chapter in volume 4 of the Quartus II Handbook, For more information about the
Avalon-MM interface, refer to the Avalon Interface Specifications.

QII54005-9.1.0

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html

6–2 Chapter 6: Component Editor
Component Hardware Structure

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Component Hardware Structure
The component editor creates components with the following characteristics:

■ A component has one or more interfaces. Typically, an interface means an Avalon®
Memory-Mapped (Avalon-MM) master or slave or an Avalon Streaming
(Avalon-ST) source or sink. You can also specify exported component signals that
appear at the top-level of the SOPC Builder system, which can be connected to
logic outside the SOPC Builder system. The component editor lets you build a
component with any combination of Avalon interfaces, which include:

■ Avalon-MM master and slave

■ Avalon-ST source and sink

■ Avalon-MM tristate slave

■ Interrupt sender and receiver

■ Clock input and output

■ Nios II custom instruction master and slave interfaces

■ Conduit (for exporting signals to the top level)

■ Each interface is comprised of one or more signals.

■ The component can represent logic that is instantiated inside the SOPC Builder
system, or can represent logic outside the system with an interface to it on the
generated system.

Starting the Component Editor
To start the component editor in SOPC Builder, on the File menu, click New
Component. When the component editor starts, the Introduction tab displays, which
describes how to use the component editor.

The component editor presents several tabs that group related settings. A message
window at the bottom of the component editor displays warning and error messages.

1 Each tab in the component editor provides on-screen information that describes how
to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II online Help for additional information
about the component editor.

You navigate through the tabs from left to right as you progress through the
component creation process.

HDL Files Tab
The HDL Files tab allows you to create an SOPC Builder component from existing
Verilog HDL or VHDL files, or to create an HDL template in either Verilog HDL or
VHDL for a SOPC Builder component by first specifying its interfaces. The following
sections describe both the bottom-up and top-down approaches to component design.

Chapter 6: Component Editor 6–3
Signals Tab

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Bottom-Up Design
You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim® in the same order as they appear in the table.

You can also use the component editor to define the interface to components outside
the SOPC Builder system. In this case, you do not provide HDL files. Instead, you use
the component editor to interactively define the hardware interface.

After you specify an HDL file, the component editor analyzes the file by invoking the
Quartus II Analysis and Elaboration module. The component editor analyzes signals
and parameters declared for all modules in the top-level file. If the file is successfully
analyzed, the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Files that turn on the Sim
option are passed to ModelSim® for simulation. To add a synthesis-only file, turn off
the Sim file option. You can add the Synopsis Design Constraint File (.sdc) for your
component using the Synth option. Only files that you mark for Synth are added to
the Quartus II IP File (.qip) for your project.

c The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Top-Down Design
The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have component the component’s HDL code, you can add other files that
are required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

Signals Tab
You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

6–4 Chapter 6: Component Editor
Signals Tab

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The Interface list also allows creation of a new interface so that you can assign a signal
to a different interface without first switching to the Interfaces tab. Each signal must
belong to an interface and be assigned a legal signal type for that interface. In addition
to Avalon Memory-Mapped and Streaming interfaces, components typically have
clock interfaces, interrupt interfaces, and perhaps a conduit interface for exported
signals.

Naming Signals for Automatic Type and Interface Recognition
The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal
type>[_n]

For any value of <interface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6–1 lists the valid values for
<interface_type>.

Table 6–1. Valid Values for <Interface Type>

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

ats Avalon-MM tristate slave

aso Avalon-ST source

asi Avalon-ST sink

cso Clock output

csi Clock input

coe Conduit

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 6: Component Editor 6–5
Signals Tab

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Example 6–1 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Templates for Interfaces to External Logic
You can use the Create HDL Template to generate an HDL template for the
component. Then, you connect these signals outside of the SOPC Builder system. If
your component uses an Avalon interface to interface outside of SOPC Builder, you
can use the Templates menu in the component editor to add typical interface signals
to your signal list. There are templates for the following interfaces:

■ Avalon-MM Slave

■ Avalon-MM Slave with Interrupt

■ Avalon-MM Master

■ Avalon-MM Master with Interrupt

■ Avalon-ST Source

■ Avalon-ST Sink

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

Example 6–1. Verilog HDL Module With Automatically Recognized Signal Names

module my_slave_irq_component (

// Signals for Avalon-MM slave port “s1” with irq

csi_clockreset_clk; //clockreset clock interface
csi_clockreset_reset_n;//clockreset clock interface

avs_s1_address;//s1 slave interface
avs_s1_read; //s1 slave interface
avs_s1_write; //s1 slave interface
avs_s1_writedata; //s1 slave interface
avs_s1_readdata; //s1 slave interface
ins_irq0_irq; //irq0 interrupt sender interface
);

input csi_clockreset_clk;
input csi_clockreset_reset_n;
input [7:0]avs_s1_address;
input avs_s1_read;
input avs_s1_write;
input [31:0]avs_s1_writedata;
output [31:0]avs_s1_readdata;
output ins_irq0_irq;

/* Insert your logic here */

endmodule

6–6 Chapter 6: Component Editor
Interfaces Tab

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Interfaces Tab
The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the SOPC Builder connection panel. The interface name is also used to
uniquely identify any signals that are ports on the top-level SOPC Builder system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specified. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

■ Avalon Memory-Mapped

■ Avalon Memory-Mapped tristate

■ Avalon Streaming

■ Interrupts

If you convert a component from a class.ptf to a _hw.tcl file, you may require three
interfaces: a clock input, the Avalon slave, and an interrupt sender. A parameter in the
interrupt sender must be set to reference the Avalon slave.

Component Wizard Tab
The Component Wizard tab provides options that affect the presentation of your new
component.

Identifying Information
You can specify information that identifies the component as follows:

■ Folder—Specifies the location of the component, determined by the location of the
top-level HDL file.

■ Class Name—Specifies the name used internally to store the component in the
component library. The class name is stored in the SOPC Builder design file
(.sopc). Use the class name when saving a system that contains an instance of this
component. It is also the name you use for the component type when you create a
system using a .tcl script. If you change the class name of a component, existing
.sopc files that use the component may break.

1 SOPC builder uses the class name and version to find components. If two
components with the same class name and version are available to SOPC
builder at the same time, the behavior of SOPC builder is undefined.

■ Display Name—Specifies the user-visible name for this component in SOPC
Builder.

■ Version—Specifies the version number of the component.

■ Group—Specifies which group in SOPC Builder displays your component in the
list of available components. If you enter a previously unused group name, SOPC
Builder creates a new group by that name.

Chapter 6: Component Editor 6–7
Component Wizard Tab

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

■ Description—Allows you to describe the component.

■ Created By—Allows you to specify the author of the component.

■ Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

■ Data sheet URL—Allows you to specify a URL for the datasheet. You can use this
property to specify a file on the internet or in your company’s file system. The
specified file can be in either .html or .pdf format. To specify an internet file, begin
your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example:
file:////company_server/datasheets/my_memory_controller.pdf. For handwritten
_hw.tcl files, you can specify a relative path using the following Tcl command:
set_module_property DATASHEET_URL [get_module_property
MODULE_DIRECTORY]/<relative_path_to_hw.tcl>

■ Parameters—Allows you to specify the parameters for creating the component, as
described in the next section.

Parameters
The Parameters table allows you to specify the user-configurable parameters for the
component.

If the top-level module of the component HDL declares any parameters (parameters
for Verilog HD or generics for VHDL), those parameters appear in the Parameters
table. The parameters are presented to you when you create or edit an instance of
your component. Using the Parameters table, you can specify whether or not each
parameter is user-editable.

The following rules apply to HDL parameters exposed via the component GUI:

■ Editable parameters cannot contain computed expressions.

■ If a parameter <N> defines the width of a signal, the signal width must be of the
form <N-1>:0.

■ When a VHDL component is used in a Verilog HDL SOPC Builder system, or vice
versa, numeric parameters must be 32-bit decimal integers. When passing other
numeric parameter types, unpredictable results occur.

Click Preview the Wizard at any time to see how the component GUI appears.

f Refer to Component Interface Tcl Reference chapter in the Quartus II Handbook for
detailed information about creating and displaying parameters using Tcl scripts.

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

6–8 Chapter 6: Component Editor
Saving a Component

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Saving a Component
You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

1 Altera recommends that you store _hw.tcl files for a project is in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

Editing a Component
After you save a component and exit the component editor, you can edit it in SOPC
Builder. To edit a component, right-click it in the list of available components on the
System Contents tab and click Edit Component.

1 You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Software Assignments
You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6–2 shows
a typical Tcl API script:

The assignments are added to the SOPC information file (.sopcinfo), available for use
for downstream components.

Component Parameterization
To edit component instance parameters, select a component in the System Contents
tab of the SOPC Builder window and click Edit.

Example 6–2. Typical Software Assignment with Tcl API Scripting

set_module_assignment name value
set_interface_assignment name value

Chapter 6: Component Editor 6–9
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 6–2 shows the revision history for this chapter.

Table 6–2. Document Revision History (Sheet 1 of 2)

Date and Document
Version Changes Made Summary of Changes

November 2009, v9.1.0 ■ No changes from the previous release. —

March 2009, v9.0.0 ■ Revised description of the Create HDL Template
functionality and the Templates menu.

■ Interfaces tab now includes waveforms that illustrate timing
parameters.

■ Added reference to Component Interface Tcl Reference
chapter for detailed information about defining and
displaying GUI parameters.

■ Added data sheet URL to Component Wizard tab.

Updated to reflect new
functionality.

November 2008, v8.1.0 ■ Added information about new HDL template feature

■ Changed page size to 8.5 x 11 inches
—

May 2008, v8.0.0 Extensive edits to this chapter, including:

■ Chapter renumbered.

■ Added new section on software assignments.

—

October 2007,

v7.2.0

Updated several paragraphs describing the latest GUI.
—

May 2007,

v7.1.0

Updated all sections to reflect significant functional differences
in version 7.1.

Added section “Changes to Component Editor in Version 7.1”
on page 5–2.

Updated section “Component Editor Output” and “Re-editing
Components” to accommodate new component structure with
7.1 release.

Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

Removed screen shots that simply reflect what user sees when
using the tool without illustrating a particular point.

Added Referenced Documents section which links to all
referenced documents.

Added statement that all simulation files, not just top-level file,
must be added using the HDL files tab.

The file structure of SOPC
Builder components changed
significantly in this release,
which required substantial
functional change to the
component editor. This
document changed significantly
to reflect the functional
changes. Updated to improve
readability.

March 2007,

v7.0.0

No change from previous release. —

November 2006,

v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

6–10 Chapter 6: Component Editor
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

December 2005, v5.1.1 ■ Added section “Naming Signals for Automatic Type and
Interface Recognition” on page 5–4.

■ Added section “Templates for Interfaces to External Logic”
on page 5–6.

■ Clarified operation of the Save command.

■ Updated all screenshots.

—

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 Initial release. —

Table 6–2. Document Revision History (Sheet 2 of 2)

Date and Document
Version Changes Made Summary of Changes

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

7. Component Interface Tcl Reference

You define SOPC Builder components by declaring their properties and behaviors in a
Hardware Component Description File (_hw.tcl). Each _hw.tcl file represents one
component instance which you can add to an SOPC Builder system. You can also
share the components that you design with other designers. For your component to
have maximum flexibility, you should consider what aspects of its behavior can be
parameterized so that other users can change the default parameterization to address
different design requirements.

An SOPC Builder component is usually composed of the following four types of files:

■ _hw.tcl file—describes the SOPC Builder related characteristics, such as interface
behaviors. This file is required.

■ HDL files—define the component’s functionality as hardware. These files are
optional.

■ _sw.tcl—used by the software build tools to compile the component driver code.
This file is optional.

■ Component driver files—defines the component register map and driver software
to allow software to control the component. These files are optional.

This chapter discusses the following topics:

■ “Information in a Hardware Component Description File” on page 7–1

■ “Component Phases” on page 7–2

■ “Writing a Hardware Component Description File” on page 7–3

■ “Overriding Default Behaviors” on page 7–8

■ “Hardware Tcl Command Reference” on page 7–12

Information in a Hardware Component Description File
A typical _hw.tcl file contains the following information:

■ Basic component information—includes the component’s name, version, and
description, a link to its documentation, and pointers to HDL implementation files
for synthesis and simulation.

■ Parameter Declarations—Parameters are values that the user of your component
can set that affect how the component is implemented, such as the size of a
memory. Properties of each parameter include the parameter’s name, whether or
not it is visible, and, if visible, the text to display when describing it. When the
SOPC Builder system is generated, the parameters can be applied to the
component as Verilog HDL parameters or VHDL generics.

■ Interface Properties—The interfaces of a component define how to connect it to the
rest of the system and determine how other components in the system interact
with it. When you add interfaces to a component, you declare which signals make
up each interface. You also define interface properties, such as wait states for an
Avalon® Memory-Mapped (Avalon-MM) interface.

QII54022-9.1.0

Chapter 7: Component Interface Tcl Reference 7–2
Component Phases

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Depending on your component design, your _hw.tcl file may be one of the following
four types:

■ Static—A static _hw.tcl file defines the top-level HDL file and associated
component files. The HDL that describes a static component is created by the
component author and is not changed by users of the component. HDL
parameters are available when instantiating the component.

■ Generated—A generated _hw.tcl file provides a user-defined program to generate
the component’s HDL. The HDL can be different for different parameterizations of
the component.

■ Export—These components are connected outside of SOPC Builder. They export
Avalon interfaces from the SOPC Builder system.

■ Direct—This type of component consists of wires. Constant values drive all of its
outputs so that it can be implemented without static HDL or a generator.

Component Phases
The following section describes the distinct phases in the development of an SOPC
Builder component.

■ Main Program—SOPC Builder first discovers a component and adds it to the
component library. The _hw.tcl file is executed and the Tcl statements provide
non-instance-specific information to SOPC Builder. During this phase, some
component interfaces may be incompletely described and ports may have a width
of 0 or -1 to indicate that they are variable.

■ Validation—Validation allows the component to generate error, warning, or
informational messages. Validation occurs when an instance of a component is
created, when its parameters are changed, or when some other property of the
system is changed.

■ Elaboration—Elaboration occurs as SOPC Builder queries a component for its
interface information. Elaboration typically occurs immediately after validation
and before generation. Interfaces defined in the main program can be enabled or
disabled during elaboration. Depending on the validation callback code,
elaboration and validation may alternate a few times. Elaboration and validation
always occur before generation. Once elaboration is complete, the component
must be completely described. For example, all port widths must have positive
values.

■ Generation—Generation creates all the information that the Quartus® II software
and HDL simulator require. The required files typically include VHDL or Verilog
HDL files, simulation models, timing constraints, and other information.

■ Editor—After an instance of your component has been added to an SOPC Builder
system, allows the user of your component to edit the GUI that displays the
parameterization. You can change the appearance of the default editor to make it
easier to use.

Chapter 7: Component Interface Tcl Reference 7–3
Writing a Hardware Component Description File

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Writing a Hardware Component Description File
This section provides detailed information about _hw.tcl files and describes the
default behavior of a component in all phases. The following example uses a simple
UART with some simple parameterization.

Providing Basic Information
A typical _hw.tcl file first declares basic information such as the name, location, and
the files it includes. The first command in a _hw.tcl file should specify the version of
the _hw.tcl API to use, with the following Tcl command:

package require –exact sopc <version>

The version number is a Quartus II release version such as 9.0 or 9.1. SOPC builder
guarantees that a valid _hw.tcl file that requests a particular sopc package will
behave identically in future versions of the tool. Because of differences between
versions of the Quartus II software, you cannot assume that an HDL file that works
with the a particular sopc package will automatically work with other versions of the
package.

1 This chapter describes the behavior of components that request the sopc 9.1
package. Refer to the 9.0 documentation for the behavior of the sopc 9.0 package.

f An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Example 7–1. Basic Information for _hw.tcl File

The package command must be the first command in the file
package require -exact sopc 9.1

The name and VERSION of the component
set_module_property NAME example_uart
set_module_property VERSION 1.0

The name of the component to display in the library
set_module_property DISPLAY_NAME "Example Component"

The component’s description.
set_module_property DESCRIPTION "An Example Component"

The component library group that component belongs to
set_module_property GROUP Examples

http://www.tcl.tk/

Chapter 7: Component Interface Tcl Reference 7–4
Writing a Hardware Component Description File

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Declaring Parameters
By including configuration parameters in your _hw.tcl file, you allow users of your
component to parameterize it in different ways. Each parameter has a number of
properties such as its name, type, display name, and default value that can be used to
control how the parameter is displayed and used. Example 7–2 illustrates the use of
parameters that can be configured by other users of your component. .

Parameters can be divided into three types, user parameters, system information
parameters and derived parameters. The following sections describe these parameter
types.

User Parameters
User parameters are parameters that users have control over and are exposed in the
component GUI.

Derived Parameters
Derived parameters are parameters that are inferred by the component itself from
user parameters or other derived parameters. For example, a cock period parameter
can be derived from a data rate parameter.

The SYSTEM_INFO Parameter
You can use properties of the SYSTEM_INFO parameter to request that certain
parameter values are populated with information about the system. For example, you
might want to know the frequency of the clock that ends up being connected to your
clock input. When you set SYSTEM_INFO properties, you provide an <info-type>
argument and further arguments. The <info-type> is the type of information you
want, such as clock_rate, and you use the additional arguments to specify things
like which clock input interface you require. Example 7–3 illustrates the use of the
SYSTEM_INFO parameter. For more information about the SYSTEM_INFO parameter
properties refer to Table 7–5 on page 7–23

Example 7–2. Declaring Parameters

Declare Baud Rate parameter as an integer with a default value of 9600.
add_parameter BAUD_RATE int 9600

Display this parameter as "Baud Rate" in the Parameter Editor.
set_parameter_property BAUD_RATE DISPLAY_NAME "Baud Rate (bps)"

We only support three baud rates
set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Example 7–3. Syntax of Tcl Command using the SYSTEM_INFO Parameter

set_parameter_property my_parameter SYSTEM_INFO {<info-type> [<arg>]}

Chapter 7: Component Interface Tcl Reference 7–5
Writing a Hardware Component Description File

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Declaring Interfaces
To declare an interface, use the add_interface command. Then use the
set_interface_property and add_interface_port commands to set its
properties and indicate which signals belong to it. The interface declaration statement
includes the name of the interface, the interface direction, and the clock interface with
which it is associated. For interfaces that are not associated with clocks (such as clock
interfaces themselves), omit the associated clock interface, or use the word
asynchronous. Example 7–4 illustrates interface declaration.

Adding Files and Guiding Generation
Component description files typically provide all of the information required for
generation and downstream tools, identifying the files used by the component such as
HDL files and Synopsis Design Constraints files (.sdc). You also identify which of the
added files is the top-level HDL file and specify which Verilog module or VHDL
entity within that file is the top-level module for the component. Example 7–5
illustrates the files that are typically required for generation and downstream tools.

Example 7–4. Declare Interfaces

Declare the clock sink interface, "clock_sink", type=clock, direction=sink
add_interface clock_sink clock sink

The clock interface has two signals, named "clk" and "reset_n" of types "clk" "reset_n"
add_interface_port clock_sink clk clk input 1
add_interface_port clock_sink reset_n reset_n input 1

Declare the Avalon slave interface, name=avalon_slave_0, type=avalon,
directon=slave, associated with the clock_sink clock interface.
add_interface avalon_slave_0 avalon slave clock_sink

Set a number of properties about the Avalon Slave interface
set_interface_property avalon_slave_0 writeWaitTime 0
set_interface_property avalon_slave_0 addressAlignment DYNAMIC
set_interface_property avalon_slave_0 readWaitTime 1
set_interface_property avalon_slave_0 readLatency 0

Declare all the signals that belong to my Avalon Slave interface
add_interface_port avalon_slave_0 my_readdata readdata output 8
add_interface_port avalon_slave_0 my_read read input 1
add_interface_port avalon_slave_0 my_write write input 1
add_interface_port avalon_slave_0 my_waitrequest waitrequest output 1
add_interface_port avalon_slave_0 my_address address input 24
add_interface_port avalon_slave_0 my_writedata writedata input 8

Example 7–5. Add Files

Add the HDL file to the component,to be used for synthesis and simulation.
add_file simple_uart.v {SYNTHESIS SIMULATION}

Add the Timequest file with Quartus timing constraints.
add_file simple_uart.sdc SYNTHESIS

Indicate which of the added HDL files holds the top-level module/entity
that describes the component, name of the top-level module/entity
set_module_property TOP_LEVEL_HDL_FILE simple_uart.v
set_module_property TOP_LEVEL_HDL_MODULE simple_uart

Chapter 7: Component Interface Tcl Reference 7–6
Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Default Behaviors
The _hw.tcl file described in the previous section has default behaviors during the
editor, validation, elaboration, and generation phases. These default behaviors apply
to instances of a component. This section describes the default SOPC Builder
behaviors for each of these phases. To override these default behaviors, refer to
“Overriding Default Behaviors” on page 7–8.

Validation Phase Behavior
SOPC Builder’s default validation checks each parameter value against its
ALLOWED_RANGES property. If the values specified are outside the allowed ranges, an
error message is displayed.

The ALLOWED_RANGES property of each parameter is a list of ranges that the
parameter can take on, where each range is a single value, or a range of values defined
by a start and end value separated by a colon. Table 7–1 shows some examples of
values the ALLOWED_RANGES property can take.

Elaboration Phase Behavior
If the main program does not explicitly define the widths of all ports to constant
values or to an expression, then SOPC Builder’s default elaboration process calls
quartus_map to determine the correct port widths. If you define all port widths in
the main program, quartus_map is not called.

Automatic Port Widths
When port widths are not specified, or have a value of '-1', quartus_map is used to
determine port widths as a function of the parameter set. While this process makes
authoring a component easier, SOPC Builder can end up spending a lot of time calling
quartus_map. When using automatic port widths, you can indicate that a certain
parameter does not affect any port widths or interfaces by setting that parameter's
affects_elaboration property to false, meaning that quartus_map is not called
when the parameter's value is changed by your user. Be careful with this— indicating
that a parameter does not affect elaboration when it really does can lead to problems
that are mysterious and difficult to debug.

As an alternative to the automatic port widths, you can set port widths to simple HDL
expressions using the width_expr property. width_expr is a string that holds an
expression describing the port width. By using the width_expr property, you can
define port widths as an expression that is evaluated without needing to analyze the
HDL file or set them in an elaboration callback. The syntax for width expressions is
the same as the HDL language that you use; however, only the addition, subtraction,

Table 7–1. ALLOWED_RANGES Property

ALLOWED_RANGES Meaning

{a b c}

{1 2 4 8 16}

1:3

{1 2 3 7:10}

a or b or c

1, 2, 4, 8, or 16.

1 through 3, inclusive

1, 2, 3, or 7 through 10 inclusive

Chapter 7: Component Interface Tcl Reference 7–7
Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

multiplication, and division operators are allowed. For more complex port widths, the
width of the port can be set as an arbitrary function of the component’s parameters in
an elaboration callback. The width expression is the last argument to the
add_interface_port command. Example 7–6 illustrates the use of mathematical
operators and the width_expr property.

Parameterized Parameter Widths
For VHDL users, SOPC Builder allows a std_logic_vector parameter to have a
width that is defined by another parameter. When adding a parameter of type
std_logic_vector you must specify its width as part of the expression. This width
can be a constant or can depend on the value of another integer parameter. The syntax
below adds a std_logic_vector parameter whose width is set by another
parameter, called width.

add_parameter name_"std_logic_vector(width-1 downto 0)"

For std_logic_vector parameters the lower bound must be 0.

Generation Phase Behavior
SOPC Builder’s default generation does one of the following:

■ If the component defines the TOP_LEVEL_HDL_MODULE property, SOPC Builder
creates a Verilog HDL or VHDL wrapper module to instantiate the top-level
module and applies the parameters as selected by the user of your component.
SOPC Builder does not apply parameters in the wrapper if they are not declared in
the underlying HDL file.

or

■ If the component does not define the TOP_LEVEL_HDL_MODULE property, but
instead sets the INSTANTIATE_IN_SYSTEM_MODULE_module property to false,
the module is not instantiated inside the SOPC Builder system and a wrapper file
is not created. Rather, the interface to the module is exported to the top-level of the
SOPC Builder system, and the module must be connected outside the system.

Edit Phase Behavior
SOPC Builder’s default editor phase behavior is to use all of the parameter definitions
to display the parameterization GUI. The properties of the parameters guide SOPC
Builder when it builds the default GUI. Table 7–4 on page 7–21 lists the properties of
parameters.

You can place parameters in logical groups and provide images and text to create a
custom GUI for your component. Example 7–7 defines four parameters and illustrates
the use of the add_display_item command and the DISPLAY_HINT and
ALLOWED_RANGES parameters.

Example 7–6. Defining Port Widths Using Simple Mathematical Operators

add_interface_port din din_data data input {WIDTH * SYMBOLS}
set_port_property din_data width_expr WIDTH

Chapter 7: Component Interface Tcl Reference 7–8
Overriding Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Figure 7–1 shows the GUI that the Tcl commands in Example 7–12 produces.

Overriding Default Behaviors
You can override each of the default behaviors by using callbacks. This section
explains how to write callback procedures for each phase of component development.

Validation Callback
You can use the validation callback to provide validation that extends beyond the
default range checking. A validation callback is defined by setting the
VALIDATION_CALLBACK module property to be the name of the validation callback
procedure, as shown in Example 7–8. This validation procedure displays an error if
you select a baud rate of 38400 and odd parity.

Example 7–7. Defining and Customizing GUI Parameters

provide an icon for the sound group
add_display_item icon Speaker speaker-image speaker.png
add_parameter sound string 0 0
add_parameter volume_control boolean 0 0
add_parameter separate_control string 0 0

Setup display_names for the parameters
set_parameter_property sound DISPLAY_NAME Audio
set_parameter_property volume_control DISPLAY_NAME "Include Volume Control Interface"
set_parameter_property separate_control DISPLAY_NAME "Treble/Bass Controls"

Display all parameters in the Speaker group
add_display_item Speaker sound parameter
add_display_item Speaker volume_control parameter
add_display_item Speaker separate_control parameter

There are 4 choices for the sound parameter.
Strings with internal spaces require double quotes
set_parameter_property sound ALLOWED_RANGES {"0:No Audio" 1:Monophonic 2:Stereo
4:Quadraphonic}
set_parameter_property separate_control ALLOWED_RANGES {"No Control" "Single Control" "Dual
Controls"}

#Specify how parameters should be displayed
set_parameter_property volume_control DISPLAY_HINT boolean
set_parameter_property separate_control DISPLAY_HINT radio

Figure 7–1. Parameter GUI for Audio Component

Chapter 7: Component Interface Tcl Reference 7–9
Overriding Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

You can also use the validation callback to set the value of derived parameters.
Derived parameters are parameters that are derived from other parameters; their
values are not editable and are not saved in the SOPC Builder design file (.sopc). You
indicate that a parameter is derived by setting the parameter's DERIVED property to
true. In Example 7–8 BAUDRATE_PRESCALE is a derived parameter whose value is
1/16 of the value of the BAUDRATE parameter.

Elaboration Callback
You can use an elaboration callback to change interface properties or add new
interfaces as a function of parameter values. You define an elaboration callback by
setting the ELABORATION_CALLBACK module property to the name of the elaboration
callback function, as shown in Example 7–9. You can enable and disable interfaces
from the elaboration callback if they are only needed for some parameterizations of
the component. Example 7–9 shows how an Avalon-MM slave interface can be
included in an instance of the component, based on the USE_STATUS_INTERFACE
parameter. All of the functionality available in the validation callback can also be used
in the elaboration callback; separate callbacks for validation and elaboration are not
required.

1 The elaboration callback will not be called when parameters with
AFFECTS_ELABORATION=false are changed by the user of the component.

Example 7–8. Custom Validation Callback Function

Declare the validation callback.
set_module_property VALIDATION_CALLBACK my_validation_callback

Add the BAUDRATE_PRESCALE parameter, and indicate that it’s derived
add_parameter BAUDRATE_PRESCALE int 600
set_parameter_property BAUDRATE_PRESCALE DERIVED true

Add the PARITY parameter
add_parameter PARITY string ODD
set_parameter_property PARITY ALLOWED_RANGES {EVEN ODD}

The validation callback
proc my_validation_callback {} {
 # Get the current value of parameters we care about
 set br [get_parameter_value BAUD_RATE]
 set p [get_parameter_value PARITY]
 # display an error for invalid combinations.
 if {($br==38400) && ($p=="ODD")} {

send_message warning "Odd parity at 38400 bps is not supported."
 }
 # Set the value of our DERIVED parameter
 set bp [expr $br / 16]
 set_parameter_value BAUDRATE_PRESCALE $bp
}

Chapter 7: Component Interface Tcl Reference 7–10
Overriding Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Generation Callback
If you define a generation callback, SOPC Builder does not generate an HDL wrapper
file to apply parameter values to your component. Instead, it calls the generation
callback you defined during the generation phase, allowing the component to
programmatically generate its HDL. A generation callback is defined by setting the
GENERATION_CALLBACK module property to be the name of the generation callback
function, as Example 7–10 illustrates.

Generation callbacks typically retrieve the current value of the component’s
parameters and the generation properties that guide the generation process, and then
generate the HDL files and supporting files in Tcl or by calling an external program.
The callback procedure also reports the required files to SOPC Builder with the
add_file command. Any files added in the generation callback are in addition to the
files added in the main body of the _hw.tcl file.

The generation callback must write <output_name.v or .sv> for Verilog or
<output_name.vhd> for VHDL to the specified <output_directory>. This file is a
parameterized instance of the component. Other supporting files, such as .hex files to
initialize memory, may be written to <output_directory>. These file names must begin
with <output_name>. If the supporting files are the same for all parameterizations of
the component, you add them from the main program rather than the generation
callback. If your system includes multiple instantiations of a component with

Example 7–9. Elaboration Callback

Declare the callback.
set_module_property ELABORATION_CALLBACK my_elaboration_callback

add the USE_STATUS_INTERFACE parameter
add_parameter USE_STATUS_INTERFACE boolean

declare the status slave interface
add_interface status_slave avalon slave clock_sink
set_interface_property status_slave ENABLED false

The elaboration callback
Declare signals
add_interface_port status_slave st_readdata readdata output 16
add_interface_port status_slave st_read read input 1
add_interface_port status_slave st_write write input 1
add_interface_port status_slave st_waitrequest waitrequest output 1
add_interface_port status_slave st_address address input 24
add_interface_port status_slave st_writedata writedata input 16

The elaboration callback
proc my_elaboration_callback {} {

 # Get the current value of parameters we care about
 set use_status [get_parameter_value USE_STATUS_INTERFACE]

 # Optionally add the status interface
 if { $use_status } {
 set_interface_property status_slave ENABLED true
 }

}

Chapter 7: Component Interface Tcl Reference 7–11
Overriding Default Behaviors

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

different parameterizations, you must add the supporting files from the main
program to prevent failures. If a static supporting file is only needed in some
parameterizations of the component, you should add it from the main program and
turn it on or off by setting its SYNTHESIS and SIMULATION properties appropriately
from the elaboration callback.

Editor Callback
You can use the editor callback procedure to replace the parameterization GUI. An
editor callback is defined by setting the EDITOR_CALLBACK module property to the
name of your editor callback procedure, as shown in the Example 7–11. If the editor
callback is defined, SOPC Builder calls the editor callback instead of displaying the
parameterization GUI, typically when the component is added to a system or updated
after it is in the system.

To display your custom GUI, the editor callback must call another program. Typically,
an editor callback provides the current parameter values to your program via the
command line and collects the new parameter values via stdout. The editor callback
then uses the set_parameter_value command to update SOPC Builder with the
new parameter values.

The editor callback returns one of the following three values:

■ OK—indicates that the results of the edit should be applied.

■ CANCEL—indicates that the system should revert to the state it was in before the
editor callback was called.

■ ERROR—indicates that the GUI was unable to launch. An appropriate error
message should be displayed.

If no value is returned, OK is assumed.

Example 7–10. Generation Callback Example

set_module_property GENERATION_CALLBACK my_generate

My generation method

proc my_generate {} {
 send_message info "Starting Generation"

get generation settings

set language [get_generation_property HDL_LANGUAGE]
set outdir [get_generation_property OUTPUT_DIRECTORY]
set outputname [get_generation_property OUTPUT_NAME]

get parameter values

 set p1 [get_parameter_value PARAMETER_ONE]
set csr [get_parameter_value CSR_ENABLED]

Your callback needs to write $outdir$outputname.v here,
perhaps by using exec to call an external program.

add_file creates files relative to the _hw.tcl directory; therefore specify $outdir
for synthesis and simulation files

exec perl my_generate.pl lang=$language dir=$outdir name=$outputname p1=$p1 csr=$csr
 add_file ${outdir}${outputname}.v SYNTHESIS
 add_file ${outdir}${outputname}_sim.v SIMULATION
}

Chapter 7: Component Interface Tcl Reference 7–12
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Hardware Tcl Command Reference
This section provides a reference for all hardware Tcl commands, as follows:

■ “Module Definition” on page 7–14

■ “Parameters” on page 7–20

■ “Display Items” on page 7–27

■ “Interfaces and Ports” on page 7–29

■ “Generation” on page 7–35

The description of each command indicates during which phases it is available: in the
main body of the program (main), or during the validation, elaboration, generation,
and editor callback phases, or any combination. Table 7–2 summarizes the commands
and provides a reference to the full description.

1 Starting with Quartus II software version 9.1, all Tcl commands that you can use in the
validation callback are also available in the elaboration callback. With this change,
you may be able to omit the custom validation callback by including some validation
commands in your elaboration callback.

Example 7–11. Editor Callback

set_module_property EDITOR_CALLBACK my_editor

Define Module parameters.
add_parameter PARAMETER_ONE integer 32 "A parameter"
add_parameter CSR_ENABLED boolean true "Enable CSR interface"

My editor method

proc my_editor {} {

get parameter values
set p1 [get_parameter_value PARAMETER_ONE]
set csr [get_parameter_value CSR_ENABLED]

Display UI, populated with current parameter values.
The stdout returned by the UI program includes the new paramter values.
set result [exec my_component_ui.exe p1=$p1 csr=$csr]

Use the fictional "parse_for_new_value" procedure to parse the returned text for the
new parameter values.
set p1 [parse_for_new_value $result p1]

 set csr [parse_for_new_value $result csr]

Return the new parameter values to SOPC Builder
set_parameter_value PARAMETER_ONE $p1

 set_parameter_value CSR_ENABLED $csr
return OK

}

Chapter 7: Component Interface Tcl Reference 7–13
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 7–2. Command Summary (Note 1) (Sheet 1 of 2)

Command Full Description

Module Definition

package <require> -exact sopc <version> page 7–14

get_module_properties page 7–15

get_module_property <propertyName> page 7–16

set_module_property <propertyName> <propertyValue> page 7–16

get_module_ports page 7–17

get_module_assignments page 7–17

get_module_assignment <moduleName> page 7–18

set_module_assignment <moduleName> [value] page 7–18

get_files page 7–18

add_file filename [<fileProperties> . . .] page 7–18

get_file_properties page 7–19

get_file_property <filename> <propertyName> page 7–19

set_file_property <filename> <propertyName> <propertyValue> page 7–19

send_message <messageLevel> <messageText> page 7–20

Parameters

add_parameter <parameterName> <parameterType> [<defaultValue>
<description>]

page 7–20

get_parameter_properties page 7–21

get_parameters page 7–25

get_parameter_property <parameterName> <propertyName> page 7–25

set_parameter_property <parameterName> <propertyName> <value> page 7–25

get_parameter_value <parameterName> page 7–26

set_parameter_value <parameterName> <value> page 7–26

decode_address_map <address_map_XML_string> page 7–26

Display Items

add_display_item <groupName> <id> <type> [<additionalInfo>] page 7–27

get_display_items page 7–28

Interfaces and Ports

add_interface <interfaceName> <interfaceType> <direction>
[<associatedClock>]

page 7–29

get_interfaces page 7–30

 <interfaceName> page 7–30

get_interface_property <interfaceName> <propertyName> page 7–31

set_interface_property <interfaceName> <propertyName> <value> page 7–31

add_interface_port <interfaceName> <portName> <portRole>
[<direction> <width_expr>]

page 7–32

get_interface_ports [<interfaceName>] page 7–32

get_port_properties page 7–32

Chapter 7: Component Interface Tcl Reference 7–14
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Module Definition
This section provides information about the commands that you use to define and
query a module.

package
The package command allows you to specify a particular version of the SOPC
Builder software to avoid software compatibility issues. You should use the package
command at the beginning of your _hw.tcl file. When used, the component files
behave as if they are interpreted by the version of the SOPC Builder software that you
specify. When the package command is not used, version 9.0 of the SOPC Builder
software is assumed. For components designed before 9.0, you can set the required
package to 9.0. This document describes the behavior of component which start with
package require -exact sopc 9.1 Refer to the Quartus II version 9.0
documentation for components that use sopc 9.0

f package is a standard Tcl command. For more information on this command refer to
the following web page: http://www.tcl.tk/man/tcl8.0/TclCmd/package.htm

get_module_properties
This command returns the names of all the available module properties as a list of
strings. You can use the get_module_property and set_module_property
commands to get and set values of individual properties. The value returned by this
command is always the same for a particular version of SOPC Builder.

get_port_property <portName> <propertyName> page 7–34

set_port_property <portName> <propertyName> [<value>] page 7–34

get_interface_assignments page 7–34

get_interface_assignment <interfaceName> <name> page 7–35

set_interface_assignmet <interfaceName> <name> [<value>] page 7–35

Generation

get_generation_property <propertyName> page 7–36

get_generation_properties page 7–35

Note to Table 7–2:

(1) Arguments enclosed in []’s are optional

Table 7–2. Command Summary (Note 1) (Sheet 2 of 2)

Command Full Description

package

Callback
availability

Main (before any other commands in the file)

Usage package require -exact sopc <version>

Returns None

Arguments version The version of SOPC Builder that you require, specified as decimal number

Example package require -exact sopc 9.1

Chapter 7: Component Interface Tcl Reference 7–15
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 7–3 lists the available module properties, their use, and the phases in which they
can be set.

get_module_properties

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_module_properties

Returns List of strings

Arguments None

Example get_module_properties

Table 7–3. Module Properties(Sheet 1 of 2)

Property Name
Property

Type Can Be Set Description

NAME String Main program The name of the module, such as
my_sopc_component.

DISPLAY_NAME String Main program The name to display when referencing the
module, such as “My SOPC Component.”

VERSION String Main program The module’s version, such as 8.1.

AUTHOR String Main program The module’s author.

DESCRIPTION String Main program The description of the module, such as
“Example SOPC Builder Module.”

GROUP String Main program The component group that the module belongs
to, such as “Example Components.”

ICON_PATH String Main program A path to an icon to display in the module’s
parameter editor.

DATASHEET_URL String Main program A path to the module’s data sheet, using a
syntax that provides the entire URL, not a
relative path. For example:
http://www.mydomain.com/my_
memory_controller.html or
file:///datasheet.txt.

EDITABLE Boolean Main program Indicates if the component is editable in the
component editor.

MODULE_TCL_FILE String Can only be
read, not set

The path to the _hw.tcl file.

MODULE_DIRECTORY String Can only be
read, not set

The directory containing the _hw.tcl file. All
relative file names within the Tcl file are
resolved relative to this directory. This
directory is set as the current directory when
running the main program or a callback.

TOP_LEVEL_HDL_FILE String Main program Indicates which of the files added by the
add_file command contains the module’s
top-level HDL.

TOP_LEVEL_HDL_MODULE String Main program Indicates the name of the top-level module
which must be defined in the module’s
top-level HDL file.

Chapter 7: Component Interface Tcl Reference 7–16
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

1 The INSTANTIATE_IN_SYSTEM_MODULE, TOP_LEVEL_HDL_MODULE and
GENERATION_CALLBACK commands are used to select the type of generation used by
the component. You must set only one of these in the main program of your file.

get_module_property
This command returns the value of a single module property.

set_module_property
This command allows you to set the values for module properties.

INSTANTIATE_IN_SYSTEM_MODULE Boolean Main program When false the instances of the module are
not included in the generated system
interconnect fabric. Instead, interfaces to the
module are exported out of the top-level of the
SOPC Builder system.

VALIDATION_CALLBACK String Main program The name of the validation callback. This
callback is run in addition to the default
validation.

EDITOR_CALLBACK String Main program The name of the editor callback. The default
parameterization UI is displayed if this property
is not set.

ELABORATION_CALLBACK String Main program The name of the elaboration callback. For static
and generated components, the default
elaborations used if this property is not set.

GENERATION_CALLBACK String Main program The name of the generation callback.

Table 7–3. Module Properties(Sheet 2 of 2)

Property Name
Property

Type Can Be Set Description

get_module_property

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_module_property <propertyName>

Returns String, boolean, or file

Arguments propertyName One of the properties listed in Table 7–3 on page 7–15

Example set my_name [get_module_property NAME]

set_module_property

Callback
availability

Main program

Usage set_module_property <propertyName> <propertyValue>

Returns None

Arguments propertyName One of the properties listed in Table 7–3 on page 7–15

propertyValue The new value of the property

Example set_module_property VERSION 9.1

Chapter 7: Component Interface Tcl Reference 7–17
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_module_ports
This command returns a list of the names of all the ports which are currently defined.

get_module_assignments
This command returns names of the module assignment variables.

get_module_assignment
This command returns the value of the specified argument. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to
transfer information about hardware components to embedded software tools and
applications.

f For more information about specifying information for software tools, refer to
Publishing Component Information to Embedded Software in the Nios II Software
Developer’s Handbook - Studio Edition.

get_module_ports

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_module_ports

Returns String

Arguments None

Example get_module_ports

get_module_assignments

Callback
availability

Main, validation, elaboration, and compose

Usage get_module_assignments

Returns String

Arguments None

Example get_module_assignments

get_module_assignment

Callback
availability

Main, validation, elaboration, and compose

Usage get_module_assignment <name>

Returns String

Arguments name The name whose value is being retrieved

Example get_module_assignment embedded.sw.CMacro.colorSpace

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 7: Component Interface Tcl Reference 7–18
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

set_module_assignment
This command sets the value of the specified argument.

get_files
This command returns a list of all the files that have been added to the module.

add_file
This command adds a synthesis, simulation, or TimeQuest constraints file to the
module. Files added in the main program cannot be removed. Adding files in the
generation callback allows the included files to be a function of the parameter set or to
be a result of generation. Files added in callbacks are in addition to any files added in
the main program.

set_module_assignment

Callback
availability

Main, validation, elaboration, and compose

Usage set_module_assignment <name> [<value>]

Returns None

Arguments name The name whose value is being set

value The value of the <name> argument

Example set_module_assignment embedded.sw.CMacro.colorSpace CMYK

get_files

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_files

Returns List of strings

Arguments None

Example set list_of_files [get_files]

add_file

Callback
availability

Main and generation

Usage add_file filename [<fileProperties> . . .]

Returns String

Arguments filename The file name to be added, relative to the directory containing the _hw.tcl file

fileProperties Files support the following 3 properties:

■ SIMULATION—File for simulation

■ SYNTHESIS—File for synthesis

■ SDC—TimeQuest constraints (SDC behaves like a synthesis file)

Example add_file my_component.v {SIMULATION SYNTHESIS}

Chapter 7: Component Interface Tcl Reference 7–19
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_file_properties
This command returns the list of all properties that have been defined for a file.

get_file_property
This command returns the value of a single file property. The file name passed as an
argument may be a partial as long as it is unique. For example, if the full file name is
/components/my_file.v, my_file.v is sufficient.

set_file_property
This command sets the value of a single file property. The file name passed to the
function can be a partial file name as long as it is unique. For example, if the full file
name is /components/my_file.v, my_file.v is sufficient. The available properties are
described in the add_files command.

get_file_properties

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_file_properties

Returns List of strings

Arguments None

Example get_file_properties

get_file_property

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_file_property <filename> <propertyName>

Returns Boolean

Arguments filename The file name whose properties are being retrieved

propertyName The file name property whose value is being retrieved

Example set forSynthesis [get_file_property my_file.v SYNTHESIS]

set_file_property

Callback
availability

Main, elaboration, and generation

Usage set_file_property <filename> <propertyName> <propertyValue>

Returns Boolean

Arguments filename The file name whose properties are being retrieved

propertyName Name of the file property whose value is being retrieved

propertyValue Value to set for the file property

Example set_file_property my_file.v SYNTHESIS true

Chapter 7: Component Interface Tcl Reference 7–20
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

send_message
This command sends a message to the user of the component. The message text is
normally interpreted as HTML. The element can be used to provide emphasis. If
you do not want the message text to be interpreted as HTML then pass a list like {
info text } as the message level.

Parameters
Parameters allow users of your component to affect its operation in the same manner
as Verilog HDL parameters or VHDL generics.

add_parameter
This command adds a parameter to your component.

get_parameter_properties
This command returns a list of all the available parameter properties as a list of
strings. The get_parameter_property and set_parameter_property commands
are used to get and set the values of these properties, respectively.

send_message

Callback
availability

Main, validation, elaboration, generation, and editor

Usage send_message <messageLevel> <messageText>

Returns None

Arguments messageLevel The following 4 message levels are supported:

■ Error—provides an error message. The SOPC Builder system cannot be
generated while there are error messages.

■ Warning—provides a warning message.

■ Info—provides an informational message.

■ Debug—provides messages when debug mode is enabled.

messageText The text of the message

Example send_message Error "param1 must be greater than param2."

add_parameter

Callback
availability

Main program

Usage add_parameter <parameterName> <parameterType> [<defaultValue>
<description>]

Returns String

Arguments parameterName A name that you, the component author, choose for your parameter

parameterType The following 7 types are supported: Integer, Natural , Positive,
Boolean, Std_logic, Std_logic_vector,String

defaultValue The default length of the parameter is derived from its range.

description Explains the use of the parameter

Example add_parameter seed integer 17 "The seed to use for data generation."

Chapter 7: Component Interface Tcl Reference 7–21
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 7–4 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

get_parameter_properties

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_parameter_properties

Returns List of strings

Arguments None

Example set property_summary [get_parameter_properties]

Table 7–4. Parameter Properties (Sheet 1 of 3)

Property Name
Type/

Default Can Be Set Description

DISPLAY_NAME String,
""

Main program The text string to use when displaying the parameter.

ALLOWED_RANGES String,
""

Main program Indicates the range or ranges that the parameter value
can have. For integers, The ALLOWED_RANGES
property is a list of ranges that the parameter can take
on, where each range is a single value, or a range of
values defined by a start and end value separated by a
colon, such as 11:15. This property can also specify
legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0,1,2,4 are the legal values. Refer to
Example 7–7 on page 7–8 and Figure 7–1 on page 7–8
for examples illustrating the use of this property.

UNITS String,
""

Main program Sets the units of the parameter. The following values
are possible: picoseconds, nanoseconds,
microseconds, milliseconds, seconds,
hertz, kilohertz, megahertz, gigahertz,
address, bits, bytes, kilobytes,
megabytes, gigabytes, bitspersecond,
kilobitspersecond, megabitspersecond,
gigabitspersecond. For example,
set_parameter_property frequency
UNITS gigahertz

HDL_PARAMETER Boolean,
false

Main program When true, the parameter must be passed to the HDL
component description. The default value is false.

DESCRIPTION String,
""

Main program A user-visible description of the parameter.

Chapter 7: Component Interface Tcl Reference 7–22
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

AFFECTS_ELABORATION
(1)

Boolean,

refer to

DESCRIPTION

Main program Set AFFECTS_ELABORATION to false for
parameters that do not affect the external interface of
the module. An example of a parameter that does not
affect the external interface is
isNonVolatileStorage. An example of a
parameter that does affect the external interface is
width. When the value of a parameter changes, if that
parameter has set
AFFECTS_ELABORATION=false, the elaboration
phase (calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS_ELABORATION is true, the
provided HDL file is normally re-analyzed to determine
the new port widths and configuration every time a
parameter changes.

AFFECTS_GENERATION Boolean,
refer to
DESCRIPTION

Main program The default value of AFFECTS_GENERATION is
false if you provide a top-level HDL module, it is
true if you provide a custom generation callback. Set
AFFECTS_GENERATION to false if the value of a
parameter does not change the results of system
generation.

VISIBLE Boolean,
true

Main program,
validation, and
elaboration,
callbacks

Indicates whether or not to display the parameter in the
parameterization GUI.

ENABLED Boolean,
true

Main program,
validation, and
elaboration,
callbacks

When false, the parameter is disabled, meaning that
it is displayed, but greyed out, indicating that it is not
editable on the parameterization GUI.

DERIVED Boolean/
false

Main program When true, indicates that the parameter value does
not need to be stored, typically because it is set from
the validation callback. The default value is false.

DISPLAY_HINT String,
""

Main program Provides a hint about how to display a property. The
following values are possible:

■ boolean—for integer parameters whose value can
be 0 or 1. The parameter displays as a checkbox.

■ radio—displays a parameter with a list of values
as radio buttons instead of a drop-down list.

■ hexadecimal—for integer parameters, display
and interpret the value as a hexadecimal number, for
example: 0x00000010 instead of 16.

Refer to Example 7–7 on page 7–8 and Figure 7–1 on
page 7–8 for examples illustrating the use of this
property.

Table 7–4. Parameter Properties (Sheet 2 of 3)

Property Name
Type/

Default Can Be Set Description

Chapter 7: Component Interface Tcl Reference 7–23
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 7–5 lists the properties that you can use with the system_info parameter
property.

SYSTEM_INFO String,

""

Main program Allows you to assign information about the instantiating
system to a parameter that you define. SYSTEM_INFO
requires a keyword argument specifying the type of
information requested, <info-type>. <info-
type> may also take an argument. The syntax of the
Tcl command is:

set_parameter_property my_parameter
SYSTEM_INFO <info-type> [<arg>]

The following values for <info-type> are
predefined:

■ CLOCK_RATE

■ CLOCK_DOMAIN

■ RESET_DOMAIN

■ ADDRESS_WIDTH

■ ADDRESS_MAP

■ MAX_SLAVE_DATA_WIDTH

■ INTERRUPTS_USED

■ DEVICE_FAMILY

■ DEVICE_FEATURES

Note to Table 7–4:

(1) The AFFECTS_ELABORATION property was called AFFECTS_PORT_WIDTHS before version 9.0 of the Quartus II software.

Table 7–4. Parameter Properties (Sheet 3 of 3)

Property Name
Type/

Default Can Be Set Description

Table 7–5. SYSTEM_INFO Properties (Sheet 1 of 2)

Property Type Description

CLOCK_RATE Integer
or
String

Assigns a positive number which is the clock frequency in Hz to the clock
input interface you specify. Assigns 0 if the clock rate is not known.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_RATE <my_clk>}

CLOCK_DOMAIN Integer Assigns an integer representing the clock domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
clock domain, the CLOCK_DOMAIN value is guaranteed to be the same
and greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_DOMAIN <my_clk>}

Chapter 7: Component Interface Tcl Reference 7–24
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

RESET_DOMAIN Integer Assigns an integer representing the reset domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same reset domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
reset domain, the RESET_DOMAIN value is guaranteed to be the same
and greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{RESET_DOMAIN <my_reset>}

ADDRESS_WIDTH Integer Assigns an integer to the parameter that you specify that is the
number of bits an Avalon-MM master must drive to address all
of its slaves, using byte addresses.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_WIDTH <my_avalon-mm_master>}

ADDRESS_MAP String Assigns an XML formatted string describing the address map to the
parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_MAP <my_avalon-mm_master>}

MAX_SLAVE_DATA_WIDTH Integer Assigns an integer to the parameter you specify that is the data width of the
widest slave connected to the specified Avalon-MM master.

set_parameter_property <my_parameter> SYSTEM_INFO
{MAX_SLAVE_DATA_WIDTH <my_avalon_mm_master>}

INTERRUPTS_USED Integer
or string

Creates a mask indicating which bits of the interrupt receiver vector are
connected to an interrupt sender. This mask is assigned to the parameter
you specify. You can use this interrupt mask to optimize logic that handles
interrupts.

set_parameter_property <my_parameter> SYSTEM_INFO
(INTERRUPTS_USED <my_interrupt_receiver>}

DEVICE_FAMILY String Assigns the family name (not the specific device part number) of the
currently selected device to the parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FAMILY}

DEVICE_FEATURES String Creates a list of key/value pairs delineated by spaces indicating whether a
particular device feature is available in the currently selected device family.
The format of the list is suitable for passing to the Tcl array set
command. This list is assigned to the parameter you specify. The following
features are supported: M512_MEMORY, M4K_MEMORY, M9K_MEMORY,
M144K_MEMORY, MRAM_MEMORY, MLAB_MEMORY, ESB, DSP, and
EMUL.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FEATURES}

Table 7–5. SYSTEM_INFO Properties (Sheet 2 of 2)

Property Type Description

Chapter 7: Component Interface Tcl Reference 7–25
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_parameters
This command returns the names of all parameters that have been previously defined
by add_parameter as a space separated list.

get_parameter_property
This command returns a single parameter property.

set_parameter_property
This command sets a single parameter property.

get_parameters

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_parameters

Returns List of strings

Arguments None

Example set parameter_summary [get_parameters]

get_parameter_property

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_parameter_property <parameterName> <propertyName>

Returns string, boolean, or units depending on property refer to Table 7–4 on page 7–21

Arguments parameterName The name of the parameter whose property value is being retrieved

propertyName One of the properties listed in Table 7–4 on page 7–21

Example get_parameter_property parameter1 GROUP

set_parameter_property

Callback
availability

Main, validation, and elaboration

Usage set_parameter_property <parameterName> <propertyName> <value>

Returns string, boolean, or units depending on property

Arguments parameterName Specifies the parameter that is being set

propertyName Specifies the property of parameterName that is being set, refer to Table 7–4
on page 7–21 for a list of properties

value Provides the values

Example set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Chapter 7: Component Interface Tcl Reference 7–26
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_parameter_value
This command returns the current value of a parameter defined previously with the
add_parameter command.

set_parameter_value
This command sets a parameter value. The values of derived parameters can be set
from the validation and elaboration callbacks. The values of parameters which are not
marked as derived or system_info can be set from the editor callback.

decode_address_map
This is a utility function to convert an XML–formatted address map into a list of Tcl
lists. Each inner list is in the correct format for conversion to an array. The XML code
describing each slave includes: its name, start address, and end address + l. Figure 7–2
shows a portion of an SOPC Builder system with three Avalon-MM slave devices.

get_parameter_value

Callback
availability

Validation, elaboration (1), compose. generation, and editor

Usage get_parameter_value <parameterName>

Returns String

Arguments parameterName Specifies the parameter that is being retrieved

Example set fifo_width [get_parameter_value fifo_width]

Note:

(1) If AFFECTS_ELABORATION=false for a given parameter, get_parameter_value is not available for that parameter
from the elaboration callback. If affects_generation=false then it is not available from the generation callback.

set_parameter_value

Callback
availability

Validation, elaboration, and editor

Usage set_parameter_value <parameterName> <value>

Returns None

Arguments parameterName Specifies the parameter that is being set

value Specifies the value of parameterName

Example set_parameter_value BAUD_RATE 19200

Figure 7–2. SOPC Builder System with Three Avalon-MM Slaves

Chapter 7: Component Interface Tcl Reference 7–27
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Example 7–12 shows the XML that describes the address map for the Avalon-MM
master that accesses these slaves. The format of the XML string provided may differ
from that described here, it may have different white space between the elements and
could include additional attributes or elements. Using decode_address_map
command to decode the XML representing an Avalon-MM master’s address map is
easier and ensures that your code will work with future versions of the XML address
map.

1 Altera recommends that you use the code provided in the description of
Example 7–12 to enumerate over the components within an address map, rather than
writing your own parser.

Display Items
You specify your component GUI using the display commands.

add_display_item
You can use this command to specify the following two aspects of component display:

■ You can create logical groups for a component’s parameters. For example, you
might want to create separate groups for the component’s timing, size, and
simulation parameters. A component displays the groups and parameters in the
order that you specify the display items for them in the _hw.tcl file.

■ You can specify an image to provide a pictorial representation of a parameter or
parameter group.

You create a display group by adding display items to it.

Example 7–12. Address Map for an Avalon-MM Master

<address-map>

 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />

<slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />

<slave name='sysid' start='0x021208B8' end='0x021208C0' />

</address-map>

decode_address_map

Callback
availability

Validation, compose. elaboration, and generation

Usage decode_address_map <address_map_XML_string>

Returns List of Tcl lists, each one suitable for passing to array set

Arguments address_map_
XML_string

An XML string describing the address map of an Avalon-MM master.

Example set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {

array set info $i
send_message info "Connected to slave $info(name)"

}

Chapter 7: Component Interface Tcl Reference 7–28
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_display_items
This command returns a list of all items to be displayed as part of the
parameterization GUI.

add_display_item

Callback
availability

Main program

Usage add_display_item <groupName> <id> <type> [<additionalInfo>]

Returns String

Arguments groupName Specifies the group to which a display item belongs.

id Specifies the parameter or icon to be displayed in a group. Each display item
associated with a component must have a different ID.

type Specifies the category of the display item. The following types are defined:

■ icon–a .gif, .jpg, or .png file

■ parameter–a parameter in the instance

■ text–a block of text

■ group–a group. if the groupName is also defined, the new group is a child
of the groupName group. if groupName is an empty string, the group is
top-level.

additionalInfo Provides extra information required for display items. The following examples
illustrate how you use the additionalInfo argument for the various types:

■ add_display_item groupName id icon
path-to-image-file

■ add_display_item groupName parameterName parameter
(additionalInfo not required)

■ add_display_item groupName id text "your-text"
The your-text argument is a block of text that is displayed in the GUI.
Some simple HTML formatting is allowed, such as and <i>, if the text
starts with "html>".

■ add_display_item parentGroupName childGroupName
group [tab]
The tab is an optional parameter. If present, the group appears in separate
tab in the GUI for the instance.

Examples add_display_item timing read_latency parameter

add_display_item sound speaker icon speaker.jpg

get_display_items

Callback
availability

Main, elaboration, generation, and editor

Usage get_display_items

Returns List of strings

Arguments None

Example get_display_items

Chapter 7: Component Interface Tcl Reference 7–29
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Interfaces and Ports
You can use the interface and port commands to define interfaces and ports and
retrieve their properties.

add_interface
This command adds an interface to your module. As the component author, you
choose the name of the interface. By default, interfaces are enabled. You can set the
interface property ENABLED to false, to disable a component interface. If an interface
is disabled, it is hidden and its ports are automatically terminated to their default
values. Signals that you designate as active low by appending a _n are terminated to
1. All other signals are terminated to 0.

f The properties available for each interface type are different. Three common
properties, ENABLED and ASSOCIATED_CLOCK apply to all interface types. Refer to the
Avalon Interface Specifications for a description of other properties.

add_interface

Callback
availability

Main program, and elaboration

Usage add_interface <interfaceName> <interfaceType> <direction>
[<associatedClock>](1)

Returns String

Arguments interfaceName A name that you choose to identify an interface.

interfaceType
and direction

There are 7 interfaceTypes. The following directions are possible for
these interfaceTypes:

Interface Type Direction

avalon master, slave (2)

avalon_tristate slave

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

nios_custom_instruction slave

associatedClock This defines the clock associated with the interface. It is required for all
interfaces except clock interfaces.

Example add_interface mm_slave avalon slave clock0

Notes:

(1) For interfaces that are not associated with clocks, such as clock interfaces themselves, the associatedClock is omitted. Another
option is to specify the associatedClock argument as asynchronous.

(2) The terms master, source, and start are interchangeable. The terms slave, sink, and end are interchangeable.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Component Interface Tcl Reference 7–30
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_interfaces Lissy
This command returns the names of all interfaces that have been previously defined
by add_interface as a space separated list.

get_interface_properties
This command returns the names of all the available interface properties for the
specified interface as a space separated list.

f The properties available for each interface type are different. Refer to the Avalon
Interface Specifications for more information about interface properties.

The interface properties that are common to all interface types are listed below in
Table 7–6.

get_interfaces

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_interfaces

Returns List of strings

Arguments None

Example set all_interfaces [get_interfaces]

get_interface_properties

Callback
availability

Main program, validation, elaborations, and editor

Usage get_interface_properties <interfaceName>

Returns List of strings

Arguments interfaceName The name of an interface that you defined

Example get_interface_properties mm_slave

Table 7–6. Interface Properties Common to All Interface Types

Property Type Description

ASSOCIATED_CLOCK String The name of the clock interface that this interface is synchronous to.

ENABLED Boolean Specifies whether or not interface is enabled.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Component Interface Tcl Reference 7–31
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_interface_property
This command returns the value of a single interface property from the specified
interface.

set_interface_property
This command sets a single interface property for an interface.

add_interface_port
This command adds a port to an interface on your module. As the component author,
you determine the name of the port. The port width and direction must be set by the
end of the elaboration phase. The port width can be set with one of the following
mechanisms:

■ A constant width or a width expression can be set in the main program

■ A constant width can be set in the elaboration callback

1 Without an elaboration callback, for static components quartus_map determines the
port width from the HDL

get_interface_property

Callback
availability

Main program, and elaboration

Usage get_interface_property <interfaceName> <propertyName>

Returns string, boolean, or units depending on property Refer to the Avalon Interface Specifications
for more information about interface properties

Arguments interfaceName The name of an interface from which you want to retrieve information

propertyName The name of the property whose value you want to retrieve. This property is
either ENABLED or ASSOCIATED_CLOCK or a property name defined by the
interface.

Example get_interface_property mm_slave readWaitTime

set_interface_property

Callback
availability

Main and elaboration

Usage set_interface_property <interfaceName> <propertyName> <value>

Returns String

Arguments interfaceName The name of an interface that includes this property

propertyName The name of the property whose value you want to set, which is ENABLED or
ASSOCIATED_CLK or a name from the Avalon Interface Specifications.

value The value to set for the specified property

Example set_interface_property mm_slave linewrapBursts false

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Component Interface Tcl Reference 7–32
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_interface_ports
This command returns the names of all of the ports that have been added to a given
interface. If the interface name is omitted, all ports for all interfaces are returned.

get_port_properties
This command returns a list of all available port properties.

add_interface_port

Callback
availability

Main program and elaboration

Usage add_interface_port <interfaceName> <portName> <portRole>
[<direction> <width_expr>]

Returns String

Arguments interfaceName The name of the interface to which the port belongs.

portName The name of the port that you, the component author, have chosen.

portRole The role of this port within the interfaces. Port roles are referred to as signal
types in the Avalon Interface Specification. Refer to the Avalon Interface
Specifications for the signal types available for each interface type.

direction The direction can be input, output, or bidir

width_expr The port's width expression. In simple cases, this is just the width of the port in
bits.

Example add_interface_port mm_slave s0_rdata readdata output 32

get_interface_ports

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_interface_ports [<interfaceName>]

Returns String

Arguments interfaceName The name of the interface whose ports you want to list. (Optional)

Example get_interface_ports mm_slave

get_port_properties

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_port_properties <portName>

Returns String, boolean, or units depending on property refer to Table 7–4 on page 7–21

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Component Interface Tcl Reference 7–33
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 7–7 describes the available port properties

Arguments portName The name of the port whose properties are required. The following 7 port properties are
supported:

■ direction

■ width

■ termination

■ termination_value

■ width_expr

■ vhdl_type

Refer to Table 7–7 for a description of these properties.

Example get_port_properties mm_slave

Table 7–7. Port Properties

Name Type Description

direction input, output,
bidir

The direction of the port from the component’s perspective.

width integer The width of the port in bits.

width_expr string The width expression of a port. Setting the width and
width_expr properties have the same effect; they both update
the effective width expression. The width/width_expr
properties can be set to an integer at any time. They can only be
set to arithmetic expressions in the main program.

The values of the width and width_expr properties behave
differently when get_port_property is used. width always
returns the current integer width of the port. width_expr always
returns the unevaluated width expression.

termination boolean When true, instead of connecting the port to the SOPC Builder
system, it is left unconnected for OUTPUT and BIDIR or set to a
fixed value for INPUT. Has no effect for components that
implement a generation callback instead of using the default
wrapper generation.

termination_value integer The constant value to drive an input port.

vhdl_type std_logic
std_logic_vector
auto

indicates the type of a VHDL port. The default value, auto, selects
std_logic if the width is fixed at 1, and std_logic_vector
otherwise.

7–34 Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

get_port_property
This command returns the value of single port property for the specified port.

set_port_property
This command sets a single port property.

get_interface_assignments
This command returns the value of all interface assignments for the specified
interface.

get_port_property

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_port_property <portName> <propertyName>

Returns Depends on the type of the property

Arguments portName The name of the port

propertyName One of the supported properties described in Table 7–7.

Example get_port_property rdata WIDTH

set_port_property

Callback
availability

Main program, elaboration, and generation

Usage set_port_property <portName> <propertyName> [<value>]

Returns String, boolean, or units depending on property refer to Table 7–4 on page 7–21

Arguments portName The name of the port

propertyName One of the supported properties described in Table 7–7.

value The value to set

Example set_port_property rdata WIDTH 32

get_interface_assignments

Callback
availability

Main, validation, and elaboration

Usage get_interface_assignments <interfaceName>

Returns String

Arguments interfaceName The name of the Avalon interface whose assignment is being retrieved

Example get_interface_assignments s1

Chapter 7: Component Interface Tcl Reference 7–35
Hardware Tcl Command Reference

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

get_interface_assignment
This command returns the value of the specified name for the specified interface.

set_interface_assignment
This command sets the value of the specified assignment for the specified interface.

f For more information about the use of the set_interface_assignment command,
refer to the “Publishing Component Information to Embedded Software” chapter in the
Nios II Software Developer’s Handbook: Studio Edition.

Generation
This section covers the commands that set and get generation properties.

get_generation_properties
This command returns the names of all the available generation properties as a space
separated list. These properties cannot be changed by the module.

get_interface_assignment

Callback
availability

Main, validation, and elaboration

Usage get_interface_assignments <interfaceName> <name>

Returns String

Arguments interfaceName The name of the Avalon interface whose assignment is being retrieved

name The assignment whose value is being retrieved

Example get_interface_assignment s1 embeddedsw.configuration.isFlash

set_interface_assignment

Callback
availability

Main, validation, and elaboration

Usage set_interface_assignment <interfaceName> <name> [<value>]

Returns None

Arguments interfaceName The name of the Avalon interface whose assignment is being set

name The assignment whose value is being set

value The value to assign

Example set_interface_assignment s1 embeddedsw.configuration.isFlash 1

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

7–36 Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Table 7–8 describes the generation properties.

get_generation_property
This command returns the value of a single generation property.

get_generation_properties

Callback
availability

Main, validation, elaboration, generation, and editor

Usage get_generation_properties

Returns String. The following generation properties are supported:

■ hdl_language

■ output_directory

■ output_name

Refer to Table 7–8 for a description of the generation properties.

Arguments None

Example get_generation_properties

Table 7–8. Generation Properties

Name Type Description

hdl_language enum The HDL language to generate. Is either verilog or vhdl (lowercase). If
the module cannot generate the specified language, generating in the other
language is acceptable.

output_directory file The location in which files must be generated. The filename components in
the directory name are separated with forward slashes.

output_name string OUTPUT_NAME is module_0 and the HDL_LANGUAGE is verilog,
the file module_0.v or module_O.sv _must be generated and must contain
the module, module_0.

get_generation_property

Callback
availability

Generation

Usage get_generation_property <propertyName>

Returns String, boolean, or units depending on property refer to Table 7–4 on page 7–21

Arguments propertyName One of the 3 generation properties:

■ HDL_LANGUAGE

■ OUTPUT_DIRECTORY

■ OUTPUT_NAME

Example get_generation_property OUTPUT_DIRECTORY

Chapter 7: Component Interface Tcl Reference 7–37
Deprecated Commands and Properties

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Deprecated Commands and Properties
Table 7–9 lists commands and properties that were available in previous versions of
the Quartus II software and the command that have replaced them.

Table 7–9. Deprecated Commands and Properties

Deprecated Command Replacement

add_clock_interface <name> add_interface <name> clock input

add_port_to_clock_interface <name>
<role> <interface>

add_interface_port <interface> <name>
<role> 1

add_port_to_interface <interface>
<name> <role>

add_interface_port <interface> <name>
<role> <input> 1

get_generation_setting <property> get_generation_property <property>

get_list_of_ports <direction> get_interface_ports

set_module <name> set_module_property name <name>

set_module_description <description> set_module_property description
<description>

set_port_direction_and_width <name>
<direction> <width>

set_port_property <name> direction
<direction>; set_port_property <name> width
<width>

set_source_file <file> set_module_property top_level_hdl_file
<file>

get_project_property To determine device family, use the following commands: In the
main program:

add_parameter DEVICE_FAMILY string
"unknown"

set_parameter_property DEVICE_FAMILY
SYSTEM_INFO device_family

In the validation, generation callback read it using the following
command:

get_parameter_value DEVICE_FAMILY

Deprecated Module Properties

libraries Unnecessary

class_name name

module_file_name top_level_hdl_file

preview_<n>_callback <n>_callback

Deprecated Parameter Properties

affects_port_widths affects_elaboration

GROUP Use add_display_item instead

Deprecated Generation Properties

language hdl_language

7–38 Chapter 7: Component Interface Tcl Reference
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Document Revision History
Table 7–10 shows the revision history for this chapter.

Table 7–10. Document Revision History (Sheet 1 of 2)

Date and Document
Version Changes Made Summary of Changes

November 2009,
v9.1.0

■ Tcl interpreter now stops upon error rather than continuing to
interpret commands.

■ Changes validation and elaboration callbacks to be
more similar. All commands permitted in the validate
callback are also permitted in the validation callback.

■ Added the package command.

■ Added ability to optimize a component to wires or constant
values using the driven_by argument.

■ Added parameter to set port width using an expression.

■ Changed syntax for setting the width of a
std_logic_vector.

■ Renamed TERMINATION_WIDE TERMINATION_VALUE
in the “get_port_properties” on page 7–32.

■ Corrected Example 7–11 on page 7–12. set result =
[...] should be set result [...]

■ Added Table 7–9 listing deprecated commands and properties
and their replacements.

Added new functionality, a
deprecated commands table,
and corrected a few
typographical errors.

March 2009, v9.0.0 ■ Added add_display_item commands.

■ Added DISPLAY_HINT, IS_HDL_PARAMETER,
DERIVED, and SYSTEM_INFO parameters to Table 7–4
on page 7–21. Described SYSTEM_INFO parameter in detail.

■ Added ENABLED interface property to enable or disable an
interface.

■ The AFFECTS_PORT_WIDTHS parameter has been
renamed AFFECTS_ELABORATION to better reflect its
function.

■ Added note saying that the add_file command will be
restricted to the main and generation callbacks starting in
version 9.1 of the Quartus II software.

■ Explained that before the elaboration phase, parameters may
have values of 0 or -1 that are determined during HDL
analysis.

Added several new commands
to increase functionality,
clarified a few others, and
corrected typographic errors.\

Chapter 7: Component Interface Tcl Reference 7–39
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

November 2008, v8.1 ■ Added get_module_ports,
get_interface_assignment,
set_interface_assignment,
get_module_assignment, and
set_module_assignment commands

■ Corrected availability to include more callbacks for several
commands

■ Added two additional types for add_parameter command:
natural and positive

■ Added brackets for some optional parameters

■ Changed add_file command for SIMULATION and
SYNTHESIS in Example 7–10 to write to $outdir

■ get_project_property is available in validation
callback

■ Changed page size to 8.5 x 11 inches

Added 5 new commands and
corrected commands that did
not define optional arguments
or omitted some callback
availability.

June 2008, v8.0.1 ■ Reformatted command information in tables. —

May 2008, v 8.0.0 ■ Added new Editing _hw.tcl commands and

■ debug commands sections.

■ Changed chapter title from Building a Component Interface
with Tcl Scripting Commands to Component Interface Tcl
Reference.

—

October 2007, v7.2.0 Major reorganization of chapter to better reflect work flow when
using tcl scripting. Includes new commands, properties, and
parameters.

—

May 2007, v7.1.0 Initial release. —

Table 7–10. Document Revision History (Sheet 2 of 2)

Date and Document
Version Changes Made Summary of Changes

7–40 Chapter 7: Component Interface Tcl Reference
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

8. Archiving SOPC Builder Projects

This chapter identifies the files you must include when archiving an SOPC Builder
project. With this information, you can archive the SOPC Builder system. You may
want to archive your SOPC Builder system for one of the following reasons:

■ To place an SOPC Builder design under source control

■ To create a backup

■ To bundle a design for transfer to another location

To use this information, you must decide what source control or archiving tool to use,
and you must know how to use it. This chapter describes how to find and identify the
files that you must include in an archived SOPC Builder design. Refer to “Required
Files” on page 8–2.

Limitations
This chapter provides information about archiving SOPC Builder systems, including
Nios® II software applications, if any. If your SOPC Builder system does not contain a
Nios II processor, you can disregard information about archiving Nios II software
applications.

This chapter does not cover archiving SOPC Builder components, for two reasons:

■ SOPC Builder components can be recovered, if necessary, from the original
Quartus® II and Nios II installations.

■ If your SOPC Builder system was developed with an earlier version of the
Quartus II software and Nios II Embedded Design Suite (EDS), when you restore
it for use with the current version, you normally use the current, installed
components.

If your SOPC Builder system was developed with an earlier version of the Quartus II
Complete Design Suite and you restore it for use with the current version, the
regenerated system is functionally identical to the original system. However, there
might be differences in details such as timing performance, component
implementation, or HAL implementation.

f For details of version changes, refer to the Quartus II Reference Documentation.

To ensure that you can regenerate your exact original design, maintain a record of the
tool and IP version(s) originally used to develop the design. Retain the original
installation files or media in a safe place.

The archival process addressed by this chapter is different than Quartus II project
archiving. A Quartus II project archive contains the complete Quartus II project,
including the SOPC Builder module. The Quartus II software adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these files are not
strictly necessary, if you regenerate the design files afterwards. A Quartus II project
archive also archives the Quartus II IP (.qip) file.

QII54017-9.1.0

http://www.altera.com/literature/quartus2/lit-qts-related.jsp
http://www.altera.com/literature/quartus2/lit-qts-related.jsp

8–2 Chapter 8: Archiving SOPC Builder Projects
Required Files

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

This chapter is only concerned with archiving the SOPC Builder system, without the
generated HDL files.

f For more details about archiving Quartus II projects, refer to the Managing Quartus II
Projects chapter in volume 2 of the Quartus II Handbook.

Required Files
This section describes the files required to archive an SOPC Builder system and its
associated Nios II software projects (if any). This is the minimum set of files needed to
completely recompile an archived system, both the SRAM Object File (.sof) and the
executable software (.elf).

1 If you have Nios II software projects, archive them together with the SOPC Builder
system on which they are based. For more details about archiving Nios II designs,
refer to the Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

The files listed in Table 8–1 are located in the Quartus II project directory.

Many source control tools mark local files read-only by default. In this case, you
must override this behavior. You do not have to check the files out of source control
unless you are modifying the SOPC Builder design or Nios II software project.

Table 8–1. Files Required for an SOPC Builder System

File Description File Name Write Permission Required? (1)

SOPC Builder design file (.sopc) <sopc_builder_system>.sopc Yes

SOPC Builder classic system description for
generation, a peripheral template file (.ptf) (1)

<sopc_builder_system>.ptf Yes

SOPC Builder report file, an SOPC information
file (.sopcinfo)

<sopc_builder_system>.sopcinfo Yes

All non-generated HDL source files (2) for example: top_level_schematic.bdf,
customlogic.v

No

Quartus II project file (.qpf) <project_name>.qpf No

Quartus II settings file (.qsf) <project_name>.qsf Yes

Notes to Table 8–1:

(1) The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC Builder prior to version 7.1
and must also be writable to generate a system.

(2) Include all HDL source files not generated by SOPC Builder, including HDL source files you create or copy from elsewhere. To identify a file
generated by SOPC Builder, open the file and look for the following header: Legal Notice: (C)<year> Altera Corporation.
All rights reserved.

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 8: Archiving SOPC Builder Projects 8–3
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 8–2 shows the revision history for this chapter.

Table 8–2. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2009, v9.1.0 No change from previous release. —

March 2009, v9.0.0 No change from previous release. —

November 2008, v8.1.0 Changed page size to 8.5” × 11”. —

May 2008, v8.0.0 Renumbering from Chapter 7 to 8. —

October 2007,

v7.2.0

No change from previous release. —

May 2007,

v7.1.0

■ Chapter 7 was previously chapter 6.

■ Added information about new .sopc file type to
Table 8–1.

■ Added information about legacy .ptf file type to
Table 8–1.

■ Added Referenced Documents section.

■ Added reference to new Common BSP Tasks
chapter for archiving of Tcl projects.

Updates to this chapter include
replacing the legacy .ptf file type with

the new .sopc file type.

March 2007,

v7.0.0

No change from previous release. —

November 2007,

v6.1.0

No change from previous release. —

May 2006,
v6.0.0

Initial release. —

8–4 Chapter 8: Archiving SOPC Builder Projects
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Section II. Building Systems with SOPC
Builder

This section uses example designs to show you how to build a system or component.
Chapters in this section serve to answer the question, “How do I define systems in
SOPC Builder.” This chapter refers to design examples that you can download free
from www.altera.com. Design file hyperlinks are located with individual chapters
linked from the Altera website.

This section includes the following chapters:

■ Chapter 9, SOPC Builder Memory Subsystem Development Walkthrough

■ Chapter 10, SOPC Builder Component Development Walkthrough

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

http://www.altera.com/

II–2 Chapter :

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

9. SOPC Builder Memory Subsystem
Development Walkthrough

Most systems generated with SOPC Builder require memory. For example, embedded
processor systems require memory for software, while digital signal processing (DSP)
systems require memory for data buffers. Many systems use multiple types of
memories. For example, a processor-based DSP system can use off-chip SDRAM to
store software, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter uses design examples to describe how to build a memory subsystem as
part of a larger system created with SOPC Builder. This chapter focuses on the
following kinds of memory most commonly used in SOPC Builder systems:

■ “On-Chip RAM and ROM” on page 9–6

■ “EPCS Serial Configuration Device” on page 9–9

■ “SDR SDRAM” on page 9–11

■ “DDR SDRAM” on page 9–14

■ “DDR2 SDRAM” on page 9–14

■ “Off-Chip SRAM and Flash Memory” on page 9–15

This chapter assumes that you are familiar with the following task and concepts:

■ Creating FPGA designs and making pin assignments with the Quartus® II
software. For details, refer to the Introduction to the Quartus II Software manual.

■ Building simple systems with SOPC Builder. For details, refer to the Introduction to
SOPC Builder chapter in volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder Components
chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon® interfaces. You do not need extensive knowledge of
the Avalon interfaces, such as transfer types or signal timing. However, to create
your own custom memory subsystem with external memories, you need to
understand the Avalon Memory-Mapped (Avalon-MM) interface. For details, refer
to the System Interconnect Fabric for Memory-Mapped Interfaces chapter in volume 4
of the Quartus II Handbook and the Avalon Interface Specifications.

f Refer to the Memory System Design chapter in the Embedded Design Handbook for
additional information on the efficient use of memories in SOPC Builder systems.

Example Design
This chapter demonstrates the process for building a system that contains one of each
type of memory as shown in Figure 9–1. Each section of the chapter builds on
previous sections, culminating in a complete system.

QII54006-9.1.0

http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf

9–2 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Example Design

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

By following the example design in this chapter, you learn how to create a complete
customized memory subsystem for your system or design. The memory components
in the example design are independent. For a custom system, you only need to
instantiate the memories you need. You can also create multiple instantiations of the
same type of memory, limited only by on-chip memory resources or FPGA pins to
interface with off-chip memory devices.

Example Design Structure
Figure 9–1 shows a block diagram of the example system.

Figure 9–1. Example Design Block Diagram

System Interconnect Fabric

8M x 8 bit
CFI

Flash
Memory Chip

S

4M x 32 bit
SDRAM

Memory Chip

EPCS
Serial

Configuration
Device

256K x 32 bit
SRAM

Memory
Chip

S

SDRAM
Interface

EPCS
Interface

SDRAM
Controller

S

EPCS
Device

Controller
Core

1K x 32 bit
On-chip

RAM

S

Altera FPGA

JTAG
UART

S

SOPC Builder System

Avalon-MM
Tristate Bridge

M

S

Nios II
Processor

MM JT
A

G
 D

eb
ug

M
od

ul
e

JTAG
Controller

JTAG Interface

Data Instr.

S

Avalon-MM Master Port

Avalon-MM Slave Port

M

S

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–3
Hardware and Software Requirements

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

In Figure 9–1, all blocks shown below the system interconnect fabric comprise the
memory subsystem. For demonstration purposes, this system uses a Nios® II
processor core to master the memory devices, and a JTAG UART core to communicate
with the host PC. However, the memory subsystem could be connected to any master
component, located either on-chip or off-chip.

Example Design Starting Point
The example design consists of the following elements:

■ A Quartus II project named quartus2_project. A Block Design File (.bdf) named
toplevel_design. toplevel_design is the top-level design file for quartus2_project.
toplevel_design instantiates the SOPC Builder system, as well as other pins and
modules required to complete the design.

■ An SOPC Builder system named sopc_memory_system. sopc_memory_system is
a subdesign of toplevel_design. sopc_memory_system instantiates the memory
components and other SOPC Builder components required for a functioning SOPC
Builder system.

This discussion assumes that the quartus2_project already exists,
sopc_memory_system has been started in SOPC Builder, and the Nios II core and the
JTAG UART core are already instantiated. This example design uses the default
settings for the Nios II core and the JTAG UART core; these settings do not affect the
rest of the memory subsystem.

Hardware and Software Requirements
To build a memory subsystem similar to the example design in this chapter, you need
the following tools:

■ Quartus II software version 5.0 or higher—Both Quartus II Web Edition and the
fully licensed version support this design flow.

■ Nios II Embedded Design Suite (EDS) version 5.0 or higher—Both the evaluation
edition and the fully licensed version support this design flow. The Nios II EDS
provides the SOPC Builder memory components described in this chapter. It also
provides several complete example designs which demonstrate a variety of
memory components instantiated in working systems.

1 The Quartus II Web Edition software and the Nios II EDS, Evaluation Edition are
available free for download from the Altera® website. Visit
www.altera.com/download. Also, for further reference, see the Design Examples.

This chapter does not describe downloading and verifying a working system in
hardware. Therefore, there are no hardware requirements for the completion of this
chapter. However, the example memory subsystem has been tested in hardware.

http://www.altera.com/download
http://www.altera.com/support/examples/nios2/exm-nios2.html

9–4 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Design Flow

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Design Flow
This section describes the design flow for building memory subsystems with SOPC
Builder, which is similar to other SOPC Builder designs. After starting a Quartus II
project and an SOPC Builder system, there are five steps to completing the system, as
shown in Figure 9–2:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3. Simulation

4. Quartus II project-level design

5. Board-level design

Component-Level Design in SOPC Builder
In this step, you specify which memory components to use and configure each
component to meet the needs of the system. All memory components are available
from the Memory and Memory Controllers category in the list of available
components in SOPC Builder.

SOPC Builder System-Level Design
In this step, you connect components together and configure the SOPC Builder system
as a whole. Like the process of adding non-memory SOPC Builder components, you
use the System Contents tab to do the following:

■ Rename the component instance (optional).

Figure 9–2. Design Flow

Start a
Quartus II

project

Start an
SOPC
Builder
system

Add memory
component 1

Add memory
component 2

Add memory
component N

Add other
components

Connect
components

&
generate
SOPC
Builder
system

Simulation

Connect SOPC
Builder system

module to
Quartus II project

Component-Level
Design

SOPC Builder
system-level

design

Assign FPGA
pins & compile

Quartus II
project

Connect
FPGA pins
to memory

chips

Board-Level DesignQuartus II Project
Level Design

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–5
Design Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

■ Connect the memory component to masters in the system. Each memory
component must be connected to at least one master.

■ Assign a base address.

■ Assign a clock domain. A memory component can operate on the same or
different clock domain as the master(s) that access it.

Simulation
In this step, you verify the functionality of the SOPC Builder system. For systems with
memories, this step depends on simulation models for each of the memory
components, in addition to the system testbench generated by SOPC Builder. Refer to
“Simulation Considerations” for more information.

Quartus II Project-Level Design
In this step, you integrate the SOPC Builder system with the rest of the Quartus II
project, which includes connecting the SOPC Builder system to FPGA pins,
connecting wiring the SOPC Builder system to other design blocks (such as other
HDL modules) in the Quartus II project.

1 In the example design in this chapter, the SOPC Builder system comprises the entire
FPGA design. There are no other design blocks in the Quartus II project.

Board-Level Design
In this step, you connect the physical FPGA pins to memory devices on the board. If
the SOPC Builder system interfaces with off-chip memory devices, you must make
board-level design choices.

Simulation Considerations
SOPC Builder can automatically generate a testbench for RTL simulation of the
system using ModelSim®. This testbench instantiates the SOPC Builder system and
can also instantiate memory models for external memory components. The testbench
is plain text HDL, located at the bottom of the top-level SOPC Builder system HDL
design file. To explore the contents of the auto-generated testbench, open the top-level
HDL file and search on keyword test_bench.

1 Beginning in ModelSim SE 6.2, design optimization is on by default. Optimization
may eliminate design nodes which are referenced in your wave display file. In this
case, the you cannot display the waveforms. You can ignore this failure if you want to
run an optimized simulation. However, if you want to see the simulation signals, you
can disable the optimized compile by setting VoptFlow = 0 in your modelsim.ini
file. The modelsim.ini is stored in the top-level directory of the ModelSim installation.

Generic Memory Models
The memory components described in this chapter, except for the SRAM, provide
generic simulation models. Therefore, it is very easy to simulate an SOPC Builder
system with memory components immediately after generating the system.

9–6 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
On-Chip RAM and ROM

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The generic memory models store memory initialization files, such as Data (.dat) and
Hexadecimal (.hex) files, in a directory named <Quartus II project directory>/<SOPC
Builder system name>_sim. When generating a new system, SOPC Builder creates
empty initialization files. You can manually edit these files to provide custom memory
initialization contents for simulation.

1 For designs that include a Nios II processor, you can create memory initialization files
using the Nios II software build tools. For more information, refer to Creating Memory
Initialization Files in the Nios II Software Developer’s Handbook – Studio Edition.

Vendor-Specific Memory Models
You can also manually connect vendor-specific memory models to the SOPC Builder
system. In this case, you must manually edit the testbench and connect the vendor
memory model. You might also need to edit the vendor memory model slightly for
time delays. The SOPC Builder testbench assumes zero delay.

On-Chip RAM and ROM
Altera FPGAs include on-chip memory blocks that can be used as RAM or ROM in
SOPC Builder systems. On-chip memory has the following benefits for SOPC Builder
systems:

■ On-chip memory has fast access time, compared to off-chip memory.

■ SOPC Builder automatically instantiates on-chip memory inside the SOPC Builder
system, so you do not have to make any manual connections.

■ Certain memory blocks can have initialized contents when the FPGA powers up.
This feature is useful, for example, for storing data constants or processor boot
code.

■ On-chip memories support dual port accesses, allowing two master to access the
same memory concurrently.

Component-Level Design for On-Chip Memory
In SOPC Builder you instantiate on-chip memory by clicking On-chip Memory (RAM
or ROM) from the list of available components. The configuration wizard for the
On-chip Memory (RAM or ROM) component has the following options: Memory
type, Size, and Read latency.

Memory Type
The Memory type options define the structure of the on-chip memory:

■ RAM (writable)—This setting creates a readable and writable memory.

■ ROM (read only)—This setting creates a read-only memory.

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–7
On-Chip RAM and ROM

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

■ Dual-port access—This setting creates a memory component with two slaves,
which allows two masters to access the memory simultaneously.

c If two masters access the same address simultaneously in a dual-port
memory undefined results will occur. (Concurrent accesses are only a
problem for two writes. A read and write to the same location will read out
the old data and store the new data.)

■ Block type—This setting directs the Quartus II software to use a specific type of
memory block when fitting the on-chip memory in the FPGA.

c The MRAM blocks do not allow the contents to be initialized during power
up. The M512s memory type does not support dual-port mode where both
ports support both reads and writes.

Because of the constraints on some memory types, it is frequently best to use the
Auto setting. Auto allows the Quartus II software to choose a type and the other
settings direct the Quartus II software to select a particular type.

Size
The Size options define the size and width of the memory.

■ Data width—This setting determines the data width of the memory. The available
choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Assign Data width to match the
width of the master that accesses this memory the most frequently or has the most
critical throughput requirements. For example, if you are connecting the on-chip
memory to the data master of a Nios II processor, you should set the data width of
the on-chip memory to 32 bits, the same as the data-width of the Nios II data
master. Otherwise, the access latency could be longer than one cycle because the
Avalon interconnect fabric performs width translation.

■ Total memory size—This setting determines the total size of the on-chip memory
block. The total memory size must be less than the available memory in the target
FPGA.

Read Latency
On-chip memory components use synchronous, pipelined Avalon-MM slaves.
Pipelined access improves fMAX performance, but also adds latency cycles when
reading the memory. The Read latency option allows you to specify either one or two
cycles of read latency required to access data. If the Dual-port access setting is turned
on, you can specify a different read latency for each slave. When you have dual-port
memory in your system you can specify different clock frequencies for the ports. You
specify this on the System Contents tab in SOPC Builder.

Non-Default Memory Initialization
For ROM memories, you can specify your own initialization file by selecting Enable
non-default initialization file. This option allows the file you specify to be used to
initialize the ROM in place of the default initialization file created by SOPC Builder.

9–8 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
On-Chip RAM and ROM

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Enable In-System Memory Content Editor Feature
Enables a JTAG interface used to read and write to the RAM while it is operating. You
can use this interface to update or read the contents of the memory from your host PC.

f For more information refer to In-System Updating of Memory and Constants in volume 3
of the Quartus II Handbook.

SOPC Builder System-Level Design for On-Chip Memory
There are few SOPC Builder system-level design considerations for on-chip
memories. See “SOPC Builder System-Level Design” on page 9–4.

When generating a new system, SOPC Builder creates a blank initialization file in the
Quartus II project directory for each on-chip memory that can power up with
initialized contents. The name of this file is <name of memory component>.hex.

Simulation for On-Chip Memory
At system generation time, SOPC Builder generates a simulation model for the
on-chip memory. This model is embedded inside the SOPC Builder system, and there
are no user-configurable options for the simulation testbench.

You can provide memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory component name>.dat.

Quartus II Project-Level Design for On-Chip Memory
The on-chip memory is embedded inside the SOPC Builder system, and there are no
signals to connect to the Quartus II project.

To provide memory initialization contents, you must fill in the file <name of memory
component>.hex. The Quartus II software recognizes this file during design
compilation and incorporates the contents into the configuration files for the FPGA.

1 If your design includes a Nios II processor, you can create memory initialization files
using the Nios II software build tools. For more information, refer to Creating Memory
Initialization Files in the Nios II Software Developer’s Handbook – Studio. For the memory
to be initialized, you then must compile the hardware in the Quartus II software for
the SRAM Object File (.sof) to pick up the memory initialization files. All memory
types with the exception of MRAMs support this feature.

Board-Level Design for On-Chip Memory
The on-chip memory is embedded inside the SOPC Builder system, and there is
nothing to connect at the board level.

Example Design with On-Chip Memory
This section demonstrates adding a 4 KByte on-chip RAM to the example design. This
memory uses a single slave interface with a read latency of one cycle.

For demonstration purposes, Figure 9–3 shows the result of generating the SOPC
Builder system at this stage. (In a normal design flow, you generate the system only
after adding all system components.)

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–9
EPCS Serial Configuration Device

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Because the on-chip memory is contained entirely within the SOPC Builder system,
sopc_memory_system has no I/O signals associated with onchip_ram. Therefore,
you do not need to make any Quartus II project connections or assignments for the
on-chip RAM, and there are no board-level considerations.

EPCS Serial Configuration Device
Many systems use an Altera EPCS serial configuration device to configure the FPGA.
Altera provides the EPCS device controller core, which allows SOPC Builder systems
to access the memory contents of the EPCS device.

This feature provides flexible design options:

■ The FPGA design can reprogram its own configuration memory, providing a
mechanism for remote upgrades.

■ The FPGA design can use leftover space in the EPCS as nonvolatile storage.

Physically, the EPCS device is a serial flash memory device, which has slow access
time. Altera provides software drivers to control the EPCS core for the Nios II
processor only.

f For further details about the features and usage of the EPCS device controller core,
refer to the EPCS Device Controller Core chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device
In SOPC Builder you instantiate an EPCS controller core by adding an EPCS Serial
Flash Controller component. There are no settings for this component.

f For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device
There are two SOPC Builder system-level design considerations for EPCS devices:

■ Assign a base address.

■ Set the IRQ connection to NC (no connect). The EPCS controller hardware is
capable of generating an IRQ. However, the Nios II driver software does not use
this IRQ, and therefore you can leave the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of the core is
always named epcs_controller.

Figure 9–3. SOPC Builder System with On-Chip Memory

http://www.altera.com/literature/hb/nios2/n2cpu_nii51012.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

9–10 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
EPCS Serial Configuration Device

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

If you want to store Nios II code in the EPCS memory, point the Nios II reset address
at the EPCS controller. Inside the EPCS controller is a bootloader, which Nios II runs
after it leaves reset, that copies the code from the EPCS flash into main memory.

Simulation for an EPCS Device
The EPCS controller core provides a limited simulation model:

■ Functional simulation does not include the FPGA configuration process, and
therefore the EPCS controller does not model the configuration features.

■ The simulation model does not support read and write operations to the flash
region of the EPCS device.

■ A Nios II processor can boot from the EPCS device in simulation. However, the
boot loader code is different during simulation. The EPCS controller boot loader
code assumes that all other memory simulation models are initialized, and
therefore the boot load process is unnecessary. During simulation, the boot loader
simply forces the Nios II processor to jump to start, skipping the boot load process.

Verification in the hardware is the best way to test features related to the EPCS device.

Quartus II Project-Level Design for an EPCS Device
If you use a device from Cyclone III, Stratix III, or Stratix IV families, you must
connect the EPCS pins manually.

For earlier device families, however, the Quartus II software automatically connects
the EPCS controller core in the SOPC Builder system to the dedicated configuration
pins on the FPGA. This connection is invisible to you. Therefore, there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device
You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device
This section demonstrates adding an EPCS device controller core to the example
design.

For demonstration purposes only, Figure 9–4 shows the result of generating the SOPC
Builder system at this stage.

Figure 9–4. SOPC Builder System with EPCS Device

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–11
SDR SDRAM

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Because the Quartus II software automatically connects the EPCS controller core to
the FPGA pins, the SOPC Builder system has no I/O signals associated with
epcs_controller. Therefore, you do not need to make any connections or assignments
between the Quartus II project and the EPCS controller core.

f This chapter does not cover the details of configuration using the EPCS device. For
further information, refer to the Altera Configuration Handbook.

SDR SDRAM
Altera provides a free SDR SDRAM controller core, which allows you to use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDR SDRAM
controller core is necessary, because Avalon-MM signals cannot describe the complex
interface on an SDRAM device. The SDR SDRAM controller acts as a bridge between
the system interconnect fabric and the pins on an SDRAM device. The SDR SDRAM
controller can operate in excess of 100 MHz.

SDR SDRAM is a single data rate SDR SDRAM. Synchronous design allows precise
cycle control. With the use of system clock, I/O transactions are possible on every
clock cycle. Operating over a range of frequencies, programmable latencies allow the
same device to be useful for a variety of high bandwidth, high performance memory
system applications.

f For further details about the features and usage of the SDR SDRAM controller core,
refer to the SDR-SDRAM Controller Core with Avalon Interface chapter in volume 5 of
the Quartus II Handbook.

Component-Level Design for SDRAM
The choice of SDRAM device(s) and the configuration of the device(s) on the board
heavily influence the component-level design for the SDRAM controller. Typically, the
component-level design task involves parameterizing the SDRAM controller core to
match the SDRAM device(s) on the board. You must specify the structure (address
width, data width, number of devices, number of banks, and so on) and the timing
specifications of the device(s) on the board.

f For complete details about configuration options for the SDRAM controller core, refer
to the SDRAM Controller Core chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM
You can select the SDRAM controller in the SOPC Builder System Contents tab. Like
the on-chip memory, there are few SOPC Builder system-level design considerations
for SDRAM. Refer to “SOPC Builder System-Level Design” on page 9–4.

http://www.altera.com/literature/lit-config.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=Configuration%20Handbook
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf

9–12 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
SDR SDRAM

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Simulation for SDRAM
At system generation time, SOPC Builder can generate a generic SDRAM simulation
model and include the model in the system testbench. To use the generic SDRAM
simulation model, you must turn on a setting in the SDRAM controller configuration
wizard. You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternatively, you can provide a specific vendor memory model for the SDRAM. In
this case, you must manually wire up the vendor memory model in the system
testbench.

f For further details, refer to “Simulation Considerations” on page 9–5 and the SDRAM
Controller Core chapter in volume 5 of the Quartus II Handbook.

Quartus II Project-Level Design for SDRAM
SOPC Builder generates a SOPC Builder system with top-level I/O signals associated
with the SDRAM controller. In the Quartus II project, you must connect these I/O
signals to FPGA pins, which connect to the SDRAM device on the board. In addition,
you might have to accommodate clock skew issues.

Connecting and Assigning the SDRAM-Related Pins
After generating the system with SOPC Builder, you can find the names and
directions of the I/O signals in the top-level HDL file for the SOPC Builder system.
The file has the name

<Quartus II project directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these signals in the
top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level Quartus II design to
match the target board. Depending on the performance requirements for the design,
you might have to assign FPGA pins carefully to achieve the required performance.

Accommodating Clock Skew
As SDRAM frequency increases, so does the possibility that you must accommodate
skew between the SDRAM clock and I/O signals. This issue affects all synchronous
memory devices, including SDRAM. To accommodate clock skew, you can instantiate
an ALTPLL megafunction in the top-level Quartus II design to create a phase-locked
loop (PLL) clock output. You use a phase-shifted PLL output to drive the SDRAM
clock and reduce clock-skew issues. The exact settings for the ALTPLL megafunction
depend on your target hardware. You must experiment to tune the phase shift to
match the board.

f For details, refer to the ALTPLL Megafunction User Guide.

http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–13
SDR SDRAM

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Board-Level Design for SDRAM
Memory requirements largely dictate the board-level configuration of the SDRAM
device or devices. The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and multiple
devices.

Example Design with SDR SDRAM
This section demonstrates adding a 16-Mbyte SDRAM device to the example design,
using the SDRAM Controller configuration wizard. This SDRAM is a single device
with 32-bit data.

For demonstration purposes, Figure 9–5 shows the result of generating the SOPC
Builder system at this stage, and connecting it in toplevel_design.bdf.

After generating the system, the top-level SOPC Builder system file
sopc_memory_system.v contains the list of SDRAM-related I/O signals that must be
connected to FPGA pins. Example 9–1 shows these pins.

As shown in Figure 9–5, toplevel_design.bdf uses an instance of sdram_pll to
phase shift the SDRAM clock by –63 degrees. (Degrees are relative to clock frequency.
If you change the clock speed you must change the phase shift. You should
parameterize the PLL with -3.5 ns, because the compensation is for the round-trip
delays and clock to I/O delays.)

Figure 9–5. toplevel_design.bdf with SDRAM

Example 9–1. I/O Signals Connected to FPGA Pins

output [11: 0] zs_addr_from_the_sdram;
output [1: 0] zs_ba_from_the_sdram;
output zs_cas_n_from_the_sdram;
output zs_cke_from_the_sdram;
output zs_cs_n_from_the_sdram;
inout [31: 0] zs_dq_to_and_from_the_sdram;
output [3: 0] zs_dqm_from_the_sdram;
output zs_ras_n_from_the_sdram;
output zs_we_n_from_the_sdram;

9–14 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
DDR SDRAM

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

toplevel_design.bdf also uses a subdesign delay_reset_block to insert a delay on
the reset_n signal for the SOPC Builder system. This delay is necessary to allow the
PLL output to stabilize before the SOPC Builder system begins operating.

Figure 9–6 shows pin assignments in the Quartus II Assignment Editor for some of
the SDRAM pins. The correct pin assignments depend on the target board.

DDR SDRAM
You can use double-data rate (DDR) SDRAM devices for a broad range of
applications, such as embedded processor systems, image processing, storage,
communications, and networking. In addition, the universal adoption of DDR
SDRAM in PCs makes DDR SDRAM memory a solution for high-bandwidth
applications. DDR SDRAM is a <2n> prefetch architecture where the internal data bus
is twice the width of the external data bus and data transfers occur on both clock
edges. It uses a strobe, DQS, which is associated with a group of data pins (DQ) for read
and write operations. Both the DQS and DQ ports are bidirectional. Address ports are
shared for write and read operations.

f Refer to the DDR SDRAM literature on the Altera website for further details on the
use of DDR SDRAM memory, including AN 517: Using High-Performance DDR, DDR2,
and DDR3 SDRAM With SOPC Builder.

DDR2 SDRAM
Double-data rate DDR2 SDRAM is the second generation of double-data rate DDR
SDRAM technology, with features such as lower power consumption, higher data
bandwidth, enhanced signal quality, and on-die termination. DDR2 SDRAM brings
higher memory performance to a broad range of applications, such as PCs, embedded
processor systems, image processing, storage, communications, and networking. It is
a <4n> pre-fetch architecture with two data transfers per clock cycle. The memory
uses a strobe (DQS) associated with a group of data pins (DQ) for read and write
operations. Both the DQ and DQS ports are bidirectional. Address ports are shared for
write and read operations.

Figure 9–6. Pin Assignments for SDRAM

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–15
Off-Chip SRAM and Flash Memory

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

f For more information refer to the DDR and DDR2 SDRAM Controller Compiler User
Guide, the DDR2 SDRAM High-Performance Controller User Guide, and AN 517: Using
High-Performance DDR, DDR2, and DDR3 SDRAM With SOPC Builder.

Off-Chip SRAM and Flash Memory
SOPC Builder systems can directly access many off-chip RAM and ROM devices,
without a controller core to drive the off-chip memory. Avalon-MM signals can
describe the interfaces on many standard memories, such as SRAM and flash
memory. I/O signals on the SOPC Builder system can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip memory, off-chip
memory provides the following benefits:

■ Off-chip memory cost-per-bit is less expensive than on-chip memory resources.

■ The size of off-chip memory is bounded only by the 32-bit Avalon-MM address
space.

■ Off-chip ROM, such as flash memory, can be used for bulk storage of nonvolatile
data.

■ Multiple off-chip RAM and ROM memories can share address and data pins to
conserve FPGA I/O resources at the expense of throughput.

Adding off-chip memories to an SOPC Builder system also requires the Avalon-MM
Tristate Bridge component.

Component-Level Design for SRAM and Flash Memory
There are several ways to instantiate an interface to an off-chip memory device:

■ For common flash interface (CFI) flash memory devices, add the Flash Memory
(Common Flash Interface) component in SOPC Builder.

■ For Altera development boards, Altera provides SOPC Builder components that
interface to the specific devices on each development board. For example, the
Nios II EDS includes the components Cypress CY7C1380C SSRAM and
IDT71V416 SRAM, which appear on Nios II development boards.

f For further details about the features and usage of the SSRAM controller core, refer to
the Nios Development Board Cyclone II Edition Reference Manual or Nios Development
Board Stratix II Edition.

f For further details about the features and usage of the SDRAM controller core, refer to
the Building Memory Subsystems Using SOPC Builder chapter in volume 4 of the
Quartus II Handbook.

These components make it easy for you to create memory systems targeting Altera
development boards. However, these components target only the specific memory
device on the board; they do not work for different devices.

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/manual/mnl_nios2_board_stratixII_2s60_rohs.pdf?GSA_pos=9&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/manual/mnl_nios2_board_stratixII_2s60_rohs.pdf?GSA_pos=9&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/manual/mnl_nios2_board_cycloneII_2c35.pdf?GSA_pos=10&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf

9–16 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Off-Chip SRAM and Flash Memory

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

■ For general memory devices, RAM or ROM, you can create a custom interface to
the device with the SOPC Builder component editor. Using the component editor,
you define the I/O pins on the memory device and the timing requirements of the
pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge component.
Multiple off-chip memories can connect to a single tristate bridge, in order to share
pins such as the off-chip address bus.

Avalon-MM Tristate Bridge
A tristate bridge connects off-chip devices to the system interconnect fabric. The
tristate bridge creates I/O signals for the SOPC Builder system, which you must
connect to FPGA pins in the top-level Quartus II project.

The tristate bridge creates address and data pins that can be shared by multiple
off-chip devices. This feature lets you conserve FPGA pins when connecting the
FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

■ The off-chip device has bidirectional data pins.

■ Multiple off-chip devices share the address, data, or both address and data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the Avalon-MM
Tristate Bridge component. The Avalon-MM Tristate Bridge configuration wizard has
a single option: To register incoming (to the FPGA) signals or not.

■ Registered—This setting adds registers to all FPGA input pins associated with the
tristate bridge (outputs from the memory device).

■ Not Registered—This setting does not add registers between the memory device
output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output signals from
the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register delay from
the memory device to the FPGA, resulting in higher system fMAX performance.
However, the registers add one additional cycle of latency for Avalon-MM masters
accessing memory connected to the tristate bridge in each direction. The registers do
not affect the timing (setup, hold, and wait) of the transfers from the perspective of the
memory device.

f For details about the Avalon-MM tristate interface, refer to the Avalon Interface
Specifications.

Flash Memory
In SOPC Builder, you instantiate an interface to CFI flash memory by adding a Flash
Memory (Common Flash Interface) component. If the flash memory is not CFI
compliant, you must create a custom interface to the device with the SOPC Builder
component editor.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–17
Off-Chip SRAM and Flash Memory

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

The choice of flash devices and the configuration of the devices on the board help
determine the component-level design for the flash memory configuration wizard.
Typically, the component-level design task involves parameterizing the flash memory
interface to match the devices on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address width and
data width) and the timing specifications of the flash memory devices.

f For details about features and usage, refer to the Common Flash Interface Controller Core
chapter in volume 5 of the Quartus II Handbook.

For an example of instantiating the Flash Memory (Common Flash Interface)
component in an SOPC Builder system, see “Example Design with SRAM and Flash
Memory” on page 9–20.

SRAM
To instantiate an interface to off-chip SRAM:

1. Create a new component with the SOPC Builder component editor that defines the
interface.

2. Instantiate the new interface component in the SOPC Builder system.

The choice of RAM devices and the configuration of the devices on the board
determine how you create the interface component. The component-level design task
involves entering parameters into the component editor to match the devices on the
board.

f For details about using the component editor, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

SOPC Builder System-Level Design for SRAM and Flash Memory
In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge has two
ports:

■ Avalon-MM slave—This port faces the on-chip logic in the SOPC Builder system.
You connect this slave to on-chip masters in the system.

■ Avalon-MM tristate master—This port faces the off-chip memory devices. You
connect this master to the Avalon-MM tristate slaves on the interface components
for off-chip memories.

You assign a clock to the Avalon-MM tristate bridge that determines the Avalon-MM
clock cycle time for off-chip devices connected to the tristate bridge.

You must assign base addresses to each off-chip memory. The Avalon-MM tristate
bridge does not have an address; it passes unmodified addresses from on-chip
masters to off-chip slaves.

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf

9–18 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Off-Chip SRAM and Flash Memory

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Simulation for SRAM and Flash Memory
The SOPC Builder output for simulation depends on the type of memory components
in the system:

■ Flash Memory (Common Flash Interface) component—This component provides
a generic simulation model. You can provide memory initialization contents for
simulation in the file <Quartus II project directory>/<SOPC Builder system
name>_sim/<Flash memory component name>.dat.

■ Custom memory interface created with the component editor—In this case, you
must manually connect the vendor simulation model to the system testbench.
SOPC Builder does not automatically connect simulation models for custom
memory components to the SOPC Builder system.

■ Altera-provided interfaces to memory devices—Altera provides simulation
models for these interface components. You can provide memory initialization
contents for simulation in the file <Quartus II project directory>/<SOPC Builder
system name>_sim/<Memory component name>.dat. Alternately, you can provide a
specific vendor simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system testbench.

For further details, see “Simulation Considerations” on page 9–5.

Quartus II Project-Level Design for SRAM and Flash Memory
SOPC Builder generates an SOPC Builder system with top-level I/O signals
associated with the tristate bridge and the memory interface components. In the
Quartus II project, you must connect the I/O signals to FPGA pins, which connect to
the memory devices on the board.

After generating the system with SOPC Builder, you can find the names and
directions of the I/O signals in the top-level HDL file for the SOPC Builder system.
The file has the name <Quartus II project directory>/<SOPC Builder system name>.v or
<Quartus II project directory>/<SOPC Builder system name>.vhd. You must connect
these signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level Quartus II design to
match the target board. Depending on the performance requirements for the design,
you might have to assign FPGA pins carefully to achieve timing.

SOPC Builder inserts synthesis directives in the top-level SOPC Builder system HDL
to assist the Quartus II fitter with signals that interface with off-chip devices.
Example 9–2 illustrates a directive. Using FAST_OUTPUT_REGISTER=ON places the
output register in the IO block, reducing the off-chip delay.

f For more information about improving IO timing refer to the I/O Specifications
section in The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook and the Assignment Editor chapter in volume 2 of the Quartus II
Handbook.

Example 9–2. Synthesis Directive

reg [22: 0] tri_state_bridge_address /* synthesis
ALTERA_ATTRIBUTE = "FAST_OUTPUT_REGISTER=ON" */;

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–19
Off-Chip SRAM and Flash Memory

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Board-Level Design for SRAM and Flash Memory
Memory requirements determine the board-level configuration of the SRAM and
flash memory device or devices. You can lay out memory devices in any
configuration, as long as the resulting interface can be described with Avalon-MM
signals.

c Special consideration is required when connecting the Avalon-MM address signal to
the address pins on the memory devices.

The SOPC Builder system presents the smallest number of address lines required to
access the largest off-chip memory, which is usually less than 32 address bits. Not all
memory devices connect to all address lines.

Aligning the Least-Significant Address Bits
The Avalon-MM tristate address signal always presents a byte address. Each
address location in many memory devices contains more than one byte of data. In this
case, the memory device must ignore one or more of the least-significant Avalon-MM
address lines. For example, a 16-bit memory device must ignore Avalon-MM
address[0] (which is a byte address), and connect Avalon-MM address[1] to the
least-significant address line.

Table 9–1 shows the relationship between Avalon-MM address lines and off-chip
address pins for all possible Avalon-MM data widths.

c You must ensure that the address bits are properly assigned when mixed width
components are connecting to the tristate bridge. Failing to ensure that the
components are properly aligned may result in a board respin.

Table 9–1. Connecting the Least-Significant Avalon-MM Address Line

Avalon-MM Address Line

Address Line Connecting to Memory Device

8-bit Memory 16-bit Memory 32-bit Memory 64-bit Memory 128-bit Memory

address[0] A0 No connect No connect No connect No connect

address[1] A1 A0 No connect No connect No connect

address[2] A2 A1 A0 No connect No connect

address[3] A3 A2 A1 A0 No connect

address[4] A4 A3 A2 A1 A0

address[5] A5 A4 A3 A2 A1

address[6] A6 A5 A4 A3 A2

address[7] A7 A6 A5 A4 A3

address[8] A8 A7 A6 A5 A4

address[9] A9 A8 A7 A6 A5

address[10] A10 A9 A8 A7 A6

...

9–20 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Off-Chip SRAM and Flash Memory

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Aligning the Most-Significant Address Bits
The Avalon-MM address signal contains enough address lines for the largest
memory connected to the tristate bridge. Smaller off-chip memories might not use all
of the most-significant address lines as Figure 9–7 illustrates.

Example Design with SRAM and Flash Memory
This section demonstrates adding a 1-MByte SRAM and an 8-MByte flash memory to
the example design. These memory devices connect to the system interconnect fabric
through an Avalon-MM tristate bridge.

Adding the Avalon-MM Tristate Bridge
In the Avalon-MM Tristate Bridge configuration wizard, turn on the Registered
inputs and outputs option to maximize system fMAX, which increases the read latency
by two for both the SRAM and flash memory.

Adding the Flash Memory Interface
The flash memory is 8M × 8-bit, which requires 23 address bits and 8 data bits.
Table 9–2 gives the Flash Memory (Common Flash Interface) settings for the example
design.

Figure 9–7. Connecting a Tristate Bridge to Components with Different Address Widths and Word Sizes

data [7:0]

addr[19:0]

CEn

Parallel Flash
(8-bit word)

CEn

A[19:0]

D[7:0]

data [15:0]

addr[20:1]

CEn

Ethernet
 (16-bit word)

Tristate Bridge

PCB

CEn

A[19:0]

D[15:0]

data [31:0]

addr[26:2]

CEn

SSRAM
(32-bit word)

CEn

A[24:0]

D[31:0]

Nios II Processor

A[31:0]

D[31:0]

DMA Controller

A[26:0]

D[31:0]

A[26:0]

D[31:0]

FPGA

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–21
Off-Chip SRAM and Flash Memory

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Adding the SRAM Interface
The SRAM device is 256K × 32-bit, which requires 18 word address bits and 32 data
bits. The example design uses a custom memory interface created with the SOPC
Builder component editor.

SOPC Builder System Contents Tab
Figure 9–8 shows the SOPC Builder system after adding the Tristate bridge and
memory interface components, and configuring them appropriately on the System
Contents tab. Figure 9–8 represents the complete example design in SOPC Builder.

After generating the system, the top-level SOPC Builder system file
sopc_memory_system.v contains the list of I/O signals for SRAM and flash memory
that must be connected to FPGA pins, as shown in Example 9–3.

Table 9–2. Flash Memory Interface (CFI)

Parameter Value

Attributes

Presets AMD29LV065D12R

Address Width (bits) 23

Data Width (bits) 8

Timing

Setup 40

Wait 160

Hold 40

Units ns

Figure 9–8. SOPC Builder System with SRAM and Flash Memory

9–22 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Off-Chip SRAM and Flash Memory

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The Avalon-MM tristate bridge signals that can be shared are named after the instance
of the tristate bridge component, such as tri_state_bridge_data[31:0].

Connecting and Assigning Pins in the Quartus II Project
Figure 9–9 shows the result of generating the SOPC Builder system for the complete
example design.

Figure 9–10 shows the pin assignments in the Quartus II Assignment Editor for some
of the SRAM and flash memory pins. The correct pin assignments depend on the
target board.

Example 9–3. I/O Signals for SRAM and Flash Memory

output address_to_the_ext_flash[23..0];
output address to_the_ext_ram[19..0];
output be_n_to_the_ext_ram[3..0];
output read_n_to_the_ext_flash;
output read_n_to_the_ext_ram;
output read_n_to_the_ext_ram;
output select_n_to_the_ext_flash;
output select_n_to_the_ext_ram;
bidirectional tristate_bridge_data [31..0]
output write_n_to_the_ext_flash;

output write_n_to_the_ext_ram;

Figure 9–9. Top Level System with SRAM and Flash Memory

Figure 9–10. Pin Assignments for SRAM and Flash Memory

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–23
Off-Chip SRAM and Flash Memory

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Connecting FPGA Pins to Devices on the Board
Table 9–3 shows the mapping between the Avalon-MM address lines and the address
pins on the SRAM and flash memory devices.

Table 9–3. FPGA Connections to SRAM and Flash Memory

Avalon-MM Address Line
Flash Address

(8M × 8-bit Data)
SRAM Address

(256K × 32-bit data)

tri_state_bridge_address[0] A0 No connect

tri_state_bridge_address[1] A1 No connect

tri_state_bridge_address[2] A2 A0

tri_state_bridge_address[3] A3 A1

tri_state_bridge_address[4] A4 A2

tri_state_bridge_address[5] A5 A3

tri_state_bridge_address[6] A6 A4

tri_state_bridge_address[7] A7 A5

tri_state_bridge_address[8] A8 A6

tri_state_bridge_address[9] A9 A7

tri_state_bridge_address[10] A10 A8

tri_state_bridge_address[11] A11 A9

tri_state_bridge_address[12] A12 A10

tri_state_bridge_address[13] A13 A11

tri_state_bridge_address[14] A14 A12

tri_state_bridge_address[15] A15 A13

tri_state_bridge_address[16] A16 A16

tri_state_bridge_address[17] A17 A15

tri_state_bridge_address[18] A18 A16

tri_state_bridge_address[19] A19 A17

tri_state_bridge_address[20] A20 No connect

tri_state_bridge_address[21] A21 No connect

tri_state_bridge_address[22] A22 No connect

9–24 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Document Revision History
Table 9–4 shows the revision history for this chapter.

Table 9–4. Document Revision History(Sheet 1 of 2)

Date and
Document

Version Changes Made Summary of Changes

November 2009,
v9.1.0

No changes from previous release. —

March 2009,
v9.0.0

Minor updates to clarify text. —

November 2008,
v8.1.1

■ Removed private comments —

November 2008,
v8.1.0

■ Added text explaining that starting in 6.2, ModelSim turns the
VoptFlow option on by default which may optimize away nodes
included in preset wave file.

■ Changed page size to 8.5 x 11 inches

—

May 2008, v8.0.0 ■ Chapter renumbered from 8 to 9.

■ Added brief new sections referencing DDR-2 and PFLs.

■ Updated references to Avalon Interface Specifications.

■ Updated Figures 9-1, 9-14, 9-15, 9-16, and 9-19 with new art.

—

October 2007,
v7.2.0

■ Corrected Figure 9–9 to show flash memory changed example
to use a PLL that is part of the SOPC Builder system, rather than
a Quartus II component. Added section showing
parameterization of PLL.

—

May 2007,

v7.1.0

■ Chapter 8 was previously chapter 9.

■ Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

■ Added section on Non-Default Memory Initialization.

■ On-chip Memory size, first parameter changed from Memory
Width to Data Width and widths of 256, 512 and 1024 were
added.

■ Corrected figure 8-18.

■ Added links to all referenced documents.

■ Removed discussions of reference designators for components
because they are no longer required by SOPC Builder.

■ Removed unnecessary screenshots.

Updated to reflect changes to
SOPC Builder for 7.1.0. SOPC
Builder and improve readability.

March 2007,

v7.0.0

No change from previous release. —

November 2006,

v6.1.0

No change from previous release. —

May 2006, v6.0.0 Chapter 9 was previously chapter 8. No change to content. —

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9–25
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

October 2005,
v5.1.0

Chapter 8 was previously chapter 6. No change to content. —

May 2005, v5.0.0 Initial release. —

Table 9–4. Document Revision History(Sheet 2 of 2)

Date and
Document

Version Changes Made Summary of Changes

9–26 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

10. SOPC Builder Component
Development Walkthrough

This chapter describes the parts of a custom SOPC Builder component and guides you
through the process of creating an example custom component, integrating it into a
system, and testing it in hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 10–2.

■ “Design Example: Checksum Hardware Accelerator” on page 10–4. This design
example shows you how to develop a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slaves.

■ “Sharing Components” on page 10–6. This section shows you how to use
components in other systems, or share them with other designers.

■ “System Information Files (.sopcinfo)” on page 10–7.

SOPC Builder Components and the Component Editor
An SOPC Builder component is usually composed of the following four types of files:

■ HDL files—define the component’s functionality as hardware.

■ Hardware Component Description File (_hw.tcl) —describes the SOPC Builder
related characteristics, such as interface behaviors. This file is created by the
component editor.

■ C-language files—define the component register map and driver software to allow
programs to control the component.

■ Software Component Description File (_sw.tcl) file—used by the software build
tools to use and compile the component driver code.

The component editor guides you through the creation of your component. You can
then instantiate the component in an SOPC Builder system and make connections in
the same manner as other SOPC Builder components. You can also share your
component with other designers.

For information about creating the _sw.tcl file, see the Developing Device Drivers for the
Hardware Abstraction Layer chapter in the Nios II Software Developer’s Handbook.

Prerequisites
This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the Introduction to SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder Components
chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

QII54007-9.1.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf

10–2 Chapter 10: SOPC Builder Component Development Walkthrough
Hardware and Software Requirements

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Hardware and Software Requirements
To use the design example in this chapter, in addition to the current version of the
Quartus II software and Nios II Embedded Design Suite, you must have the
following:

■ Design files for the example design—A hyperlink to the design files appears next
to the chapter, SOPC Builder Component Development Walkthrough, on the SOPC
Builder literature page.

■ Nios development board and an Altera® USB-BlasterTM download cable—You can
use either of the following Nios development boards:

■ Stratix® II Edition, RoHS compliant version

■ Cyclone® II Edition

If you do not have a development board, you can follow the hardware development
steps. You cannot download the complete system without a working board, but you
can simulate the system.

f You can download the Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition for free from the Altera Download Center at www.altera.com.

Component Development Flow
This section provides an overview of the development process for SOPC Builder
components.

Typical Design Steps
A typical development sequence for an SOPC Builder component includes the
following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine component interfaces, such as Avalon Memory-Mapped
(Avalon-MM), Avalon Streaming (Avalon-ST), interrupt, or other interfaces.

c. Determine the component clocking requirements; what interfaces are
synchronous to what clock inputs.

d. If you want a microprocessor to control the component, determine the interface
to software, such as the register map.

2. Implement the component in VHDL or Verilog HDL.

http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com

Chapter 10: SOPC Builder Component Development Walkthrough 10–3
Component Development Flow

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

3. Import the component into SOPC Builder.

a. Use the component editor to create a _hw.tcl file that describes the component.

b. Instantiate the component into an SOPC Builder system.

When importing an HDL file using the component editor, any parameter
definitions that are dependent upon other defined parameters cause an error.
Example 10–1 illustrates the declaration of a DEPTH parameter which is legal
Verilog HDL syntax in the Quartus II software, but causes an error in the
component editor syntax checker.

To avoid this error, use a localparam for the dependent parameter instead, as
shown in Example 10–2.

1 SOPC Builder only supports the VHDL port types std_logic and
std_logic_vector.

4. Develop the software driver, which can occur in parallel with the hardware
implementation. Create the component’s driver, including a C header file that
defines the hardware-level register map for software.

f For further details, see the Nios II Software Developer's Handbook.

5. Perform in-system testing, such as the following:

a. Test register-level accesses to the component in hardware or simulation using a
microprocessor, such as the Nios II processor.

b. Performance benchmarking.

Hardware Design
As with any logic design process, the development of SOPC Builder component
hardware begins after the specification phase. Creating the HDL design is often an
iterative process, as you write and verify the HDL logic against the specification.

The architecture of a typical component consists of the following functional blocks:

■ Task logic—Implements the component's fundamental function. The task logic is
design dependent.

■ Interface logic—Provides a standard way of providing data to or getting data from
the components and of controlling the functioning of the components.

f For further details, refer to the Avalon Interface Specifications.

Example 10–1. DEPTH Parameter

parameter WIDTH = 32;
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

Example 10–2. localparam Parameter

parameter WIDTH = 32;
localparam DEPTH = ((WIDTH == 32)?8:16);

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10–4 Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Figure 10–1 shows the top-level blocks of a checksum component, which includes
both Avalon-MM master and slaves.

f The work flow for developing SOPC Builder hardware, including how to decide upon
and implement the register map, is described in the Using the Nios II Software Build
Tools chapter in the Nios II Software Developer’s Handbook. Also, guidelines for
developing device drivers is described in the Developing Device Drivers for the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Design Example: Checksum Hardware Accelerator
Altera has provided a checksum hardware accelerator design example to demonstrate
the steps to create a component and instantiate it in a system. This design example is
available for download from the Altera literature website. Included in the compressed
download file is a readme.pdf that describes how to create and compile the hardware
design, and describes how to use the checksum hardware accelerator in your design.

You can use the checksum algorithm in network applications where data integrity
must be inspected by the receiving device. The checksum algorithm accumulates data
with end-round-carry summation, which means that the carry bit from the
accumulator is added to the least significant bit of the next input. After the data is
accumulated, you can use the result to verify the data integrity of the data buffer.
Because the checksum algorithm operates over a data buffer, you can implement it
more efficiently with a pipelined read master. A pipelined read master continuously
posts read transactions minimizing the effects of the memory read latency. The
checksum accelerator can read data and calculate the checksum result every clock
cycle, which you cannot do with a general purpose processor.

The checksum hardware accelerator requires information from a host processor such
as the buffer base address, buffer length, and various control signals. As a result, the
hardware accelerator exposes an Avalon-MM slave interface so that a host processor
can control the read master operation. The host processor also accesses the checksum
result from the slave interface. Each piece of information sent or read by the host
processor is accessed separately in the register file implemented with the slave
interface. For example, the status and control signals are implemented as separate
registers because they contain information used for different purposes and have
different access capabilities.

Hardware accelerators can operate in parallel with a host processor; consequently,
adding an interrupt sender interface to the hardware accelerator increases system
performance. While the accelerator is operating on a buffer, the host processor can
perform other tasks such as preparing another buffer for transmission. The interrupt
is asserted after the buffer checksum is calculated. The host processor can be
interrupted by the hardware accelerator to notify it that a checksum result has been
calculated. The host processor can then read the checksum value and clear the
interrupt by writing to the status register via the accelerator slave interface.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10–5
Design Example: Checksum Hardware Accelerator

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Software Design
If you want a microprocessor to control your component, you must provide software
files that define the software view of the component. At a minimum, you must define
the register map for each Avalon-MM slave that is accessible to a processor.

1 In the example checksum project, you can view an example of a software driver in the
directory <projectdir>/ip/checksum_accelerator, which is the top level folder of the
hardware and software for the custom checksum block.

Figure 10–1. Checksum Component with Avalon-MM Master and Slaves

Checksum Accelerator

Avalon-MM
Slave

Interface

irq

clk

reset

clk

reset

go
_s

tr
ob

e

re
ad

_a
dd

re
ss

[3
1.

.0
]

re
ad

_l
en

gt
h[

31
..0

]

transform_readdata[31..0]

transform_read

transform_data_available

transform_byte_lanes

checksum_result[15..0]

checksum_invert

checksum_clear
slave_byteenable[3..0]

slave_read

slave_readdata[31..0]

slave_write

slave_writedata[31..0]

slave_address[2..0]

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ricmaster_readdatavalid

master_waitrequest

master_byteenable[3..0]

master_read

master_readdata[31..0]

master_address[31..0]

Checksum
Transform

co
nt

ro
l_

irq

Avalon-MM
Master

Interface

Clock Input
Interface

Interrupt
Slave

Interface

10–6 Chapter 10: SOPC Builder Component Development Walkthrough
Sharing Components

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Software drivers abstract hardware details of the component so that software can
access the component at a high level. The driver functions provide the software an
API to access the hardware. The software requirements vary according to the needs of
the component. The most common types of routines initialize the hardware, read
data, and write data.

When developing software drivers, you should review the software files provided for
other ready-made components. The IP installer provides many components you can
use as reference. You can also view the <Nios II EDS install path>/components/
directory for examples.

f For details about writing drivers for the Nios II hardware abstraction layer (HAL),
refer to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook.

Verifying the Component
You can verify the component in incremental stages, as you complete more of the
design. You should first verify the hardware logic as a unit (which might consist of
multiple smaller stages of verification) and later verify the component in a system.

System Console
The system console is an interactive Tcl console available from within SOPC Builder
that provides you with read and write access to the debugging capabilities that are
available in your FPGA logic. You can use the system console to control and query the
state of the Nios II processor, issue Avalon transactions, board bring-up, and access
either JTAG UARTs or system level debug (SLD) nodes.

f For further details, refer to the System Console User Guide.

System-Level Verification
After you package a _hw.tcl file with the component editor, you can instantiate the
component in a system and verify the functionality of the overall SOPC Builder
system.

SOPC Builder provides support for system-level verification for HDL simulators such
as ModelSim®. SOPC Builder automatically produces a test bench for system-level
verification.

1 You can include a Nios II processor in your system to enhance simulation capabilities
during the verification phase. Even if your component has no relationship to the
Nios II processor, the auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

Sharing Components
When you create a component, component editor saves the _hw.tcl file in the same
directory as the top-level HDL file. Where appropriate, files referenced by the _hw.tcl
file are specified relative to the _hw.tcl file itself, so the files can easily be moved and
copied. To share a component, include it in your IP library.

http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10–7
System Information Files (.sopcinfo)

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

For more information about including components in an IP library refer to Finding
Components in SOPC Builder in Chapter 4: SOPC Builder Components in volume 4 of the
Quartus II Handbook.

System Information Files (.sopcinfo)
Every time SOPC Builder generates a system, a <mysystem>.sopcinfo is also
generated, which contains the following information:

■ SOPC Builder project, including:

■ Name and tool version

■ HDL language

■ Each module instantiated in the system, including:

■ Name and version

■ Where interface information was found on the disk, such as signal names and
types, interface properties, and clock domain mapping

■ Parameter names and values

■ Each connection, including:

■ Component and interface connections

■ Base address, Avalon-MM interfaces, IRQ number interfaces

■ Memory map as seen by each master in the system

1 The .sopcinfo file is a report file only, and cannot be edited with SOPC Builder.

http://www.altera.com/literature/hb/qts/qts_qii54004.pdf

10–8 Chapter 10: SOPC Builder Component Development Walkthrough
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Document Revision History
Table 10–1 shows the revision history for this chapter.

Table 10–1. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2009, v9.1.0 ■ Added statement that SOPC Builder only supports
the VHDL std_logic and std_logic_vector
port types.

March 2009, v9.0.0 Corrected direction of transform_data_available and
transform_byte_lanes signals in Figure 10–1 on
page 10–5.

One correction.

November 2008, v8.1.0 ■ Added reference to new search path for IP chapter 4
of this volume.

■ Correction direction of signals in Figure 10–1.

■ Changed page size to 8.5 x 11 inches.

One correction and one change
to reflect changes in underlying
software.

May 2008, v8.0.0 ■ Chapter renumbered from 9 to 10.

■ Removed discussion of the Checksum Design
example, which will now be in a readme.pdf file and
zipped with the rest of the design files.

■ Deleted references to Avalon Memory-Mapped and
Streaming Interface Specifications and changed to
Avalon Interface Specifications.

■ New Figure 9-1 and Table 9-1.

■ New section on .sopcinfo file.

Deleted example procedure.

October 2007, v7.2.0 ■ Updated instructions on how to develop components
to match new GUI.

—

May 2007,

v7.1.0

■ Changed example component from a pulse width
modulator with that only has an Avalon-MM slave
interface to a checksum master that includes both
Avalon-MM master and slave interfaces.

Changed the example design to
one with more practical
applications. Updated
instructions for the 7.1 release.

March 2007,
v7.0.0

■ No change from previous release. —

November 2006,
v6.1.0

■ Chapter 9 was previously chapter 10. No change to
content.

—

May 2006,
v6.0.0

■ Chapter 10 was previously chapter 9. No change to
content.

—

October 2005,
v5.1.0

■ Chapter 9 was previously chapter 7. No change to
content.

—

August 2005,
v5.0.1

■ Corrected Table 7-5. —

May 2005,
v5.0.0

■ No change from previous release. —

February 2005,
v1.0

■ Initial release. —

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Section III. Interconnect Components

This section provides information on Avalon® Memory-Mapped (Avalon-MM) and
Avalon Streaming (Avalon-ST) components that can be added to SOPC Builder
systems. The components described in these chapters help you to create and optimize
your SOPC Builder system. They are provided for free and can be used without a
license in any design targeting an Altera device.

This section includes the following chapters:

■ Chapter 11, Avalon Memory-Mapped Bridges

■ Chapter 12, Avalon Streaming Interconnect Components

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

III–2 Chapter :

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

11. Avalon Memory-Mapped Bridges

This chapter introduces Avalon® Memory-Mapped (Avalon-MM) bridges, and
describes the Avalon-MM bridge components provided by Altera® for use in SOPC
Builder systems.

You use bridges to control the topology of the generated SOPC Builder system.
Bridges are not end-points for data, but rather affect the way data is transported
between components. By inserting Avalon-MM bridges between masters and slaves,
you control system topology, which in turn affects the interconnect that SOPC Builder
generates. You can also use bridges to separate components in different clock domains
and to implement clock domain crossing logic. Manual control of the interconnect can
result in higher performance or lower logic utilization or both. Altera provides the
following Avalon-MM bridges:

■ “Avalon-MM Pipeline Bridge” on page 11–7

■ “Clock Crossing Bridge” on page 11–10

■ “Avalon-MM DDR Memory Half-Rate Bridge” on page 11–18

f For additional information on using bridges to optimize and control the topology of
SOPC Builder systems, refer to Avalon Memory-Mapped Design Optimizations in the
Embedded Design Handbook.

Structure of a Bridge
A bridge has one Avalon-MM slave and one Avalon-MM master, as shown in
Figure 11–1. In an SOPC Builder system, one or more masters connect to the bridge
slave; in turn, the Avalon-MM bridge master connects to one or more slaves. In
Figure 11–1, all three masters have logical connections to all three slaves, although
physically each master only connects to the bridge.

QII54020-9.1.0

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

11–2 Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Transfers initiated to the bridge’s slave propagate to the master in the same order in
which they are initiated on the slave.

f For details on the Avalon-MM interface, refer to the Avalon Interface Specifications.

Reasons for Using a Bridge
When you have no bridges between master-slave pairs, SOPC Builder generates a
system interconnect fabric with maximum parallelism, such that all masters can drive
transactions to all slaves concurrently, as long as each master accesses a different
slave. For systems that do not require a large degree of concurrency, the default
behavior might not provide optimal performance. With knowledge of the system and
application, you can optimize the system interconnect fabric by inserting bridges to
control the system topology.

Figure 11–2 and Figure 11–3 show an SOPC system without bridges. This system
includes three CPUs, a DDR SDRAM controller, a message buffer RAM, a message
buffer mutex, and a tristate bridge to an external SRAM.

Figure 11–1. Example of an Avalon-MM Bridge in an SOPC Builder System

Avalon-MM Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Avalon-MM Master

Avalon-MM Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 11: Avalon Memory-Mapped Bridges 11–3
Structure of a Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Figure 11–3 illustrates the default system interconnect fabric for the system in
Figure 11–2.

Figure 11–2. Example System Without Bridges—SOPC Builder View

Figure 11–3. Example System without Bridges—System Interconnect View

CPU1 CPU2

S

M Avalon-MM Master Port

Avalon-MM Slave Port

CPU3

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

System
Interconnect
Fabric

C
P

U
_S

el
ec

t_
M

ux
1

C
P

U
_S

el
ec

t_
M

ux
2

C
P

U
_S

el
ec

t_
M

ux
3

C
P

U
_S

el
ec

t_
M

ux
4

M M M

Message Buffer
RAM

DDR SDRAM
Controller

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

SSSS

11–4 Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Figure 11–4 and Figure 11–5 show how inserting bridges can affect the generated
logic. For example, if the DDR SDRAM controller can run at 166 MHz and the CPUs
accessing it can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge
between the CPUs and the DDR SDRAM has the following benefits:

■ Allows the CPU and DDR interfaces to run at different frequencies.

■ Places system interconnect fabric for the arbitration logic and multiplexer for the
DDR SDRAM controller in the slower clock domain.

■ Reduces the complexity of the interconnect logic in the faster domain, allowing the
system to achieve a higher fMAX.

1 Inserting the clock-crossing bridge does increase read latency and may not
be beneficial unless your system includes more devices that access the
memory.

In the system illustrated in Figure 11–4, the message buffer RAM and message buffer
mutex must respond quickly to the CPUs, but each response includes only a small
amount of data. Placing an Avalon-MM pipeline bridge between the CPUs and the
message buffers results in the following benefits:

■ Eliminates separate arbiter logic for the message buffer RAM and message buffer
mutex, which reduces logic utilization and propagation delay, thus increasing the
fMAX.

■ Reduces the overall size and complexity of the system interconnect fabric.

1 If an orange triangle appears next to an address in Figure 11–4, it indicates that the
address is an offset value and is not the true value of the address in the address map.

Figure 11–5 shows the system interconnect fabric that SOPC Builder creates for the
system in Figure 11–4. Figure 11–5 is the same system that is pictured in Figure 11–3
with bridges to control system topology.

Figure 11–4. Example SOPC System with Bridges—SOPC Builder View

Chapter 11: Avalon Memory-Mapped Bridges 11–5
Structure of a Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Address Mapping for Systems with Avalon-MM Bridges
An Avalon-MM bridge has an address span and range that are defined as follows:

■ The address span of an Avalon-MM bridge is the smallest power-of-two size that
encompasses all of its slave’s ranges.

■ The address range of an Avalon-MM bridge is a numerical range from its base
address to its base address plus its (span -1).

Figure 11–5. Example System with a Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Tristate Bridge
to External

SRAM

S4

CPU3

MM

CPU1

M

DDR
SDRAM

Cntl

S1

Avalon-MM
Pipeline
Bridge

S

Avalon-MM
Clock Crossing

Bridge

Message
Buffer
RAM

S2

Message
Buffer
Mutex

S3

System Interconnect Fabric

CPU2

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

M M

S

JTAG
Debug
CPU1

S4

JTAG
Debug
CPU2

S5

JTAG
Debug
CPU3

S6

System
Interconnect
Fabric

Equation 11–1.

 range = [base_address .. (base_address + (span - 1)];

11–6 Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

SOPC Builder follows several rules in constructing an address map for a system with
Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the nearest power of
two.

2. Each Avalon-MM slave connected to a bridge has an address relative to the base
address of the bridge. This address must be a multiple of its span. (See
Figure 11–6.)

3. In the example shown in Figure 11–6, if the address span of Slave 1 is 0x100 and
the address span of Slave 2 is 0x200, Figure 11–7 illustrates the address span of the
Avalon-MM bridge.

Figure 11–6. Avalon-MM Master and Slave Addresses

Avalon-MM
BridgeSMaster1 M

Slave1S

Slave2S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Addr = 0x1000

Addr = 0x400

Addr = 0x100

Avalon-MM Master1 sees Slave1 at Addr = 0x1100
Avalon-MM Master1 sees Slave2 at Addr = 0x1400

M

Figure 11–7. The Address Span of an Avalon-MM Bridge

0x400

0x100
x1FF

0x5FF

0x7FF

0x0000x000

 span = 0x200
 range = 0x400 - 0x5FF

 span = 0x100
 range = 0x100 - 0x1FF

Avalon-MM Bridge Address Translation
 span = 0x800
 = 0x1000 .. (0x1000 + 0x7FF)
 = 0x1000 .. 0x17FF

Slave Addr Space

Slave1

Slave2

0x1400

0x1000

Master Address Space

Slave1

Slave2

Chapter 11: Avalon Memory-Mapped Bridges 11–7
Avalon-MM Pipeline Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Tools for Visualizing the Address Map
The Base Address column of the System Contents tab displays the base address offset
of the Avalon-MM slave relative to the base address of the Avalon-MM bridge to
which it is connected. You can see the absolute address map for each master in the
system by clicking Address Map on the System Contents tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges
You use Avalon-MM bridges to control topology and separate clock domains for
on-chip components. You use tristate bridges to connect to off-chip components and
to share pins, decreasing the overall pin count of the device. Tristate bridges are
transparent, meaning that they do not affect the addresses of the components to which
they connect.

f For more information about the Avalon-MM tristate bridge, refer to the SOPC Builder
Memory Subsystem Development Walkthrough chapter in volume 4 of the Quartus II
Handbook.

Avalon-MM Pipeline Bridge
This section describes the hardware structure and functionality of the Avalon-MM
pipeline bridge component.

Component Overview
The Avalon-MM pipeline bridge inserts registers in the path between its master and
slaves. In a given SOPC Builder system, if the critical register-to-register delay occurs
in the system interconnect fabric, the pipeline bridge can help reduce this delay and
improve system fMAX.

The bridge allows you to independently pipeline different groups of signals that can
create a critical timing path in the interconnect:

■ Master-to-slave signals, such as address, write data, and control signals

■ Slave-to-master signals, such as read data

■ The waitrequest signal to the master

1 You can also use the Avalon-MM pipeline bridge to control topology without adding
a pipeline stage. To instantiate a bridge that does not add any pipeline stages, simply
do not select any of the Pipeline Options on the parameter page. For the system
illustrated in Figure 11–5, a pipeline bridge that does not add a pipeline register stage
is optimal because the CPUs benefit from minimal delay from the message buffer
mutex and message buffer RAM.

c A pipeline bridge with no latency cannot be used with slaves that support pipelined
reads. If a slave does not have read latency, you cannot connect it to a bridge with no
pipeline stages, because the pipeline bridge slave port has a readdatavalid signal.
Pipelined read components cannot have zero read latency. Some examples of 0 latency
components available in SOPC Builder include the UART, Timer and SPI core. You are
connecting a pipeline bridge to one of these components, increase the read latency
from 0 to 1.

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

11–8 Chapter 11: Avalon Memory-Mapped Bridges
Avalon-MM Pipeline Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The Avalon-MM pipeline bridge component integrates easily into any SOPC Builder
system.

Functional Description
Figure 11–8 shows a block diagram of the Avalon-MM pipeline bridge component.

The following sections describe the component’s hardware functionality.

Interfaces
The bridge interface is composed of an Avalon-MM slave and an Avalon-MM master.
The data width of the ports is configurable, which can affect how SOPC Builder
generates dynamic bus sizing logic in the system interconnect fabric. Both ports
support Avalon-MM pipelined transfers with variable latency. Both ports optionally
support bursts of lengths that you can configure.

Figure 11–8. Avalon-MM Pipeline Bridge Block Diagram

Master
I/F

Wait Request
 Logic

D Q

Q D

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

D Q
Master-to-Slave

Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM

Master
Interface

Connects to an
Avalon-MM

Slave
Interface

Slave
I/F

Chapter 11: Avalon Memory-Mapped Bridges 11–9
Avalon-MM Pipeline Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Pipeline Stages and Effects on Latency
The bridge provides three optional register stages to pipeline the following groups of
signals.

■ Master-to-slave signals, including:

■ address

■ writedata

■ write

■ read

■ byteenable

■ chipselect

■ burstcount (optional)

■ Slave-to-master signals, including:

■ readdata

■ readdatavalid

■ The waitrequest signal to the master

When you include a register stage, it affects the timing and latency of transfers
through the bridge, as follows:

■ The latency increases by one cycle in each direction.

■ Write transfers on the master side of the bridge are decoupled from write transfers
on the slave side of the bridge because Avalon-MM write transfers do not require
an acknowledge signal from the slave.

■ Including the waitrequest register stage increases the latency of master-to-slave
signals by one additional cycle when the waitrequest signal is asserted.

Burst Support
The bridge can support bursts with configurable maximum burst length. When
configured to support bursts, the bridge propagates bursts between master-slave
pairs, up to the maximum burst length. Not having burst support is equivalent to a
maximum burst length of one. In this case, the system interconnect fabric
automatically decomposes master-to-bridge bursts into a sequence of individual
transfers.

Example System with Avalon-MM Pipeline Bridges
Figure 11–9 illustrates a system in which seven Avalon-MM masters are accessing a
single DDR2 memory controller. By inserting two Avalon-MM pipeline bridges, you
can limit the complexity of the multiplexer that would be required.

11–10 Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Clock Crossing Bridge
The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM master and
slaves that operate in different clock domains. Without a bridge, SOPC Builder
automatically includes generic clock domain crossing (CDC) logic in the system
interconnect fabric, but it does not provide optimal performance for high-throughput
applications. Because the clock-crossing bridge includes a buffering mechanism, you
can pipeline multiple read and write transfers. After an initial penalty for the first
read or write, there is no additional latency penalty for pending reads and writes,
increasing throughput at the expense primarily of on-chip memory. The
clock-crossing bridge has parameterizeable FIFOs for master-to-slave and
slave-to-master signals, and allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system.

Choosing Clock Crossing Methodology
When determining clock frequencies for your components, you should also consider
the impact on the latency that transferring data across clock domains can cause.
Whether you use a clock-crossing bridge or rely on the clock domain adapter created
automatically by SOPC Builder, additional latency occurs. You should also consider
the resource usage and throughput capabilities of each solution.

Figure 11–9. Seven Avalon-MM Masters Accessing One Avalon-MM Slave

S

M Avalon-MM Master Port

Avalon-MM Slave Port

DMA Read

Avalon-MM
Pipeline
Bridge

S

M

S

DDR2 Memory
Controller

M

DMA Write

M

CPU3

M

External
Processor

M

CPU2

M

CPU1

M M

Avalon-MM
Pipeline
Bridge

S

M

External
Processor

Chapter 11: Avalon Memory-Mapped Bridges 11–11
Clock Crossing Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

If you rely on the automatically generated clock crossing adapter to connect master
and slave ports driven by separate clock inputs, there is a fixed latency penalty
associated to each transfer. Each transfer becomes blocking, meaning that while one
transfer is underway another cannot begin until the first completes. For this reason,
you should not connect high-speed, pipelined components such as SDRAM memory
to a master on a different clock domain without using a clock-crossing bridge between
them. The clock crossing bridge, on the other hand, can queue multiple transfers, so
that even though the latency increases, the throughput does not decrease.

Because a clock crossing adapter is generated for every master and slave pair, you
should use a clock crossing bridge if your design contains multiple master and slave
pairs operating in different clock domains. Alternatively, if your design uses a large
amount of on-chip memory, you may need to use a clock domain adapter, because the
clock-crossing bridge uses on-chip memory resources for buffering.

Functional Description
Figure 11–10 shows a block diagram of the Avalon-MM clock-crossing bridge
component. The following sections describe the component’s hardware functionality.

Interfaces
The bridge interface comprises an Avalon-MM slave and an Avalon-MM master. The
data width of the ports is configurable, which affects the size of the bridge hardware
and how SOPC Builder generates dynamic bus sizing logic in the system interconnect
fabric. Both ports support Avalon-MM pipelined transfers with variable latency. Both
ports optionally support bursts of user-configurable length. Ideally, the settings for
one port match the other, such that there are no mixed data widths or bursting
capabilities.

Figure 11–10. Avalon-MM Clock-Crossing Bridge Block Diagram

Avalon-MM Clock-Crossing Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

master_clkslave_clk

Connects to
Avalon-MM

Slave
Interface

Connects to
Avalon-MM

Master
Interface

Wait
Request

Logic

Master-to-Slave
FIFO

outin

Slave-to-Master
FIFO

out in

Slave
I/F

Master
I/F

11–12 Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Clock Crossing Bridge and FIFOs
Two FIFOs in the bridge transport address, data, and control signals across the clock
domains. One FIFO captures data and controls traveling in the master-to-slave
direction, and the other FIFO captures data in the slave-to-master direction. Clock
crossing logic surrounding the FIFOs coordinates the details of passing data across the
clock-domain boundaries and ensures that the FIFOs do not overflow or underflow.

The signals that pass through the master-to-slave FIFO include:

■ writedata

■ address

■ read

■ write

■ byteenable

■ burstcount, when bursting is enabled

The signals that pass through the slave-to-master FIFO include:

■ readdata

■ readdatavalid

You can configure the depth of each FIFO. Because there are more signals traveling in
the master-to-slave direction, changing the depth of the master-to-slave FIFO has a
greater impact on the memory utilization of the bridge.

For read transfers across the bridge, the FIFOs in both directions incur latency for data
to return from the slave. To avoid paying a latency penalty for each transfer, the
master can issue multiple reads that are queued in the FIFO. The slave of the bridge
asserts readdatavalid when it drives valid data and asserts waitrequest when it
is not ready to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the
master-to-bridge transfers and the corresponding bridge-to-slave transfers. Because
Avalon-MM write transfers do not require an acknowledge from the slave, multiple
write transfers from master-to-bridge might complete by the time the bridge initiates
the corresponding bridge-to-slave transfers.

Burst Support
The bridge optionally supports bursts with configurable maximum burst length.
When configured to support bursts, the bridge propagates bursts between
master-slave pairs, up to the maximum burst length. Not having burst support is
equivalent to a maximum burst length of one. In this case, the system interconnect
fabric automatically breaks master-to-bridge bursts into a sequence of individual
transfers.

When you configure the bridge to support bursts, you must configure the
slave-to-master FIFO depth deeply enough to capture all burst read data without
overflowing. The masters connected to the bridge could potentially fill the
master-to-slave FIFO with read burst requests; therefore, the minimum
slave-to-master FIFO depth is described by equation given in Example 11–1.

Chapter 11: Avalon Memory-Mapped Bridges 11–13
Clock Crossing Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Example System with Avalon-MM Clock-Crossing Bridges
Figure 11–11 uses Avalon-MM clocking crossing bridges to separate slave components
into two groups. The low-performance slave components are placed behind a single
bridge and clocked at a low speed. The high performance components are placed
behind a second bridge and clocked at a higher speed. By inserting clock-crossing
bridges in the system, you optimize the interconnect fabric and allow the Quartus® II
fitter to expend effort optimizing paths that require minimal propagation delay.

Example 11–1. Minimum Slave-To-Master FIFO Depth

= ((master-to-slave FIFO depth) * (max burst length)) + max slave latency/pending reads

Figure 11–11. One Avalon-MM Master with Two Groups of Avalon-MM Slaves

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

11–14 Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder
Table 11–1 describes the options available on the Parameter Settings page of the
MegaWizardTM interface.

Table 11–1. Avalon-MM Clock Crossing Bridge Parameters

Master-to-slave FIFO

Parameter Value Description

FIFO depth 8, 16, 32 Determines the depth of the FIFO.

Construct FIFO with registers
instead of memory blocks

On/Off When you turn on this option, the FIFO uses registers as
storage instead of embedded memory blocks. This can
considerably increase the size of the bridge hardware and
lower the fMAX.

Slave-to-master FIFO

FIFO depth 8, 16, 32, 64, 128,
256, 512, 1024

Determines the depth of the FIFO.

Construct FIFO with registers
instead of memory blocks

On/Off When you turn on this option, the FIFO uses registers as
storage instead of embedded memory blocks. This can
considerably increase the size of the bridge hardware and
lower the fMAX.

Common options

Data width 8, 16, 32, 64, 128,
256,512, 1024

Determines the data width of the interfaces on the bridge, and
affects the size of both FIFOs. For the highest bandwidth, set Data
width to be as wide as the widest master connected to the bridge.

Slave domain synchronizer
length

2–8 The number of pipeline stages in the clock crossing logic in the
issuing master to target slave direction. Increasing this value leads
to a larger meantime between failures (MTBF). You can determine
the MTBF for a given design can be determined by running a
TimeQuest timing analysis.

Master domain synchronizer
length

2–8 The number of pipeline stages in the clock crossing logic in the
issuing master to target slave direction. Increasing this value leads
to a larger meantime between failures (MTBF). You can determine
the MTBF for a given design can be determined by running a
TimeQuest timing analysis.

Burst settings

Allow bursts On/Off Includes logic for the bridge’s master and slaves to support
bursts. You can use this option to restrict the minimum depth for
the slave-to-master FIFO.

Maximum burst size 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024

Determines the maximum length of bursts for the bridge to
support, when you turn on Allow bursts.

Chapter 11: Avalon Memory-Mapped Bridges 11–15
Clock Domain Crossing Logic

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Clock Domain Crossing Logic
SOPC Builder generates CDC logic that hides the details of interfacing components
operating in different clock domains. The system interconnect fabric upholds the
Avalon-MM protocol with each port independently, and therefore masters do not
need to incorporate clock adapters in order to interface to slaves on a different
domain. The system interconnect fabric logic propagates transfers across clock
domain boundaries automatically.

The clock-domain adapters in the system interconnect fabric provide the following
benefits that simplify system design efforts:

■ Allow component interfaces to operate at different clock frequencies.

■ Eliminate the need to design CDC hardware.

■ Allow each Avalon-MM port to operate in only one clock domain, which reduces
design complexity of components.

■ Enable masters to access any slave without communication with the slave clock
domain.

■ Allow you to focus performance optimization efforts only on components that
require fast clock speed.

Description of Clock Domain Adapter
The clock domain adapter consists of two finite state machines (FSM), one in each
clock domain, that use a simple hand-shaking protocol to propagate transfer control
signals (read_request, write_request, and the master waitrequest signals)
across the clock boundary. Figure 11–12 shows a block diagram of the clock domain
adapter between one master and one slave.

Figure 11–12. Block Diagram of Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

11–16 Chapter 11: Avalon Memory-Mapped Bridges
Clock Domain Crossing Logic

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The synchronizer blocks in Figure 11–12 use multiple stages of flipflops to eliminate
the propagation of metastable events on the control signals that enter the handshake
FSMs.

The CDC logic works with any clock ratio. Altera tests the CDC logic extensively on a
variety of system architectures, both in simulation and in hardware, to ensure that the
logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is described as
follows:

1. Master asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and immediately forces
the master to wait.

1 The FSM uses only the control signals, not address and data. For example,
the master simply holds the address signal constant until the slave side has
safely captured it.

3. Master handshake FSM initiates a transfer request to the slave handshake FSM.

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the requested
transfer with the slave.

6. When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the system interconnect fabric simply forces the
master to wait until the transfer terminates. As a result, pipeline master ports do not
benefit from pipelining when performing transfers to a different clock domain.

Location of Clock Domain Adapter
You can use the clock crossing bridge described in the following paragraphs for
higher throughput clock crossing, at the expense of memory resources.

SOPC Builder automatically determines where to insert the CDC logic, based on the
system contents and the connections between components. SOPC Builder places CDC
logic to maintain the highest transfer rate for all components. SOPC Builder evaluates
the need for CDC logic for each master and slave pair independently, and generates
CDC logic wherever necessary.

Chapter 11: Avalon Memory-Mapped Bridges 11–17
Clock Domain Crossing Logic

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Duration of Transfers Crossing Clock Domains
CDC logic extends the duration of master transfers across clock domain boundaries.
In the worst case which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the Master
domain synchronizer length and the Slave domain synchronizer length, the
components of this delay are the following:

■ Four additional master clock cycles, due to the master-side clock synchronizer

■ Four additional slave clock cycles, due to the slave-side clock synchronizer

■ One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains

1 Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism, so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

f For more information, refer to the System Interconnect Fabric for Streaming Interfaces
chapter in volume 4 of the Quartus II Handbook and Avalon Memory-Mapped Design
Optimizations in the Embedded Design Handbook.

Implementing Multiple Clock Domains in SOPC Builder
You specify the clock domains used by your system on the System Contents tab of
SOPC Builder. You define the input clocks to the system with the Clock Settings table.
Clock sources can be driven by external input signals to the SOPC Builder system or
by PLLs inside the SOPC Builder system. Clock domains are differentiated based on
the name of the clock. You may create multiple asynchronous clocks with the same
frequency.

To specify which clock drives which components you must display the Clock column
in the System Contents tab. By default, clock names are not displayed. To display
clock names in the Module Name column and the clocks in the Clock column in the
System Contents tab, right-click in the Module Name column and click Show All. To
connect a clock to follow these steps.

1. Click in the Clock column next to the clock port. A list of available clock signals
appears.

2. Select the appropriate signal from the list of available clocks. Figure 11–13
illustrates this step.

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

11–18 Chapter 11: Avalon Memory-Mapped Bridges
Avalon-MM DDR Memory Half-Rate Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Avalon-MM DDR Memory Half-Rate Bridge
The Avalon Memory-Mapped (MM) Half-Rate Bridge core is a special-purpose
clock-crossing bridge intended for CPUs that require low-latency access to high-speed
memory. The core works under the assumption that the memory clock is twice the
frequency of the CPU clock, with zero phase shift between the two. It allows high
speed memory to run at full rate while providing low-latency interface for a CPU to
access it by using lightweight logic that translates one single-word request into a
two-word burst to a memory running at twice the clock frequency and half the width.
For systems with a 8-bit DDR interface, using the Half-Rate DDR Bridge in
conjunction with a DDR SDRAM high-performance memory controller creates a
datapath that matches the throughput of the DDR memory to the CPU. This half-rate
bridge provides the same functionality as the clock crossing bridge, but with
significantly lower latency—2 cycles instead of 12.

The core’s master interface is designed to be connected to a high-speed DDR SDRAM
controller and thus only supports bursting. Because the slave interface is designed to
receive single-word requests, it does not support bursting. Figure 11–14 shows a
system including an 8-bit DDR memory, a high-performance memory controller, the
Half-Rate DDR Bridge, and a CPU.

The Avalon-MM DDR Memory Half-Rate Bridge core has the following features and
requirements:

■ SOPC Builder ready with TimeQuest Timing Analyzer constraints

Figure 11–13. Assigning Clocks to Components

Figure 11–14. SOPC Builder Memory System Using a DDR Memory Half-Rate Bridge

8

DDR Clk <-----------> Controller Clk <-----------> Controller Clk/2

16
DDR2/3 High
Performance

Controller
(full rate)

FPGA

PCB

32DDRn

burst count = 4 burst count = 2 burst count = 1

Half-Rate
Bridge

SS M M CPU

Chapter 11: Avalon Memory-Mapped Bridges 11–19
Avalon-MM DDR Memory Half-Rate Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

■ Requires master clock and slave clock to be synchronous

■ Handles different bus sizes between CPU and memory

■ Requires the frequency of the master clock to be double of the slave clock

■ Has configurable address and data port widths in the master interface

Resource Usage and Performance
This section lists the resource usage and performance data for supported devices
when operating the Half-Rate Bridge with a full-rate DDR SDRAM high-performance
memory controller.

Using the Half-Rate Bridge with a full-rate DDR SDRAM high-performance memory
controller results an average of 48% performance improvement over a system using a
half-rate DDR SDRAM high-performance memory controller in a series of embedded
applications. The performance improvement is 62.2% based on the Dhrystone
benchmark, and 87.7% when accessing memory bypassing the cache. For memory
systems that use the Half-Rate bridge in conjunction with DDR2/3 High Performance
Controller, the data throughput is the same on the Half-Rate Bridge master and slave
interfaces. The decrease in memory latency on the Half-Rate Bridge slave interface
results in higher performance for the processor.

Table 11–2 shows the resource usage for Stratix® II and Stratix III devices in version 9.1
of the Quartus II software with a data width of 16 bits, an address span of 24 bits.

Table 11–3 lists the resource usage for a Cyclone® III device.

Functional Description
The Avalon MM DDR Memory Half Rate Bridge works under two constraints:

■ Its memory-side master has a clock frequency that is synchronous (zero phase
shift) to, and twice the frequency of, the CPU-side slave.

■ Its memory-side master is half as wide as its CPU-side slave.

The bridge leverages these two constraints to provide lightweight, low-latency
clock-crossing logic between the CPU and the memory. These constraints are in
contrast with the Avalon-MM Clock-Crossing Bridge, which makes no assumptions
about the frequency/phase relationship between the master- and slave-side clocks,
and provides higher-latency logic that fully-synchronizes all signals that pass
between the two domains.

Table 11–2. Resource Utilization Data for Stratix II and Stratix III Devices

Device Family
Combinational

ALUTs ALMs Logic Register
Embedded
Memory

Stratix II 61 134 153 0

Stratix III 60 138 153 0

Table 11–3. Resource Utilization Data for Cyclone III Devices

Logic Cells
(LC)

Logic
Register LUT-only LC

Register-only
LC

LUT/Register
LCs

Embedded
Memory

233 152 33 84 121 0

11–20 Chapter 11: Avalon Memory-Mapped Bridges
Avalon-MM DDR Memory Half-Rate Bridge

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

The Avalon MM DDR Memory Half-Rate Bridge has an Avalon-MM slave interface
that accepts single-word (non-bursting) transactions. When the slave interface
receives a transaction from a connected CPU, it issues a two-word burst transaction
on its master interface (which is half as wide and twice as fast). If the transaction is a
read request, the bridge's master interface waits for the slave’s two-word response,
concatenates the two words, and presents them as a single readdata word on its slave
interface to the CPU. Every time the data width is halved, the clock rate is doubled. As
a result, the data throughput is matched between the CPU and the off-chip memory
device.

Figure 11–15 shows the latency in the Avalon-MM Half-Rate Bridge core. The core
adds two cycles of latency in the slave clock domain for read transactions. The first
cycle is introduced during the command phase of the transaction and the second
cycle, during the response phase of the transaction. The total latency is 2+<x>, where
<x> refers to the latency of the DDR SDRAM high-performance memory controller.
Using the clock crossing bridge for this same purpose would impose approximately
12 cycles of additional latency.

Instantiating the Core in SOPC Builder
Use the MegaWizard Plug-In Manager for the Avalon-MM Half-Rate Bridge core in
SOPC Builder to specify the core’s configuration. Table 11–4 describes the parameters
that can be configured for the Avalon-MM Half-Rate Bridge core.

Figure 11–15. Avalon-MM DDR Memory Half-Rate Bridge Block Diagram

DDR2/3 High
Performance

Controller
(full rate)

Half-Rate Bridge

Cmd +1

Rsp +1

Q D

D Q

S SM
DDR2/3
Memory CPU

Table 11–4. Configurable Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameters Value Description

Data Width 8, 16, 32, 64,
128, 256, 512

The width of the data signal in the master interface.

Address Width 1 - 32 The width of the address signal in the master interface.

Chapter 11: Avalon Memory-Mapped Bridges 11–21
Avalon-MM DDR Memory Half-Rate Bridge

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Table 11–5 describes the parameters that are derived based on the Data Width and
Address Width settings for the Avalon-MM Half-Rate Bridge core.

Example System
The following example provides high-level steps showing how the Avalon-MM DDR
Memory Half-Rate Bridge core is connected in a system. This example assumes that
you are familiar with the SOPC Builder GUI.

f For a quick introduction to this tool, read of the one-hour online course, Using SOPC
Builder.

1. Add a Nios II Processor to the system.

2. Add a DDR2 SDRAM High-Performance Controller and configure it to full-rate
mode.

3. Add Avalon-MM DDR Memory Half-Rate Bridge to the system.

4. Configure the parameters of the Avalon-MM DDR Memory Half-Rate Bridge
based on the memory controller. For example, for a 32 MByte DDR memory
controller in full rate mode with 8 DQ pins (see Figure 11–14), the parameters
should be set as the following:

■ Data Width = 16

For a memory controller that has 8 DQ pins, its local interface width is 16 bits.
The local interface width and the data width must be the same, therefore data
width is set to 16 bits.

■ Address Width = 25

For a memory capacity of 32 MBytes, the byte address is 25 bits. Because the
master address of the bridge is byte aligned, the address width is set to 25 bits.

5. Connect altmemddr_auxhalf to the slave clock interface (clk_s1) of the
Half-Rate Bridge.

6. Connect altmemddr_sysclk to the master clock interface (clk_m1) of the
Half-Rate Bridge.

7. Remove all connections between Nios II processor and the memory controller, if
there are any.

8. Connect the master interface (m1) of the Avalon-MM DDR Memory Half-Rate
Bridge to the memory controller slave interface.

Table 11–5. Derived Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameter Description

Master interface’s Byte Enable
Width

The width of the byte-enable signal in the master interface.

Slave interface’s Data Width The width of the data signal in the slave interface.

Slave interface’s Address Width The width of the address signal in the slave interface.

Slave interface’s Byte Enable
Width

The width of the byte-enable signal in the slave interface.

http://www.altera.com/education/training/courses/OEMB1115?GSA_pos=3&WT.oss_r=1&WT.oss=sopc%20builder
http://www.altera.com/education/training/courses/OEMB1115?GSA_pos=3&WT.oss_r=1&WT.oss=sopc%20builder

11–22 Chapter 11: Avalon Memory-Mapped Bridges
Device Support

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

9. Connect the slave interface (s1) of the Avalon-MM DDR Memory Half-Rate
Bridge to the Nios II processor data_master interface.

10. Connect altmemddr_auxhalf to Nios II processor clock interface.

Device Support
Altera device support for the bridge components is listed in Table 11–6.

Hardware Simulation Considerations
The bridge components do not provide a simulation testbench for simulating a
stand-alone instance of the component. However, you can use the standard SOPC
Builder simulation flow to simulate the component design files inside an SOPC
Builder system.

Software Programming Model
The bridge components do not have any user-visible control or status registers.
Therefore, software cannot control or configure any aspect of the bridges during
run-time. The bridges cannot generate interrupts.

Table 11–6. Device Family Support

Device Family
Avalon-MM Pipeline

Bridge Support

Avalon-MM Clock-
Crossing Bridge

Support
Avalon-MM Half-Rate

Bridge

Arria® GX Full Full Full

Arria II GX Full Full Full

Stratix® Full Full Full

Stratix II Full Full Full

Stratix II GX Full Full Full

Stratix III Full Full Full

Stratix IV Full Full Full

Cyclone® Full Full Full

Cyclone II Full Full Full

Cyclone III Full Full Full

Hardcopy® Full Full Full

HardCopy II Full Full Full

HardCopy III Full Full Full

MAX® Full No support No support

MAX II Full No support No support

Chapter 11: Avalon Memory-Mapped Bridges 11–23
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 11–7 shows the revision history for this chapter.

Table 11–7. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009, v9.1.0 ■ Added configuration information for resource
utilization of half-rate bridge.

—

March 2009, v9.0.0 ■ Added information for synchronization when
crossing clock domains.

New information to allow user
control of metastability.

November 2008 v8.1 ■ Clarified connection of clock signals.

■ Added section describing half-rate bridge.

■ Changed page size to 8.5 x 11 inches.

—

May 2008 v8.0 ■ Chapter renumbered from 10 to 11.

■ Corrected Figure 11–4 to show correct connectivity
between masters and bridges. Show JTAG debug
modules for each CPU behind pipeline bridge.

■ Deleted references to Avalon Memory-Mapped and
Streaming Interface Specifications and replaced with
new Avalon Interface Specifications.

■ Moved clock crossing bridge section from Chapter 2
to this chapter.

■ Added note after Figure 10-4.

—

October 2007 v7.2.0 Moved discussion of clock-crossing bridge from this
chapter to chapter 2.

—

May 2007,
v7.1.0

Initial release of the document. The Avalon-MM Pipeline Bridge
and Avalon-MM Clock-Crossing
Bridge are new components
provided in the Quartus II software
v7.1 release.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

11–24 Chapter 11: Avalon Memory-Mapped Bridges
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

12. Avalon Streaming Interconnect
Components

Avalon® Streaming (Avalon-ST) interconnect components facilitate the design of
high-speed, low-latency datapaths for the system-on-a-programmable-chip (SOPC)
environment. Interconnect components in SOPC Builder act as a part of the system
interconnect fabric. They are not end points, but adapters that allow you to connect
different, but compatible, streaming interfaces. You use Avalon-ST interconnect
components to connect cores that send and receive high-bandwidth data, including
multiplexed streams, packets, cells, time-division multiplexed (TDM) frames, and
digital signal processor (DSP) data.

The interconnect components that you add to an SOPC Builder system insert logic
between a source and sink interface, enabling that interface to operate correctly. This
chapter describes four Avalon-ST interconnect components, also called adapters:

■ “Timing Adapter” on page 12–3—adapts between sinks and sources that have
different characteristics, such as ready latencies.

■ “Data Format Adapter” on page 12–6—adapts source and sink interfaces that have
different data widths.

■ “Channel Adapter” on page 12–8—adapts source and sink interfaces that have
different settings for the channel signal.

■ “Error Adapter” on page 12–9—ensures that per-bit error information recorded at
the source is correctly transferred to the sink

All of these interconnect components adapt initially incompatible Avalon-ST source
and sink interfaces so that they function correctly, facilitating the development of
high-speed, low-latency datapaths.

Interconnect Component Usage
Interconnect components can adapt the data or control signals of the Avalon-ST
interface. Typical adaptations to control signals include:

■ Adding pipeline stages to adjust the timing of the ready signal

■ Tying signals that are not used by either the source or sink to 0 or 1

Typical adaptations to data signals include:

■ Changing the number of symbols (words) that are driven per cycle

■ Changing the number of channels driven

When the interconnect component adapts the data interface, it has one Avalon-ST sink
interface and one Avalon-ST source interface, as shown in Figure 12–1. You configure
the adapter components manually, using SOPC Builder. In contrast to the Avalon-MM
interface, which allows you to create various topologies with a number of different
master and slave components, you always use the Avalon-ST interconnect
components to adapt point-to-point connections between streaming cores.

QII54021-9.1.0

12–2 Chapter 12: Avalon Streaming Interconnect Components
Address Mapping

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

f For details about the system interconnect fabric, refer to the System Interconnect Fabric
for Streaming Interfaces chapter in volume 4 of the Quartus II Handbook. For details about the
Avalon-ST interface protocol, refer to the Avalon Interface Specifications.

Figure 12–2 illustrates a datapath that connects a Triple Speed Ethernet MegaCore
function to a Scatter-Gather DMA controller core using a timing adapter, data format
adapter, and channel adapter so that the cores can interoperate.

Address Mapping

Figure 12–1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

Avalon-ST
component src Avalon-ST

adaptersink srcsink Avalon-ST
component srcsink

streaming
input
data

streaming
output
data

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 12:
Avalon Stream

ing Interconnect Com
ponents

12–3
Tim

ing Adapter

©
 Novem

ber 2009
Altera Corporation

Quartus II Handbook Version 8.1 Volum
e 4: SOPC Builder

The control and status signals for the components containing source or sink interfaces can be mapped to a slave interface which
is then accessible in the global Avalon address space.

Timing Adapter
The timing adapter has two functions:

■ It adapts source and sink interfaces that support the ready signal and those that do not.

■ It adapts source and sink interfaces that support the valid signal and those that do not.

■ It adapts source and sink interfaces that have different ready latencies.

The timing adapter treats all signals other than the ready and valid signals as payload, and simply drives them from the
source to the sink. Table 12–1 outlines the adaptations that the timing adapter provides.

Figure 12–2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components

sink

. .
 . ch 0 .. 3

channel
adapter

ch 0 .. 255
srcsink

Scatter-Gather
DMA Controller

Core

Avalon Streaming Interconnect Components

Avalon Streaming Core

sink

src sink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

12–4 Chapter 12: Avalon Streaming Interconnect Components
Timing Adapter

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Resource Usage and Performance
Resource utilization for the timing adapter depends upon the function that it
performs. Table 12–2 provides estimated resource utilization for seven different
configurations of the timing adapter
.

Instantiating the Timing Adapter in SOPC Builder
You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12–3 describes the options available on the Parameter
Settings page of the configuration wizard

Table 12–1. Timing Adapter

Condition Adaptation

The source has ready, but the sink does
not.

In this case, the source can respond to backpressure, but the sink never needs
to apply it. The ready input to the source interface is connected directly to
logical 1.

The source does not have ready, but
the sink does.

The sink may apply backpressure, but the source is unable to respond to it.
There is no logic that the adapter can insert that prevents data loss when the
source asserts valid but the sink is not ready. The adapter provides
simulation time error messages and an error indication if data is ever lost. The
user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the source's.

The source responds to ready assertion or deassertion faster than the sink
requires it. A number of pipeline stages equal to the difference in ready latency
are inserted in the ready path from the sink back to the source, causing the
source and the sink to see the same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in time to satisfy
the sink. A buffer whose depth is equal to the difference in ready latency is
inserted to compensate for the source’s inability to respond in time.

Table 12–2. Timing Adapter Estimated Resource Usage and Performance

Input
Ready

Latency

Output
Ready

Latency

Stratix® II and Stratix II GX
(Approximate LEs) Cyclone® II Stratix (Approximate LEs)

fMAX

(MHz)
ALM

Count Mem Bits
fMAX

(MHz)
Logic
Cells

fMAX

(MHz)
Logic
Cells Mem Bits

1 2 500 2 0 420 2 422 1 0

1 3 500 2 0 420 3 422 2 0

1 4 500 4 0 420 4 422 3 0

1 0 500 21 80 420 183 422 20 80

2 1 456 21 80 401 188 317 21 80

3 1 456 21 80 401 188 317 21 80

4 1 456 21 80 401 188 317 21 80

Chapter 12: Avalon Streaming Interconnect Components 12–5
Timing Adapter

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

.

Table 12–3. Avalon-ST Timing Adapter Parameters

Input Interface Parameters

Parameter Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the ready signal is used, the value for ready_latency
indicates the number of cycles between when the ready signal is
asserted and when valid data is driven.

Include valid signal Turn this option on if the interface includes the valid signal. Turning
this option off means that data being received is always valid.

Output Interface Parameters

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the ready signal is used, the value for ready_latency
indicates the number of cycles between when the ready signal is
asserted and when valid data is driven.

Include valid signal Turn this option on if the interface includes the valid signal. Turning
this option off means that data driven is always valid.

Common to Input and Output Interfaces

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel Type the maximum number of channels that the interface supports. Valid
values are 0–255.

Data Bits Per Symbol Type the number of bits per symbol.

Data Symbols Per Beat Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Include Empty Signal You can use this signal to specify the number of empty symbols in the
cycle that includes the endofpacket signal. This signal is not
necessary if the number of symbols per beat is 1.

Error Signal Width (Bits) Type the width of the error signal. Valid values are 0–31 bits. Type 0 if the
error signal is not used.

Error Signal Description Type the description for each of the error bits. Separate the description
fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12–9 for the adaptations that can be made when the bits do not
match.

12–6 Chapter 12: Avalon Streaming Interconnect Components
Data Format Adapter

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Data Format Adapter
The data format adapter handles interfaces that have different definitions for the data
signal. One of the more common adaptations that this component performs is data
width adaptation, such as converting a data interface that drives two, 8-bit symbols
per beat to an interface that drives four, 8-bit symbols per beat. The available data
format adaptations are listed in Table 12–4.

Resource Usage and Performance
Resource utilization for the data format adapter depends upon the function that it
performs. Table 12–5 provides estimated resource utilization for numerous
configurations of the data format adapter.

Table 12–4. Data Format Adapter

Condition Description of Adapter Logic

The source and sink’s bits per symbol
are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts from the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data at the input
corresponds to multiple beats of data at the output. If the input error signal is
asserted for a single beat, it is asserted on output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output error is the logical OR of the
input error signal.

Table 12–5. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol (Sheet 1 of 2)

Input
Symbols

per
Beat

Output
Symbols

per
Beat

Number
of

Channels
Packet
Support

Stratix II and Stratix II GX
(Approximate LEs) Cyclone II

Stratix
(Approximate LEs)

fMAX
(MHz)

ALM
Count

Memory
Bits

fMAX
(MHz)

Logic
Cells

Memory
Bits

fMAX
(MHz)

Logic
Cells

Memory
Bits

1 2 1 y 500 96 0 391 93 0 375 105 0

4 1 1 y 459 106 0 311 97 0 306 76 0

4 2 1 y 500 118 0 343 107 0 326 85 0

4 8 1 y 437 326 0 346 370 0 303 330 0

4 16 1 y 357 930 0 264 1005 0 231 806 0

1 2 188 y 321 110 15 187 137 15 209 153 15

4 1 105 y 244 125 2 148 183 2 150 137 2

4 2 105 y 277 101 2 172 134 2 173 108 2

4 8 130 y 322 255 41 175 279 41 187 262 41

4 16 30 y 268 341 106 166 563 106 153 471 106

4 1 105 n 269 107 2 177 185 2 167 99 2

4 2 54 n 290 109 1 193 203 1 176 91 1

4 3 10 n 249 149 18 189 251 16 159 217 18

4 5 222 n 281 300 40 199 381 40 182 316 40

4 6 30 n 312 184 40 201 385 40 198 241 40

4 7 139 n 253 285 56 159 416 56 161 427 56

Chapter 12: Avalon Streaming Interconnect Components 12–7
Data Format Adapter

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Instantiating the Data Format Adapter in SOPC Builder
You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12–6 describes the options available on the Parameter
Settings page of the configuration wizard.

4 8 198 n 311 281 40 190 247 40 198 257 40

4 15 160 n 259 370 121 165 733 121 149 697 121

4 16 36 n 227 255 105 391 93 0 146 491 105

Table 12–5. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol (Sheet 2 of 2)

Input
Symbols

per
Beat

Output
Symbols

per
Beat

Number
of

Channels
Packet
Support

Stratix II and Stratix II GX
(Approximate LEs) Cyclone II

Stratix
(Approximate LEs)

fMAX
(MHz)

ALM
Count

Memory
Bits

fMAX
(MHz)

Logic
Cells

Memory
Bits

fMAX
(MHz)

Logic
Cells

Memory
Bits

Table 12–6. Data Format Adapter Parameters

Input Interface Parameters

Parameter Description

Data Symbols Per Beat Type the number of symbols transferred per active cycle.

Include the empty signal Turn this option on if the cycle that includes the endofpacket signal can
include empty symbols. This signal is not necessary if the number of symbols
per beat is 1.

Output Interface Parameters

Data Symbols Per Beat Type the number of symbols transferred per active cycle.

Include the empty signal Turn this option on if the cycle that includes the endofpacket signal can
include empty symbols. This signal is not necessary if the number of symbols
per beat is 1.

Common to Input & Output

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to 16
channels. The maximum width of the channel signal is 8 bits. Type 0 if you do
not need to send channel numbers.

Max Channel Type the maximum number of channels that the interface supports. Valid values
are 0–255.

Include Packet Support Turn this option on if the interface supports a packet protocol, including the
startofpacket, endofpacket, and empty signals.

Error Signal Width (Bits) Type the width of the error signal. Valid values are 0–31 bits. Type 0 if the error
signal is not used.

Error Signal Description Type the description for each of the error bits. Separate the description fields by
semicolons. For a connection to be made, the description of the error bits in the
source and sink must match. Refer to “Error Adapter” on page 12–9 for the
adaptations that can be made when the bits do not match.

Data Bits Per Symbol Type the number of bits per symbol.

12–8 Chapter 12: Avalon Streaming Interconnect Components
Channel Adapter

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Channel Adapter
The channel adapter provides adaptations between interfaces that have different
support for the channel signal or for the maximum number of channels supported.
The adaptations are described in Table 12–7.

Resource Usage and Performance
The channel adapter typically uses fewer than 30 LEs. Its frequency is limited by the
maximum frequency of the device you choose.

Instantiating the Channel Adapter in SOPC Builder
You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12–8 describes the options available on the Parameter
Settings page of the configuration wizard.

.

Table 12–7. Channel Adapter

Condition Description of Adapter Logic

The source uses channels, but the
sink does not.

You are given a warning at generation time. The adapter provides a simulation error
and signals an error for data for any channel from the source other than 0.

The sink has channel, but the source
does not.

You are given a warning, and the channel inputs to the sink are all tied to a logical 0.

The source and sink both support
channels, and the source's maximum
number of channels is less than the
sink's.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's maximum
number of channels is greater than
the sink's.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. You are given a
warning that channel information may be lost.

An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the valid signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

Table 12–8. Avalon-ST Channel Adapter Parameters (Sheet 1 of 2)

Parameter Description

Input Interface Parameters

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel Type the maximum number of channels that the interface supports. Valid
values are 0–255.

Output Interface Parameters

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel Type the maximum number of channels that the interface supports. Valid
values are 0–255.

Chapter 12: Avalon Streaming Interconnect Components 12–9
Error Adapter

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Error Adapter
The error adapter ensures that per-bit error information provided by source interfaces
is correctly connected to the sink interface's input error signal. The adaptations are
described in Table 12–9:

Instantiating the Error Adapter in SOPC Builder
You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12–9 describes the options available on the Parameter
Settings page of the configuration wizard.

.

Common to Input and Output Interfaces

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the ready signal is used, the value for ready_latency
indicates the number of cycles between when the ready signal is
asserted and when valid data is driven.

Data Bits Per Symbol Type the number of bits per symbol.

Data Symbols Per Beat Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Include Empty Signal You can use this signal to specify the number of empty symbols in the
cycle that includes the endofpacket signal. This signal is not
necessary if the number of symbols per beat is 1.

Error Signal Width (bits) Type the width of the error signal. Valid values are 0–31 bits. Type 0 if you
do not need to send error values.

Error Signal Description Type the description for each of the error bits. Separate the description
fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12–9 for the adaptations that can be made when the bits do not
match.

Table 12–8. Avalon-ST Channel Adapter Parameters (Sheet 2 of 2)

Parameter Description

Table 12–9. Avalon-ST Error Adapter Parameters

Parameter Description

Input Interface Parameters

Error Signal Width (bits) Type the width of the error signal. Valid values are 0–31 bits. Type 0 if the
error signal is not used.

Error Signal Description Type the description for each of the error bits. Separate the description
fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12–9 for the adaptations that can be made when the bits do not
match.

Output Interface Parameters

Error Signal Width (bits) Type the width of the error signal. Valid values are 0–31 bits. Type 0 if you
do not need to send error values.

12–10 Chapter 12: Avalon Streaming Interconnect Components
Installation and Licensing

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Installation and Licensing
The Avalon-ST interconnect components are included in the Altera MegaCore® IP
Library, which is part of the Quartus II software installation. After you install the
MegaCore IP Library, SOPC Builder recognizes these components and can instantiate
them into a system.

You can use the Avalon-ST components without a license in any design that targets an
Altera device.

Hardware Simulation Considerations
The Avalon-ST interconnect components do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.

Software Programming Model
The Avalon-ST interconnect components do not have any control or status registers
that you can see. Therefore, software cannot control or configure any aspect of the
interconnect components at run-time. These components cannot generate interrupts.

Error Signal Description Type the description for each of the error bits. Separate the description
fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12–9 for the adaptations that can be made when the bits do not
match.

Common to Input and Output Interfaces

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the ready signal is used, the value for ready_latency
indicates the number of cycles between when the ready signal is asserted
and when valid data is driven.

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel Type the maximum number of channels that the interface supports. Valid
values are 0–255.

Data Bits Per Symbol Type the number of bits per symbol.

Data Symbols Per Beat Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the endofpacket signal
can include empty symbols. This signal is not necessary if the number of
symbols per beat is 1.

Table 12–9. Avalon-ST Error Adapter Parameters

Parameter Description

Chapter 12: Avalon Streaming Interconnect Components 12–11
Document Revision History

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Document Revision History
Table 12–10 shows the revision history for this chapter.

Table 12–10. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009, v9.1.0 ■ No changes from previous release. —

March 2009, v9.0.0 ■ No changes from previous release. —

November 2008, v8.1.1 ■ Removed private comments —

November 2008, v8.1.0 ■ Added documentation for Avalon-ST error adapter.

■ Reformatted parameter settings in tables.

■ Changed page size to 8.5 x 11 inches.

Minor changes for 8.1.

May 2008, v8.0.0 ■ Chapter renumbered from 11 to 12.

■ Deleted references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

—

October 2007, v7.2.0 ■ No changes to this release. —

May 2007,
v7.1.0

■ Initial release. —

12–12 Chapter 12: Avalon Streaming Interconnect Components
Document Revision History

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 4: SOPC Builder

Additional Information

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 8.1.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.0 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information

Quartus II Handbook Version 9.1 Volume 4: SOPC Builder © November 2009 Altera Corporation

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital Let-
ters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-
SIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is impor-
tant, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Handbook Version 9.1
Volume 5: Embedded Peripherals

QII5V5-9.1.1

http://www.altera.com

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

© February 2010 Altera Corporation
Contents
Chapter Revision Dates . xix

Section I. Off-Chip Interface Peripherals

Chapter 1. SDRAM Controller Core
Core Overview . 1-1
Functional Description . 1-2

Avalon-MM Interface . 1-2
Off-Chip SDRAM Interface . 1-3

Signal Timing and Electrical Characteristics . 1-3
Synchronizing Clock and Data Signals . 1-3
Clock Enable (CKE) Not Supported . 1-3
Sharing Pins with Other Avalon-MM Tri-State Devices . 1-3

Board Layout and Pinout Considerations . 1-4
Performance Considerations . 1-4

Open Row Management . 1-4
Sharing Data and Address Pins . 1-4
Hardware Design and Target Device . 1-5

Device Support . 1-5
Instantiating the Core in SOPC Builder . 1-5

Memory Profile Page . 1-6
Timing Page . 1-7

Hardware Simulation Considerations . 1-7
SDRAM Controller Simulation Model . 1-8
SDRAM Memory Model . 1-8

Using the Generic Memory Model . 1-8
Using the SDRAM Manufacturer’s Memory Model . 1-8

Example Configurations . 1-8
Software Programming Model . 1-10
Clock, PLL and Timing Considerations . 1-10

Factors Affecting SDRAM Timing . 1-11
Symptoms of an Untuned PLL . 1-11
Estimating the Valid Signal Window . 1-11
Example Calculation . 1-13

Referenced Documents . 1-15
Document Revision History . 1-16

Chapter 2. CompactFlash Core
Core Overview . 2-1
Functional Description . 2-1
Instantiating the Core in SOPC Builder . 2-2
Required Connections . 2-2
Device Support . 2-3
Software Programming Model . 2-3

HAL System Library Support . 2-3
Software Files . 2-4
Register Maps . 2-4

Ide Registers . 2-4
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

iv Contents
Ctl Registers . 2-4
Document Revision History . 2-5

Chapter 3. Common Flash Interface Controller Core
Core Overview . 3-1
Functional Description . 3-2
Device and Tools Support . 3-2
Instantiating the Core in SOPC Builder . 3-2

Attributes Page . 3-3
Presets Settings . 3-3
Size Settings . 3-3

Timing Page . 3-3
Software Programming Model . 3-4

HAL System Library Support . 3-4
Limitations . 3-4

Software Files . 3-4
Referenced Documents . 3-5
Document Revision History . 3-5

Chapter 4. EPCS Device Controller Core
Core Overview . 4-1
Functional Description . 4-2

Avalon-MM Slave Interface and Registers . 4-3
Device and Tools Support . 4-4
Instantiating the Core in SOPC Builder . 4-4
Software Programming Model . 4-4

HAL System Library Support . 4-4
Software Files . 4-5

Referenced Documents . 4-5
Document Revision History . 4-5

Chapter 5. JTAG UART Core
Core Overview . 5-1
Functional Description . 5-2

Avalon Slave Interface and Registers . 5-2
Read and Write FIFOs . 5-2
JTAG Interface . 5-3
Host-Target Connection . 5-3

Device and Tools Support . 5-4
Instantiating the Core in SOPC Builder . 5-4

Configuration Page . 5-4
Write FIFO Settings . 5-4
Read FIFO Settings . 5-5

Simulation Settings . 5-5
Simulated Input Character Stream . 5-5
Prepare Interactive Windows . 5-5

Hardware Simulation Considerations . 5-6
Software Programming Model . 5-6

HAL System Library Support . 5-6
Driver Options: Fast vs. Small Implementations . 5-8
ioctl() Operations . 5-8

Software Files . 5-9
Accessing the JTAG UART Core via a Host PC . 5-9
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents v
Register Map . 5-9
Data Register . 5-10
Control Register . 5-10

Interrupt Behavior . 5-11
Referenced Documents . 5-12
Document Revision History . 5-12

Chapter 6. UART Core
Core Overview . 6-1
Functional Description . 6-1

Avalon-MM Slave Interface and Registers . 6-2
RS-232 Interface . 6-2
Transmitter Logic . 6-2
Receiver Logic . 6-3
Baud Rate Generation . 6-3

Device Support . 6-3
Instantiating the Core in SOPC Builder . 6-3

Configuration Settings . 6-4
Baud Rate Options . 6-4
Data Bits, Stop Bits, Parity . 6-5
Synchronizer Stages . 6-5
Flow Control . 6-5
Streaming Data (DMA) Control . 6-6

Simulation Settings . 6-6
Simulated RXD-Input Character Stream . 6-7
Prepare Interactive Windows . 6-7
Simulated Transmitter Baud Rate . 6-7

Simulation Considerations . 6-7
Software Programming Model . 6-8

HAL System Library Support . 6-8
Driver Options: Fast Versus Small Implementations . 6-9
ioctl() Operations . 6-10
Limitations . 6-10

Software Files . 6-10
Register Map . 6-11

rxdata Register . 6-11
txdata Register . 6-12
status Register . 6-12
control Register . 6-14
divisor Register (Optional) . 6-14
endofpacket Register (Optional) . 6-15

Interrupt Behavior . 6-15
Referenced Documents . 6-15
Document Revision History . 6-16

Chapter 7. SPI Core
Core Overview . 7-1
Functional Description . 7-1

Example Configurations . 7-2
Transmitter Logic . 7-3
Receiver Logic . 7-3
Master and Slave Modes . 7-3

Master Mode Operation . 7-3
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

vi Contents
Slave Mode Operation . 7-4
Multi-Slave Environments . 7-5

Avalon-MM Interface . 7-5
Instantiating the SPI Core in SOPC Builder . 7-5

Master/Slave Settings . 7-5
Number of Select (SS_n) Signals . 7-5
SPI Clock (sclk) Rate . 7-6
Specify Delay . 7-6

Data Register Settings . 7-6
Timing Settings . 7-7

Device Support . 7-8
Software Programming Model . 7-8

Hardware Access Routines . 7-8
alt_avalon_spi_command() . 7-9
Software Files . 7-9
Register Map . 7-9

rxdata Register . 7-10
txdata Register . 7-10
status Register . 7-11

control Register . 7-12
slaveselect Register . 7-12

Referenced Documents . 7-12
Document Revision History . 7-13

Chapter 8. Optrex 16207 LCD Controller Core
Core Overview . 8-1
Functional Description . 8-1
Device and Tools Support . 8-2
Instantiating the Core in SOPC Builder . 8-2
Software Programming Model . 8-2

HAL System Library Support . 8-2
Displaying Characters on the LCD . 8-3
Software Files . 8-3
Register Map . 8-4
Interrupt Behavior . 8-4

Referenced Documents . 8-4
Document Revision History . 8-4

Chapter 9. PIO Core
Core Overview . 9-1
Functional Description . 9-1

Data Input and Output . 9-2
Edge Capture . 9-2
IRQ Generation . 9-3

Example Configurations . 9-3
Avalon-MM Interface . 9-3

Instantiating the PIO Core in SOPC Builder . 9-4
Basic Settings . 9-4

Width . 9-4
Direction . 9-4
Output Port Reset Value . 9-4
Output Register . 9-4

Input Options . 9-4
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents vii
Edge Capture Register . 9-4
Interrupt . 9-5

Simulation . 9-5
Device Support . 9-5
Software Programming Model . 9-5

Software Files . 9-5
Register Map . 9-6

data Register . 9-6
direction Register . 9-6
interruptmask Register . 9-7
edgecapture Register . 9-7
outset and outclear Registers . 9-7

Interrupt Behavior . 9-7
Software Files . 9-7

Document Revision History . 9-8

Chapter 10. Avalon-ST Serial Peripheral Interface Core
Core Overview . 10-1
Functional Description . 10-1

Interfaces . 10-2
Operation . 10-2
Timing . 10-3
Limitations . 10-3

Instantiating the Core in SOPC Builder . 10-3
Device Support . 10-3
Referenced Documents . 10-4
Document Revision History . 10-4

Chapter 11. PCI Lite Core
Core Overview . 11-1
Performance and Resource Utilization . 11-1
Functional Description . 11-2

PCI-Avalon Bridge Blocks . 11-2
Avalon-MM Ports . 11-3

Master and Target Performance . 11-5
Master Performance . 11-5
Target Performance . 11-5

PCI-to-Avalon Address Translation . 11-6
Avalon-to-PCI Address Translation . 11-6
Avalon-To-PCI Read and Write Operation . 11-8

Avalon-to-PCI Write Requests . 11-9
Avalon-to-PCI Read Requests . 11-9

Ordering of Requests . 11-10
PCI Interrupt . 11-10

Instantiating the Core in SOPC Builder . 11-11
PCI Timing Constraint Files . 11-12

Additional Tcl Option . 11-13
Device Support . 11-14
Simulation Considerations . 11-14

Features . 11-14
Master Transactor (mstr_tranx) . 11-14

TASKS Sections . 11-14
INITIALIZATION Section . 11-15
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

viii Contents
USER COMMANDS Section . 11-15
Simulation Flow . 11-15

Referenced Documents . 11-17
Document Revision History . 11-17

Chapter 12. Cyclone III Remote Update Controller Core
Core Overview . 12-1
Functional Description . 12-1

Avalon-MM Slave Interface and Registers . 12-2
Device Support . 12-2
Instantiating the Core in SOPC Builder . 12-2
Software Programming Model . 12-3

Setting the Configuration Offset . 12-3
Shifting the Configuration Offset Value . 12-3
Setting up the Watchdog Timer . 12-3
Triggering a Reconfiguration . 12-4
Code Example . 12-5

Related Documentation . 12-6
Document Revision History . 12-6

Section II. On-Chip Storage Peripherals

Chapter 13. Avalon-ST Single Clock and Dual Clock FIFO Cores
Core Overview . 13-1
Functional Description . 13-1

Interfaces . 13-2
Operations . 13-2

Instantiating the Core in SOPC Builder . 13-3
Device Support . 13-3
Software Programming Model . 13-4

HAL System Library Support . 13-4
Register Map . 13-4

Referenced Documents . 13-4
Document Revision History . 13-4

Chapter 14. On-Chip FIFO Memory Core
Core Overview . 14-1
Functional Description . 14-1

Avalon-MM Write Slave to Avalon-MM Read Slave . 14-2
Avalon-ST Sink to Avalon-ST Source . 14-2
Avalon-MM Write Slave to Avalon-ST Source . 14-3
Avalon-ST Sink to Avalon-MM Read Slave . 14-4
Status Interface . 14-5
Clocking Modes . 14-6

Device Support . 14-6
Instantiating the Core in SOPC Builder . 14-6

FIFO Settings . 14-6
Depth . 14-6
Clock Settings . 14-6
Status Port . 14-6
FIFO Implementation . 14-6

Interface Parameters . 14-7
Input . 14-7
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents ix
Output . 14-7
Allow Backpressure . 14-7
Avalon-MM Port Settings . 14-7
Avalon-ST Port Settings . 14-7

Software Programming Model . 14-8
HAL System Library Support . 14-8
Software Files . 14-8

Programming with the On-Chip FIFO Memory . 14-8
Software Control . 14-9
Software Example . 14-12

On-Chip FIFO Memory API . 14-13
altera_avalon_fifo_init() . 14-13
altera_avalon_fifo_read_status() . 14-13
altera_avalon_fifo_read_ienable() . 14-14
altera_avalon_fifo_read_almostfull() . 14-14
altera_avalon_fifo_read_almostempty() . 14-14
altera_avalon_fifo_read_event() . 14-14
altera_avalon_fifo_read_level() . 14-15
altera_avalon_fifo_clear_event() . 14-15
altera_avalon_fifo_write_ienable() . 14-15
altera_avalon_fifo_write_almostfull() . 14-16
altera_avalon_fifo_write_almostempty() . 14-16
altera_avalon_write_fifo() . 14-16
altera_avalon_write_other_info() . 14-17
altera_avalon_fifo_read_fifo() . 14-17

Referenced Documents . 14-18
Document Revision History . 14-18

Chapter 15. Avalon-ST Multi-Channel Shared Memory FIFO Core
Core Overview . 15-1
Performance and Resource Utilization . 15-2
Functional Description . 15-3

Interfaces . 15-3
Avalon-ST Interfaces . 15-3
Avalon-MM Interfaces . 15-4

Operation . 15-4
Instantiating the Core in SOPC Builder . 15-5
Device Support . 15-5
Software Programming Model . 15-5

HAL System Library Support . 15-5
Register Map . 15-6

Referenced Documents . 15-6
Document Revision History . 15-6

Section III. Transport and Communication

Chapter 16. SPI Slave/JTAG to Avalon Master Bridge Cores
Core Overview . 16-1
Functional Description . 16-1
Instantiating the Core in SOPC Builder . 16-3
Device Support . 16-3
Referenced Documents . 16-4
Document Revision History . 16-4
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

x Contents
Chapter 17. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Core Overview . 17-1

Resource Usage and Performance . 17-1
Multiplexer . 17-2

Functional Description . 17-2
Input Interfaces . 17-3
Output Interface . 17-3

Instantiating the Multiplexer in SOPC Builder . 17-3
Functional Parameters . 17-3
Output Interface . 17-4

Demultiplexer . 17-4
Functional Description . 17-4

Input Interface . 17-5
Output Interfaces . 17-5

Instantiating the Demultiplexer in SOPC Builder . 17-5
Functional Parameters . 17-5
Input Interface . 17-6

Device Support . 17-6
Hardware Simulation Considerations . 17-6
Software Programming Model . 17-6
Document Revision History . 17-7

Chapter 18. Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Core Overview . 18-1
Functional Description . 18-1

Interfaces . 18-2
Operation—Avalon-ST Bytes to Packets Converter Core . 18-2
Operation—Avalon-ST Packets to Bytes Converter Core . 18-3

Instantiating the Core in SOPC Builder . 18-3
Device Support . 18-4
Referenced Documents . 18-4
Document Revision History . 18-4

Chapter 19. Avalon Packets to Transactions Converter Core
Core Overview . 19-1
Functional Description . 19-1

Interfaces . 19-2
Operation . 19-2

Packet Formats . 19-2
Supported Transactions . 19-3
Malformed Packets . 19-3

Instantiating the Core in SOPC Builder . 19-4
Device Support . 19-4
Referenced Documents . 19-4
Document Revision History . 19-4

Chapter 20. Avalon-ST Round Robin Scheduler Core
Core Overview . 20-1
Performance and Resource Utilization . 20-1
Functional Description . 20-2

Interfaces . 20-2
Almost-Full Status Interface . 20-2
Request Interface . 20-3
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents xi
Operations . 20-3
Instantiating the Core in SOPC Builder . 20-4
Device Support . 20-4
Document Revision History . 20-4

Chapter 21. Avalon-ST Delay Core
Core Overview . 21-1
Functional Description . 21-1

Reset . 21-1
Interfaces . 21-2

Instantiating the Core in SOPC Builder . 21-2
Device Support . 21-3
Referenced Documents . 21-3
Document Revision History . 21-3

Chapter 22. Avalon-ST Splitter Core
Core Overview . 22-1
Functional Description . 22-1

Backpressure . 22-1
Interfaces . 22-2

Instantiating the Core in SOPC Builder . 22-2
Device Support . 22-3
Referenced Documents . 22-3
Document Revision History . 22-3

Section IV. Peripherals

Chapter 23. Scatter-Gather DMA Controller Core
Core Overview . 23-1

Example Systems . 23-1
Comparison of SG-DMA Controller Core and DMA Controller Core . 23-2
In This Chapter . 23-2

Resource Usage and Performance . 23-3
Functional Description . 23-3

Functional Blocks and Configurations . 23-4
Descriptor Processor . 23-4
DMA Read Block . 23-4
DMA Write Block . 23-4
Memory-to-Memory Configuration . 23-5
Memory-to-Stream Configuration . 23-5
Stream-to-Memory Configuration . 23-6

DMA Descriptors . 23-6
Descriptor Processing . 23-7
Building and Updating Descriptor List . 23-8

Error Conditions . 23-8
Device Support . 23-9
Instantiating the Core in SOPC Builder . 23-9
Simulation Considerations . 23-10
Software Programming Model . 23-10

HAL System Library Support . 23-10
Software Files . 23-10
Register Maps . 23-11
DMA Descriptors . 23-13
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xii Contents
Timeouts . 23-15
Programming with SG-DMA Controller . 23-15

Data Structure . 23-15
SG-DMA API . 23-17
alt_avalon_sgdma_do_async_transfer() . 23-18
alt_avalon_sgdma_do_sync_transfer() . 23-18
alt_avalon_sgdma_construct_mem_to_mem_desc() . 23-19
alt_avalon_sgdma_construct_stream_to_mem_desc() . 23-20
alt_avalon_sgdma_construct_mem_to_stream_desc() . 23-21
alt_avalon_sgdma_check_descriptor_status() . 23-22
alt_avalon_sgdma_register_callback() . 23-22
alt_avalon_sgdma_start() . 23-22
alt_avalon_sgdma_stop() . 23-23
alt_avalon_sgdma_open() . 23-23

Referenced Documents . 23-24
Document Revision History . 23-24

Chapter 24. DMA Controller Core
Core Overview . 24-1
Functional Description . 24-1

Setting Up DMA Transactions . 24-2
The Master Read and Write Ports . 24-3
Addressing and Address Incrementing . 24-3

Instantiating the Core in SOPC Builder . 24-4
DMA Parameters (Basic) . 24-4

Transfer Size . 24-4
Burst Transactions . 24-4
FIFO Implementation . 24-4

Advanced Options . 24-5
Allowed Transactions . 24-5

Device Support . 24-5
Software Programming Model . 24-5

HAL System Library Support . 24-5
ioctl() Operations . 24-6
Limitations . 24-6

Software Files . 24-6
Register Map . 24-7

status Register . 24-7
readaddress Register . 24-8
writeaddress Register . 24-8
length Register . 24-8
control Register . 24-8

Interrupt Behavior . 24-10
Referenced Documents . 24-10
Document Revision History . 24-10

Chapter 25. Video Sync Generator and Pixel Converter Cores
Core Overview . 25-1
Video Sync Generator . 25-2

Functional Description . 25-2
Instantiating the Core in SOPC Builder . 25-3
Signals . 25-4
Timing Diagrams . 25-4
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents xiii
Pixel Converter . 25-5
Functional Description . 25-5
Instantiating the Core in SOPC Builder . 25-5
Signals . 25-6

Device Support . 25-6
Hardware Simulation Considerations . 25-6
Referenced Documents . 25-6
Document Revision History . 25-7

Chapter 26. Interval Timer Core
Core Overview . 26-1
Functional Description . 26-1

Avalon-MM Slave Interface . 26-2
Device Support . 26-2
Instantiating the Core in SOPC Builder . 26-3

Timeout Period . 26-3
Counter Size . 26-3
Hardware Options . 26-3

Register Options . 26-4
Output Signal Options . 26-4

Configuring the Timer as a Watchdog Timer . 26-4
Software Programming Model . 26-5

HAL System Library Support . 26-5
System Clock Driver . 26-5
Timestamp Driver . 26-5
Limitations . 26-6

Software Files . 26-6
Register Map . 26-6

status Register . 26-7
control Register . 26-7
period_n Registers . 26-8
snap_n Registers . 26-8

Interrupt Behavior . 26-8
Referenced Documents . 26-8
Document Revision History . 26-9

Chapter 27. Mutex Core
Core Overview . 27-1
Functional Description . 27-1
Device Support . 27-2
Instantiating the Core in SOPC Builder . 27-2
Software Programming Model . 27-2

Software Files . 27-2
Hardware Access Routines . 27-3

Mutex API . 27-4
altera_avalon_mutex_is_mine() . 27-4
altera_avalon_mutex_first_lock() . 27-4
altera_avalon_mutex_lock() . 27-4
altera_avalon_mutex_open() . 27-5
altera_avalon_mutex_trylock() . 27-5
altera_avalon_mutex_unlock() . 27-5

Document Revision History . 27-6
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xiv Contents
Chapter 28. Mailbox Core
Core Overview . 28-1
Functional Description . 28-1
Device Support . 28-2
Instantiating the Core in SOPC Builder . 28-2
Software Programming Model . 28-3

Software Files . 28-3
Programming with the Mailbox Core . 28-3

Mailbox API . 28-5
altera_avalon_mailbox_close() . 28-5
altera_avalon_mailbox_get() . 28-5
altera_avalon_mailbox_open() . 28-5
altera_avalon_mailbox_pend() . 28-6
altera_avalon_mailbox_post() . 28-6

Document Revision History . 28-6

Chapter 29. Vectored Interrupt Controller Core
Core Overview . 29-1
Functional Description . 29-2

External Interfaces . 29-2
clk . 29-2
irq_input . 29-2
interrupt_controller_out . 29-3
interrupt_controller_in . 29-3
csr_access . 29-3

Functional Blocks . 29-4
Interrupt Request Block . 29-4
Priority Processing Block . 29-4
Vector Generation Block . 29-5

Daisy Chaining VIC Cores . 29-5
Latency Information . 29-6

Register Maps . 29-6
Device Support . 29-9
Instantiating the Core in SOPC Builder . 29-9
Altera HAL Software Programming Model . 29-10

Software Files . 29-10
Macros . 29-11
Data Structure . 29-11
VIC API . 29-12

alt_vic_sw_interrupt_set() . 29-12
alt_vic_sw_interrupt_clear() . 29-13
alt_vic_sw_interrupt_status() . 29-13
alt_vic_irq_set_level() . 29-14

Run-time Initialization . 29-14
Board Support Package . 29-14

VIC BSP Settings . 29-14
Default Settings for RRS and RIL . 29-18
VIC BSP Design Rules for Altera Hal Implementation . 29-18
RTOS Considerations . 29-19

Referenced Documents . 29-19
Document Revision History . 29-20

Section V. Test and Debug Peripherals
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents xv
Chapter 30. Avalon-ST JTAG Interface Core
Core Overview . 30-1
Functional Description . 30-1

Interfaces . 30-2
Special characters . 30-2
Operation . 30-2

Instantiating the Core in SOPC Builder . 30-3
Device Support . 30-3
Referenced Documents . 30-3
Document Revision History . 30-3

Chapter 31. System ID Core
Core Overview . 31-1
Functional Description . 31-1
Device Support . 31-2
Instantiating the Core in SOPC Builder . 31-2
Software Programming Model . 31-2

alt_avalon_sysid_test() . 31-2
Document Revision History . 31-3

Chapter 32. Performance Counter Core
Core Overview . 32-1
Functional Description . 32-2

Section Counters . 32-2
Global Counter . 32-2
Register Map . 32-2
System Reset Considerations . 32-3

Device and Tools Support . 32-3
Instantiating the Core in SOPC Builder . 32-3

Define Counters . 32-3
Multiple Clock Domain Considerations . 32-3

Hardware Simulation Considerations . 32-4
Software Programming Model . 32-4

Software Files . 32-4
Using the Performance Counter . 32-4

API Summary . 32-4
Startup . 32-5
Global Counter Usage . 32-5
Section Counter Usage . 32-5
Viewing Counter Values . 32-5

Interrupt Behavior . 32-6
Performance Counter API . 32-6

PERF_RESET() . 32-7
PERF_START_MEASURING() . 32-7
PERF_STOP_MEASURING() . 32-7
PERF_BEGIN() . 32-7
PERF_END() . 32-8
perf_print_formatted_report() . 32-9
perf_get_total_time() . 32-9
perf_get_section_time() . 32-10
perf_get_num_starts() . 32-10
alt_get_cpu_freq() . 32-10

Referenced Documents . 32-11
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xvi Contents
Document Revision History . 32-11

Chapter 33. Avalon Streaming Test Pattern Generator and Checker Cores
Core Overview . 33-1
Resource Utilization and Performance . 33-1
Test Pattern Generator . 33-3

Functional Description . 33-3
Command Interface . 33-3
Control and Status Interface . 33-4
Output Interface . 33-4

Instantiating the Test Pattern Generator in SOPC Builder . 33-4
Functional Parameter . 33-4
Output Interface . 33-4

Test Pattern Checker . 33-5
Functional Description . 33-5

Input Interface . 33-5
Control and Status Interface . 33-6

Instantiating the Test Pattern Checker in SOPC Builder . 33-6
Functional Parameter . 33-6
Input Parameters . 33-6

Device Support . 33-6
Hardware Simulation Considerations . 33-6
Software Programming Model . 33-7

HAL System Library Support . 33-7
Software Files . 33-7
Register Maps . 33-8

Test Pattern Generator Control and Status Registers . 33-8
Test Pattern Generator Command Registers . 33-9
Test Pattern Checker Control and Status Registers . 33-10

Test Pattern Generator API . 33-12
data_source_reset() . 33-12
data_source_init() . 33-12
data_source_get_id() . 33-12
data_source_get_supports_packets() . 33-13
data_source_get_num_channels() . 33-13
data_source_get_symbols_per_cycle() . 33-13
data_source_set_enable() . 33-13
data_source_get_enable() . 33-14
data_source_set_throttle() . 33-14
data_source_get_throttle() . 33-14
data_source_is_busy() . 33-14
data_source_fill_level() . 33-15
data_source_send_data() . 33-15

Test Pattern Checker API . 33-16
data_sink_reset() . 33-16
data_sink_init() . 33-16
data_sink_get_id() . 33-16
data_sink_get_supports_packets() . 33-16
data_sink_get_num_channels() . 33-17
data_sink_get_symbols_per_cycle() . 33-17
data_sink_set enable() . 33-17
data_sink_get_enable() . 33-17
data_sink_set_throttle() . 33-18
data_sink_get_throttle() . 33-18
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Contents xvii
data_sink_get_packet_count() . 33-18
data_sink_get_symbol_count() . 33-18
data_sink_get_error_count() . 33-19
data_sink_get_exception() . 33-19
data_sink_exception_is_exception() . 33-19
data_sink_exception_has_data_error() . 33-19
data_sink_exception_has_missing_sop() . 33-20
data_sink_exception_has_missing_eop() . 33-20
data_sink_exception_signalled_error() . 33-20
data_sink_exception_channel() . 33-20

Document Revision History . 33-21

Chapter 34. Avalon Streaming Data Pattern Generator and Checker Cores
Core Overview . 34-1
Data Pattern Generator . 34-1

Functional Description . 34-1
Control and Status Interface . 34-2
Output Interface . 34-2
Supported Data Patterns . 34-2
Inject Error . 34-3
Preamble Mode . 34-3

Instantiating the Data Pattern Generator in SOPC Builder . 34-3
Output Parameter . 34-3

Data Pattern Checker . 34-4
Functional Description . 34-4

Control and Status Interface . 34-4
Input Interface . 34-5
Supported Data Patterns . 34-5
Lock . 34-5
Bit and Error Counters . 34-5

Instantiating the Data Pattern Checker in SOPC Builder . 34-5
Input Parameter . 34-5

Device Support . 34-6
Hardware Simulation Considerations . 34-6
Software Programming Model . 34-6

Register Maps . 34-6
Data Pattern Generator Control Registers . 34-6
Data Pattern Checker Control and Status Registers . 34-8

Referenced Documents . 34-10
Document Revision History . 34-10

Section VI. Clock Control Peripherals

Chapter 35. PLL Cores
Core Overview . 35-1
Functional Description . 35-1

ALTPLL Megafunction . 35-2
Clock Outputs . 35-2
PLL Status and Control Signals . 35-3
System Reset Considerations . 35-3

Device Support . 35-3
Instantiating the Cores in SOPC Builder . 35-3

Instantiating the Avalon ALTPLL Core . 35-3
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xviii Contents
Instantiating the PLL Core . 35-3
PLL Settings Page . 35-4
Interface Page . 35-4
Finish . 35-4

Hardware Simulation Considerations . 35-5
Register Definitions and Bit List . 35-5

Status Register . 35-5
Control Register . 35-6
Phase Reconfig Control Register . 35-6

Referenced Documents . 35-7
Document Revision History . 35-7

Additional Information
About this Handbook . Info-1
How to Contact Altera . Info-1
Third-Party Software Product Information . Info-1
Typographic Conventions . Info-2
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

© February 2010 Altera Corporation
Chapter Revision Dates
The chapters in this book, Quartus II Handbook Version 9.1 Volume 5: Embedded
Peripherals, were revised on the following dates. Where chapters or groups of chapters
are available separately, part numbers are listed.

Chapter 1 SDRAM Controller Core
Revised: November 2009
Part Number: NII51005-9.1.0

Chapter 2 CompactFlash Core
Revised: November 2009
Part Number: QII55005-9.1.0

Chapter 3 Common Flash Interface Controller Core
Revised: November 2009
Part Number: NII51013-9.1.0

Chapter 4 EPCS Device Controller Core
Revised: November 2009
Part Number: NII51012-9.1.0

Chapter 5 JTAG UART Core
Revised: November 2009
Part Number: NII51009-9.1.0

Chapter 6 UART Core
Revised: November 2009
Part Number: NII51010-9.1.0

Chapter 7 SPI Core
Revised: November 2009
Part Number: NII51011-9.1.0

Chapter 8 Optrex 16207 LCD Controller Core
Revised: November 2009
Part Number: NII51019-9.1.0

Chapter 9 PIO Core
Revised: November 2009
Part Number: NII51007-9.1.0

Chapter 10 Avalon-ST Serial Peripheral Interface Core
Revised: November 2009
Part Number: QII55009-9.1.0

Chapter 11 PCI Lite Core
Revised: November 2009
Part Number: QII55010-9.1.0
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xx Chapter Revision Dates
Chapter 12 Cyclone III Remote Update Controller Core
Revised: November 2009
Part Number: QII55005-9.1.0

Chapter 13 Avalon-ST Single Clock and Dual Clock FIFO Cores
Revised: November 2009
Part Number: QII55014-9.1.0

Chapter 14 On-Chip FIFO Memory Core
Revised: November 2009
Part Number: QII55002-9.1.0

Chapter 15 Avalon-ST Multi-Channel Shared Memory FIFO Core
Revised: November 2009
Part Number: QII55015-9.1.0

Chapter 16 SPI Slave/JTAG to Avalon Master Bridge Cores
Revised: November 2009
Part Number: QII55011-9.1.0

Chapter 17 Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Revised: November 2009
Part Number: QII55004-9.1.0

Chapter 18 Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Revised: November 2009
Part Number: QII55012-9.1.0

Chapter 19 Avalon Packets to Transactions Converter Core
Revised: November 2009
Part Number: QII55013-9.1.0

Chapter 20 Avalon-ST Round Robin Scheduler Core
Revised: November 2009
Part Number: QII55016-9.1.0

Chapter 21 Avalon-ST Delay Core
Revised: January 2010
Part Number: QII55020-9.1.1

Chapter 22 Avalon-ST Splitter Core
Revised: January 2010
Part Number: QII55021-9.1.1

Chapter 23 Scatter-Gather DMA Controller Core
Revised: November 2009
Part Number: QII55003-9.1.0

Chapter 24 DMA Controller Core
Revised: November 2009
Part Number: NII51006-9.1.0
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Chapter Revision Dates xxi
Chapter 25 Video Sync Generator and Pixel Converter Cores
Revised: November 2009
Part Number: QII55006-9.1.0

Chapter 26 Interval Timer Core
Revised: November 2009
Part Number: NII51008-9.1.0

Chapter 27 Mutex Core
Revised: November 2009
Part Number: NII51020-9.1.0

Chapter 28 Mailbox Core
Revised: November 2009
Part Number: NII53001-9.1.0

Chapter 29 Vectored Interrupt Controller Core
Revised: November 2009
Part Number: QII55018-9.1.0

Chapter 30 Avalon-ST JTAG Interface Core
Revised: November 2009
Part Number: QII55008-9.1.0

Chapter 31 System ID Core
Revised: November 2009
Part Number: NII51014-9.1.0

Chapter 32 Performance Counter Core
Revised: November 2009
Part Number: QII55001-9.1.0

Chapter 33 Avalon Streaming Test Pattern Generator and Checker Cores
Revised: November 2009
Part Number: QII55007-9.1.0

Chapter 34 Avalon Streaming Data Pattern Generator and Checker Cores
Revised: January 2010
Part Number: QII55019-9.1.1

Chapter 35 PLL Cores
Revised: November 2009
Part Number: NII53002-9.1.0
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

xxii Chapter Revision Dates
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

© November 2009 Altera Corporation
Section I. Off-Chip Interface Peripherals
This section describes the interfaces to off-chip devices provided for SOPC Builder
systems.

This section includes the following chapters:

■ Chapter 1, SDRAM Controller Core

■ Chapter 2, CompactFlash Core

■ Chapter 3, Common Flash Interface Controller Core

■ Chapter 4, EPCS Device Controller Core

■ Chapter 5, JTAG UART Core

■ Chapter 6, UART Core

■ Chapter 7, SPI Core

■ Chapter 8, Optrex 16207 LCD Controller Core

■ Chapter 9, PIO Core

■ Chapter 10, Avalon-ST Serial Peripheral Interface Core

■ Chapter 11, PCI Lite Core

■ Chapter 12, Cyclone III Remote Update Controller Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

I–2 Section I: Off-Chip Interface Peripherals
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51005-9.1.0
1. SDRAM Controller Core
Core Overview
The SDRAM controller core with Avalon® interface provides an Avalon
Memory-Mapped (Avalon-MM) interface to off-chip SDRAM. The SDRAM controller
allows designers to create custom systems in an Altera® device that connect easily to
SDRAM chips. The SDRAM controller supports standard SDRAM as described in the
PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of
volatile memory. While SDRAM is relatively inexpensive, control logic is required to
perform refresh operations, open-row management, and other delays and command
sequences. The SDRAM controller connects to one or more SDRAM chips, and
handles all SDRAM protocol requirements. Internal to the device, the core presents an
Avalon-MM slave port that appears as linear memory (flat address space) to
Avalon-MM master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16, 32, or
64 bits), various memory sizes, and multiple chip selects. The Avalon-MM interface is
latency-aware, allowing read transfers to be pipelined. The core can optionally share
its address and data buses with other off-chip Avalon-MM tri-state devices. This
feature is valuable in systems that have limited I/O pins, yet must connect to multiple
memory chips in addition to SDRAM.

The SDRAM controller core with Avalon interface is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system. This chapter contains the
following sections:

■ “Functional Description” on page 1–2

■ “Device Support” on page 1–5

■ “Instantiating the Core in SOPC Builder” on page 1–5

■ “Hardware Simulation Considerations” on page 1–7

■ “Software Programming Model” on page 1–10

■ “Clock, PLL and Timing Considerations” on page 1–10
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–2 Chapter 1: SDRAM Controller Core
Functional Description
Functional Description
Figure 1–1 shows a block diagram of the SDRAM controller core connected to an
external SDRAM chip.

The following sections describe the components of the SDRAM controller core in
detail. All options are specified at system generation time, and cannot be changed at
runtime.

Avalon-MM Interface
The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The
slave port presents a flat, contiguous memory space as large as the SDRAM chip(s).
When accessing the slave port, the details of the PC100 SDRAM protocol are entirely
transparent. The Avalon-MM interface behaves as a simple memory interface. There
are no memory-mapped configuration registers.

The Avalon-MM slave port supports peripheral-controlled wait states for read and
write transfers. The slave port stalls the transfer until it can present valid data. The
slave port also supports read transfers with variable latency, enabling
high-bandwidth, pipelined read transfers. When a master peripheral reads sequential
addresses from the slave port, the first data returns after an initial period of latency.
Subsequent reads can produce new data every clock cycle. However, data is not
guaranteed to return every clock cycle, because the SDRAM controller must pause
periodically to refresh the SDRAM.

f For details about Avalon-MM transfer types, refer to the Avalon Interface Specifications.

Figure 1–1. SDRAM Controller with Avalon Interface Block Diagram

Avalon-MM slave
interface
to on-chip

logic

SDRAM Controller Core

data, control

A
va

lo
n-

M
M

 S
la

ve
 P

or
t

clock

waitrequest

readdatavalid
dq
dqm

PLL

Phase Shift

In
te

rf
ac

e
to

 S
D

R
A

M
 p

in
s

Altera FPGA

clk

addr

ras
cas
cs

cke

ba

we

Control
Logic

address

SDRAM Clock

Controller Clock

Clock
Source

SDRAM Chip
(PC100)
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 1: SDRAM Controller Core 1–3
Functional Description
Off-Chip SDRAM Interface
The interface to the external SDRAM chip presents the signals defined by the PC100
standard. These signals must be connected externally to the SDRAM chip(s) through
I/O pins on the Altera device.

Signal Timing and Electrical Characteristics
The timing and sequencing of signals depends on the configuration of the core. The
hardware designer configures the core to match the SDRAM chip chosen for the
system. See “Instantiating the Core in SOPC Builder” on page 1–5 for details. The
electrical characteristics of the device pins depend on both the target device family
and the assignments made in the Quartus® II software. Some device families support
a wider range of electrical standards, and therefore are capable of interfacing with a
greater variety of SDRAM chips. For details, refer to the device handbook for the
target device family.

Synchronizing Clock and Data Signals
The clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency
as the clock for the Avalon-MM interface on the SDRAM controller (controller clock).
As in all synchronous designs, you must ensure that address, data, and control signals
at the SDRAM pins are stable when a clock edge arrives. As shown in Figure 1–1, you
can use an on-chip phase-locked loop (PLL) to alleviate clock skew between the
SDRAM controller core and the SDRAM chip. At lower clock speeds, the PLL might
not be necessary. At higher clock rates, a PLL is necessary to ensure that the SDRAM
clock toggles only when signals are stable on the pins. The PLL block is not part of the
SDRAM controller core. If a PLL is necessary, you must instantiate it manually. You
can instantiate the PLL core interface, which is an SOPC Builder component, or
instantiate an ALTPLL megafunction outside the SOPC Builder system module.

If you use a PLL, you must tune the PLL to introduce a clock phase shift so that
SDRAM clock edges arrive after synchronous signals have stabilized. See “Clock, PLL
and Timing Considerations” on page 1–10 for details.

f For more information about instantiating a PLL in your SOPC Builder system, refer to
PLL Core chapter in volume 5 of the Quartus II Handbook. The Nios® II development
tools provide example hardware designs that use the SDRAM controller core in
conjunction with a PLL, which you can use as a reference for your custom designs.
The Nios II development tools are available free for download from www.altera.com.

Clock Enable (CKE) Not Supported
The SDRAM controller does not support clock-disable modes. The SDRAM controller
permanently asserts the CKE signal on the SDRAM.

Sharing Pins with Other Avalon-MM Tri-State Devices
If an Avalon-MM tri-state bridge is present in the SOPC Builder system, the SDRAM
controller core can share pins with the existing tri-state bridge. In this case, the core’s
addr, dq (data) and dqm (byte-enable) pins are shared with other devices connected
to the Avalon-MM tri-state bridge. This feature conserves I/O pins, which is valuable
in systems that have multiple external memory chips (for example, flash, SRAM, and
SDRAM), but too few pins to dedicate to the SDRAM chip. See “Performance
Considerations” for details about how pin sharing affects performance.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2cpu_nii53002.pdf
http://www.altera.com

1–4 Chapter 1: SDRAM Controller Core
Functional Description
1 The SDRAM addresses must connect all address bits regardless of the size of the word
so that the low-order address bits on the tri-state bridge align with the low-order
address bits on the memory device. The Avalon-MM tristate address signal always
presents a byte address. It is not possible to drop A0 of the tri-state bridge for
memories when the smallest access size is 16 bits or A0-A1 of the tri-state bridge when
the smallest access size is 32 bits.

Board Layout and Pinout Considerations
When making decisions about the board layout and device pinout, try to minimize
the skew between the SDRAM signals. For example, when assigning the device
pinout, group the SDRAM signals, including the SDRAM clock output, physically
close together. Also, you can use the Fast Input Register and Fast Output Register
logic options in the Quartus II software. These logic options place registers for the
SDRAM signals in the I/O cells. Signals driven from registers in I/O cells have similar
timing characteristics, such as tCO, tSU, and tH.

Performance Considerations
Under optimal conditions, the SDRAM controller core’s bandwidth approaches one
word per clock cycle. However, because of the overhead associated with refreshing
the SDRAM, it is impossible to reach one word per clock cycle. Other factors affect the
core’s performance, as described in the following sections.

Open Row Management
SDRAM chips are arranged as multiple banks of memory, in which each bank is
capable of independent open-row address management. The SDRAM controller core
takes advantage of open-row management for a single bank. Continuous reads or
writes within the same row and bank operate at rates approaching one word per
clock. Applications that frequently access different destination banks require extra
management cycles to open and close rows.

Sharing Data and Address Pins
When the controller shares pins with other tri-state devices, average access time
usually increases and bandwidth decreases. When access to the tri-state bridge is
granted to other devices, the SDRAM incurs overhead to open and close rows.
Furthermore, the SDRAM controller has to wait several clock cycles before it is
granted access again.

To maximize bandwidth, the SDRAM controller automatically maintains control of
the tri-state bridge as long as back-to-back read or write transactions continue within
the same row and bank.

1 This behavior may degrade the average access time for other devices sharing the
Avalon-MM tri-state bridge.

The SDRAM controller closes an open row whenever there is a break in back-to-back
transactions, or whenever a refresh transaction is required. As a result:

■ The controller cannot permanently block access to other devices sharing the
tri-state bridge.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 1: SDRAM Controller Core 1–5
Device Support
■ The controller is guaranteed not to violate the SDRAM’s row open time limit.

Hardware Design and Target Device
The target device affects the maximum achievable clock frequency of a hardware
design. Certain device families achieve higher fMAX performance than other families.
Furthermore, within a device family, faster speed grades achieve higher performance.
The SDRAM controller core can achieve 100 MHz in Altera’s high-performance
device families, such as Stratix® series. However, the core might not achieve 100 MHz
performance in all Altera device families.

The fMAX performance also depends on the SOPC Builder system design. The SDRAM
controller clock can also drive other logic in the system module, which might affect
the maximum achievable frequency. For the SDRAM controller core to achieve fMAX
performance of 100 MHz, all components driven by the same clock must be designed
for a 100 MHz clock rate, and timing analysis in the Quartus II software must verify
that the overall hardware design is capable of 100 MHz operation.

Device Support
The SDRAM Controller with Avalon interface core supports all Altera device families.
Different device families support different I/O standards, which may affect the ability
of the core to interface to certain SDRAM chips. For details about supported I/O
types, refer to the device handbook for the target device family.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the SDRAM controller in SOPC Builder to specify
hardware and simulation features. The SDRAM controller MegaWizard has two
pages: Memory Profile and Timing. This section describes the options available on
each page.

The Presets list offers several pre-defined SDRAM configurations as a convenience. If
the SDRAM subsystem on the target board matches one of the preset configurations,
you can configure the SDRAM controller core easily by selecting the appropriate
preset value. The following preset configurations are defined:

■ Micron MT8LSDT1664HG module

■ Four SDR100 8 MByte × 16 chips

■ Single Micron MT48LC2M32B2-7 chip

■ Single Micron MT48LC4M32B2-7 chip

■ Single NEC D4564163-A80 chip (64 MByte × 16)

■ Single Alliance AS4LC1M16S1-10 chip

■ Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the Memory Profile
and Timing tabs to match the specific configuration. Altering a configuration setting
on any page changes the Preset value to custom.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–6 Chapter 1: SDRAM Controller Core
Instantiating the Core in SOPC Builder
Memory Profile Page
The Memory Profile page allows you to specify the structure of the SDRAM
subsystem such as address and data bus widths, the number of chip select signals,
and the number of banks. Table 1–1 lists the settings available on the Memory Profile
page.

Based on the settings entered on the Memory Profile page, the wizard displays the
expected memory capacity of the SDRAM subsystem in units of megabytes, megabits,
and number of addressable words. Compare these expected values to the actual size
of the chosen SDRAM to verify that the settings are correct.

Table 1–1. Memory Profile Page Settings

Settings
Allowed
Values

Default
Values Description

Data Width 8, 16, 32,
64

32 SDRAM data bus width. This value determines the width of the dq
bus (data) and the dqm bus (byte-enable).

Architecture
Settings

Chip Selects 1, 2, 4, 8 1 Number of independent chip selects in the SDRAM subsystem. By
using multiple chip selects, the SDRAM controller can combine
multiple SDRAM chips into one memory subsystem.

Banks 2, 4 4 Number of SDRAM banks. This value determines the width of the
ba bus (bank address) that connects to the SDRAM. The correct
value is provided in the data sheet for the target SDRAM.

Address
Width
Settings

Row 11, 12, 13,
14

12 Number of row address bits. This value determines the width of the
addr bus. The Row and Column values depend on the geometry
of the chosen SDRAM. For example, an SDRAM organized as 4096
(212) rows by 512 columns has a Row value of 12.

Column >= 8, and
less than
Row value

8 Number of column address bits. For example, the SDRAM
organized as 4096 rows by 512 (29) columns has a Column value
of 9.

Share pins via tri-state
bridge dq/dqm/addr I/O pins

On, Off Off When set to No, all pins are dedicated to the SDRAM chip. When
set to Yes, the addr, dq, and dqm pins can be shared with a
tristate bridge in the system. In this case, select the appropriate
tristate bridge from the pull-down menu.

Include a functional memory
model in the system
testbench

On, Off On When on, SOPC Builder creates a functional simulation model for
the SDRAM chip. This default memory model accelerates the
process of creating and verifying systems that use the SDRAM
controller. See “Hardware Simulation Considerations” on page 1–7.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 1: SDRAM Controller Core 1–7
Hardware Simulation Considerations
Timing Page
The Timing page allows designers to enter the timing specifications of the SDRAM
chip(s) used. The correct values are available in the manufacturer’s data sheet for the
target SDRAM. Table 1–2 lists the settings available on the Timing page.

Regardless of the exact timing values you specify, the actual timing achieved for each
parameter is an integer multiple of the Avalon clock period. For the Issue one refresh
command every parameter, the actual timing is the greatest number of clock cycles
that does not exceed the target value. For all other parameters, the actual timing is the
smallest number of clock ticks that provides a value greater than or equal to the target
value.

Hardware Simulation Considerations
This section discusses considerations for simulating systems with SDRAM. Three
major components are required for simulation:

■ A simulation model for the SDRAM controller.

■ A simulation model for the SDRAM chip(s), also called the memory model.

■ A simulation testbench that wires the memory model to the SDRAM controller
pins.

Some or all of these components are generated by SOPC Builder at system generation
time.

Table 1–2. Timing Page Settings

Settings
Allowed
Values

Default
Value Description

CAS latency 1, 2, 3 3 Latency (in clock cycles) from a read command to data out.

Initialization refresh cycles 1–8 2 This value specifies how many refresh cycles the SDRAM controller
performs as part of the initialization sequence after reset.

Issue one refresh
command every

— 15.625 µs This value specifies how often the SDRAM controller refreshes the
SDRAM. A typical SDRAM requires 4,096 refresh commands every
64 ms, which can be achieved by issuing one refresh command every
64 ms / 4,096 = 15.625 s.

Delay after power up,
before initialization

— 100 µs The delay from stable clock and power to SDRAM initialization.

Duration of refresh
command (t_rfc)

— 70 ns Auto Refresh period.

Duration of precharge
command (t_rp)

— 20 ns Precharge command period.

ACTIVE to READ or
WRITE delay (t_rcd)

— 20 ns ACTIVE to READ or WRITE delay.

Access time (t_ac) — 17 ns Access time from clock edge. This value may depend on CAS latency.

Write recovery time (t_wr,
No auto precharge)

— 14 ns Write recovery if explicit precharge commands are issued. This
SDRAM controller always issues explicit precharge commands.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–8 Chapter 1: SDRAM Controller Core
Example Configurations
SDRAM Controller Simulation Model
The SDRAM controller design files generated by SOPC Builder are suitable for both
synthesis and simulation. Some simulation features are implemented in the HDL
using “translate on/off” synthesis directives that make certain sections of HDL code
invisible to the synthesis tool.

The simulation features are implemented primarily for easy simulation of Nios and
Nios II processor systems using the ModelSim® simulator. The SDRAM controller
simulation model is not ModelSim specific. However, minor changes may be required
to make the model work with other simulators.

c If you change the simulation directives to create a custom simulation flow, be aware
that SOPC Builder overwrites existing files during system generation. Take
precautions to ensure your changes are not overwritten.

f Refer to AN 351: Simulating Nios II Processor Designs for a demonstration of simulation
of the SDRAM controller in the context of Nios II embedded processor systems.

SDRAM Memory Model
This section describes the two options for simulating a memory model of the SDRAM
chip(s).

Using the Generic Memory Model
If the Include a functional memory model the system testbench option is enabled at
system generation, SOPC Builder generates an HDL simulation model for the
SDRAM memory. In the auto-generated system testbench, SOPC Builder
automatically wires this memory model to the SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process of creating
and verifying systems that use the SDRAM controller. However, the memory model is
a generic functional model that does not reflect the true timing or functionality of real
SDRAM chips. The generic model is always structured as a single, monolithic block of
memory. For example, even for a system that combines two SDRAM chips, the generic
memory model is implemented as a single entity.

Using the SDRAM Manufacturer’s Memory Model
If the Include a functional memory model the system testbench option is not
enabled, you are responsible for obtaining a memory model from the SDRAM
manufacturer, and manually wiring the model to the SDRAM controller pins in the
system testbench.

Example Configurations
The following examples show how to connect the SDRAM controller outputs to an
SDRAM chip or chips. The bus labeled ctl is an aggregate of the remaining signals,
such as cas_n, ras_n, cke and we_n.

Figure 1–2 shows a single 128-Mbit SDRAM chip with 32-bit data. The address, data,
and control signals are wired directly from the controller to the chip. The result is a
128-Mbit (16-Mbyte) memory space.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/an/an351.pdf

Chapter 1: SDRAM Controller Core 1–9
Example Configurations
Figure 1–3 shows two 64-Mbit SDRAM chips, each with 16-bit data. The address and
control signals connect in parallel to both chips. The chips share the chipselect (cs_n)
signal. Each chip provides half of the 32-bit data bus. The result is a logical 128-Mbit
(16-Mbyte) 32-bit data memory.

Figure 1–4 shows two 128-Mbit SDRAM chips, each with 32-bit data. The address,
data, and control signals connect in parallel to the two chips. The chipselect bus
(cs_n[1:0]) determines which chip is selected. The result is a logical 256-Mbit 32-bit
wide memory.

Figure 1–2. Single 128-Mbit SDRAM Chip with 32-Bit Data

Figure 1–3. Two 64-MBit SDRAM Chips Each with 16-Bit Data

data 32 128 Mbits
16 Mbytes

32 data width device

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

addr

cs_n

ctl

addr

ctl

cs_n

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

64 Mbits
8 Mbytes

16 data width device

64 Mbits
8 Mbytes

16 data width device

data

16

16

32
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–10 Chapter 1: SDRAM Controller Core
Software Programming Model
Software Programming Model
The SDRAM controller behaves like simple memory when accessed via the
Avalon-MM interface. There are no software-configurable settings and no
memory-mapped registers. No software driver routines are required for a processor to
access the SDRAM controller.

Clock, PLL and Timing Considerations
This section describes issues related to synchronizing signals from the SDRAM
controller core with the clock that drives the SDRAM chip. During SDRAM
transactions, the address, data, and control signals are valid at the SDRAM pins for a
window of time, during which the SDRAM clock must toggle to capture the correct
values. At slower clock frequencies, the clock naturally falls within the valid window.
At higher frequencies, you must compensate the SDRAM clock to align with the valid
window.

Determine when the valid window occurs either by calculation or by analyzing the
SDRAM pins with an oscilloscope. Then use a PLL to adjust the phase of the SDRAM
clock so that edges occur in the middle of the valid window. Tuning the PLL might
require trial-and-error effort to align the phase shift to the properties of your target
board.

f For details about the PLL circuitry in your target device, refer to the appropriate
device family handbook. For details about configuring the PLLs in Altera devices,
refer to the ALTPLL Megafunction User Guide.

Figure 1–4. Two 128-Mbit SDRAM Chips Each with 32-Bit Data

addr

ctl

cs_n [0]

cs_n [1]

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

data 32

128 Mbits
16 Mbytes

32 data width device

128 Mbits
16 Mbytes

32 data width device

32

32
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 1: SDRAM Controller Core 1–11
Clock, PLL and Timing Considerations
Factors Affecting SDRAM Timing
The location and duration of the window depends on several factors:

■ Timing parameters of the device and SDRAM I/O pins — I/O timing parameters
vary based on device family and speed grade.

■ Pin location on the device — I/O pins connected to row routing have different
timing than pins connected to column routing.

■ Logic options used during the Quartus II compilation — Logic options such as the
Fast Input Register and Fast Output Register logic affect the design fit. The
location of logic and registers inside the device affects the propagation delays of
signals to the I/O pins.

■ SDRAM CAS latency

As a result, the valid window timing is different for different combinations of FPGA
and SDRAM devices. The window depends on the Quartus II software fitting results
and pin assignments.

Symptoms of an Untuned PLL
Detecting when the PLL is not tuned correctly might be difficult. Data transfers to or
from the SDRAM might not fail universally. For example, individual transfers to the
SDRAM controller might succeed, whereas burst transfers fail. For processor-based
systems, if software can perform read or write data to SDRAM, but cannot run when
the code is located in SDRAM, the PLL is probably tuned incorrectly.

Estimating the Valid Signal Window
This section describes how to estimate the location and duration of the valid signal
window using timing parameters provided in the SDRAM datasheet and the
Quartus II software compilation report. After finding the window, tune the PLL so
that SDRAM clock edges occur exactly in the middle of the window.

Calculating the window is a two-step process. First, determine by how much time the
SDRAM clock can lag the controller clock, and then by how much time it can lead.
After finding the maximum lag and lead values, calculate the midpoint between
them.

1 These calculations provide an estimation only. The following delays can also affect
proper PLL tuning, but are not accounted for by these calculations.

■ Signal skew due to delays on the printed circuit board — These calculations
assume zero skew.

■ Delay from the PLL clock output nodes to destinations — These calculations
assume that the delay from the PLL SDRAM-clock output-node to the pin is
the same as the delay from the PLL controller-clock output-node to the clock
inputs in the SDRAM controller. If these clock delays are significantly different,
you must account for this phase shift in your window calculations.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–12 Chapter 1: SDRAM Controller Core
Clock, PLL and Timing Considerations
Figure 1–5 shows how to calculate the maximum length of time that the SDRAM clock
can lag the controller clock, and Figure 1–6 shows how to calculate the maximum
lead. Lag is a negative time shift, relative to the controller clock, and lead is a positive
time shift. The SDRAM clock can lag the controller clock by the lesser of the
maximum lag for a read cycle or that for a write cycle. In other words,
Maximum Lag = minimum(Read Lag, Write Lag). Similarly, the SDRAM clock can lead
by the lesser of the maximum lead for a read cycle or for a write cycle. In other words,
Maximum Lead = minimum(Read Lead, Write Lead).

Figure 1–5. Calculating the Maximum SDRAM Clock Lag
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 1: SDRAM Controller Core 1–13
Clock, PLL and Timing Considerations
Example Calculation
This section demonstrates a calculation of the signal window for a Micron
MT48LC4M32B2-7 SDRAM chip and design targeting the Stratix II EP2S60F672C5
device. This example uses a CAS latency (CL) of 3 cycles, and a clock frequency of 50
MHz. All SDRAM signals on the device are registered in I/O cells, enabled with the
Fast Input Register and Fast Output Register logic options in the Quartus II
software.

Table 1–3 shows the relevant timing parameters excerpted from the MT48LC4M32B2
device datasheet.

Figure 1–6. Calculating the Maximum SDRAM Clock Lead

Table 1–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device (Part 1 of 2)

Parameter Symbol

Value (ns) in -7 Speed Grade

Min. Max.

Access time from
CLK (pos. edge)

CL = 3 tAC(3) — 5.5

CL = 2 tAC(2) — 8

CL = 1 tAC(1) — 17

Address hold time tAH 1 —

Address setup time tAS 2 —

CLK high-level width tCH 2.75 —

CLK low-level width tCL 2.75 —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

1–14 Chapter 1: SDRAM Controller Core
Clock, PLL and Timing Considerations
Table 1–4 shows the relevant timing information, obtained from the Timing Analyzer
section of the Quartus II Compilation Report. The values in the table are the
maximum or minimum values among all device pins related to the SDRAM. The
variance in timing between the SDRAM pins on the device is small (less than 100 ps)
because the registers for these signals are placed in the I/O cell.

1 You must compile the design in the Quartus II software to obtain the I/O timing
information for the design. Although Altera device family datasheets contain generic
I/O timing information for each device, the Quartus II Compilation Report provides
the most precise timing information for your specific design.

c The timing values found in the compilation report can change, depending on fitting,
pin location, and other Quartus II logic settings. When you recompile the design in
the Quartus II software, verify that the I/O timing has not changed significantly.

Clock cycle time CL = 3 tCK(3) 7 —

CL = 2 tCK(2) 10 —

CL = 1 tCK(1) 20 —

CKE hold time tCKH 1 —

CKE setup time tCKS 2 —

CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1 —

CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2 —

Data-in hold time tDH 1

Data-in setup time tDS 2

Data-out
high-impedance
time

CL = 3 tHZ(3) 5.5

CL = 2 tHZ(2) — 8

CL = 1 tHZ(1) — 17

Data-out low-impedance time tLZ 1 —

Data-out hold time tOH 2.5

Table 1–4. FPGA I/O Timing Parameters

Parameter Symbol Value (ns)

Clock period tCLK 20

Minimum clock-to-output time tCO_MIN 2.399

Maximum clock-to-output time tCO_MAX 2.477

Maximum hold time after clock tH_MAX –5.607

Maximum setup time before clock tSU_MAX 5.936

Table 1–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device (Part 2 of 2)

Parameter Symbol

Value (ns) in -7 Speed Grade

Min. Max.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 1: SDRAM Controller Core 1–15
Referenced Documents
The following examples illustrate the calculations from Figure 1–5 and Figure 1–6
using the values from Table 1–3 and Table 1–4.

The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag:

Read Lag = tOH(SDRAM) – tH_MAX(FPGA)

= 2.5 ns – (–5.607 ns) = 8.107 ns

or

Write Lag= tCLK – tCO_MAX(FPGA) – tDS(SDRAM)

= 20 ns – 2.477 ns – 2 ns = 15.523 ns

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write Lead:

Read Lead= tCO_MIN(FPGA) – tDH(SDRAM)

= 2.399 ns – 1.0 ns = 1.399 ns

or

Write Lead= tCLK – tHZ(3)(SDRAM) – tSU_MAX(FPGA)

= 20 ns – 5.5 ns – 5.936 ns = 8.564 ns

Therefore, for this example you can shift the phase of the SDRAM clock from
–8.107 ns to 1.399 ns relative to the controller clock. Choosing a phase shift in the
middle of this window results in the value (–8.107 + 1.399)/2 = –3.35 ns.

Referenced Documents
This chapter references the following documents:

■ ALTPLL Megafunction User Guide

■ AN 351: Simulating Nios II Processor Designs

■ Avalon Interface Specifications

■ PLL Core chapter in volume 5 of the Quartus II Handbook
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii53002.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

1–16 Chapter 1: SDRAM Controller Core
Document Revision History
Document Revision History
Table 1–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 1–5. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0.

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

QII55005-9.1.0
2. CompactFlash Core
Core Overview
The CompactFlash core allows you to connect SOPC Builder systems to
CompactFlash storage cards in true IDE mode by providing an Avalon®
Memory-Mapped (Avalon-MM) interface to the registers on the storage cards. The
core supports PIO mode 0.

The CompactFlash core also provides an Avalon-MM slave interface which can be
used by Avalon-MM master peripherals such as a Nios® II processor to communicate
with the CompactFlash core and manage its operations.

The CompactFlash core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 2–2

■ “Device Support” on page 2–3

■ “Software Programming Model” on page 2–3

Functional Description
Figure 2–1 shows a block diagram of the CompactFlash core in a typical system
configuration.

Figure 2–1. SOPC Builder System With a CompactFlash Core

Avalon-to-
CompactFlash

Avalon-MM
Master

(e.g. CPU)

S
ystem

 Interconnect Fabric

Altera FPGA

CompactFlash
Deviceid

e
A

va
lo

n-
M

M
 S

la
ve

 P
or

t
ct

l
A

va
lo

n-
M

M
 S

la
ve

 P
or

t

data

address

cfctl

idectl

Registers

IRQ

data

address

IRQ
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

2–2 Chapter 2: CompactFlash Core
Instantiating the Core in SOPC Builder
As shown in Figure 2–1, the CompactFlash core provides two Avalon-MM slave
interfaces: the ide slave port for accessing the registers on the CompactFlash device
and the ctl slave port for accessing the core's internal registers. These registers can be
used by Avalon-MM master peripherals such as a Nios II processor to control the
operations of the CompactFlash core and to transfer data to and from the
CompactFlash device.

You can set the CompactFlash core to generate two active-high interrupt requests
(IRQs): one signals the insertion and removal of a CompactFlash device and the other
passes interrupt signals from the CompactFlash device.

The CompactFlash core maps the Avalon-MM bus signals to the CompactFlash device
with proper timing, thus allowing Avalon-MM master peripherals to directly access
the registers on the CompactFlash device.

f For more information, refer to the CF+ and CompactFlash specifications available at
www.compactflash.org.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the CompactFlash core in SOPC Builder to add the
core to a system. There are no user-configurable settings for this core.

Required Connections
Table 2–1 lists the required connections between the CompactFlash core and the
CompactFlash device.

Table 2–1. Required Connections (Part 1 of 2)

CompactFlash Interface Signal
Name Pin Type CompactFlash Pin Number

addr[0] Output 20

addr[1] Output 19

addr[2] Output 18

addr[3] Output 17

addr[4] Output 16

addr[5] Output 15

addr[6] Output 14

addr[7] Output 12

addr[8] Output 11

addr[9] Output 10

addr[10] Output 8

atasel_n Output 9

cs_n[0] Output 7

cs_n[1] Output 32

data[0] Input/Output 21

data[1] Input/Output 22
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

www.compactflash.org
www.compactflash.org

Chapter 2: CompactFlash Core 2–3
Device Support
Device Support
The CompactFlash interface core supports all Altera® device families.

Software Programming Model
This section describes the software programming model for the CompactFlash core.

HAL System Library Support
The Altera-provided HAL API functions include a device driver that you can use to
initialize the CompactFlash core. To perform other operations, use the low-level
macros provided. For more information on the macros, refer to the files listed in the
section “Software Files” on page 2–4.

data[2] Input/Output 23

data[3] Input/Output 2

data[4] Input/Output 3

data[5] Input/Output 4

data[6] Input/Output 5

data[7] Input/Output 6

data[8] Input/Output 47

data[9] Input/Output 48

data[10] Input/Output 49

data[11] Input/Output 27

data[12] Input/Output 28

data[13] Input/Output 29

data[14] Input/Output 30

data[15] Input/Output 31

detect Input 25 or 26

intrq Input 37

iord_n Output 34

iordy Input 42

iowr_n Output 35

power Output CompactFlash power
controller, if present

reset_n Output 41

rfu Output 44

we_n Output 46

Table 2–1. Required Connections (Part 2 of 2)

CompactFlash Interface Signal
Name Pin Type CompactFlash Pin Number
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

2–4 Chapter 2: CompactFlash Core
Software Programming Model
Software Files
The CompactFlash core provides the following software files. These files define the
low-level access to the hardware. Application developers should not modify these
files.

■ altera_avalon_cf_regs.h—The header file that defines the core's register maps.

■ altera_avalon_cf.h, altera_avalon_cf.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

Register Maps
This section describes the register maps for the Avalon-MM slave interfaces.

Ide Registers
The ide port in the CompactFlash core allows you to access the IDE registers on a
CompactFlash device. Table 2–2 shows the register map for the ide port.

Ctl Registers
The ctl port in the CompactFlash core provides access to the registers which control
the core’s operation and interface. Table 2–3 shows the register map for the ctl port.

Table 2–2. Ide Register Map

Offset

Register Names

Read Operation Write Operation

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head

7 Status Command

14 Alt Status Device Control

Table 2–3. Ctl Register Map

Offset Register

Fields

31:4 3 2 1 0

0 cfctl Reserved IDET RST PWR DET

1 idectl Reserved IIDE

2 Reserved Reserved

3 Reserved Reserved
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 2: CompactFlash Core 2–5
Document Revision History
Cfctl Register

The cfctl register controls the operations of the CompactFlash core. Reading the
cfctl register clears the interrupt. Table 2–4 describes the cfctl register bits.

Idectl Register

The idectl register controls the interface to the CompactFlash device. Table 2–5
describes the idectl register bit.

Document Revision History
Table 2–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 2–4. cfctl Register Bits

Bit Number Bit Name Read/Write Description

0 DET RO Detect. This bit is set to 1 when the core detects a CompactFlash device.

1 PWR RW Power. When this bit is set to 1, power is being supplied to the
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the CompactFlash device is held in a reset
state. Setting this bit to 0 returns the device to its active state.

3 IDET RW Detect Interrupt Enable. When this bit is set to 1, the CompactFlash core
generates an interrupt each time the value of the det bit changes.

Table 2–5. idectl Register

Bit Number Bit Name Read/Write Description

0 IIDE RW IDE Interrupt Enable. When this bit is set to 1, the CompactFlash core
generates an interrupt following an interrupt generated by the
CompactFlash device. Setting this bit to 0 disables the IDE interrupt.

Table 2–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Added the mode supported by the CompactFlash core. —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

2–6 Chapter 2: CompactFlash Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51013-9.1.0
3. Common Flash Interface Controller
Core
Core Overview
The common flash interface controller core with Avalon® interface (CFI controller)
allows you to easily connect SOPC Builder systems to external flash memory that
complies with the Common Flash Interface (CFI) specification. The CFI controller is
SOPC Builder-ready and integrates easily into any SOPC Builder-generated system.

For the Nios® II processor, Altera provides hardware abstraction layer (HAL) driver
routines for the CFI controller. The drivers provide universal access routines for
CFI-compliant flash memories. Therefore, you do not need to write any additional
code to program CFI-compliant flash devices. The HAL driver routines take
advantage of the HAL generic device model for flash memory, which allows you to
access the flash memory using the familiar HAL application programming interface
(API), the ANSI C standard library functions for file I/O, or both.

The Nios II Embedded Design Suite (EDS) provides a flash programmer utility based
on the Nios II processor and the CFI controller. The flash programmer utility can be
used to program any CFI-compliant flash memory connected to an Altera® device.

f For more information about how to read and write flash using the HAL API, refer to
the Nios II Software Developer's Handbook. For more information on the flash
programmer utility, refer to the Nios II Flash Programmer User Guide.

Further information about the Common Flash Interface specification is available at
www.intel.com. As an example of a flash device supported by the CFI controller, see
the data sheet for the AMD Am29LV065D-120R, available at www.amd.com.

The common flash interface controller core supersedes previous Altera flash cores
distributed with SOPC Builder or Nios development kits. All flash chips associated
with these previous cores comply with the CFI specification, and therefore are
supported by the CFI controller.

This chapter contains the following sections:

■ “Functional Description” on page 3–2

■ “Device and Tools Support” on page 3–2

■ “Instantiating the Core in SOPC Builder” on page 3–2

■ “Software Programming Model” on page 3–4
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.intel.com
http://www.amd.com
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

3–2 Chapter 3: Common Flash Interface Controller Core
Functional Description
Functional Description
Figure 3–1 shows a block diagram of the CFI controller in a typical system
configuration. As shown in Figure 3–1, the Avalon Memory-Mapped (Avalon-MM)
interface for flash devices is connected through an Avalon-MM tristate bridge. The
tristate bridge creates an off-chip memory bus that allows the flash chip to share
address and data pins with other memory chips. It provides separate chipselect, read,
and write pins to each chip connected to the memory bus. The CFI controller
hardware is minimal; it is simply an Avalon-MM tristate slave port configured with
waitstates, setup, and hold time appropriate for the target flash chip. This slave port is
capable of Avalon-MM tristate slave read and write transfers.

Avalon-MM master ports can perform read transfers directly from the CFI controller's
Avalon-MM port. See “Software Programming Model” on page 3–4 for more detail on
writing/erasing flash memory.

Device and Tools Support
The CFI controller supports all Altera device families. The CFI controller provides
drivers for the Nios II HAL system library.

Instantiating the Core in SOPC Builder
Hardware designers use the MegaWizard™ interface for the CFI controller in SOPC
Builder to specify the core features. The following sections describe the available
options.

Figure 3–1. An SOPC Builder System Integrating a CFI Controller

S
ystem

 Interconnect Fabric

S Avalon-MM Slave Port

M Avalon-MM Master Port

A
valo

n
-M

M
 Tristate B

rid
g

e

S

S

M

M
Avalon-MM

Master
(e.g. CPU)

S
On-Chip

Slave
Peripheral

Altera FPGA

S
Flash

Memory
Chip

S Other
Memory

chipselect,
read_n, write_n

chipselect,
read_n, write_n

flash

other
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 3: Common Flash Interface Controller Core 3–3
Instantiating the Core in SOPC Builder
Attributes Page
The options on this page control the basic hardware configuration of the CFI
controller.

Presets Settings
The Presets setting is a drop-down menu of flash chips that have already been
characterized for use with the CFI controller. After you select one of the chips in the
Presets menu, the wizard updates all settings on both tabs (except for the Board Info
setting) to work with the specified flash chip.

The options provided are not intended to cover the wide range of flash devices
available in the market. If the flash chip on your target board does not appear in the
Presets list, you must configure the other settings manually.

Size Settings
The size setting specifies the size of the flash device. There are two settings:

■ Address Width—The width of the flash chip's address bus.

■ Data Width—The width of the flash chip's data bus

The size settings cause SOPC Builder to allocate the correct amount of address space
for this device. SOPC Builder will automatically generate dynamic bus sizing logic
that appropriately connects the flash chip to Avalon-MM master ports of different
data widths.

f For details about dynamic bus sizing, refer to the Avalon Interface Specifications.

Timing Page
The options on this page specify the timing requirements for read and write transfers
with the flash device.

f Refer to the specifications provided with the common flash device you are using to
obtain the timing values you need to calculate the values of the parameters on the
Timing page.

The settings available on the Timing page are:

■ Setup—After asserting chipselect, the time required before asserting the read
or write signals. You can determine the value of this parameter by using the
following formula:

Setup = tCE (chip enable to output delay) - tOE (output enable to output delay)

■ Wait—The time required for the read or write signals to be asserted for each
transfer. Use the following guideline to determine an appropriate value for this
parameter:

The sum of Setup, Wait, and board delay must be greater than tACC, where:

■ Board delay is determined by the TCO on the device address pins, TSU on the
device data pins and propagation delay on the board traces in both directions.

■ tACC is the address to output delay.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3–4 Chapter 3: Common Flash Interface Controller Core
Software Programming Model
■ Hold—After deasserting the write signal, the time required before deasserting
the chipselect signal.

■ Units—The timing units used for the Setup, Wait, and Hold values. Possible
values include ns, µs, ms, and clock cycles.

f For more information about signal timing for the Avalon-MM interface, refer to the
Avalon Interface Specifications.

Software Programming Model
This section describes the software programming model for the CFI controller. In
general, any Avalon-MM master in the system can read the flash chip directly as a
memory device. For Nios II processor users, Altera provides HAL system library
drivers that enable you to erase and write the flash memory using the HAL API
functions.

HAL System Library Support
The Altera-provided driver implements a HAL flash device driver that integrates into
the HAL system library for Nios II systems. Programs call the familiar HAL API
functions to program CFI-compliant flash memory. You do not need to know
anything about the details of the underlying drivers.

f The HAL API for programming flash, including C code examples, is described in
detail in the Nios II Software Developer's Handbook. The Nios II EDS also provides a
reference design called Flash Tests that demonstrates erasing, writing, and reading
flash memory.

Limitations
Currently, the Altera-provided drivers for the CFI controller support only Intel, AMD
and Spansion flash chips.

Software Files
The CFI controller provides the following software files. These files define the
low-level access to the hardware, and provide the routines for the HAL flash device
driver. Application developers should not modify these files.

■ altera_avalon_cfi_flash.h, altera_avalon_cfi_flash.c—The header and source
code for the functions and variables required to integrate the driver into the HAL
system library.

■ altera_avalon_cfi_flash_funcs.h, altera_avalon_cfi_flash_table.c—The header
and source code for functions concerned with accessing the CFI table.

■ altera_avalon_cfi_flash_amd_funcs.h, altera_avalon_cfi_flash_amd.c—The
header and source code for programming AMD CFI-compliant flash chips.

■ altera_avalon_cfi_flash_intel_funcs.h, altera_avalon_cfi_flash_intel.c—The
header and source code for programming Intel CFI-compliant flash chips.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 3: Common Flash Interface Controller Core 3–5
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Nios II Flash Programmer User Guide

■ Nios II Software Developer's Handbook

Document Revision History
Table 3–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 3–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

Revised description of the timing page settings.

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Added description to parameters
on Timing page.

—

May 2008

v8.0.0

Updated the CFI controllers supported by Altera-provided drivers. Updates made to comply with
the Quartus II software version
8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3–6 Chapter 3: Common Flash Interface Controller Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51012-9.1.0
4. EPCS Device Controller Core
Core Overview
The EPCS device controller core with Avalon® interface allows Nios® II systems to
access an Altera® EPCS serial configuration device. Altera provides drivers that
integrate into the Nios II hardware abstraction layer (HAL) system library, allowing
you to read and write the EPCS device using the familiar HAL application program
interface (API) for flash devices.

Using the EPCS device controller core, Nios II systems can:

■ Store program code in the EPCS device. The EPCS device controller core provides
a boot-loader feature that allows Nios II systems to store the main program code in
an EPCS device.

■ Store non-volatile program data, such as a serial number, a NIC number, and other
persistent data.

■ Manage the device configuration data. For example, a network-enabled embedded
system can receive new FPGA configuration data over a network, and use the core
to program the new data into an EPCS serial configuration device.

The EPCS device controller core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. The flash programmer utility in the Nios II IDE
allows you to manage and program data contents into the EPCS device.

f For information about the EPCS serial configuration device family, refer to the Serial
Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data Sheet. For
details about using the Nios II HAL API to read and write flash memory, refer to the
Nios II Software Developer's Handbook. For details about managing and programming
the EPCS memory contents, refer to the Nios II Flash Programmer User Guide.

1 For Nios II processor users, the EPCS device controller core supersedes the Active
Serial Memory Interface (ASMI) device. New designs should use the EPCS device
controller core instead of the ASMI core.

This chapter contains the following sections:

■ “Functional Description” on page 4–2

■ “Device and Tools Support” on page 4–4

■ “Instantiating the Core in SOPC Builder” on page 4–4

■ “Software Programming Model” on page 4–4
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

4–2 Chapter 4: EPCS Device Controller Core
Functional Description
Functional Description
Figure 4–1 shows a block diagram of the EPCS device controller core in a typical
system configuration. As shown in Figure 4–1, the EPCS device's memory can be
thought of as two separate regions:

■ FPGA configuration memory—FPGA configuration data is stored in this region.

■ General-purpose memory—If the FPGA configuration data does not fill up the
entire EPCS device, any left-over space can be used for general-purpose data and
system startup code.

By virtue of the HAL generic device model for flash devices, accessing the EPCS
device using the HAL API is the same as accessing any flash memory. The EPCS
device has a special-purpose hardware interface, so Nios II programs must read and
write the EPCS memory using the provided HAL flash drivers.

The EPCS device controller core contains an on-chip memory for storing a boot-loader
program. When used in conjunction with Cyclone®, Cyclone II, and Cyclone III
devices, the core requires 512 bytes of boot-loader ROM. For Stratix® II and Stratix III
devices, the core requires 1 KByte of boot-loader ROM. The Nios II processor can be
configured to boot from the EPCS device controller core. To do so, set the Nios II reset
address to the base address of the EPCS device controller core. In this case, after reset
the CPU first executes code from the boot-loader ROM, which copies data from the
EPCS general-purpose memory region into a RAM. Then, program control transfers
to the RAM. The Nios II IDE provides facilities to compile a program for storage in the
EPCS device, and create a programming file to program into the EPCS device.

f For more information, refer to the Nios II Flash Programmer User Guide.

Figure 4–1. Nios II System Integrating an EPCS Device Controller Core

S
ystem

 Interconnect Fabric

EPCS
Controller Core

Boot-Loader
ROM

EPCS Serial
Configuration

Device

Config
Memory

General-
Purpose
Memory

Nios II CPU

Other
On-Chip

Peripheral(s)

Altera FPGA
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Chapter 4: EPCS Device Controller Core 4–3
Functional Description
The Altera EPCS configuration device connects to the FPGA through dedicated pins
on the FPGA, not through general-purpose I/O pins. In all Altera device families
except Cyclone III, the EPCS device controller core does not create any I/O ports on
the top-level SOPC Builder system module. If the EPCS device and the FPGA are
wired together on a board for configuration using the EPCS device (in other words,
active serial configuration mode), no further connection is necessary between the
EPCS device controller core and the EPCS device. When you compile the SOPC
Builder system in the Quartus II software, the EPCS device controller core signals are
routed automatically to the device pins for the EPCS device.

1 If you program the EPCS device using the Quartus® II Programmer, all previous
content is erased. To program the EPCS device with a combination of FPGA
configuration data and Nios II program data, use the Nios II IDE flash programmer
utility.

You have the flexibility to connect the output pins of Cyclone III devices, which are
exported to the top-level design, to any EPCS devices. Perform the following tasks in
the Quartus® II software to make the necessary pin assignments:

■ On the Dual-purpose pins page (Assignments > Devices > Device and Pin
Options), ensure that the following pins are assigned to the respective values:

■ Data[0] = Use as regular I/O

■ Data[1] = Use as regularr I/O

■ DCLK = Use as regular I/O

■ FLASH_nCE/nCS0 = Use as regular I/O

■ Using the Pin Planner (Assignments > Pins), ensure that the following pins are
assigned to the respective configuration functions on the device:

■ data0_to_the_epcs_controller = DATA0

■ sdo_from the_epcs_controller = DATA1,ASDO

■ dclk_from_epcs_controller = DCLK

■ sce_from_the_epcs_controller = FLASH_nCE

f For more information about the configuration pins in Cyclone III devices, refer to the
Pin-Out Files for Altera Device page.

Avalon-MM Slave Interface and Registers
The EPCS device controller core has a single Avalon-MM slave interface that provides
access to both boot-loader code and registers that control the core. As shown in
Table 4–1, the first segment is dedicated to the boot-loader code, and the next seven
words are control and data registers. A Nios II CPU can read the instruction words,
starting from the core's base address as flat memory space, which enables the CPU to
reset the core's address space.

The EPCS device controller core includes an interrupt signal that can be used to
interrupt the CPU when a transfer has completed.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y

4–4 Chapter 4: EPCS Device Controller Core
Device and Tools Support
Device and Tools Support
The EPCS device controller core supports all Altera device families except the
Hardcopy® series. The core must be connected to a Nios II processor. The core
provides drivers for HAL-based Nios II systems, and the precompiled boot loader
code compatible with the Nios II processor.

Instantiating the Core in SOPC Builder
You can add the EPCS device controller core from the System Contents tab in SOPC
Builder. There are no user-configurable settings for this component.

1 Only one EPCS device controller core can be instantiated in each FPGA design.

Software Programming Model
This section describes the software programming model for the EPCS device
controller core. Altera provides HAL system library drivers that enable you to erase
and write the EPCS memory using the HAL API functions. Altera does not publish
the usage of the cores registers. Therefore, you must use the HAL drivers provided by
Altera to access the EPCS device.

HAL System Library Support
The Altera-provided driver implements a HAL flash device driver that integrates into
the HAL system library for Nios II systems. Programs call the familiar HAL API
functions to program the EPCS memory. You do not need to know the details of the
underlying drivers to use them.

1 The driver for the EPCS device is excluded when the reduced device drivers option is
enabled in a BSP or system library. To force inclusion of the EPCS drivers in a BSP
with the reduced device drivers option enabled, you can define the preprocessor
symbol, ALT_USE_EPCS_FLASH, before including the header, as follows:

Table 4–1. EPCS Device Controller Core Register Map

Offset—Cyclone and
Cyclone II

(32-bit Word Address)

Offset—Other Device
Families

(32-bit Word Address) Register Name R/W

Bit Description

31:0

0x00 .. 0x7F 0x00 .. 0xFF Boot ROM Memory R Boot Loader Code

0x080 0x100 Read Data R

(1)

0x081 0x101 Write Data W

0x082 0x102 Status R/W

0x083 0x103 Control R/W

0x084 0x104 Reserved —

0x085 0x105 Slave Enable R/W

0x086 0x106 End of Packet R/W

Note to Table 4–1:

(1) Altera does not publish the usage of the control and data registers. To access the EPCS device, you must use the HAL drivers provided by Altera.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 4: EPCS Device Controller Core 4–5
Referenced Documents
#define ALT_USE_EPCS_FLASH

#include <altera_avalon_epcs_flash_controller.h>

f The HAL API for programming flash, including C-code examples, is described in
detail in the Nios II Software Developer's Handbook. For details about managing and
programming the EPCS device contents, refer to the Nios II Flash Programmer User
Guide.

Software Files
The EPCS device controller core provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into the Nios II
HAL system library. Application developers should not modify these files.

■ altera_avalon_epcs_flash_controller.h, altera_avalon_epcs_flash_controller.c—
Header and source files that define the drivers required for integration into the
HAL system library.

■ epcs_commands.h, epcs_commands.c—Header and source files that directly
control the EPCS device hardware to read and write the device. These files also
rely on the Altera SPI core drivers.

Referenced Documents
This chapter references the following documents:

■ Nios II Flash Programmer User Guide

■ Nios II Software Developer's Handbook

■ Serial Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data
Sheet

Document Revision History
Table 4–2 shows the revision history for this chapter.

Table 4–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

■ Revised descriptions of register fields and bits.

■ Updated the section on HAL System Library Support.

—

March 2009

v9.0.0

Updated the boot ROM memory offset for other device familes in
Table 4–1.

—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

■ Updated the boot rom size.

■ Added additional steps to perform to connect output pins in
Cyclone III devices.

Updates made to comply with
the Quartus II software version
8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

4–6 Chapter 4: EPCS Device Controller Core
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII51009-9.1.0
5. JTAG UART Core
Core Overview
The JTAG UART core with Avalon® interface implements a method to communicate
serial character streams between a host PC and an SOPC Builder system on an Altera®
FPGA. In many designs, the JTAG UART core eliminates the need for a separate
RS-232 serial connection to a host PC for character I/O. The core provides an Avalon
interface that hides the complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios® II processor) communicate with
the core by reading and writing control and data registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs, and provides
host access via the JTAG pins on the FPGA. The host PC can connect to the FPGA via
any Altera JTAG download cable, such as the USB-Blaster™ cable. Software support
for the JTAG UART core is provided by Altera. For the Nios II processor, device
drivers are provided in the HAL system library, allowing software to access the core
using the ANSI C Standard Library stdio.h routines. For the host PC, Altera provides
JTAG terminal software that manages the connection to the target, decodes the JTAG
data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description” on page 5–2

■ “Device and Tools Support” on page 5–4

■ “Instantiating the Core in SOPC Builder” on page 5–4

■ “Hardware Simulation Considerations” on page 5–6

■ “Software Programming Model” on page 5–6
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

5–2 Chapter 5: JTAG UART Core
Functional Description
Functional Description
Figure 5–1 shows a block diagram of the JTAG UART core and its connection to the
JTAG circuitry inside an Altera FPGA. The following sections describe the
components of the core.

Avalon Slave Interface and Registers
The JTAG UART core provides an Avalon slave interface to the JTAG circuitry on an
Altera FPGA. The user-visible interface to the JTAG UART core consists of two 32-bit
registers, data and control, that are accessed through an Avalon slave port. An
Avalon master, such as a Nios II processor, accesses the registers to control the core
and transfer data over the JTAG connection. The core operates on 8-bit units of data at
a time; eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can request an
interrupt when read data is available, or when the write FIFO is ready for data. For
further details see “Interrupt Behavior” on page 5–11.

Read and Write FIFOs
The JTAG UART core provides bidirectional FIFOs to improve bandwidth over the
JTAG connection. The FIFO depth is parameterizable to accommodate the available
on-chip memory. The FIFOs can be constructed out of memory blocks or registers,
allowing you to trade off logic resources for memory resources, if necessary.

Figure 5–1. JTAG UART Core Block Diagram

Avalon-MM slave
interface

to on-chip
logic

JTAG UART Core

Registers

JTAG
Hub

Interface

IRQ

Built-In Feature of Altera FPGA

Write FIFO

Read FIFO

Data

Control
JTAG
Hub

JTAG Connection to Host PC

Altera FPGA

Other Nodes Using JTAG Interface
(for example, another JTAG UART)

TC
K

TD
I

TD
O

TM
S

TR
ST

JTAG
Controller

Automatically Generated by Quartus II Software
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 5: JTAG UART Core 5–3
Functional Description
JTAG Interface
Altera FPGAs contain built-in JTAG control circuitry between the device's JTAG pins
and the logic inside the device. The JTAG controller can connect to user-defined
circuits called nodes implemented in the FPGA. Because several nodes may need to
communicate via the JTAG interface, a JTAG hub, which is a multiplexer, is necessary.
During logic synthesis and fitting, the Quartus® II software automatically generates
the JTAG hub logic. No manual design effort is required to connect the JTAG circuitry
inside the device; the process is presented here only for clarity.

Host-Target Connection
Figure 5–2 shows the connection between a host PC and an SOPC Builder-generated
system containing a JTAG UART core.

The JTAG controller on the FPGA and the download cable driver on the host PC
implement a simple data-link layer between host and target. All JTAG nodes inside
the FPGA are multiplexed through the single JTAG connection. JTAG server software
on the host PC controls and decodes the JTAG data stream, and maintains distinct
connections with nodes inside the FPGA.

The example system in Figure 5–2 contains one JTAG UART core and a Nios II
processor. Both agents communicate with the host PC over a single Altera download
cable. Thanks to the JTAG server software, each host application has an independent
connection to the target. Altera provides the JTAG server drivers and host software
required to communicate with the JTAG UART core.

1 Systems with multiple JTAG UART cores are possible, and all cores communicate via
the same JTAG interface. To maintain coherent data streams, only one processor
should communicate with each JTAG UART core.

Figure 5–2. Example System Using the JTAG UART Core

PC
Interface

Host PC

JTAG
Server

Download
Cable

Altera
Downlo

DebuggerDebugger

C
Debug Data

PC
Interface JTAG

Host PC

Altera FPGA

 J
TA

G
 C

on
tro

lle
r

JT
AG

H
ub

 JTAG
Server

Download
Cable
Driver

Altera
Download

Cable

JTAG
Debug
Module

JTAG
UART

System Interconnect Fabric

Character Stream

DebuggerDebugger

C

JTAG TerminalJTAG Terminal

Nios II
Processor

On-Chip
Memory

M

S S

M

S

Avalon-MM master port

Avalon-MM slave port
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

5–4 Chapter 5: JTAG UART Core
Device and Tools Support
Device and Tools Support
The JTAG UART core supports all Altera® device families. The JTAG UART core is
supported by the Nios II hardware abstraction layer (HAL) system library.

To view the character stream on the host PC, the JTAG UART core must be used in
conjunction with the JTAG terminal software provided by Altera. Nios II processor
users access the JTAG UART via the Nios II IDE or the nios2-terminal command-line
utility.

f For further details, refer to the Nios II Software Developer's Handbook or the Nios II IDE
online help.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the JTAG UART core in SOPC Builder to specify
the core features. The following sections describe the available options.

Configuration Page
The options on this page control the hardware configuration of the JTAG UART core.
The default settings are pre-configured to behave optimally with the Altera-provided
device drivers and JTAG terminal software. Most designers should not change the
default values, except for the Construct using registers instead of memory blocks
option.

Write FIFO Settings
The write FIFO buffers data flowing from the Avalon interface to the host. The
following settings are available:

■ Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

■ IRQ Threshold—The write IRQ threshold governs how the core asserts its IRQ in
response to the FIFO emptying. As the JTAG circuitry empties data from the write
FIFO, the core asserts its IRQ when the number of characters remaining in the
FIFO reaches this threshold value. For maximum bandwidth, a processor should
service the interrupt by writing more data and preventing the write FIFO from
emptying completely. A value of 8 is typically optimal. See “Interrupt Behavior”
on page 5–11 for further details.

■ Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of on-chip logic resources. This option is
useful when memory resources are limited. Each byte consumes roughly 11 logic
elements (LEs), so a FIFO depth of 8 (bytes) consumes roughly 88 LEs.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 5: JTAG UART Core 5–5
Instantiating the Core in SOPC Builder
Read FIFO Settings
The read FIFO buffers data flowing from the host to the Avalon interface. Settings are
available to control the depth of the FIFO and the generation of interrupts.

■ Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

■ IRQ Threshold—The IRQ threshold governs how the core asserts its IRQ in
response to the FIFO filling up. As the JTAG circuitry fills up the read FIFO, the
core asserts its IRQ when the amount of space remaining in the FIFO reaches this
threshold value. For maximum bandwidth, a processor should service the
interrupt by reading data and preventing the read FIFO from filling up completely.
A value of 8 is typically optimal. See “Interrupt Behavior” on page 5–11 for further
details.

■ Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of logic resources. This option is useful
when memory resources are limited. Each byte consumes roughly 11 LEs, so a
FIFO depth of 8 (bytes) consumes roughly 88 LEs.

Simulation Settings
At system generation time, when SOPC Builder generates the logic for the JTAG
UART core, a simulation model is also constructed. The simulation model offers
features to simplify simulation of systems using the JTAG UART core. Changes to the
simulation settings do not affect the behavior of the core in hardware; the settings
affect only functional simulation.

Simulated Input Character Stream
You can enter a character stream that will be simulated entering the read FIFO upon
simulated system reset. The MegaWizard Interface accepts an arbitrary character
string, which is later incorporated into the test bench. After reset, this character string
is pre-initialized in the read FIFO, giving the appearance that an external JTAG
terminal program is sending a character stream to the JTAG UART core.

Prepare Interactive Windows
At system generation time, the JTAG UART core generator can create ModelSim®
macros to open interactive windows during simulation. These windows allow the
user to send and receive ASCII characters via a console, giving the appearance of a
terminal session with the system executing in hardware. The following options are
available:

■ Do not generate ModelSim aliases for interactive windows—This option does
not create any ModelSim macros for character I/O.

■ Create ModelSim alias to open a window showing output as ASCII text—This
option creates a ModelSim macro to open a console window that displays output
from the write FIFO. Values written to the write FIFO via the Avalon interface are
displayed in the console as ASCII characters.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

5–6 Chapter 5: JTAG UART Core
Hardware Simulation Considerations
■ Create ModelSim alias to open an interactive stimulus/response window—This
option creates a ModelSim macro to open a console window that allows input and
output interaction with the core. Values written to the write FIFO via the Avalon
interface are displayed in the console as ASCII characters. Characters typed into
the console are fed into the read FIFO, and can be read via the Avalon interface.
When this option is enabled, the simulated character input stream option is
ignored.

Hardware Simulation Considerations
The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The simulation model is implemented in the
JTAG UART core's top-level HDL file. The synthesizable HDL and the simulation
HDL are implemented in the same file. Some simulation features are implemented
using translate on/off synthesis directives that make certain sections of HDL
code visible only to the synthesis tool.

1 For complete details about simulating the JTAG UART core in Nios II systems, refer to
AN 351: Simulating Nios II Processor Designs.

Other simulators can be used, but require user effort to create a custom simulation
process. You can use the auto-generated ModelSim scripts as references to create
similar functionality for other simulators.

c Do not edit the simulation directives if you are using Altera’s recommended
simulation procedures. If you change the simulation directives to create a custom
simulation flow, be aware that SOPC Builder overwrites existing files during system
generation. Take precautions to ensure your changes are not overwritten.

Software Programming Model
The following sections describe the software programming model for the JTAG UART
core, including the register map and software declarations to access the hardware. For
Nios II processor users, Altera provides HAL system library drivers that enable you
to access the JTAG UART using the ANSI C standard library functions, such as
printf() and getchar().

HAL System Library Support
The Altera-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the JTAG UART via the familiar HAL API and the ANSI C standard library, rather
than accessing the JTAG UART registers. ioctl() requests are defined that allow
HAL users to control the hardware-dependent aspects of the JTAG UART.

c If your program uses the Altera-provided HAL device driver to access the JTAG
UART hardware, accessing the device registers directly will interfere with the correct
behavior of the driver.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/an/an351.pdf

Chapter 5: JTAG UART Core 5–7
Software Programming Model
For Nios II processor users, the HAL system library API provides complete access to
the JTAG UART core's features. Nios II programs treat the JTAG UART core as a
character mode device, and send and receive data using the ANSI C standard library
functions, such as getchar() and printf().

Example 5–1 demonstrates the simplest possible usage, printing a message to stdout
using printf(). In this example, the SOPC Builder system contains a JTAG UART
core, and the HAL system library is configured to use this JTAG UART device for
stdout.

Example 5–2 demonstrates reading characters from and sending messages to a JTAG
UART core using the C standard library. In this example, the SOPC Builder system
contains a JTAG UART core named jtag_uart that is not necessarily configured as
the stdout device. In this case, the program treats the device like any other node in
the HAL file system.

Example 5–1. Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{

printf("Hello world.\n");
return 0;

}

Example 5–2. Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{

char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;

fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
if (fp)
{

while (prompt != 'v')
{ // Loop until we receive a 'v'.

prompt = getc(fp); // Get a character from the JTAG UART.
if (prompt == 't')
{ // Print a message if character is 't'.

fwrite (msg, strlen (msg), 1, fp);
}

if (ferror(fp))// Check if an error occurred with the file
pointer clearerr(fp);// If so, clear it.

}

fprintf(fp, "Closing the JTAG UART file handle.\n");
fclose (fp);
}

return 0;
}

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

5–8 Chapter 5: JTAG UART Core
Software Programming Model
In this example, the ferror(fp) is used to check if an error occurred on the JTAG
UART connection, such as a disconnected JTAG connection. In this case, the driver
detects that the JTAG connection is disconnected, reports an error (EIO), and discards
data for subsequent transactions. If this error ever occurs, the C library latches the
value until you explicitly clear it with the clearerr() function.

f For complete details of the HAL system library, refer to the Nios II Software Developer's
Handbook.

The Nios II Embedded Design Suite (EDS) provides a number of software example
designs that use the JTAG UART core.

Driver Options: Fast vs. Small Implementations
To accommodate the requirements of different types of systems, the JTAG UART
driver has two variants, a fast version and a small version. The fast behavior is used
by default. Both the fast and small drivers fully support the C standard library
functions and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
JTAG UART data rate is slow compared to the processor, the fast driver can provide a
large performance benefit for systems that could be performing other tasks in the
interim. In addition, the fast version of the Altera Avalon JTAG UART monitors the
connection to the host. The driver discards characters if no host is connected, or if the
host is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG UART hardware
before sending and receiving each character. The performance of the small driver is
poor if you are sending large amounts of data. The small version assumes that the
host is always connected, and will never discard characters. Therefore, the small
driver will hang the system if the JTAG UART hardware is ever disconnected from the
host while the program is sending or receiving data. There are two ways to enable the
small footprint driver:

■ Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system.

■ Specify the preprocessor option -DALTERA_AVALON_JTAG_UART_SMALL. Use
this option if you want the small, polled implementation of the JTAG UART driver,
but you do not want to affect the drivers for other devices.

ioctl() Operations
The fast version of the JTAG UART driver supports the ioctl() function to allow
HAL-based programs to request device-specific operations. Specifically, you can use
the ioctl() operations to control the timeout period, and to detect whether or not a
host is connected. The fast driver defines the ioctl() operations shown in Table 5–1.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 5: JTAG UART Core 5–9
Software Programming Model
f For details about the ioctl() function, refer to the Nios II Software Developer's
Handbook.

Software Files
The JTAG UART core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL drivers.
Application developers should not modify these files.

■ altera_avalon_jtag_uart_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware. The symbols in
this file are used only by device driver functions.

■ altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files implement the
HAL system library device driver.

Accessing the JTAG UART Core via a Host PC
Host software is necessary for a PC to access the JTAG UART core. The Nios II IDE
supports the JTAG UART core, and displays character I/O in a console window.
Altera also provides a command-line utility called nios2-terminal that opens a
terminal session with the JTAG UART core.

f For further details, refer to the Nios II Software Developer's Handbook and Nios II IDE
online help.

Register Map
Programmers using the HAL API never access the JTAG UART core directly via its
registers. In general, the register map is only useful to programmers writing a device
driver for the core.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 5–2 shows the register map for the JTAG UART core. Device drivers control and
communicate with the core through the two, 32-bit memory-mapped registers.

Table 5–1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will decide that the host is not connected. A
timeout of 0 makes the target assume that the host is always connected. The ioctl arg
parameter passed in must be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that indicates whether the host is connected and acting as
a terminal (1), or not connected (0). The ioctl arg parameter passed in must be a pointer to an
integer.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

5–10 Chapter 5: JTAG UART Core
Software Programming Model
Data Register
Embedded software accesses the read and write FIFOs via the data register. Table 5–3
describes the function of each bit.

A read from the data register returns the first character from the FIFO (if one is
available) in the DATA field. Reading also returns information about the number of
characters remaining in the FIFO in the RAVAIL field. A write to the data register
stores the value of the DATA field in the write FIFO. If the write FIFO is full, the
character is lost.

Control Register
Embedded software controls the JTAG UART core's interrupt generation and reads
status information via the control register. Table 5–4 describes the function of each
bit.

A read from the control register returns the status of the read and write FIFOs.
Writes to the register can be used to enable/disable interrupts, or clear the AC bit.

Table 5–2. JTAG UART Core Register Map

Offset
Register

Name R/W

Bit Description

31 ... 16 15 14 ... 11 10 9 8 7 ... 2 1 0

0 data RW RAVAIL RVALID Reserved DATA

1 control RW WSPACE Reserved AC WI RI Reserved WE RE

Note to Table 5–2:

(1) Reserved fields—Read values are undefined. Write zero.

Table 5–3. data Register Bits

Bit(s) Name Access Description

[7:0] DATA R/W The value to transfer to/from the JTAG core. When writing, the DATA field
holds a character to be written to the write FIFO. When reading, the
DATA field holds a character read from the read FIFO.

[15] RVALID R Indicates whether the DATA field is valid. If RVALID=1, the DATA field is
valid, otherwise DATA is undefined.

[32:16] RAVAIL R The number of characters remaining in the read FIFO (after the current read).

Table 5–4. Control Register Bits

Bit(s) Name Access Description

0 RE R/W Interrupt-enable bit for read interrupts.

1 WE R/W Interrupt-enable bit for write interrupts.

8 RI R Indicates that the read interrupt is pending.

9 WI R Indicates that the write interrupt is pending.

10 AC R/C Indicates that there has been JTAG activity since the bit was
cleared. Writing 1 to AC clears it to 0.

[32:16] WSPACE R The number of spaces available in the write FIFO.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 5: JTAG UART Core 5–11
Software Programming Model
The RE and WE bits enable interrupts for the read and write FIFOs, respectively. The
WI and RI bits indicate the status of the interrupt sources, qualified by the values of
the interrupt enable bits (WE and RE). Embedded software can examine RI and WI to
determine the condition that generated the IRQ. See “Interrupt Behavior” on
page 5–11 for further details.

The AC bit indicates that an application on the host PC has polled the JTAG UART
core via the JTAG interface. Once set, the AC bit remains set until it is explicitly cleared
via the Avalon interface. Writing 1 to AC clears it. Embedded software can examine the
AC bit to determine if a connection exists to a host PC. If no connection exists, the
software may choose to ignore the JTAG data stream. When the host PC has no data to
transfer, it can choose to poll the JTAG UART core as infrequently as once per second.
Delays caused by other host software using the JTAG download cable could cause
delays of up to 10 seconds between polls.

Interrupt Behavior
The JTAG UART core generates an interrupt when either of the individual interrupt
conditions is pending and enabled.

1 Interrupt behavior is of interest to device driver programmers concerned with the
bandwidth performance to the host PC. Example designs and the JTAG terminal
program provided with Nios II Embedded Design Suite (EDS) are pre-configured
with optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and read
interrupts. The WE and RE bits in the control register enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly empty. The
nearly empty threshold, write_threshold, is specified at system generation time
and cannot be changed by embedded software. The write interrupt condition is set
whenever there are write_threshold or fewer characters in the write FIFO. It is
cleared by writing characters to fill the write FIFO beyond the write_threshold.
Embedded software should only enable write interrupts after filling the write FIFO. If
it has no characters remaining to send, embedded software should disable the write
interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. The
nearly full threshold value, read_threshold, is specified at system generation time
and cannot be changed by embedded software. The read interrupt condition is set
whenever the read FIFO has read_threshold or fewer spaces remaining. The read
interrupt condition is also set if there is at least one character in the read FIFO and no
more characters are expected. The read interrupt is cleared by reading characters from
the read FIFO.

For optimum performance, the interrupt thresholds should match the interrupt
response time of the embedded software. For example, with a 10-MHz JTAG clock, a
new character is provided (or consumed) by the host PC every 1 µs. With a threshold
of 8, the interrupt response time must be less than 8 µs. If the interrupt response time
is too long, performance suffers. If it is too short, interrupts occurs too often.

1 For Nios II processor systems, read and write thresholds of 8 are an appropriate
default.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

5–12 Chapter 5: JTAG UART Core
Referenced Documents
Referenced Documents
This chapter references the Nios II Software Developer's Handbook.

Document Revision History
Table 5–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 5–5. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII51010-9.1.0
6. UART Core
Core Overview
The UART core with Avalon® interface implements a method to communicate serial
character streams between an embedded system on an Altera® FPGA and an external
device. The core implements the RS-232 protocol timing, and provides adjustable
baud rate, parity, stop, and data bits, and optional RTS/CTS flow control signals. The
feature set is configurable, allowing designers to implement just the necessary
functionality for a given system.

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that
allows Avalon-MM master peripherals (such as a Nios® II processor) to communicate
with the core simply by reading and writing control and data registers.

The UART core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 6–3

■ “Instantiating the Core in SOPC Builder” on page 6–3

■ “Simulation Considerations” on page 6–7

■ “Software Programming Model” on page 6–8

Functional Description
Figure 6–1 shows a block diagram of the UART core.

Figure 6–1. Block Diagram of the UART Core in a Typical System

Altera FPGA

UART Core
baud rate divisor

shift register RXD

RTS

CTS

TXD L
ev

e
l

S
h

ift
e

r

R
S

 -
 2

32
C

on
ne

ct
or

Avalon-MM
 signals
connected
to on-chip
 logic

data

IRQ

dataavailable

readyfordata

endofpacket

address

clock

rxdata

status

control

txdata

endofpacket

shift register

divisor
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

6–2 Chapter 6: UART Core
Functional Description
The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port

■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers
The UART core provides an Avalon-MM slave interface to the internal register file.
The user interface to the UART core consists of six, 16-bit registers: control,
status, rxdata, txdata, divisor, and endofpacket. A master peripheral, such
as a Nios II processor, accesses the registers to control the core and transfer data over
the serial connection.

The UART core provides an active-high interrupt request (IRQ) output that can
request an interrupt when new data has been received, or when the core is ready to
transmit another character. For further details, refer “Interrupt Behavior” on
page 6–15.

The Avalon-MM slave port is capable of transfers with flow control. The UART core
can be used in conjunction with a direct memory access (DMA) peripheral with
Avalon-MM flow control to automate continuous data transfers between, for example,
the UART core and memory.

f For more information, refer to the Timer Core chapter in volume 5 of the
Quartus II Handbook. For details about the Avalon-MM interface, refer to the Avalon
Interface Specifications.

RS-232 Interface
The UART core implements RS-232 asynchronous transmit and receive logic. The
UART core sends and receives serial data via the TXD and RXD ports. The I/O buffers
on most Altera FPGA families do not comply with RS-232 voltage levels, and may be
damaged if driven directly by signals from an RS-232 connector. To comply with
RS-232 voltage signaling specifications, an external level-shifting buffer is required
(for example, Maxim MAX3237) between the FPGA I/O pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter inside the
FPGA can be used to reverse the polarity of any of the RS-232 signals, if necessary.

Transmitter Logic
The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register and a
corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM master peripherals
write the txdata holding register via the Avalon-MM slave port. The transmit shift
register is loaded from the txdata register automatically when a serial transmit shift
operation is not currently in progress. The transmit shift register directly feeds the
TXD output. Data is shifted out to TXD LSB first.

These two registers provide double buffering. A master peripheral can write a new
value into the txdata register while the previously written character is being shifted
out. The master peripheral can monitor the transmitter's status by reading the
status register's transmitter ready (TRDY), transmitter shift register empty (tmt),
and transmitter overrun error (TOE) bits.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 6: UART Core 6–3
Device Support
The transmitter logic automatically inserts the correct number of start, stop, and
parity bits in the serial TXD data stream as required by the RS-232 specification.

Receiver Logic
The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and a
corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM master peripherals
read the rxdata holding register via the Avalon-MM slave port. The rxdata holding
register is loaded from the receiver shift register automatically every time a new
character is fully received.

These two registers provide double buffering. The rxdata register can hold a
previously received character while the subsequent character is being shifted into the
receiver shift register.

A master peripheral can monitor the receiver's status by reading the status register's
read-ready (RRDY), receiver-overrun error (ROE), break detect (BRK), parity error (PE),
and framing error (FE) bits. The receiver logic automatically detects the correct
number of start, stop, and parity bits in the serial RXD stream as required by the RS-
232 specification. The receiver logic checks for four exceptional conditions, frame
error, parity error, receive overrun error, and break, in the received data and sets
corresponding status register bits.

Baud Rate Generation
The UART core's internal baud clock is derived from the Avalon-MM clock input. The
internal baud clock is generated by a clock divider. The divisor value can come from
one of the following sources:

■ A constant value specified at system generation time

■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at system
generation time, the divisor value is fixed and the baud rate cannot be altered.

Device Support
The UART core supports all Altera® device families.

Instantiating the Core in SOPC Builder
Instantiating the UART in hardware creates at least two I/O ports for each UART
core: An RXD input, and a TXD output. Optionally, the hardware may include flow
control signals, the CTS input and RTS output.

Use the MegaWizard™ interface for the UART core in SOPC Builder to configure the
hardware feature set. The following sections describe the available options.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

6–4 Chapter 6: UART Core
Instantiating the Core in SOPC Builder
Configuration Settings
This section describes the configuration settings.

Baud Rate Options
The UART core can implement any of the standard baud rates for RS-232 connections.
The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and cannot be
changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor value held in the
divisor register. A master peripheral changes the baud rate by writing new
values to the divisor register.

1 The baud rate is calculated based on the clock frequency provided by the Avalon-MM
interface. Changing the system clock frequency in hardware without regenerating the
UART core hardware results in incorrect signaling.

Baud Rate (bps) Setting

The Baud Rate setting determines the default baud rate after reset. The Baud Rate
option offers standard preset values.

The baud rate value is used to calculate an appropriate clock divisor value to
implement the desired baud rate. Baud rate and divisor values are related as shown in
Equation 6–1 and Equation 6–2:

Baud Rate Can Be Changed By Software Setting

When this setting is on, the hardware includes a 16-bit divisor register at address
offset 4. The divisor register is writable, so the baud rate can be changed by writing
a new value to this register.

When this setting is off, the UART hardware does not include a divisor register. The
UART hardware implements a constant baud divisor, and the value cannot be
changed after system generation. In this case, writing to address offset 4 has no effect,
and reading from address offset 4 produces an undefined result.

Equation 6–1.

Equation 6–2.

divisor int clock frequency
baud rate

------------------------------------- 0.5+ 
 =

baud rate clock frequency
divisor 1+

-------------------------------------=
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 6: UART Core 6–5
Instantiating the Core in SOPC Builder
Data Bits, Stop Bits, Parity
The UART core's parity, data bits and stop bits are configurable. These settings are
fixed at system generation time; they cannot be altered via the register file. Table 6–1
explains the settings.

Synchronizer Stages
The option Synchronizer Stages allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Flow Control
When the option Include CTS/RTS pins and control register bits is turned on, the
UART core includes the following features:

■ cts_n (logic negative CTS) input port

■ rts_n (logic negative RTS) output port

■ CTS bit in the status register

■ DCTS bit in the status register

■ RTS bit in the control register

■ IDCTS bit in the control register

Table 6–1. Data Bits Settings

Setting Legal Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and endofpacket
registers.

Stop Bits 1, 2 This setting determines whether the core transmits 1 or 2 stop bits with every character. The
core always terminates a receive transaction at the first stop bit, and ignores all subsequent
stop bits, regardless of this setting.

Parity None, Even, Odd This setting determines whether the UART core transmits characters with parity checking,
and whether it expects received characters to have parity checking.

When Parity is set to None, the transmit logic sends data without including a parity bit, and
the receive logic presumes the incoming data does not include a parity bit. The PE bit in the
status register is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and inserts the required
parity bit into the outgoing TXD bitstream, and the receive logic checks the parity bit in the
incoming RXD bitstream. If the receiver finds data with incorrect parity, the PE bit in the
status register is set to 1. When Parity is Even, the parity bit is 0 if the character has an
even number of 1 bits; otherwise the parity bit is 1. Similarly, when parity is Odd, the parity
bit is 0 if the character has an odd number of 1 bits.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note

6–6 Chapter 6: UART Core
Instantiating the Core in SOPC Builder
Based on these hardware facilities, an Avalon-MM master peripheral can detect CTS
and transmit RTS flow control signals. The CTS input and RTS output ports are tied
directly to bits in the status and control registers, and have no direct effect on any
other part of the core. When using flow control, be sure the terminal program on the
host side is also configured for flow control.

When the Include CTS/RTS pins and control register bits setting is off, the core does
not include the aforementioned hardware and continuous writes to the UART may
loose data. The control/status bits CTS, DCTS, IDCTS, and RTS are not implemented;
they always read as 0.

Streaming Data (DMA) Control
The UART core's Avalon-MM interface optionally implements Avalon-MM transfers
with flow control. Flow control allows an Avalon-MM master peripheral to write data
only when the UART core is ready to accept another character, and to read data only
when the core has data available. The UART core can also optionally include the
end-of-packet register.

Include End-of-Packet Register

When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data width is
determined by the Data Bits setting.

■ EOP bit in the status register.

■ IEOP bit in the control register.

■ endofpacket signal in the Avalon-MM interface to support data transfers with
flow control to and from other master peripherals in the system.

End-of-packet (EOP) detection allows the UART core to terminate a data transaction
with an Avalon-MM master with flow control. EOP detection can be used with a
DMA controller, for example, to implement a UART that automatically writes
received characters to memory until a specified character is encountered in the
incoming RXD stream. The terminating (EOP) character's value is determined by the
endofpacket register.

When the EOP register is disabled, the UART core does not include the EOP
resources. Writing to the endofpacket register has no effect, and reading produces
an undefined value.

Simulation Settings
When the UART core's logic is generated, a simulation model is also created. The
simulation model offers features to simplify and accelerate simulation of systems that
use the UART core. Changes to the simulation settings do not affect the behavior of
the UART core in hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II systems, refer to
AN 351: Simulating Nios II Embedded Processor Designs.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/an/an351.pdf

Chapter 6: UART Core 6–7
Simulation Considerations
Simulated RXD-Input Character Stream
You can enter a character stream that is simulated entering the RXD port upon
simulated system reset. The UART core's MegaWizard™ interface accepts an arbitrary
character string, which is later incorporated into the UART simulation model. After
reset in reset, the string is input into the RXD port character-by-character as the core is
able to accept new data.

Prepare Interactive Windows
At system generation time, the UART core generator can create ModelSim macros that
facilitate interaction with the UART model during simulation. You can turn on the
following options:

■ Create ModelSim alias to open streaming output window to create a ModelSim
macro that opens a window to display all output from the TXD port.

■ Create ModelSim alias to open interactive stimulus window to create a
ModelSim macro that opens a window to accept stimulus for the RXD port. The
window sends any characters typed in the window to the RXD port.

Simulated Transmitter Baud Rate
RS-232 transmission rates are often slower than any other process in the system, and it
is seldom useful to simulate the functional model at the true baud rate. For example,
at 115,200 bps, it typically takes thousands of clock cycles to transfer a single
character. The UART simulation model has the ability to run with a constant clock
divisor of 2, allowing the simulated UART to transfer bits at half the system clock
speed, or roughly one character per 20 clock cycles. You can choose one of the
following options for the simulated transmitter baud rate:

■ Accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in simulation.

■ Actual (use true baud divisor)—TXD transmits at the actual baud rate, as
determined by the divisor register.

Simulation Considerations
The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The documentation for the processor documents
the suggested usage of these features. Other usages may be possible, but will require
additional user effort to create a custom simulation process.

The simulation model is implemented in the UART core's top-level HDL file; the
synthesizable HDL and the simulation HDL are implemented in the same file. The
simulation features are implemented using translate on and translate off
synthesis directives that make certain sections of HDL code visible only to the
synthesis tool.

Do not edit the simulation directives if you are using Altera's recommended
simulation procedures. If you do change the simulation directives for your custom
simulation flow, be aware that SOPC Builder overwrites existing files during system
generation. Take precaution so that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems, refer to
AN 351: Simulating Nios II Processor Designs.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/an/an351.pdf

6–8 Chapter 6: UART Core
Software Programming Model
Software Programming Model
The following sections describe the software programming model for the UART core,
including the register map and software declarations to access the hardware. For
Nios II processor users, Altera provides hardware abstraction layer (HAL) system
library drivers that enable you to access the UART core using the ANSI C standard
library functions, such as printf() and getchar().

HAL System Library Support
The Altera-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the UART via the familiar HAL API and the ANSI C standard library, rather than
accessing the UART registers. ioctl() requests are defined that allow HAL users to
control the hardware-dependent aspects of the UART.

c If your program uses the HAL device driver to access the UART hardware, accessing
the device registers directly interferes with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to
the UART core's features. Nios II programs treat the UART core as a character mode
device, and send and receive data using the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled in SOPC
Builder. Refer to “Driver Options: Fast Versus Small Implementations” on page 6–9.

The following code demonstrates the simplest possible usage, printing a message to
stdout using printf(). In this example, the SOPC Builder system contains a UART
core, and the HAL system library has been configured to use this device for stdout.

The following code demonstrates reading characters from and sending messages to a
UART device using the C standard library. In this example, the SOPC Builder system
contains a UART core named uart1 that is not necessarily configured as the stdout
device. In this case, the program treats the device like any other node in the HAL file
system.

Example 6–1. Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()
{

printf("Hello world.\n");
return 0;

}

Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 6: UART Core 6–9
Software Programming Model
1 For more information about the HAL system library, refer to the Nios II Software
Developer's Handbook.

Driver Options: Fast Versus Small Implementations
To accommodate the requirements of different types of systems, the UART driver
provides two variants: a fast version and a small version. The fast version is the
default. Both fast and small drivers fully support the C standard library functions and
the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
UART data rate is slow compared to the processor, the fast driver can provide a large
performance benefit for systems that could be performing other tasks in the interim.

The small driver is a polled implementation that waits for the UART hardware before
sending and receiving each character. There are two ways to enable the small
footprint driver:

■ Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system as well.

■ Specify the preprocessor option -DALTERA_AVALON_UART_SMALL. You can use
this option if you want the small, polled implementation of the UART driver, but
do not want to affect the drivers for other devices.

f Refer to the help system in the Nios II IDE for details about how to set HAL properties
and preprocessor options.

Example 6–2. Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{

char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;

fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
if (fp)
{

while (prompt != 'v')
{ // Loop until we receive a 'v'.

prompt = getc(fp); // Get a character from the UART.
if (prompt == 't')
{ // Print a message if character is 't'.

fwrite (msg, strlen (msg), 1, fp);
}

}

fprintf(fp, "Closing the UART file.\n");
fclose (fp);

}

return 0;
}

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–10 Chapter 6: UART Core
Software Programming Model
If the CTS/RTS flow control signals are enabled in hardware, the fast driver
automatically uses them. The small driver always ignores them.

ioctl() Operations
The UART driver supports the ioctl() function to allow HAL-based programs to
request device-specific operations. Table 6–2 defines operation requests that the
UART driver supports.

Additional operation requests are also optionally available for the fast driver only, as
shown in Table 6–3. To enable these operations in your program, you must set the
preprocessor option -DALTERA_AVALON_UART_USE_IOCTL.

f For details about the ioctl() function, refer to the Nios II Software Developer's
Handbook.

Limitations
The HAL driver for the UART core does not support the endofpacket register. Refer to
“Register Map” for details.

Software Files
The UART core is accompanied by the following software files. These files define the
low-level interface to the hardware, and provide the HAL drivers. Application
developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement the UART core
device driver for the HAL system library.

Table 6–2. UART ioctl() Operations

Request Description

TIOCEXCL Locks the device for exclusive access. Further calls to open() for this device will fail until either
this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl request. For this
request to succeed there can be no other existing file descriptors for this device. The parameter
arg is ignored.

TIOCNXCL Releases a previous exclusive access lock. The parameter arg is ignored.

Table 6–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Description

TIOCMGET Returns the current configuration of the device by filling in the contents of the input termios structure. (1)
A pointer to this structure is supplied as the value of the parameter opt.

TIOCMSET Sets the configuration of the device according to the values contained in the input termios structure. (1)
A pointer to this structure is supplied as the value of the parameter arg.

Note to Table 6–3:

(1) The termios structure is defined by the Newlib C standard library. You can find the definition in the file <Nios II EDS install
path>/components/altera_hal/HAL/inc/sys/termios.h.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 6: UART Core 6–11
Software Programming Model
Register Map
Programmers using the HAL API never access the UART core directly via its registers.
In general, the register map is only useful to programmers writing a device driver for
the core.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 6–4 shows the register map for the UART core. Device drivers control and
communicate with the core through the memory-mapped registers.

Some registers and bits are optional. These registers and bits exists in hardware only if
it was enabled at system generation time. Optional registers and bits are noted in the
following sections.

rxdata Register
The rxdata register holds data received via the RXD input. When a new character is
fully received via the RXD input, it is transferred into the rxdata register, and the
status register's rrdy bit is set to 1. The status register's rrdy bit is set to 0 when
the rxdata register is read. If a character is transferred into the rxdata register while
the rrdy bit is already set (in other words, the previous character was not retrieved), a
receiver-overrun error occurs and the status register's roe bit is set to 1. New
characters are always transferred into the rxdata register, regardless of whether the
previous character was read. Writing data to the rxdata register has no effect.

Table 6–4. UART Core Register Map

Offset
Register

Name R/W

Description/Register Bits

15:13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO Reserved (1) (1) Receive Data

1 txdata WO Reserved (1) (1) Transmit Data

2 status (2) RW Reserved eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW Reserved ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor (3) RW Baud Rate Divisor

5 endof-
packet (3)

RW Reserved (1) (1) End-of-Packet Value

Notes to Table 6–4:

(1) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read zero, and writing has no effect.
(2) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
(3) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading returns an undefined value and

writing has no effect.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

6–12 Chapter 6: UART Core
Software Programming Model
txdata Register
Avalon-MM master peripherals write characters to be transmitted into the txdata
register. Characters should not be written to txdata until the transmitter is ready for
a new character, as indicated by the TRDY bit in the status register. The TRDY bit is
set to 0 when a character is written into the txdata register. The TRDY bit is set to 1
when the character is transferred from the txdata register into the transmitter shift
register. If a character is written to the txdata register when TRDY is 0, the result is
undefined. Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM master
peripheral writes a first character into the txdata register. The TRDY bit is set to 0,
then set to 1 when the character is transferred into the transmitter shift register. The
master can then write a second character into the txdata register, and the TRDY bit is
set to 0 again. However, this time the shift register is still busy shifting out the first
character to the TXD output. The TRDY bit is not set to 1 until the first character is fully
shifted out and the second character is automatically transferred into the transmitter
shift register.

status Register
The status register consists of individual bits that indicate particular conditions
inside the UART core. Each status bit is associated with a corresponding
interrupt-enable bit in the control register. The status register can be read at any
time. Reading does not change the value of any of the bits. Writing zero to the status
register clears the DCTS, E, TOE, ROE, BRK, FE, and PE bits.

The status register bits are shown in Table 6–5.

Table 6–5. status Register Bits (Part 1 of 2)

Bit Name Access Description

0 (1) PE RC Parity error. A parity error occurs when the received parity bit has an unexpected
(incorrect) logic level. The PE bit is set to 1 when the core receives a character with an
incorrect parity bit. The PE bit stays set to 1 until it is explicitly cleared by a write to the
status register. When the PE bit is set, reading from the rxdata register produces an
undefined value.

If the Parity hardware option is not enabled, no parity checking is performed and the
PE bit always reads 0. Refer to “Data Bits, Stop Bits, Parity” on page 6–5.

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a correct stop bit.
The FE bit is set to 1 when the core receives a character with an incorrect stop bit. The
FE bit stays set to 1 until it is explicitly cleared by a write to the status register. When
the FE bit is set, reading from the rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held low (logic 0)
continuously for longer than a full-character time (data bits, plus start, stop, and parity
bits). When a break is detected, the BRK bit is set to 1. The BRK bit stays set to 1 until it is
explicitly cleared by a write to the status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly received character is
transferred into the rxdata holding register before the previous character is read (in
other words, while the RRDY bit is 1). In this case, the ROE bit is set to 1, and the
previous contents of rxdata are overwritten with the new character. The ROE bit stays
set to 1 until it is explicitly cleared by a write to the status register.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 6: UART Core 6–13
Software Programming Model
4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new character is written
to the txdata holding register before the previous character is transferred into the shift
register (in other words, while the TRDY bit is 0). In this case the TOE bit is set to 1. The
TOE bit stays set to 1 until it is explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current state. When
the shift register is in the process of shifting a character out the TXD pin, TMT is set to 0.
When the shift register is idle (in other words, a character is not being transmitted) the
TMT bit is 1. An Avalon-MM master peripheral can determine if a transmission is
completed (and received at the other end of a serial link) by checking the TMT bit.

6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s current state.
When the txdata register is empty, it is ready for a new character, and TRDY is 1. When
the txdata register is full, TRDY is 0. An Avalon-MM master peripheral must wait for
TRDY to be 1 before writing new data to txdata.

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding register’s current
state. When the rxdata register is empty, it is not ready to be read and RRDY is 0. When
a newly received value is transferred into the rxdata register, RRDY is set to 1. Reading
the rxdata register clears the RRDY bit to 0. An Avalon-MM master peripheral must
wait for RRDY to equal 1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E bit is a
logical-OR of the TOE, ROE, BRK, FE, and PE bits. The E bit and its corresponding
interrupt-enable bit (IE) bit in the control register provide a convenient method to
enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a logic-level
transition is detected on the CTS_N input port (sampled synchronously to the Avalon-MM
clock). This bit is set by both falling and rising transitions on CTS_N. The DCTS bit stays
set to 1 until it is explicitly cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always reads 0. Refer to
“Flow Control” on page 6–5.

11 (1) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s instantaneous state
(sampled synchronously to the Avalon-MM clock).

The CTS_N input has no effect on the transmit or receive processes. The only visible
effect of the CTS_N input is the state of the CTS and DCTS bits, and an IRQ that can be
generated when the control register’s idcts bit is enabled.

If the Flow Control hardware option is not enabled, the CTS bit always reads 0. Refer to
“Flow Control” on page 6–5.

12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following events:

■ An EOP character is written to txdata

■ An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket register. The
EOP bit stays set to 1 until it is explicitly cleared by a write to the status register.

If the Include End-of-Packet Register hardware option is not enabled, the EOP bit always
reads 0. Refer to “Streaming Data (DMA) Control” on page 6–6.

Note to Table 6–5:

(1) This bit is optional and may not exist in hardware.

Table 6–5. status Register Bits (Part 2 of 2)

Bit Name Access Description
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

6–14 Chapter 6: UART Core
Software Programming Model
control Register
The control register consists of individual bits, each controlling an aspect of the
UART core's operation. The value in the control register can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit in the
status register. When both a status bit and its corresponding interrupt-enable bit
are 1, the core generates an IRQ.

The control register bits are shown in Table 6–6.

divisor Register (Optional)
The value in the divisor register is used to generate the baud rate clock. The
effective baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate Can Be
Changed By Software hardware option is not enabled, the divisor register does not
exist. In this case, writing divisor has no effect, and reading divisor returns an
undefined value. For more information, refer to “Baud Rate Options” on page 6–4.

Table 6–6. control Register Bits

Bit Name Access Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to transmit a break
character over the TXD output. The TXD signal is forced to 0 when the TRBK bit is set to 1.
The TRBK bit overrides any logic level that the transmitter logic would otherwise drive on
the TXD output. The TRBK bit interferes with any transmission in process. The Avalon-MM
master peripheral must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output. An Avalon-MM
master peripheral can write the RTS bit at any time. The value of the RTS bit only affects the
RTS_N output; it has no effect on the transmitter or receiver logic. Because the RTS_N
output is logic negative, when the RTS bit is 1, a low logic-level (0) is driven on the RTS_N
output.

If the Flow Control hardware option is not enabled, the RTS bit always reads 0, and writing
has no effect. Refer to “Flow Control” on page 6–5.

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 6–6:

(1) This bit is optional and may not exist in hardware.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 6: UART Core 6–15
Referenced Documents
endofpacket Register (Optional)
The value in the endofpacket register determines the end-of-packet character for
variable-length DMA transactions. After reset, the default value is zero, which is the
ASCII null character (\0). For more information, refer to Table 6–5 on page 6–12 for
the description for the EOP bit.

The endofpacket register is an optional hardware feature. If the Include
end-of-packet register hardware option is not enabled, the endofpacket register
does not exist. In this case, writing endofpacket has no effect, and reading returns
an undefined value.

Interrupt Behavior
The UART core outputs a single IRQ signal to the Avalon-MM interface, which can
connect to any master peripheral in the system, such as a Nios II processor. The
master peripheral must read the status register to determine the cause of the
interrupt.

Every interrupt condition has an associated bit in the status register and an
interrupt-enable bit in the control register. When any of the interrupt conditions
occur, the associated status bit is set to 1 and remains set until it is explicitly
acknowledged. The IRQ output is asserted when any of the status bits are set while
the corresponding interrupt-enable bit is 1. A master peripheral can acknowledge the
IRQ by clearing the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot assert an IRQ
until a master peripheral sets one or more of the interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status and control
(interrupt-enable) bits in Table 6–5 on page 6–16 and Table 6–6 on page 6–18. Details
of each interrupt condition are provided in the status bit descriptions.

Referenced Documents
This chapter references the following documents:

■ AN 350: Upgrading Nios Processor Systems to the Nios II Processor

■ AN 351: Simulating Nios II Embedded Processor Designs

■ Avalon Interface Specifications

■ Nios II Software Developer's Handbook

■ Timer Core chapter in volume 5 of the Quartus II Handbook

■ AN 42: Metastability in Altera Devices

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an350.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an350.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

6–16 Chapter 6: UART Core
Document Revision History
Document Revision History
Table 6–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 6–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

Added description of a new parameter, Synchronizer stages. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII51011-9.1.0
7. SPI Core
Core Overview
SPI is an industry-standard serial protocol commonly used in embedded systems to
connect microprocessors to a variety of off-chip sensor, conversion, memory, and
control devices. The SPI core with Avalon® interface implements the SPI protocol and
provides an Avalon Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When configured as a
master, the SPI core can control up to 32 independent SPI slaves. The width of the
receive and transmit registers are configurable between 1 and 32 bits. Longer transfer
lengths can be supported with software routines. The SPI core provides an interrupt
output that can flag an interrupt whenever a transfer completes.

The SPI core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the SPI Core in SOPC Builder” on page 7–5

■ “Device Support” on page 7–8

■ “Software Programming Model” on page 7–8

Functional Description
The SPI core communicates using two data lines, a control line, and a synchronization
clock:

■ Master Out Slave In (mosi)—Output data from the master to the inputs of the
slaves

■ Master In Slave Out (miso)—Output data from a slave to the input of the master

■ Serial Clock (sclk)—Clock driven by the master to slaves, used to synchronize the
data bits

■ Slave Select (ss_n)— Select signal (active low) driven by the master to individual
slaves, used to select the target slave

The SPI core has the following user-visible features:

■ A memory-mapped register space comprised of five registers: rxdata, txdata,
status, control, and slaveselect

■ Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the Avalon-MM
slave port. The sclk, ss_n, mosi, and miso ports provide the hardware interface to
other SPI devices. The behavior of sclk, ss_n, mosi, and miso depends on whether
the SPI core is configured as a master or slave.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–2 Chapter 7: SPI Core
Functional Description
Figure 7–1 shows a block diagram of the SPI core in master mode.

The SPI core logic is synchronous to the clock input provided by the Avalon-MM
interface. When configured as a master, the core divides the Avalon-MM clock to
generate the SCLK output. When configured as a slave, the core's receive logic is
synchronized to SCLK input. The core's Avalon-MM interface is capable of
Avalon-MM transfers with flow control. The SPI core can be used in conjunction with
a DMA controller with flow control to automate continuous data transfers between,
for example, the SPI core and memory.

f For more details, refer to the Interval Timer Core chapter in volume 5 of the Quartus II
Handbook.

Example Configurations
Figure 7–1 and Figure 7–2 show two possible configurations. In Figure 7–2, the SPI
core provides a slave interface to an off-chip SPI master.

In Figure 7–1, the SPI core provides a master interface driving multiple off-chip slave
devices. Each slave device in Figure 7–1 must tristate its miso output whenever its
select signal is not asserted.

Figure 7–1. SPI Core Block Diagram (Master Mode)

clock

control

 control

baud rate divisor*

IRQ

sclk

mosi

miso

ss_n0
ss_n1

ss_n15

 *Not present on SPI slave

 slaveselect*

Avalon-MM
slave

interface
to on-chip

logic

 txdata shift register

 status

 rxdata shift register

data

Figure 7–2. SPI Core Configured as a Slave

Altera FPGA

Avalon-MM
 interface
to on-chip
 logic

sclk
ss_n
mosi
miso

 SPI component
(configured as slave)

miso
mosi
ss
sclk

 SPI
Master
Device
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 7: SPI Core 7–3
Functional Description
The ss_n signal is active-low. However, any signal can be inverted inside the FPGA,
allowing the slave-select signals to be either active high or active low.

Transmitter Logic
The SPI core transmitter logic consists of a transmit holding register (txdata) and
transmit shift register, each n bits wide. The register width n is specified at system
generation time, and can be any integer value from 8 to 32. After a master peripheral
writes a value to the txdata register, the value is copied to the shift register and then
transmitted when the next operation starts.

The shift register and the txdata register provide double buffering during data
transmission. A new value can be written into the txdata register while the previous
data is being shifted out of the shift register. The transmitter logic automatically
transfers the txdata register to the shift register whenever a serial shift operation is
not currently in process.

In master mode, the transmit shift register directly feeds the mosi output. In slave
mode, the transmit shift register directly feeds the miso output. Data shifts out LSB
first or MSB first, depending on the configuration of the SPI core.

Receiver Logic
The SPI core receive logic consists of a receive holding register (rxdata) and receive
shift register, each n bits wide. The register width n is specified at system generation
time, and can be any integer value from 8 to 32. A master peripheral reads received
data from the rxdata register after the shift register has captured a full n-bit value of
data.

The shift register and the rxdata register provide double buffering while receiving
data. The rxdata register can hold a previously received data value while
subsequent new data is shifting into the shift register. The receiver logic automatically
transfers the shift register content to the rxdata register when a serial shift operation
completes.

In master mode, the shift register is fed directly by the miso input. In slave mode, the
shift register is fed directly by the mosi input. The receiver logic expects input data to
arrive LSB first or MSB first, depending on the configuration of the SPI core.

Master and Slave Modes
At system generation time, the designer configures the SPI core in either master mode
or slave mode. The mode cannot be switched at runtime.

Master Mode Operation
In master mode, the SPI ports behave as shown in Table 7–1.

Table 7–1. Master Mode Port Configurations (Part 1 of 2)

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–4 Chapter 7: SPI Core
Functional Description
In master mode, an intelligent host (for example, a microprocessor) configures the SPI
core using the control and slaveselect registers, and then writes data to the
txdata buffer to initiate a transaction. A master peripheral can monitor the status of
the transaction by reading the status register. A master peripheral can enable
interrupts to notify the host whenever new data is received (for example, a transfer
has completed), or whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and receives data at
the same time. The master transmits a new data bit on the mosi output and the slave
drives a new data bit on the miso input for each active edge of sclk. The SPI core
divides the Avalon-MM system clock using a clock divider to generate the sclk
signal.

When the SPI core is configured to interface with multiple slaves, the core has one
ss_n signal for each slave, up to a maximum of sixteen slaves. During a transfer, the
master asserts ss_n to each slave specified in the slaveselect register. Note that
there can be no more than one slave transmitting data during any particular transfer,
or else there will be a contention on the miso input. The number of slave devices is
specified at system generation time.

Slave Mode Operation
In slave mode, the SPI ports behave as shown in Table 7–2.

In slave mode, the SPI core simply waits for the master to initiate transactions. Before
a transaction begins, the slave logic continuously polls the ss_n input. When the
master asserts ss_n, the slave logic immediately begins sending the transmit shift
register contents to the miso output. The slave logic also captures data on the mosi
input, and fills the receive shift register simultaneously. After a word is received by
the slave, the master must de-assert the ss_n signal and reasserts the signal again
when the next word is ready to be sent.

An intelligent host such as a microprocessor writes data to the txdata registers, so
that it is transmitted the next time the master initiates an operation. A master
peripheral reads received data from the rxdata register. A master peripheral can
enable interrupts to notify the host whenever new data is received, or whenever the
transmit buffer is ready for new data.

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 15.

Table 7–2. Slave Mode Port Configurations

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock

ss_n input Select signal

Table 7–1. Master Mode Port Configurations (Part 2 of 2)

Name Direction Description
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 7: SPI Core 7–5
Instantiating the SPI Core in SOPC Builder
Multi-Slave Environments
When ss_n is not asserted, typical SPI cores set their miso output pins to high
impedance. The Altera®-provided SPI slave core drives an undefined high or low
value on its miso output when not selected. Special consideration is necessary to
avoid signal contention on the miso output, if the SPI core in slave mode is connected
to an off-chip SPI master device with multiple slaves. In this case, the ss_n input
should be used to control a tristate buffer on the miso signal. Figure 7–3 shows an
example of the SPI core in slave mode in an environment with two slaves.

Avalon-MM Interface
The SPI core’s Avalon-MM interface consists of a single Avalon-MM slave port. In
addition to fundamental slave read and write transfers, the SPI core supports
Avalon-MM read and write transfers with flow control. The flow control is disabled
when:

■ the option to disable flow control is turned on, or

■ the option to disable flow control is turned off and the master does not support
flow control.

Instantiating the SPI Core in SOPC Builder
You can use the MegaWizard™ interface for the SPI core in SOPC Builder to configure
the hardware feature set. The following sections describe the available options.

Master/Slave Settings
The designer can select either master mode or slave mode to determine the role of the
SPI core. When master mode is selected, the following options are available: Number
of select (SS_n) signals, SPI clock rate, and Specify delay.

Number of Select (SS_n) Signals
This setting specifies how many slaves the SPI master connects to. The range is 1 to 32.
The SPI master core presents a unique ss_n signal for each slave.

Figure 7–3. SPI Core in a Multi-Slave Environment

 SPI
Master
Device

 sclk
 mosi
 miso
ss_n0
ss_01

sclk
 mosi
 miso
 ss_n0

 SPI component
(configured as slave)

 SPI
 Slave
DeviceSS_n

miso
mosi
sclk
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–6 Chapter 7: SPI Core
Instantiating the SPI Core in SOPC Builder
SPI Clock (sclk) Rate
This setting determines the rate of the sclk signal that synchronizes data between
master and slaves. The target clock rate can be specified in units of Hz, kHz or MHz.
The SPI master core uses the Avalon-MM system clock and a clock divisor to generate
sclk.

The actual frequency of sclk may not exactly match the desired target clock rate. The
achievable clock values are:

 <Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target value. For
example, if the system clock frequency is 50 MHz and the target value is 25 MHz, the
clock divisor is 2 and the actual sclk frequency achieves exactly 25 MHz.

Specify Delay
Turning on this option causes the SPI master to add a time delay between asserting
the ss_n signal and shifting the first bit of data. This delay is required by certain SPI
slave devices. If the delay option is on, you must also specify the delay time in units of
ns, µs or ms. An example is shown in Figure 7–4.

The delay generation logic uses a granularity of half the period of sclk. The actual
delay achieved is the desired target delay rounded up to the nearest multiple of half
the sclk period, as shown in Equation 7–1 and Equation 7–2:

Data Register Settings
The data register settings affect the size and behavior of the data registers in the SPI
core. There are two data register settings:

■ Width—This setting specifies the width of rxdata, txdata, and the receive and
transmit shift registers. The range is from 1 to 32.

■ Shift direction—This setting determines the direction that data shifts (MSB first or
LSB first) into and out of the shift registers.

Figure 7–4. Time Delay Between Asserting ss_n and Toggling sclk

Equation 7–1.

Equation 7–2.

p 1
2
--- period of sclk =

actual delay ceiling desired delay
p

------------------------------- 
  p=
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 7: SPI Core 7–7
Instantiating the SPI Core in SOPC Builder
Timing Settings
The timing settings affect the timing relationship between the ss_n, sclk, mosi and
miso signals. In this discussion the mosi and miso signals are referred to generically
as data. There are two timing settings:

■ Clock polarity—This setting can be 0 or 1. When clock polarity is set to 0, the idle
state for sclk is low. When clock polarity is set to 1, the idle state for sclk is high.

■ Clock phase—This setting can be 0 or 1. When clock phase is 0, data is latched on
the leading edge of sclk, and data changes on trailing edge. When clock phase is
1, data is latched on the trailing edge of sclk, and data changes on the leading
edge.

Figure 7–5 through Figure 7–8 demonstrate the behavior of signals in all possible
cases of clock polarity and clock phase.

Figure 7–5. Clock Polarity = 0, Clock Phase = 0

Figure 7–6. Clock Polarity = 0, Clock Phase = 1

Figure 7–7. Clock Polarity = 1, Clock Phase = 0

Figure 7–8. Clock Polarity = 1, Clock Phase = 1
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–8 Chapter 7: SPI Core
Device Support
Device Support
The SPI core supports all Altera® device families.

Software Programming Model
The following sections describe the software programming model for the SPI core,
including the register map and software constructs used to access the hardware. For
Nios® II processor users, Altera provides the HAL system library header file that
defines the SPI core registers. The SPI core does not match the generic device model
categories supported by the HAL, so it cannot be accessed via the HAL API or the
ANSI C standard library. Altera provides a routine to access the SPI hardware that is
specific to the SPI core.

Hardware Access Routines
Altera provides one access routine, alt_avalon_spi_command(), that provides
general-purpose access to an SPI core configured as a master.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 7: SPI Core 7–9
Software Programming Model
alt_avalon_spi_command()

Software Files
The SPI core is accompanied by the following software files. These files provide a
low-level interface to the hardware.

■ altera_avalon_spi.h—This file defines the core's register map, providing symbolic
constants to access the low-level hardware.

■ altera_avalon_spi.c—This file implements low-level routines to access the
hardware.

Register Map
An Avalon-MM master peripheral controls and communicates with the SPI core via
the six 32-bit registers, shown in Table 7–3. The table assumes an n-bit data width for
rxdata and txdata.

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,

alt_u32 write_length,
const alt_u8* wdata,

alt_u32 read_length,

alt_u8* read_data,

alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: alt_avalon_spi_command() is used to perform a control sequence on the SPI bus. This
routine is designed for SPI masters of 8-bit data width or less. Currently, it does not support
SPI hardware with data-width greater than 8 bits. A single call to this function writes a data
buffer of arbitrary length out the MOSI port, and then reads back an arbitrary amount of data
from the MISO port. The function performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select output is
numbered 0, the next is 1, etc.

(2) Transmits write_length bytes of data from wdata through the SPI interface,
discarding the incoming data on MISO.

(3) Reads read_length bytes of data, storing the data into the buffer pointed to by
read_data. MOSI is set to zero during the read transaction.

(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from scattered buffers then
you can call the function multiple times, specifying the merge flag on all the accesses except
the last.

This function is not thread safe. If you want to access the SPI bus from more than one thread,
you should use a semaphore or mutex to ensure that only one thread is executing within this
function at any time.

Returns: The number of bytes stored in the read_data buffer.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–10 Chapter 7: SPI Core
Software Programming Model
Reading undefined bits returns an undefined value. Writing to undefined bits has no
effect.

rxdata Register
A master peripheral reads received data from the rxdata register. When the receive
shift register receives a full n bits of data, the status register's RRDY bit is set to 1 and
the data is transferred into the rxdata register. Reading the rxdata register clears
the RRDY bit. Writing to the rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not the previous
data was retrieved. If RRDY is 1 when data is transferred into the rxdata register (that
is, the previous data was not retrieved), a receive-overrun error occurs and the
status register's ROE bit is set to 1. In this case, the contents of rxdata are
undefined.

txdata Register
A master peripheral writes data to be transmitted into the txdata register. When the
status register's TRDY bit is 1, it indicates that the txdata register is ready for new
data. The TRDY bit is set to 0 whenever the txdata register is written. The TRDY bit is
set to 1 after data is transferred from the txdata register into the transmitter shift
register, which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the transmitter is
ready for new data. If TRDY is 0 and a master peripheral writes new data to the
txdata register, a transmit-overrun error occurs and the status register's TOE bit is
set to 1. In this case, the new data is ignored, and the content of txdata remains
unchanged.

Table 7–3. Register Map for SPI Master Device

Internal
Address Register Name

Type
[R/W] 32..11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata (1) R RXDATA (n-1..0)

1 txdata (1) W TXDATA (n-1..0)

2 status (2) R/W E RRDY TRDY TMT TOE ROE

3 control R/W SSO
(3)

IE IRRDY ITRDY ITOE IROE

4 Reserved —

5 slaveselect (3) R/W Slave Select Mask

Notes to Table 7–3:

(1) Bits 31 to n are undefined when n is less than 32.
(2) A write operation to the status register clears the ROE, TOE, and E bits.
(3) Present only in master mode.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 7: SPI Core 7–11
Software Programming Model
As an example, assume that the SPI core is idle (that is, the txdata register and
transmit shift register are empty), when a CPU writes a data value into the txdata
holding register. The TRDY bit is set to 0 momentarily, but after the data in txdata is
transferred into the transmitter shift register, TRDY returns to 1. The CPU writes a
second data value into the txdata register, and again the TRDY bit is set to 0. This
time the shift register is still busy transferring the original data value, so the TRDY bit
remains at 0 until the shift operation completes. When the operation completes, the
second data value is transferred into the transmitter shift register and the TRDY bit is
again set to 1.

status Register
The status register consists of bits that indicate status conditions in the SPI core.
Each bit is associated with a corresponding interrupt-enable bit in the control
register, as discussed in “control Register” on page 7–12. A master peripheral can read
status at any time without changing the value of any bits. Writing status does
clear the ROE, TOE and E bits. Table 7–4 describes the individual bits of the status
register.

Table 7–4. status Register Bits

Name Description

3 ROE Receive-overrun error

The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the RRDY bit
is 1). In this case, the new data overwrites the old. Writing to the status register clears the ROE bit to 0.

4 TOE Transmitter-overrun error

The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, while the
TRDY bit is 0). In this case, the new data is ignored. Writing to the status register clears the TOE bit
to 0.

5 TMT Transmitter shift-register empty

In master mode, the TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift
register is empty.

In slave mode, the TMT bit is set to 0 when the slave is selected (SS_n is low) or when the SPI Slave
register interface is not ready to receive data.

6 TRDY Transmitter ready

The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY Receiver ready

The RRDY bit is set to 1 when the rxdata register is full.

8 E Error

The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer to detect
error conditions. Writing to the status register clears the E bit to 0.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

7–12 Chapter 7: SPI Core
control Register
control Register
The control register consists of data bits to control the SPI core's operation. A
master peripheral can read control at any time without changing the value of any
bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register control
interrupts for status conditions represented in the status register. For example, bit 1
of status is ROE (receiver-overrun error), and bit 1 of control is IROE, which enables
interrupts for the ROE condition. The SPI core asserts an interrupt request when the
corresponding bits in status and control are both 1.

The control register bits are shown in Table 7–5.

After reset, all bits of the control register are set to 0. All interrupts are disabled and
no ss_n signals are asserted.

slaveselect Register
The slaveselect register is a bit mask for the ss_n signals driven by an SPI master.
During a serial shift operation, the SPI master selects only the slave device(s) specified
in the slaveselect register.

The slaveselect register is only present when the SPI core is configured in master
mode. There is one bit in slaveselect for each ss_n output, as specified by the
designer at system generation time.

A master peripheral can set multiple bits of slaveselect simultaneously, causing
the SPI master to simultaneously select multiple slave devices as it performs a
transaction. For example, to enable communication with slave devices 1, 5, and 6, set
bits 1, 5, and 6 of slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after a device reset,
slave device 0 is automatically selected.

Referenced Documents
This chapter references the following documents:

■ AN 350: Upgrading Nios Processor Systems to the Nios II Processor

■ Interval Timer Core chapter in volume 5 of the Quartus II Handbook

Table 7–5. control Register Bits

Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial shift
operation is in progress or not. The slaveselect register controls which ss_n outputs are asserted. SSO
can be used to transmit or receive data of arbitrary size, for example, greater than 32 bits.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www/literature/an/an350.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Chapter 7: SPI Core 7–13
Document Revision History
Document Revision History
Table 7–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 7–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

■ Revised register width in transmitter logic and receiver
logic.

■ Added description on the disable flow control option.

■ Added R/W column in Table 7–3.

—

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Updated the width of the
parameters and signals from 16 to 32.

—

May 2008

v8.0.0

Updated the description of the TMT bit. Updates made to comply with the
Quartus II software version 8.0
release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

7–14 Chapter 7: SPI Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51019-9.1.0
8. Optrex 16207 LCD Controller Core
Core Overview
The Optrex 16207 LCD controller core with Avalon® Interface (LCD controller core)
provides the hardware interface and software driver required for a Nios® II processor
to display characters on an Optrex 16207 (or equivalent) 16×2-character LCD panel.
Device drivers are provided in the HAL system library for the Nios II processor.
Nios II programs access the LCD controller as a character mode device using ANSI C
standard library routines, such as printf(). The LCD controller is SOPC
Builder-ready, and integrates easily into any SOPC Builder-generated system.

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD module and
provide several ready-made example designs that display text on the Optrex 16207
via the LCD controller. For details about the Optrex 16207 LCD module, see the
manufacturer's Dot Matrix Character LCD Module User's Manual available at
www.optrex.com.

This chapter contains the following sections:

■ “Functional Description”

■ “Device and Tools Support” on page 8–2

■ “Instantiating the Core in SOPC Builder” on page 8–2

■ “Software Programming Model” on page 8–2

Functional Description
The LCD controller core consists of two user-visible components:

■ Eleven signals that connect to pins on the Optrex 16207 LCD panel—These signals
are defined in the Optrex 16207 data sheet.

■ E—Enable (output)

■ RS—Register Select (output)

■ R/W—Read or Write (output)

■ DB0 through DB7—Data Bus (bidirectional)

■ An Avalon Memory-Mapped (Avalon-MM) slave interface that provides access to
4 registers.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

www.optrex.com

8–2 Chapter 8: Optrex 16207 LCD Controller Core
Device and Tools Support
Figure 8–1 shows a block diagram of the LCD controller core.

Device and Tools Support
The LCD controller core supports all Altera device families. The LCD controller
drivers support the Nios II processor.

Instantiating the Core in SOPC Builder
You can add the LCD controller core from the System Contents tab in SOPC Builder.
In SOPC Builder, the LCD controller core has the name Character LCD (16×2, Optrex
16207). There are no user-configurable settings for this component.

Software Programming Model
This section describes the software programming model for the LCD controller.

HAL System Library Support
Altera provides HAL system library drivers for the Nios II processor that enable you
to access the LCD controller using the ANSI C standard library functions. The
Altera-provided drivers integrate into the HAL system library for Nios II systems.
The LCD driver is a standard character-mode device, as described in the Nios II
Software Developer's Handbook. Therefore, using printf() is the easiest way to write
characters to the display.

The LCD driver requires that the HAL system library include the system clock driver.

Figure 8–1. LCD Controller Block Diagram

address

data

control
DB0 .. DB7

R/W

RS

E

Optrex 16207
LCD Module

LCD
Controller

Avalon-MM slave
interface to

on-chip logic

Altera FPGA
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 8: Optrex 16207 LCD Controller Core 8–3
Software Programming Model
Displaying Characters on the LCD
The driver implements VT100 terminal-like behavior on a miniature scale for the 16×2
screen. Characters written to the LCD controller are stored to an 80-column × 2-row
buffer maintained by the driver. As characters are written, the cursor position is
updated. Visible characters move the cursor position to the right. Any visible
characters written to the right of the buffer are discarded. The line feed character (\n)
moves the cursor down one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto the line below
the bottom of the buffer. Rows do not scroll as soon as the cursor moves down to
allow the maximum useful information in the buffer to be displayed.

If the visible characters in the buffer fit on the display, all characters are displayed. If
the buffer is wider than the display, the display scrolls horizontally to display all the
characters. Different lines scroll at different speeds, depending on the number of
characters in each line of the buffer.

The LCD driver supports a small subset of ANSI and VT100 escape sequences that can
be used to control the cursor position, and clear the display as shown in Table 8–1.

The LCD controller is an output-only device. Therefore, attempts to read from it
returns immediately indicating that no characters have been received.

The LCD controller drivers are not included in the system library when the Reduced
device drivers option is enabled for the system library. If you want to use the LCD
controller while using small drivers for other devices, add the preprocessor option—
DALT_USE_LCD_16207 to the preprocessor options.

Software Files
The LCD controller is accompanied by the following software files. These files define
the low-level interface to the hardware and provide the HAL drivers. Application
developers should not modify these files.

■ altera_avalon_lcd_16207_regs.h — This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

■ altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files implement
the LCD controller device drivers for the HAL system library.

Table 8–1. Escape Sequence Supported by the LCD Controller

Sequence Meaning

BS (\b) Moves the cursor to the left by one character.

CR (\r) Moves the cursor to the start of the current line.

LF (\n) Moves the cursor to the start of the line and move it
down one line.

ESC((\x1B) Starts a VT100 control sequence.

ESC [<y> ; <x> H Moves the cursor to the y, x position specified – positions
are counted from the top left which is 1;1.

ESC [K Clears from current cursor position to end of line.

ESC [2 J Clears the whole screen.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

8–4 Chapter 8: Optrex 16207 LCD Controller Core
Referenced Documents
Register Map
The HAL device drivers make it unnecessary for you to access the registers directly.
Therefore, Altera does not publish details about the register map. For more
information, the altera_avalon_lcd_16207_regs.h file describes the register map, and
the Dot Matrix Character LCD Module User's Manual from Optrex describes the register
usage.

Interrupt Behavior
The LCD controller does not generate interrupts. However, the LCD driver's text
scrolling feature relies on the HAL system clock driver, which uses interrupts for
timing purposes.

Referenced Documents
This chapter references the Nios II Software Developer's Handbook.

Document Revision History
Table 8–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 8–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII51007-9.1.0
9. PIO Core
Core Overview
The parallel input/output (PIO) core with Avalon® interface provides a
memory-mapped interface between an Avalon® Memory-Mapped (Avalon-MM) slave
port and general-purpose I/O ports. The I/O ports connect either to on-chip user
logic, or to I/O pins that connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in situations
where a “bit banging” approach is sufficient. Some example uses are:

■ Controlling LEDs

■ Acquiring data from switches

■ Controlling display devices

■ Configuring and communicating with off-chip devices, such as
application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based on input
signals. The PIO core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Example Configurations” on page 9–3

■ “Instantiating the PIO Core in SOPC Builder” on page 9–4

■ “Device Support” on page 9–5

■ “Software Programming Model” on page 9–5

Functional Description
Each PIO core can provide up to 32 I/O ports. An intelligent host such as a
microprocessor controls the PIO ports by reading and writing the register-mapped
Avalon-MM interface. Under control of the host, the PIO core captures data on its
inputs and drives data to its outputs. When the PIO ports are connected directly to
I/O pins, the host can tristate the pins by writing control registers in the PIO core.
Figure 9–1 shows an example of a processor-based system that uses multiple PIO
cores to drive LEDs, capture edges from on-chip reset-request control logic, and
control an off-chip LCD display.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

9–2 Chapter 9: PIO Core
Functional Description
When integrated into an SOPC Builder-generated system, the PIO core has two
user-visible features:

■ A memory-mapped register space with four registers: data, direction,
interruptmask, and edgecapture

■ 1 to 32 I/O ports

The I/O ports can be connected to logic inside the FPGA, or to device pins that
connect to off-chip devices. The registers provide an interface to the I/O ports via the
Avalon-MM interface. See Table 9–2 on page 9–6 for a description of the registers.

Data Input and Output
The PIO core I/O ports can connect to either on-chip or off-chip logic. The core can be
configured with inputs only, outputs only, or both inputs and outputs. If the core is
used to control bidirectional I/O pins on the device, the core provides a bidirectional
mode with tristate control.

The hardware logic is separate for reading and writing the data register. Reading the
data register returns the value present on the input ports (if present). Writing data
affects the value driven to the output ports (if present). These ports are independent;
reading the data register does not return previously-written data.

Edge Capture
The PIO core can be configured to capture edges on its input ports. It can capture
low-to-high transitions, high-to-low transitions, or both. Whenever an input detects
an edge, the condition is indicated in the edgecapture register. The types of edges
detected is specified at system generation time, and cannot be changed via the
registers.

Figure 9–1. An Example System Using Multiple PIO Cores

S
ystem

 Interconnect Fabric

CPU

PIO core
(output only)

Program
 and Data
Memory PIO

core
 (bidirectional)

IRQ

 LEDs

Edge
Capture

PIO
core

(input
only)

Reset
request

logic

Altera FPGA

4

11 LCD
 display
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 9: PIO Core 9–3
Example Configurations
IRQ Generation
The PIO core can be configured to generate an IRQ on certain input conditions. The
IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT gate can be
inserted external to the core to provide negative sensitivity.

■ Edge-sensitive—The core's edge capture configuration determines which type of
edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt mask
determines which input port can generate interrupts.

Example Configurations
Figure 9–2 shows a block diagram of the PIO core configured with input and output
ports, as well as support for IRQs.

Figure 9–3 shows a block diagram of the PIO core configured in bidirectional mode,
without support for IRQs.

Avalon-MM Interface
The PIO core's Avalon-MM interface consists of a single Avalon-MM slave port. The
slave port is capable of fundamental Avalon-MM read and write transfers. The
Avalon-MM slave port provides an IRQ output so that the core can assert interrupts.

Figure 9–2. PIO Core with Input Ports, Output Ports, and IRQ Support

Figure 9–3. PIO Core with Bidirectional Ports

data
in

out

address

data

control

IRQ

 32

interruptmask

edgecapture

Avalon-MM
interface

to on-chip
logic

direction

data
in

out

address

data

control

 32
Avalon-MM

interface
to on-chip

logic
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

9–4 Chapter 9: PIO Core
Instantiating the PIO Core in SOPC Builder
Instantiating the PIO Core in SOPC Builder
Use the MegaWizard™ interface for the PIO core in SOPC Builder to configure the
core. The following sections describe the available options.

Basic Settings
The Basic Settings page allows you to specify the width, direction and reset value of
the I/O ports.

Width
The width of the I/O ports can be set to any integer value between 1 and 32.

Direction
You can set the port direction to one of the options shown in Table 9–1.

Output Port Reset Value
You can specify the reset value of the output ports. The range of legal values depends
on the port width.

Output Register
The option Enable individual bit set/clear output register allows you to set or clear
individual bits of the output port. When this option is turned on, two additional
registers—outset and outclear—are implemented. You can use these registers to
specify the output bit to set and clear.

Input Options
The Input Options page allows you to specify edge-capture and IRQ generation
settings. The Input Options page is not available when Output ports only is selected
on the Basic Settings page.

Edge Capture Register
Turn on Synchronously capture to include the edge capture register, edgecapture,
in the core. The edge capture register allows the core to detect and generate an
optional interrupt when an edge of the specified type occurs on an input port. The
user must further specify the following features:

Table 9–1. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving and
capturing data. The direction of each pin is individually selectable. To
tristate an FPGA I/O pin, set the direction to input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate,
unidirectional buses of n bits wide.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 9: PIO Core 9–5
Device Support
■ Select the type of edge to detect:

■ Rising Edge

■ Falling Edge

■ Either Edge

■ Turn on Enable bit-clearing for edge capture register to clear individual bit in the
edge capture register. To clear a given bit, write 1 to the bit in the edge capture
register.

Interrupt
Turn on Generate IRQ to assert an IRQ output when a specified event occurs on input
ports. The user must further specify the cause of an IRQ event:

■ Level— The core generates an IRQ whenever a specific input is high and
interrupts are enabled for that input in the interruptmask register.

■ Edge— The core generates an IRQ whenever a specific bit in the edge capture
register is high and interrupts are enabled for that bit in the interruptmask
register.

When Generate IRQ is off, the interruptmask register does not exist.

Simulation
The Simulation page allows you to specify the value of the input ports during
simulation. Turn on Hardwire PIO inputs in test bench to set the PIO input ports to a
certain value in the testbench, and specify the value in Drive inputs to field.

Device Support
The PIO core supports all Altera® device families.

Software Programming Model
This section describes the software programming model for the PIO core, including
the register map and software constructs used to access the hardware. For Nios® II
processor users, Altera provides the HAL system library header file that defines the
PIO core registers. The PIO core does not match the generic device model categories
supported by the HAL, so it cannot be accessed via the HAL API or the ANSI C
standard library.

The Nios II Embedded Design Suite (EDS) provides several example designs that
demonstrate usage of the PIO core. In particular, the count_binary.c example uses the
PIO core to drive LEDs, and detect button presses using PIO edge-detect interrupts.

Software Files
The PIO core is accompanied by one software file, altera_avalon_pio_regs.h. This file
defines the core's register map, providing symbolic constants to access the low-level
hardware.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

9–6 Chapter 9: PIO Core
Software Programming Model
Register Map
An Avalon-MM master peripheral, such as a CPU, controls and communicates with
the PIO core via the four 32-bit registers, shown in Table 9–2. The table assumes that
the PIO core's I/O ports are configured to a width of n bits.

data Register
Reading from data returns the value present at the input ports. If the PIO core
hardware is configured in output-only mode, reading from data returns an
undefined value.

Writing to data stores the value to a register that drives the output ports. If the PIO
core hardware is configured in input-only mode, writing to data has no effect. If the
PIO core hardware is in bidirectional mode, the registered value appears on an output
port only when the corresponding bit in the direction register is set to 1 (output).

direction Register
The direction register controls the data direction for each PIO port, assuming the
port is bidirectional. When bit n in direction is set to 1, port n drives out the value
in the corresponding bit of the data register.

The direction register only exists when the PIO core hardware is configured in
bidirectional mode. The mode (input, output, or bidirectional) is specified at system
generation time, and cannot be changed at runtime. In input-only or output-only
mode, the direction register does not exist. In this case, reading direction
returns an undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional I/O ports are configured
as inputs. If those PIO ports are connected to device pins, the pins are held in a
high-impedance state. In bi-directional mode, to change the direction of the PIO port,
reprogram the direction register.

Table 9–2. Register Map for the PIO Core

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of
0 sets the direction to input; 1 sets the direction to
output.

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

4 outset W Specifies which bit of the output port to set.

5 outclear W Specifies which output bit to clear.

Notes to Table 9–2:

(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the register returns an undefined
value, and writing the register has no effect.

(2) Writing any value to edgecapture clears all bits to 0.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 9: PIO Core 9–7
Software Programming Model
interruptmask Register
Setting a bit in the interruptmask register to 1 enables interrupts for the
corresponding PIO input port. Interrupt behavior depends on the hardware
configuration of the PIO core. See “Interrupt Behavior” on page 9–7.

The interruptmask register only exists when the hardware is configured to
generate IRQs. If the core cannot generate IRQs, reading interruptmask returns an
undefined value, and writing to interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are disabled for all
PIO ports.

edgecapture Register
Bit n in the edgecapture register is set to 1 whenever an edge is detected on input
port n. An Avalon-MM master peripheral can read the edgecapture register to
determine if an edge has occurred on any of the PIO input ports. If the option Enable
bit-clearing for edge capture register is turned off, writing any value to the
edgecapture register clears all bits in the register. Otherwise, writing a 1 to a
particular bit in the register clears only that bit.

The type of edge(s) to detect is fixed in hardware at system generation time. The
edgecapture register only exists when the hardware is configured to capture edges.
If the core is not configured to capture edges, reading from edgecapture returns an
undefined value, and writing to edgecapture has no effect.

outset and outclear Registers
You can use the outset and outclear registers to set and clear individual bits of the
output port. For example, to set bit 6 of the output port, write 0x40 to the outset
register. Writing 0x08 to the outclear register clears bit 3 of the output port.

These registers are only present when the option Enable individual bit set/clear
output register is turned on.

Interrupt Behavior
The PIO core outputs a single IRQ signal that can connect to any master peripheral in
the system. The master can read either the data register or the edgecapture register
to determine which input port caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the data and interruptmask registers are 1. When
the hardware is configured for edge-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the edgecapture and interruptmask registers
are 1. The IRQ remains asserted until explicitly acknowledged by disabling the
appropriate bit(s) in interruptmask, or by writing to edgecapture.

Software Files
The PIO core is accompanied by the following software file. This file provide
low-level access to the hardware. Application developers should not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used by device driver functions.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

9–8 Chapter 9: PIO Core
Document Revision History
Document Revision History
Table 9–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 9–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

Added a section on new registers, outset and outclear. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Added the description for Output
Port Reset Value and Simulation parameters.

—

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

QII55009-9.1.0
10. Avalon-ST Serial Peripheral Interface
Core
Core Overview
The Avalon® Streaming (Avalon-ST) Serial Peripheral Interface (SPI) core is an SPI
slave that allows data transfers between SOPC Builder systems and off-chip SPI
devices via Avalon-ST interfaces. Data is serially transferred on the SPI, and sent to
and received from the Avalon-ST interface in bytes.

The SPI Slave to Avalon Master Bridge is an example of how this core is used. For
more information on the bridge, refer to the SPI Slave/JTAG to Avalon Master Bridge
Cores chapter in volume 5 of the Quartus II Handbook.

The Avalon-ST Serial Peripheral Interface core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 10–3

■ “Device Support” on page 10–3

Functional Description
Figure 10–1 shows a block diagram of the Avalon-ST Serial Peripheral Interface core
in a typical system configuration.

Figure 10–1. SOPC Builder System with an Avalon-ST SPI Core

Avalon-ST
Source

Avalon-ST
Sink

Avalon-ST
Serial

Peripheral
Interface

Core

SPI
S

ys
te

m
 In

te
rc

on
ne

ct
 F

ab
ric

Rest of the
System

data_out

data_in

SPI
 Master

mosi

miso

sclk

nSS

Altera FPGA

SPI
Clock

System
Clock
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf

10–2 Chapter 10: Avalon-ST Serial Peripheral Interface Core
Functional Description
Interfaces
The serial peripheral interface is full-duplex and does not support backpressure. It
supports SPI clock phase bit, CPHA = 1, and SPI clock polarity bit, CPOL = 0.

Table 10–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Operation
The Avalon-ST SPI core waits for the nSS signal to be asserted low, signifying that the
SPI master is initiating a transaction. The core then starts shifting in bits from the
input signal mosi. The core packs the bits received on the SPI to bytes and checks for
the following special characters:

■ 0x4a—Idle character. The core drops the idle character.

■ 0x4d—Escape character. The core drops the escape character, and XORs the
following byte with 0x20.

For each valid byte of data received, the core asserts the valid signal on its
Avalon-ST source interface and presents the byte on the interface for a clock cycle.

At the same time, the core shifts data out from the Avalon-ST sink to the output signal
miso beginning with from the most significant bit. If there is no data to shift out, the
core shifts out idle characters (0x4a). If the data is a special character, the core inserts
an escape character (0x4d) and XORs the data with 0x20.

The data shifts into and out of the core in the direction of MSB first.

Table 10–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Not supported.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 10: Avalon-ST Serial Peripheral Interface Core 10–3
Instantiating the Core in SOPC Builder
Figure 10–2 shows the SPI transfer protocol.

Timing
The core requires a lead time (TL) between asserting the nSS signal and the SPI clock,
and a lag time (TT) between the last edge of the SPI clock and deasserting the nSS
signal. The nSS signal must be deasserted for a minimum idling time (TI) of one SPI
clock between byte transfers. A TimeQuest SDC file (.sdc) is provided to remove false
timing paths. The frequency of the SPI master’s clock must be equal to or lower than
the frequency of the core’s clock.

Limitations
Daisy-chain configuration, where the output line miso of an instance of the core is
connected to the input line mosi of another instance, is not supported.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST SPI core in SOPC Builder to add the
core to a system. The parameter Number of synchronizer stages: Depth allows you to
specify the length of synchronization register chains. These register chains are used
when a metastable event is likely to occur and the length specified determines the
meantime before failure. The register chain length, however, affects the latency of the
core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Device Support
The Avalon-ST SPI core supports all Altera® device families.

Figure 10–2. SPI Transfer Protocol

Notes to Figure 10–2:

(1) TL = The worst recovery time of sclk with respect with nSS.
(2) TT = The worst hold time for MOSI and MISO data.
(3) TI = The minimum width of a reset pulse required by Altera FPGA families.

sclk
(CPOL = 0)

Sample I
MOSI/MISO

Change O
MISO pin

Change O
MOSI pin

nSS

TL TT TI TL
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

10–4 Chapter 10: Avalon-ST Serial Peripheral Interface Core
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ SPI Slave/JTAG to Avalon Master Bridge Cores chapter in volume 5 of the Quartus II
Handbook

■ AN 42: Metastability in Altera Devices

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 10–2 shows the revision history for this chapter.

Table 10–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

Added a description to specify the shift direction. —

March 2009

v9.0.0

Added description of a new parameter, Number of synchronizer
stages: Depth.

—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

© November 2009 Altera Corporation

QII55010-9.1.0
11. PCI Lite Core
Core Overview
The PCI Lite core is a protocol interface that translates PCI transactions to Avalon®

Memory-Mapped (Avalon-MM) transactions with low latency and high throughput.
The PCI Lite core uses the PCI-Avalon bridge to connect the PCI bus to the
interconnect fabric, allowing you to easily create simple PCI systems that include one
or more SOPC Builder components. This core has the following features:

■ SOPC Builder ready

■ PCI complexities, such as retry and disconnect are handled by the PCI/Avalon
Bridge logic and transparent to the user

■ Run-time configurable (dynamic) Avalon-to-PCI address translation

■ Separate Avalon Memory-Mapped (Avalon-MM) slave ports for PCI bus access
(PBA) and control register access (CRA)

■ Support for Avalon-MM burst mode

■ Common PCI and Avalon clock domains

■ Option to increase PCI read performance by increasing the number of pending
reads and maximum read burst size.

This chapter contains the following sections:

■ “Performance and Resource Utilization”

■ “Functional Description” on page 11–2

■ “Instantiating the Core in SOPC Builder” on page 11–11

■ “Device Support” on page 11–14

■ “Simulation Considerations” on page 11–14

Performance and Resource Utilization
This section lists the resource utilization and performance data for supported devices
when operating in the PCI Target-Only, and PCI Master/Target device modes for each
of the application-specific performance settings.

The estimates are obtained by compiling the core using the Quartus® II software.
Performance results vary depending on the parameters that you specify for the
system module.

Table 11–1 shows the resource utilization and performance data for a Stratix® III
device (EP3SE50F780C2). The performance of the MegaCore function in the Stratix IV
family is similar to the Stratix III family.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–2 Chapter 11: PCI Lite Core
Functional Description
Table 11–2 lists the resource utilization and performance data for a Cyclone III device
(EP3C40F780C6).

Functional Description
The following sections provide a functional description of the PCI Lite Core.

PCI-Avalon Bridge Blocks
The PCI-Avalon bridge's blocks manage the connectivity for the following PCI
operational modes:

■ PCI Target-Only Peripheral

■ PCI Master/Target Peripheral

■ PCI Host-Bridge Device

Depending on the operational mode, the PCI-Avalon bridge uses some or all of the
predefined Avalon-MM ports. Figure 11–1 shows a generic PCI-Avalon bridge block
diagram, which includes the following blocks:

■ Five predefined Avalon-MM ports

■ Control registers

■ PCI master controller (when applicable)

■ PCI target controller

Table 11–1. Memory Utilization and Performance Data for the Stratix III Family

PCI
Device
Mode PCI Target PCI Master ALUTs (2) Logic Register

M9K Memory
Blocks I/O Pins

Min (1) Enabled N/A 715 517 2 48

Max (1) Enabled Enabled 1,347 876 5 50

Notes to Table 11–1:

(1) Min = One BAR with minimum settings for each parameter.
Max = Three BARs with maximum settings for each parameter.

(2) The logic element (LE) count for the Stratix III family is based on the number of adaptive look-up tables (ALUTs) used for the design as reported
by the Quartus II software.

Table 11–2. Memory Utilization and Performance Data for the Cyclone III Family

PCI
Device
Mode PCI Target PCI Master

Logic
Elements Logic Register

M4K Memory
Blocks I/O Pins

Min (1) Enabled N/A 1,057 511 2 48

Max (1) Enabled Enabled 2,027 878 5 50

Note to Table 11–2:

(1) Min = One BAR with minimum settings for each parameter.
Max = Three BARs with maximum settings for each parameter.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–3
Functional Description
Avalon-MM Ports
The Avalon bridge comprises up to five predefined ports to communicate with the
interconnect (depending on device operating mode).

This section discusses the five Avalon-MM ports:

■ Prefetchable Avalon-MM master

■ Non-Prefetchable Avalon-MM master

■ I/O Avalon-MM master

■ PCI bus access slave

■ Control register access (CRA) Avalon-MM slave

Prefetchable Avalon-MM Master

The prefetchable Avalon-MM master port provides a high bandwidth PCI memory
request access to Avalon-MM slave peripherals. This master port is capable of
generating Avalon-MM burst transactions for PCI requests that hit a prefetchable base
address register (BAR). You should only connect prefetchable Avalon-MM slaves to
this port, typically RAM or ROM memory devices.

This port is optimized for high bandwidth transfers as a PCI target and it does not
support single cycle transactions.

Figure 11–1. Generic PCI-Avalon Bridge Block Diagram

P
C

I Lite C
ore

Control
 Register

Access Avalon
 Slave

Control
Status

Registers

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Access
Slave

Prefetchable
Avalon
Master

Non-
Prefetchable

Avalon
Master

I/O
Bridge
Logic

I/O
Avalon
Master

A
valon S

w
itch Fabric

PCI-Avalon Bridge

P
C

I Target C
ontroller
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–4 Chapter 11: PCI Lite Core
Functional Description
Non-Prefetchable Avalon-MM Master

The Non-Prefetchable Avalon-MM master port provides a low latency PCI memory
request access to Avalon-MM slave peripherals. Burst operations are not supported
on this master port. Only the exact amount of data needed to service the initial data
phase is read from the interconnect. Therefore, the PCI byte enables (for the first data
phase of the PCI read transaction) are passed directly to the interconnect.

This Avalon-MM master port is optimized for low latency access from
PCI-to-Avalon-MM slaves. This is optimal for providing PCI target access to simple
Avalon-MM peripherals.

I/O Avalon-MM Master

The I/O Avalon-MM master port provides a low latency PCI I/O request access to
Avalon-MM slave peripherals. Burst operations are not supported on this master port.
As only the exact amount of data needed to service the initial data phase is read from
the interconnect, the PCI byte enables (for the first data phase of the PCI read
transaction) are passed directly to the interconnect.

This Avalon-MM master port is also optimized for I/O access from
PCI-to-Avalon-MM slaves for providing PCI target access to simple Avalon-MM
peripherals.

PCI Bus Access Slave

This Avalon-MM slave port propagates the following transactions from the
interconnect to the PCI bus:

■ Single cycle memory read and write requests

■ Burst memory read and write requests

■ I/O read and write requests

■ Configuration read and write requests

Burst requests from the interconnect are the only way to create burst transactions on
the PCI bus.

This slave port is not implemented in the PCI Target-Only Peripheral mode.

Control Register Access (CRA) Avalon-MM Slave

This Avalon-MM slave port is used to access control registers in the PCI-Avalon
bridge. To provide external PCI master access to these registers, one of the bridge's
master ports must be connected to this port. There is no internal access inside the
bridge from the PCI bus to these registers. You can only write to these registers from
the interconnect. The Control Register Access Avalon Slave port is only
enabled on Master/Target selection. The range of values supported by PCI CRA is
0x1000 to 0x1FFF. Depending on the system design, these values can be accessed by
PCI processors, Avalon processors or both.

Table 11–3 on page 11–5 shows the instructions on how to use these values. The
address translation table is writable via the Control Register Access Avalon
Slave port. If the Number of Address Pages field is set to the maximum of 512,
0x1FF8 contains A2P_ADDR_MAP_LO511 and 0x1FFC contains
A2P_ADDR_MAP_HI511.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–5
Functional Description
Each entry in the PCI address translation table is always 8 bytes wide. The lower
order address bits that are treated as a pass through between Avalon-MM and PCI,
and the number of pass-through bits, are defined by the size of page in the address
translation table and are always forced to 0 in the hardware table. For example, if the
page size is 4 KBytes, the number of pass-through bits is
log2 (page size) = log2 (4 KBytes) = 12.

Refer to “Avalon-to-PCI Address Translation” on page 11–6 for more details.

Master and Target Performance
The performance of the PCI Lite core is designed to provide low-latency single-cycle
and burst transactions.

Master Performance
The master provides high throughput for transactions initiated by Avalon-MM master
devices to PCI target devices via the PCI bus master interface. Avalon-MM read
transactions are implemented as latent read transfers. The PCI master device issues
only one read transaction at a time.

1 The PCI bus access (PBA) handles the Avalon master transaction system interconnect
hold state for 6 clock cycles. This is the maximum number of cycles supported by the
PCI specification.

Target Performance
The target allows high throughput read/write operations to Avalon-MM slave
peripherals. Read/write accesses to prefetchable base address registers (BARs) use
dual-port buffers to enable burst transactions on both the PCI and Avalon-MM sides.
This profile also allows access to the PCI BARs (Prefetchable, Non-Prefetchable, and
I/O) to use their respective Avalon-MM master ports to initiate transfers to
Avalon-MM slave peripherals. Prefetchable handles burst transaction and
Non-Prefetchable and I/O handles only single-cycle transaction.

Table 11–3. Avalon-to-PCI Address Translation Table – Address Range: 0x1000-0x1FFF

Address Bit Name
Access
Mode Description

0x1000 1:0 A2P_ADDR_SPACE0 W Address space indication for entry 0. See Table 11–4 on
page 11–7 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO0 W Lower bits of Avalon-to-PCI address map entry 0. The pass
through bits are not writable and are forced to 0.

0x1004 31:0 A2P_ADDR_MAP_HI0 W Reserved.

0x1008 1:0 A2P_ADDR_SPACE1 W Address Space indication for entry 1. See Table 11–4 on
page 11–7 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO1 W Lower bits of Avalon-to-PCI address map entry 1. Pass
through bits are not writable and are forced to 0.

This entry is only implemented if the number of pages in the
address translation table is greater than 1.

0x100C 31:0 A2P_ADDR_MAP_HI1 W Reserved.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–6 Chapter 11: PCI Lite Core
Functional Description
All PCI read transactions are completed as delayed reads. However, only one delayed
read is accepted and processed at a time.

PCI-to-Avalon Address Translation
Figure 11–2 shows the PCI-to-Avalon address translation. The bits in the PCI address
that are used in the BAR matching process are replaced by an Avalon-MM base
address that is specific to that BAR.

Avalon-to-PCI Address Translation
Avalon-to-PCI address translation is done through a translation table. Low order
Avalon-MM address bits are passed to PCI unchanged; higher order Avalon-MM
address bits are used to index into the address translation table. The value found in
the table entry is used as the higher order PCI address bits. Figure 11–3 depicts this
process.

Figure 11–2. PCI-to-Avalon Address Translation

Avalon_Addr_B0

Avalon AddressPCI Address

High Low

Hardcoded BAR Specific
Avalon Addresses

Matched BAR
Selects Avalon

Addresses

Inside PCI Lite Core

BAR Specific Number
of High Avalon Bits

N = Number of Pass Through Bits (BAR Specific)
M = Number of Avalon Address Bits
P = Number of PCI Address Bits (64/32)

Low Address Bits Unchanged
(BAR Specific Number of Bits)

Avalon_Addr_B1

Avalon_Addr_B2

0N-1M-1 N

High Low

0P-1 N N-1

BAR0

BAR1

BAR2
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–7
Functional Description
The address size selections in the translation table determine both the number of
entries in the Avalon-to-PCI address translation table, and the number of bits that are
passed through the transaction table unchanged.

Each entry in the address translation table also has two address space indication bits,
which specify the type of address space being mapped. If the type of address space
being mapped is memory, the bits also indicate the resulting PCI address is a 32-bit
address.

Table 11–4 shows the address space field’s format of the address translation table
entries.

Figure 11–3. Avalon-to-PCI Address Translation

Avalon Address PCI Address

High Low

N = Number of Pass Through Bits
M = Number of Avalon Address Bits
P = Number of PCI Address Bits
Q = Number of Translation Table Entries
Sp = Space Indication for Each Entry

Low Address Bits Unchanged

Avalon to PCI Address
Translation Table

(Q Entries by P-N Bits wide)

PCI Address from Table Entry
Used as High PCI Address Bits

Space IndicationTable Updates via
Control Register Port

High Avalon Address
Bits Index Table

PCI Address 0 Sp0

PCI Address 1 Sp1

PCI Address Q-1 SpQ-1

0N-1M-1 N

High Low

0P-1 N N-1

Table 11–4. Address Space Bit Encodings

Address
Space Indicator

(Bits 1:0) Description

00 Memory space, 32-bit PCI address.

Address bits 63:32 of the translation table entries are ignored.

01 Reserved.

10 I/O space. The address from the translation table process is modified as described in Table 11–5.

11 Configuration space. The address from the translation table process is treated as a type 1
configuration address and is modified as described in Table 11–5.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–8 Chapter 11: PCI Lite Core
Functional Description
If the space indication bits specify configuration or I/O space, subsequent
modifications to the PCI address are performed. See Table 11–5.

Avalon-To-PCI Read and Write Operation
The PCI Bus Access Slave port is a burst-capable slave that attempts to create PCI
bursts that match the bursts requested from the interconnect.

The PCI-Avalon bridge is capable of handling bursts up to 512 bytes with a 32-bit PCI
bus. In other words, the maximum supported Avalon-MM burst count is 128.

Bursts from Avalon-MM can be received on any boundary. However, when internal
PCI-Avalon bridge bursts cross the Avalon-to-PCI address page boundary, they are
broken into two pieces. Two bursts are used because the address translation can
change at that boundary, requiring a different PCI address for the second portion of
the burst with a burst count greater than 1.

1 Avalon-MM burst read requests are treated as if they are going to prefetchable PCI
space. Therefore, if the PCI target space is non-prefetchable, you should not use read
bursts.

Several factors control how Avalon-MM transactions (bursts or single cycle) are
translated to PCI transactions. These cases are discussed in Table 11–6.

Table 11–5. Configuration and I/O Space Address Modifications

Address Space Modifications Performed

I/O ■ Address bits 2:0 are set to point to the first enabled byte according to the Avalon byte enables.
(Bit 2 only needs to be modified when a 64-bit data path is in use.)

■ Address bits 31:3 are handled normally.

Configuration

address bits 23:16 == 0

(bus number == 0)

■ Address bits 1:0 are set to 00 to indicate a type 0 configuration request.

■ Address bits 10:2 are passed through as normal.

■ Address bits 31:11 are set to be a one-hot encoding of the device number field (15:11) of the
address from the translation table. For example, if the device number is 0x00, address bit 11
is set to 1 and bits 31:12 are set to 0. If the device number is 0x01, address bit 12 is set to 1
and bits 31:13, 11 are set to 0.

■ Address bits 31:24 of the original PCI address are ignored.

Configuration

address bits 23:16 > 0

(bus number > 0)

■ Address bits 1:0 are set to 01 to indicate a type 1 configuration request.

■ Address bits 31:2 are passed through unchanged.

Table 11–6. Translation of Avalon Requests to PCI Requests

Data Path
Width

Avalon
Burst Count

Type of
Operation

Avalon Byte
Enables Resulting PCI Operation and Byte Enables

32 1 Read or
Write

Any value Single data phase read or write, PCI byte enables identical
to Avalon byte enables

32 >1 Read Any value Attempt to burst on PCI. All data phases have all PCI bytes
enabled.

32 >1 Write Any value Attempt to burst on PCI. All data phases have PCI byte
enables identical to the Avalon byte enables.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–9
Functional Description
Avalon-to-PCI Write Requests
For write requests from the interconnect, the write request is pushed onto the PCI bus
as a configuration write, I/O write, or memory write. When the Avalon-to-PCI
command/write data buffer either has enough data to complete the full burst or
8 data phases (32 bytes on a 32-bit PCI bus) are exceeded, the PCI master controller
issues the PCI write transaction.

The PCI write is issued to configuration, I/O, or memory space based on the address
translation table. See “Avalon-to-PCI Address Translation” on page 11–6.

A PCI write burst can be terminated for various reasons. Table 11–7 describes the
resulting action for the PCI master write request termination condition.

Avalon-to-PCI Read Requests
For read requests from the interconnect, the request is pushed on the PCI bus by a
configuration read, I/O read, memory read, memory read line, or memory read
multiple command. The PCI read is issued to configuration, I/O, or memory space
based on the address translation table entry. See “Avalon-to-PCI Address Translation”
on page 11–6.

If a memory space read request can be completed in a single data phase, it is issued as
a memory read command. If the memory space read request spans more than one
data phase but does not cross a cacheline boundary (as defined by the cacheline size
register), it is issued as a memory read line command. If the memory space read
request crosses a cache line boundary, it is issued as multiple memory read
commands.

Read requests on PCI may initially be retried. Retries depend on the response time
from the target. The master continues to retry until it gets the required data.

Table 11–7. PCI Master Write Request Termination Conditions

Termination condition Resulting Action

Burst count satisfied Normal master-initiated termination on PCI bus, command completes, and
the master controller proceeds to the next command.

Latency timer expiring during configuration,
I/O, or memory write command

Normal master-initiated termination on PCI bus, the continuation of the PCI
write is requested from the master controller arbiter.

Avalon-to-PCI command/write data buffer
running out of data

Normal master-initiated termination on the PCI bus. Master controller waits
for the buffer to reach 8 DWORDs on a 32-bit PCI or 16 DWORDs on a 64-bit
PCI, or there is enough data to complete the remaining burst count. Once
enough data is available, the master controller arbiter continues wth the
PCI write.

PCI target disconnect The master controller arbiter attempts to initiate the PCI write until the
transaction is successful.PCI target retry

PCI target-abort The rest of the write data is read from the buffer and discarded.

PCI master-abort
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–10 Chapter 11: PCI Lite Core
Functional Description
Table 11–8 shows PCI master read request termination conditions.

Ordering of Requests
The PCI-Avalon bridge handles the following types of requests:

■ PMW—Posted memory write.

■ DRR—Delayed read request.

■ DWR—Delayed write request. DWRs are I/O or configuration write operation
requests. The PCI-Avalon bridge does not handle DWRs as delayed writes.

■ As a PCI master, I/O or configuration writes are generated from posted
Avalon-MM writes. If required to verify completion, you must issue a
subsequent read request to the same target.

■ As a PCI target, configuration writes are the only requests accepted, which are
never delayed. These requests are handled directly by the PCI core.

■ DRC—Delayed read completion.

■ DWC—Delayed write completion. These are never passed through to the core in
either direction. Incoming configuration writes are never delayed. Delayed write
completion status is not passed back at all.

Every single transaction that is initiated, locks the core until it is completed. Only then
can a new transaction be accepted.

PCI Interrupt
When Avalon-MM asserts the IRQ signal, an interrupt on the PCI bus occurs. The
Avalon-MM IRQ input causes a bit to be set in the PCI interrupt status register.

Table 11–8. PCI Master Read Request Termination Conditions

Termination Condition Resulting Action

Burst count satisfied Normal master initiated termination on the PCI bus. Master controller proceeds to the next
command.

Latency timer expired Normal master initiated termination on PCI bus. The continuation of the PCI read is made
pending as a request from the master controller arbiter.

PCI target disconnect The continuation of the PCI read is requested from the master controller arbiter.

PCI target retry

PCI target-abort Dummy data is returned to complete the Avalon-MM read request. The next operation is then
attempted in a normal fashion. PCI master-abort
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–11
Instantiating the Core in SOPC Builder
Instantiating the Core in SOPC Builder
Table 11–9 describes the parameters that can be configured in SOPC Builder for the
PCI Lite core.

Table 11–9. Parameters for PCI Lite Core (Part 1 of 2)

Parameters Legal Values Description

Enable Master/Target Mode On or Off Turning this option On enables Master/Target mode. This option
enables allows Avalon-MM master devices to access PCI target
devices via the PCI bus master interface, and PCI bus master devices
to access Avalon-MM slave devices via the PCI bus target interface.

Turning this option Off means you have selected Target Only mode,
which allows PCI bus mastering devices to access Avalon-MM slave
devices via the PCI bus target interface.

Enable Host Bridge Mode On or Off Turning this option On enables this mode.

In addition to the same features provided by the PCI Master/Target
mode, Host Bridge Mode provides host bridge functionality including
hardwiring the master enable bit to 1 in the PCI command register
and allowing self-configuration. This value can only be set if the
Enable Master/Target Mode option is turned On.

Number of Address Pages 2, 4, 8, or 16 The number of translation/pages supported by the device for Avalon
to PCI address translation.

Size of Address Pages 12–27 The supported address size (in bits) that can be assigned to each
map number entries.

Prefetchable BAR On or Off Turning this option On invokes a Prefetchable Master (PM) Bar in the
PCI system. This option allows PCI-Avalon Bridge Lite to accept and
process PM transactions.

Prefetchable BAR Size 10–31 The allowed reserved address range supported by the PM BAR. The
reserved memory space is 1 KByte (10 bits) to 4 GBytes (31 bits).

Prefetchable BAR Avalon
Address Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon space. Refer to “PCI-to-Avalon Address
Translation” on page 11–6.

Non-Prefetchable BAR On or Off Turning this option On invokes a Non-Prefetchable Master (NPM) Bar
in the PCI system. This option allows the PCI-Avalon Bridge Lite to
accept and process NPM transactions.

Non-Prefetchable BAR Size 10–31 Specifies the allowed reserved address range supported by the NPM
BAR. The reserved memory space is 1 KByte (10 bits) to 4 GBytes
(31 bits).

Non-Prefetchable BAR Avalon
Address Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon space. Refer to “PCI-to-Avalon Address
Translation” on page 11–6.

I/O BAR On or Off Turning this option On enables an I/O BAR in the system. This option
allows PCI-Avalon Bridge Lite to accept and process I/O type
transactions.

I/O BAR Size 2–8 The allowed reserved address range supported by the I/O BAR. The
reserved memory space is 4 bytes (2 bits) to 256 bytes (8 bits).

I/O BAR Avalon Address
Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon address space. Refer to “PCI-to-Avalon
Address Translation” on page 11–6.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–12 Chapter 11: PCI Lite Core
Instantiating the Core in SOPC Builder
PCI Timing Constraint Files
The PCI Lite core supplies a Tcl timing constraint file for your target device family.

When run, the constraint file automatically sets the PCI Lite core assignments for your
design such as PCI Lite core hierarchy, device family, density and package type used
in your Quartus II project.

To run a PCI constraint file, perform the following steps:

1. Copy pci_constraints.tcl from
<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite.

Maximum Target Read Burst
Size

1, 2, 4, 8, 16, 32,
64, or 128

Specifies the maximum FIFO depth that is used for reading. Larger
values allow more reads to be read in a single transaction but also
require more time to clear the FIFO content.

Device ID <register value> Device ID register. This parameter is a 16-bit hexadecimal value that
sets the device ID register in the configuration space.

Vendor ID <register value> Vendor ID register.This parameter is a 16-bit read-only register that
identifies the manufacturer of the device. The value of this register is
assigned by the PCI Special Interest Group (SIG).

Class Code <register value> Class code register. This parameter is a 24-bit hexadecimal value that
sets the class code register in the configuration space. The value
entered for this parameter must be valid PCI SIG-assigned class
code register value.

Revision ID <register value> Revision ID register. This parameter is an 8-bit read-only register that
identifies the revision number of the device. The value of this register
is assigned by the manufacturer.

Subsystem ID <register value> Subsystem ID register. This parameter is a 16-bit hexadecimal value
that sets the subsystem ID register in the PCI configuration space.
Any value can be entered for this parameter.

Subsystem Vendor ID <register value> Subsystem vendor ID register. This parameter is a 16-bit
hexadecimal value that sets the subsystem vendor ID register in the
PCI configuration space. The value for this parameter must be a valid
PCI SIG-assigned vendor ID number.

Maximum Latency <register value> Maximum latency register. This parameter is an 8-bit hexadecimal
value that sets the maximum latency register in the configuration
space. This parameter must be set according to the guidelines in the
PCI specifications. Only meaningful when the Enable Master/Target
Mode option is turned On.

Minimum Grant <register value> Minimum grant register. This parameter is an 8-bit hexadecimal
value that sets the minimum grant register in the PCI configuration
space. This parameter must be set according to the guidelines in the
PCI specifications. Only meaningful when the Enable Master/Target
Mode option is turned On.

Table 11–9. Parameters for PCI Lite Core (Part 2 of 2)

Parameters Legal Values Description
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–13
Instantiating the Core in SOPC Builder
2. Update the pin list in the Tcl constraint file. Edit the get_user_pin_name
procedure in the Tcl constraint file to match the default pin names. To edit the PCI
constraint file, follow these steps:

a. Locate the get_user_pin_name procedure. This procedure maps the default
PCI pin names to user PCI pin names. The following lines are the first few lines
of the procedure:

proc get_user_pin_name { internal_pin_name } {

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name {ad ad }

b. Edit the pin names under the Change header in the file to match the PCI pin
names used in your Quartus II project. In the following example, the name ad
is changed to pci_ad:

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name { ad pci_ad }

1 The Tcl constraint file uses the default PCI pin names to make assignments.
When overwriting existing assignments, the Tcl constraint file checks the
new assignment pin names against the default PCI pin names. You must
update the assignment pin names if there is a mismatch between the
assignment pin names and the default PCI pin names.

3. Source the constraint file by typing the following in the Quartus II Tcl Console
window:

source pci_constraints.tcl r
4. Add the PCI constraints to your project by typing the following command in the

Quartus II Tcl Console window:

add_pci_constraints r
See “Additional Tcl Option” on page 11–13 for the option supported by the
add_pci_constraints command.

When you add the timing constraints file as described in Step 4 above, the
Quartus II software generates a Synopsys Design Constraints (.sdc) file with the
file name format, <variation name>.sdc. The Quartus II TimeQuest timing analyzer
uses the constraints specified in this file.

f For more information about .sdc files or TimeQuest timing analyzer, refer
to Quartus II Help.

Additional Tcl Option
If you do not want to compile your project and prefer to skip analysis and synthesis,
you can use the -no_compile option:

add_pci_contraints [-no_compile]

By default, the add_pci_constraints command performs analysis and synthesis
in the Quartus II software to determine the hierarchy of your PCI Lite core design.
You should only use this option if you have already performed analysis and synthesis
or fully compiled your project prior to using this script.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–14 Chapter 11: PCI Lite Core
Device Support
Device Support
The PCI Lite core supports the Arria® GX, Arria II, Cyclone® III, Hardcopy® II,
Stratix® III, and Stratix IV device families.

Simulation Considerations
The PCI Lite core includes a testbench that facilitates the design and verification of
systems that implement the Altera PCI-Avalon bridge. The testbench only works for
master systems and is provided in Verilog HDL only.

To use the PCI testbench, you must have a basic understanding of PCI bus
architecture and operations.This section describes the features and applications of the
PCI testbench to help you successfully design and verify your design.

Features
The PCI testbench includes the following features:

■ Easy to use simulation environment for any standard Verilog HDL simulator

■ Open source Verilog HDL files

■ Flexible PCI bus functional model to verify your application that uses any PCI Lite
core

■ Simulates all basic PCI transactions including memory read/write operations, I/O
read/write transactions, and configuration read/write transactions

■ Simulates all abnormal PCI transaction terminations including target retry, target
disconnect, target abort, and master abort

■ Simulates PCI bus parking

Master Transactor (mstr_tranx)
The master transactor simulates the master behavior on the PCI bus. It serves as an
initiator of PCI transactions for PCI testbench. The master transactor has three main
sections:

■ TASKS (Verilog HDL)

■ INITIALIZATION

■ USER COMMANDS

TASKS Sections
The TASKS (Verilog HDL) sections define the events that are executed for the user
commands supported by the master transactor. The events written in the TASKS
sections follow the phases of a standard PCI transaction as defined by the PCI Local
Bus Specification, Revision 3.0, including:

■ Address phase

■ Turn-around phase (read transactions)

■ Data phases

■ Turn-around phase
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–15
Simulation Considerations
The master transactor terminates the PCI transactions in the following cases:

■ The PCI transaction has successfully transferred all the intended data.

■ The PCI target terminates the transaction prematurely with a target retry,
disconnect, or abort as defined in the PCI Local Bus Specification, Revision 3.0.

■ A target does not claim the transaction resulting in a master abort.

The bus monitor informs the master transactor of a successful data transaction or a
target termination. Refer to the source code, which shows you how the master
transactor uses these termination signals from the bus monitor.

The PCI testbench master transactor TASKS sections implement basic PCI transaction
functionality. If your application requires different functionality, modify the events to
change the behavior of the master transactor. Additionally, you can create new
procedures or tasks in the master transactor by using the existing events as an
example.

INITIALIZATION Section
This user-defined section defines the parameters and reset length of your PCI bus on
power-up. Specifically, the system should reset the bus and write the configuration
space of the PCI agents. You can modify the master transactor INITIALIZATION
section to match your system requirements by changing the time that the system reset
is asserted and by modifying the data written in the configuration space of the PCI
agents.

USER COMMANDS Section
The master transactor USER COMMANDS section contains the commands that
initiate the PCI transactions you want to run for your tests. The list of events that are
executed by these commands is defined in the TASKS sections. Customize the USER
COMMANDS section to execute the sequence of commands needed to test your
design.

Simulation Flow
This section describes the simulation flow using Altera PCI testbench. Figure 11–4
shows the block diagram of a typical verification environment using the PCI
testbench.

Figure 11–4. Typical Verification Environment Using the PCI Testbench

Altera Device

PCI Bus
Altera PCI Testbench

PCI
Testbench System Generated

Using SOPC Builder
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

11–16 Chapter 11: PCI Lite Core
Simulation Considerations
The simulation flow using Altera PCI testbench comprises the following steps.

1. Use SOPC Builder to create your system. SOPC creates the <variation
name_system>_sim folder in your project directory.

2. Source pci_constraints.tcl.

3. Copy
<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/verilog/pci_l
ite/trgt_tranx_mem_init.dat to <project_directory>/<variation
name_system>_sim folder.

4. Edit the top level HDL verilog files in the testbench. Insert the following lines just
before module test_bench.

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/pci_tb.v”

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/clk_gen.v”

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/arbiter.v”

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/pull_up.v”

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/monitor.v”

‘include
“<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/trgt_tranx.v”

‘include “mstr_tranx.v”

1 Modify mstr_tranx.v in your project directory to add the PCI transactions to
your system. If you regenerate your system, SOPC Builder overwrites the
testbench files in the <sopc_system>_sim directory. If you want the default
testbench files, regenerate the system. Then resource pci_constraints.tcl or
simply copy the mstr_tranx.v from
<quartus_ip>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/verilog/
pci_lite into your project folder and repeat steps 3 and 4.

5. Set the initialization parameters, which are defined in the master transactor model
source code. These parameters control the address space reserved by the target
transactor model and other PCI agents on the PCI bus.

6. The master transactor defines the tasks (Verilog HDL) needed to initiate PCI
transactions in your testbench. Add the commands that correspond to the
transactions you want to implement in your tests to the master transactor model
source code. At a minimum, you must add configuration commands to set the
BAR for the target transactor model and write the configuration space of the PCI
Lite core. Additionally, you can add commands to initiate memory or I/O
transactions to the PCI Lite core.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 11: PCI Lite Core 11–17
Referenced Documents
7. Compile the files in your simulator, including the testbench modules and the files
created by SOPC Builder.

8. Simulate the testbench for the desired time period.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 11–10 shows the revision history for this chapter.

Table 11–10. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Edited the command errors in the
Simulation Flow section.

—

May 2008

v8.0.0

Initial release. —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

11–18 Chapter 11: PCI Lite Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55017-9.1.0
12. Cyclone III Remote Update Controller
Core
Core Overview
The Cyclone® III Remote Update Controller core provides a method to control the
Cyclone III remote update block from SOPC Builder systems. The core allows you to
access all features of the ALTREMOTE_UPDATE megafunction through a simple
Avalon® Memory-Mapped (Avalon-MM) slave interface. The slave interface allows
Avalon-MM master peripherals, such as a Nios® II processor, to communicate with the
core simply by reading and writing the registers.

The Cyclone III Remote Update Controller core is a thin Avalon interface layer on top
of the ALTREMOTE_UPDATE megafunction. Every function of the core maps
directly to a function of the megafunction. Altera recommends that you familiarize
yourself with the ALTREMOTE_UPDATE megafunction before using the core.

f For more information about the ALTREMOTE_UPDATE megafunction, refer to the
altremote_update Megafunction User Guide. For more information about remote system
upgrade in Cyclone III devices, refer to the Remote System Upgrade With Cyclone III
Devices chapter in volume 1 of the Cyclone III Device Handbook.

The Cyclone III Remote Update Controller core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system. This chapter contains the following
sections:

■ “Functional Description”

■ “Device Support” on page 12–2

■ “Instantiating the Core in SOPC Builder” on page 12–2

Functional Description
Figure 12–1 shows a block diagram of the Cyclone III Remote Update Controller core.

Figure 12–1. Cyclone III Remote Update Controller Core Block Diagram

clock
busy

data_in

data_out

param
read_source
read_param
write_param

reconfig

Av
al

on
 M

em
or

y-
M

ap
pe

d
In

te
rfa

ce

Cyclone III
altremote_update

Megafunction

clock

address

readdata

writedata

chipselect

read

write

waitrequest
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/cyc3/cyc3_ciii51012.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51012.pdf
http://www.altera.com/literature/ug/ug_altremote.pdf

12–2 Chapter 12: Cyclone III Remote Update Controller Core
Device Support
Avalon-MM Slave Interface and Registers
The address bus on the core's Avalon-MM interface is 6 bits wide. The lower three
bits of the address bus map directly to the param signal of the
ALTREMOTE_UPDATE megafunction whereas the upper three bits map to the
read_source signal.

Reading or writing to address offsets 0x00 – 0x1F of the Cyclone III Remote Update
Controller core is equivalent to performing read or write operations to the
ALTREMOTE_UPDATE megafunction using the param and read_source signals.

Table 12–1 shows the mapping of the 5 lowest order Remote Update Controller
address bits to the ALTREMOTE_UPDATE megafunction signals.

The highest order address bit [5] is used to access a single control/status register.
Reading or writing any address offset from 0x20 – 0x3F accesses the
control/status register.

Table 12–2 shows the bit map of the control/status register.

Device Support
The Cyclone III Remote Update Controller core can only target Cyclone III device
family. Both CFI flash and EPCS configuration devices are supported as non-volatile
storage for configuration images.

Instantiating the Core in SOPC Builder
The Cyclone III Remote Update Controller core has no user-configurable parameters.

Table 12–1. Avalon-MM Address Bits to Megafunction Signals Mapping

Address Bit Megafunction Signal

address[0] param[0]

address[1] param[1]

address[2] param[2]

address[3] read_source[0]

address[4] read_source[1]

Table 12–2. Bit Map of Control/Status Register

Bit(s) Field Access Description

0 RECONFIG RW Set this bit to 1 to reset the FPGA and trigger reconfiguration.

1 RESET_TIMER RW Set this bit to 1 to reset the watchdog timer. Then, set this bit to 0 to allow
the watchdog timer to continue.

2..31 Reserved
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 12: Cyclone III Remote Update Controller Core 12–3
Software Programming Model
Software Programming Model
Software programs can operate the Cyclone III Remote Update Controller core by
reading from and writing to the core's registers.

1 You can only reconfigure the FPGA to an application image from the factory image.
Any attempt to reconfigure from an already reconfigured application image causes
the FPGA to return to the factory image.

This section describes the most common types of operations using the Cyclone III
Remote Update Controller core.

Setting the Configuration Offset
Before you reconfigure the FPGA, you must first specify the offset within the memory
device from which you want to execute a reconfiguration. The offset is the relative
address within the memory device where the configuration image is located. Write
the offset value to address 0x04 of the core to set the configuration offset.

For example, if your system contains a CFI flash memory mapped at address
0x04000000, and the configuration image is located at address 0x100000 in the flash
memory, the offset to set in the Cyclone III Remote Update Controller core is
0x100000.

Shifting the Configuration Offset Value
The ALTREMOTE_UPDATE megafunction requires that you provide only the 22
highest-order bits of a 24-bit address offset. To translate the address, right shift the
offset by two bits. This results in a properly oriented 22-bit address offset.

If you are using a CFI flash device, you must also take into account the data width of
the flash. If the data width of your flash device is 16 bits, you must provide a 16-bit
address offset to the Cyclone III Remote Update Controller core. This requires an
additional 1-bit right shift of the byte address offset. No translation is necessary if the
data width of your flash is 8 bits.

If you are using an EPCS serial configuration device, consider the data width of the
device to be 8 bits. Even though the EPCS device is a serial device, it uses byte
addressing internally.

For example, an FPGA is set up to configure itself using active parallel mode from a
16-bit CFI flash memory mapped at address 0x04000000 in an SOPC Builder system,
and the configuration image is located at byte offset 0x100000 within the flash
memory. To derive the correct configuration offset, you must first right shift the byte
offset 0x100000 by one bit to obtain the 16-bit address. Then, right shift by another two
bits to obtain the highest 22 bits of the 24-bit offset. The result is a configuration offset
of 0x20000 (0x100000 >> 3 = 0x20000), to be written to address 0x04 of the core.

Setting up the Watchdog Timer
You can set up the watchdog timer by writing the upper 12 bits of the 29-bit timeout
value to address 0x02 of the core. To reset the watchdog timer, set the RESET_TIMER
bit of the control/status register to 1 and immediately set the bit to 0.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

12–4 Chapter 12: Cyclone III Remote Update Controller Core
Software Programming Model
c Ensure that you don't accidentally set bit 0 of the control/status register to 1.
Otherwise, you will trigger a reconfiguration of the FPGA.

f For more information on watchdog timer, refer to the ALTREMOTE_UPDATE
Megafunction User Guide.

If you do not use the watchdog timer feature of the ALTREMOTE_UPDATE
megafunction, it must be disabled before a reconfiguration is performed. To disable
the watchdog timer, write 0x00 to address 0x03 of the core.

Triggering a Reconfiguration
You can trigger a reconfiguration once you have set the reconfiguration offset in the
Cyclone III Remote Update Controller core, and you have either setup or disabled the
watchdog timer. To trigger a reconfiguration, set the RECONFIG bit in the
control/status register to 1. Consequently, the FPGA performs a reset and
reconfigures itself from the configuration image specified.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/ug/ug_altremote.pdf

Chapter 12: Cyclone III Remote Update Controller Core 12–5
Software Programming Model
Code Example
Example 12–1 shows a C function that can be used to operate the Cyclone III Remote
Update Controller core from a processor such as Nios II.

Example 12–1. FPGA Reconfiguration Function

/**
 * Function: CycloneIII_Reconfig
 * Purpose: Uses the ALT_REMOTE_UPDATE megafunction to reconfigure a Cyclone III FPGA.
 * Parameters:
 * remote_update_base - base address of the remote update controller
 * flash_base - base address of flash device
 * reconfig_offset - offset in flash from which to reconfigure
 * watchdog_timeout - 29-bit watchdog timeout value
 * width_of_flash - data-width of flash device
 * Returns: 0 (but never exits since it reconfigures the FPGA)
 **/
int CycloneIII_Reconfig(int remote_update_base,
 int flash_base,
 int reconfig_offset,
 int watchdog_timeout,
 int width_of_flash)
{int offset_shift;

 // Obtain upper 12 bits of 29-bit watchdog timeout value
 watchdog_timeout = watchdog_timeout >> 17;

 // Only enable the watchdog timer if its timeout value is greater than 0.
 if(watchdog_timeout > 0)
 {
 // Set the watchdog timeout value
 IOWR(remote_update_base, 0x2, watchdog_timeout);
 }
 else
 {
 // Disable the watchdog timer
 IOWR(remote_update_base, 0x3, 0);
 }

 // Calculate how much to shift the reconfig offset location:
 // width_of_flash == 8->offset_shift = 2.
 // width_of_flash == 16->offset_shift = 3
 offset_shift = ((width_of_flash / 8) + 1);

 // Write the offset of the desired reconfiguration image in flash
 IOWR(remote_update_base, 0x4, reconfig_offset >> offset_shift);

 // Perform the reconfiguration by setting bit 0 in the
 // control/status register
 IOWR(remote_update_base, 0x20, 0x1);

 return(0);
}

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

12–6 Chapter 12: Cyclone III Remote Update Controller Core
Related Documentation
Related Documentation
This chapter references the following documents:

■ altremote_update Megafunction User Guide

■ Remote System Upgrade With Cyclone III Devices in volume 1 of the Cyclone III Device
Handbook.

Document Revision History
Table 12–3 shows the revision history for this chapter.

Table 12–3. Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51012.pdf

© November 2009 Altera Corporation
Section II. On-Chip Storage Peripherals
This section describes on-chip storage peripherals provided for SOPC Builder
systems.

This section includes the following chapters:

■ Chapter 13, Avalon-ST Single Clock and Dual Clock FIFO Cores

■ Chapter 14, On-Chip FIFO Memory Core

■ Chapter 15, Avalon-ST Multi-Channel Shared Memory FIFO Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

II–2 Section II: On-Chip Storage Peripherals
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55014-9.1.0
13. Avalon-ST Single Clock and Dual
Clock FIFO Cores
Core Overview
The Avalon® Streaming (Avalon-ST) Single Clock and Avalon-ST Dual Clock FIFO
cores are FIFO buffers which operate with a single clock and separate clocks for input
and output ports, respectively. You can configure the cores to include Avalon
Memory-Mapped (Avalon-MM) status interfaces to report the FIFO fill level.

The Avalon-ST Single Clock and Avalon-ST Dual Clock FIFO cores are SOPC
Builder-ready and integrates easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 13–3

■ “Device Support” on page 13–3

■ “Software Programming Model” on page 13–4

Functional Description
Figure 13–1 and Figure 13–2 show block diagrams of the Avalon-ST Single Clock and
Avalon-ST Dual Clock FIFO cores.

Figure 13–1. Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Status

data_out
data_in Avalon-ST

Sink
Avalon-ST

Source
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

13–2 Chapter 13: Avalon-ST Single Clock and Dual Clock FIFO Cores
Functional Description
Interfaces
Table 13–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Operations
The Avalon-ST Single Clock and Avalon-ST Dual Clock FIFO cores are simple FIFO
buffers with Avalon-ST input and output interfaces.

You can include an optional Avalon-MM status interface by setting the
Use_Fill_Level parameter to 1. This interface reports the FIFO fill level. In the
Dual Clock FIFO, you can implement separate status interfaces for the input and
output clock domains.

Due to the latency of the clock crossing logic, the fill levels reported in the input and
output clock domains may be different at any given instance. In both cases, the fill
level is pessimistic for the clock domain; the fill level is reported high in the input
clock domain and low in the output clock domain.

Figure 13–2. Avalon-ST Dual Clock FIFO Core

Avalon-MM
Status

Avalon-MM
Status

data_outdata_in

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Sink

Avalon-ST
Source

Table 13–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 13: Avalon-ST Single Clock and Dual Clock FIFO Cores 13–3
Instantiating the Core in SOPC Builder
In the Avalon-ST Dual Clock FIFO, the FIFO has an output pipeline stage to improve
fMAX. This output stage is accounted for when calculating the output fill level, but not
when calculating the input fill level. Hence, the best measure of the amount of data in
the FIFO is given by the fill level in the output clock domain, while the fill level in the
input clock domain represents the amount of space available in the FIFO
(Available space = FIFO depth – input fill level).

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Single Clock and Avalon-ST Dual
Clock FIFO cores in SOPC Builder to add the cores to a system.

Table 13–2 lists and describes the parameters you can configure.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Device Support
The Avalon-ST Single Clock and Avalon-ST Dual Clock FIFO cores support all Altera
device families.

Table 13–2. Configurable Parameters

Parameter Legal Values Description

Bits per symbol 1–32 The symbol width in bits.

Symbols per beat 1–32 The number of symbols transferred in a beat.

Error width 0–32 The width of the error signal.

FIFO depth 1–32 The FIFO depth. An output pipeline stage is added to the FIFO to increase
performance, which increases the FIFO depth by one.

Use packets 0 or 1 Setting this parameter to 1 enables packet support on the Avalon-ST data
interfaces.

Avalon-ST Single Clock FIFO Only

Use fill level 0 or 1 Setting this parameter to 1 enables the Avalon-MM status interface.

Avalon-ST Dual Clock FIFO Only

Use sink fill level 0 or 1 Setting this parameter to 1 enables the input clock domain Avalon-MM status
interface.

Use source fill level 0 or 1 Setting this parameter to 1 enables the output clock domain Avalon-MM status
interface.

Write pointer
synchronizer length

2–8 The length of the write pointer synchronizer chain. Setting this parameter to a
higher value leads to better metastability while increasing the latency of the
core.

Read pointer
synchronizer length

2–8 The length of the read pointer synchronizer chain. Setting this parameter to a
higher value leads to better metastability.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

13–4 Chapter 13: Avalon-ST Single Clock and Dual Clock FIFO Cores
Software Programming Model
Software Programming Model
The following sections describe the software programming model for the Avalon-ST
Single Clock and Avalon-ST Dual Clock FIFO cores.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the Avalon-ST
Single Clock and Avalon-ST Dual Clock FIFO cores via the familiar HAL API and the
ANSI C standard library.

Register Map
The Avalon-MM status interface reports the FIFO fill level. Table 13–3 shows the
register map for the status interface of the cores.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 13–4 shows the revision history for this chapter.

Table 13–3. Register Map—Status Interface

Offset Name Access Description

Base + 0 Fill Level R 24-bit FIFO fill level. Bits 24 to 31 are unused.

Table 13–4. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

Added description of new parameters, Write pointer
synchronizer length and Read pointer synchronizer
length.

—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

© November 2009 Altera Corporation

QII55002-9.1.0
14. On-Chip FIFO Memory Core
Core Overview
The on-chip FIFO memory core is a configurable component used to buffer data and
provide flow control in an SOPC Builder system. The FIFO can operate with a single
clock or with separate clocks for the input and output ports. The on-chip FIFO
memory core does not support burst read or write.

The input interface to the FIFO may be an Avalon® Memory Mapped (Avalon-MM)
write slave or an Avalon Streaming (Avalon-ST) sink. The output interface can be an
Avalon-ST source or an Avalon-MM read slave. The data is delivered to the output
interface in the same order that it was received at the input interface, regardless of the
value of channel, packet, frame, or any other signals.

In single clock mode, the on-chip FIFO memory includes an optional status interface
that provides information about the fill-level of the FIFO. In dual clock mode,
separate, optional status interfaces can be included for the input and output
interfaces. The status interface also includes registers to set and control interrupts.

The on-chip FIFO memory core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. Device drivers are provided in the HAL system
library allowing software to access the core using ANSI C.

This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 14–6

■ “Instantiating the Core in SOPC Builder” on page 14–6

■ “Software Programming Model” on page 14–8

■ “Programming with the On-Chip FIFO Memory” on page 14–8

■ “On-Chip FIFO Memory API” on page 14–13

Functional Description
The on-chip FIFO memory has four configurations:

■ Avalon-MM write slave to Avalon-MM read slave

■ Avalon-ST sink to Avalon-ST source

■ Avalon-MM write slave to Avalon-ST source

■ Avalon-ST sink to Avalon-MM read slave

In all configurations, the input and output interfaces can use the optional
backpressure signals to prevent underflow and overflow conditions. For the
Avalon-MM interface, backpressure is implemented using the waitrequest signal.
For Avalon-ST interfaces, backpressure is implemented using the ready and valid
signals. For the on-chip FIFO memory, the delay between the sink asserts ready and
the source drives valid data is one cycle.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–2 Chapter 14: On-Chip FIFO Memory Core
Functional Description
Avalon-MM Write Slave to Avalon-MM Read Slave
In this mode, the FIFO’s input is a zero-address-width Avalon-MM write slave. An
Avalon-MM write master pushes data into the FIFO by writing to the input interface,
and a read master (possibly the same master) pops data by reading from its output
interface. The FIFO’s input and output data must be the same width.

If Allow backpressure is turned on, the waitrequest signal is asserted whenever
the data_in master tries to write to a full FIFO. waitrequest is only deasserted
when there is enough space in the FIFO for a new transaction to complete.
waitrequest is asserted for read operations when there is no data to be read from
the FIFO, and is deasserted when the FIFO has data.

Avalon-ST Sink to Avalon-ST Source
This FIFO has streaming input and output interfaces as illustrated in Figure 14–2. You
can parameterize most aspects of the Avalon-ST interfaces including the bits per
symbol, symbols per beat, and the width of error and channel signals. The input
and output interfaces must be the same width. If Allow backpressure is on in the
SOPC Builder MegaWizard, both interfaces use the ready and valid signals to
indicate when space is available in the FIFO and when valid data is available.

f For more information about the Avalon-ST interface protocol, refer to the Avalon
Interface Specifications.

Figure 14–1. FIFO with Avalon-MM Input and Output Interfaces

S Avalon-MM Slave Port

On-Chip FIFO
Memory

S S

S S

Wr Rd

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input data Output data
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 14: On-Chip FIFO Memory Core 14–3
Functional Description
Avalon-MM Write Slave to Avalon-ST Source
In this mode, the FIFO's input is an Avalon-MM write slave with a width of 32 bits as
shown in Figure 14–3. The Avalon-ST output (source) data width must also be 32 bits.
You can configure output interface parameters, including: bits per symbol, symbols
per beat, and the width of the channel and error signals. The FIFO performs the
endian conversion to conform to the output interface protocol.

The signals that comprise this interface are mapped into bits in the Avalon's address
space. If Allow backpressure is on, the input interface asserts waitrequest to
indicate that the FIFO does not have enough space for the transaction to complete.

The example memory map in Table 14–1 illustrates the layout of memory for a FIFO
with a 32-bit Avalon-MM input interface and an Avalon-ST output interface. The
output interface has 8-bit symbols, a 5-bit channel signal, and a 3-bit error signal, with
packet support.

Figure 14–2. FIFO with Avalon-ST Input and Output Interfaces

SNK Avalon-ST Sink

On-Chip FIFO
Memory

S S

SNK SRC

Input Status I/F
(optional)

Output Status I/F
(optional)

System Interconnect Fabric

Streaming
Output Data

SRC Avalon-ST Source

S Avalon-MM Slave Port

Figure 14–3. FIFO with Avalon-MM Input Interface and Avalon-ST Output Interface

On-Chip FIFO
Memory

S S

S SRC

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input Data
Streaming
Output Data

SRC Avalon-ST Source

S Avalon-MM Slave Port
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–4 Chapter 14: On-Chip FIFO Memory Core
Functional Description
If Enable packet data is off, the Avalon-MM write master writes all data at address
offset 0 repeatedly to push data into the FIFO.

If Enable packet data is on, the Avalon-MM write master starts by writing the SOP,
error (optional), channel (optional), EOP, and empty packet status information at
address offset 1. Writing to address offset 1 does not push data into the FIFO. The
Avalon-MM master then writes packet data to the FIFO repeatedly at address offset 0,
pushing 8-bit symbols into the FIFO. Whenever a valid write occurs at address
offset 0, the data and its respective packet information is pushed into the FIFO.
Subsequent data is written at address offset 0 without the need to clear the SOP.
Rewriting to address offset 1 is not required each time if the subsequent data to be
pushed into the FIFO is not the end-of-packet data, as long as error and channel do
not change.

At the end of each packet, the Avalon-MM master writes to the address at offset 1 to
set the EOP bit to 1, before writing the last symbol of the packet at offset 0. The write
master uses the empty field to indicate the number of unused symbols at the end of
the transfer. If the last packet data is not aligned with the symbols per beat, the empty
field indicates the number of empty symbols in the last packet data. For example, if
the Avalon-ST interface has symbols per beat of 4, and the last packet only has 3
symbols, the empty field will be 1, indicating that one symbol (the least significant
symbol in the memory map) is empty.

Avalon-ST Sink to Avalon-MM Read Slave
In this mode, the FIFO’s input is an Avalon-ST sink and the output is an Avalon-MM
read slave with a width of 32 bits (Figure 14–4). The Avalon-ST input (sink) data
width must also be 32 bits. You can configure input interface parameters, including:
bits per symbol, symbols per beat, and the width of the channel and error signals.
The FIFO performs the endian conversion to conform to the output interface protocol.

An Avalon-MM master reads the data from the FIFO. The signals are mapped into bits
in the Avalon's address space. If Allow backpressure is on in the SOPC Builder
MegaWizard, the input (sink) interface uses the ready and valid signals to indicate
when space is available in the FIFO and when valid data is available. For the output
interface, waitrequest is asserted for read operations when there is no data to be
read from the FIFO. It is deasserted when the FIFO has data to send.

Table 14–1. Avalon-MM to Avalon-ST Memory Map

Offset 31 24 23 19 18 16 15 13 12 8 7 4 3 2 1 0

base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error reserved channel reserved empty

E
O
P

S
O
P

Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–5
Functional Description
As shown in Table 14–2, the memory map for the Avalon-ST to Avalon-MM slave
FIFO is exactly the same as for Avalon-MM to Avalon-ST FIFO.

If Enable packet data is off, read data repeatedly at address offset 0 to pop the data
from the FIFO.

If Enable packet data is on, the Avalon-MM read master starts reading from address
offset 0. If the read is valid, that is, the FIFO is not empty, both data and packet status
information are popped from the FIFO. The packet status information is obtained by
reading at address offset 1. Reading from address offset 1 does not pop data from the
FIFO. The error, channel, SOP, EOP and empty fields are available at address offset
1 to determine the status of the packet data read from address offset 0.

The empty field indicates the number of empty symbols in the data field. For
example, if the Avalon-ST interface has symbols-per-beat of 4, and the last packet data
only has 1 symbol, then the empty field will be 3 to indicate that 3 symbols (the 3 least
significant symbols in the memory map) are empty.

Status Interface
The FIFO provides two optional status interfaces, one for the master writing to the
input interface and a second for the read master reading from the output interface. For
FIFOs that operate in a single domain, a single status interface is sufficient to monitor
the status of the FIFO. For FIFOs using a dual clocking scheme, a second status
interface using the output clock is necessary to accurately monitor the status of the
FIFO in both clock domains.

Figure 14–4. FIFO with Avalon-ST Input and Avalon-MM Output

On-Chip FIFO
Memory

S S

SNK S

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Output Data
Streaming
Input Data

SNK Avalon-ST Sink

S Avalon-MM Slave Port

Table 14–2. Avalon-ST to Avalon-MM Memory Map

Offset 31 24 23 19 18 16 15 13 12 8 7 4 3 2 1 0

base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error reserved channel reserved empty

E
O
P

S
O
P

© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–6 Chapter 14: On-Chip FIFO Memory Core
Device Support
Clocking Modes
When single clock mode is used, the FIFO being used is SCFIFO. When dual-clock
mode is chosen, the FIFO being used is DCFIFO. In dual-clock mode, input data and
write-side status interfaces use the write side clock domain; the output data and
read-side status interfaces use the read-side clock domain.

Device Support
The on-chip FIFO memory supports all Altera® device families except the Hardcopy®

series.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the on-chip FIFO memory in SOPC Builder to
specify the core configuration. The following sections describe the available options.

FIFO Settings
The following sections outline the settings that pertain to the FIFO as a whole.

Depth
Depth indicates the depth of the FIFO, in Avalon-ST beats or Avalon-MM words. The
default depth is 16. When dual clock mode is used, the actual FIFO depth is equal to
depth-3. This is due to clock crossing and to avoid FIFO overflow.

Clock Settings
The two options are Single clock mode and Dual clock mode. In Single clock mode,
all interface ports use the same clock. In Dual clock mode, input data and input side
status are on the input clock domain. Output data and output side status are on the
output clock domain.

Status Port
The optional status ports are Avalon-MM slaves. To include the optional input side
status interface, turn on Create status interface for input on the SOPC Builder
MegaWizard. For FIFOs whose input and output ports operate in separate clock
domains, you can include a second status interface by turning on Create status
interface for output. Turning on Enable IRQ for status ports adds an interrupt signal
to the status ports.

FIFO Implementation
This option determines if the FIFO is built from registers or embedded memory
blocks. The default is to construct the FIFO from embedded memory blocks.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–7
Instantiating the Core in SOPC Builder
Interface Parameters
The following sections outline the options for the input and output interfaces.

Input
Available input interfaces are Avalon-MM write slave and Avalon-ST sink.

Output
Available output interfaces are Avalon-MM read slave and Avalon-ST source.

Allow Backpressure
When Allow backpressure is on, an Avalon-MM interface includes the
waitrequest signal which is asserted to prevent a master from writing to a full FIFO
or reading from an empty FIFO. An Avalon-ST interface includes the ready and
valid signals to prevent underflow and overflow conditions.

Avalon-MM Port Settings
Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other, the data width
is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths other than
32 bits, be careful of potential overflow and underflow conditions.

Avalon-ST Port Settings
The following parameters allow you to specify the size and error handling of the
Avalon-ST port or ports:

■ Bits per symbol

■ Symbols per beat

■ Channel width

■ Error width

If the symbol size is not a power of two, it is rounded up to the next power of two. For
example, if the bits per symbol is 10, the symbol will be mapped to a 16-bit memory
location. With 10-bit symbols, the maximum number of symbols per beat is two.

Enable packet data provides an option for packet transmission.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–8 Chapter 14: On-Chip FIFO Memory Core
Software Programming Model
Software Programming Model
The following sections describe the software programming model for the on-chip
FIFO memory core, including the register map and software declarations to access the
hardware. For Nios II processor users, Altera provides HAL system library drivers
that enable you to access the on-chip FIFO memory core using its HAL API.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the on-chip FIFO
memory via the familiar HAL API, rather than accessing the registers directly.

Software Files
Altera provides the following software files for the on-chip FIFO memory core:

■ altera_avalon_fifo_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware.

■ altera_avalon_fifo_util.h—This file defines functions to access the on-chip FIFO
memory core hardware. It provides utilities to initialize the FIFO, read and write
status, enable flags and read events.

■ altera_avalon_fifo.h—This file provides the public interface to the on-chip FIFO
memory

■ altera_avalon_fifo_util.c—This file implements the utilities listed in
altera_avalon_fifo_util.h.

Programming with the On-Chip FIFO Memory
This section describes the low-level software constructs for manipulating the on-chip
FIFO memory core hardware. Table 14–3 lists all of the available functions.

Table 14–3. On-Chip FIFO Memory Functions (Part 1 of 2)

Function Name Description

altera_avalon_fifo_init() Initializes the FIFO.

altera_avalon_fifo_read_status() Returns the integer value of the specified bit of the status
register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_ienable() Returns the value of the specified bit of the interrupt enable
register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_EVENT_ALL mask.

altera_avalon_fifo_read_almostfull() Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty() Returns the value of the almostempty register.

altera_avalon_fifo_read_event() Returns the value of the specified bit of the event register. All of
the event bits can be read at once by using the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_level() Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event() Clears the specified bits and the event register and performs
error checking.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–9
Programming with the On-Chip FIFO Memory
Software Control
Table 14–4 provides the register map for the status register. The layout of status
register for the input and output interfaces is identical.

Table 14–5 outlines the use of the various fields of the status register.

altera_avalon_fifo_write_ienable() Writes the specified bits of the interruptenable register
and performs error checking.

altera_avalon_fifo_write_almostfull() Writes the specified value to the almostfull register and
performs error checking.

altera_avalon_fifo_write_almostempty() Writes the specified value to the almostempty register and
performs error checking.

altera_avalon_fifo_write_fifo() Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info() Writes the packet status information to the
write_address. Only valid when the Enable packet data
option is turned on.

altera_avalon_fifo_read_fifo() Reads data from the specified read_address.

altera_avalon_fifo_read__other_info() Reads the packet status information from the specified
read_address. Only valid when the Enable packet data
option is turned on.

Table 14–3. On-Chip FIFO Memory Functions (Part 2 of 2)

Function Name Description

Table 14–4. FIFO Status Register Memory Map

offset 31 24 23 16 15 8 7 6 5 4 3 2 1 0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interrupt
enable

base + 4 almostfull

base + 5 almostempty

Table 14–5. FIFO Status Field Descriptions (Part 1 of 2)

Field Type Description

fill_level RO The instantaneous fill level of the FIFO, provided in units of symbols for a FIFO with an
Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO A 6-bit register that shows the FIFO’s instantaneous status. See Table 14–6 for the
meaning of each bit field.

event RW1C A 6-bit register with exactly the same fields as i_status. When a bit in the i_status
register is set, the same bit in the event register is set. The bit in the event register is
only cleared when software writes a 1 to that bit.

interruptenable RW A 6-bit interrupt enable register with exactly the same fields as the event and
i_status registers. When a bit in the event register transitions from a 0 to a 1, and
the corresponding bit in interruptenable is set, the master Is interrupted.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–10 Chapter 14: On-Chip FIFO Memory Core
Programming with the On-Chip FIFO Memory
Table 14–6 describes the instantaneous status bits.

Table 14–7 lists the bit fields of the event register. These fields are identical to those in
the status register and are set at the same time; however, these fields are only
cleared when software writes a one to clear (W1C). The event fields can be used to
determine if a particular event has occurred.

Table 14–8 provides a mask for the six STATUS fields. When a bit in the event
register transitions from a zero to a one, and the corresponding bit in the
interruptenable register is set, the master is interrupted.

almostfull RW A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is Depth-4. The default
threshold value for SCFIFO is Depth-1. The valid range of the threshold value is from 1 to
the default. 1 is used when attempting to write a value smaller than 1. The default is used
when attempting to write a value larger than the default.

almostempty RW A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is 1. The default threshold
value for SCFIFO is 1. The valid range of the threshold value is from 1 to the maximum
allowable almostfull threshold. 1 is used when attempting to write a value smaller
than 1. The maximum allowable is used when attempting to write a value larger than the
maximum allowable.

Table 14–5. FIFO Status Field Descriptions (Part 2 of 2)

Field Type Description

Table 14–6. Status Bit Field Descriptions

Bit(s) Name Description

0 FULL Has a value of 1 if the FIFO is currently full.

1 EMPTY Has a value of 1 if the FIFO is currently empty.

2 ALMOSTFULL Has a value of 1 if the fill level of the FIFO is greater than the almostfull value.

3 ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO is less than the almostempty value.

4 OVERFLOW Is set to 1 for 1 cycle every time the FIFO overflows. The FIFO overflows when an Avalon
write master writes to a full FIFO. OVERFLOW is only valid when Allow backpressure is off.

5 UNDERFLOW Is set to 1 for 1 cycle every time the FIFO underflows. The FIFO underflows when an Avalon
read master reads from an empty FIFO. UNDERFLOW is only valid when Allow
backpressure is off.

Table 14–7. Event Bit Field Descriptions

Bit(s) Name Description

1 E_FULL Has a value of 1 if the FIFO has been full and the bit has not been cleared by software.

0 E_EMPTY Has a value of 1 if the FIFO has been empty and the bit has not been cleared by
software.

3 E_ALMOSTFULL Has a value of 1 if the fill level of the FIFO has been greater than the almostfull
threshold value and the bit has not been cleared by software.

2 E_ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO has been less than the almostempty value
and the bit has not been cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit has not been cleared by software.

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit has not been cleared by
software.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–11
Programming with the On-Chip FIFO Memory
Macros to access all of the registers are defined in altera_avalon_fifo_regs.h. For
example, this file includes the following macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG 0
#define ALTERA_AVALON_FIFO_STATUS_REG 1
#define ALTERA_AVALON_FIFO_EVENT_REG 2
#define ALTERA_AVALON_FIFO_IENABLE_REG 3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG 4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG 5

f For a complete list of predefined macros and utilities to access the on-chip FIFO
hardware, see:
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo.h and
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo_util.h.

Table 14–8. InterruptEnable Bit Field Descriptions

Bit(s) Name Description

1 IE_FULL Enables an interrupt if the FIFO is currently full.

0 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

3 IE_ALMOSTFULL Enables an interrupt if the fill level of the FIFO is greater than the value of the
almostfull register.

2 IE_ALMOSTEMPTY Enables an interrupt if the fill level of the FIFO is less than the value of the
almostempty register.

4 IE_OVERFLOW Enables an interrupt if the FIFO overflows. The FIFO overflows when an Avalon write
master writes to a full FIFO.

5 IE_UNDERFLOW Enables an interrupt if the FIFO underflows. The FIFO underflows when an Avalon read
master reads from an empty FIFO.

6 ALL Enables all 6 status conditions to interrupt.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–12 Chapter 14: On-Chip FIFO Memory Core
Programming with the On-Chip FIFO Memory
Software Example
Example 14–1 shows sample codes for the core.

Example 14–1. Sample Code for the On-Chip FIFO Memory (Part 1 of 2)

/***/
//Includes
#include "altera_avalon_fifo_regs.h"
#include "altera_avalon_fifo_util.h"
#include "system.h"
#include "sys/alt_irq.h"
#include <stdio.h>
#include <stdlib.h>

#define ALMOST_EMPTY 2
#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5

volatile int input_fifo_wrclk_irq_event;

void print_status(alt_u32 control_base_address)
{

printf("--------------------------------------\n");
printf("LEVEL = %u\n", altera_avalon_fifo_read_level(control_base_address));
printf("STATUS = %u\n", altera_avalon_fifo_read_status(control_base_address,

ALTERA_AVALON_FIFO_STATUS_ALL));
printf("EVENT = %u\n", altera_avalon_fifo_read_event(control_base_address,

ALTERA_AVALON_FIFO_EVENT_ALL));
printf("IENABLE = %u\n", altera_avalon_fifo_read_ienable(control_base_address,

ALTERA_AVALON_FIFO_IENABLE_ALL));
printf("ALMOSTEMPTY = %u\n",

altera_avalon_fifo_read_almostempty(control_base_address));
printf("ALMOSTFULL = %u\n\n",

altera_avalon_fifo_read_almostfull(control_base_address));
}

static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)
{

/* Cast context to input_fifo_wrclk_irq_event's type. It is important
* to declare this volatile to avoid unwanted compiler optimization.
*/
volatile int* input_fifo_wrclk_irq_event_ptr = (volatile int*) context;

/* Store the value in the FIFO's irq history register in *context. */
*input_fifo_wrclk_irq_event_ptr =

altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE, ALTERA_AVALON_FIFO_EVENT_ALL);
printf("Interrupt Occurs for %#x\n", INPUT_FIFO_IN_CSR_BASE);
print_status(INPUT_FIFO_IN_CSR_BASE);

/* Reset the FIFO's IRQ History register. */
altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE,

ALTERA_AVALON_FIFO_EVENT_ALL);
}

/* Initialize the fifo */
static int init_input_fifo_wrclk_control()
{

int return_code = ALTERA_AVALON_FIFO_OK;

/* Recast the IRQ History pointer to match the alt_irq_register() function
* prototype. */
void* input_fifo_wrclk_irq_event_ptr = (void*) &input_fifo_wrclk_irq_event;
/* Enable all interrupts. */
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–13
On-Chip FIFO Memory API
On-Chip FIFO Memory API
This section describes the application programming interface (API) for the on-chip
FIFO memory core.

altera_avalon_fifo_init()

altera_avalon_fifo_read_status()

/* Clear event register, set enable all irq, set almostempty and
almostfull threshold */
return_code = altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,

0, // Disabled interrupts
ALMOST_EMPTY,
ALMOST_FULL);

/* Register the interrupt handler. */
alt_irq_register(INPUT_FIFO_IN_CSR_IRQ,

input_fifo_wrclk_irq_event_ptr, handle_input_fifo_wrclk_interrupts);
return return_code;

}

Example 14–1. Sample Code for the On-Chip FIFO Memory (Part 2 of 2)

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable,
alt_u32 emptymark, alt_u32 fullmark)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

ienable—the value to write to the interruptenable register

emptymark—the value for the almost empty threshold level

fullmark—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR for clear errors,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR for interrupt enable write errors,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR for errors writing the almostfull
and almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the almostfull
register and almostempty registers.

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—masks the read value from the status register

Returns: Returns the masked bits of the addressed register.

Description: Gets the addressed register bits—the AND of the value of the addressed register and the mask.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–14 Chapter 14: On-Chip FIFO Memory Core
On-Chip FIFO Memory API
altera_avalon_fifo_read_ienable()

altera_avalon_fifo_read_almostfull()

altera_avalon_fifo_read_almostempty()

altera_avalon_fifo_read_event()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—masks the read value from the interruptenable register

Returns: Returns the logical AND of the interruptenable register and the mask.

Description: Gets the logical AND of the interruptenable register and the mask.

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostfull register.

Description: Gets the value of the almostfull register.

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

Description: Gets the value of the almostempty register.

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—masks the read value from the event register

Returns: Returns the logical AND of the event register and the mask.

Description: Gets the logical AND of the event register and the mask. To read single bits of the event register
use the single bit masks, for example: ALTERA_AVALON_FIFO_FIFO_EVENT_F_MSK.
To read the entire event register use the full mask: ALTERA_AVALON_FIFO_EVENT_ALL.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 14: On-Chip FIFO Memory Core 14–15
On-Chip FIFO Memory API
altera_avalon_fifo_read_level()

altera_avalon_fifo_clear_event()

altera_avalon_fifo_write_ienable()

Prototype: int altera_avalon_fifo_read_level(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the fill level of the FIFO.

Description: Gets the fill level of the FIFO.

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—the mask to use for bit-clearing (1 means clear this bit, 0 means do not clear)

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR if unsuccessful.

Description: Clears the specified bits of the event register.

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—the value to write to the interruptenable register. See altera_avalon_fifo_regs.h for
individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR if unsuccessful.

Description: Writes the specified bits of the interruptenable register.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

14–16 Chapter 14: On-Chip FIFO Memory Core
On-Chip FIFO Memory API
altera_avalon_fifo_write_almostfull()

altera_avalon_fifo_write_almostempty()

altera_avalon_write_fifo()

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address, alt_u32
data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

data—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostfull register.

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address, alt_u23
data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

data—the value for the almost empty threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostempty register.

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt_u32
ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave

ctrl_address—the base address of the FIFO control slave

data—the value to write to address offset 0 for Avalon-MM to Avalon-ST transfers, the value to
write to the single address available for Avalon-MM to Avalon-MM transfers. See the
Avalon Interface Specifications for the data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if
unsuccessful.

Description: Writes data to the specified address if the FIFO is not full.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 14: On-Chip FIFO Memory Core 14–17
On-Chip FIFO Memory API
altera_avalon_write_other_info()

altera_avalon_fifo_read_fifo()

altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address, alt_u32
ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave

ctrl_address—the base address of the FIFO control slave

data—the packet status information to write to address offset 1 of the Avalon interface. See the
Avalon Interface Specifications for the ordering of the packet status information.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if
unsuccessful.

Description: Writes the packet status information to the write_address. Only valid when Enable packet
data is on.

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address, alt_u32
ctrl_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: Gets the data addressed by read_address.

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Returns the packet status information from address offset 1 of the Avalon interface. See the
Avalon Interface Specifications for the ordering of the packet status information.

Description: Reads the packet status information from the specified read_address. Only valid when Enable
packet data is on.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

14–18 Chapter 14: On-Chip FIFO Memory Core
Referenced Documents
Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 14–9 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 14–9. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

Added description to the core overview.

March 2009

v9.0.0

Updated the description of the function
altera_avalon_fifo_read_status().

—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

QII55015-9.1.0
15. Avalon-ST Multi-Channel Shared
Memory FIFO Core
Core Overview
The Avalon® Streaming (Avalon-ST) Multi-Channel Shared Memory FIFO core is a
FIFO buffer with Avalon-ST data interfaces. The core, which supports up to
16 channels, is a contiguous memory space with dedicated segments of memory
allocated for each channel. Data is delivered to the output interface in the same order
it was received on the input interface for a given channel.

Figure 15–1 shows an example of how the core is used in a system. In this example,
the core is used to buffer data going into and coming from a four-port Triple Speed
Ethernet MegaCore function. A processor, if used, can request data for a particular
channel to be delivered to the Triple Speed Ethernet MegaCore function.

The Avalon-ST Multi-Channel Shared FIFO core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Performance and Resource Utilization” on page 15–2

■ “Functional Description” on page 15–3

■ “Instantiating the Core in SOPC Builder” on page 15–5

■ “Device Support” on page 15–5

■ “Software Programming Model” on page 15–5

Figure 15–1. Multi-Channel Shared Memory FIFO in a System—An Example

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

Altera
FPGA

M
ux

/D
em

ux

Port 0

Port 1

Port 2

Port 3

Channel 0

Channel 1

Channel 2

Channel 3

Processor/
Scheduler

Multi-port
Triple Speed Ethernet

Multi-Channel
Shared Memory FIFO

To
Network
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

15–2 Chapter 15: Avalon-ST Multi-Channel Shared Memory FIFO Core
Performance and Resource Utilization
Performance and Resource Utilization
This section lists the resource utilization and performance data for various Altera
device families. The estimates are obtained by compiling the core using the
Quartus® II software.

Table 15–1 shows the resource utilization and performance data for a Stratix II GX
device (EP2SGX130GF1508I4).

Table 15–2 shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore function in Stratix IV devices
is similar to Stratix III devices.

Table 15–3 shows the resource utilization and performance data for a Cyclone III
device (EP3C120F780I7).

Table 15–1. Memory Utilization and Performance Data for Stratix II GX Devices

Channels ALUTs
Logic

Registers

Memory Blocks
fMAX

(MHz)M512 M4K M-RAM

4 559 382 0 0 1 > 125

12 1617 1028 0 0 6 > 125

Table 15–2. Memory Utilization and Performance Data for Stratix III Devices

Channels ALUTs
Logic

Registers

Memory Blocks
fMAX

(MHz)M9K M144K MLAB

4 557 345 37 0 0 > 125

12 1741 1028 0 24 0 > 125

Table 15–3. Memory Utilization and Performance Data for Cyclone III Devices

Channels
Total Logic
Elements Total Registers

Memory
M9K

fMAX

(MHz)

4 711 346 37 > 125

12 2284 1029 412 > 125
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 15: Avalon-ST Multi-Channel Shared Memory FIFO Core 15–3
Functional Description
Functional Description
Figure 15–2 shows a block diagram of the Avalon-ST Multi-Channel Shared FIFO
core.

Interfaces
This section describes the core's interfaces.

Avalon-ST Interfaces
The core includes Avalon-ST interfaces for transferring data and almost-full status.

Table 15–4 shows the properties of the Avalon-ST data interfaces.

Figure 15–2. Avalon-ST Multi-Channel Shared Memory FIFO Core

Avalon-ST
Almost-Empty

Status Interface

Avalon-ST
Almost-Full

Status Interface

Multi-Channel Shared FIFO

Almost-Empty Status Almost-Full Status

data_outdata_in

Avalon-MM
Control
Interface

Avalon-MM
Status

Interface

Avalon-MM
Request
Interface

Avalon-ST
Data Sink
Interface

Avalon-ST
Data Sink
Interface

Table 15–4. Properties of Avalon-ST Interfaces

Feature

Property

Data Interfaces Status Interfaces

Backpressure Ready latency = 0. Not supported.

Data Width Configurable. Data width = 2 bits.

Symbols per beat = 1.

Channel Supported, up to 16 channels. Supported, up to 16 channels.

Error Configurable. Not used.

Packet Supported. Not supported.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

15–4 Chapter 15: Avalon-ST Multi-Channel Shared Memory FIFO Core
Functional Description
Avalon-MM Interfaces
The core can have up to three Avalon-MM interfaces:

■ Avalon-MM control interface—Allows master peripherals to set and access
almost-full and almost-empty thresholds. The same set of thresholds is used by all
channels.

■ Avalon-MM status interface—Provides the FIFO fill level for a given channel. The
FIFO fill level represents the amount of data in the FIFO at any given time. The fill
level is available on the readdata bus one clock cycle after the read request is
received.

■ Avalon-MM request interface—Allows master peripherals to request data for a
given channel. This interface is implemented only when the parameter Use
Request is set to 1. The request_address signal contains the channel number.
Only one FIFO entry is returned for each request.

f For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

Operation
The Avalon-ST Multi-Channel Shared FIFO core allocates dedicated memory
segments within the FIFO for each channel, and is implemented such that the
memory segments occupy a single memory block. The depth of each memory
segment is determined by the parameter FIFO depth. If the core is configured to
support more than one channel, the Avalon-MM request interface must be
implemented to allow master peripherals to request data for a specific channel.
Otherwise, only channel 0 is accessible.

When a request is received on the core’s Avalon-MM request interface, the requested
data is available on the Avalon-ST data source interface after three clock cycles. Only
one word of data can be requested at a time. The core delivers the data to the
Avalon-ST data source interface after a full packet is received.

The core does not implement any mechanism to accept incoming requests while
processing. Once the core starts processing a request, incoming requests are dropped
until the current one completes and data is transferred to the requesting component.
Packets received on the Avalon-ST sink interface are dropped if the error signal is
asserted.

You can configure almost-full thresholds to manage FIFO overflow. The current
threshold status for each channel is available from the core’s Avalon-ST status
interfaces in a round-robin fashion. For example, if the threshold status for channel 0
is available on the interface in clock cycle n, the threshold status for channel 1 is
available in clock cycle n+1 and so forth.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 15: Avalon-ST Multi-Channel Shared Memory FIFO Core 15–5
Instantiating the Core in SOPC Builder
Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Multi-Channel Shared FIFO core in
SOPC Builder to add the core to a system.

Table 15–5 lists and describes the parameters you can configure.

Device Support
The Avalon-ST Multi-Channel Shared FIFO core supports all Altera device families.

Software Programming Model
The following sections describe the software programming model for the Avalon-ST
Multi-Channel Shared FIFO core.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the Avalon-ST
Multi-Channel Shared FIFO core via the familiar HAL API and the ANSI C standard
library.

Table 15–5. Configurable Parameters

Parameter Legal Values Description

Number of channels 1, 2, 4, 8, and 16 The total number of channels supported on the Avalon-ST data interfaces.

Symbols per beat 1–32 The number of symbols transferred in a beat on the Avalon-ST data interfaces

Bits per symbol 1–32 The symbol width in bits on the Avalon-ST data interfaces.

Error width 0–32 The width of the error signal on the Avalon-ST data interfaces.

FIFO depth 2–232 The depth of each memory segment allocated for a channel. The value must
be a multiple of 2.

Use request 0 or 1 Setting this parameter to 1 implements the Avalon-MM request interface. If
the request interface is disabled, only channel 0 can be used.

Address width 1–32 The width of the FIFO address. This parameter is determined by the
parameter FIFO depth; FIFO depth = 2 Address Width.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

15–6 Chapter 15: Avalon-ST Multi-Channel Shared Memory FIFO Core
Referenced Documents
Register Map
You can update and access the FIFO thresholds via the Avalon-MM control interface.
Table 15–6 shows the register map for the control interface.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 15–7 shows the revision history for this chapter.

Table 15–6. Control Interface Register Map

Offset Name Access Description

Base + 0 Almost_Full_Threshold RW The value of the primary almost-full threshold. The bit
Almost_full_data[0] on the Avalon-ST almost-full
status interface is set to 1 when the FIFO level is greater than or
equal to this threshold.

Base + 8 Almost_Full2_Threshold RW The value of the secondary almost-full threshold. The bit
Almost_full_data[1] on the Avalon-ST almost-full
status interface is set to 1 when the FIFO level is greater than or
equal to this threshold.

Table 15–7. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

© November 2009 Altera Corporation
Section III. Transport and Communication
This section describes communication and transport peripherals provided for SOPC
Builder systems.

This section includes the following chapters:

■ Chapter 16, SPI Slave/JTAG to Avalon Master Bridge Cores

■ Chapter 17, Avalon Streaming Channel Multiplexer and Demultiplexer Cores

■ Chapter 18, Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

■ Chapter 19, Avalon Packets to Transactions Converter Core

■ Chapter 20, Avalon-ST Round Robin Scheduler Core

■ Chapter 21, Avalon-ST Delay Core

■ Chapter 22, Avalon-ST Splitter Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

III–2 Section III: Transport and Communication
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55011-9.1.0
16. SPI Slave/JTAG to Avalon Master
Bridge Cores
Core Overview
The SPI Slave to Avalon® Master Bridge and the JTAG to Avalon Master Bridge cores
provide a connection between host systems and SOPC Builder systems via the
respective physical interfaces. Host systems can initiate Avalon Memory-Mapped
(Avalon-MM) transactions by sending encoded streams of bytes via the cores’
physical interfaces. The cores support reads and writes, but not burst transactions.

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge are
SOPC Builder-ready and integrates easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 16–3

■ “Device Support” on page 16–3

Functional Description
Figure 16–1 shows a block diagram of the SPI Slave to Avalon Master Bridge core and
its location in a typical system configuration.

Figure 16–1. SOPC Builder System with a SPI Slave to Avalon Master Bridge Core

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

SPI
Master

(Example:
Power PC
Processor)

Altera FPGA

SPI to Transaction Bridge

sr
c

sink

Avalon-ST
Bytes to
Packets

Converter

src
sink

Avalon-ST
Packets to

Transactions
Converter

Av
al

on
-M

M
 M

as
te

r

sr
c Avalon-ST

Source si
nk Avalon-ST

Sink

src

si
nk

Avalon-ST
Packets to

Bytes
Converter

Avalon-ST
SPI Core

SPI

sr
c

si
nk

SPI
ClockClock

System
Clock
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

16–2 Chapter 16: SPI Slave/JTAG to Avalon Master Bridge Cores
Functional Description
Figure 16–2 shows a block diagram of the JTAG to Avalon Master Bridge core and its
location in a typical system configuration.

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge cores
accept encoded streams of bytes with transaction data on their respective physical
interfaces and initiate Avalon-MM transactions on their Avalon-MM interfaces. Each
bridge consists of the following cores, which are available as stand-alone components
in SOPC Builder:

■ Avalon-ST Serial Peripheral Interface and Avalon-ST JTAG Interface—Accepts
incoming data in bits and packs them into bytes.

■ Avalon-ST Bytes to Packets Converter—Transforms packets into encoded stream
of bytes, and a likewise encoded stream of bytes into packets.

■ Avalon-ST Packets to Transactions Converter—Transforms packets with data
encoded according to a specific protocol into Avalon-MM transactions, and
encodes the responses into packets using the same protocol.

■ Avalon-ST Single Clock FIFO—Buffers data from the Avalon-ST JTAG Interface
core. The FIFO is only used in the JTAG to Avalon Master Bridge.

For the bridges to successfully transform the incoming streams of bytes to
Avalon-MM transactions, the streams of bytes must be constructed according to the
protocols used by the cores.

f For more information about the protocol at each layer of the bridges and the single
clock FIFO, refer to the following chapters:

■ Avalon-ST Serial Peripheral Interface Core chapter in volume 5 of the Quartus II
Handbook

■ Avalon-ST JTAG Interface Core chapter in volume 5 of the Quartus II Handbook

■ Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores chapter in volume 5
of the Quartus II Handbook

Figure 16–2. SOPC Builder System with a JTAG to Avalon Master Bridge Core

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

Host
PC

Altera FPGA

JTAG to Transaction Bridge

sr
c

sink

Avalon-ST
Bytes to
Packets

Converter

src
sink

Avalon-ST
Packets to

Transactions
Converter Av

al
on

-M
M

sr
c Avalon-ST

Source si
nk

Avalon-ST
Sink

sr
c

sink

Avalon-ST
Single Clock

FIFO
(64 bytes)

src

si
nk

Avalon-ST
Packets to

Bytes
Converter

Avalon-ST
JTAG

Interface
Core

JTAG

sr
c

si
nk

JTAG
Clock
JTAG
Clock

System
Clock
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/qts_qii55009.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55008.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf

Chapter 16: SPI Slave/JTAG to Avalon Master Bridge Cores 16–3
Instantiating the Core in SOPC Builder
■ Avalon Packets to Transactions Converter Core chapter in volume 5 of the Quartus II
Handbook

■ Avalon-ST Single Clock and Dual Clock FIFO Cores chapter in volume 5 of the
Quartus II Handbook

The following example shows how a bytestream changes as it is transferred through
the different layers in the bridges.

When the transaction is complete, the bridges send a response to the host system
using the same protocol.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the SPI Slave to Avalon Master Bridge and the
JTAG to Avalon Master Bridge in SOPC Builder to add the cores to a system. There are
no user-configurable settings for the JTAG to Avalon Master Bridge core.

For the SPI Slave to Avalon Master Bridge core, the parameter Number of
synchronizer stages: Depth allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Device Support
The SPI Slave to Avalon Master bridge supports all Altera® device families.

Figure 16–3. Bits to Avalon-MM Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 6A FF 03 5F7B4A 4A 4A 4D

00 00 00 04 02 4B 7A 40 4A FF 03 5F

Command Address Data

Writes four bytes of data (4A, FF, 03 and
5F) to address 0x024B7A40

Packet Layer
Input: Bytes
Output: Avalon-ST
 Packets

Transaction Layer
Input: Avalon-ST
 Packets
Output: Avalon-MM
 Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 4A FF 03 5F7B

LSB MSB

Idle Idle Idle Escape

Dropped

Escape is dropped.
Next byte is XORed
with 0x20.

Physical Layer
Input: Bits
Output: Bytes

SOP Ch 0 Escape

Escape is dropped.
Next byte is XORed
with 0x20.

EOP

Bytes carried over
the physical interface
after idles and escapes
have been inserted.

The packet encoded
as bytes.

The transaction
encapsulated as a
packet.

The Avalon-MM
transaction.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55014.pdf
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

16–4 Chapter 16: SPI Slave/JTAG to Avalon Master Bridge Cores
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Avalon-ST Serial Peripheral Interface Core chapter in volume 5 of the Quartus II
Handbook

■ Avalon-ST JTAG Interface Core chapter in volume 5 of the Quartus II Handbook

■ Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores chapter in volume 5
of the Quartus II Handbook

■ Avalon Packets to Transactions Converter Core chapter in volume 5 of the Quartus II
Handbook

■ Avalon-ST Single Clock and Dual Clock FIFO Cores chapter in volume 5 of the
Quartus II Handbook

■ AN 42: Metastability in Altera Devices

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 16–1 shows the revision history for this chapter.

Table 16–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

Added description of a new parameter Number of
synchronizer stages: Depth.

—

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/qts_qii55014.pdf
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55009.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55008.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf

© November 2009 Altera Corporation

QII55004-9.1.0
17. Avalon Streaming Channel
Multiplexer and Demultiplexer Cores
Core Overview
The Avalon® streaming (Avalon-ST) channel multiplexer core receives data from a
number of input interfaces and multiplexes the data into a single output interface,
using the optional channel signal to indicate which input the output data is from.
The Avalon-ST channel demultiplexer core receives data from a channelized input
interface and drives that data to multiple output interfaces, where the output interface
is selected by the input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces on cores that
support the unidirectional flow of data. The multiplexer and demultiplexer allow you
to create multiplexed or de-multiplexer datapaths without having to write custom
HDL code to perform these functions. The multiplexer includes a round-robin
scheduler. Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Multiplexer” on page 17–2

■ “Demultiplexer” on page 17–4

■ “Device Support” on page 17–6

■ “Hardware Simulation Considerations” on page 17–6

■ “Software Programming Model” on page 17–6

Resource Usage and Performance
Resource utilization for the cores depends upon the number of input and output
interfaces, the width of the datapath and whether the streaming data uses the optional
packet protocol. For the multiplexer, the parameterization of the scheduler also effects
resource utilization. Table 17–1 provides estimated resource utilization for eleven
different configurations of the multiplexer.

Table 17–1. Multiplexer Estimated Resource Usage and Performance (Part 1 of 2)

No. of
Inputs Data Width

Scheduling
Size

(Cycles)

Stratix® II and
Stratix II GX

(Approximate LEs) Cyclone® II Stratix

fMAX

(MHz)
ALM

Count
fMAX

(MHz) Logic Cells
fMAX

(MHz) Logic Cells

2 Y 1 500 31 420 63 422 80

2 Y 2 500 36 417 60 422 58

2 Y 32 451 43 364 68 360 49

8 Y 2 401 150 257 233 228 298

8 Y 32 356 151 219 207 211 123

16 Y 2 262 333 174 533 170 284

16 Y 32 310 337 161 471 157 277

2 N 1 500 23 400 48 422 52
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

17–2 Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Multiplexer
Table 17–2 provides estimated resource utilization for six different configurations of
the demultiplexer. The core operating frequency varies with the device, the number of
interfaces and the size of the datapath.

Multiplexer
This section describes the hardware structure and functionality of the multiplexer
component.

Functional Description
The Avalon-ST multiplexer takes data from a number of input data interfaces, and
multiplexes the data onto a single output interface. The multiplexer includes a simple,
round-robin scheduler that selects from the next input interface that has data. Each
input interface has the same width as the output interface, so that all other input
interfaces are backpressured when the multiplexer is carrying data from a different
input interface.

The multiplexer includes an optional channel signal that enables each input
interface to carry channelized data. When the channel signal is present on input
interfaces, the multiplexer adds log2 (num_input_interfaces) bits to make the output
channel signal, such that the output channel signal has all of the bits of the input
channel plus the bits required to indicate which input interface each cycle of data is
from. These bits are appended to either the most or least significant bits of the output
channel signal as specified in the SOPC Builder MegaWizard™ interface.

2 N 9 500 30 420 52 422 56

11 N 9 292 275 197 397 182 287

16 N 9 262 295 182 441 179 224

Table 17–1. Multiplexer Estimated Resource Usage and Performance (Part 2 of 2)

No. of
Inputs Data Width

Scheduling
Size

(Cycles)

Stratix® II and
Stratix II GX

(Approximate LEs) Cyclone® II Stratix

fMAX

(MHz)
ALM

Count
fMAX

(MHz) Logic Cells
fMAX

(MHz) Logic Cells

Table 17–2. Demultiplexer Estimated Resource Usage

No. of Inputs

Data Width
(Symbols per

Beat)

Stratix II
(Approximate LEs) Cyclone II

Stratix II GX
(Approximate LEs)

fMAX

(MHz) ALM Count
fMAX

(MHz) Logic Cells
 fMAX

(MHz) Logic Cells

2 1 500 53 400 61 399 44

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 17–3
Multiplexer
The internal scheduler considers one input interface at a time, selecting it for transfer.
Once an input interface has been selected, data from that input interface is sent until
one of the following scenarios occurs:

■ The specified number of cycles have elapsed.

■ The input interface has no more data to send and valid is deasserted on a ready
cycle.

■ When packets are supported, endofpacket is asserted.

Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

Output Interface
The output interface carries the multiplexed data stream with data from all of the
inputs. The symbol, data, and error widths are the same as the input interfaces. The
width of the channel signal is the same as the input interfaces, with the addition of
the bits needed to indicate the input each datum was from.

Instantiating the Multiplexer in SOPC Builder
Use the MegaWizard interface for the multiplexer core in SOPC Builder to specify the
core configuration. The following sections list the available options in the
MegaWizard interface.

Functional Parameters
You can configure the following options for the multiplexer:

■ Number of Input Ports—The number of input interfaces that the multiplexer
supports. Valid values are 2–16.

■ Scheduling Size (Cycles)—The number of cycles that are sent from a single
channel before changing to the next channel.

Figure 17–1. Multiplexer

src
sink

data_in_n

sink

data_in0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

17–4 Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Demultiplexer
■ Use Packet Scheduling—When this option is on, the multiplexer only switches
the selected input interface on packet boundaries. Hence, packets on the output
interface are not interleaved.

■ Use high bits to indicate source port—When this option is on, the high bits of the
output channel signal are used to indicate the input interface that the data came
from. For example, if the input interfaces have 4-bit channel signals, and the
multiplexer has 4 input interfaces, the output interface has a 6-bit channel signal. If
this parameter is true, bits [5:4] of the output channel signal indicate the input
interface the data is from, and bits [3:0] are the channel bits that were presented at
the input interface.

Output Interface
You can configure the following options for the output interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1–32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat (transfer). Valid values are 1–32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the channel signal for
input interfaces. A value of 0 indicates that input interfaces do not have channels.
A value of 4 indicates that up to 16 channels share the same input interface. The
input channel can have a width between 0–31 bits. A value of 0 means that the
optional channel signal is not used.

■ Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not used.

Demultiplexer
This section describes the hardware structure and functionality of the demultiplexer
component.

Functional Description
That Avalon-ST demultiplexer takes data from a channelized input data interface and
provides that data to multiple output interfaces, where the output interface selected
for a particular transfer is specified by the input channel signal. The data is
delivered to the output interfaces in the same order it was received at the input
interface, regardless of the value of channel, packet, frame, or any other signal.
Each of the output interfaces has the same width as the input interface, so each output
interface is idle when the demultiplexer is driving data to a different output interface.
The demultiplexer uses log2 (num_output_interfaces) bits of the channel signal to
select the output to which to forward the data; the remainder of the channel bits are
forwarded to the appropriate output interface unchanged.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 17–5
Demultiplexer
Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets.

Output Interfaces
Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that were used to select the output interface.

Instantiating the Demultiplexer in SOPC Builder
Use the MegaWizard Interface for the demultiplexer core in SOPC Builder to specify
the core configuration. The following sections list the available options in the
MegaWizard Interface.

Functional Parameters
You can configure the following options for the demultiplexer as a whole:

■ Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2–16.

■ High channel bits select output—When this option is on, the high bits of the
input channel signal are used by the de-multiplexing function and the low order
bits are passed to the output. When this option is off, the low order bits are used
and the high order bits are passed through.

The following example illustrates the significance of the location of these signals.
In Figure 17–3 there is one input interface and two output interfaces. If the
low-order bits of the channel signal select the output interfaces, the even channels
goes to channel 0 and the odd channels goes to channel 1. If the high-order bits of
the channel signal select the output interface, channels 0–7 goes to channel 0 and
channels 8–15 goes to channel 1.

Figure 17–2. Demultiplexer

sink
data_out_n

data_out0

sinksinkdata_in

src

src

. .
 . . .
 .

channel
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

17–6 Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Device Support
Input Interface
You can configure the following options for the input interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat (transfer). Valid values are 1 to 32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the optional
channel signal.

■ Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not unused.

Device Support
The Avalon Streaming Channel Multiplexer and Demultiplexer cores support all
Altera device families.

Hardware Simulation Considerations
The multiplexer and demultiplexer components do not provide a simulation
testbench for simulating a stand-alone instance of the component. However, you can
use the standard SOPC Builder simulation flow to simulate the component design
files inside an SOPC Builder system.

Software Programming Model
The multiplexer and demultiplexer components do not have any user-visible control
or status registers. Therefore, software cannot control or configure any aspect of the
multiplexer or de-multiplexer at run-time. The components cannot generate
interrupts.

Figure 17–3. Select Bits for Demultiplexer

sink

data_out_n

data_out0

sink
sink

data_in
src

src

channel<4..0>

channel<3..0>

channel<3..0>
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 17–7
Document Revision History
Document Revision History
Table 17–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 17–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Added parameter Include
Packet Support.

—

May 2008

v8.0.0

No change from previous release. —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

17–8 Chapter 17: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55012-9.1.0
18. Avalon-ST Bytes to Packets and
Packets to Bytes Converter Cores
Core Overview
The Avalon® Streaming (Avalon-ST) Bytes to Packets and Packets to Bytes Converter
cores allow an arbitrary stream of packets to be carried over a byte interface, by
encoding packet-related control signals such as startofpacket and endofpacket
into byte sequences.The Avalon-ST Packets to Bytes Converter core encodes packet
control and payload as a stream of bytes. The Avalon-ST Bytes to Packets Converter
core accepts an encoded stream of bytes, and converts it into a stream of packets.

f The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are
examples of how the cores are used. For more information about the bridge, refer to
the SPI Slave/JTAG to Avalon Master Bridge Cores chapter in volume 5 of the Quartus II
Handbook.

Both of these cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 18–3

■ “Device Support” on page 18–4

Functional Description
Figure 18–1 and Figure 18–2 show block diagrams of the Avalon-ST Bytes to Packets
and Packets to Bytes Converter cores.

Figure 18–1. Avalon-ST Bytes to Packets Converter Core

Av
al

on
-S

T

 S
in

k

Avalon-ST
Bytes to Packets

Converter

data_in
(bytes)

Avalon-ST
Source

data_out
(packet)
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf

18–2 Chapter 18: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Functional Description
Interfaces
Table 18–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Operation—Avalon-ST Bytes to Packets Converter Core
The Avalon-ST Bytes to Packets Converter core receives streams of bytes and
transforms them into packets. When parsing incoming bytestreams, the core decodes
special characters in the following manner, with higher priority operations listed first:

■ Escape (0x7d)—The core drops the byte. The next byte is XORed with 0x20.

■ Start of packet (0x7a)—The core drops the byte and marks the next payload byte
as the start of a packet by asserting the startofpacket signal on the Avalon-ST
source interface.

■ End of packet (0x7b)—The core drops the byte and marks the following byte as
the end of a packet by asserting the endofpacket signal on the Avalon-ST source
interface. For single beat packets, both the startofpacket and endofpacket
signals are asserted in the same clock cycle.

■ Channel number indicator (0x7c)—The core drops the byte and takes the next
non-special character as the channel number.

Figure 18–2. Avalon-ST Packets to Bytes Converter Core

Av
al

on
-S

T
So

ur
ce Avalon-ST

Packets to Bytes
Converter

data_in
(packet)

Avalon-ST
Sink

data_out
(bytes)

Table 18–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Supported, up to 255 channels.

Error Not used.

Packet Supported only on the Avalon-ST Bytes to Packet Converter core’s source
interface and the Avalon-ST Packet to Bytes Converter core’s sink interface.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 18: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores 18–3
Instantiating the Core in SOPC Builder
Figure 18–3 shows examples of bytestreams.

Operation—Avalon-ST Packets to Bytes Converter Core
The Avalon-ST Packets to Bytes Converter core receives packetized data and
transforms the packets to bytestreams. The core constructs outgoing bytestreams by
inserting appropriate special characters in the following manner and sequence:

■ If the startofpacket signal on the core's source interface is asserted, the core
inserts the following special characters:

■ Channel number indicator (0x7c).

■ Channel number, escaping it if required.

■ Start of packet (0x7a).

■ If the endofpacket signal on the core's source interface is asserted, the core
inserts an end of packet (0x7b) before the last byte of data.

■ If the channel signal on the core’s source interface changes to a new value within
a packet, the core inserts a channel number indicator (0x7c) followed by the new
channel number.

■ If a data byte is a special character, the core inserts an escape (0x7d) followed by
the data XORed with 0x20.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Bytes to Packets and Packets to
Bytes Converter cores in SOPC Builder to add the core to a system. There are no
user-configurable parameters for this core.

Figure 18–3. Examples of Bytestreams

0x7c 0x01 0x7a 0x7d 0x5a 0x01 0xff 0x7b 0x3a...

Channel 1 SOP Data = 0x7a Data bytes EOP Last
Data
byte

Single-channel packet for Channel 1:

0x7c 0x02 0x7a 0x7b 0x3a

Channel 2 SOP EOP Data
byte

Single-beat packet:

0x7c 0x00 0x7a 0x10 0x11 0x30 0x31 0x7b 0x14

Channel 0 SOP
(Ch 0)

Data
(Ch 0)

EOP
(Ch 0)

Data
(Ch 0)

Interleaved channels in a packet:

0x7c 0x01 0x7c 0x00 0x12 0x13

Channel 1 Data
(Ch 1)

Channel 0 Data
(Ch 0)
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

18–4 Chapter 18: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Device Support
Device Support
The Avalon-ST Bytes to Packets and Packets to Bytes Converter cores support all
Altera device families.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 18–2 shows the revision history for this chapter.

Table 18–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

© November 2009 Altera Corporation

QII55013-9.1.0
19. Avalon Packets to Transactions
Converter Core
Core Overview
The Avalon® Packets to Transactions Converter core receives streaming data from
upstream components and initiates Avalon Memory-Mapped (Avalon-MM)
transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

f The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are
examples of how this core is used. For more information on the bridge, refer to the
SPI Slave/JTAG to Avalon Master Bridge Cores chapter in volume 5 of the Quartus II
Handbook.

The Avalon Packets to Transactions Converter core is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 19–4

■ “Device Support” on page 19–4

Functional Description
Figure 19–1 shows a block diagram of the Avalon Packets to Transactions Converter
core.

Figure 19–1. Avalon Packets to Transactions Converter Core

Av
al

on
-S

T
Si

nk

Avalon
Packets to

Transactions
Converter

data_out

Av
al

on
-M

M
 M

as
te

rdata_in

Av
al

on
-S

T
So

ur
ce

Avalon-MM
Slave

Component
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf

19–2 Chapter 19: Avalon Packets to Transactions Converter Core
Functional Description
Interfaces
Table 19–1 shows the properties of the Avalon-ST interfaces.

The Avalon-MM master interface supports read and write transactions. The data
width is set to 32 bits and burst transactions are not supported.

For more information about Avalon-ST interfaces, refer to Avalon Interface
Specifications.

Operation
The Avalon Packets to Transactions Converter core receives streams of packets on its
Avalon-ST sink interface and initiates Avalon-MM transactions. Upon receiving
transaction responses from Avalon-MM slaves, the core transforms the responses to
packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packet Formats
The core expects incoming data streams to be in the format shown in Table 19–2. A
response packet is returned for every write transaction. The core also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the core simply returns the data
read.

Table 19–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.

Table 19–2. Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction. See Table 19–1.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size indicates the size of
the data field. For read transactions, the size indicates the total number of
bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[4:2] Size Total number of bytes read/written successfully.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 19: Avalon Packets to Transactions Converter Core 19–3
Functional Description
Supported Transactions
Table 19–3 lists the Avalon-MM transactions supported by the core.

The core can handle only a single transaction at a time. The ready signal on the core's
Avalon-ST sink interface is asserted only when the current transaction is completely
processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST
sink interface. In the opposite direction, if the Avalon-ST source interface is
backpressured, the read signal on the Avalon-MM interface is not asserted until the
backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a
read could result in data loss. In such cases, the core returns the data that is
successfully received.

A transaction is considered complete when the core receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
field. Whether or not both values agree, the core always uses the EOP to determine the
end of data.

Malformed Packets
The following are examples of malformed packets:

■ Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction.
If an SOP is received in the middle of a transaction, the core drops the current
transaction without returning a response packet for the transaction, and initiates a
new transaction. This effectively handles packets without an end of packet(EOP).

■ Unsupported transaction codes—The core treats unsupported transactions as a no
transaction.

Table 19–3. Transaction Supported

Transaction
Code Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the given address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the given address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the given address until the total number of
bytes read from the same address equals to the value specified in the
size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size field starting from the
given address.

0x7f No transaction. No transaction is initiated. You can use this transaction type for testing
purposes. Although no transaction is initiated on the Avalon-MM
interface, the core still returns a response packet for this transaction
code.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

19–4 Chapter 19: Avalon Packets to Transactions Converter Core
Instantiating the Core in SOPC Builder
Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon Packets to Transactions Converter core
in SOPC Builder to add the core to a system. There are no user-configurable settings
for this core.

Device Support
The Avalon Packets to Transactions Converter core supports all Altera device families.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 19–4 shows the revision history for this chapter.

Table 19–4. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

© November 2009 Altera Corporation

QII55016-9.1.0
20. Avalon-ST Round Robin Scheduler
Core
Core Overview
Avalon® Streaming (Avalon-ST) components in SOPC Builder provide a channel
interface to stream data from multiple channels into a single component. In a
multi-channel Avalon-ST component that stores data, the component can store data
either in the sequence that it comes in (FIFO) or in segments according to the channel.
When data is stored in segments according to channels, a scheduler is needed to
schedule the read operations from that particular component. The most basic of the
schedulers is the Avalon-ST Round Robin Scheduler core.

The Avalon-ST Round Robin Scheduler core is SOPC Builder-ready and can integrate
easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Performance and Resource Utilization”

■ “Functional Description” on page 20–2

■ “Instantiating the Core in SOPC Builder” on page 20–4

■ “Device Support” on page 20–4

Performance and Resource Utilization
This section lists the resource utilization and performance data for various Altera®
device families. The estimates are obtained by compiling the core using the
Quartus® II software.

Table 20–1 shows the resource utilization and performance data for a Stratix® II GX
device (EP2SGX130GF1508I4).

Table 20–2 shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore® function in Stratix IV devices
is similar to Stratix III devices.

Table 20–1. Resource Utilization and Performance Data for Stratix II GX Devices

Number of
Channels ALUTs Logic Registers

Memory
M512/M4K/

M-RAM
fMAX

(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 62 30 0/0/0 > 125
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

20–2 Chapter 20: Avalon-ST Round Robin Scheduler Core
Functional Description
Table 20–3 shows the resource utilization and performance data for a Cyclone® III
device (EP3C120F780I7).

Functional Description
The Avalon-ST Round Robin Scheduler core controls the read operations from a
multi-channel Avalon-ST component that buffers data by channels. It reads the
almost-full threshold values from the multiple channels in the multi-channel
component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Figure 20–1 shows the block diagram of the Avalon-ST Round Robin Scheduler.

Interfaces
The following interfaces are available in the Avalon-ST Round Robin Scheduler core:

■ Almost-Full Status Interface

■ Request Interface

Almost-Full Status Interface
The Almost-Full Status interface is an Avalon-ST sink interface. Table 20–4 describes
the almost-full interface.

Table 20–2. Resource Utilization and Performance Data for Stratix III Devices

Number of
Channels ALUTs Logic Registers

Memory
M9K/M144K/

MLAB
fMAX

(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 67 30 0/0/0 > 125

Table 20–3. Resource Utilization and Performance Data for Cyclone III Devices

Number of
Channels

Total Logic
Elements Total Registers Memory M9K

fMAX

(MHz)

4 12 7 0 > 125

12 32 17 0 > 125

24 71 30 0 > 125

Figure 20–1. Avalon-ST Round Robin Scheduler Block Diagram

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin

Scheduler

A
va

lo
n-

M
M

W

rit
e

M
as

te
r

A
valon-S

T
 S

ink
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 20: Avalon-ST Round Robin Scheduler Core 20–3
Functional Description
The interface collects the almost-full status from the sink components for all the
channels in the sequence provided.

Request Interface
The Request Interface is an Avalon Memory-Mapped (MM) Write Master interface.
This interface requests data from a specific channel. The Avalon-ST Round Robin
Scheduler core cycles through all of the channels it supports and schedules data to be
read.

Operations
If a particular channel is almost full, the Avalon-ST Round Robin Scheduler will not
schedule data to be read from that channel in the source component.

The Avalon-ST Round Robin Scheduler only requests 1 beat of data from a channel at
each transaction. To request 1 beat of data from channel n, the scheduler writes the
value 1 to address (4 ×n). For example, if the scheduler is requesting data from
channel 3, the scheduler writes 1 to address 0xC.

At every clock cycle, the Avalon-ST Round Robin Scheduler requests data from the
next channel. Therefore, if the Avalon-ST Round Robin Scheduler starts requesting
from channel 1, at the next clock cycle, it requests from channel 2. The Avalon-ST
Round Robin Scheduler does not request data from a particular channel if the
almost-full status for the channel is asserted. In this case, one clock cycle is used
without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when
it cannot accept new requests.

Table 20–5 shows the list of ports for the Avalon-ST Round Robin Scheduler core:

Table 20–4. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

Table 20–5. Ports for the Avalon-ST Round Robin Scheduler (Part 1 of 2)

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address used to signal the channel the request is for.

request_write Out Write enable signal.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

20–4 Chapter 20: Avalon-ST Round Robin Scheduler Core
Instantiating the Core in SOPC Builder
Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Round Robin Scheduler core in
SOPC Builder to specify the core’s configuration. Table 20–6 describes the parameters
that can be configured for the Avalon-ST Round Robin Scheduler component.

Device Support
The Avalon-ST Round Robin Scheduler core supports supports all Altera device
families.

Document Revision History
Table 20–7 shows the revision history for this chapter.

request_writedata Out The amount of data requested from the particular channel.

This value is always fixed at 1.

request_waitrequest In Wait request signal, used to pause the scheduler when the
slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the channel
indicated by almost_full_channel is almost full.

Table 20–5. Ports for the Avalon-ST Round Robin Scheduler (Part 2 of 2)

Signal Direction Description

Table 20–6. Parameters for Avalon-ST Round Robin Scheduler Component

Parameters Values Description

Number of channels 2–32 Specifies the number of channels the Avalon-ST Round Robin Scheduler
supports.

Use almost-full status 0–1 Specifies whether the almost-full interface is used. If the interface is not used, the
core always requests data from the next channel at the next clock cycle.

Table 20–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 20: Avalon-ST Round Robin Scheduler Core 20–5
Document Revision History
November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —

Table 20–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

20–6 Chapter 20: Avalon-ST Round Robin Scheduler Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© February 2010 Altera Corporation

QII55020-9.1.1
21. Avalon-ST Delay Core
Core Overview
The Avalon® Streaming (Avalon-ST) Delay core provides a solution to delay Avalon-
ST transactions by a constant number of clock cycles. This core supports up to 16 clock
cycle delays.

The Avalon-ST Delay core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 21–2

■ “Device Support” on page 21–3

Functional Description
Figure 21–1 shows a block diagram of the Avalon-ST Delay core.

The Avalon-ST Delay core adds a delay between the input and output interfaces. The
core accepts all transactions presented on the input interface and reproduces them on
the output interface N cycles later without changing the transaction.

The input interface delays the input signals by a constant (N) number of clock cycles
to the corresponding output signals of the Avalon-ST output interface. The Number
Of Delay Clocks parameter defines the constant (N) number, which must be between
0 and 16. The change of the In_Valid signal is reflected on the Out_Valid signal
exactly N cycles later.

Reset
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal.
When the core asserts the reset signal, the output signals are held at 0. After the
reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.

Figure 21–1. Avalon-ST Delay Core

Out_Data
In_Data

Clock

A
va

lo
n-

S
T

S
in

k

A
valon-S

T
 S

ource

Avalon-ST
Delay Core
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

21–2 Chapter 21: Avalon-ST Delay Core
Instantiating the Core in SOPC Builder
Interfaces
The Avalon-ST Delay core supports packetized and non-packetized interfaces with
optional channel and error signals. This core does not support backpressure.

Table 21–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Delay core in SOPC Builder to add
the core to a system.

Table 21–2 lists and describes the parameters you can configure.

Table 21–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Table 21–2. Configurable Parameters

Parameter
Legal

Values
Default
Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the core introduces, in clock cycles. The
value of 0 is supported for some cases of parameterized
systems in which no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-bit
symbols.

Use Packets 0 or 1 0 Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket,
endofpacket, and empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data interface can
support. This parameter is disabled when Use Channel is set
to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is set to 0.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 21: Avalon-ST Delay Core 21–3
Device Support
Device Support
The Avalon-ST Delay core supports all Altera® device families.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

Document Revision History
Table 21–3 shows the revision history for this chapter.

Table 21–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

January 2010

v9.1.1

Initial release. —
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

21–4 Chapter 21: Avalon-ST Delay Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

© February 2010 Altera Corporation

QII55021-9.1.1
22. Avalon-ST Splitter Core
Core Overview
The Avalon® Streaming (Avalon-ST) Splitter core allows you to replicate transactions
from an Avalon-ST source interface to multiple Avalon-ST sink interfaces. This core
can support from 1 to 16 outputs.

The Avalon-ST Splitter core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 22–2

■ “Device Support” on page 22–3

Functional Description
Figure 22–1 shows a block diagram of the Avalon-ST Splitter core.

The Avalon-ST Splitter core copies all input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This include all signals except for the ready signal.

The Avalon-ST Splitter core includes a clock signal used by SOPC Builder to
determine the Avalon-ST interface and clock domain that this core resides in. Because
the clock signal is unused internally, no latency is introduced when using this core.

Backpressure
The Avalon-ST Splitter core handles backpressure by AND-ing the ready signals
from all of the output interfaces and sending the result to the input interface. This
way, if any output interface deasserts the ready signal, the input interface receives
the deasserted ready signal as well. This mechanism ensures that backpressure on
any of the output interfaces is propagated to the input interface.

Figure 22–1. Avalon-ST Splitter Core

Output 0

In_Data

Out_Data

A
va

lo
n-

S
T

S

in
k

Avalon-ST
Splitter Core

Output N

A
valon-S

T
S

ource 0

Clock

A
valon-S

T
S

ource N
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

22–2 Chapter 22: Avalon-ST Splitter Core
Instantiating the Core in SOPC Builder
When the Qualify Valid Out parameter is set to 1, the Out_Valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the Out_Valid
signals on the rest of the output interfaces are deasserted as well.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a
non-gated Out_Valid signal when backpressure is applied. In this case, when an
output interface deasserts its ready signal, the Out_Valid signals on the rest of the
output interfaces are not affected.

Because the logic is purely combinational, the core introduces no latency.

Interfaces
The Avalon-ST Splitter core supports packetized and non-packetized interfaces with
optional channel and error signals. The core propagates backpressure from any
output interface to the input interface.

Table 22–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST Splitter core in SOPC Builder to
add the core to a system.

Table 22–2 lists and describes the parameters you can configure.

Table 22–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Table 22–2. Configurable Parameters

Parameter
Legal

Values
Default
Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. The value of 1 is supported for
some cases of parameterized systems in which no duplicated output
is required.

Qualify Valid Out 0 or 1 1 Determines whether the Out_Valid signal is gated or non-gated
when backpressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and output interfaces.
For example, byte-oriented interfaces have 8-bit symbols.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 22: Avalon-ST Splitter Core 22–3
Device Support
Device Support
The Avalon-ST Splitter core supports all Altera® device families.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

Document Revision History
Table 22–3 shows the revision history for this chapter.

Use Packets 0 or 1 0 Indicates whether or not packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and
empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data interface can support.
This parameter is disabled when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1 The width of the error signal on the output interfaces. A value of 0
indicates that the error signal is not used. This parameter is disabled
when Use Error is set to 0.

Table 22–2. Configurable Parameters

Parameter
Legal

Values
Default
Value Description

Table 22–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

January 2010

v9.1.1

Initial release. —
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

22–4 Chapter 22: Avalon-ST Splitter Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

© November 2009 Altera Corporation
Section IV. Peripherals
This section describes multiprocessor coordination peripherals provided by Altera®
for SOPC Builder systems. These components provide reliable mechanisms for
multiple Nios® II processors to communicate with each other, and coordinate
operations.

This section includes the following chapters:

■ Chapter 23, Scatter-Gather DMA Controller Core

■ Chapter 24, DMA Controller Core

■ Chapter 25, Video Sync Generator and Pixel Converter Cores

■ Chapter 26, Interval Timer Core

■ Chapter 27, Mutex Core

■ Chapter 28, Mailbox Core

■ Chapter 29, Vectored Interrupt Controller Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

IV–2 Section IV: Peripherals
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55003-9.1.0
23. Scatter-Gather DMA Controller Core
Core Overview
The Scatter-Gather Direct Memory Access (SG-DMA) controller core implements
high-speed data transfer between two components. You can use the SG-DMA
controller core to transfer data from:

■ Memory to memory

■ Data stream to memory

■ Memory to data stream

The SG-DMA controller core transfers and merges non-contiguous memory to a
continuous address space, and vice versa. The core reads a series of descriptors that
specify the data to be transferred.

For applications requiring more than one DMA channel, multiple instantiations of the
core can provide the required throughput. Each SG-DMA controller has its own series
of descriptors specifying the data transfers. A single software module controls all of
the DMA channels.

The SG-DMA controller core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. For the Nios® II processor, device drivers are
provided in the Hardware Abstraction Layer (HAL) system library, allowing software
to access the core using the provided driver.

Example Systems
Figure 23–1 shows a SG-DMA controller core in a block diagram for the DMA
subsystem of a printed circuit board. The SG-DMA core in the FPGA reads streaming
data from an internal streaming component and writes data to an external memory. A
Nios II processor provides overall system control.

Figure 23–1. SG-DMA Controller Core with Streaming Peripheral and External Memory

Altera FPGA
 SOPC Builder System

S

Scatter Gather DMA Controller Core

Nios II
Processor

Rd

SNK

Descriptor
Processor

Block

DDR2
SDRAM

Memory
Controller

M

Rd

M

DMA Write
Block

M

Wr

M

Wr

M

Control
&

Status
Registers

System Interconnect Fabric

Memory

Descriptor
Table

S Avalon-MM Slave Port

SNK Avalon-ST Sink Port

M Avalon-MM Master Port

Streaming
Component
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–2 Chapter 23: Scatter-Gather DMA Controller Core
Core Overview
Figure 23–2 shows a different use of the SG-DMA controller core, where the core
transfers data between an internal and external memory. The host processor and
memory are connected to a system bus, typically either a PCI Express or Serial
RapidIO™.

Comparison of SG-DMA Controller Core and DMA Controller Core
The SG-DMA controller core provides a significant performance enhancement over
the previously available DMA controller core, which could only queue one transfer at
a time. Using the DMA Controller core, a CPU had to wait for the transfer to complete
before writing a new descriptor to the DMA slave port. Transfers to non-contiguous
memory could not be linked; consequently, the CPU overhead was substantial for
small transfers, degrading overall system performance. In contrast, the SG-DMA
controller core reads a series of descriptors from memory that describe the required
transactions and performs all of the transfers without additional intervention from the
CPU.

In This Chapter
This chapter contains the following sections:

■ “Functional Description” on page 23–3

■ “Device Support” on page 23–9

■ “Instantiating the Core in SOPC Builder” on page 23–9

■ “Simulation Considerations” on page 23–10

■ “Software Programming Model” on page 23–10

■ “Programming with SG-DMA Controller” on page 23–15

Figure 23–2. SG-DMA Controller Core with Internal and External Memory

Processor
Bus

Altera FPGA
 SOPC Builder System

S

Host Processor

Internal
MemoryM M

System Interconnect Fabric

S

Rd

M

Descriptor
Processor

Block

Rd

M

DMA Read/
Write
Block

Wr

M

Wr

M

Control
&

Status
Registers

Scatter Gather DMA Controller Core

Avalon-MM Bridge

M S

IOB

Main Memory

Descriptor
Table

S Avalon-MM Slave Port

M Avalon-MM Master Port

IOB IO Breakout
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–3
Resource Usage and Performance
Resource Usage and Performance
Resource utilization for the core is 600–1400 logic elements, depending upon the
width of the datapath, the parameterization of the core, the device family, and the
type of data transfer. Table 23–1 provides the estimated resource usage for a SG-DMA
controller core used for memory to memory transfer. The core is configurable and the
resource utilization varies with the configuration specified.

The core operating frequency varies with the device and the size of the datapath.
Table 23–2 provides an example of expected performance for SG-DMA cores
instantiated in several different device families.

Functional Description
The SG-DMA controller core comprises three major blocks: descriptor processor,
DMA read, and DMA write. These blocks are combined to create three different
configurations:

■ Memory to memory

■ Memory to stream

■ Stream to memory

The type of devices you are transferring data to and from determines the
configuration to implement. Examples of memory-mapped devices are PCI, PCIe and
most memory devices. The Triple Speed Ethernet MAC, DSP MegaCore functions and
many video IPs are examples of streaming devices. A recompilation is necessary each
time you change the configuration of the SG-DMA controller core.

Table 23–1. SG-DMA Estimated Resource Usage

Datapath Cyclone® II
Stratix®

(LEs)
Stratix II
(ALUTs)

8-bit datapath 850 650 600

32-bit datapath 1100 850 700

64-bit datapath 1250 1250 800

Table 23–2. SG-DMA Peak Performance

Device Datapath fMAX Throughput

Cyclone II 64 bits 150 MHz 9.6 Gbps

Cyclone III 64 bits 160 MHz 10.2 Gbps

Stratix II/Stratix II GX 64 bits 250 MHz 16.0 Gbps

Stratix III 64 bits 300 MHz 19.2 Gbps
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–4 Chapter 23: Scatter-Gather DMA Controller Core
Functional Description
Functional Blocks and Configurations
The following sections describe each functional block and configuration.

Descriptor Processor
The descriptor processor reads descriptors from the descriptor list via its Avalon®
Memory-Mapped (MM) read master port and pushes commands into the command
FIFOs of the DMA read and write blocks. Each command includes the following fields
to specify a transfer:

■ Source address

■ Destination address

■ Number of bytes to transfer

■ Increment read address after each transfer

■ Increment write address after each transfer

■ Generate start of packet (SOP) and end of packet (EOP)

After each command is processed by the DMA read or write block, a status token
containing information about the transfer such as the number of bytes actually
written is returned to the descriptor processor, where it is written to the respective
fields in the descriptor.

DMA Read Block
The DMA read block is used in memory-to-memory and memory-to-stream
configurations. The block performs the following operations:

■ Reads commands from the input command FIFO.

■ Reads a block of memory via the Avalon-MM read master port for each command.

■ Pushes data into the data FIFO.

If burst transfer is enabled, an internal read FIFO with a depth of twice the maximum
read burst size is instantiated. The DMA read block initiates burst reads only when
the read FIFO has sufficient space to buffer the complete burst.

DMA Write Block
The DMA write block is used in memory-to-memory and stream-to-memory
configurations. The block reads commands from its input command FIFO. For each
command, the DMA write block reads data from its Avalon-ST sink port and writes it
to the Avalon-MM master port.

If burst transfer is enabled, an internal write FIFO with a depth of twice the maximum
write burst size is instantiated. Each burst write transfers a fixed amount of data
equals to the write burst size, except for the last burst. In the last burst, the remaining
data is transferred even if the amount of data is less than the write burst size.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–5
Functional Description
Memory-to-Memory Configuration
Memory-to-memory configurations include all three blocks: descriptor processor,
DMA read, and DMA write. An internal FIFO is also included to provide buffering
and flow control for data transferred between the DMA read and write blocks.

Figure 23–3 illustrates one possible memory-to-memory configuration with an
internal Nios II processor and descriptor list.

Memory-to-Stream Configuration
Memory-to-stream configurations include the descriptor processor and DMA read
blocks. Figure 23–4 illustrates a memory-to-stream configuration.

In this example, the Nios II processor and descriptor table are in the FPGA. Data from
an external DDR2 SDRAM is read by the SG-DMA controller and written to an
on-chip streaming peripheral.

Figure 23–3. Example of Memory-to-Memory Configuration

Figure 23–4. Example of Memory-to-Stream Configuration

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source PortSRC

Avalon-ST Sink PortSNK

 SOPC Builder System
Altera FPGA

Descriptor
Processor

Block

Scatter Gather DMA Controller Core

Rd

S M

Wr

command

status

M M

command

status

M

Control
&

Status
Registers

DMA Write Block

SNK

DMA Read Block

SRC

Data
FIFO

Nios II
Processor

DDR2
SDRAM

Memory
Controller

System Interconnect Fabric

Memory

Descriptor
Table

SNK

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source Port

Avalon-ST Sink Port

 SOPC Builder System
Altera FPGA

Scatter Gather DMA Controller Core

Rd

S M

Wr

M M

command

status

SRC

Control
&

Status
Registers

Nios II
Processor

DDR2
SDRAM

Memory
Controller

Memory

Descriptor
Table

DMA Read Block

Descriptor
Processor

Block

SRCStreaming
Component

SNK

System Interconnect Fabric
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–6 Chapter 23: Scatter-Gather DMA Controller Core
Functional Description
Stream-to-Memory Configuration
Stream-to-memory configurations include the descriptor processor and DMA write
blocks. This configuration is similar to the memory-to-stream configuration as
Figure 23–5 illustrates.

DMA Descriptors
DMA descriptors specify data transfers to be performed. The SG-DMA core uses a
dedicated interface to read and write the descriptors. These descriptors, which are
stored as a linked list, can be stored on an on-chip or off-chip memory and can be
arbitrarily long.

Storing the descriptor list in an external memory frees up resources in the FPGA;
however, an external descriptor list increases the overhead involved when the
descriptor processor reads and updates the list. The SG-DMA core has an internal
FIFO to store descriptors read from memory, which allows the core to perform
descriptor read, execute, and write back operations in parallel, hiding the descriptor
access and processing overhead.

1 The descriptors must be initialized and aligned on a 32-bit boundary. The last
descriptor in the list must have its OWNED_BY_HW bit set to 0 because the core relies on
a cleared OWNED_BY_HW bit to stop processing.

See “DMA Descriptors” on page 23–13 for the structure of the DMA descriptor.

Figure 23–5. Example of Memory-to-Stream Configuration

SRC

SRC

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source Port

Avalon-ST Sink Port

 SOPC Builder System
Altera FPGA

Scatter Gather DMA Controller Core

Rd

S M

Wr

M M

command

status

SNK

Control
&

Status
Registers

Nios II
Processor

DDR2
SDRAM

Memory
Controller

System Interconnect Fabric

Memory

Descriptor
Table

Descriptor
Processor

Block

SNK

DMA Write Block

Streaming
Component
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–7
Functional Description
Descriptor Processing
The following steps describe how the DMA descriptors are processed:

1. Software builds the descriptor linked list. See “Building and Updating Descriptor
List” on page 23–8 for more information on how to build and update the
descriptor linked list.

2. Software writes the address of the first descriptor to the
next_descriptor_pointer register and initiates the transfer by setting the
RUN bit in the control register to 1. See “Software Programming Model” on
page 23–10 for more information on the registers.

On the next clock cycle following the assertion of the RUN bit, the core sets the
BUSY bit in the status register to 1 to indicate that descriptor processing is
executing.

3. The descriptor processor block reads the address of the first descriptor from the
next_descriptor_pointer register and pushes the retrieved descriptor into
the command FIFO, which feeds commands to both the DMA read and write
blocks. As soon as the first descriptor is read, the block reads the next descriptor
and pushes it into the command FIFO. One descriptor is always read in advance
thus maximizing throughput.

4. The core performs the data transfer.

■ In memory-to-memory configurations, the DMA read block receives the source
address from its command FIFO and starts reading data to fill the FIFO on its
stream port until the specified number of bytes are transferred. The DMA read
block pauses when the FIFO is full until the FIFO has enough space to accept
more data.

The DMA write block gets the destination address from its command FIFO and
starts writing until the specified number of bytes are transferred. If the data
FIFO ever empties, the write block pauses until the FIFO has more data to
write.

■ In memory-to-stream configurations, the DMA read block reads from the
source address and transfers the data to the core’s streaming port until the
specified number of bytes are transferred or the end of packet is reached. The
block uses the end-of-packet indicator for transfers with an unknown transfer
size. For data transfers without using the end-of-packet indicator, the transfer
size must be a multiple of the data width. Otherwise, the block requires extra
logic and may impact the system performance.

■ In stream-to-memory configurations, the DMA write block reads from the
core’s streaming port and writes to the destination address. The block
continues reading until the specified number of bytes are transferred.

5. The descriptor processor block receives a status from the DMA read or write block
and updates the DESC_CONTROL, DESC_STATUS, and
ACTUAL_BYTES_TRANSFERRED fields in the descriptor. The OWNED_BY_HW bit in
the DESC_CONTROL field is cleared unless the PARK bit is set to 1.

Once the core starts processing the descriptors, software must not update descriptors
with OWNED_BY_HW bit set to 1. It is only safe for software to update a descriptor
when its OWNED_BY_HW bit is cleared.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–8 Chapter 23: Scatter-Gather DMA Controller Core
Functional Description
The SG-DMA core continues processing the descriptors until an error condition
occurs and the STOP_DMA_ER bit is set to 1, or a descriptor with a cleared
OWNED_BY_HW bit is encountered.

Building and Updating Descriptor List
Altera recommends the following method of building and updating the descriptor
list:

1. Build the descriptor list and terminate the list with a non-hardware owned
descriptor (OWNED_BY_HW = 0). The list can be arbitrarily long.

2. Set the interrupt IE_CHAIN_COMPLETED.

3. Write the address of the first descriptor in the first list to the
next_descriptor_pointer register and set the RUN bit to 1 to initiate transfers.

4. While the core is processing the first list, build a second list of descriptors.

5. When the SD-DMA controller core finishes processing the first list, an interrupt is
generated. Update the next_descriptor_pointer register with the address of
the first descriptor in the second list. Clear the RUN bit and the status register. Set
the RUN bit back to 1 to resume transfers.

6. If there are new descriptors to add, always add them to the list which the core is
not processing. For example, if the core is processing the first list, add new
descriptors to the second list and so forth.

This method ensures that the descriptors are not updated when the core is processing
them. Because the method requires a response to the interrupt, a high-latency
interrupt may cause a problem in systems where stalling data movement is not
possible.

Error Conditions
The SG-DMA core has a configurable error width. Error signals are connected directly
to the Avalon-ST source or sink to which the SG-DMA core is connected.

The list below describes how the error signals in the SG-DMA core are implemented
in the folowing configurations:

■ Memory-to-memory configuration

No error signals are generated. The error field in the register and descriptor is
hardcoded to 0.

■ Memory-to-stream configuration

If you specified the usage of error bits in the core, the error bits are generated in
the Avalon-ST source interface. These error bits are hardcoded to 0 and generated
in compliance with the Avalon-ST slave interfaces.

■ Stream-to-memory configuration

If you specified the usage of error bits in the core, error bits are generated in the
Avalon-ST sink interface. These error bits are passed from the Avalon-ST sink
interface and stored in the registers and descriptor.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–9
Device Support
Table 23–3 lists the error signals when the core is operating in the memory-to-stream
configuration and connected to the transmit FIFO interface of the Altera Triple-Speed
Ethernet MegaCore® function.

Table 23–4 lists the error signals when the core is operating in the stream-to-memory
configuration and connected to the transmit FIFO interface of the Triple-Speed
Ethernet MegaCore function.

Each streaming core has a different set of error codes. Refer to the respective user
guides for the codes.

Device Support
The SG-DMA Controller core supports all Altera device families.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ Interface for the SG-DMA Controller core in SOPC Builder to
add the core to a system.

1 The SG-DMA controller core should be given a higher priority (lower IRQ value) than
most of the components in a system to ensure high throughput.

Table 23–5 lists and describes the parameters you can configure.

Table 23–3. Avalon-ST Transmit Error Types

Signal Type Description

TSE_transmit_error[0] Transmit Frame Error. Asserted to indicate that the transmitted frame
should be viewed as invalid by the Ethernet MAC. The frame is then
transferred onto the GMII interface with an error code during the frame
transfer.

Table 23–4. Avalon-ST Receive Error Types

Signal Type Description

TSE_receive_error[0] Receive Frame Error. This signal indicates that an error has occurred. It
is the logical OR of receive errors 1 through 5.

TSE_receive_error[1] Invalid Length Error. Asserted when the received frame has an invalid
length as defined by the IEEE 802.3 standard.

TSE_receive_error[2] CRC Error. Asserted when the frame has been received with a CRC-32
error.

TSE_receive_error[3] Receive Frame Truncated. Asserted when the received frame has been
truncated due to receive FIFO overflow.

TSE_receive_error[4] Received Frame corrupted due to PHY error. (The PHY has asserted an
error on the receive GMII interface.)

TSE_receive_error[5] Collision Error. Asserted when the frame was received with a collision.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–10 Chapter 23: Scatter-Gather DMA Controller Core
Simulation Considerations
Simulation Considerations
Signals for hardware simulation are automatically generated as part of the Nios II
simulation process available in the Nios II IDE.

Software Programming Model
The following sections describe the software programming model for the SG-DMA
controller core.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the SG-DMA
controller core via the familiar HAL API and the ANSI C standard library.

Software Files
The SG-DMA controller core provides the following software files. These files provide
low-level access to the hardware and drivers that integrate into the Nios II HAL
system library. Application developers should not modify these files.

■ altera_avalon_sgdma_regs.h—defines the core's register map, providing symbolic
constants to access the low-level hardware

Table 23–5. Configurable Parameters

Parameter Legal Values Description

Transfer mode Memory To Memory
Memory To Stream
Stream To Memory

Configuration to use. For more information about these configurations,
see “Memory-to-Memory Configuration” on page 23–5

Enable bursting on
descriptor read master

On/Off If this option is on, the descriptor processor block uses Avalon-MM
bursting when fetching descriptors and writing them back in memory.
With 32-bit read and write ports, the descriptor processor block can
fetch the 256-bit descriptor by performing 8-word burst as opposed to
eight individual single-word transactions.

Allow unaligned
transfers

On/Off If this option is on, the core allows accesses to non-word-aligned
addresses. This option doesn’t apply for burst transfers.

Unaligned transfers require extra logic that may negatively impact
system performance.

Enable burst transfers On/Off Turning on this option enables burst reads and writes.

Read burstcount signal
width

1–16 The width of the read burstcount signal. This value determines the
maximum burst read size.

Write burstcount signal
width

1–16 The width of the write burstcount signal. This value determines the
maximum burst write size.

Data width 8, 16, 32, 64 The data width in bits for the Avalon-MM read and write ports.

Source error width 0–7 The width of the error signal for the Avalon-ST source port.

Sink error width 0 – 7 The width of the error signal for the Avalon-ST sink port.

Data transfer FIFO depth 2, 4, 8, 16, 32, 64 The depth of the internal data FIFO in memory-to-memory configurations
with burst transfers disabled.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–11
Software Programming Model
■ altera_avalon_sgdma.h—provides definitions for the Altera Avalon SG-DMA
buffer control and status flags.

■ altera_avalon_sgdma.c—provides function definitions for the code that
implements the SG-DMA controller core.

■ altera_avalon_sgdma_descriptor.h—defines the core's descriptor, providing
symbolic constants to access the low-level hardware.

Register Maps
The SG-DMA controller core has three registers accessible from its Avalon-MM
interface; status, control and next_descriptor_pointer. Software can
configure the core and determines its current status by accessing the registers.

The control/status register has a 32-bit interface without byte-enable logic, and
therefore cannot be properly accessed by a master with narrower data width than
itself. To ensure correct operation of the core, always access the register with a master
that is at least 32 bits wide.

Table 23–6 lists and describes the registers.

Table 23–7 provides a bit map for the control register.

Table 23–6. Register Map

32-bit Word
Offset Register Name

Reset
Value Description

base + 0 status 0 This register indicates the core’s current status such as what
caused the last interrupt and if the core is still processing
descriptors. See Table 23–4 on page 23–9 for the status
register map.

base + 4 control 0 This register specifies the core’s behavior such as what
triggers an interrupt and when the core is started and
stopped. The host processor can configure the core by
setting the register bits accordingly. See Table 23–4 on
page 23–9 for the control register map.

base + 8 next_descriptor_pointer 0 This register contains the address of the next descriptor to
process. Set this register to the address of the first
descriptor as part of the system initialization sequence.

Altera recommends that user applications clear the RUN bit
in the control register and wait until the BUSY bit of the
status register is set to 0 before reading this register.

Table 23–7. Control Register Bit Map (Part 1 of 2)

Bit Bit Name Access Description

0 IE_ERROR R/W When this bit is set to 1, the core generates an interrupt if an
Avalon-ST error occurs during descriptor processing. (1)

1 IE_EOP_ENCOUNTERED R/W When this bit is set to 1, the core generates an interrupt if an EOP
is encountered during descriptor processing. (1)

2 IE_DESCRIPTOR_COMPLETED R/W When this bit is set to 1, the core generates an interrupt after
each descriptor is processed. (1)
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–12 Chapter 23: Scatter-Gather DMA Controller Core
Software Programming Model
Table 23–8 provides a bit map for the status register. Altera recommends that you
read the status register only after the RUN bit in the control register is cleared.

3 IE_CHAIN_COMPLETED R/W When this bit is set to 1, the core generates an interrupt after the
last descriptor in the list is processed, that is when the core
encounters a descriptor with a cleared OWNED_BY_HW bit. (1)

4 IE_GLOBAL R/W Global signal to enable all interrupts.

5 RUN R/W Set this bit to 1 to start the descriptor processor block which
subsequently initiates DMA transactions. Prior to setting this bit
to 1, ensure that the register next_descriptor_pointer
is updated with the address of the first descriptor to process. The
core continues to process descriptors in its queue as long as this
bit is 1.

Clear this bit to stop the core from processing the next descriptor
in its queue. If this bit is cleared in the middle of processing a
descriptor, the core completes the processing before stopping.
The host processor can then modify the remaining descriptors
and restart the core.

6 STOP_DMA_ER R/W Set this bit to 1 to stop the core when an Avalon-ST error is
encountered during a DMA transaction. This bit applies only to
stream-to-memory configurations.

7 IE_MAX_DESC_PROCESSED R/W Set this bit to 1 to generate an interrupt after the number of
descriptors specified by MAX_DESC_PROCESSED are
processed.

8 .. 15 MAX_DESC_PROCESSED R/W Specifies the number of descriptors to process before the core
generates an interrupt.

16 SW_RESET R/W Software can reset the core by writing to this bit twice. Upon the
second write, the core is reset. The logic which sequences the
software reset process then resets itself automatically.

Executing a software reset when a DMA transfer is active may
result in permanent bus lockup until the next system reset.
Hence, Altera recommends that you use the software reset as
your last resort.

17 PARK R/W Seting this bit to 0 causes the SG-DMA controller core to clear
the OWNED_BY_HW bit in the descriptor after each descriptor is
processed. If the PARK bit is set to 1, the core does not clear the
OWNED_BY_HW bit, thus allowing the same descriptor to be
processed repeatedly without software intervention. You also
need to set the last descriptor in the list to point to the first one.

18..30 Reserved

31 CLEAR_INTERRUPT R/W Set this bit to 1 to clear pending interrupts.

Note to Table 23–11:

(1) All interrupts are generated only after the descriptor is updated.

Table 23–7. Control Register Bit Map (Part 2 of 2)

Bit Bit Name Access Description
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–13
Software Programming Model
DMA Descriptors
Table 23–9 shows the structure a DMA descriptor entry. See “Data Structure” on
page 23–15 for the structure definition.

Table 23–10 describes the each field in a descriptor entry.

Table 23–8. Status Register Bit Map

Bit Bit Name Access Description

0 ERROR R/C (1) (2) A value of 1 indicates that an Avalon-ST error was
encountered during a transfer.

1 EOP_ENCOUNTERED R/C A value of 1 indicates that the transfer was terminated by an
end-of-packet (EOP) signal generated on the Avalon-ST
source interface. This condition is only possible in stream-to-
memory configurations.

2 DESCRIPTOR_COMPLETED R/C (1) (2) A value of 1 indicates that a descriptor was processed to
completion.

3 CHAIN_COMPLETED R/C (1) (2) A value of 1 indicates that the core has completed processing
the descriptor chain.

4 BUSY R (1) (3) A value of 1 indicates that descriptors are being processed.
This bit is set to 1 on the next clock cycle after the RUN bit is
asserted and does not get cleared until one of the following
event occurs:

■ Descriptor processing completes and the RUN bit is
cleared.

■ An error condition occurs, the STOP_DMA_ER bit is set
to 1 and the processing of the current descriptor
completes.

5 .. 31 Reserved

Notes to Table 23–8:

(1) This bit must be cleared after a read is performed. Write one to clear this bit.
(2) This bit is updated by hardware after each DMA transfer completes. It remains set until software writes one to clear.
(3) This bit is continuously updated by the hardware.

Table 23–9. DMA Descriptor Structure

Byte Offset

Field Names

31 24 23 16 15 8 7 0

base source

base + 4 Reserved

base + 8 destination

base + 12 Reserved

base + 16 next_desc_ptr

base + 20 Reserved

base + 24 Reserved bytes_to_transfer

base + 28 desc_control desc_status actual_bytes_transferred
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–14 Chapter 23: Scatter-Gather DMA Controller Core
Software Programming Model
Table 23–1 provides a bit map for the desc_control field.

After completing a DMA transaction, the descriptor processor block updates the
desc_status field to indicate how the transaction proceeded. Table 23–1 provides
the bit map of this field.

Table 23–10. DMA Descriptor Field Description

Field Name Access Description

source R/W Specifies the address of data to be read. This address is set to 0 if the
input interface is an Avalon-ST interface.

destination R/W Specifies the address to which data should be written. This address is
set to 0 if the output interface is an Avalon-ST interface.

next_desc_ptr R/W Specifies the address of the next descriptor in the linked list.

bytes_to_transfer R/W Specifies the number of bytes to transfer. If this field is 0, the
SG-DMA controller core continues transferring data until it
encounters an EOP.

actual_bytes_transferred R Specifies the number of bytes that are successfully transferred by the
core. This field is updated after the core processes a descriptor.

desc_status R/W This field is updated after the core processes a descriptor. See
Table 23–12 on page 23–15 for the bit map of this field.

desc_control R/W Specifies the behavior of the core. This field is updated after the core
processes a descriptor. See Table 23–11 on page 23–14 for
descriptions of each bit.

Table 23–11. DESC_CONTROL Bit Map

Bit (s) Field Name Access Description

0 GENERATE_EOP W When this bit is set to 1,the DMA read block asserts the EOP signal
on the final word.

1 READ_FIXED_ADDRESS R/W This bit applies only to Avalon-MM read master ports. When this
bit is set to 1, the DMA read block does not increment the memory
address. When this bit is set to 0, the read address increments
after each read.

2 WRITE_FIXED_ADDRESS R/W This bit applies only to Avalon-MM write master ports. When this
bit is set to 1, the DMA write block does not increment the memory
address. When this bit is set to 0, the write address increments
after each write.

In memory-to-stream configurations, the DMA read block
generates a start-of-packet (SOP) on the first word when this bit is
set to 1.

[6:3] Reserved — —

7 OWNED_BY_HW R/W This bit determines whether hardware or software has write access
to the current register.

When this bit is set to 1, the core can update the descriptor and
software should not access the descriptor due to the possibility of
race conditions. Otherwise, it is safe for software to update the
descriptor.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–15
Programming with SG-DMA Controller
Timeouts
The SG-DMA controller does not implement internal counters to detect stalls.
Software can instantiate a timer component if this functionality is required.

Programming with SG-DMA Controller
This section describes the device and descriptor data structures, and the application
programming interface (API) for the SG-DMA controller core.

Data Structure
Figure 23–6 shows the data structure for the device.

Figure 23–7 shows the data structure for the descriptors.

Table 23–12. DESC_STATUS Bit Map

Bit Bit Name Access Description

[7:0] ERROR_0 ..
ERROR_7

R Each bit represents an error that occurred on the Avalon-ST interface.
The context of each error is defined by the component connected to
the Avalon-ST interface.

Figure 23–6. Device Data Structure

typedef struct alt_sgdma_dev
{
 alt_llist llist; // Device linked-list entry
 const char *name; // Name of SGDMA in SOPC System
 void *base; // Base address of SGDMA
 alt_u32 *descriptor_base; // reserved
 alt_u32 next_index; // reserved
 alt_u32 num_descriptors; // reserved
 alt_sgdma_descriptor *current_descriptor; // reserved
 alt_sgdma_descriptor *next_descriptor; // reserved
 alt_avalon_sgdma_callback callback; // Callback routine pointer
 void *callback_context; // Callback context pointer
 alt_u32 chain_control; // Value OR'd into control reg
} alt_sgdma_dev;
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–16 Chapter 23: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
Figure 23–7. Descriptor Data Structure

typedef struct {
 alt_u32 *read_addr;
 alt_u32 read_addr_pad;

 alt_u32 *write_addr;
 alt_u32 write_addr_pad;

 alt_u32 *next;
 alt_u32 next_pad;

 alt_u16 bytes_to_transfer;
 alt_u8 read_burst; /* Reserved field. Set to 0. */
 alt_u8 write_burst;/* Reserved field. Set to 0. */

 alt_u16 actual_bytes_transferred;
 alt_u8 status;
 alt_u8 control;

} alt_avalon_sgdma_packed alt_sgdma_descriptor;
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–17
Programming with SG-DMA Controller
SG-DMA API
Table 23–13 lists all functions provided and briefly describes each.

Table 23–13. Function List

Name Description

alt_avalon_sgdma_do_async_transfer() Starts a non-blocking transfer of a descriptor chain.

alt_avalon_sgdma_do_sync_transfer() Starts a blocking transfer of a descriptor chain. This function
blocks both before transfer if the controller is busy and until the
requested transfer has completed.

alt_avalon_sgdma_construct_mem_to_
mem_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_stream_to
_mem_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-ST to Avalon-MM transfer. The function
automatically terminates the descriptor chain with a NULL
descriptor.

alt_avalon_sgdma_construct_mem_to_
stream_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_check_descriptor_
status()

Reads the status of a given descriptor.

alt_avalon_sgdma_register_callback() Associates a user-specific callback routine with the SG-DMA
interrupt handler.

alt_avalon_sgdma_start() Starts the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_stop() Stops the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_open() Returns a pointer to the SG-DMA controller with the given name.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–18 Chapter 23: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
alt_avalon_sgdma_do_async_transfer()

alt_avalon_sgdma_do_sync_transfer()

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.

*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next”
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description: Set up and begin a non-blocking transfer of one or more descriptors or a descriptor chain. If the
SG-DMA controller is busy at the time of this call, the routine immediately returns EBUSY; the
application can then decide how to proceed without being blocked. If a callback routine has been
previously registered with this particular SG-DMA controller, the transfer is set up to issue an
interrupt on error, EOP, or chain completion. Otherwise, no interrupt is registered and the
application developer must check for and handle errors and completion. The run bit is cleared
before the begining of the transfer and is set to 1 to restart a new descriptor chain.

Prototype: alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.

*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next”
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns the contents of the status register.

Description: Sends a fully formed descriptor or list of descriptors to the SG-DMA controller for transfer. This
function blocks both before transfer, if the SG-DMA controller is busy, and until the requested
transfer has completed. If an error is detected during the transfer, it is abandoned and the
controller’s status register contents are returned to the caller. Additional error information is
available in the status bits of each descriptor that the SG-DMA processed. The user application
searches through the descriptor or list of descriptors to gather specific error information. The run
bit is cleared before the begining of the transfer and is set to 1 to restart a new descriptor chain.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–19
Programming with SG-DMA Controller
alt_avalon_sgdma_construct_mem_to_mem_desc()

Prototype: void alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u32 *write_addr, alt_u16 length, int
read_fixed, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.

*write_addr—the first write address for the SG-DMA transfer.

length—the number of bytes for the transfer.

read_fixed—if non-zero, the SG-DMA reads from a fixed address.

write_fixed—if non-zero, the SG-DMA writes to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM transfer. The
function sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed
descriptor as ready to run. The descriptor is processed when the SG-DMA controller receives the
descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor under construction as
well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas
of memory mastered by the controller.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–20 Chapter 23: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype: void alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *write_addr, alt_u16 length_or_eop, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*write_addr—the first write address for the SG-DMA transfer.

length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the transfer continues
until an EOP signal is received from the Avalon-ST interface.

write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM transfer. The
source (read) data for the transfer comes from the Avalon-ST interface connected to the SG-DMA
controller's streaming read port.

The function sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed
descriptor as ready to run. The descriptor is processed when the SG-DMA controller receives the
descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor under construction as
well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas
of memory mastered by the controller.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 23: Scatter-Gather DMA Controller Core 23–21
Programming with SG-DMA Controller
alt_avalon_sgdma_construct_mem_to_stream_desc()

Prototype: void alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u16 length, int read_fixed, int generate_sop,
int generate_eop, alt_u8 atlantic_channel)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.

length—the number of bytes for the transfer.

read_fixed—if non-zero, the SG-DMA reads from a fixed address.

generate_sop—if non-zero, the SG-DMA generates a SOP on the Avalon-ST interface when
commencing the transfer.

generate_eop—if non-zero, the SG-DMA generates an EOP on the Avalon-ST interface when
completing the transfer.

atlantic_channel—an 8-bit Avalon-ST channel number. Channels are currently not supported.
Set this parameter to 0.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma-descriptor *desc for an Avalon-MM to Avalon-ST transfer. The
destination (write) data for the transfer goes to the Avalon-ST interface connected to the SG-DMA
controller's streaming write port. The function sets the OWNED_BY_HW bit in the descriptor's control
field, marking the completed descriptor as ready to run. The descriptor is processed when the
SG-DMA controller receives the descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the descriptor under
construction as well as the next descriptor in the chain. Descriptors must be in a memory device
mastered by the SG-DMA controller’s chain read and chain write Avalon master ports. Care must be
taken to ensure that both *desc and *next point to areas of memory mastered by the controller.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–22 Chapter 23: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
alt_avalon_sgdma_check_descriptor_status()

alt_avalon_sgdma_register_callback()

alt_avalon_sgdma_start()

Prototype: int alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descriptor *desc)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously requested transfer
completed normally. Other return codes are defined in errno.h.

Description: Checks a descriptor previously owned by hardware for any errors reported in a previous transfer.
The routine reports: errors reported by the SG-DMA controller, the buffer in use.

Prototype: void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev, alt_avalon_sgdma_callback
callback, alt_u16 chain_control, void *context)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

callback—a pointer to the callback routine to execute at interrupt level.

chain_control—the SG-DMA control register contents.

*context—a pointer used to pass context-specific information to the ISR. context can point to
any ISR-specific information.

Returns: void

Description: Associates a user-specific routine with the SG-DMA interrupt handler. If a callback is registered, all
non-blocking transfers enables interrupts that causes the callback to be executed. The callback
runs as part of the interrupt service routine, and care must be taken to follow the guidelines for
acceptable interrupt service routine behavior as described in the Nios II Software Developer’s
Handbook.

To disable callbacks after registering one, call this routine with 0x0 as the callback argument.

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Starts the DMA engine and processes the descriptor pointed to in the controller's next descriptor
pointer and all subsequent descriptors in the chain. It is not necessary to call this function when
do_sync or do_async is used.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 23: Scatter-Gather DMA Controller Core 23–23
Programming with SG-DMA Controller
alt_avalon_sgdma_stop()

alt_avalon_sgdma_open()

Prototype: void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Stops the DMA engine following completion of the current buffer descriptor. It is not necessary to
call this function when do_sync or do_async is used.

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or NULL if no
corresponding SG-DMA device structure was found.

Description: Retrieves a pointer to a hardware SG-DMA device structure.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

23–24 Chapter 23: Scatter-Gather DMA Controller Core
Referenced Documents
Referenced Documents
This chapter references the Nios II Software Developer’s Handbook.

Document Revision History
Table 23–14 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 23–14. Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009

v9.1.0

■ Revised descriptions of register fields and bits.

■ Added description to the memory-to-stream configurations.

■ Added descriptions to alt_avalon_sgdma_do_sync_transfer() and
alt_avalon_sgdma_do_async_transfer() API.

■ Added a list on error signals implementation.

—

March 2009

v9.0.0

Added description of Enable bursting on descriptor read master. —

November 2008
v8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added section DMA Descriptors in Functional Specifications

■ Revised descriptions of register fields and bits.

■ Reorganized sections Software Programming Model and Programming
with SG-DMA Controller Core.

—

May 2008
v8.0.0

■ Added sections on burst transfers. Updates made to comply
with the Quartus II software
version 8.0 release.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII51006-9.1.0
24. DMA Controller Core
Core Overview
The direct memory access (DMA) controller core with Avalon® interface performs
bulk data transfers, reading data from a source address range and writing the data to
a different address range. An Avalon Memor-Mapped (Avalon-MM) master
peripheral, such as a CPU, can offload memory transfer tasks to the DMA controller.
While the DMA controller performs memory transfers, the master is free to perform
other tasks in parallel.

The DMA controller transfers data as efficiently as possible, reading and writing data
at the maximum pace allowed by the source or destination. The DMA controller is
capable of performing Avalon transfers with flow control, enabling it to automatically
transfer data to or from a slow peripheral with flow control (for example, UART), at
the maximum pace allowed by the peripheral.

The DMA controller is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. For the Nios® II processor, device drivers are provided in
the HAL system library. See “Software Programming Model” on page 24–5 for details
of HAL support.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 24–4

■ “Device Support” on page 24–5

■ “Software Programming Model” on page 24–5

Functional Description
You can use the DMA controller to perform data transfers from a source
address-space to a destination address-space. The controller has no concept of
endianness and does not interpret the payload data. The concept of endianness only
applies to a master that interprets payload data.

The source and destination may be either an Avalon-MM slave peripheral (for
example, a constant address) or an address range in memory. The DMA controller can
be used in conjunction with peripherals with flow control, which allows data
transactions of fixed or variable length. The DMA controller can signal an interrupt
request (IRQ) when a DMA transaction completes. A transaction is a sequence of one
or more Avalon transfers initiated by the DMA controller core.

The DMA controller has two Avalon-MM master ports—a master read port and a
master write port—and one Avalon-MM slave port for controlling the DMA as shown
in Figure 24–1.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

24–2 Chapter 24: DMA Controller Core
Functional Description
A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to the control
port.

2. The CPU enables the DMA controller. The DMA controller then begins
transferring data without additional intervention from the CPU. The DMA’s
master read port reads data from the read address, which may be a memory or a
peripheral. The master write port writes the data to the destination address, which
can also be a memory or peripheral. A shallow FIFO buffers data between the read
and write ports.

3. The DMA transaction ends when a specified number of bytes are transferred (a
fixed-length transaction) or an end-of-packet signal is asserted by either the sender
or receiver (a variable-length transaction). At the end of the transaction, the DMA
controller generates an interrupt request (IRQ) if it was configured by the CPU to
do so.

4. During or after the transaction, the CPU can determine if a transaction is in
progress, or if the transaction ended (and how) by examining the DMA
controller’s status register.

Setting Up DMA Transactions
An Avalon-MM master peripheral sets up and initiates DMA transactions by writing
to registers via the control port. The Avalon-MM master programs the DMA engine
using byte addresses which are byte aligned. The master peripheral configures the
following options:

■ Read (source) address location

■ Write (destination) address location

■ Size of the individual transfers: Byte (8-bit), halfword (16-bit), word (32-bit),
doubleword (64-bit) or quadword (128-bit)

■ Enable interrupt upon end of transaction

■ Enable source or destination to end the DMA transaction with end-of-packet
signal

■ Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate the DMA
transaction.

Figure 24–1. DMA Controller Block Diagram

Avalon-MM
Save Port

Addr,
data,

control

IRQ

Separate
Avalon-MM
Master Ports

Register File

status

readaddress

writeaddress

length

control

Read
Master
Port

Write
Master
Port

Control
Port
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 24: DMA Controller Core 24–3
Functional Description
The Master Read and Write Ports
The DMA controller reads data from the source address through the master read port,
and then writes to the destination address through the master write port. You
program the DMA controller using byte addresses. Read and write start addresses
should be aligned to the transfer size. For example, to transfer data words, if the start
address is 0, the address will increment to 4, 8, and 12. For heterogeneous systems
where a number of different slave devices are of different widths, the data width for
read and write masters matches the width of the widest data-width slave addressed
by either the read or the write master. For bursting transfers, the burst length is set to
the DMA transaction length with the appropriate unit conversion. For example, if a
32-bit data width DMA is programmed for a word transfer of 64 bytes, the length
registered is programmed with 64 and the burst count port will be 16. If a 64-bit data
width DMA is programmed for a doubleword transfer of 8 bytes, the length register is
programmed with 8 and the burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports. The default
depth is 2, which makes the write action depend on the data-available status of the
FIFO, rather than on the status of the master read port.

Both the read and write master ports can perform Avalon transfers with flow control,
which allows the slave peripheral to control the flow of data and terminate the DMA
transaction.

f For details about flow control in Avalon-MM data transfers and Avalon-MM
peripherals, refer to Avalon Interface Specifications.

Addressing and Address Incrementing
When accessing memory, the read (or write) address increments by 1, 2, 4, 8, or 16
after each access, depending on the width of the data. On the other hand, a typical
peripheral device (such as UART) has fixed register locations. In this case, the
read/write address is held constant throughout the DMA transaction.

The rules for address incrementing are, in order of priority:

■ If the control register’s RCON (or WCON) bit is set, the read (or write) increment
value is 0.

■ Otherwise, the read and write increment values are set according to the transfer
size specified in the control register, as shown in Table 24–1.

Table 24–1. Address Increment Values

Transfer Width Increment

byte 1

halfword 2

word 4

doubleword 8

quadword 16
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

24–4 Chapter 24: DMA Controller Core
Instantiating the Core in SOPC Builder
1 In systems with heterogeneous data widths, care must be taken to present the correct
address or offset when configuring the DMA to access native-aligned slaves. For
example, in a system using a 32-bit Nios II processor and a 16-bit DMA, the base
address for the UART txdata register must be divided by the
dma_data_width/cpu_data_width—2 in this example.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ Interface for the DMA controller in SOPC Builder to specify the
core’s configuration. Instantiating the DMA controller in SOPC Builder creates one
slave port and two master ports. You must specify which slave peripherals can be
accessed by the read and write master ports. Likewise, you must specify which other
master peripheral(s) can access the DMA control port and initiate DMA transactions.
The DMA controller does not export any signals to the top level of the system module.

DMA Parameters (Basic)
This section describes the parameters you can configure on the DMA Parameters
page.

Transfer Size
The parameter Width of the DMA Length Register specifies the minimum width of
the DMA’s transaction length register, which can be between 1 and 32. The length
register determines the maximum number of transfers possible in a single DMA
transaction.

By default, the length register is wide enough to span any of the slave peripherals
mastered by the read or write ports. Overriding the length register may be necessary
if the DMA master port (read or write) masters only data peripherals, such as a UART.
In this case, the address span of each slave is small, but a larger number of transfers
may be desired per DMA transaction.

Burst Transactions
When Enable Burst Transfers is turned on, the DMA controller performs burst
transactions on its master read and write ports. The parameter Maximum Burst Size
determines the maximum burst size allowed in a transaction.

In burst mode, the length of a transaction must not be longer than the configured
maximum burst size. Otherwise, the transaction must be performed as multiple
transactions.

FIFO Implementation
This option determines the implementation of the FIFO buffer between the master
read and write ports. Select Construct FIFO from Registers to implement the FIFO
using one register per storage bit. This option has a strong impact on logic utilization
when the DMA controller’s data width is large. See “Advanced Options” on
page 24–5.

To implement the FIFO using embedded memory blocks available in the FPGA, select
Construct FIFO from Memory Blocks.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 24: DMA Controller Core 24–5
Device Support
Advanced Options
This section describes the parameters you can configure on the Advanced Options
page.

Allowed Transactions
You can choose the transfer datawidth(s) supported by the DMA controller hardware.
The following datawidth options can be enabled or disabled:

■ Byte

■ Halfword (two bytes)

■ Word (four bytes)

■ Doubleword (eight bytes)

■ Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the number of on-chip logic resources
consumed by the DMA controller core. For example, if a system has both 16-bit and
32-bit memories, but the DMA controller transfers data to the 16-bit memory, 32-bit
transfers could be disabled to conserve logic resources.

Device Support
The DMA Controller Core with Avalon Interface supports all Altera device families.

Software Programming Model
This section describes the programming model for the DMA controller, including the
register map and software declarations to access the hardware. For Nios II processor
users, Altera provides HAL system library drivers that enable you to access the DMA
controller core using the HAL API for DMA devices.

HAL System Library Support
The Altera-provided driver implements a HAL DMA device driver that integrates
into the HAL system library for Nios II systems. HAL users should access the DMA
controller via the familiar HAL API, rather than accessing the registers directly.

c If your program uses the HAL device driver to access the DMA controller, accessing
the device registers directly interferes with the correct behavior of the driver.

The HAL DMA driver provides both ends of the DMA process; the driver registers
itself as both a receive channel (alt_dma_rxchan) and a transmit channel
(alt_dma_txchan). The Nios II Software Developer’s Handbook provides complete
details of the HAL system library and the usage of DMA devices.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

24–6 Chapter 24: DMA Controller Core
Software Programming Model
ioctl() Operations
ioctl() operation requests are defined for both the receive and transmit channels,
which allows you to control the hardware-dependent aspects of the DMA controller.
Two ioctl() functions are defined for the receiver driver and the transmitter driver:
alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl(). Table 24–2 lists the
available operations. These are valid for both the transmit and receive channels.

Limitations
Currently the Altera-provided drivers do not support 64-bit and 128-bit DMA
transactions.

This function is not thread safe. If you want to access the DMA controller from more
than one thread then you should use a semaphore or mutex to ensure that only one
thread is executing within this function at any time.

Software Files
The DMA controller is accompanied by the following software files. These files define
the low-level interface to the hardware. Application developers should not modify
these files.

■ altera_avalon_dma_regs.h—This file defines the core’s register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used only by device driver functions.

■ altera_avalon_dma.h, altera_avalon_dma.c—These files implement the DMA
controller’s device driver for the HAL system library.

Table 24–2. Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl()

Request Meaning

ALT_DMA_SET_MODE_8 Transfers data in units of 8 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_16 Transfers data in units of 16 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_32 Transfers data in units of 32 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_64 Transfers data in units of 64 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_128 Transfers data in units of 128 bits. The parameter arg is ignored.

ALT_DMA_RX_ONLY_ON (1) Sets a DMA receiver into streaming mode. In this case, data is read continuously from a
single location. The parameter arg specifies the address to read from.

ALT_DMA_RX_ONLY_OFF (1) Turns off streaming mode for a receive channel. The parameter arg is ignored.

ALT_DMA_TX_ONLY_ON (1) Sets a DMA transmitter into streaming mode. In this case, data is written continuously to
a single location. The parameter arg specifies the address to write to.

ALT_DMA_TX_ONLY_OFF (1) Turns off streaming mode for a transmit channel. The parameter arg is ignored.

Note to Table 24–2:

(1) These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names (ALT_DMA_TX_STREAM_ON,
ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should
use the new names.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 24: DMA Controller Core 24–7
Software Programming Model
Register Map
Programmers using the HAL API never access the DMA controller hardware directly
via its registers. In general, the register map is only useful to programmers writing a
device driver.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 24–3 shows the register map for the DMA controller. Device drivers control and
communicate with the hardware through five memory-mapped 32-bit registers.

status Register
The status register consists of individual bits that indicate conditions inside the
DMA controller. The status register can be read at any time. Reading the status
register does not change its value.

The status register bits are shown in Table 24–4.

Table 24–3. DMA Controller Register Map

Offset Register Name Read/Write 31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 status (1) RW (2)

L
E
N

W
E
O
P

R
E
O
P

B
U
S
Y

D
O
N
E

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW DMA transaction length (in bytes)

4 — — Reserved (3)

5 — — Reserved (3)

6 control RW (2)

S
O
F
T
W
A
R
E
R
E
S
E
T

Q
U
A
D
W
O
R
D

D
O
U
B
L
E
W
O
R
D

W
C
O
N

R
C
O
N

L
E
E
N

W
E
E
N

R
E
E
N

I
_
E
N

G
O

W
O
R
D

H
W

B
Y
T
E

7 — — Reserved (3)

Notes to Table 24–3:

(1) Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
(2) These bits are reserved. Read values are undefined. Write zero.
(3) This register is reserved. Read values are undefined. The result of a write is undefined.

Table 24–4. status Register Bits (Part 1 of 2)

Bit
Number

Bit
Name Read/Write/Clear Description

0 DONE R/C A DMA transaction is complete. The DONE bit is set to 1 when an end of packet
condition is detected or the specified transaction length is completed. Write
zero to the status register to clear the DONE bit.

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

24–8 Chapter 24: DMA Controller Core
Software Programming Model
readaddress Register
The readaddress register specifies the first location to be read in a DMA
transaction. The readaddress register width is determined at system generation
time. It is wide enough to address the full range of all slave ports mastered by the read
port.

writeaddress Register
The writeaddress register specifies the first location to be written in a DMA
transaction. The writeaddress register width is determined at system generation
time. It is wide enough to address the full range of all slave ports mastered by the
write port.

length Register
The length register specifies the number of bytes to be transferred from the read port
to the write port. The length register is specified in bytes. For example, the value
must be a multiple of 4 for word transfers, and a multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the write master
port. When length reaches 0 the LEN bit is set. The length register does not
decrement below 0.

The length register width is determined at system generation time. It is at least wide
enough to span any of the slave ports mastered by the read or write master ports, and
it can be made wider if necessary.

control Register
The control register is composed of individual bits that control the DMA’s internal
operation. The control register’s value can be read at any time. The control register
bits determine which, if any, conditions of the DMA transaction result in the end of a
transaction and an interrupt request.

The control register bits are shown in Table 24–5.

2 REOP R The REOP bit is 1 when a transaction is completed due to an end-of-packet
event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an end of packet
event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to zero.

Table 24–4. status Register Bits (Part 2 of 2)

Bit
Number

Bit
Name Read/Write/Clear Description

Table 24–5. Control Register Bits (Part 1 of 2)

Bit
Number Bit Name

Read/
Write/
Clear Description

0 BYTE RW Specifies byte transfers.

1 HW RW Specifies halfword (16-bit) transfers.

2 WORD RW Specifies word (32-bit) transfers.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 24: DMA Controller Core 24–9
Software Programming Model
The data width of DMA transactions is specified by the BYTE, HW, WORD,
DOUBLEWORD, and QUADWORD bits. Only one of these bits can be set at a time. If more
than one of the bits is set, the DMA controller behavior is undefined. The width of the
transfer is determined by the narrower of the two slaves read and written. For
example, a DMA transaction that reads from a 16-bit flash memory and writes to a
32-bit on-chip memory requires a halfword transfer. In this case, HW must be set to 1,
and BYTE, WORD, DOUBLEWORD, and QUADWORD must be set to 0.

To successfully perform transactions of a specific width, that width must be enabled
in hardware using the Allowed Transaction hardware option. For example, the DMA
controller behavior is undefined if quadword transfers are disabled in hardware, but
the QUADWORD bit is set during a DMA transaction.

3 GO RW Enables DMA transaction. When the GO bit is set to 0, the DMA is prevented
from executing transfers. When the GO bit is set to 1 and the length register
is non-zero, transfers occur.

4 I_EN RW Enables interrupt requests (IRQ). When the I_EN bit is 1, the DMA
controller generates an IRQ when the status register’s DONE bit is set to 1.
IRQs are disabled when the I_EN bit is 0.

5 REEN RW Ends transaction on read-side end-of-packet. When the REEN bit is set to 1,
a slave port with flow control on the read side may end the DMA transaction
by asserting its end-of-packet signal.

6 WEEN RW Ends transaction on write-side end-of-packet. When the WEEN bit is set
to 1, a slave port with flow control on the write side may end the DMA
transaction by asserting its end-of-packet signal.

7 LEEN RW Ends transaction when the length register reaches zero. When the
LEEN bit is 1, the DMA transaction ends when the length register
reaches 0. When this bit is 0, length reaching 0 does not cause a
transaction to end. In this case, the DMA transaction must be terminated by
an end-of-packet signal from either the read or write master port.

8 RCON RW Reads from a constant address. When RCON is 0, the read address
increments after every data transfer. This is the mechanism for the DMA
controller to read a range of memory addresses. When RCON is 1, the read
address does not increment. This is the mechanism for the DMA controller
to read from a peripheral at a constant memory address. For details, see
“Addressing and Address Incrementing” on page 24–3.

9 WCON RW Writes to a constant address. Similar to the RCON bit, when WCON is 0 the
write address increments after every data transfer; when WCON is 1 the
write address does not increment. For details, see “Addressing and Address
Incrementing” on page 24–3.

10 DOUBLEWORD RW Specifies doubleword transfers.

11 QUADWORD RW Specifies quadword transfers.

12 SOFTWARERESET RW Software can reset the DMA engine by writing this bit to 1 twice. Upon the
second write of 1 to the SOFTWARERESET bit, the DMA control is reset
identically to a system reset. The logic which sequences the software reset
process then resets itself automatically.

Table 24–5. Control Register Bits (Part 2 of 2)

Bit
Number Bit Name

Read/
Write/
Clear Description
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

24–10 Chapter 24: DMA Controller Core
Referenced Documents
c Executing a DMA software reset when a DMA transfer is active may result in
permanent bus lockup (until the next system reset). The SOFTWARERESET bit should
therefore not be written except as a last resort.

Interrupt Behavior
The DMA controller has a single IRQ output that is asserted when the status
register’s DONE bit equals 1 and the control register’s I_EN bit equals 1.

Writing the status register clears the DONE bit and acknowledges the IRQ. A master
peripheral can read the status register and determine how the DMA transaction
finished by checking the LEN, REOP, and WEOP bits.

Referenced Documents
This chapter references Avalon Interface Specifications.

Document Revision History
Table 24–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 24–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Updated the Functional Description of the core. Updates made to comply with the
Quartus II software version 8.0
release.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

QII55006-9.1.0
25. Video Sync Generator and Pixel
Converter Cores
Core Overview
The video sync generator core accepts a continuous stream of pixel data in RGB
format, and outputs the data to an off-chip display controller with proper timing. You
can configure the video sync generator core to support different display resolutions
and synchronization timings.

The pixel converter core transforms the pixel data to the format required by the video
sync generator. Figure 25–1 shows a typical placement of the video sync generator
and pixel converter cores in a system.

In this example, the video buffer stores the pixel data in 32-bit unpacked format. The
extra byte in the pixel data is discarded by the pixel converter core before the data is
serialized and sent to the video sync generator core.

The video sync generator and pixel converter cores are SOPC Builder-ready and
integrate easily into any SOPC Builder-generated system.

These cores are deployed in the Nios II Embedded Software Evaluation Kit (NEEK),
which includes an LCD display daughtercard assembly attached via an HSMC
connector.

This chapter contains the following sections:

■ “Video Sync Generator” on page 25–2

■ “Pixel Converter” on page 25–5

■ “Device Support” on page 25–6

■ “Hardware Simulation Considerations” on page 25–6

Figure 25–1. Typical Placement in a System

Video
Buffer

SGDMA FIFO
Pixel

Converter

Data
Format
Adapter

Video
Sync

Generator32 bits 32 bits 32 bits 24 bits 8 bits 8 bits

0RGB BGR0 BGR0 BGR B,G,R B,G,R

Avalon-MM Avalon-ST
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

25–2 Chapter 25: Video Sync Generator and Pixel Converter Cores
Video Sync Generator
Video Sync Generator
This section describes the hardware structure and functionality of the video sync
generator core.

Functional Description
The video sync generator core adds horizontal and vertical synchronization signals to
the pixel data that comes through its Avalon® (Avalon-ST) input interface and outputs
the data to an off-chip display controller. No processing or validation is performed on
the pixel data. Figure 25–2 shows a block diagram of the video sync generator.

You can configure various aspects of the core and its Avalon-ST interface to suit your
requirements. You can specify the data width, number of beats required to transfer
each pixel and synchronization signals. See “Instantiating the Core in SOPC Builder”
on page 25–3 for more information on the available options.

To ensure incoming pixel data is sent to the display controller with correct timing, the
video sync generator core must synchronize itself to the first pixel in a frame. The first
active pixel is indicated by an sop pulse.

The video sync generator core expects continuous streams of pixel data at its input
interface and assumes that each incoming packet contains the correct number of
pixels (Number of rows * Number of columns). Data starvation disrupts
synchronization and results in unexpected output on the display.

Figure 25–2. Video Sync Generator Block Diagram

clk

reset

data

ready

valid

sop

eop

rgb_out

hd

vd

den

VIDEO SYNC GENERATOR
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 25: Video Sync Generator and Pixel Converter Cores 25–3
Video Sync Generator
Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the video sync generator core in SOPC Builder to
configure the core. Table 25–1 lists the available parameters in the MegaWizard
interface.

Table 25–1. Video Sync Generator Parameters

Parameter Name Description

Horizontal Sync Pulse Pixels The width of the h-sync pulse in number of pixels.

Total Vertical Scan Lines The total number of lines in one video frame. The value is the sum of the following
parameters: Number of Rows, Vertical Blank Lines, and Vertical Front Porch Lines.

Number of Rows The number of active scan lines in each video frame.

Horizontal Sync Pulse
Polarity

The polarity of the h-sync pulse; 0 = active low and 1 = active high.

Horizontal Front Porch Pixels The number of blanking pixels that follow the active pixels. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Sync Pulse Polarity The polarity of the v-sync pulse; 0 = active low and 1 = active high.

Vertical Sync Pulse Lines The width of the v-sync pulse in number of lines.

Vertical Front Porch Lines The number of blanking lines that follow the active lines. During this period, there is no data
flow from the Avalon-ST sink port to the LCD output data port.

Number of Columns The number of active pixels in each line.

Horizontal Blank Pixels The number of blanking pixels that precede the active pixels. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal Scan Pixels The total number of pixels in one line. The value is the sum of the following parameters:
Number of Columns, Horizontal Blank Pixel, and Horizontal Front Porch Pixels.

Beats Per Pixel The number of beats required to transfer one pixel. Valid values are 1 and 3. This
parameter, when multiplied by Data Stream Bit Width must be equal to the total number of
bits in one pixel. This parameter affects the operating clock frequency, as shown in the
following equation:

Operating clock frequency = (Beats per pixel) * (Pixel_rate), where
Pixel_rate (in MHz) = ((Total Horizontal Scan Pixels) * (Total Vertical Scan Lines) *
(Display refresh rate in Hz))/1000000.

Vertical Blank Lines The number of blanking lines that proceed the active lines. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Data Stream Bit Width The width of the inbound and outbound data.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

25–4 Chapter 25: Video Sync Generator and Pixel Converter Cores
Video Sync Generator
Signals
Table 25–2 lists the input and output signals for the video sync generator core.

Timing Diagrams
The horizontal and vertical synchronization timings are determined by the
parameters setting. Figure 25–3 shows the horizontal synchronization timing when
the parameters Data Stream Bit Width and Beats Per Pixel are set to 8 and 3,
respectively.

Table 25–2. Video Sync Generator Core Signals

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input System clock.

reset 1 Input System reset.

Avalon-ST Signals

data Variable-
width

Input Incoming pixel data. The datawidth is determined by the parameter Data
Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is ready to receive
the pixel data.

valid 1 Input This signal is not used by the video sync generator core because the core
always expects valid pixel data on the next clock cycle after the ready
signal is asserted.

sop 1 Input Start-of-packet. This signal is asserted when the first pixel is received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is received.

LCD Output Signals

rgb_out Variable-
width

Output Display data. The datawidth is determined by the parameter Data Stream
Bit Width.

hd 1 Output Horizontal synchronization pulse for display.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core outputs valid
data for display.

Figure 25–3. Horizontal Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel

clk

hd

den

rgb_out R G B R G B

Horizontal sync pulse

Horizontal front porch

1 pixel

Horizontal blank pixels

Horizontal synchronization width
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 25: Video Sync Generator and Pixel Converter Cores 25–5
Pixel Converter
Figure 25–4 sho.ws the horizontal synchronization timing when the parameters Data
Stream Bit Width and Beats Per Pixel are set to 24 and 1, respectively.

Figure 25–5 shows the vertical synchronization timing.

Pixel Converter
This section describes the hardware structure and functionality of the pixel converter
core.

Functional Description
The pixel converter core receives pixel data on its Avalon-ST input interface and
transforms the pixel data to the format required by the video sync generator. The least
significant byte of the 32-bit wide pixel data is removed and the remaining 24 bits are
wired directly to the core's Avalon-ST output interface.

Instantiating the Core in SOPC Builder
Use the MegaWizard interface for the pixel converter core in SOPC Builder to add the
core to a system. You can configure the following parameter:

Source symbols per beat—The number of symbols per beat on the Avalon-ST source
interface.

Figure 25–4. Horizontal Synchronization Timing—24 Bits DataWidth and 1 Beat Per Pixel

clk

hd

den

rgb_out RGB

Horizontal synchronization pulse

Horizontal blank pixels Horizontal front porch

1 pixel

RGBRGB RGBRGBRGB

Horizontal synchronization width

Figure 25–5. Vertical Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel / 24 Bits DataWidth and 1 Beat Per
Pixel

hd

den

Vertical blank lines

Horizontal synchronization width

vd

Vertical synchronization width

Vertical front porch

Vertical synchronization pulse
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

25–6 Chapter 25: Video Sync Generator and Pixel Converter Cores
Device Support
Signals
Table 25–3 lists the input and output signals for the pixel converter core.

Device Support
The video sync generator and pixel converter cores support all Altera device families.

Hardware Simulation Considerations
For a typical 60 Hz refresh rate, set the simulation length for the video sync generator
core to at least 16.7 s to get a full video frame. Depending on the size of the video
frame, simulation may take a very long time to complete.

Referenced Documents
This chapter references Avalon Interface Specifications.

Table 25–3. Pixel Converter Input Interface Signals

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input
Not in use.

reset_n 1 Input

Avalon-ST Signals

data_in 32 Input Incoming pixel data. Contains four 8-bit symbols that are transferred in 1
beat.

data_out 24 Output Output data. Contains three 8-bit symbols that are transferred in 1 beat.

sop_in 1 Input

Wired directly to the corresponding output signals.

eop_in 1 Input

ready_in 1 Input

valid_in 1 Input

empty_in 1 Input

sop_out 1 Output

Wired directly from the input signals.

eop_out 1 Output

ready_out 1 Output

valid_out 1 Output

empty_out 1 Output
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 25: Video Sync Generator and Pixel Converter Cores 25–7
Document Revision History
Document Revision History
Table 25–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 25–4. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Added new parameters for both cores. Updates made to comply with
the Quartus II software version
8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

25–8 Chapter 25: Video Sync Generator and Pixel Converter Cores
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51008-9.1.0
26. Interval Timer Core
Core Overview
The Interval Timer core with Avalon® interface is an interval timer for Avalon-based
processor systems, such as a Nios® II processor system. The core provides the
following features:

■ 32-bit and 64-bit counters.

■ Controls to start, stop, and reset the timer.

■ Two count modes: count down once and continuous count-down.

■ Count-down period register.

■ Option to enable or disable the interrupt request (IRQ) when timer reaches zero.

■ Optional watchdog timer feature that resets the system if timer ever reaches zero.

■ Optional periodic pulse generator feature that outputs a pulse when timer reaches
zero.

■ Compatible with 32-bit and 16-bit processors.

Device drivers are provided in the HAL system library for the Nios II processor. The
interval timer core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 26–2

■ “Instantiating the Core in SOPC Builder” on page 26–3

■ “Software Programming Model” on page 26–5

Functional Description
Figure 26–1 shows a block diagram of the interval timer core.

Figure 26–1. Interval Timer Core Block Diagram

Register File

status

 control

 period_n

snap_n

IRQ

Address &
Data

Avalon-MM
slave interface

to on-chip
logic

Control
Logic

resetrequest

(watchdog)

timeout_pulse

Counter
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

26–2 Chapter 26: Interval Timer Core
Device Support
The intervanl timer core has two user-visible features:

■ The Avalon Memory-Mapped (Avalon-MM) interface that provides access to six
16-bit registers

■ An optional pulse output that can be used as a periodic pulse generator

All registers are 16-bits wide, making the core compatible with both 16-bit and 32-bit
processors. Certain registers only exist in hardware for a given configuration. For
example, if the core is configured with a fixed period, the period registers do not exist
in hardware.

The following sequence describes the basic behavior of the interval timer core:

■ An Avalon-MM master peripheral, such as a Nios II processor, writes the core's
control register to perform the following tasks:

■ Start and stop the timer

■ Enable/disable the IRQ

■ Specify count-down once or continuous count-down mode

■ A processor reads the status register for information about current timer activity.

■ A processor can specify the timer period by writing a value to the period registers.

■ An internal counter counts down to zero, and whenever it reaches zero, it is
immediately reloaded from the period registers.

■ A processor can read the current counter value by first writing to one of the snap
registers to request a coherent snapshot of the counter, and then reading the snap
registers for the full value.

■ When the count reaches zero, one or more of the following events are triggered:

■ If IRQs are enabled, an IRQ is generated.

■ The optional pulse-generator output is asserted for one clock period.

■ The optional watchdog output resets the system.

Avalon-MM Slave Interface
The interval timer core implements a simple Avalon-MM slave interface to provide
access to the register file. The Avalon-MM slave port uses the resetrequest signal
to implement watchdog timer behavior. This signal is a non-maskable reset signal,
and it drives the reset input of all Avalon-MM peripherals in the SOPC Builder
system. When the resetrequest signal is asserted, it forces any processor
connected to the system to reboot. For more information, refer to “Configuring the
Timer as a Watchdog Timer” on page 26–4.

Device Support
The interval timer core supports all Altera® device families.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 26: Interval Timer Core 26–3
Instantiating the Core in SOPC Builder
Instantiating the Core in SOPC Builder
Use the MegaWizard™ Interface for the interval timer core in SOPC Builder to specify
the hardware features. This section describes the options available in the MegaWizard
Interace.

Timeout Period
The Timeout Period setting determines the initial value of the period registers. When
the Writeable period option is on, a processor can change the value of the period by
writing to the period registers. When the Writeable period option is off, the period is
fixed and cannot be updated at runtime. See “Hardware Options” on page 26–3 for
information on register options.

The Timeout Period is an integer multiple of the Timer Frequency. The Timer
Frequency is fixed at the frequency setting of the system clock associated with the
timer. The Timeout Period setting can be specified in units of µs (microseconds), ms
(milliseconds), seconds , or clocks (number of cycles of the system clock associated
with the timer). The actual period depends on the frequency of the system clock
associated with the timer. If the period is specified in µs, ms, or seconds, the true
period will be the smallest number of clock cycles that is greater or equal to the
specified Timeout Period value. For example, if the associated system clock has a
frequency of 30 ns, and the specified Timeout Period value is 1 µs, the true timeout
period will be 1.020 microseconds.

Counter Size
The Counter Size setting determines the timer's width, which can be set to either 32 or
64 bits. A 32-bit timer has two 16-bit period registers, whereas a 64-bit timer has four
16-bit period registers. This option applies to the snap registers as well.

Hardware Options
The following options affect the hardware structure of the interval timer core. As a
convenience, the Preset Configurations list offers several pre-defined hardware
configurations, such as:

■ Simple periodic interrupt—This configuration is useful for systems that require
only a periodic IRQ generator. The period is fixed and the timer cannot be
stopped, but the IRQ can be disabled.

■ Full-featured—This configuration is useful for embedded processor systems that
require a timer with variable period that can be started and stopped under
processor control.

■ Watchdog—This configuration is useful for systems that require watchdog timer
to reset the system in the event that the system has stopped responding. Refer to
“Configuring the Timer as a Watchdog Timer” on page 26–4.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

26–4 Chapter 26: Interval Timer Core
Instantiating the Core in SOPC Builder
Register Options
Table 26–1 shows the settings that affect the interval timer core's registers.

Output Signal Options
Table 26–2 shows the settings that affect the interval timer core's output signals.

Configuring the Timer as a Watchdog Timer
To configure the core for use as a watchdog, in the MegaWizard Interface select
Watchdog in the Preset Configurations list, or choose the following settings:

■ Set the Timeout Period to the desired "watchdog" period.

■ Turn off Writeable period.

■ Turn off Readable snapshot.

■ Turn off Start/Stop control bits.

■ Turn off Timeout pulse.

■ Turn on System reset on timeout (watchdog).

Table 26–1. Register Options

Option Description

Writeable
period

When this option is enabled, a master peripheral can change the count-down period by writing to the period
registers. When disabled, the count-down period is fixed at the specified Timeout Period, and the period
registers do not exist in hardware.

Readable
snapshot

When this option is enabled, a master peripheral can read a snapshot of the current count-down. When
disabled, the status of the counter is detectable only via other indicators, such as the status register or the
IRQ signal. In this case, the snap registers do not exist in hardware, and reading these registers produces an
undefined value.

Start/Stop
control bits

When this option is enabled, a master peripheral can start and stop the timer by writing the START and STOP
bits in the control register. When disabled, the timer runs continuously. When the System reset on
timeout (watchdog) option is enabled, the START bit is also present, regardless of the Start/Stop control
bits option.

Table 26–2. Output Signal Options

Option Description

Timeout pulse
(1 clock wide)

When this option is on, the core outputs a signal timeout_pulse. This signal pulses high for one
clock cycle whenever the timer reaches zero. When this option is off, the timeout_pulse signal
does not exist.

System reset on
timeout
(watchdog)

When this option is on, the core’s Avalon-MM slave port includes the resetrequest signal. This
signal pulses high for one clock cycle whenever the timer reaches zero resulting in a system-wide
reset. The internal timer is stopped at reset. Explicitly writing the START bit of the control register
starts the timer.

When this option is off, the resetrequest signal does not exist.

Refer to “Configuring the Timer as a Watchdog Timer”.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 26: Interval Timer Core 26–5
Software Programming Model
A watchdog timer wakes up (comes out of reset) stopped. A processor later starts the
timer by writing a 1 to the control register's START bit. Once started, the timer can
never be stopped. If the internal counter ever reaches zero, the watchdog timer resets
the system by generating a pulse on its resetrequest output. To prevent the system
from resetting, the processor must periodically reset the timer's count-down value by
writing one of the period registers (the written value is ignored). If the processor fails
to access the timer because, for example, software stopped executing normally, the
watchdog timer resets the system and returns the system to a defined state.

Software Programming Model
The following sections describe the software programming model for the interval
timer core, including the register map and software declarations to access the
hardware. For Nios II processor users, Altera provides hardware abstraction layer
(HAL) system library drivers that enable you to access the interval timer core using
the HAL application programming interface (API) functions.

HAL System Library Support
The Altera-provided drivers integrate into the HAL system library for Nios II
systems. When possible, HAL users should access the core via the HAL API, rather
than accessing the core's registers directly.

Altera provides a driver for both the HAL timer device models: system clock timer,
and timestamp timer.

System Clock Driver
When configured as the system clock, the interval timer core runs continuously in
periodic mode, using the default period set in SOPC builder. The system clock
services are then run as a part of the interrupt service routine for this timer. The driver
is interrupt-driven, and therefore must have its interrupt signal connected in the
system hardware.

The Nios II integrated development environment (IDE) allows you to specify system
library properties that determine which timer device will be used as the system clock
timer.

Timestamp Driver
The interval timer core may be used as a timestamp device if it meets the following
conditions:

■ The timer has a writeable period register, as configured in SOPC Builder.

■ The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that determine which
timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers, calls to the
alt_timestamp_start() API function will not reset the timestamp counter. All
other HAL API calls will perform as expected.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

26–6 Chapter 26: Interval Timer Core
Software Programming Model
f For more information about using the system clock and timestamp features that use
these drivers, refer to the Nios II Software Developer’s Handbook. The Nios II Embedded
Design Suite (EDS) also provides several example designs that use the interval timer
core.

Limitations
The HAL driver for the interval timer core does not support the watchdog reset
feature of the core.

Software Files
The interval timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL drivers.
Application developers should not modify these files.

■ altera_avalon_timer_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware.

■ altera_avalon_timer.h, altera_avalon_timer_sc.c, altera_avalon_timer_ts.c,
altera_avalon_timer_vars.c—These files implement the timer device drivers for
the HAL system library.

Register Map
You do not need to access the interval timer core directly via its registers if using the
standard features provided in the HAL system library for the Nios II processor. In
general, the register map is only useful to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate correctly.

Table 26–3 shows the register map for the 32-bit timer. The interval timer core uses
native address alignment. For example, to access the control register value, use
offset 0x4.

f For more information about native address alignment, refer to the System Interconnect
Fabric for Memory-Mapped Interfaces.

Table 26–3. Register Map—32-bit Timer

Offset Name R/W

Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits [15:0])

3 periodh RW Timeout Period – 1 (bits [31:16])

4 snapl RW Counter Snapshot (bits [15:0])

5 snaph RW Counter Snapshot (bits [31:16])

Note to Table 26–3:

(1) Reserved. Read values are undefined. Write zero.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

Chapter 26: Interval Timer Core 26–7
Software Programming Model
Table 26–4 shows the register map for the 64-bit timer.

status Register
The status register has two defined bits, as shown in Table 26–5.

control Register
The control register has four defined bits, as shown in Table 26–6.

Table 26–4. Register Map—64-bit Timer

Offset Name R/W

Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 period_0 RW Timeout Period – 1 (bits [15:0])

3 period_1 RW Timeout Period – 1 (bits [31:16])

4 period_2 RW Timeout Period – 1 (bits [47:32])

5 period_3 RW Timeout Period – 1 (bits [63:48])

6 snap_0 RW Counter Snapshot (bits [15:0])

7 snap_1 RW Counter Snapshot (bits [31:16])

8 snap_2 RW Counter Snapshot (bits [47:32])

9 snap_3 RW Counter Snapshot (bits [63:48])

Note to Table 26–4:

(1) Reserved. Read values are undefined. Write zero.

Table 26–5. status Register Bits

Bit Name R/W/C Description

0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once set by a
timeout event, the TO bit stays set until explicitly cleared by a master peripheral. Write zero
to the status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit reads as 0.
The RUN bit is not changed by a write operation to the status register.

Table 26–6. control Register Bits (Part 1 of 2)

Bit Name R/W/C Description

0 ITO RW If the ITO bit is 1, the interval timer core generates an IRQ when the status register’s
TO bit is 1. When the ITO bit is 0, the timer does not generate IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves when it reaches
zero. If the CONT bit is 1, the counter runs continuously until it is stopped by the
STOP bit. If CONT is 0, the counter stops after it reaches zero. When the counter reaches
zero, it reloads with the value stored in the period registers, regardless of the CONT bit.

2 START
(1)

W Writing a 1 to the START bit starts the internal counter running (counting down). The
START bit is an event bit that enables the counter when a write operation is performed. If
the timer is stopped, writing a 1 to the START bit causes the timer to restart counting
from the number currently stored in its counter. If the timer is already running, writing a 1
to START has no effect. Writing 0 to the START bit has no effect.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

26–8 Chapter 26: Interval Timer Core
Referenced Documents
period_n Registers
The period_n registers together store the timeout period value. The internal counter
is loaded with the value stored in these registers whenever one of the following
occurs:

■ A write operation to one of the period_n register

■ The internal counter reaches 0

The timer's actual period is one cycle greater than the value stored in the period_n
registers because the counter assumes the value zero for one clock cycle.

Writing to one of the period_n registers stops the internal counter, except when the
hardware is configured with Start/Stop control bits off. If Start/Stop control bits is
off, writing either register does not stop the counter. When the hardware is configured
with Writeable period disabled, writing to one of the period_n registers causes the
counter to reset to the fixed Timeout Period specified at system generation time.

snap_n Registers
A master peripheral may request a coherent snapshot of the current internal counter
by performing a write operation (write-data ignored) to one of the snap_n registers.
When a write occurs, the value of the counter is copied to snap_n registers. The
snapshot occurs whether or not the counter is running. Requesting a snapshot does
not change the internal counter's operation.

Interrupt Behavior
The interval timer core generates an IRQ whenever the internal counter reaches zero
and the ITO bit of the control register is set to 1. Acknowledge the IRQ in one of
two ways:

■ Clear the TO bit of the status register

■ Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Referenced Documents
This chapter references the Nios II Software Developer's Handbook.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an event bit that
causes the counter to stop when a write operation is performed. If the timer is already
stopped, writing a 1 to STOP has no effect. Writing a 0 to the stop bit has no effect.

If the timer hardware is configured with Start/Stop control bits off, writing the STOP bit
has no effect.

Note to Table 26–6:

(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.

Table 26–6. control Register Bits (Part 2 of 2)

Bit Name R/W/C Description
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 26: Interval Timer Core 26–9
Document Revision History
Document Revision History
Table 26–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 26–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

Revised descriptions of register fields and bits. The timer component is
using native address
alignment.

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Updated the core’s name to reflect the
name used in SOPC Builder.

—

May 2008

v8.0.0

Added a new parameter and register map for the 64-bit timer. Updates made to comply
with the Quartus II software
version 8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

26–10 Chapter 26: Interval Timer Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51020-9.1.0
27. Mutex Core
Core Overview
Multiprocessor environments can use the mutex core with Avalon® interface to
coordinate accesses to a shared resource. The mutex core provides a protocol to ensure
mutually exclusive ownership of a shared resource.

The mutex core provides a hardware-based atomic test-and-set operation, allowing
software in a multiprocessor environment to determine which processor owns the
mutex. The mutex core can be used in conjunction with shared memory to implement
additional interprocessor coordination features, such as mailboxes and software
mutexes.

The mutex core is designed for use in Avalon-based processor systems, such as a
Nios® II processor system. Altera provides device drivers for the Nios II processor to
enable use of the hardware mutex.

The mutex core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 27–2

■ “Instantiating the Core in SOPC Builder” on page 27–2

■ “Software Programming Model” on page 27–2

■ “Mutex API” on page 27–4

Functional Description
The mutex core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface
that provides access to two memory-mapped, 32-bit registers. Table 27–1 shows the
registers.

The mutex core has the following basic behavior. This description assumes there are
multiple processors accessing a single mutex core, and each processor has a unique
identifier (ID).

■ When the VALUE field is 0x0000, the mutex is unlocked and available. Otherwise,
the mutex is locked and unavailable.

■ The mutex register is always readable. Avalon-MM master peripherals, such as a
processor, can read the mutex register to determine its current state.

Table 27–1. Mutex Core Register Map

Offset Register Name R/W

Bit Description

31 16 15 1 0

0 mutex RW OWNER VALUE

1 reset RW Reserved RESET
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

27–2 Chapter 27: Mutex Core
Device Support
■ The mutex register is writable only under specific conditions. A write operation
changes the mutex register only if one or both of the following conditions are true:

■ The VALUE field of the mutex register is zero.

■ The OWNER field of the mutex register matches the OWNER field in the data to be
written.

■ A processor attempts to acquire the mutex by writing its ID to the OWNER field, and
writing a non-zero value to the VALUE field. The processor then checks if the
acquisition succeeded by verifying the OWNER field.

■ After system reset, the RESET bit in the reset register is high. Writing a one to
this bit clears it.

Device Support
The mutex core supports all Altera device families.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ Interface for the mutex core in SOPC Builder to specify the
core's hardware features. The MegaWizard Interface provides the following options:

■ Initial Value—the initial contents of the VALUE field after reset. If the Initial Value
setting is non-zero, you must also specify Initial Owner.

■ Initial Owner—the initial contents of the OWNER field after reset. When Initial
Owner is specified, this owner must release the mutex before it can be acquired by
another owner.

Software Programming Model
The following sections describe the software programming model for the mutex core.
For Nios II processor users, Altera provides routines to access the mutex core
hardware. These functions are specific to the mutex core and directly manipulate low-
level hardware. The mutex core cannot be accessed via the HAL API or the ANSI C
standard library. In Nios II processor systems, a processor locks the mutex by writing
the value of its cpuid control register to the OWNER field of the mutex register.

Software Files
Altera provides the following software files accompanying the mutex core:

■ altera_avalon_mutex_regs.h—Defines the core's register map, providing symbolic
constants to access the low-level hardware.

■ altera_avalon_mutex.h—Defines data structures and functions to access the
mutex core hardware.

■ altera_avalon_mutex.c—Contains the implementations of the functions to access
the mutex core
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 27: Mutex Core 27–3
Software Programming Model
Hardware Access Routines
This section describes the low-level software constructs for manipulating the mutex
core. The file altera_avalon_mutex.h declares a structure alt_mutex_dev that
represents an instance of a mutex device. It also declares routines for accessing the
mutex hardware structure, listed in Table 27–2.

These routines coordinate access to the software mutex structure using a hardware
mutex core. For a complete description of each function, see section “Mutex API” on
page 27–4.

The code shown in Example 27–1 demonstrates opening a mutex device handle and
locking a mutex.

Table 27–2. Hardware Access Routines

Function Name Description

altera_avalon_mutex_open() Claims a handle to a mutex, enabling all the other functions to access
the mutex core.

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to lock the mutex.

altera_avalon_mutex_lock() Locks the mutex. Will not return until it has successfully claimed the
mutex.

altera_avalon_mutex_unlock() Unlocks the mutex.

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() Tests whether the mutex has been released since reset.

Example 27–1. Opening and Locking a mutex

#include <altera_avalon_mutex.h>
/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open(“/dev/mutex”);
/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock(mutex, 1);
/*
* Access a shared resource here.
*/

/* release the lock */
altera_avalon_mutex_unlock(mutex);
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

27–4 Chapter 27: Mutex Core
Mutex API
Mutex API
This section describes the application programming interface (API) for the mutex
core.

altera_avalon_mutex_is_mine()

altera_avalon_mutex_first_lock()

altera_avalon_mutex_lock()

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.

Description: altera_avalon_mutex_first_lock() determines whether this mutex has been
released since reset.

Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to acquire.

value—the new value to write to the mutex.

Returns: —

Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware mutex,
and at the same time, loads the mutex with the value parameter.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 27: Mutex Core 27–5
Mutex API
altera_avalon_mutex_open()

altera_avalon_mutex_trylock()

altera_avalon_mutex_unlock()

Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if no
corresponding mutex device structure was found.

Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device structure.

Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to lock.

value—the new value to write to the mutex.

Returns: 0 = The mutex was successfully locked.
Others = The mutex was not locked.

Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and returns
immediately.

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: Null.

Description: altera_avalon_mutex_unlock() releases a hardware mutex device. Upon release, the
value stored in the mutex is set to zero. If the caller does not hold the mutex, the behavior of this
function is undefined.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

27–6 Chapter 27: Mutex Core
Document Revision History
Document Revision History
Table 27–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 27–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

NII53001-9.1.0
28. Mailbox Core
Core Overview
Multiprocessor environments can use the mailbox core with Avalon® interface to send
messages between processors.

The mailbox core contains mutexes to ensure that only one processor modifies the
mailbox contents at a time. The mailbox core must be used in conjunction with a
separate shared memory that is used for storing the actual messages.

The mailbox core is designed for use in Avalon-based processor systems, such as a
Nios® II processor system. Altera provides device drivers for the Nios II processor.
The mailbox core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 28–2

■ “Instantiating the Core in SOPC Builder” on page 28–2

■ “Software Programming Model” on page 28–3

■ “Mailbox API” on page 28–5

Functional Description
The mailbox core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface
that provides access to four memory-mapped, 32-bit registers. Table 28–1 shows the
registers.

The mailbox component contains two mutexes: One to ensure unique write access to
shared memory and one to ensure unique read access from shared memory. The
mailbox core is used in conjunction with a separate memory in the system that is
shared among multiple processors.

Mailbox functionality using the mutexes and memory is implemented entirely in the
software. Refer to “Software Programming Model” on page 28–3 for details about
how to use the mailbox core in software.

f For a detailed description of the mutex hardware operation, refer to the Mutex Core
chapter in volume 5 of the Quartus II Handbook.

Table 28–1. Mutex Core Register Map

Offset Register Name R/W

Bit Description

31 16 15 1 0

0 mutex0 RW OWNER VALUE

1 reset0 RW Reserved RESET

2 mutex1 RW OWNER VALUE

3 reset1 RW Reserved RESET
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf

28–2 Chapter 28: Mailbox Core
Device Support
Device Support
The mailbox core supports all Altera® device families.

Instantiating the Core in SOPC Builder
You can instantiate and configure the mailbox core in an SOPC Builder system using
the following process:

1. Decide which processors share the mailbox.

2. On the SOPC Builder System Contents tab, instantiate a memory component to
serve as the mailbox buffer. Any RAM can be used as the mailbox buffer. The
mailbox buffer can share space in an existing memory, such as program memory; it
does not require a dedicated memory.

3. On the SOPC Builder System Contents tab, instantiate the mailbox component.
The mailbox MegaWizard™ Interface presents the following options:

■ Memory module—Specifies which memory to use for the mailbox buffer. If the
Memory module list does not contain the desired shared memory, the memory
is not connected in the system correctly. Refer to Step 4 on page 28–2.

■ CPUs available with this memory—Shows all the processors that can share
the mailbox. This field is always read-only. Use it to verify that the processor
connections are correct. If a processor that needs to share the mailbox is
missing from the list, refer to Step 4 on page 28–2.

■ Shared mailbox memory offset—Specifies an offset into the memory. The
mailbox message buffer starts at this offset.

■ Mailbox size (bytes)—Specifies the number of bytes to use for the mailbox
message buffer. The Nios II driver software provided by Altera uses eight bytes
of overhead to implement the mailbox functionality. For a mailbox capable of
passing only one message at a time, Mailbox size (bytes) must be at least 12
bytes.

■ Maximum available bytes—Specifies the number of bytes in the selected
memory available for use as the mailbox message buffer. This field is always
read-only.

4. If not already connected, make component connections on the SOPC Builder
System Contents tab.

a. Connect each processor’s data bus master port to the mailbox slave port.

b. Connect each processor’s data bus master port to the shared mailbox memory.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 28: Mailbox Core 28–3
Software Programming Model
Software Programming Model
The following sections describe the software programming model for the mailbox
core. For Nios II processor users, Altera provides routines to access the mailbox core
hardware. These functions are specific to the mailbox core and directly manipulate
low-level hardware.

The mailbox software programming model has the following characteristics and
assumes there are multiple processors accessing a single mailbox core and a shared
memory:

■ Each mailbox message is one 32-bit word.

■ There is a predefined address range in shared memory dedicated to storing
messages. The size of this address range imposes a maximum limit on the number
of messages pending.

■ The mailbox software implements a message FIFO between processors. Only one
processor can write to the mailbox at a time, and only one processor can read from
the mailbox at a time, ensuring message integrity.

■ The software on both the sending and receiving processors must agree on a
protocol for interpreting mailbox messages. Typically, processors treat the message
as a pointer to a structure in shared memory.

■ The sending processor can post messages in succession, up to the limit imposed by
the size of the message address range.

■ When messages exist in the mailbox, the receiving processor can read messages.
The receiving processor can block until a message appears, or it can poll the
mailbox for new messages.

■ Reading the message removes the message from the mailbox.

Software Files
Altera provides the following software files accompanying the mailbox core
hardware:

■ altera_avalon_mailbox_regs.h—Defines the core’s register map, providing
symbolic constants to access the low-level hardware.

■ altera_avalon_mailbox.h—Defines data structures and functions to access the
mailbox core hardware.

■ altera_avalon_mailbox.c—Contains the implementations of the functions to
access the mailbox core.

Programming with the Mailbox Core
This section describes the software constructs for manipulating the mailbox core
hardware.

The file altera_avalon_mailbox.h declares a structure alt_mailbox_dev that
represents an instance of a mailbox device. It also declares functions for accessing the
mailbox hardware structure, listed in Table 28–2. For a complete description of each
function, refer to “Mailbox API” on page 28–5.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

28–4 Chapter 28: Mailbox Core
Software Programming Model
Example 28–1 demonstrates writing to and reading from a mailbox. For this example,
assume that the hardware system has two processors communicating via mailboxes.
The system includes two mailbox cores, which provide two-way communication
between the processors.

Table 28–2. Mailbox API Functions

Function Name Description

altera_avalon_mailbox_close() Closes the handle to a mailbox.

altera_avalon_mailbox_get() Returns a message if one is present, but does not block waiting for a
message.

altera_avalon_mailbox_open() Claims a handle to a mailbox, enabling all the other functions to
access the mailbox core.

altera_avalon_mailbox_pend() Blocks waiting for a message to be in the mailbox.

altera_avalon_mailbox_post() Posts a message to the mailbox.

Example 28–1. Writing to and Reading from a Mailbox

#include <stdio.h>
#include "altera_avalon_mailbox.h"

int main()
{

alt_u32 message = 0;
alt_mailbox_dev* send_dev, recv_dev;
/* Open the two mailboxes between this processor and another */
send_dev = altera_avalon_mailbox_open("/dev/mailbox_0");
recv_dev = altera_avalon_mailbox_open("/dev/mailbox_1");

while(1)
{
/* Send a message to the other processor */
altera_avalon_mailbox_post(send_dev, message);

/* Wait for the other processor to send a message back */
message = altera_avalon_mailbox_pend(recv_dev);

}
return 0;

}

Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 28: Mailbox Core 28–5
Mailbox API
Mailbox API
This section describes the application programming interface (API) for the mailbox
core.

altera_avalon_mailbox_close()

altera_avalon_mailbox_get()

altera_avalon_mailbox_open()

Prototype: void altera_avalon_mailbox_close (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox to close.

Returns: Null.

Description: altera_avalon_mailbox_close() closes the mailbox.

Prototype: alt_u32 altera_avalon_mailbox_get (alt_mailbox_dev* dev, int*
err);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox handle.
err—pointer to an error code that is returned.

Returns: Returns a message if one is available in the mailbox, otherwise returns 0. The value pointed to by
err is 0 if the message was read correctly, or EWOULDBLOCK if there is no message to read.

Description: altera_avalon_mailbox_get() returns a message if one is present, but does not block
waiting for a message.

Prototype: alt_mailbox_dev* altera_avalon_mailbox_open (const char* name);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: name—the name of the mailbox device to open.

Returns: Returns a handle to the mailbox, or NULL if this mailbox does not exist.

Description: altera_avalon_mailbox_open() opens a mailbox.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

28–6 Chapter 28: Mailbox Core
Document Revision History
altera_avalon_mailbox_pend()

altera_avalon_mailbox_post()

Document Revision History
Table 28–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Prototype: alt_u32 altera_avalon_mailbox_pend (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to read a message from.

Returns: Returns the message.

Description: altera_avalon_mailbox_pend() is a blocking routine that waits for a message to
appear in the mailbox and then reads it.

Prototype: int altera_avalon_mailbox_post (alt_mailbox_dev* dev, alt_u32
msg);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to post a message to.
msg—the value to post.

Returns: Returns 0 on success, or EWOULDBLOCK if the mailbox is full.

Description: altera_avalon_mailbox_post() posts a message to the mailbox.

Table 28–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation

QII55018-9.1.0
29. Vectored Interrupt Controller Core
Core Overview
The vectored interrupt controller (VIC) core serves the following main purposes:

■ Provides an interface to the interrupts in your system

■ Reduces interrupt overhead

■ Manages large numbers of interrupts

The VIC offers high-performance, low-latency interrupt handling. The VIC prioritizes
interrupts in hardware and outputs information about the highest-priority pending
interrupt. When external interrupts occur in a system containing a VIC, the VIC
determines the highest priority interrupt, determines the source that is requesting
service, computes the requested handler address (RHA), and provides information,
including the RHA, to the processor.

The VIC core contains the following interfaces:

■ Up to 32 interrupt input ports per VIC core

■ One Avalon® Memory-Mapped (Avalon-MM) slave interface to access the internal
control status registers (CSR)

■ One Avalon Streaming (Avalon-ST) interface output interface to pass information
about the selected interrupt

■ One optional Avalon-ST interface input interface to receive the Avalon-ST output
in systems with daisy-chained VICs

Figure 29–1 outlines the basic layout of a system containing two VIC components.

To use the VIC, the processor in your system needs to have a matching Avalon-ST
interface to accept the interrupt information, such as the Nios® II processor's external
interrupt controller interface.

Figure 29–1. Sample System Layout

Avalon-MM Interconnect Fabric

VIC

CPU

IRQ

Core

Avalon-ST

..
....

IRQ

VIC

IRQ

Core ..
....

IRQ

Avalon-ST

Core Core
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–2 Chapter 29: Vectored Interrupt Controller Core
Functional Description
The characteristics of each interrupt port are configured via the Avalon-MM slave
interface. When you need more than 32 interrupt ports, you can daisy chain multiple
VICs together.

The VIC core provides the following features:

■ Separate programmable requested interrupt level (RIL) for each interrupt

■ Separate programmable requested register set (RRS) for each interrupt, to tell the
interrupt handler which processor register set to use

■ Separate programmable requested non-maskable interrupt (RNMI) flag for each
interrupt, to control whether each interrupt is maskable or non-maskable

■ Software-controlled priority arbitration scheme

The VIC core is SOPC Builder-ready and integrates easily into any SOPC Builder-
generated system. For the Nios II processor, Altera provides Hardware Abstraction
Layer (HAL) driver routines for the VIC core. Refer to “Altera HAL Software
Programming Model” on page 29–10 for HAL support details.

Functional Description
Figure 29–2 shows a high-level block diagram of the VIC core.

External Interfaces
The following sections describe the external interfaces for the VIC core.

clk
clk is a system clock interface. This interface connects to your system’s main clock
source. The interface’s signals are clk and reset_n.

irq_input
irq_input comprises up to 32 single-bit, level-sensitive Avalon interrupt receiver
interfaces. These interfaces connect to interrupt sources. There is one irq signal for
each interface.

Figure 29–2. VIC Block Diagram

Control Status Registers

csr_access
(Avalon-MM slave
from processor)

Interrupt
Request

Block
interrupt_controller_in

(optional Avalon-ST
VIC daisy chain input)

Vector
Generation

Block

Priority
Processing

Block

interrupt_controller_out
(Avalon-ST to processor or
to interrupt_controller_in

of another VIC)

clk
(clock)

irq_input
(external interrupt input)
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 29: Vectored Interrupt Controller Core 29–3
Functional Description
interrupt_controller_out
interrupt_controller_out is an Avalon-ST output interface, as defined in
Table 29–2, configured with a ready latency of 0 cycles. This interface connects to your
processor or to the interrupt_controller_in interface of another VIC. The
interface’s signals are valid and data. Table 29–1 shows the interface’s parameters
and the corresponding parameter values.

interrupt_controller_in
interrupt_controller_in is an optional Avalon-ST input interface, as defined in
Table 29–2, configured with a ready latency of 0 cycles. Include this interface in the
second, third, etc, VIC components of a daisy-chained multiple VIC system. This
interface connects to the interrupt_controller_out interface of the
immediately-preceding VIC in the chain. The interface’s signals are valid and data.
Table 29–1 shows the interface’s parameters and the corresponding parameter values.

The interrupt_controller_out and interrupt_controller_in interfaces
have identical Avalon-ST formats so you can daisy chain VICs together in SOPC
Builder when you need more than 32 interrupts. interrupt_controller_out
always provides valid data and cannot be back-pressured. Table 29–2 shows the fields
of the VIC’s 45-bit Avalon-ST interface.

csr_access
csr_access is a VIC CSR interface consisting of an Avalon-MM slave interface. This
interface connects to the data master of your processor. The interface’s signals are
read, write, address, readdata, and writedata. Table 29–3 shows the
interface’s parameters and the corresponding parameter values.

Table 29–1. interrupt_controller_out and interrupt_controller_in Parameters

Parameter Value

Symbol width 45 bits

Ready latency 0 cycles

Table 29–2. VIC Avalon-ST Interface Fields

44 43 42 41 40 39 38 38 37 ... 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RHA (1) RRS (2)
RN

M
I(

2) RIL (2)

Notes to Table 29–2:
(1) RHA contains the 32-bit address of the interrupt handling routine.
(2) Refer to Table 29–6 for a description of this field.

Table 29–3. csr_access Parameters

Parameter Value

Read wait 1 cycle

Write wait 0 cycles

Ready latency 4 cycles
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–4 Chapter 29: Vectored Interrupt Controller Core
Functional Description
f For information about the Avalon-MM slave and Avalon-ST interfaces, refer to the
Avalon Interface Specifications.

Functional Blocks
The following main design blocks comprise the VIC core:

■ Interrupt request block

■ Priority processing block

■ Vector generation block

The following sections describe each functional block.

Interrupt Request Block
The interrupt request block controls the input interrupts, providing functionality such
as setting interrupt levels, setting the per-interrupt programmable registers, masking
interrupts, and managing software-controlled interrupts. You configure the number
of interrupt input ports when you create the component. Refer to “Instantiating the
Core in SOPC Builder” on page 29–9 for configuration options.

This block contains the majority of the VIC CSRs. The CSRs are accessed via the
Avalon-MM slave interface.

Optional output from another VIC core can also come into the interrupt request block.
Refer to “Daisy Chaining VIC Cores” on page 29–5 for more information.

Figure 29–3 shows the details of the interrupt request block. Each interrupt can be
driven either by its associated irq_input signal (connected to a component with an
interrupt source) or by a software trigger controlled by a CSR (even when there is no
interrupt source connected to the irq_input signal).

Priority Processing Block
The priority processing block chooses the interrupt with the highest priority. The
block receives information for each interrupt from the interrupt request block and
passes information for the highest priority interrupt to the vector generation block.

Figure 29–3. Interrupt Request Block

irq_input
(external interrupt input)

INT_RAW_STATUS INT_ENABLE INT_PENDING

SW_INTERRUPT

RIL
per port

PortId[5:0]
x32

RRS[5:0]
x32

RNMI
x32

RIL[5:0]
x32

RRS
per port

RNMI
per port
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 29: Vectored Interrupt Controller Core 29–5
Functional Description
The interrupt request with the numerically-largest RIL has priority. If multiple
interrupts are pending with the same numerically-largest RIL, the numerically-lowest
IRQ index of those interrupts has priority.

The RIL is a programmable interrupt level per port. An RIL value of zero disables the
interrupt. You configure the bit width of the RIL when you create the component.
Refer to “Instantiating the Core in SOPC Builder” on page 29–9 for configuration
options.

Vector Generation Block
The vector generation block receives information for the highest priority interrupt
from the priority processing block. The vector generation block uses the port identifier
passed from the priority processing block along with the vector base address and
bytes per vector programmed in the CSRs during software initialization to compute
the RHA. Equation 29–1 shows the RHA formula.

The information then passes out of the vector generation block and the VIC using the
Avalon-ST interface. Refer to Table 29–2 on page 29–3 for details about the outgoing
information. The output from the VIC typically connects to a processor or another
VIC, depending on the design.

Daisy Chaining VIC Cores
You can create a system with more than 32 interrupts by daisy chaining multiple VIC
cores together. This is done by connecting the interrupt_controller_out
interface of one VIC to the optional interrupt_controller_in interface of
another VIC. For information about enabling the optional input interface, refer to
“Instantiating the Core in SOPC Builder” on page 29–9.

1 For performance reasons, always directly connect VIC components. Do not include
other components between VICs.

When daisy chain input comes into the VIC, the priority processing block considers
the daisy chain input along with the hardware and software interrupt inputs from the
interrupt request block to determine the highest priority interrupt. If the daisy chain
input has the highest RIL value, then the vector generation block passes the daisy
chain port values unchanged directly out of the VIC.

You can daisy chain VICs with fewer than 32 interrupt ports. The number of daisy
chain connections is only limited to the hardware and software resources. Refer to
“Latency Information” for details about the impact of multiple VICs.

1 Altera recommends setting the RIL width to the same value in all daisy-chained VIC
components. If your RIL widths are different, wider RILs from upstream VICs are
truncated.

Equation 29–1. RHA Calculation

RHA port identifier bytes per vector  vector base address+=
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–6 Chapter 29: Vectored Interrupt Controller Core
Register Maps
Latency Information
The latency of an interrupt request traveling through the VIC is the sum of the delay
through each of the blocks. Clock delays in the interrupt request block and the vector
generation block are constants. The clock delay in the priority processing block varies
depending on the total number of interrupt ports. Table 29–4 shows the latency
information.

When daisy-chaining multiple VICs, interrupt latency increases as you move through
the daisy chain away from the processor. For best performance, assign interrupts with
the lowest latency requirements to the VIC connected directly to the processor.

Register Maps
The VIC core CSRs are accessible through the Avalon-MM interface. Software can
configure the core and determine current status by accessing the registers.

1 Each register has a 32-bit interface that is not byte-enabled. You must access these
registers with a master that is at least 32 bits wide.

Table 29–5 lists and describes the registers.

Table 29–4. Clock Delay Latencies

Number of Interrupt
Ports

Interrupt Request
Block Delay

Priority Processing
Block Delay

Vector Generation
Block Delay

Total Interrupt
Latency

2 – 4 2 cycles 1 cycle 1 cycle 4 cycles

5 – 16 2 cycles 2 cycles 1 cycle 5 cycles

17 – 32 2 cycles 3 cycles 1 cycle 6 cycles

Table 29–5. Control Status Registers (Part 1 of 3)

Offset Register Name Access
Reset
Value Description

0 – 31 INT_CONFIG<n> R/W 0 There are 32 interrupt configuration registers
(INT_CONFIG0 – INT_CONFIG31). Each register
contains fields to configure the behavior of its corresponding
interrupt. If an interrupt input does not exist, reading the
corresponding register always returns zero, and writing is
ignored. Refer to Table 29–6 on page 29–8 for the
INT_CONFIG register map.

32 INT_ENABLE R/W 0 The interrupt enable register. INT_ENABLE holds the
enabled status of each interrupt input. The 32 bits of the
register map to the 32 interrupts available in the VIC core. For
example, bit 5 corresponds to IRQ5. (1)

Interrupt that are not enabled are never considered by the
priority processing block, even when the interrupt input is
asserted.

33 INT_ENABLE_SET W 0 The interrupt enable set register. Writing a 1 to a bit in
INT_ENABLE_SET sets the corresponding bit in
INT_ENABLE. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 29: Vectored Interrupt Controller Core 29–7
Register Maps
34 INT_ENABLE_CLR W 0 The interrupt enable clear register. Writing a 1 to a bit in
INT_ENABLE_CLR clears corresponding bit in
INT_ENABLE. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)

35 INT_PENDING R 0 The interrupt pending register. INT_PENDING shows the
pending interrupts. Each bit corresponds to one interrupt
input.

If an interrupt does not exist, reading its corresponding
INT_PENDING bit always returns 0, and writing is ignored.

Bits in INT_PENDING are set in the following ways:

■ An external interrupt is asserted at the VIC interface and the
corresponding INT_ENABLE bit is set.

■ An SW_INTERRUPT bit is set and the corresponding
INT_ENABLE bit is set.

INT_PENDING bits remain set as long as either condition
applies. Refer to Figure 29–3 on page 29–4 for details. (1)

36 INT_RAW_STATUS R 0 The interrupt raw status register. INT_RAW_STATUS shows
the unmasked state of the interrupt inputs.

If an interrupt does not exist, reading the corresponding
INT_RAW_STATUS bit always returns 0, and writing is
ignored.

A set bit indicates an interrupt is asserted at the interface of
the VIC. The interrupt is asserted to the processor only when
the corresponding bit in the interrupt enable register is set. (1)

37 SW_INTERRUPT R/W 0 The software interrupt register. SW_INTERRUPT drives the
software interrupts. Each interrupt is ORed with its external
hardware interrupt and then enabled with INT_ENABLE.
Refer to Figure 29–3 on page 29–4 for details. (1)

38 SW_INTERRUPT_SET W 0 The software interrupt set register. Writing a 1 to a bit in
SW_INTERRUPT_SET sets the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)

39 SW_INTERRUPT_CLR W 0 The software interrupt clear register. Writing a 1 to a bit in
SW_INTERRUPT_CLR clears the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)

40 VIC_CONFIG R/W 0 The VIC configuration register. VIC_CONFIG allows software
to configure settings that apply to the entire VIC. Refer to
Table 29–7 on page 29–9 for the VIC_CONFIG register map.

41 VIC_STATUS R 0 The VIC status register. VIC_STATUS shows the current
status of the VIC. Refer to Table 29–8 on page 29–9 for the
VIC_STATUS register map.

42 VEC_TBL_BASE R/W 0 The vector table base register. VEC_TBL_BASE holds the
base address of the vector table in the processor’s memory
space. Because the table must be aligned on a 4-byte
boundary, bits 1:0 must always be 0.

Table 29–5. Control Status Registers (Part 2 of 3)

Offset Register Name Access
Reset
Value Description
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–8 Chapter 29: Vectored Interrupt Controller Core
Register Maps
Table 29–6 provides a bit map for the 32 INT_CONFIG registers.

f For expanded definitions of the terms in Table 29–6, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

Table 29–7 provides a bit map for the VIC_CONFIG register.

43 VEC_TBL_ADDR R 0 The vector table address register. VEC_TBL_ADDR provides
the RHA for the IRQ value with the highest priority pending
interrupt. If no interrupt is active, the value in this register is 0.

If daisy chain input is enabled and is the highest priority
interrupt, the vector table address register contains the RHA
value from the daisy chain input interface.

Note to Table 29–5:
(1) This register contains a 1-bit field for each of the 32 interrupt inputs. When the VIC is configured for less than 32 interrupts, the corresponding

1-bit field for each unused interrupts is tied to zero. Reading these locations always returns 0, and writing is ignored. To determine which
interrupts are present, write the value 0xffffffff to the register and then read the register contents. Any bits that return zero do not have an
interrupt present.

Table 29–5. Control Status Registers (Part 3 of 3)

Offset Register Name Access
Reset
Value Description

Table 29–6. The INT_CONFIG Register Map

Bits Field Name Access
Reset
Value Description

0:5 RIL R/W 0 The requested interrupt level field. RIL contains the interrupt level of the
interrupt requesting service. The processor can use the value in this field to
determine if the interrupt is of higher priority than what the processor is
currently doing.

6 RNMI R/W 0 The requested non-maskable interrupt field. RNMI contains the non-maskable
interrupt mode of the interrupt requesting service. When 0, the interrupt is
maskable. When 1, the interrupt is non-maskable.

7:12 RRS R/W 0 The requested register set field. RRS contains the number of the processor
register set that the processor should use for processing the interrupt.
Software must ensure that only register values supported by the processor
are used.

13:31 Reserved
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Chapter 29: Vectored Interrupt Controller Core 29–9
Device Support
Table 29–8 provides a bit map for the VIC_STATUS register.

Device Support
The VIC core supports all Altera device families currently supported by the
Quartus® II software.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ Interface for the VIC core in SOPC Builder to add the core to a
system.

Table 29–7. The VIC_CONFIG Register Map

Bits Field Name Access
Reset
Value Description

0:2 VEC_SIZE R/W 0 The vector size field. VEC_SIZE specifies the number of bytes in each vector
table entry. VEC_SIZE is encoded as log2 (number of words) - 2. Namely:

■ 0—4 bytes per vector table entry

■ 1—8 bytes per vector table entry

■ 2—16 bytes per vector table entry

■ 3—32 bytes per vector table entry

■ 4—64 bytes per vector table entry

■ 5—128 bytes per vector table entry

■ 6—256 bytes per vector table entry

■ 7—512 bytes per vector table entry

3 DC R/W 0 The daisy chain field. DC serves the following purposes:

■ Enables and disables the daisy chain input interface, if present. Write a 1 to
enable the daisy chain interface; write a 0 to disable it.

■ Detects the presence of the daisy chain input interface. To detect, write a 1
to DC and then read DC. A return value of 1 means the daisy chain interface
is present; 0 means the daisy chain interface is not present.

4:31 Reserved

Table 29–8. The VIC_STATUS Register Map

Bits Field Name Access
Reset
Value Description

0:5 HI_PRI_IRQ R 0 The highest priority interrupt field. HI_PRI_IRQ contains the IRQ number
of the active interrupt with the highest RIL. When there is no active interrupt
(IP is 0), reading from this field returns 0.

When the daisy chain input is enabled and it is the highest priority interrupt,
then the value read from this field is 32.

Bit 5 always reads back 0 when the daisy chain input is not present.

6:30 Reserved

31 IP R 0 The interrupt pending field. IP indicates when there is an interrupt ready to
be serviced. A 1 indicates an interrupt is pending; a 0 indicates no interrupt is
pending.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–10 Chapter 29: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
Generation-time parameters control the features present in the hardware.Table 29–9
lists and describes the parameters you can configure.

Because multiple VICs can exist in a single system, SOPC Builder assigns a unique
interrupt controller identification number to each VIC generated.

Keep the following considerations in mind when connecting the core in your SOPC
Builder system:

■ The CSR access interface (csr_access) connects to a data master port on your
processor.

■ The daisy chain input interface (interrupt_controller_in) is only visible
when the daisy chain enable option is on.

■ The interrupt controller output interface (interrupt_controller_out)
connects either to the EIC port of your processor, or to another VIC’s daisy chain
input interface (interrupt_controller_in).

■ For SOPC Builder interoperability, the VIC core includes an Avalon-MM master
port. This master interface is not used to access memory or peripherals. Its
purpose is to allow peripheral interrupts to connect to the VIC in SOPC Builder.
The port must be connected to an Avalon-MM slave to create a valid SOPC Builder
system. Then at system generation time, the unused master port is removed
during optimization. The most simple solution is to connect the master port
directly into the CSR access interface (csr_access).

■ SOPC Builder automatically connects interrupt sources when instantiating
components. When using the provided HAL device driver for the VIC, daisy
chaining multiple VICs in a system requires that each interrupt source is
connected to exactly one VIC. You need to manually remove any extra
connections.

Altera HAL Software Programming Model
The Altera-provided driver implements a HAL device driver that integrates with a
HAL board support package (BSP) for Nios II systems. HAL users should access the
VIC core via the familiar HAL API.

Software Files
The VIC driver includes the following software files. These files provide low-level
access to the hardware and drivers that integrate with the Nios II HAL BSP.
Application developers should not modify these files.

■ altera_vic_regs.h—Defines the core’s register map, providing symbolic constants
to access the low-level hardware.

Table 29–9. Parameters for VIC Core

Parameter Legal Values Description

Number of interrupts 1 – 32 Specifies the number of irq_input interrupt interfaces.

RIL width 1 – 6 Specifies the bit width of the requested interrupt level.

Daisy chain enable True / False Specifies whether or not to include an input interface for daisy chaining
VICs together.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 29: Vectored Interrupt Controller Core 29–11
Altera HAL Software Programming Model
■ altera_vic_funnel.h, altera_vic_irq.h, altera_vic_irq.h, altera_vic_irq_init.h—
Define the prototypes and macros necessary for the VIC driver.

■ altera_vic.c, altera_vic_irq_init.c, altera_vic_isr_register.c, altera_vic_sw_intr.c,
altera_vic_set_level.c, altera_vic_funnel_non_preemptive_nmi.S,
altera_vic_funnel_non_preemptive.S, and altera_vic_funnel_preemptive.S—
Provide the code that implements the VIC driver.

■ altera_<name>_vector_tbl.S—Provides a vector table file for each VIC in the
system. The BSP generator creates these files.

Macros
Macros to access all of the registers are defined in altera_vic_regs.h. For example, this
file includes macros to access the INT_CONFIG register, including the following
macros:

#define IOADDR_ALTERA_VIC_INT_CONFIG(base, irq)
__IO_CALC_ADDRESS_NATIVE(base, irq)

#define IORD_ALTERA_VIC_INT_CONFIG(base, irq) IORD(base, irq)
#define IOWR_ALTERA_VIC_INT_CONFIG(base, irq, data) IOWR(base, irq,
data)
#define ALTERA_VIC_INT_CONFIG_RIL_MSK (0x3f)
#define ALTERA_VIC_INT_CONFIG_RIL_OFST (0)
#define ALTERA_VIC_INT_CONFIG_RNMI_MSK (0x40)
#define ALTERA_VIC_INT_CONFIG_RNMI_OFST (6)
#define ALTERA_VIC_INT_CONFIG_RRS_MSK (0x1f80)
#define ALTERA_VIC_INT_CONFIG_RRS_OFST (7)

For a complete list of predefined macros and utilities to access the VIC hardware, refer
to the following files:

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\inc\altera_vic_r
egs.h

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\alter
a_vic_funnel.h

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\alter
a_vic_irq.h

Data Structure
Figure 29–4 shows the data structure for the device.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–12 Chapter 29: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
VIC API
The VIC device driver provides all the routines required of an Altera HAL external
interrupt controller (EIC) device driver. The following functions are required by the
Altera Nios II enhanced HAL interrupt API:

■ alt_ic_isr_register ()

■ alt_ic_irq_enable()

■ alt_ic_irq_disable()

■ alt_ic_irq_enabled()

These functions write to the register map to change the setting or read from the
register map to check the status of the VIC component thru a memory-mapped
address.

f For detailed descriptions of these functions, refer to the to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Table 29–10 lists the API functions specific to the VIC core and briefly describes each.
Details of each function follow the table.

alt_vic_sw_interrupt_set()

Figure 29–4. Device Data Structure

#define ALT_VIC_MAX_INTR_PORTS (32)

typedef struct alt_vic_dev
{
 void *base; /* Base address of VIC */
 alt_u32 intr_controller_id; /* Interrupt controller ID */
 alt_u32 num_of_intr_ports; /* Number of interrupt ports */
 alt_u32 ril_width; /* RIL width */
 alt_u32 daisy_chain_present; /* Daisy-chain input present */
 alt_u32 vec_size; /* Vector size */
 void *vec_addr; /* Vector table base address */
 alt_u32 int_config[ALT_VIC_MAX_INTR_PORTS]; /* INT_CONFIG settings
 for each interrupt */
} alt_vic_dev;

Table 29–10. Function List

Name Description

alt_vic_sw_interrupt_set() Sets the corresponding bit in the SW_INTERRUPT
register to enable a given interrupt via software.

alt_vic_sw_interrupt_clear() Clears the corresponding bit in the SW_INTERRUPT
register to disable a given interrupt via software.

alt_vic_sw_interrupt_status() Reads the status of the SW_INTERRUPT register
for a given interrupt.

alt_vic_irq_set_level() Sets the interrupt level for a given interrupt.

Prototype: int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 29: Vectored Interrupt Controller Core 29–13
Altera HAL Software Programming Model
alt_vic_sw_interrupt_clear()

alt_vic_sw_interrupt_status()

Available from ISR: No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Triggers a single software interrupt

Prototype: int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from ISR: Yes; if interrupt preemption is enabled, disable global interrupts before
calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Clears a single software interrupt

Prototype: alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from ISR: Yes; if interrupt preemption is enabled, disable global interrupts before
calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

Returns: Returns non-zero if the corresponding software trigger interrupt is active;
otherwise zero for one or more of the following reasons:

■ The corresponding software trigger interrupt is disabled

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Checks the software interrupt status for a single interrupt
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–14 Chapter 29: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
alt_vic_irq_set_level()

Run-time Initialization
During system initialization, software configures the each VIC instance's control
registers using settings specified in the BSP. The RIL, RRS, and RNMI fields are
written into the interrupt configuration register of each interrupt port in each VIC. All
interrupts are disabled until other software registers a handler using the
alt_ic_isr_register() API.

Board Support Package
The BSP you generate for your Nios II system provides access to the hardware in your
system, including the VIC. The VIC driver includes scripts that the BSP generator calls
to get default interrupt settings and to validate settings during BSP generation. The
Nios II BSP Editor provides a mechanism to edit these settings and generate a BSP for
your SOPC Builder design.

The generator produces a vector table file for each VIC in the system, named
altera_<name>_vector_tbl.S. The vector table's source path is added to the BSP
Makefile for compilation along with other VIC driver source code. Its contents are
based on the BSP settings for each VIC's interrupt ports.

VIC BSP Settings
The VIC driver scripts provide settings to the BSP. The number and naming of these
settings depends on your hardware system's configuration, specifically, the number of
optional shadow register sets in the Nios II processor, the number of VIC controllers
in the system, and the number of interrupt ports each VIC has.

Prototype: int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level)

Thread-safe: No

Available from ISR: No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

level—the interrupt level to set

Returns: Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

■ The value in level is invalid

Description: Sets the interrupt level for a single interrupt.

Altera recommends setting the interrupt level only to zero to disable the
interrupt or to the original value specified in your BSP. Writing any other
value could violate the overlapping register set, priority level, and other
design rules. Refer to “VIC BSP Design Rules for Altera Hal Implementation”
on page 29–18 for more information.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 29: Vectored Interrupt Controller Core 29–15
Altera HAL Software Programming Model
Certain settings apply to all VIC instances in the system, while others apply to a
specific VIC instance. Settings that apply to each interrupt port apply only to the
specified interrupt port number on that VIC instance.

The remainder of this section lists details and descriptions of each VIC BSP setting.

altera_vic_driver.enable_preemption

altera_vic_driver.enable_preemption_into_new_register_set

altera_vic_driver.enable_preemption_rs_<n>

Identifier: ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED

Type: BooleanDefineOnly

Default value: 1 when all components connected to the VICs support preemption. 0 when any
of the connected components don’t support preemption.

Destination file: system.h

Description: Enables global interrupt preemption (nesting). When enabled (set to 1), the
macro ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED is defined
in system.h.

Two types of ISR preemption are available. This setting must be enabled along
with other settings to enable specific types of preemption.

All preemption settings are dependant on whether the device drivers in your BSP
support interrupt preemption. For more information about preemption, refer to
the Exception Handling chapter of the Nios II Software Developer’s Handbook.

Occurs: Once per VIC

Identifier: ALTERA_VIC_DRIVER_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLED

Type: BooleanDefineOnly

Default value: 0

Destination file: system.h

Description: Enables interrupt preemption (nesting) if a higher priority interrupt is asserted
while a lower priority ISR is executing, and that higher priority interrupt uses a
different register set than the interrupt currently being serviced.

When this setting is enabled (set to 1), the macro
ALTERA_VIC_DRIVER_ISR_PREEMPTION_INTO_NEW_REGISTER_S
ET_ENABLED is defined in system.h and the Nios II config.ANI (automatic
nested interrupts) bit is asserted during system software initialization.

Use this setting to limit interrupt preemption to higher priority (RIL) interrupts
that use a different register set than a lower priority interrupt that might be
executing. This setting allows you to support some preemption while
maintaining the lowest possible interrupt response time. However, this setting
does not allow an interrupt at a higher priority (RIL) to preempt a lower priority
interrupt if the higher priority interrupt is assigned to the same register set as the
lower priority interrupt.

Occurs: Once per VIC

Identifier: ALTERA_VIC_DRIVER_ENABLE_PREEMPTION_RS_<n>

Type: Boolean

Default value: 0
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

29–16 Chapter 29: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
altera_vic_driver.linker_section

altera_vic_driver.<name>.vec_size

Destination file: system.h

Description: Enables interrupt preemption (nesting) if a higher priority interrupt is asserted
while a lower priority ISR is executing, for all interrupts that target the specified
register set number.

When this setting is enabled (set to 1), the vector table for each VIC utilizes a
special interrupt funnel that manages preemption. All interrupts on all VIC
instances assigned to that register set then use this funnel.

When a higher priority interrupt preempts a lower priority interrupt running in
the same register set, the interrupt funnel detects this condition and saves the
processor registers to the stack before calling the higher priority ISR. The funnel
code restores registers and allows the lower priority ISR to continue running
once the higher priority ISR completes.

Because this funnel contains additional overhead, enabling this setting increases
interrupt response time substantially for all interrupts that target a register set
where this type of preemption is enabled.

Use this setting if you must guarantee that a higher priority interrupt preempts a
lower priority interrupt, and you assigned multiple interrupts at different
priorities to the same Nios II shadow register set.

Occurs: Per register set; <n> refers to the register set number.

Identifier: ALTERA_VIC_DRIVER_LINKER_SECTION

Type: UnquotedString

Default value: .text

Destination file: system.h

Description: Specifies the linker section that each VIC's generated vector table and each
interrupt funnel link to. The memory device that the specified linker section is
mapped to must be connected to both the Nios II instruction and data masters in
your SOPC Builder system.

Use this setting to link performance-critical code into faster memory. For
example, if your system's code is in DRAM and you have an on-chip or tightly-
coupled memory interface for interrupt handling code, assigning the VIC driver
linker section to a section in that memory improves interrupt response time.

For more information about linker sections and the Nios II BSP Editor, refer to
the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

Occurs: Once per VIC

Identifier: <name>_VEC_SIZE

Type: DecimalNumber

Default value: 16

Destination file: system.h
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 29: Vectored Interrupt Controller Core 29–17
Altera HAL Software Programming Model
altera_vic_driver.<name>.irq<n>_rrs

altera_vic_driver.<name>.irq<n>_ril

altera_vic_driver.<name>.irq<n>_rnmi

Description: Specifies the number of bytes in each vector table entry. Legal values are 16, 32,
64, 128, 256, and 512.

The generated VIC vector tables in the BSP require a minimum of 16 bytes per
entry.

If you intend to write your own vector table or locate your ISR at the vector
address, you can use a larger size.

The vector table's total size is equal to the number of interrupt ports on the VIC
instance multiplied by the vector table entry size specified in this setting.

Occurs: Per instance; <name> refers to the component name you assign in SOPC Builder.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RRS

Type: DecimalNumber

Default value: Refer to “Default Settings for RRS and RIL”.

Destination file: system.h

Description: Specifies the RRS for the interrupt connected to the corresponding port. Legal
values are 1 to the number of shadow register sets defined for the processor.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RIL

Type: DecimalNumber

Default value: Refer to “Default Settings for RRS and RIL”.

Destination file: system.h

Description: Specifies the RIL for the interrupt connected to the corresponding port. Legal
values are 0 to 2RIL width -1.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RNMI

Type: Boolean

Default value: 0

Destination file: system.h

Description: Specifies whether the interrupt port is a maskable or non-maskable interrupt
(NMI). Legal values are 0 and 1. When set to 0, the port is maskable. NMIs
cannot be disabled in hardware and there are several restrictions imposed for the
RIL and RRS settings associated with any interrupt with NNI enabled.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

29–18 Chapter 29: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
Default Settings for RRS and RIL
The default assignment of RRS and RIL values for each interrupt assumes interrupt
port 0 on the VIC instance attached to your processor is the highest priority interrupt,
with successively lower priorities as the interrupt port number increases. Interrupt
ports on other VIC instances connected through the first VIC's daisy chain interface
are assigned successively lower priorities.

To make effective use of the VIC interrupt setting defaults, assign your highest
priority interrupts to low interrupt port numbers on the VIC closest to the processor.
Assign lower priority interrupts and interrupts that do not need exclusive access to a
shadow register set, to higher interrupt port numbers, or to another daisy-chained
VIC.

The following steps describe the algorithm for default RIL assignment:

1. The formula 2RIL width -1 is used to calculate the maximum RIL value.

2. interrupt port 0 on the VIC connected to the processor is assigned the highest
possible RIL.

3. The RIL value is decremented and assigned to each subsequent interrupt port in
succession until the RIL value is 1.

4. The RILs for all remaining interrupt ports on all remaining VICs in the chain are
assigned 1.

The following steps describe the algorithm for default RRS assignment:

1. The highest register set number is assigned to the interrupt with the highest
priority.

2. Each subsequent interrupt is assigned using the same method as the default RIL
assignment.

For example, consider a system with two VICs, VIC0 and VIC1. Each VIC has an RIL
width of 3, and each has 4 interrupt ports. VIC0 is connected to the processor and
VIC1 to the daisy chain interface on VIC0. The processor has 3 shadow register sets.
Table 29–11 shows the default RRS and RIL assignments for this example.

VIC BSP Design Rules for Altera Hal Implementation
The VIC BSP settings allow for a large number of combinations. This list describes
some basic design rules to follow to ensure a functional BSP:

Table 29–11. Default RRS and RIL Assignment Example

VIC IRQ RRS RIL

0 0 3 7

0 1 2 6

0 2 1 5

0 3 1 4

1 0 1 3

1 1 1 2

1 2 1 1

1 3 1 1
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 29: Vectored Interrupt Controller Core 29–19
Referenced Documents
■ Each component’s interrupt interface in your system should only be connected to
one VIC instance per processor.

■ The number of shadow register sets for the processor must be greater than zero.

■ RRS values must always be greater than zero and less than or equal to the number
of shadow register sets.

■ RIL values must always be greater than zero and less than or equal to the
maximum RIL.

■ All RILs assigned to a register set must be sequential to avoid a higher priority
interrupt overwriting contents of a register set being used by a lower priority
interrupt.

1 The Nios II BSP Editor uses the term “overlap condition” to refer to
nonsequential RIL assignments.

■ NMIs cannot share register sets with maskable interrupts.

■ NMIs must have RILs set to a number equal to or greater than the highest RIL of
any maskable interrupt. When equal, the NMIs must have a lower logical
interrupt port number than any maskable interrupt.

■ The vector table and funnel code section's memory device must connect to a data
master and an instruction master.

■ NMIs must use funnels with preemption disabled.

■ When global preemption is disabled, enabling preemption into a new register set
or per-register-set preemption might produce unpredictable results. Be sure that
all interrupt service routines (ISR) used by the register set support preemption.

■ Enabling register set preemption for register sets with peripherals that don't
support preemption might result in unpredictable behavior.

RTOS Considerations
BSPs configured to use a real time operating system (RTOS) might have additional
software linked into the HAL interrupt funnel code using the ALT_OS_INT_ENTER
and ALT_OS_INT_EXIT macros. The exact nature and overhead of this code is RTOS-
specific. Additional code adds to interrupt response and recovery time. Refer to your
RTOS documentation to determine if such code is necessary.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

29–20 Chapter 29: Vectored Interrupt Controller Core
Document Revision History
Document Revision History
Table 29–12 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 29–12. Revision History

Date and
Document

Version Changes Made Summary of Changes

November 2009

v9.1.0

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation
Section V. Test and Debug Peripherals
This section describes test and debug peripherals provided by Altera for SOPC
Builder systems.

This section includes the following chapters:

■ Chapter 30, Avalon-ST JTAG Interface Core

■ Chapter 31, System ID Core

■ Chapter 32, Performance Counter Core

■ Chapter 33, Avalon Streaming Test Pattern Generator and Checker Cores

■ Chapter 34, Avalon Streaming Data Pattern Generator and Checker Cores

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

V–2 Section V: Test and Debug Peripherals
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55008-9.1.0
30. Avalon-ST JTAG Interface Core
Core Overview
The Avalon® Streaming (Avalon-ST) JTAG Interface core enables communication
between SOPC Builder systems and JTAG hosts via Avalon-ST interface. Data is
serially transferred on the JTAG interface, and presented on the Avalon-ST interface as
bytes.

f The SPI Slave/JTAG to Avalon Master Bridge is an example of how this core is used.
For more information about the bridge, refer to the SPI Slave/JTAG to Avalon Master
Bridge Cores chapter in volume 5 of the Quartus II Handbook.

The Avalon-ST JTAG Interface core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Instantiating the Core in SOPC Builder” on page 30–3

■ “Device Support” on page 30–3

Functional Description
Figure 30–1 shows a block diagram of the Avalon-ST JTAG Interface core in a typical
system configuration.

Figure 30–1. SOPC Builder System with an Avalon-ST JTAG Interface Core

Avalon-ST
Source

Avalon-ST
Sink

Avalon-ST
JTAG Interface

Core

System
Clock

JTAG
Clock

JTAG

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

data_out

data_in

JTAG
Host

Altera FPGA
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf

30–2 Chapter 30: Avalon-ST JTAG Interface Core
Functional Description
Interfaces
Table 30–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Special characters
Table 30–2 lists the special characters recognized by the core.

Operation
The Avalon-ST JTAG Interface core accepts incoming data in bits on its JTAG interface
and packs the bits into bytes. After each byte is formed, the core checks for the
following special characters:

■ 0x4a—Idle character. The core drops the idle character.

■ 0x4d—Escape character. The core drops the escape character, and XORs the
following byte with 0x20.

Each valid byte is then transferred to the core's Avalon-ST source interface. As there
are no means to backpressure this interface, you must ensure that sufficient storage is
in place to avoid data loss.

In the opposite direction, the core serializes each byte received on its Avalon-ST sink
interface and sends the bits to the JTAG interface. If there is no data on the sink
interface, the core sends out idle characters. If the data is a special character, the core
inserts an escape character and XORs the data with 0x20.

The core supports four operation modes. From the system console, you can set the
instruction register (IR) to enable the following supported modes:

■ Normal mode—The core works as a bridge between a JTAG host and an SOPC
Builder system. Set the IR to 0 to enable this mode.

■ Loopback—Data received by the core is sent back to the host. Set the IR to 1 to
enable this mode.

Table 30–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Only supported on the sink interface.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Not supported.

Table 30–2. Special Characters

Character Description

0x4a Idle. Idle characters are inserted into data streams when there is no data to send.

0x4d Idle escape. An idle escape character is inserted into data stream when the data
to send is a special character, followed by the data which is XORed with 0x20.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 30: Avalon-ST JTAG Interface Core 30–3
Instantiating the Core in SOPC Builder
■ Troubleshoot—The core retrieves the value of the system reset and clock signals,
and return them to the JTAG host. Set the IR to 2 to enable this mode.

A TimeQuest SDC file (.sdc) is provided to cut any paths internal to the core.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the Avalon-ST JTAG Interface core in SOPC
Builder to add the core to a system. There are no user-configurable parameters for this
core.

Device Support
The Avalon-ST JTAG Interface core supports all Altera® device families.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ SPI Slave/JTAG to Avalon Master Bridge Cores chapter in volume 5 of the Quartus II
Handbook

Document Revision History
Table 30–3 shows the revision history for this chapter.

Table 30–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/hb/nios2/qts_qii55011.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

30–4 Chapter 30: Avalon-ST JTAG Interface Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII51014-9.1.0
31. System ID Core
Core Overview
The system ID core with Avalon® interface is a simple read-only device that provides
SOPC Builder systems with a unique identifier. Nios® II processor systems use the
system ID core to verify that an executable program was compiled targeting the actual
hardware image configured in the target FPGA. If the expected ID in the executable
does not match the system ID core in the FPGA, it is possible that the software will not
execute correctly.

This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 31–2

■ “Instantiating the Core in SOPC Builder” on page 31–2

■ “Software Programming Model” on page 31–2

Functional Description
The system ID core provides a read-only Avalon Memory-Mapped (Avalon-MM)
slave interface. This interface has two 32-bit registers, as shown in Table 31–1. The
value of each register is determined at system generation time, and always returns a
constant value.

There are two basic ways to use the system ID core:

■ Verify the system ID before downloading new software to a system. This method
is used by software development tools, such as the Nios II integrated development
environment (IDE). There is little point in downloading a program to a target
hardware system, if the program is compiled for different hardware. Therefore, the
Nios II IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or debug.

■ Check system ID after reset. If a program is running on hardware other than the
expected SOPC Builder system, the program may fail to function altogether. If the
program does not crash, it can behave erroneously in subtle ways that are difficult
to debug. To protect against this case, a program can compare the expected system
ID against the system ID core, and report an error if they do not match.

Table 31–1. System ID Core Register Map

Offset Register Name R/W Description

0 id R A unique 32-bit value that is based on the contents of the SOPC Builder
system. The id is similar to a check-sum value; SOPC Builder systems
with different components, different configuration options, or both,
produce different id values.

1 timestamp R A unique 32-bit value that is based on the system generation time. The
value is equivalent to the number of seconds after Jan. 1, 1970.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

31–2 Chapter 31: System ID Core
Device Support
Device Support
The system ID core supports all Altera® device families.

Instantiating the Core in SOPC Builder
The System ID core has no user-configurable features. The id and timestamp
register values are determined at system generation time based on the configuration
of the SOPC Builder system and the current time. You can add only one system ID
core to an SOPC Builder system, and its name is always sysid.

After system generation, you can examine the values stored in the id and
timestamp registers by opening the MegaWizard™ interface for the System ID core.
Hovering the mouse over the component in SOPC Builder also displays a tool-tip
showing the values.

1 Since a unique timestamp value is added to the System ID HDL file each time you
generate the SOPC Builder system, the Quartus II software recompiles the entire
system if you have added the system as a design partition.

Software Programming Model
This section describes the software programming model for the system ID core. For
Nios II processor users, Altera provides the HAL system library header file that
defines the System ID core registers.

The System ID core comes with the following software files. These files provide
low-level access to the hardware. Application developers should not modify these
files.

■ alt_avalon_sysid_regs.h—Defines the interface to the hardware registers.

■ alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files defining the
hardware access functions.

Altera provides one access routine, alt_avalon_sysid_test(), that returns a
value indicating whether the system ID expected by software matches the system ID
core.

alt_avalon_sysid_test()
Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sysid.h>

Description: Returns 0 if the values stored in the hardware registers match the values expected by software. Returns 1
if the hardware timestamp is greater than the software timestamp. Returns -1 if the software timestamp is
greater than the hardware timestamp.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 31: System ID Core 31–3
Document Revision History
Document Revision History
Table 31–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 31–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

Added description to the Instantiating the Core in SOPC Builder
section.

The SOPC Builder works with
incremental compilation.

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

31–4 Chapter 31: System ID Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QIfI55001-9.1.0
32. Performance Counter Core
Core Overview
The performance counter core with Avalon® interface enables relatively unobtrusive,
real-time profiling of software programs. With the performance counter, you can
accurately measure execution time taken by multiple sections of code. You need only
add a single instruction at the beginning and end of each section to be measured.

The main benefit of using the performance counter core is the accuracy of the
profiling results. Alternatives include the following approaches:

■ GNU profiler, gprof—gprof provides broad low-precision timing information
about the entire software system. It uses a substantial amount of RAM, and
degrades the real-time performance. For many embedded applications, gprof
distorts real-time behavior too much to be useful.

■ Interval timer peripheral—The interval timer is less intrusive than gprof. It can
provide good results for narrowly targeted sections of code.

The performance counter core is unobtrusive, requiring only a single instruction to
start and stop profiling, and no RAM. It is appropriate for high-precision
measurements of narrowly targeted sections of code.

f For further discussion of all three profiling methods, refer to AN 391: Profiling Nios II
Systems.

The performance counter core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. The core is designed for use in Avalon-based
processor systems, such as a Nios® II processor system. Altera® device drivers enable
the Nios II processor to use the performance counters.

This chapter contains the following sections:

■ “Functional Description” on page 32–2

■ “Device and Tools Support” on page 32–3

■ “Instantiating the Core in SOPC Builder” on page 32–3

■ “Hardware Simulation Considerations” on page 32–4

■ “Software Programming Model” on page 32–4

■ “Performance Counter API” on page 32–6
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf

32–2 Chapter 32: Performance Counter Core
Functional Description
Functional Description
The performance counter core is a set of counters which track clock cycles, timing
multiple sections of your software. You can start and stop these counters in your
software, individually or as a group. You can read cycle counts from hardware
registers.

The core contains two counters for every section:

■ Time: A 64-bit clock cycle counter.

■ Events: A 32-bit event counter.

Section Counters
Each 64-bit time counter records the aggregate number of clock cycles spent in a
section of code. The 32-bit event counter records the number of times the section
executes.

The performance counter core can have up to seven section counters.

Global Counter
The global counter controls all section counters. The section counters are enabled only
when the global counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which the counters
were enabled. The 32-bit global event counter tracks the number of global events, that
is, the number of times the performance counter core has been enabled.

Register Map
The performance counter core has a simple Avalon Memory-Mapped (Avalon-MM)
slave interface that provides access to memory-mapped registers. Reading from the
registers retrieves the current times and event counts. Writing to the registers starts,
stops and resets the counters. Table 32–1 shows the registers in detail.

Table 32–1. Performance Counter Core Register Map (Part 1 of 2)

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1) 0 = STOP

1 = RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]lo section 1 clock cycle counter [31:0] (1) 0 = STOP

5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[2]lo section 2 clock cycle counter [31:0] (1) 0 = STOP
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 32: Performance Counter Core 32–3
Device and Tools Support
System Reset Considerations
After system reset, the performance counter core is stopped and disabled, and all
counters contain zero.

Device and Tools Support
The performance counter core supports all Altera device families supported by SOPC
Builder, and provides device drivers for the Nios II hardware abstraction layer (HAL)
system library.

Instantiating the Core in SOPC Builder
Use the MegaWizard™ interface for the performance counter core in SOPC Builder to
specify the core's hardware features.

Define Counters
Choose the number of section counters you want to generate by selecting from the
Number of simultaneously-measured sections list. The performance counter core
may have up to seven sections. If you require more that seven sections, you can
instantiate multiple performance counter cores.

Multiple Clock Domain Considerations
If your SOPC Builder system uses multiple clocks, place the performance counter core
in the same clock domain as the CPU. Otherwise, it is not possible to convert cycle
counts to seconds correctly.

9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31:0] (1) 0 = STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 = START

4n + 2 Ev[n] section n event counter (1) (1)

4n + 3 — (1) (1) (1)

Note to Table 32–1:

(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.

Table 32–1. Performance Counter Core Register Map (Part 2 of 2)

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

32–4 Chapter 32: Performance Counter Core
Hardware Simulation Considerations
Hardware Simulation Considerations
You can use this core in simulation with no special considerations.

Software Programming Model
The following sections describe the software programming model for the
performance counter core.

Software Files
Altera provides the following software files for Nios II systems. These files define the
low-level access to the hardware and provide control and reporting functions. Do not
modify these files.

■ altera_avalon_performance_counter.h, altera_avalon_performance_counter.c—
The header and source code for the functions and macros needed to control the
performance counter core and retrieve raw results.

■ perf_print_formatted_report.c—The source code for simple profile reporting.

Using the Performance Counter
In a Nios II system, you can control the performance counter core with a set of highly
efficient C macros, and extract the results with C functions.

API Summary
The Nios II application program interface (API) for the performance counter core
consists of functions, macros and constants.

Functions and macros

Table 32–2 lists macros and functions for accessing the performance counter hardware
structure.

For a complete description of each macro and function, see “Performance Counter
API” on page 32–6.

Table 32–2. Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURING() Stops the global counter and disables section counters.

PERF_BEGIN() Starts timing a code section.

PERF_END() Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 32: Performance Counter Core 32–5
Software Programming Model
Hardware Constants

You can get the performance counter hardware parameters from constants defined in
system.h. The constant names are based on the performance counter instance name,
specified on the System Contents tab in SOPC Builder. Table 32–3 lists the hardware
constants.

Startup
Before using the performance counter core, invoke PERF_RESET to stop, disable and
zero all counters.

Global Counter Usage
Use the global counter to enable and disable the entire performance counter core. For
example, you might choose to leave profiling disabled until your software has
completed its initialization.

Section Counter Usage
To measure a section in your code, surround it with the macros PERF_BEGIN() and
PERF_END(). These macros consist of a single write to the performance counter core.

You can simultaneously measure as many code sections as you like, up to the number
specified in SOPC Builder. See “Define Counters” on page 32–3 for details. You can
start and stop counters individually, or as a group.

Typically, you assign one counter to each section of code you intend to profile.
However, in some situations you may wish to group several sections of code in a
single section counter. As an example, to measure general interrupt overhead, you can
measure all interrupt service routines (ISRs) with one counter.

To avoid confusion, assign a mnemonic symbol for each section number.

Viewing Counter Values
Library routines allow you to retrieve and analyze the results. Use
perf_print_formatted_report() to list the results to stdout, as shown in
Example 32–1.

Table 32–3. Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

PERFORMANCE_COUNTER_SPAN Number of hardware registers

PERFORMANCE_COUNTER_HOW_MANY_SECTIONS Number of section counters

Note to Table 32–3:

(1) Example based on instance name performance_counter.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

32–6 Chapter 32: Performance Counter Core
Performance Counter API
Example 32–2 creates a table similar to this result.

For full documentation of perf_print_formatted_report(), see “Performance
Counter API” on page 32–6.

Interrupt Behavior
The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance results, in an
interrupt service routine (ISR). Do not call the perf_print_formatted_report()
function from an ISR.

1 If an interrupt occurs during the measurement of a section of code, the time taken by
the CPU to process the interrupt and return to the section is added to the
measurement time. The same applies to context switches in a multithreaded
environment. Your software must take appropriate measures to avoid or handle these
situations.

Performance Counter API
This section describes the application programming interface (API) for the
performance counter core.

For Nios II processor users, Altera provides routines to access the performance
counter core hardware. These functions are specific to the performance counter core
and directly manipulate low level hardware. The performance counter core cannot be
accessed via the HAL API or the ANSI C standard library.

Example 32–1.

perf_print_formatted_report(
(void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address
alt_get_cpu_freq(), // defined in "system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections
"pc_overhead",
"ts_overhead");

Example 32–2.

--Performance Counter Report--
Total Time: 2.07711 seconds (103855534 clock-cycles)
+-----------------+--------+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks) |Occurrences|
+-----------------+--------+-----------+---------------+-----------+
|1st checksum_test| 50 | 1.03800 | 51899750 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| pc_overhead |1.73e-05| 0.00000 | 18 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| ts_overhead |4.24e-05| 0.00000 | 44 | 1 |
+-----------------+--------+-----------+---------------+-----------+
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 32: Performance Counter Core 32–7
Performance Counter API
PERF_RESET()

PERF_START_MEASURING()

PERF_STOP_MEASURING()

PERF_BEGIN()

Prototype: PERF_RESET(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.

Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the performance
counter core. The behavior of individual section counters is controlled by PERF_BEGIN() and
PERF_END(). PERF_START_MEASURING() defines the start of a global event, and
increments the global event counter. This macro is a single write to the performance counter core.

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the performance counter
core. This macro is a single write to the performance counter core.

Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this
macro.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

32–8 Chapter 32: Performance Counter Core
Performance Counter API
PERF_END()

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning of a section
event, and incrementing the section event counter. If you subsequently use
PERF_STOP_MEASURING() and PERF_START_MEASURING() to disable and re-enable the
core, the section counter will resume. This macro is a single write to the performance counter core.

Prototype: PERF_END(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this
macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not run, regardless
whether the core is enabled or not. This macro is a single write to the performance counter core.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 32: Performance Counter Core 32–9
Performance Counter API
perf_print_formatted_report()

perf_get_total_time()

Prototype: int perf_print_formatted_report (

void* perf_base,

alt_u32 clock_freq_hertz,

int num_sections,

char* section_name_1, ...

char* section_name_n)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_performance_counter.h>

Parameters: perf_base—Performance counter core base address.

clock_freq_hertz—Clock frequency.

num_sections—The number of section counters to display. This must not exceed
<instance_name>_HOW_MANY_SECTIONS.

section_name_1 ... section_name_n—The section names to display. The number of
section names varies depending on the number of sections to display.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from the
performance counter core, and prints a formatted summary table.

This function disables all counters. However, for predictable results in a multi-threaded or interrupt
environment, invoke PERF_STOP_MEASURING() when you reach the end of the code to be
measured, rather than relying on perf_print_formatted_report().

1 This function requires the C standard library. Do not use the small C
library with this function.

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core.

Returns: Aggregate global time in clock cycles.

Description: Function perf_get_total_time() reads the raw global time. This is the aggregate time, in
clock cycles, that the performance counter core has been enabled. This function has the side effect
of stopping the counters.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

32–10 Chapter 32: Performance Counter Core
Performance Counter API
perf_get_section_time()

perf_get_num_starts()

alt_get_cpu_freq()

Prototype: alt_u64 perf_get_section_time

(void* hw_base_address, int which_section)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Aggregate section time in clock cycles.

Description: Function perf_get_section_time() reads the raw time for a given section. This is the time,
in clock cycles, that the section has been running. This function has the side effect of stopping the
counters.

Prototype: alt_u32 perf_get_num_starts

(void* hw_base_address, int which_section)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Number of counter events.

Description: Function perf_get_num_starts() retrieves the number of counter events (or times a
counter has been started). If which_section = 0, it retrieves the number of global events (times
the performance counter core has been enabled). This function does not stop the counters.

Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz.

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 32: Performance Counter Core 32–11
Referenced Documents
Referenced Documents
This chapter references the application note, AN 391: Profiling Nios II Systems.

Document Revision History
Table 32–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 32–4. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Updated the parameter description of the function
perf_print_formatted_report().

Updates made to comply with
the Quartus II software version
8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

32–12 Chapter 32: Performance Counter Core
Document Revision History
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

QII55007-9.1.0
33. Avalon Streaming Test Pattern
Generator and Checker Cores
Core Overview
The data generation and monitoring solution for Avalon® Streaming (Avalon-ST)
consists of two components: a test pattern generator core that generates packetized or
non-packetized data and sends it out on an Avalon-ST data interface, and a test
pattern checker core that receives the same data and checks it for correctness.

The test pattern generator core can insert different error conditions, and the test
pattern checker reports these error conditions to the control interface, each via an
Avalon Memory-Mapped (Avalon-MM) slave.

Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Resource Utilization and Performance”

■ “Test Pattern Generator” on page 33–3

■ “Test Pattern Checker” on page 33–5

■ “Device Support” on page 33–6

■ “Hardware Simulation Considerations” on page 33–6

■ “Software Programming Model” on page 33–7

■ “Test Pattern Generator API” on page 33–12

■ “Test Pattern Checker API” on page 33–16

Resource Utilization and Performance
Resource utilization and performance for the test pattern generator and checker cores
depend on the data width, number of channels, and whether the streaming data uses
the optional packet protocol.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–2
Chapter 33:

Avalon Stream
ing Test Pattern Generator and Checker

Cores

Quartus
II Handbook Version 9.1 Volum

e
5: Em

bedded Peripherals
©

 Novem
ber 2009

Altera Corporation

enerator core.

hecker core.

Stratix

emory
(bits)

fMAX

(MHz)
Logic
Cells

Memory
(bits)

560 202 642 560

496 245 561 496

912 197 707 912

848 220 630 848

560 245 896 560

496 228 845 496

912 224 956 912

848 204 912 848

Stratix

emory
(bits)

fMAX

(MHz)
Logic
Cells

Memory
(bits)

0 174 744 96

0 229 663 32

3854 105 795 3616

3520 133 660 3520

0 166 1323 96

0 192 1004 32

3584 110 1298 3616

3520 126 1074 3520
Table 33–1 provides estimated resource utilization and performance for the test pattern g

Table 33–2 provides estimated resource utilization and performance for the test pattern c

Table 33–1. Test Pattern Generator Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of
8-bit

Symbols
Per Beat)

Packet
Support

Stratix® II and Stratix II GX Cyclone® II

fMAX

(MHz)
ALM

Count
Memory

(bits)
fMAX

(MHz)
Logic
Cells

M

1 4 Yes 284 233 560 206 642

1 4 No 293 222 496 207 572

32 4 Yes 276 270 912 210 683

32 4 No 323 227 848 234 585

1 16 Yes 298 361 560 228 867

1 16 No 340 330 496 230 810

32 16 Yes 295 410 912 209 954

32 16 No 269 409 848 219 842

Table 33–2. Test Pattern Checker Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of
8-bit

Symbols
Per Beat)

Packet
Support

Stratix II and Stratix II GX Cyclone II

fMAX

(MHz)
ALM

Count
Memory

(bits)
fMAX

(MHz)
Logic
Cells

M

1 4 Yes 270 271 96 179 940

1 4 No 371 187 32 227 628

32 4 Yes 185 396 3616 111 875

32 4 No 221 363 3520 133 686

1 16 Yes 253 462 96 185 1433

1 16 No 277 306 32 218 1044

32 16 Yes 182 582 3616 111 1367

32 16 No 218 473 3520 129 1143

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–3
Test Pattern Generator
Test Pattern Generator
This section describes the hardware structure and functionality of the test pattern
generator core.

Functional Description
The test pattern generator core accepts commands to generate data via an Avalon-MM
command interface, and drives the generated data to an Avalon-ST data interface. You
can parameterize most aspects of the Avalon-ST data interface such as the number of
error bits and data signal width, thus allowing you to test components with different
interfaces. Figure 33–1 shows a block diagram of the test pattern generator core.

The data pattern is determined by the following equation:
Symbol Value = Symbol Position in Packet XOR Data Error Mask. Non-packetized
data is one long stream with no beginning or end.

The test pattern generator core has a throttle register that is set via the Avalon-MM
control interface. The value of the throttle register is used in conjunction with a
pseudo-random number generator to throttle the data generation rate.

Command Interface
The command interface is a 32-bit Avalon-MM write slave that accepts data
generation commands. It is connected to a 16-element deep FIFO, thus allowing a
master peripheral to drive a number of commands into the test pattern generator core.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is written to.
When the FIFO is full, the command interface asserts the waitrequest signal. You
can create errors by writing to the register cmd_hi (address 1). The errors are only
cleared when 0 is written to this register or its respective fields. See page “Test Pattern
Generator Command Registers” on page 33–9 for more information on the register
fields.

Figure 33–1. Test Pattern Generator Core Block Diagram

Avalon-MM
Slave Port

A
va

lo
n-

M
M

S
la

ve
 P

or
t

A
valon-S

T
 S

ource

TEST PATTERN
 GENERATOR

command data_out

control & status
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–4 Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Generator
Control and Status Interface
The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable the data generation as well as set the throttle.

This interface also provides useful generation-time information such as the number of
channels and whether or not packets are supported.

Output Interface
The output interface is an Avalon-ST interface that optionally supports packets. You
can configure the output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may contain
interleaved packet fragments for different channels. To keep track of the current
symbol’s position within each packet, the test pattern generator core maintains an
internal state for each channel.

Instantiating the Test Pattern Generator in SOPC Builder
Use the MegaWizard™ interface for the test pattern generator core in SOPC Builder to
configure the core. The following sections list the available options in the
MegaWizard interface.

Functional Parameter
The functional parameter allows you to configure the test pattern generator as a
whole: Throttle Seed—The starting value for the throttle control random number
generator. Altera recommends a value which is unique to each instance of the test
pattern generator and checker cores in a system.

Output Interface
You can configure the output interface of the test pattern generator core using the
following parameters:

■ Number of Channels—The number of channels that the test pattern generator
core supports. Valid values are 1 to 256.

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 256. Example—For typical systems that carry 8-bit
bytes, set this parameter to 8.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not used.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–5
Test Pattern Checker
Test Pattern Checker
This section describes the hardware structure and functionality of the test pattern
checker core.

Functional Description
The test pattern checker core accepts data via an Avalon-ST interface, checks it for
correctness against the same predetermined pattern used by the test pattern generator
core to produce the data, and reports any exceptions to the control interface. You can
parameterize most aspects of the test pattern checker's Avalon-ST interface such as the
number of error bits and the data signal width, thus allowing you to test components
with different interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control
interface. The value of the throttle register controls the rate at which data is accepted.

Figure 33–2 shows a block diagram of the test pattern checker core.

The test pattern checker core detects exceptions and reports them to the control
interface via a 32-element deep internal FIFO. Possible exceptions are data error,
missing start-of-packet (SOP), missing end-of-packet (EOP) and signalled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

Input Interface
The input interface is an Avalon-ST interface that optionally supports packets. You
can configure the input interface to suit your requirements.

Incoming data may contain interleaved packet fragments. To keep track of the current
symbol’s position, the test pattern checker core maintains an internal state for each
channel.

Figure 33–2. Test Pattern Checker

Avalon-MM
Slave Port

A
va

lo
n-

S
T

 S
in

k TEST PATTERN
 CHECKER

data_in

control & status
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–6 Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores
Device Support
Control and Status Interface
The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance as well as set the throttle. This interface provides useful
generation-time information such as the number of channels and whether the test
pattern checker supports packets.

The control and status interface also provides information on the exceptions detected
by the test pattern checker core. The interface obtains this information by reading
from the exception FIFO.

Instantiating the Test Pattern Checker in SOPC Builder
Use the MegaWizard interface for the test pattern checker core in SOPC Builder to
configure the core. The following sections list the available options in the
MegaWizard interface.

Functional Parameter
The functional parameter allows you to configure the test pattern checker as a whole:
Throttle Seed—The starting value for the throttle control random number generator.
Altera recommends a unique value to each instance of the test pattern generator and
checker cores in a system.

Input Parameters
You can configure the input interface of the test pattern checker core using the
following parameters:

■ Data Bits Per Symbol—The number of bits per symbol for the input interface.
Valid values are 1 to 256.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty
signals.

■ Number of Channels—The number of channels that the test pattern checker core
supports. Valid values are 1 to 256.

■ Error Signal Width (bits)—The width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Device Support
The test pattern generator and checker cores support all Altera© device families.

Hardware Simulation Considerations
The test pattern generator and checker cores do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–7
Software Programming Model
Software Programming Model
This section describes the software programming model for the test pattern generator
and checker cores.

HAL System Library Support
For Nios II processor users, Altera provides HAL system library drivers that enable
you to initialize and access the test pattern generator and checker cores. Altera
recommends you to use the provided drivers to access the cores instead of accessing
the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation
folders to your software application directory:

■ <IP installation directory> /ip /sopc_builder_ip /altera_avalon_data_source/HAL

■ <IP installation directory>/ip/sopc_builder_ip/ altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.

Software Files
The following software files define the low-level access to the hardware, and provide
the routines for the HAL device drivers. Application developers should not modify
these files.

■ Software files provided with the test pattern generator core:

■ data_source_regs.h—The header file that defines the test pattern generator's
register maps.

■ data_source_util.h, data_source_util.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

■ Software files provided with the test pattern checker core:

■ data_sink_regs.h—The header file that defines the core’s register maps.

■ data_sink_util.h, data_sink_util.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–8 Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores
Software Programming Model
Register Maps
This section describes the register maps for the test pattern generator and checker
cores.

Test Pattern Generator Control and Status Registers
Table 33–3 shows the offset for the test pattern generator control and status registers.
Each register is 32 bits wide.

Table 33–4 describes the status register bits.

Table 33–5 describes the control register bits

Table 33–6 describes the fill register bits.

Table 33–3. Test Pattern Generator Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 33–4. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 33–5. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. This
value is used in conjunction with a pseudorandom number generator to
throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved

Table 33–6. Fill Field Descriptions (Part 1 of 2)

Bit(s) Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–9
Software Programming Model
Test Pattern Generator Command Registers
Table 33–7 shows the offset for the command registers. Each register is 32 bits wide.

Table 33–8 describes the cmd_lo register bits. The command is pushed into the FIFO
only when the cmd_lo register is written to.

Table 33–9 describes the cmd_hi register bits.

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

Table 33–6. Fill Field Descriptions (Part 2 of 2)

Bit(s) Name Access Description

Table 33–7. Test Pattern Command Register Map

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

Table 33–8. cmd_lo Field Descriptions

Bit(s) Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a packet, the size
of all segments must be a multiple of the configured number of symbols per
beat. If this condition is not met, the test pattern generator core inserts
additional symbols to the segment to ensure the condition is fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than
14 bits wide, the low order bits of this register are used to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is ignored
when packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is ignored
when packets are not supported.

Table 33–9. cmd_hi Field Descriptions

Bit(s) Name Access Description

[15:0] SIGNALLED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signalled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPRESS SOP RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS EOP RW Set this bit to 1 to suppress the assertion of the endofpacket signal
when the last segment in a packet is sent.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–10 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
Test Pattern Checker Control and Status Registers
Table 33–10 shows the offset for the control and status registers. Each register is 32 bits
wide.

Table 33–11 describes the status register bits.

Table 33–12 describes the control register bits.

Table 33–10. Test Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2

Reservedbase + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 33–11. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 33–12. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256, inclusively. This
value is used in conjunction with a pseudorandom number generator to
throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–11
Software Programming Model
Table 33–13 describes the exception_descriptor register bits. If there is no
exception, reading this register returns 0.

Table 33–14 describes the indirect_select register bits.

Table 33–15 describes the indirect_count register bits.

Table 33–13. exception_descriptor Field Descriptions

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 33–14. indirect_select Field Descriptions

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR
COUNT registers.

[15:8] Reserved

[31:16] INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 33–15. indirect_count Field Descriptions

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET COUNT

RO The number of packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–12 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
Test Pattern Generator API
This section describes the application programming interface (API) for the test pattern
generator core. All API functions are currently not available from the interrupt service
routine (ISR).

data_source_reset()

data_source_init()

data_source_get_id()

Prototype: void data_source_reset(alt_u32 base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern generator core including all internal counters and FIFOs. The
control and status registers are not reset by this function.

Prototype: int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

command_base—The base address of the command slave.

Returns: 1—Initialization is successful.

0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize the test pattern generator core:

■ Resets and disables the test pattern generator core.

■ Sets the maximum throttle.

■ Clears all inserted errors.

Prototype: int data_source_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern generator core’s identifier.

Description: This function retrieves the test pattern generator core’s identifier.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–13
Test Pattern Generator API
data_source_get_supports_packets()

data_source_get_num_channels()

data_source_get_symbols_per_cycle()

data_source_set_enable()

Prototype: int data_source_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.

0—Packets are not supported.

Description: This function checks if the test pattern generator core supports packets.

Prototype: int data_source_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern generator core.

Prototype: int data_source_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols transferred in a beat.

Description: This function retrieves the number of symbols transferred by the test pattern generator core in each
beat.

Prototype: void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description: This function enables or disables the test pattern generator core. When disabled, the test pattern
generator core stops data transmission but continues to accept commands and stores them in the
FIFO.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–14 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
data_source_get_enable()

data_source_set_throttle()

data_source_get_throttle()

data_source_is_busy()

Prototype: int data_source_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value,
when divided by 256 yields the rate at which the test pattern generator sends data.

Prototype: int data_source_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the current throttle value.

Prototype: int data_source_is_busy(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—The test pattern generator core is busy.

0—The core is not busy.

Description: This function checks if the test pattern generator is busy. The test pattern generator core is busy
when it is sending data or has data in the command FIFO to be sent.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–15
Test Pattern Generator API
data_source_fill_level()

data_source_send_data()

Prototype: int data_source_fill_level(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of commands in the command FIFO.

Description: This function retrieves the number of commands currently in the command FIFO.

Prototype: int data_source_send_data(alt_u32 cmd_base, alt_u32 channel,
alt_u32 size, alt_u32 flags, alt_u32 error, alt_u32
data_error_mask);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: cmd_base—The base address of the command slave.

channel—The channel to send the data on.

size—The data size.

flags—Specifies whether to send or suppress SOP and EOP signals. Valid values are
DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.

error—The value asserted on the error signal on the output interface.

data_error_mask—This parameter and the data are XORed together to produce erroneous
data.

Returns: Always returns 1.

Description: This function sends a data fragment to the specified channel.

If packets are supported, user applications must ensure the following conditions are met:

SOP and EOP are used consistently in each channel.

Except for the last segment in a packet, the length of each segment is a multiple of the data width.

If packets are not supported, user applications must ensure the following conditions are met:

No SOP and EOP indicators in the data.

The length of each segment in a packet is a multiple of the data width.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–16 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
Test Pattern Checker API
This section describes the API for the test pattern checker core. The API functions are
currently not available from the ISR.

data_sink_reset()

data_sink_init()

data_sink_get_id()

data_sink_get_supports_packets()

Prototype: void data_sink_reset(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern checker core including all internal counters.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Initialization is successful.

0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize the test pattern checker core:

■ Resets and disables the test pattern checker core.

■ Sets the throttle to the maximum value.

Prototype: int data_sink_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern checker core’s identifier.

Description: This function retrieves the test pattern checker core’s identifier.

Prototype: int data_sink_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.

0—Packets are not supported.

Description: This function checks if the test pattern checker core supports packets.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–17
Test Pattern Checker API
data_sink_get_num_channels()

data_sink_get_symbols_per_cycle()

data_sink_set enable()

data_sink_get_enable()

Prototype: int data_sink_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern checker core.

Prototype: int data_sink_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols received in a beat.

Description: This function retrieves the number of symbols received by the test pattern checker core in each
beat.

Prototype: void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description: This function enables the test pattern checker core.

Prototype: int data_sink_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–18 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
data_sink_set_throttle()

data_sink_get_throttle()

data_sink_get_packet_count()

data_sink_get_symbol_count()

Prototype: void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value,
when divided by 256 yields the rate at which the test pattern checker receives data.

Prototype: int data_sink_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the throttle value.

Prototype: int data_sink_get_packet_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of packets received on the given channel.

Description: This function retrieves the number of packets received on a given channel.

Prototype: int data_sink_get_symbol_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of symbols received on the given channel.

Description: This function retrieves the number of symbols received on a given channel.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–19
Test Pattern Checker API
data_sink_get_error_count()

data_sink_get_exception()

data_sink_exception_is_exception()

data_sink_exception_has_data_error()

Prototype: int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of errors received on the given channel.

Description: This function retrieves the number of errors received on a given channel.

Prototype: int data_sink_get_exception(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The first exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Description: This function retrieves the first exception descriptor in the exception FIFO and pops it off the FIFO.

Prototype: int data_sink_exception_is_exception(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Indicates an exception.

0—No exception.

Description: This function checks if a given exception descriptor describes a valid exception.

Prototype: int data_sink_exception_has_data_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Data has errors.

0—No errors.

Description: This function checks if a given exception indicates erroneous data.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

33–20 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
data_sink_exception_has_missing_sop()

data_sink_exception_has_missing_eop()

data_sink_exception_signalled_error()

data_sink_exception_channel()

Prototype: int data_sink_exception_has_missing_sop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing SOP.

0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing SOP.

Prototype: int data_sink_exception_has_missing_eop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing EOP.

0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing EOP.

Prototype: int data_sink_exception_signalled_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The signalled error value.

Description: This function retrieves the value of the signalled error from the exception.

Prototype: int data_sink_exception_channel(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The channel number on which the given exception occurred.

Description: This function retrieves the channel number on which a given exception occurred.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 33: Avalon Streaming Test Pattern Generator and Checker Cores 33–21
Document Revision History
Document Revision History
Table 33–16 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 33–16. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Updated the section on HAL System Library Support. Updates made to comply
with the Quartus II software
version 8.0 release.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

33–22 Chapter 33: Avalon Streaming Test Pattern Generator and Checker
Cores
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© February 2010 Altera Corporation

QII55019-9.1.1
34. Avalon Streaming Data Pattern
Generator and Checker Cores
Core Overview
The data generation and monitoring solution for Avalon® Streaming (Avalon-ST)
interfaces consists of two components: a data pattern generator core that generates
data patterns and sends it out on an Avalon-ST interface, and a data pattern checker
core that receives the same data and checks it for correctness.

Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Data Pattern Generator” on page 34–1

■ “Data Pattern Checker” on page 34–4

■ “Device Support” on page 34–6

■ “Hardware Simulation Considerations” on page 34–6

■ “Software Programming Model” on page 34–6

Data Pattern Generator
This section describes the hardware structure and functionality of the data pattern
generator core.

Functional Description
The data pattern generator core accepts commands to generate and drive data onto a
parallel Avalon-ST source interface.

Figure 34–1 shows a block diagram of the data pattern generator core.

You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core.

Figure 34–1. Data Pattern Generator Core Block Diagram

A
valon-S

T
 S

ource

DATA PATTERN
 GENERATOR

data_out

Avalon-MM
Slave

control & status
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

34–2 Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores
Data Pattern Generator
You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the
Avalon-ST interfaces, respectively. The core’s data format endianness is the most
significant symbol first within a beat and the most significant bit first within a symbol.
For example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.

For smaller data widths, you can use the Avalon-ST Data Format Adapter for data
width adaptation. The Avalon-ST Data Format Adapter converts the output from 4
symbols per beat, to 2 or 1 symbol per beat. In this way, the 32-bit output of the core
can be adapted to a 16-bit or 8-bit output and the 40-bit output can be adapted to a
20-bit or 10-bit output.

f For more information about the Avalon-ST Data Format Adapter, refer to the Avalon
Streaming Interconnect Components chapter in volume 4 of the Quartus II Handbook.

Control and Status Interface
The control and status interface is an Avalon-MM slave that allows you to enable or
disable the data generation. This interface also provides the run-time ability to choose
data pattern and inject an error into the data stream.

Output Interface
The output interface is a parallel Avalon-ST interface. You can configure the data
width at the output interface to suit your requirements.

Supported Data Patterns
The following data patterns are supported in the following manner, per beat. When
the core is disabled or in idle state, the default pattern generated on the data output is
0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width).

Table 34–1 lists the supported data patterns for the data pattern generator core.

This core does not support custom data patterns.

Table 34–1. Supported Data Patterns (Binary Encoding) (Note 1)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4

Low Frequency 11110000 x 4 1111100000 x 4

Note to Table 34–1:

(1) All PRBS patterns are seeded with 11111111.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores 34–3
Data Pattern Generator
Inject Error
Errors can be injected into the data stream by controlling the Inject Error register
bits in the register map (refer to Table 34–6 on page 34–7). When the inject error bit is
set, one bit of error is produced by inverting the LSB of the next data beat.

If the inject error bit is set before the core starts generating the data pattern, the error
bit is inserted in the first output cycle.

The Inject Error register bit is automatically reset after the error is introduced in
the pipeline, so that the next error can be injected.

Preamble Mode
The preamble mode is used for synchronization or word alignment. When the
preamble mode is set, the preamble control register sends the preamble character a
specified number of times before the selected pattern is generated, so the word
alignment block in the receiver can determine the word boundary in the bit stream.

The number of beats (NumBeats) determines the number of cycles to output the
preamble character in the preamble mode. You can set the number of beats
(NumBeats) in the preamble control register. The default setting is 0 and the
maximum value is 255 beats. This mode can only be set when the data pattern
generation core is disabled.

Instantiating the Data Pattern Generator in SOPC Builder
Use the MegaWizard™ interface for the data pattern generator core in SOPC Builder to
configure the core. The following section lists the available option in the MegaWizard
interface.

Output Parameter
You can configure the output interface of the data pattern generator core using the
following parameter:

■ ST_DATA_W — The width of the output data signal that the data pattern
generator core supports. Valid values are 32 and 40.
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

34–4 Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores
Data Pattern Checker
Data Pattern Checker
This section describes the hardware structure and functionality of the data pattern
checker core.

Functional Description
The data pattern checker core accepts data via an Avalon-ST sink interface, checks it
for correctness against the same predetermined pattern used by the data pattern
generator core or other PRBS generators to produce the data, and reports any
exceptions to the control interface.

Figure 34–2 shows a block diagram of the data pattern checker core.

You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core. The chosen data width is not configurable during run time.

You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the
Avalon-ST interfaces, respectively. The core’s data format endianness is the most
significant symbol first within a beat and the most significant bit first within a symbol.
For example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.

If you configure the width of the output data to 32-bit, the core inputs four 8-bit wide
symbols per beat. To achieve an 8-bit and 16-bit data width, you can use the
Avalon-ST Data Format Adapter component to convert 4 symbols per beat to 1 or 2
symbols per beat.

Similarly, if you configure the width of the output data to 40-bit, the core inputs four
10-bit wide symbols per beat. The 10-bit and 20-bit input can be achieved by
switching from 4 symbols per beat to 1 and 2 symbols per beat.

Control and Status Interface
The control and status interface is an Avalon-MM slave that allows you to enable or
disable the pattern checking. This interface also provides the run-time ability to
choose the data pattern and read the status signals.

Figure 34–2. Data Pattern Checker

Avalon-MM
Slave

A
va

lo
n-

S
T

 S
in

k DATA PATTERN
 CHECKER

data_in

control & status
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores 34–5
Data Pattern Checker
Input Interface
The input interface is a parallel Avalon-ST interface. You can configure the data width
at this interface to suit your requirements.

Supported Data Patterns
The following data patterns are supported in the following manner, per beat. When
the core is disabled or in idle state, the default pattern generated on the data output is
0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width).

Table 34–2 lists the supported data patterns for the data pattern checker core.

Lock
The lock bit in the status register is asserted when 40 consecutive beats of correct data
are received. The lock bit is deasserted and the receiver loses the lock when 40
consecutive beats of incorrect data are received.

Bit and Error Counters
The core has two 64-bit internal counters to keep track of the number of bits and
number of error bits received. A snapshot has to be executed to update the NumBits
and NumErrors registers with the current value from the internal counters.

A counter reset can be executed to reset both the registers and internal counters. If the
counters are not being reset and the core is enabled, the internal counters continues
the increment base on their current value.

1 The internal counters only start to increment after a lock has been acquired.

Instantiating the Data Pattern Checker in SOPC Builder
Use the MegaWizard interface for the data pattern checker core in SOPC Builder to
configure the core. The following section lists the available option in the MegaWizard
interface.

Input Parameter
You can configure the input interface of the data pattern checker core using the
following parameter:

■ ST_DATA_W — The width of the input data signal that the data pattern checker
core supports. Valid values are 32 and 40.

Table 34–2. Supported Data Patterns (Binary Encoding)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4

Low Frequency 11110000 x 4 1111100000 x 4
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

34–6 Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores
Device Support
Device Support
The data pattern generator and checker cores support all Altera® device families.

Hardware Simulation Considerations
The data pattern generator and checker cores do not provide a simulation testbench
for simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.

Software Programming Model
This section describes the software programming model for the data pattern
generator and checker cores.

Register Maps
This section describes the register maps for the data pattern generator and checker
cores.

Data Pattern Generator Control Registers
Table 34–3 shows the offset for the control registers.

Table 34–4 describes the Enable register bits. This register enables or disables the
pattern generation.

Table 34–3. Data Pattern Generator Register Map

Offset Register Name

base + 0 Enable

base + 1 Pattern Select

base + 2 Inject Error

base + 3 Preamble Control

base + 4 Preamble Character (Lower Bits)

base + 5 Preamble Character (Higher Bits)

Table 34–4. Enable Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] EN RW Setting this bit to 1 enables the data pattern generator core.

[31:1] Reserved

Note to Table 34–4:

(1) When the core is enabled, only the Enable register and the Inject Error register have write access. Write access to all other registers
are ignored.The first valid data is observed from the Avalon-ST Source interface at the fourth cycle after the Enable bit is set. When the core
is disabled, the final output is observed at the next clock cycle.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores 34–7
Software Programming Model
Table 34–5 describes the pattern select register bits.

Table 34–6 describes the Inject Error register bits. This register allows you to set
the error inject bit and insert one bit of error into the stream.

Table 34–7 describes the Preamble Control register bits. This register enables
preamble and set the number of cycles to output the preamble character.

Table 34–8 describes the Preamble Character (Lower Bits) register bits. This
register is for the user-defined preamble character (bit 0-31).

Table 34–5. Pattern Select Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 outputs a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 outputs a PRBS 15 pattern with T [15, 14].

[2] PRBS23 RW Setting this bit to 1 outputs a PRBS 23 pattern with T [23, 18].

[3] PRBS31 RW Setting this bit to 1 outputs a PRBS 31 pattern with T [31, 28].

[4] HF RW Setting this bit to 1 outputs a constant pattern of 0101010101… bits.

[5] LF RW Setting this bit to 1 outputs a constant word pattern of 1111100000 for
10-bit words, or 11110000 for 8-bit words.

[31:8] Reserved

Note to Table 34–5:

(1) This register is one-hot encoded where only one of the pattern selector bits should be set to 1. For all other settings, the behaviors are undefined.

Table 34–6. Inject Error Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] IJ RW Setting this bit to 1 injects error into the stream. If the IJ bit is set to 1
when the core is enabled, the bit resets itself to 0 at the next clock cycle
when the error is injected.

[31:1] Reserved

Note to Table 34–6:

(1) The LSB of the data beat is flipped at the fourth clock cycle after the IJ bit is set (if not being backpressured by the sink when it is valid). The
data beat that is injected with error might not be observed from the source if the core is disabled within the next two cycles after IJ bit is set to 1.

Table 34–7. Preamble Control Field Descriptions

Bit(s) Name Access Description

[0] EP RW Setting this bit to 1, at the start of pattern generation, enables the
preamble character to be sent for NumBeats cycles before switching
over to the selected pattern.

[7:1] Reserved

[15:8] NumBeats RW The number of beats to repeat the preamble character.

[31:16] Reserved

Table 34–8. Preamble Character Low Bits Field Descriptions

Bit(s) Name Access Description

[31:0] Preamble Character
(Lower Bits)

RW Sets bit 31-0 for the preamble character to output.
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

34–8 Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores
Software Programming Model
Table 34–9 describes the Preamble Character (Higher Bits) register bits. This
register is for the user-defined preamble character (bit 32-39) but is ignored if the
ST_DATA_W value is set to 32.

Data Pattern Checker Control and Status Registers
Table 34–10 shows the offset for the control and status registers.

Table 34–11 describes the Status register bits.

Table 34–12 describes the Pattern Select register bits.

Table 34–9. Preamble Character High Bits Field Descriptions

Bit(s) Name Access Description

[7:0] Preamble Character
(Higher Bits)

RW Sets bit 39-32 for the preamble character. This is ignored when
the ST_DATA_W value is set to 32.

[31:8] Reserved

Table 34–10. Data Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 Status

base + 1 Pattern Set

base + 2 Counter Control

base + 3 NumBits (Lower Bits)

base + 4 NumBits (Higher Bits)

base + 5 NumErrors (Lower Bits)

base + 6 NumErrors (Higher Bits)

Table 34–11. Status Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] EN RW Setting this bit to 1 enables pattern checking.

[1] LK R Indicate lock status (writing to this bit has no effect).

[31:2] Reserved

Note to Table 34–11:

(1) When the core is enabled, only the Status register’s EN bit and the counter control register have write access. Write access to all
other registers are ignored.

Table 34–12. Pattern Select Field Descriptions (Part 1 of 2) (Note 1)

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 compares the data to a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 compares the data to a PRBS 15 pattern with T [15, 14].

[2] PRBS23 RW Setting this bit to 1 compares the data to a PRBS 23 pattern with T [23, 18].

[3] PRBS31 RW Setting this bit to 1 compares the data to a PRBS 31 pattern with T [31, 28].

[4] HF RW Setting this bit to 1 compares the data to a constant pattern of
0101010101… bits.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

Chapter 34: Avalon Streaming Data Pattern Generator and Checker Cores 34–9
Software Programming Model
Table 34–13 describes the Counter Control register bits. This register snapshots and
resets the NumBits, NumErrors, and also the internal counters.

Table 34–14 describes the NumBits (Lower Bits)register bits. This register is the
lower word of the 64-bit bit counter snapshot value. The register is reset when the
component-reset is asserted or when the RST bit is set to 1.

Table 34–15 describes the NumBits (Higher Bits)register bits. This register is the
higher word of the 64-bit bit counter snapshot value. The register is reset when the
component-reset is asserted or when the RST bit is set to 1.

[5] LF RW Setting this bit to 1 compares the data to a constant word pattern of
1111100000 for 10-bit words, or 11110000 for 8-bit words.

[31:8] Reserved

Note to Table 34–12:

(1) This register is one-hot encoded where only one of the pattern selector bits should be set to 1. For all other settings, the behaviors are undefined.

Table 34–12. Pattern Select Field Descriptions (Part 2 of 2) (Note 1)

Bit(s) Name Access Description

Table 34–13. Counter Control Field Descriptions

Bit(s) Name Access Description

[0] SN W Writing this bit to 1 captures the number of bits received and number of
error bits received from the internal counters to the respective NumBits
and NumErrors registers within the same clock cycle.

Writing this bit to 1 after disabling the core will still capture the correct
values from the internal counters to the NumBits and NumErrors registers.

[17] RST W Writing this bit to 1 resets all internal counters and statistics. This bit
resets itself automatically after the reset process. Re-enabling the core
does not automatically reset the number of bits received and number of
error bits received in the internal counter.

[31:18] Reserved

Table 34–14. NumBits (Lower Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumBits (Lower
Bits)

R Sets bit 31-0 for the NumBits (number of bits received).

Table 34–15. NumBits (Higher Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumBits
(Higher Bits)

R Sets bit 63-32 for the NumBits (number of bits received).
© February 2010 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

34–10 Chapter 34: Avalon Streaming Data Pattern Generator and Checker
Cores
Table 34–16 describes the NumErrors (Lower Bits)register bits. This register is
the lower word of the 64-bit error counter snapshot value. The register is reset when
the component-reset is asserted or when the RST bit is set to 1.

Table 34–17 describes the NumErrors (Higher Bits)register bits. This register is
the higher word of the 64-bit error counter snapshot value. The register is reset when
the component-reset is asserted or when the RST bit is set to 1.

Referenced Documents
This chapter references the following documents:

■ Avalon Interface Specifications

■ Avalon Streaming Interconnect Components chapter in volume 4 of the Quartus II
Handbook.

Document Revision History
Table 34–18 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 34–16. NumErrors (Lower Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumErrors
(Lower Bits)

R Sets bit 31-0 for the NumErrors (number of error bits received).

Table 34–17. NumErrors (Higher Word) Field Descriptions

Bit(s) Name Access Description

[31:0] NumErrors
(Higher Bits)

R Sets bit 63-32 for the NumErrors (number of error bits received).

Table 34–18. Document Revision History

Date and
Document Version Changes Made Summary of Changes

January 2010

v9.1.1

Initial release. —
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © February 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

© November 2009 Altera Corporation
Section VI. Clock Control Peripherals
This section describes clock control peripherals provided by Altera for SOPC Builder
systems.

This section includes the following chapter:

■ Chapter 35, PLL Cores

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

VI–2 Section VI: Clock Control Peripherals

Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

© November 2009 Altera Corporation

NII53002-9.1.0
35. PLL Cores
Core Overview
The PLL cores, Avalon ALTPLL and PLL, provide a means of accessing the dedicated
on-chip PLL circuitry in the Altera® Stratix® and Cyclone® series FPGAs. Both cores
are a component wrapper around the Altera ALTPLL megafunction.

The Avalon ALTPLL core is a newer generation of the PLL cores. Altera recommends
that you use this new core in your design as the older PLL core will be phased out in
the near future.

The core takes an SOPC Builder system clock as its input and generates PLL output
clocks locked to that reference clock.

The PLL cores support the following features:

■ All PLL features provided by Altera's ALTPLL megafunction. The exact feature set
depends on the device family.

■ Access to status and control signals via Avalon Memory-Mapped (Avalon-MM)
registers or top-level signals on the SOPC Builder system module.

■ Dynamic phase reconfiguration in Stratix III and Stratix IV device families.

The PLL output clocks are made available in two ways:

■ As sources to system-wide clocks in your SOPC Builder system.

■ As output signals on your SOPC Builder system module.

f For details about the ALTPLL megafunction, refer to the ALTPLL Megafunction User
Guide.

The PLL core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Device Support” on page 35–3

■ “Instantiating the Cores in SOPC Builder” on page 35–3

■ “Hardware Simulation Considerations” on page 35–5

■ “Register Definitions and Bit List” on page 35–5

Functional Description
Figure 35–1 shows a block diagram of the PLL cores and their connection to the PLL
circuitry inside an Altera FPGA. The following sections describe the components of
the core.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

35–2 Chapter 35: PLL Cores
Functional Description
ALTPLL Megafunction
The PLL cores consist of an ALTPLL megafunction instantiation and an Avalon-MM
slave interface. This interface can optionally provide access to status and control
registers within the cores. The ALTPLL megafunction takes an SOPC Builder system
clock as its reference, and generates one or more phase-locked loop output clocks.

Clock Outputs
Depending on the target device family, the ALTPLL megafunction can produce two
types of output clock:

■ internal (c)—clock outputs that can drive logic either inside or outside the SOPC
Builder system module. Internal clock outputs can also be mapped to top-level
FPGA pins. Internal clock outputs are available on all device families.

■ external (e)—clock outputs that can only drive dedicated FPGA pins. They cannot
be used as on-chip clock sources. External clock outputs are not available on all
device families.

The Avalon ALTPLL core, however, does not differentiate the internal and external
clock outputs and allows the external clock outputs to be used as on-chip clock
sources.

f To determine the exact number and type of output clocks available on your target
device, refer to the ALTPLL Megafunction User Guide.

Figure 35–1. PLL Core Block Diagram

Status

Control

areset
pfdena

pllena

inclk

e1

e0

c1

c0

locked PLL Locked

Avalon-MM
Slave Interface

PLL Reset
PFD Enable
PLL Enable

Reference
Clock

Registers

PLL Core

ALTPLL Megafunction

PLL Clock
Outputs
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 35: PLL Cores 35–3
Device Support
PLL Status and Control Signals
Depending on how the ALTPLL megafunction is parameterized, there can be a
variable number of status and control signals. You can choose to export certain status
and control signals to the top-level SOPC Builder system module. Alternatively,
Avalon-MM registers can provide access to the signals. Any status or control signals
which are not mapped to registers are exported to the top-level module. For details,
refer to the “Instantiating the Cores in SOPC Builder” on page 35–3.

System Reset Considerations
At FPGA configuration, the PLL cores reset automatically. PLL-specific reset circuitry
guarantees that the PLL locks before releasing reset for the overall SOPC Builder
system module.

c Resetting the PLL resets the entire SOPC Builder system module.

Device Support
The PLL cores support all Altera device families.

Instantiating the Cores in SOPC Builder
The PLL cores contain an instantiation of the ALTPLL megafunction. The
MegaWizard™ interface for the PLL cores allows you to configure the ALTPLL
megafunction, and specify connections to selected status and control signals of the
megafunction.

f For details about using the ALTPLL MegaWizard Plug-In Manager, refer to the
ALTPLL Megafunction User Guide.

Instantiating the Avalon ALTPLL Core
When you instantiate the Avalon ALTPLL core, the MegaWizard Plug-In Manager is
automatically launched for you to parameterize the ALTPLL megafunction. There are
no additional parameters that you can configure in SOPC Builder.

The pfdena signal of the ALTPLL megafunction is not exported to the top level of the
SOPC Builder module. You can drive this port by writing to the PFDENA bit in the
control register.

The locked, pllena/extclkena, and areset signals of the megafunction are
always exported to the top level of the SOPC Builder module. You can read the
locked signal and reset the core by manipulating respective bits in the registers. See
“Register Definitions and Bit List” on page 35–5 for more information on the registers.

Instantiating the PLL Core
This section describes the options available in the MegaWizard interface for the PLL
core in SOPC Builder.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/ug/ug_altpll.pdf

35–4 Chapter 35: PLL Cores
Instantiating the Cores in SOPC Builder
PLL Settings Page
The PLL Settings page contains a button that launches the ALTPLL MegaWizard
Plug-In Manager. Use the MegaWizard Plug-In Manager to parameterize the ALTPLL
megafunction. The set of available parameters depends on the target device family.

You cannot click Finish in the PLL wizard nor configure the PLL interface until you
parameterize the ALTPLL megafunction.

Interface Page
The Interface page configures the access modes for the optional advanced PLL status
and control signals.

For each advanced signal present on the ALTPLL megafunction, you can select one of
the following access modes:

■ Export—Exports the signal to the top level of the SOPC builder system module.

■ Register—Maps the signal to a bit in a status or control register.

1 The advanced signals are optional. If you choose not to create any of them in the
ALTPLL MegaWizard Plug-In, the PLL's default behavior is as shown in Table 35–1.

You can specify the access mode for the advanced signals shown in Table 35–1. The
ALTPLL core signals, not displayed in this table, are automatically exported to the top
level of the SOPC Builder system module.

c Asserting areset resets the entire SOPC Builder system module, not just the PLL.

Finish
Click Finish to insert the PLL into the SOPC Builder system. The PLL clock output(s)
appear in the clock settings table on the SOPC Builder System Contents tab.

1 If the PLL has external output clocks, they appear in the clock settings table like other
clocks; however, you cannot use them to drive components within the SOPC Builder
system.

Table 35–1. ALTPLL Advanced Signal

ALTPLL
Name

Input /
Output

Avalon-MM PLL
Wizard Name Default Behavior Description

areset input PLL Reset Input The PLL is reset only at
device configuration.

This signal resets the entire SOPC Builder
system module, and restores the PLL to its
initial settings.

pllena input PLL Enable Input The PLL is enabled. This signal enables the PLL.

pllena is always exported.

pfdena input PFD Enable Input The phase-frequency
detector is enabled.

This signal enables the phase-frequency
detector in the PLL, allowing it to lock on to
changes in the clock reference.

locked output PLL Locked Output — This signal is asserted when the PLL is locked
to the input clock.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 35: PLL Cores 35–5
Hardware Simulation Considerations
f For details about using external output clocks, refer to the ALTPLL Megafunction User
Guide.

The SOPC Builder automatically connects the PLL's reference clock input to the first
available clock in the clock settings table.

1 If there is more than one SOPC Builder system clock available, verify that the PLL is
connected to the appropriate reference clock.

Hardware Simulation Considerations
The HDL files generated by SOPC Builder for the PLL cores are suitable for both
synthesis and simulation. The PLL cores support the standard SOPC Builder
simulation flow, so there are no special considerations for hardware simulation.

Register Definitions and Bit List
Table 35–2 shows the register map for the PLL cores. Device drivers can control and
communicate with the cores through two memory-mapped registers, status and
control. The width of these registers are 32 bits in the Avalon ALTPLL core but only
16 bits in the PLL core.

In the PLL core, the status and control bits shown in Table 35–2 are present only if
they have been created in the ALTPLL MegaWizard Plug-In Manager, and set to
Register on the Interface page in the PLL wizard. These registers are always created
in the Avalon ALTPLL core.

Status Register
Embedded software can access the PLL status via the status register. Writing to
status has no effect. Table 35–3 describes the function of each bit.

Table 35–2. PLL Cores Register Map

Offset Register
Name R/W

Bit Description

31/15
(2) 30 29 ... 9 8 7 6 5 4 3 2 1 0

0 status R/O (1) phasedone locked

1 control R/W (1) pfdena areset

2 phase
reconfig
control

R/W phase (1) counter_number

3 — — Undefined

Notes to Table 35–2:

(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.
(2) The registers are 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

35–6 Chapter 35: PLL Cores
Register Definitions and Bit List
Control Register
Embedded software can control the PLL via the control register. Software can also
read back the status of control bits. Table 35–4 describes the function of each bit.

Phase Reconfig Control Register
Embedded software can control the dynamic phase reconfiguration via the phase
reconfig control register. Table 35–5 describes the function of each bit.

Table 35–3. Status Register Bits

Bit Number Bit Name Value after reset Description

0 locked

(2)

1 Connects to the locked signal on the
ALTPLL megafunction. The locked bit is
high when valid clocks are present on the
output of the PLL.

1 phasedone

(2)

0 Connects to the phasedone signal on the
ALTPLL megafunction. The phasedone
output of the ALTPLL is synchronized to the
system clock.

 2:15/31 (1) — — Reserved. Read values are undefined.

Note to Table 35–3:

(1) The status register is 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.
(2) Both the locked and phasedone outputs from the Avalon ALTPLL component are available as conduits and

reflect the non-synchronized outputs from the ALTPLL.

Table 35–4. Control Register Bits

Bit Number Bit Name Value after reset Description

0 areset 0 Connects to the areset signal on the
ALTPLL megafunction. Writing a 1 to this bit
initiates a PLL reset.

1 pfdena 1 Connects to the pfdena signal on the
ALTPLL megafunction. Writing a 0 to this bit
disables the phase frequency detection.

2:15/31 (1) — — Reserved. Read values are undefined. When
writing, set reserved bits to zero.

Note to Table 35–4:

(1) The controlregister is 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.

Table 35–5. Phase Reconfig Control Register Bits

Bit Number Bit Name
Value after

reset Description

0:8 counter_number — A binary 9-bit representation of the counter
that needs to be reconfigured. Refer to
Table 35–6 for the counter selection.

9:29 — — Reserved. Read values are undefined. When
writing, set reserved bits to zero.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

Chapter 35: PLL Cores 35–7
Referenced Documents
Table 35–6 lists the counter number and selection. For example, 100 000 000 selects
counter C0 and 100 000 001 selects counter C1.

Referenced Documents
This chapter references the ALTPLL Megafunction User Guide.

Document Revision History
Table 35–7 shows the revision history for this chapter.

30:31 phase (1) — 01: Step up phase of counter_number

10: Step down phase of counter_number

00 and 11: No operation

Note to Table 35–5:

(1) Phase step up or down when set to 1 (only applicable to the Avalon ALTPLL core).

Table 35–6. Counter_Number Bits and Selection

Counter_Number [0:8] Counter Selection

0 0000 0000 All output counters

0 0000 0001 M counter

> 0 0000 0001 Undefined

1 0000 0000 C0

1 0000 0001 C1

1 0000 0010 C2

... ...

1 0000 1000 C8

1 0000 1001 C9

> 1 0000 1001 Undefined

Table 35–5. Phase Reconfig Control Register Bits

Bit Number Bit Name
Value after

reset Description

Table 35–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

November 2009

v9.1.0

Revised descriptions of register fields and bits. Features added to the register
map.

March 2009

v9.0.0

Added information on the new Avalon ALTPLL core. A new PLL core, Avalon
ALTPLL, is released and the
chapter is updated accordingly
to include the new core.
© November 2009 Altera Corporation Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/literature/ug/ug_altpll.pdf

35–8 Chapter 35: PLL Cores
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —

Table 35–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

© November 2009 Altera Corporation
Additional Information
About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 9.0.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.0 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
www.altera.com/literature
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.

Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-
SIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is impor-
tant, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals © November 2009 Altera Corporation

	Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis
	Contents
	Chapter Revision Dates
	Section I. Design Flows
	1. Design Planning with the Quartus II Software
	Introduction
	Creating Design Specifications
	Intellectual Property Selection
	Device Selection
	Device Migration Planning

	Planning for Device Programming or Configuration
	Early Power Estimation
	Creating Powerplay EPE Spreadsheets

	Early Pin Planning and I/O Analysis
	Creating a Top-Level Design File for I/O Analysis
	Simultaneous Switching Noise Analysis

	Selecting Third-Party EDA Tool Flows
	Synthesis Tools
	Simulation Tools
	Formal Verification Tools

	Planning for On-Chip Debugging Options
	Design Practices and HDL Coding Styles
	Design Recommendations
	Recommended HDL Coding Styles
	Managing Metastability

	Planning for Hierarchical and Team-Based Design
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Single-Project Versus Multiple-Project Incremental Flows
	Planning Design Partitions
	Creating a Design Floorplan

	Fast Synthesis and Early Timing Estimation
	Conclusion
	Referenced Documents
	Document Revision History

	2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Introduction
	Deciding Whether to Use an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Capabilities Available When Your Design Has No Partitions

	Incremental Compilation Flow with Design Partitions
	Incremental and Team-Based Design Flows

	Quick Start Guide — Summary of Incremental Compilation
	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Deciding which Design Blocks Should Be Design Partitions
	Impact of Design Partitions on Design Optimization
	Partition Statistics Reports
	Partition Timing Reports
	Incremental Compilation Advisor
	Using Partitions with Third-Party Synthesis Tools
	Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	Other Synthesis Tools

	Design Partition Assignments Compared to Physical Placement Assignments

	Creating Design Partition Assignments
	Creating Design Partitions with the Design Partition Planner
	Creating Design Partitions In the Design Partitions Window
	Creating Design Partitions in the Project Navigator
	Creating Design Partitions with Tcl Scripting
	Partition Name
	Automatically-generated Partitions

	Setting the Netlist Type for Design Partitions
	Fitter Preservation Level
	Empty Partitions
	Where Are the Netlist Databases Saved?
	What Changes Initiate a Partition’s Automatic Resynthesis?
	Resynthesis Due to Source Code Changes
	Forcing Use of the Post-Fitting Netlist When a Partition has Changed

	Creating a Design Floorplan with LogicLock Location Assignments
	Taking Advantage of the Early Timing Estimator
	What LogicLock Changes Initiate Refitting?

	Exporting and Importing Partitions
	Team-Based Incremental Compilation Summary
	Preparing a Design to Import Partitions
	Creating and Compiling Lower-Level Projects
	Exporting Lower-Level Projects
	Including or Importing Lower-Level Projects into the Top-Level Project
	Performing an Incremental Compilation in the Top-Level Project

	Netlist Types for Imported Partitions
	Creating a Lower-Level Project
	Exporting a Lower-Level Partition to be Used in a Top-Level Project
	Exporting a Lower-Level Block within a Project

	Using a .qxp File as a Source File in the Top-Level Project
	Importing a Lower-Level Partition Into the Top-Level Project
	Importing Assignments and Advanced Import Settings
	Design Partition Properties after Importing
	Importing Design Partition Assignments Within the Subdesign
	Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer
	Importing LogicLock Assignments
	Importing Other Instance Assignments
	Importing Global Assignments
	Advanced Import Settings

	Generating Design Partition Scripts for Project Management
	Project Creation
	Excluded Partitions
	Assignments from the Top-Level Design
	Virtual Pin Assignments
	LogicLock Region Assignments
	Global Signal Promotion Assignments
	Makefile Generation

	Recommended Design Flows and Compilation Application Examples
	Reducing Compilation Time When Changing a Source File for One Partition
	Optimizing a Timing-Critical Partition to Achieve Timing Closure
	Preserving Results for Some Partitions Before Adding Other Partitions
	Debugging Incrementally with the SignalTap II Logic Analyzer
	Implementing a Team-Based Design Flow With Imported Partitions
	Performing Design Iteration With Lower-Level Partitions
	Creating Hard-Wired Macros (or Precompiled Design Blocks) for IP Reuse
	Using an Exported Partition to Send a Design without Including Source Files

	Incremental Compilation Restrictions
	Preserving Exact Timing Performance
	When Placement and Routing May Not Be Preserved Exactly
	Using Incremental Compilation with Quartus II Archive Files
	Formal Verification Support
	SignalProbe Pins and Engineering Change Management with the Chip Planner
	Linked Partitions Due to SignalProbe Pins or ECO Changes
	Exported Partitions

	SignalTap II Embedded Logic Analyzer in Exported Partitions
	Logic Analyzer Interface in Exported Partitions
	Importing Encrypted IP Cores
	Assignments Made in HDL Source Code in Exported Partitions
	Bottom-Up Design Partition Script Limitations
	Warnings About Extra Clocks Due to Bottom-Up Design Partition Scripts
	Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Bottom-Up Design Partition Scripts
	Wildcard Support in Bottom-Up Design Partition Scripts
	Derived Clocks and PLLs in Bottom-Up Design Partition Scripts
	Pin Assignments for GXB and LVDS Blocks in Bottom-Up Design Partition Scripts
	Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts

	HardCopy Compilation and Migration Flows
	HardCopy ASIC Migration Flows
	HardCopy ASIC Stand-Alone Compilations

	Restrictions on Megafunction Partitions
	Register Packing and Partition Boundaries
	I/O Register Packing

	Scripting Support
	Preparing a Design for Incremental Compilation
	Creating Design Partitions
	Setting Properties of Design Partitions
	Creating Floorplan Location Assignments—Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)
	Generating Bottom-Up Design Partition Scripts
	Command Line Support

	Exporting a Partition to be Used in a Top-Level Project
	Importing a Lower-Level Partition into the Top-Level Project
	Makefiles
	Recommended Design Flows and Compilation Application Examples—Scripting and Command-Line Operation
	Reducing Compilation Time When Changing a Source File for One Partition— Command-Line Example
	Optimizing the Placement for a Timing-Critical Partition

	Conclusion
	Referenced Documents
	Document Revision History

	3. Quartus II Design Flow for MAX+PLUS II Users
	Introduction
	Chapter Overview
	MAX+PLUS II Support
	Typical Design Flow
	Device Support
	Quartus II GUI Overview
	Task Window
	Project Navigator
	Node Finder
	Tcl Console
	Messages
	Status
	Change Manager

	Setting Up MAX+PLUS II Look and Feel in the Quartus II Software
	MAX+PLUS II Look and Feel
	Compiler Tool
	Analysis and Synthesis
	Incremental Compilation and Partition Merge
	Fitter
	Assembler
	Timing Analyzer
	EDA Netlist Writer
	Design Assistant
	Reducing Compilation Time
	Quartus II Software Smart Compilation

	Power Analyzer

	MAX+PLUS II Design Conversion
	Converting an Existing MAX+PLUS II Design
	Converting MAX+PLUS II Graphic Design Files
	Importing MAX+PLUS II Assignments

	Quartus II Design Flow
	Creating a New Project
	Design Entry
	Making Assignments
	Assignment Editor

	Timing Assignments
	Synthesis
	Functional Simulation
	Place and Route
	Timing Analysis
	Viewing Chip Resources
	Chip Planner
	Timing Closure Floorplan

	Timing Simulation
	Quartus II Simulator Tool
	EDA Timing Simulation

	Power Estimation
	Programming

	Conclusion
	Quartus II Command Reference for MAX+PLUS II Users
	Referenced Documents
	Document Revision History

	4. Quartus II Support for HardCopy Series Devices
	Introduction
	HardCopy Series Design Benefits
	Quartus II Features for HardCopy Planning

	HardCopy Development Flow
	Designing the FPGA First
	Designing the HardCopy Device First

	HardCopy Utilities Menu
	Companion Revisions
	Compiling the HardCopy Companion Revision
	Comparing HardCopy and FPGA Companion Revisions
	Generating a HardCopy Handoff Report
	Archiving HardCopy Handoff Files
	HardCopy Advisor

	HardCopy Companion Device Selection
	HardCopy Device Resource Guide
	HardCopy Recommended Settings in the Quartus II Software
	Limit DSP and RAM to HardCopy Device Resources
	Enabling Design Assistant to Run During Compile
	Timing Settings
	TimeQuest Timing Analyzer
	Setting Up the TimeQuest Timing Analyzer

	Constraints for Clock Effect Characteristics
	Quartus II Software Features Supported for HardCopy Designs
	Physical Synthesis Optimization
	LogicLock Regions
	PowerPlay Power Analyzer
	Incremental Compilation

	HardCopy Design Readiness Check
	Execution of the HardCopy Design Readiness Check
	Stratix III Support
	Setting Check
	Summary
	Global Setting
	Instance Setting
	Operating Setting

	I/O Check
	Input Pin Placement for Global and Regional Clock

	PLL Usage Check
	PLL Real-Time Reconfigurable Check
	PLL Clock Outputs Driving Multiple Clock Network Types Check
	PLL with No Compensation Mode Check
	PLL with Normal or Source Synchronous Mode Feeding Output Pin Check

	RAM Usage Check
	Initialized Memory Dependency Testing

	Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
	Migrating One-to-One Changes
	Migrating Changes that Must be Implemented Differently
	Changes that Cannot be Migrated
	Overall Migration Flow
	Preparing the Revisions
	Applying ECO Changes

	Formal Verification of FPGA and HardCopy Revisions
	HardCopy Floorplan View

	Referenced Documents
	Document Revision History

	Section II. Design Guidelines
	5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
	Introduction
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Design Techniques to Save Power

	Checking Design Violations Using the Design Assistant
	Quartus II Design Flow with the Design Assistant
	The Design Assistant Settings Page
	Message Severity Levels
	Design Assistant Rules
	Summary of Rules and IDs
	Design Should Not Contain Combinational Loops
	Register Output Should Not Drive Its Own Control Signal Directly or through Combinational Logic
	Design Should Not Contain Delay Chains
	Design Should Not Contain Ripple Clock Structures
	Pulses Should Not Be Implemented Asynchronously
	Multiple Pulses Should Not Be Generated in the Design
	Design Should Not Contain SR Latches
	Design Should Not Contain Latches
	Gated Clocks Should Be Implemented According to Altera Standard Scheme
	Logic Cell Should Not Be Used to Generate Inverted Clock
	Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save Power: <n>
	Clock Signal Source Should Drive Only Input Clock Ports
	Clock Signal Should Be a Global Signal
	Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges
	Combinational Logic Used as a Reset Signal Should Be Synchronized
	External Reset Should Be Synchronized Using Two Cascaded Registers
	External Reset Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized
	Output Enable and Input of the Same Tri-State Nodes Should Not Be Driven by the Same Signal Source
	Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by the Same Signal Source
	More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by the Same Source
	Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the Same Signal Source
	Nodes with More Than Specified Number of Fan-outs: <n>
	Top Nodes with Highest Fan-out: <n>
	Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains
	Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
	Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock Domains
	Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous Clock Domains
	No Reset Signal Defined to Initialize the State Machine
	State Machine Should Not Contain Unreachable State
	State Machine Should Not Contain a Deadlock State
	State Machine Should Not Contain a Dead Transition

	Enabling and Disabling Design Assistant Rules
	Using the Assignment Editor
	Using Verilog HDL
	Using VHDL
	Using TCL Commands

	Viewing Design Assistant Results
	Summary Report
	Settings Report
	Detailed Results Report
	Messages Report
	Rule Suppression Assignments Report
	Ignored Design Assistant Assignments Report
	Custom Rules Report

	Custom Rules
	XML File Format for Custom Rules
	Specifying the Path to the Custom Rules File
	Custom Rules Coding Examples

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Register Control Signals

	Targeting Embedded RAM Architectural Features
	Conclusion
	Referenced Documents
	Document Revision History

	6. Recommended HDL Coding Styles
	Introduction
	Quartus II Language Templates
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Multipliers—Inferring the LPM_MULT Megafunction from HDL Code
	Multiply-Accumulators and Multiply-Adders—Inferring ALTMULT_ACCUM and ALTMULT_ADD Megafunctions from HDL Code

	Inferring Memory Functions from HDL Code
	RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset and Control Conditions
	Check Read-During-Write Behavior
	Controlling Inference and Implementation in Device RAM Blocks
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Specifying Initial Memory Contents at Power-Up

	ROM Functions—Inferring ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code
	Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
	Simple Shift Register
	Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Secondary Register Control Signals Such as Clear and Clock Enable
	Latches
	Unintentional Latch Generation
	Inferring Latches Correctly

	General Coding Guidelines
	Tri-State Signals
	Clock Multiplexing
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	State Machines
	Verilog HDL State Machines
	VHDL State Machines

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Default or Others Case Assignment
	Implicit Defaults
	Degenerate Multiplexers
	Buses of Multiplexers

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Referenced Documents
	Document Revision History

	7. Managing Metastability with the Quartus II Software
	Introduction
	Metastability Analysis in the Quartus II Software
	Synchronization Register Chains
	Identifying Synchronizers for Metastability Analysis
	Using the Global Synchronizer Identification Setting
	Refining Synchronizer Identification Using the Instance-Specific Assignment

	How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	Metastability and MTBF Reporting
	Metastability Report
	MTBF Summary Report
	Synchronizer Summary
	Synchronizer Chain Statistics Report in the TimeQuest Timing Analyzer

	Synchronizer Data Toggle Rate in MTBF Calculation

	MTBF Optimization
	Synchronization Register Chain Length

	Reducing Metastability Effects
	Apply Complete System-Centric Timing Constraints for the TimeQuest Timing Analyzer
	Force the Identification of Synchronization Registers
	Set the Synchronizer Data Toggle Rate
	Optimize Metastability During Fitting
	Increase the Length of Synchronizers to Protect and Optimize
	Set Fitter Effort to Standard Fit instead of Auto Fit
	If Possible, Increase the Number of Stages Used in Synchronizers
	If Possible, Select a Faster Speed Grade Device

	Scripting Support
	Identifying Synchronizers for Metastability Analysis
	Synchronizer Data Toggle Rate in MTBF Calculation
	report_metastability TimeQuest and Tcl Command
	MTBF Optimization
	Synchronization Register Chain Length

	Conclusion
	Referenced Documents
	Document Revision History

	8. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	Introduction
	Overview: Incremental Compilation
	Incremental and Team-Based Design Flows
	Recommendations for the Netlist Type and Fitter Preservation Level
	Project Management in Team-Based Designs

	Why Plan Partitions and Floorplan Assignments for Incremental Compilation?
	Partition Boundaries and Optimization

	Creating Design Partitions: General Partitioning Guidelines
	Plan Design Hierarchy and Source Design Files
	Using Partitions with Third-Party Synthesis Tools

	Partition Design by Functionality and Block Size
	Partition Design by Clock Domain and Timing Criticality
	Consider What Is Changing

	Creating Design Partitions: Design Guidelines
	Register Partition Inputs and Outputs
	Minimize Cross-Partition-Boundary I/O
	Avoid the Need for Logic Optimization Across Partitions
	Keep Logic in the Same Partition for Optimization and Merging
	Keep Constants in the Same Partition as Logic
	Avoid Unconnected Partition I/O
	Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	Invert Clocks in Destination Partitions
	Connect I/O Directly to I/O Register for Packing Across Partition Boundaries
	Do Not Use Internal Tri-States
	Include All Tri-State and Enable Logic in the Same Partition
	Include Bidirectional I/O Registers in the Same Partition
	Summary of Guidelines Related to Logic Optimization Across Partitions

	Creating Design Partitions: Consider Additional Design Suggestions
	Balance Logic Resources
	Balance Global Routing Signals and Clock Networks if Required
	Assign Virtual Pins in Team-Based Flows
	Perform Timing Budgeting if Required
	Consider a Cascaded Reset Structure
	Drive Clocks Directly in Team-Based Flows
	Recreate PLLs for Lower-Level Partitions if Required in Team_Based Flows

	Checking Partition Quality
	Incremental Compilation Advisor
	Design Partition Planner
	Floorplan Partition Coloring
	Viewing Design Partition Planner and Floorplan Side-by-Side
	Partition Statistics Report
	Report Partition Timing in the TimeQuest Timing Analyzer
	Ensure Partition Assignments Do Not Impact the Quality of Results

	Importing SDC Constraints from Lower-Level Partitions in Team-Based Designs
	Creating an .sdc with Project-Wide Constraints
	Creating an .sdc with Partition-Specific Constraints
	Consolidating the .sdc in the Top-Level Design

	Introduction to Design Floorplans
	The Difference between Logical Partitions and Physical Regions
	Why Create a Floorplan?
	When to Create a Floorplan
	Early Floorplan
	Late Floorplan

	Creating a Design Floorplan: Placement Guidelines
	Assigning Partitions to LogicLock Regions
	How to Size and Place Regions
	Modifying Region Size and Origin
	I/O Connections
	LogicLock Resource Exclusions

	Creating Non-Rectangular Regions

	Checking Floorplan Quality
	Incremental Compilation Advisor
	LogicLock Region Resource Estimates
	LogicLock Region Properties Statistics Report
	Critical Path Settings for Chip Planner
	Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
	Inter-Region Connection Bundles
	Routing Utilization
	Ensure Floorplan Assignments Do Not Impact Quality of Results

	Recommended Design Flows and Application Examples
	Create a Floorplan for the Entire Design
	Create a Floorplan as the Project Lead in a Team-Based Flow
	Create a Floorplan Assignment for One Design Block with Difficult Timing

	Potential Issues with Creating Partitions and Floorplan Assignments
	Logic and Resource Utilization Effects
	Routing Utilization Effects

	Conclusion
	Referenced Documents
	Revision History

	Section III. Synthesis
	9. Quartus II Integrated Synthesis
	Introduction
	Design Flow
	Language Support
	Verilog HDL Support
	Verilog-2001 Support
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Verilog HDL Macros

	VHDL Support
	VHDL Standard Libraries and Packages
	VHDL wait Constructs
	VHDL-2008 Support

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Specifying a Destination Library Name in a VHDL File
	Mapping a VHDL Instance to an Entity in a Specific Library

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages

	Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries
	Parallel Synthesis
	Quartus II Exported Partition File as Source

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Settings Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Synthesis Directives

	Optimization Technique
	Auto Gated Clock Conversion
	Timing-Driven Synthesis
	SDC Constraint Protection
	PowerPlay Power Optimization
	Limiting DSP and RAM Block Usage in Partitions
	Restructure Multiplexers
	Synthesis Effort
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Safe State Machines
	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Preserve Registers
	Disable Register Merging/Don’t Merge Register
	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	Maximum Fan-Out
	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
	Megafunction Inference Control
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	Resource Aware RAM, ROM, and Shift-Register Inference
	RAM to Logic Cell Conversion

	RAM Style and ROM Style—for Inferred Memory
	Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	RAM Initialization File—for Inferred Memory
	Multiplier Style—for Inferred Multipliers
	Full Case
	Parallel Case
	Translate Off and On / Synthesis Off and On
	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Use I/O Flipflops
	Specifying Pin Locations with chip_pin
	Using altera_attribute to Set Quartus II Logic Options
	Verilog HDL
	VHDL

	Analyzing Synthesis Results
	Analysis and Synthesis Section of the Compilation Report
	Project Navigator

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages by Module/Entity

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Quartus II Synthesis Options
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation

	Conclusion
	Referenced Documents
	Document Revision History

	10. Synopsys Synplify Support
	Introduction
	Altera Device Family Support
	Design Flow
	Output Netlist File Name and Result Format

	Synplify Optimization Strategies
	Using Synplify Premier to Optimize Your Design
	Implementations in Synplify Pro or Premier
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input and Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	FSM Explorer in Synplify Pro and Premier

	Optimization Attributes and Options
	Retiming in Synplify Pro and Premier
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	syn_direct_enable
	I/O Standard

	Altera-Specific Attributes
	altera_chip_pin_lc
	altera_implement_in_esb or altera_implement_in_eab
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Run the Synplify Software
	Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Passing Constraints to the Quartus II Software using Tcl Commands
	Global Signals
	Default or Global Clock Frequency
	Individual Clocks and Frequencies
	Virtual Clocks
	Route Delay Option
	Multiple Clocks in Different Clock Groups
	Multiple Clocks with Different Frequencies in the Same Clock Group
	Inter-Clock Relationships—Delays and False Paths between Clocks
	False Paths
	Multicycle Paths
	Maximum Path Delays

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
	Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
	Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench
	Using Generated Verilog HDL Files for Black Box IP Function Instantiation
	Using Generated VHDL Files for Black Box IP Function Instantiation
	Other Synplify Software Attributes for Creating Black Boxes

	Including Files for Quartus II Placement and Routing Only
	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Inferring RAM
	RAM Initialization
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Creating a Design with Separate Netlist Files for Incremental Compilation
	Using MultiPoint Synthesis with Incremental Compilation
	Set Compile Points and Create Constraint Files
	Additional Considerations for Compile Points
	Creating a Quartus II Project for Compile Points and Multiple .vqm Files

	Creating Multiple .vqm Files for Incremental Compilation Using Separate Synplify Projects
	Manually Creating Multiple .vqm Files Using Black Boxes
	Creating a Quartus II Project for Multiple .vqm Files

	Performing Incremental Compilation in the Quartus II Software

	Conclusion
	Referenced Documents
	Document Revision History

	11. Mentor Graphics Precision Synthesis Support
	Introduction
	Device Family Support
	Design Flow
	Creating and Compiling a Project in the Precision Synthesis Software
	Creating a Project
	Compiling the Design

	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision Synthesis Software from Adding I/O Pads
	Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision Synthesis Software
	Running the Quartus II Software Manually Using the Precision Synthesis-Generated Tcl Script
	Using Quartus II Software to Launch the Precision Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	set_input_delay
	set_output_delay
	set_max_delay
	set_min_delay
	set_false_path
	set_multicycle_path

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Megafunction Instantiation
	Instantiating Intellectual Property Using the MegaWizard Plug-In Manager and IP Toolbench
	Using Generated Verilog HDL Files for Black Box IP Function Instantiation
	Using Generated VHDL Files for Black Box IP Function Instantiation

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Using the GUI
	Using Attributes
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Creating a Design with Precision RTL Plus Incremental Synthesis
	Creating Partitions with the incr_partition Attribute

	Creating Multiple EDIF Netlist Files Using Separate Precision Projects or Implementations
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Hierarchy and Design Considerations

	Conclusion
	Referenced Documents
	Document Revision History

	12. Mentor Graphics LeonardoSpectrum Support
	Introduction
	Altera Device Family Support
	Design Flow
	Optimization Strategies
	Timing-Driven Synthesis
	Global Power Tab
	Clock Power Tab
	Input and Output Power Tabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the LeonardoSpectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black Boxed Modules
	Passing Constraints with Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions and LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring Multipliers and DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Signal Level Attributes
	Guidelines for Using DSP Blocks

	Block-Based Design with the Quartus II Software
	Hierarchy and Design Considerations
	Creating a Design with Multiple .edif Files
	Generating Multiple .edif Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple .edif Files Including LogicLock Regions

	Generating Multiple .edif Files Using Black Boxes
	Black Box Methodology in Verilog HDL
	Black Boxing in VHDL
	Creating a Quartus II Project for Multiple .edif Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	Running the Tcl Script File in LeonardoSpectrum

	Conclusion
	Referenced Documents
	Document Revision History

	13. Analyzing Designs with Quartus II Netlist Viewers
	Introduction
	When to Use Viewers: Analyzing Design Problems
	Quartus II Design Flow with Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Selecting an Item in the Schematic View
	Moving and Panning in the Schematic View

	Hierarchy List
	Selecting an Item in the Hierarchy List

	Enable or Disable the Auto Hierarchy List
	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Selecting an Item in the State Machine Viewer
	Switching Between State Machines

	Navigating the Schematic View
	Traversing and Viewing the Design Hierarchy
	Flattening the Design Hierarchy
	Viewing the Contents of a Design Hierarchy within the Current Schematic

	Viewing Contents of Atom Primitives
	Viewing the Properties of Instances and Primitives
	Viewing LUT Representations in the Technology Map Viewer
	Grouping Combinational Logic into Logic Clouds
	Logic Clouds in the RTL Viewer
	Logic Clouds in the Technology Map Viewer
	Manually Group and Ungroup Logic Clouds

	Changing the Constant Signal Value Formatting
	Zooming and Magnification
	Schematic Debugging and Tracing Using the Bird’s Eye View
	Full Screen View

	Partitioning the Schematic into Pages
	Moving Between Schematic Pages
	Moving Back and Forward Through Schematic Pages
	Following Nets Across Schematic Pages
	Go to Net Driver

	Customizing the Schematic Display in the RTL Viewer
	Filtering in the Schematic View
	Filter Sources Command
	Filter Destinations Command
	Filter Sources and Destinations Command
	Filter Between Selected Nodes Command
	Filter Selected Nodes and Nets Command
	Filter Bus Index Command
	Filter Command Processing
	Filtering Across Hierarchies
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to Source Design File and Other Quartus II Windows
	Moving Selected Nodes to Other Quartus II Windows

	Probing to the Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Other Features in the Schematic Viewer
	Tooltips
	Radial Menu
	Enabling and Disabling the Radial Menu
	Customizing the Shortcut Commands
	Changing the Delay

	Rollover
	Displaying Net Names in the Schematic
	Displaying Node Names in the Schematic
	Opening the Hierarchy Dialog Box
	Exporting and Copying a Schematic Image
	Printing

	Debugging HDL Code with the State Machine Viewer
	Simulation of State Machine Gives Unexpected Results

	Conclusion
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Quartus II Handbook Version 9.1 Volume 2: Design Implementation and Optimization
	Contents
	Chapter Revision Dates
	Section I. Scripting and Constraint Entry
	1. Assignment Editor
	Introduction
	Overview of the Assignment Editor
	Dynamic Syntax Checking
	Viewing and Saving Assignments in the Assignment Editor
	User Interface
	Category Bar
	Node Filter Bar
	Information Bar
	Edit Bar
	Assignment Spreadsheet
	Toolbar
	Navigating the Assignment Editor Spreadsheet
	Entering Values into the Spreadsheet
	Wildcards
	Assignment Groups
	Customizing the Spreadsheet Columns
	Exporting and Importing Assignments
	Exporting Assignments
	Importing Assignments
	Creating Timing Constraints Using the Assignment Editor
	Tcl Interface
	Probing to Source Design Files and Other Quartus II Windows
	Probing to the Assignment Editor from Other Quartus II Windows
	Conclusion
	Referenced Documents
	Document Revision History

	2. Command-Line Scripting
	Introduction
	The Benefits of Command-Line Executables
	Introductory Example
	Command-Line Executables
	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence
	Design Flow
	Compilation with quartus_sh --flow
	Text-Based Report Files
	Makefile Implementation
	The MegaWizard Plug-In Manager
	Command-Line Support
	Module and Wizard Names

	Ports and Parameters
	Invalid Configurations
	Strategies to Determine Port and Parameter Values

	Optional Files
	Parameter File
	Working Directory
	Variation File Name
	Command-Line Scripting Examples
	Create a Project and Apply Constraints
	Check Design File Syntax
	Create a Project and Synthesize a Netlist Using Netlist Optimizations
	Archive and Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents Without Recompiling
	Create a Compressed Configuration File
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	The QFlow Script
	Referenced Documents
	Document Revision History

	3. Tcl Scripting
	Introduction
	What is Tcl?
	Quartus II Tcl Packages
	Loading Packages
	Quartus II Tcl API Help
	Executables Supporting Tcl
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	Using the Quartus II Tcl Console Window
	End-to-End Design Flows
	Creating Projects and Making Assignments
	HardCopy Device Design

	Compiling Designs
	The flow Package

	Compile All Revisions
	Reporting
	Creating .csv Files for Excel
	Timing Analysis
	Classic Timing Analysis
	Advanced Classic Timing Analysis

	TimeQuest Timing Analysis
	TimeQuest Scripting

	Automating Script Execution
	Making the Assignment
	Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages
	Other Scripting Features
	Natural Bus Naming
	Short Option Names
	Using Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	Using the post_message Command
	Accessing Command-Line Arguments
	Using the cmdline Package

	Using the Quartus II Tcl Shell in Interactive Mode
	Quartus II Legacy Tcl Support
	Using the tclsh Shell
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References
	Referenced Documents
	Document Revision History

	4. Managing Quartus II Projects
	Introduction
	Quartus II Text Editor
	Setting the Quartus II Text Editor Options
	Using the Quartus II Text Editor
	Setting a Preferred Text Editor
	Creating a New Project
	Using Revisions with Your Design
	Creating and Deleting Revisions
	Create a Revision
	Delete a Revision
	Compare Revisions
	Creating New Copies of Your Design
	Archiving Projects
	Archive a Project
	Restore an Archived Project

	Version-Compatible Databases
	Migrate to a New Version
	Save the Database in a Version-Compatible Format

	Quartus II Project Platform Migration
	Filenames and Hierarchies
	Relative Paths
	Specifying Libraries
	Specifying User Libraries
	Specifying Global Libraries

	Quartus II Search Path Precedence Rules
	Quartus II-Generated Files for Third-Party EDA Tools
	Migrating Database Files Between Platforms
	Working with Messages
	Messages Window
	Hiding Messages
	Message Suppression
	Message Suppression Methods
	Message Suppression Details and Limitations
	Message Suppression Manager
	Suppressible Messages
	Suppression Rules
	Suppressed Messages

	Quartus II Settings File
	QSF Format Preservation
	Quartus II Default Settings File
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects
	Restoring Archived Projects
	Importing and Exporting Version-Compatible Databases
	Specifying Libraries Using Scripts
	Reducing Compilation Time
	Conclusion
	Referenced Documents
	Document Revision History

	Section II. I/O and PCB Tools
	5. I/O Management
	Introduction
	Understanding Altera FPGA Pin Terminology
	Package Pins
	Pads
	I/O Banks
	VREF Groups
	I/O Planning Overview
	Device Selection
	Early I/O Planning Using the Pin Planner
	Create or Import a Megafunction or IP MegaCore Variation from the Pin Planner
	Connecting Nodes Before Creating Your Top-Level Design File
	Adding User Nodes

	Setting Up and Creating the Top-Level File
	Importing and Exporting Pin Assignments
	Tcl Scripts and .csv Files
	Quartus II Settings Files
	FPGA Xchange File
	.pin Files
	Creating Pin-Related Assignments
	Creating Pin Assignments Using the Pin Planner
	Pin Migration
	Using the Pin Finder to Find Compatible Pin Locations
	SSN Visualization View
	Creating Exclusive Group Assignments
	Assigning Locations for Differential Pins
	Changing the Slew Rate and Current Drive Strength in Pin Planner
	I/O Error Checking Capability
	Displaying and Accepting Fitter Placements
	Creating Pin Assignments with Tcl
	Creating Pin Assignments with the Chip Planner
	Creating Pin Assignments in HDL
	Synthesis Attributes
	chip_pin and useioff
	altera_attribute

	Creating Pin Assignments with Low-Level I/O Primitives
	Validating Pin Assignments
	Using the Live I/O Check Feature to Validate Pin Assignments
	Using I/O Assignment Analysis to Validate Pin Assignments
	I/O Assignment Analysis Design Flows
	I/O Assignment Analysis without Design Files
	I/O Assignment Analysis with Design Files
	Inputs for I/O Assignment Analysis
	Understanding the I/O Assignment Analysis Report and Messages

	Using Output Enable Group Logic Option Assignments with I/O Assignment Analysis
	Validating Pin Assignments after Full Compilation
	I/O Timing Analysis
	I/O Timing and Power with Capacitive Loading
	Enabling and Configuring Advanced I/O Timing
	Define Overall Board Trace Models
	Customize the Board Trace Model in the Pin Planner
	Configuring Board Trace Models
	Near-End vs Far-End Timing Analysis
	Create Signal Integrity Result Reports

	Incorporating PCB Design Tools
	Scripting Support
	Running the I/O Assignment Analysis
	Generating a Mapped Netlist
	Reserving Pins
	Location Assignments
	Conclusion
	Referenced Documents
	Document Revision History

	6. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	Introduction
	Definitions
	Understanding SSN and its Effects
	SSN Estimation Tools from Altera
	Design Factors Affecting SSN Results
	Using the SSN Analyzer in the Quartus II Software
	Tools Overview
	I/O Standards Supported in the Quartus II SSN Analyzer
	Tool Inputs
	Board Trace Models

	PCB Layers and PCB Layer Thickness
	Example of Specifying PCB Layers

	Signal Breakout Layers
	I/O Assignments
	Automatic Aggressor Identification
	Group Assignments

	Running the SSN Analyzer
	Understanding the SSN Reports
	Settings Report
	Summary Report
	Input Pins Report
	Output Pins Report
	Confidence Metric Details Report
	Unanalyzed Pins Report

	Visualizing SSN in the Pin Planner
	Invoking the SSN Map

	SSN Analyzer Usage Models
	Early Pin-Out SSN Analysis
	Early Pin-Out SSN Analysis Using the Early SSN Estimator Spreadsheet
	Early Pin-Out SSN Analysis Using the Quartus II SSN Analyzer
	SSN Aware Fitter
	Default Assignments Used in Early SSN Analysis

	Final Pin-Out Analysis: Fully Constrained Design SSN Analysis
	Scripting Support
	Run Time Considerations in SSN Analysis
	Running SSN Analyzer with Multi-CPU machines
	Running the Complete Design for SSN Analysis after I/O Assignment Analysis
	Running the Complete Design for SSN Analysis after a Full Fit
	Making ECO Changes and Rerunning SSN Analysis
	Running SSN Analysis for One I/O Bank
	SSN Optimization
	Back-Annotating the Fitter Results
	SSN Optimization in Your System
	Conclusion
	Referenced Documents
	Document Revision History

	7. Signal Integrity Analysis with Third-Party Tools
	Introduction
	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Output File Generation
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results
	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations
	Simulation with HSPICE Models
	Supported Devices and Signaling
	Accessing HSPICE Simulation Kits
	The Double Counting Problem in HSPICE Simulations
	Defining the Double Counting Problem
	The Solution to Double Counting

	HSPICE Writer Tool Flow
	Applying I/O Assignments
	Enabling HSPICE Writer
	Enabling HSPICE Writer Using Assignments
	Naming Conventions for HSPICE Files
	Invoking HSPICE Writer
	Invoking HSPICE Writer from the Command Line
	Customizing Automatically Generated HSPICE Decks

	Running an HSPICE Simulation
	Interpreting the Results of an Output Simulation
	Interpreting the Results of an Input Simulation
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations
	Sample Input for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constant Definition
	Buffer Netlist
	Drive Strength
	I/O Buffer Instantiation
	Board Trace and Termination
	Stimulus Model
	Simulation Analysis

	Sample Output for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constraint Definition
	I/O Buffer Netlist
	Drive Strength
	Slew Rate and Delay Chain
	I/O Buffer Instantiation
	Board and Trace Termination
	Double-Counting Compensation Circuitry
	Simulation Analysis

	Advanced Topics
	PVT Simulations
	Hold Time Analysis
	I/O Voltage Variations
	Correlation Report

	Conclusion
	Referenced Documents
	Document Revision History

	8. Mentor Graphics PCB Design Tools Support
	Interoduction
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
	Setting Up the Quartus II Software
	Generating a .pin
	Generating an .fx
	Creating a Backup .qsf
	FPGA-to-Board Integration with the I/O Designer Software
	I/O Designer Database Wizard
	Updating Pin Assignments from the Quartus II Software
	Sending Pin Assignment Changes to the Quartus II Software
	Protecting Assignments in the Quartus II Software

	Generating Symbols for the DxDesigner Software
	Setting Up the I/O Designer Software to Work with the DxDesigner Software
	Create Symbols with the Symbol Wizard
	Export Symbols to the DxDesigner Software

	Scripting Support
	FPGA-to-Board Integration with the DxDesigner Software
	DxDesigner Project Settings
	DxDesigner Symbol Wizard
	Conclusion
	Referenced Documents
	Document Revision History

	9. Cadence PCB Design Tools Support
	Introduction
	Product Comparison
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
	Setting Up the Quartus II Software
	Generating a .pin
	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Symbol Creation
	Cadence Allegro PCB Librarian Part Developer Tool

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software
	FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	Cadence Allegro Design Entry CIS Project Creation
	Generate Part
	Split Part
	Instantiate Symbol in Design Entry CIS Schematic
	Altera Libraries for the Cadence Allegro Design Entry CIS Software
	Conclusion
	Referenced Document
	Document Revision History

	Section III. Area, Timing and Power Optimization
	Introduction
	Physical Implementation
	Using Quartus II Tools
	Further Reading
	10. Area and Timing Optimization
	Introduction
	Optimizing Your Design
	Initial Compilation: Required Settings
	Device Settings
	I/O Assignments
	Timing Requirement Settings
	Timing Constraint Check—Report Unconstrained Paths

	Device Migration Settings
	Partitions and Floorplan Assignments for Incremental Compilation
	Initial Compilation: Optional Settings
	Design Assistant
	Smart Compilation Setting
	Early Timing Estimation
	Optimize Hold Timing
	Asynchronous Control Signal Recovery/Removal Analysis
	Limit to One Fitting Attempt
	Optimize Multi-Corner Timing
	Fitter Effort Setting
	Auto Fit
	Standard Fit
	Fast Fit

	Design Analysis
	Error and Warning Messages
	Ignored Timing Constraints
	Resource Utilization
	I/O Timing (Including tPD)
	Register-to-Register Timing
	Timing Analysis with the TimeQuest Timing Analyzer
	Timing Analysis with the Classic Timing Analyzer
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains

	Global Routing Resources
	Compilation Time
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Using the Resource Optimization Advisor
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Use I/O Assignment Analysis
	Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Optimize Synthesis for Area, Not Speed
	Restructure Multiplexers
	Perform WYSIWYG Resynthesis with Balanced or Area Setting
	Use Register Packing
	Remove Fitter Constraints
	Change State Machine Encoding
	Flatten the Hierarchy During Synthesis
	Retarget Memory Blocks
	Use Physical Synthesis Options to Reduce Area
	Retarget or Balance DSP Blocks
	Optimize Source Code
	Use a Larger Device

	Routing
	Set Auto Register Packing to Sparse or Sparse Auto
	Set Fitter Aggressive Routability Optimizations to Always
	Increase Placement Effort Multiplier
	Increase Router Effort Multiplier
	Remove Fitter Constraints
	Optimize Synthesis for Area, Not Speed
	Optimize Source Code
	Use a Larger Device

	Timing Optimization Techniques (LUT-Based Devices)
	Timing Optimization Advisor
	Metastability Analysis and Optimization Techniques
	I/O Timing Optimization
	Improving Setup and Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output, and Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clock Networks and Regional Clocks Networks
	Change How Hold Times are Optimized for MAX II Devices

	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Improving Register-to-Register Timing Summary
	Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Set Maximum Router Timing Optimization Level
	Enable Beneficial Skew Optimization
	Optimize Source Code

	LogicLock Assignments
	Hierarchy Assignments
	Path Assignments

	Location Assignments and Back-Annotation
	Custom Regions
	Back-Annotation and Manual Placement

	Optimizing Placement for Stratix, Stratix II, Arria GX, and Cyclone II Devices
	Optimizing Placement for Cyclone Devices
	Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines and Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell-Based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code—Pipelining for Complex Register Logic
	Compilation-Time Optimization Techniques
	Incremental Compilation
	Use Multiple Processors for Parallel Compilation
	Reduce Synthesis Time and Synthesis Netlist Optimization Time
	Synthesis Netlist Optimizations

	Check Early Timing Estimation Before Fitting
	Reduce Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Final Placement Optimization Levels
	Physical Synthesis Effort Settings
	Limit to One Fitting Attempt
	Preserving Placement, Incremental Compilation, and LogicLock Regions

	Reduce Routing Time
	Identify Routing Congestion in the Chip Planner
	Identify Routing Congestion in the Timing Closure Floorplan for Legacy Devices
	Placement Effort Multiplier Setting
	Preserve Routing Incremental Compilation and LogicLock Regions

	Setting Process Priority
	Other Optimization Resources
	Design Space Explorer
	Other Optimization Advisors
	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Duplicate Logic for Fan-Out Control

	Conclusion
	Referenced Documents
	Document Revision History

	11. Power Optimization
	Introduction
	Power Dissipation
	Design Space Explorer
	Power-Driven Compilation
	Power-Driven Synthesis

	Power-Driven Fitter
	Recommended Flow for Power-Driven Compilation
	Area-Driven Synthesis
	Gate-Level Register Retiming
	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example

	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining and Retiming
	Architectural Optimization
	I/O Power Guidelines
	Dynamically-Controlled On-Chip Terminations
	Power Optimization Advisor
	Power Optimization Advisor Example

	Conclusion
	Referenced Documents
	Document Revision History

	12. Analyzing and Optimizing the Design Floorplan
	Introduction
	Chip Planner Overview
	Starting the Chip Planner
	Chip Planner Toolbar
	Chip Planner Tasks and Layers
	LogicLock Regions
	Creating LogicLock Regions
	Creating LogicLock Regions from the Quartus II User Interface

	Placing LogicLock Regions
	Placing Device Features into LogicLock Regions
	LogicLock Regions Window
	Creating LogicLock Regions with the Chip Planner
	Assigning LogicLock Region Content
	Hierarchical (Parent and Child) LogicLock Regions
	Reserved LogicLock Region
	Creating Non-Rectangular LogicLock Regions
	Creating Non-Rectangular LogicLock Regions Using the Merge Command
	Creating Non-Rectangular Regions Using Reserved LogicLock Regions

	Examples of Non-Rectangular LogicLock Regions Using Reserved Property
	Example 1: Creating an L-Shaped Region
	Example 2: Region with Disjoint Areas

	Excluded Resources
	Additional Quartus II LogicLock Design Features
	Tooltips
	Analysis and Synthesis Resource Utilization by Entity
	Path-Based Assignments
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	Virtual Pins

	Using LogicLock Regions in the Chip Planner
	Viewing Connections Between LogicLock Regions in the Chip Planner
	Design Floorplan Analysis Using the Chip Planner
	Chip Planner Floorplan Views
	First-Level View
	Second-Level View
	Third-Level View
	Bird’s Eye View
	Selected Elements Window

	Viewing Architecture-Specific Design Information
	Viewing Available Clock Networks in the Device
	Viewing Critical Paths
	Viewing Physical Timing Estimates
	Viewing Routing Congestion
	Viewing I/O Banks
	Generating Fan-In and Fan-Out Connections
	Generating Immediate Fan-In and Fan-Out Connections
	Highlight Routing
	Show Delays
	Exploring Paths in the Chip Planner
	Locate Path from the Timing Analysis Report to the Chip Planner
	Analyzing Connections for a Path

	Viewing Assignments in the Chip Planner
	Viewing Routing Channels for a Path in the Chip Planner
	Cell Delay Table
	Viewing High-Speed and Low-Power Tiles in Stratix III Devices in the Chip Planner
	Design Analysis Using the Timing Closure Floorplan
	Timing Closure Floorplan Views
	Field View
	Other Views

	Viewing Assignments
	Viewing Critical Paths
	Viewing Routing Congestion
	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins
	Conclusion
	Referenced Documents
	Document Revision History

	13. Netlist Optimizations and Physical Synthesis
	Introduction
	WYSIWYG Primitive Resynthesis
	Performing Physical Synthesis Optimizations
	Automatic Asynchronous Signal Pipelining
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers—Register Duplication
	Physical Synthesis for Registers—Register Retiming

	Preserving Your Physical Synthesis Results
	Physical Synthesis Options for Fitting
	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Incremental Compilation
	Back-Annotating Assignments
	Conclusion
	Referenced Documents
	Document Revision History

	14. Design Space Explorer
	DSE Concepts
	Exploration Space and Exploration Point
	Seed and Seed Sweeping
	DSE Exploration

	DSE Support for Altera Device Families
	Timing Analyzer Support
	Running DSE
	Using DSE from a Command Line
	Using the DSE Graphical User Interface
	DSE Configuration File

	DSE Flow
	DSE Project Settings
	Setting Up the DSE Work Environment
	Specifying the Revision
	Setting the Initial Seed
	Project Uses Quartus II Integrated Synthesis
	Restructuring LogicLock Regions

	DSE Exploration Settings
	Using DSE to Search for the Best Area
	Using DSE to Search for the Best Performance
	Using DSE to Search for the Lowest Power

	DSE Flow Options
	Continue Exploration Even If Base Compilation Fails
	Skip Base Analysis and Compilation If Possible
	Stop Flow When Zero Failing Paths are Achieved
	Stop Flow After Time
	Report all Resource Usage Information
	Archive All Compilations
	Create Revisions Without Compiling
	Run Quartus II PowerPlay Power Analyzer During Exploration
	Show Full Path to Project in Title Bar

	DSE Processing Commands
	Explore Space
	View Last DSE Report for Project
	Create a Revision from a DSE Point
	Open Project in TimeQuest Timing Analyzer
	Open Project in Quartus II

	Parallel DSE Information
	Computer Load Sharing Using Parallel DSE
	Parallel DSE Using LSF Resources
	Parallel DSE Using a Quartus II Master Process

	Concurrent Local Compilations
	Referenced Documents
	Document Revision History

	Section IV. Engineering Change Management
	15. Engineering Change Management with the Chip Planner
	Introduction
	Engineering Change Orders
	Performance
	Compilation Time
	Verification
	Documentation
	ECO Design Flow
	The Chip Planner Overview
	Opening the Chip Planner
	The Chip Planner Tasks and Layers
	The Chip Planner Floorplan Views
	First-Level View
	Second-Level View
	Third-Level View
	Bird’s Eye View
	Performing ECOs with the Chip Planner (Floorplan View)
	Creating Atoms
	Creating ALM Atoms
	Creating Logic Element Atoms

	Deleting Atoms
	Moving Atoms
	Check and Save Netlist Changes
	Resource Property Editor
	Logic Element
	Logic Element Schematic View
	LE Properties
	Modes of Operation
	Sum and Carry Equations
	sload and sclr Signals
	Register Cascade Mode
	Cell Delay Table
	LE Connections
	Delete an LE

	Adaptive Logic Module
	ALM Schematic
	ALM Properties
	ALM Connections

	FPGA I/O Elements
	Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
	Stratix III I/O Element
	Cyclone and Cyclone II I/O Elements
	Cyclone III I/O Elements
	MAX II I/O Elements

	FPGA RAM Blocks
	FPGA DSP Blocks
	Change Manager
	Complex Changes in the Change Manager
	Managing SignalProbe Signals
	Exporting Changes
	Using Incremental Compilation in the ECO Flow
	ECO Flow without Quartus II Incremental Compilation
	Scripting Support
	Common ECO Applications
	Adjust the Drive Strength of an I/O with the Chip Planner
	Modify the PLL Properties Using the Chip Planner
	PLL Properties
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Adjusting the Output Clock Frequency
	Adjusting the Spread Spectrum

	Modify the Connectivity between Resource Atoms
	Post ECO Steps
	Performing Static Timing Analysis
	Conclusion
	Referenced Documents
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Quartus II Handbook Version 9.1 Volume 3: Verification
	Contents
	Chapter Revision Dates
	Section I. Simulation
	1. Quartus II Simulator
	Introduction
	Simulation Flow
	Functional Simulation
	Timing Simulation
	Timing Simulation Using Fast Timing Model Simulation

	Waveform Editor
	Creating .vwf Files
	Count Value
	Clock
	Arbitrary Value
	Random Value

	Generating a Testbench
	Grid Size
	Time Bars
	Stretch or Compress a Waveform Interval
	End Time
	Arrange Group or Bus in LSB or MSB Order

	Simulator Settings
	Simulation Verification Options
	Simulation Output Files Options

	Simulation Report
	Simulation Waveform
	Simulating Bidirectional Pin
	Logical Memories Report
	Simulation Coverage Reports
	Comparing Two Waveforms

	Debugging with the Quartus II Simulator
	Breakpoints
	Updating Memory Content
	Last Simulation Vector Outputs
	Conventional Debugging Process
	Accessing Internal Signals for Simulation

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

	2. Simulating Designs with EDA Tools
	Introduction
	PLD Design Flow
	RTL Simulation Flow
	Gate-Level Simulation Flow
	Converting BDF Format to HDL Format

	Simulation Libraries
	RTL Simulation
	Gate-Level Timing Simulation
	Simulation Library Files

	Generating Simulation Netlist Files
	Configuring EDA Netlist Writer Settings
	Generating Post-Synthesis Simulation Netlist Files
	Generating Gate-Level Timing Simulation Netlist Files
	Generating Timing Simulation Netlist Files with Different Timing Models

	EDA Simulation Library Compiler
	Running the EDA Simulation Library Compiler Through the GUI
	Running the EDA Simulation Library Compiler from the Command Line

	Using the NativeLink Feature
	Setting Up the EDA Simulator Execution Path
	Configuring NativeLink Settings
	Running RTL Simulation Using the NativeLink Feature
	Running Gate-Level Simulation Using the NativeLink Feature
	Setting Up Testbench Files Using the NativeLink Feature
	Creating Testbench Files

	Conclusion
	Referenced Documents
	Document Revision History

	3. Mentor Graphics ModelSim Support
	Introduction
	Software Compatibility
	Altera Design Flow with ModelSim-Altera or ModelSim Software
	Simulation Libraries
	Precompiled Simulation Libraries in the ModelSim-Altera Software
	RTL Functional Simulation Libraries
	Gate-Level Simulation Libraries

	Simulation Library Files in the Quartus II Software
	Disabling Timing Violation on Registers
	Compiling Libraries Using the EDA Simulation Library Compiler

	Performing Simulation Using the ModelSim-Altera Software
	Simulating the VHDL Designs Using the GUI
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating Verilog HDL Designs through the GUI
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating the VHDL Designs from the Command Line
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating the Verilog HDL Designs on the Command Line
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Performing Simulation Using the ModelSim Software
	Simulating the VHDL Designs Using the GUI
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating the Verilog HDL Designs Using the GUI
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating the VHDL Designs from the Command Line
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating the Verilog HDL Designs from the Command Line
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Passing Parameter Information from Verilog to VHDL
	Speeding Up Simulation

	Simulating Designs that Include Transceivers
	RTL Functional Simulation for Stratix IV Devices
	Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
	Performing RTL Functional Simulation in VHDL (ModelSim SE/PE))
	Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)

	Gate-Level Timing Simulation for Stratix IV Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE)

	RTL Functional Simulation for Stratix II GX Devices
	Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
	Performing RTL Functional Simulation in VHDL (ModelSim SE/PE)
	Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)

	Gate-Level Timing Simulation for Stratix II GX Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
	Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL ModelSim SE/PE)

	RTL Functional Simulation for Stratix IV Devices
	Performing RTL Functional Simulation in VHDL (ModelSim-Altera)
	Performing RTL Functional Simulation in VHDL (ModelSim SE/PE)
	Performing RTL Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing RTL Functional Simulation in Verilog HDL (ModelSim SE/PE)

	Gate-Level Timing Simulation for Stratix IV Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim SE/PE)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim SE/PE)

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using the NativeLink Feature with ModelSim-Altera or ModelSim Software
	ModelSim Error Message Verification
	Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .wlf File
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for ModelSim
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for ModelSim
	Tcl Commands
	Command Line

	Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition
	LM_LICENSE_FILE Variable

	Conclusion
	Referenced Documents
	Document Revision History

	4. Synopsys VCS and VCS MX Support
	Introduction
	Software Requirements
	Using the VCS or VCS MX Software in the Quartus II Design Flow
	Compiling Libraries Using the EDA Simulation Library Compiler
	RTL Functional Simulations
	RTL Functional Simulation (Verilog HDL Designs)
	RTL Functional Simulation (VHDL Designs)

	Post-Synthesis Simulation
	Post-Synthesis Simulation (Verilog HDL)
	Post-Synthesis Simulation (VHDL)

	Gate-Level Timing Simulation
	Gate-Level Timing Simulation (Verilog HDL)
	Gate-Level Timing Simulation (VHDL)

	Disabling Timing Violation on Registers
	Performing Timing Simulation Using the Post-Synthesis Netlist

	Common VCS and VCS MX Software Compiler Options
	Using VirSim
	Using DVE
	Debugging Support Command-Line Interface
	Simulating Designs that Include Transceivers
	RTL Functional Simulation for Stratix GX Devices
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix II GX Devices
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix IV Devices
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using NativeLink with the VCS or VCS MX Software
	Generating a Timing .vcd File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .vpd or .vcd File
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	5. Cadence NC-Sim Support
	Introduction
	Software Requirements
	Simulation Flow Overview
	Operation Modes
	Quartus II Software and NC Simulation Flow Overview
	Compiling Libraries Using the EDA Simulation Library Compiler

	RTL Functional Simulation
	Creating Libraries
	Basic Library Setup
	LPM Functions, Altera Megafunctions, and Altera Primitive Library Setup
	Megafunctions Requiring Atom Libraries

	Compiling Source Code and Testbenches
	Compiling in Command-Line Mode
	Compilation in GUI Mode

	Elaborating Your Design
	Elaborating Your Design in Command-Line Mode
	Elaborating Your Design in GUI Mode

	Adding Signals to View
	Adding Signals to View in Command-Line Mode
	Adding Signals to View in GUI Mode

	Simulating the Design
	RTL Functional Simulation in Command-Line Mode
	RTL Functional Simulation in GUI Mode

	Post-Synthesis Simulation
	Quartus II Simulation Output Files
	Creating Libraries
	Compiling Project Files and Libraries
	Elaborating Your Design
	Adding Signals to the View
	Simulating Your Design

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Disabling Timing Violation on Registers
	Performing Timing Simulation Using Post-Synthesis Netlist
	Quartus II Timing Simulation Libraries
	Creating Libraries
	Compiling the Project Files and Libraries
	Elaborating Your Design
	Compiling the .sdo File (VHDL Only) in Command-Line Mode
	Compiling the .sdo File (VHDL Only) in GUI Mode

	Adding Signals to View
	Simulating Your Design

	Simulating Designs that Include Transceivers
	RTL Functional Simulation for Stratix GX Devices
	Compiling Library Files for RTL Functional Simulation in VHDL
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix II GX Devices
	Compiling Library Files for RTL Functional Simulation in VHDL
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix IV Devices
	Compiling Library Files for RTL Functional Simulation in VHDL
	Compiling Library Files for RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Pulse Reject Delays
	-PULSE_R
	-PULSE_INT_R

	Using the NativeLink Feature with NC-Sim
	Generating a Timing VCD File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .trn File
	Scripting Support
	Generating NC-Sim Simulation Output Files
	Tcl Commands
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	6. Aldec Active-HDL Support
	Introduction
	Software Compatibility
	Using Active-HDL Software in Quartus II Design Flows
	Simulation Libraries
	Simulation Library Files in the Quartus II Software
	Disabling Timing Violation on Registers

	Compiling Libraries Using the EDA Simulation Library Compiler

	Performing Simulation Using the Active-HDL Software (GUI Mode)
	Simulating VHDL Designs
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Simulating Verilog HDL Designs
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Performing Simulation Using the Active-HDL Software (Batch Mode)
	Simulating the VHDL Designs
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Simulating the Verilog HDL Designs
	Performing RTL Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Compiling System Verilog Files
	Simulating Designs that Include Transceivers
	RTL Functional Simulation for Stratix II GX Devices
	Performing RTL Functional Simulation in VHDL
	Performing RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix GX Devices
	Performing RTL Functional Simulation in VHDL
	Performing RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	RTL Functional Simulation for Stratix IV Devices
	Performing RTL Functional Simulation in VHDL
	Performing RTL Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	Transport Delays

	Using the NativeLink Feature in Active-HDL Software
	Generating .vcd Files for the PowerPlay Power Analyzer
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for Active-HDL
	Tcl Commands
	Command Line

	Generating a Gate-Level Timing Simulation Netlist for Active-HDL
	Tcl Commands
	Command Line

	Conclusion
	Referenced Documents
	Document Revision History

	7. Simulating Altera IP in Third-Party Simulation Tools
	Introduction
	IP Functional Simulation Flow
	Verilog HDL and VHDL IPFS Models

	Instantiate the IP in Your Design
	Perform RTL Functional Simulation
	Simulating Altera IP Using the Quartus II NativeLink Feature
	Perform Analysis and Elaboration on Your Design
	Run Simulation Using the Quartus II NativeLink Feature

	Simulating Altera IP Without the Quartus II NativeLink Feature
	Using the EDA Simulation Library Compiler

	Design Language Examples
	Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software
	VHDL Example: Simulating the IPFS Model in the ModelSim Software
	NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software
	Verilog HDL Example: Simulating Your IPFS Model in VCS
	Single-Step Process
	Two-Step Process (Compilation and Simulation)

	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Timing Analysis
	8. The Quartus II TimeQuest Timing Analyzer
	Introduction
	Getting Started with the Quartus II TimeQuest Timing Analyzer
	Setting Up the Quartus II TimeQuest Timing Analyzer

	Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines
	Running the Quartus II TimeQuest Timing Analyzer
	Directly from the Quartus II Software
	Stand-Alone Mode
	Command-Line Mode

	Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check
	Recovery and Removal
	Multicycle Paths

	Metastability
	Common Clock Path Pessimism
	Clock-As-Data

	The Quartus II TimeQuest Timing Analyzer Flow Guidelines
	Create a Timing Netlist
	Read the Synopsys Design Constraints File
	Update Timing Netlist
	Generate Timing Reports

	Collections
	Adding and Removing Collection Items
	Application Examples

	SDC Constraint Files
	Fitter and Timing Analysis with SDC Files
	Specifying SDC Files for Place-and-Route
	Specifying SDC Files for Static Timing Analysis

	Synopsys Design Constraints File Precedence

	Clock Specification
	Clocks
	Generated Clocks
	Virtual Clocks
	Multi-Frequency Clocks
	Automatic Clock Detection
	Derive PLL Clocks
	Default Clock Constraints
	Clock Groups
	Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Derive Clock Uncertainty
	Intra-Clock Transfers
	Inter-Clock Transfers
	I/O Interface Clock Transfers

	I/O Specifications
	Input and Output Delay
	Set Input Delay
	Set Output Delay

	Delay and Skew Specifications
	set_net_delay
	set_max_skew

	Timing Exceptions
	Precedence
	False Path
	Minimum Delay
	Maximum Delay
	Multicycle Path
	Application Examples
	Delay Annotation

	Constraint and Exception Removal
	Timing Reports
	report_timing
	report_exceptions
	report_metastability
	report_clock_transfers
	report_clocks
	report_min_pulse_width
	report_net_timing
	report_sdc
	report_ucp
	report_bottleneck
	report_datasheet
	report_rskm
	report_tccs
	report_partitions
	report_path
	report_net_delay
	report_max_skew
	report_skew
	check_timing
	report_clock_fmax_summary
	create_timing_summary

	Timing Analysis Features
	Multi-Corner Analysis
	Advanced I/O Timing and Board Trace Model Assignments
	Wildcard Assignments and Collections
	Resetting a Design
	Cross-Probing
	locate

	The TimeQuest Timing Analyzer GUI
	The Quartus II Software Options and Compilation Report
	View Pane
	View Pane: Splitting
	View Pane: Removing Split Windows

	Tasks Pane
	Opening a Project and Writing a Synopsys Design Constraints File
	Netlist Setup Folder
	Reports Folder
	Macros Folder

	Console Pane
	Report Pane
	Constraints
	Name Finder
	Target Pane
	SDC Editor

	Conclusion
	Referenced Documents
	Document Revision History

	9. Best Practices for the Quartus II TimeQuest Timing Analyzer
	Clock Requirements
	Base Clocks
	Derived Clocks
	Virtual Clocks

	I/O Requirements
	Input Requirements
	Output Requirements

	Exceptions
	False Paths
	Minimum and Maximum Delays
	Multicycles

	Conclusion
	Referenced Documents
	Document Revision History

	10. Switching to the Quartus II TimeQuest Timing Analyzer
	Introduction
	Benefits of Switching to the Quartus II TimeQuest Timing Analyzer
	Chapter Contents

	Switching to the Quartus II TimeQuest Timing Analyzer
	Compile Your Design
	Create an .sdc File
	Conversion Utility

	Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer
	Run the Quartus II TimeQuest Timing Analyzer

	Set the Default Timing Analyzer

	Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers
	Terminology
	Netlist
	Collections

	Constraints
	Constraint Files
	Constraint Entry
	Constraint File Priority
	Constraint Priority
	Ambiguous Constraints

	Clocks
	Related and Unrelated Clocks
	Clock Offset
	Clock Latency
	Offset and Latency Example
	Clock Uncertainty
	Derived and Generated Clocks
	Automatic Clock Detection
	Hold Relationship

	Clock Objects
	Hold Multicycle
	Fitter Behavior
	Fitter Performance

	Reporting
	Paths and Pairs
	Default Reports
	Netlist Names
	Non-Integer Clock Periods
	Other Features

	Scripting API

	Timing Assignment Conversion
	Setup Relationship
	Hold Relationship
	Clock Latency
	Clock Uncertainty
	Inverted Clock
	Not a Clock
	Default Required fMAX Assignment
	Virtual Clock Reference
	Clock Settings
	Multicycle
	Clock Enable Multicycle
	I/O Constraints
	Input and Output Delay
	tSU Requirement
	tH Requirement
	tCO Requirement
	Minimum tCO Requirement
	tPD Requirement
	Minimum tPD Requirement
	Cut Timing Path
	Maximum Delay
	Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Constraining Skew on an Output Bus

	Conversion Utility
	Unsupported Global Assignments
	Recommended Global Assignments
	Clock Conversion
	Instance Assignment Conversion
	PLL Phase Shift Conversion
	tCO Requirement Conversion

	Entity-Specific Assignments
	Paths Between Unrelated Clock Domains
	Unsupported Instance Assignments
	Reviewing Conversion Results
	Warning Messages
	Clocks
	Clock Transfers
	Path Details
	Unconstrained Paths
	Bus Names
	Other

	Re-Running the Conversion Utility

	Notes
	Output Pin Load Assignments
	Constraint Target Types
	DDR Constraints with the DDR Timing Wizard
	HardCopy Stratix Device Handoff
	Unsupported SDC Features
	Constraint Passing
	Optimization
	Clock Network Delay Reporting
	PowerPlay Power Analysis
	Project Management
	Conversion Utility
	tPD and Minimum tPD Requirement Conversion

	Referenced Documents
	Document Revision History

	11. Quartus II Classic Timing Analyzer
	Introduction
	Timing Analysis Tool Setup
	Static Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check

	Multicycle Paths

	Clock Settings
	Individual Clock Settings
	Default Clock Settings

	Clock Types
	Base Clocks
	Derived Clocks
	Undefined Clocks
	PLL Clocks

	Clock Uncertainty
	Clock Latency
	Timing Exceptions
	Multicycle
	Destination Multicycle Setup Exception
	Destination Multicycle Hold Exception
	Source Multicycle Setup Exception
	Source Multicycle Hold Exception
	Default Hold Multicycle
	Clock Enable Multicycle

	Setup Relationship and Hold Relationship
	Maximum Delay and Minimum Delay
	False Paths

	I/O Analysis
	External Input Delay and Output Delay Assignments
	Input Delay Assignment
	Output Delay Assignment

	Virtual Clocks

	Asynchronous Paths
	Recovery and Removal
	Recovery Report
	Removal Report

	Skew Management
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew

	Generating Timing Analysis Reports with report_timing
	Other Timing Analyzer Features
	Wildcard Assignments
	Assignment Groups
	Fast Corner Analysis
	Early Timing Estimation
	Timing Constraint Checker
	Latch Analysis

	Timing Analysis Using the Quartus II GUI
	Assignment Editor
	Timing Settings
	Clock Settings Dialog Box
	More Timing Settings Dialog Box

	Timing Reports
	Advanced List Path
	Early Timing Estimate
	Assignment Groups

	Scripting Support
	Creating Clocks
	Base Clocks
	Derived Clocks

	Clock Latency
	Clock Uncertainty
	Cut Timing Paths
	Input Delay Assignment
	Maximum and Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Multicycle
	Output Delay Assignment
	Report Timing
	Setup and Hold Relationships
	Assignment Group
	Virtual Clock

	MAX+PLUS II Timing Analysis Methodology
	fMAX Relationships
	Slack

	I/O Timing
	tSU Timing
	tH Timing
	tCO Timing
	Minimum tCO (min tCO)
	tPD Timing
	Minimum tPD (min tPD)

	The Timing Analyzer Tool

	Conclusion
	Referenced Documents
	Document Revision History

	12. Synopsys PrimeTime Support
	Introduction
	Quartus II Settings for Generating the PrimeTime Software Files
	Files Generated for the PrimeTime Software Environment
	The Netlist
	The SDO File
	Generating Multiple Operating Conditions with TimeQuest

	The Tcl Script
	Generated File Summary

	Running the PrimeTime Software
	Analyzing Quartus II Projects
	Other pt_shell Commands

	PrimeTime Timing Reports
	Sample of the PrimeTime Software Timing Report
	Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime Software
	Clock Setup Relationship and Slack
	Clock Hold Relationship and Slack
	Input Delay and Output Delay Relationships and Slack

	Static Timing Analyzer Differences
	The Quartus II Classic Timing Analyzer and the PrimeTime Software
	Rise/Fall Support
	Minimum and Maximum Delays
	Recovery/Removal Analysis
	Encrypted Intellectual Property Blocks
	Registered Clock Signals
	Multiple Source and Destination Register Pairs
	Latches
	LVDS I/O
	Clock Latency
	Input and Output Delay Assignments
	Generated Clocks Derived from Generated Clocks

	The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software
	Encrypted Intellectual Property Blocks
	Latches
	LVDS I/O
	The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility
	Clock and Data Paths
	Inverting and Non-Inverting Propagation
	Multiple Rise/Fall Numbers For a Timing Arc
	Virtual Generated Clocks
	Generated Clocks Derived from Generated Clocks

	Conclusion
	Referenced Documents
	Document Revision History

	Section III. Power Estimation and Analysis
	13. PowerPlay Power Analysis
	Introduction
	Creating PowerPlay EPE Spreadsheets
	PowerPlay EPE File Generator Compilation Report

	Types of Power Analysis
	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Air Flow
	Heat Sink and Thermal Compound
	Junction Temperature
	Board Thermal Model

	Device Resource Usage
	Number, Type, and Loading of I/O Pins
	Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
	Number and Type of Global Signals

	Signal Activities

	PowerPlay Power Analyzer Flow
	Operating Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Node Name Matching Considerations
	Glitch Filtering
	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from Full Post-Fit Netlist (Timing) Simulation
	Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Generating a .saf or .vcd Using the Quartus II Simulator
	Generating a .vcd Using a Third-Party Simulator
	Generating a .vcd from ModelSim Software
	Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

	Running the PowerPlay Power Analyzer Using the Quartus II GUI
	PowerPlay Power Analyzer Compilation Report
	Summary
	Settings
	Simulation Files Read
	Operating Conditions Used
	Thermal Power Dissipated by Block
	Thermal Power Dissipation by Block Type (Device Resource Type)
	Thermal Power Dissipation by Hierarchy
	Core Dynamic Thermal Power Dissipation by Clock Domain
	Current Drawn from Voltage Supplies
	Confidence Metric Details
	Signal Activities
	Messages
	Specific Rules for Reporting

	Scripting Support
	Running the PowerPlay Power Analyzer from the Command Line

	Conclusion
	Referenced Documents
	Document Revision History

	Section IV. In-System Design Debugging
	Introduction
	On-Chip Debugging Ecosystem
	Conclusion
	14. Quick Design Debugging Using SignalProbe
	Introduction
	Debugging Using the SignalProbe Feature
	Reserve the SignalProbe Pins
	Perform a Full Compilation
	Assign a SignalProbe Source
	Add Registers to the Pipeline Path to SignalProbe Pin
	Perform a SignalProbe Compilation
	Analyze the Results of the SignalProbe Compilation
	SignalProbe ECO Flows
	SignalProbe ECO Flow with Quartus II Incremental Compilation
	SignalProbe ECO Flow Without Quartus Incremental Compilation

	Common Questions About the SignalProbe Feature
	Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to Process”?
	How Can I Retain My SignalProbe ECOs During Re-Compilation of My Design?
	Why Did My SignalProbe Source Disappear in the Change Manager?
	What is an ECO and Where Can I Find More Information about ECOs?
	How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software Version 5.1 and Earlier to Version 6.0 and Later?
	What are all the Changes for the SignalProbe Feature between the Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?
	Why Can't I Reserve a SignalProbe Pin?

	Scripting Support
	Make a SignalProbe Pin
	Delete a SignalProbe Pin
	Enable a SignalProbe Pin
	Disable a SignalProbe Pin
	Perform a SignalProbe Compilation
	Migrate Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
	Script Example

	Adding SignalProbe Sources
	Performing a SignalProbe Compilation
	Running SignalProbe with Smart Compilation

	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	SignalProbe Scripting Support
	Reserving SignalProbe Pins
	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Run SignalProbe Automatically
	Run SignalProbe Manually
	Enable or Disable All SignalProbe Routing
	Running SignalProbe with Smart Compilation
	Allow SignalProbe to Modify Fitting Results

	Conclusion
	Referenced Documents
	Document Revision History

	15. Design Debugging Using the SignalTap II Embedded Logic Analyzer
	Introduction
	Hardware and Software Requirements

	Design Flow Using the SignalTap II Embedded Logic Analyzer
	SignalTap II Embedded Logic Analyzer Task Flow
	Add the SignalTap II Embedded Logic Analyzer to Your Design
	Configure the SignalTap II Embedded Logic Analyzer
	Define Trigger Conditions
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Embedded Logic Analyzer
	View, Analyze, and Use Captured Data

	Add the SignalTap II Embedded Logic Analyzer to Your Design
	Creating and Enabling a SignalTap II File
	Creating a SignalTap II File
	Enabling and Disabling a SignalTap II File for the Current Project

	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Embedded Logic Analyzer
	Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer
	Creating an HDL Representation Using the MegaWizard Plug-In Manager
	SignalTap II Megafunction Ports
	Instantiating the SignalTap II Embedded Logic Analyzer in Your HDL

	Configure the SignalTap II Embedded Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals Using the Node Finder
	Assigning Data Signals Using the Technology Map Viewer
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Adding Finite State Machine State Encoding Registers
	Modifying and Restoring Mnemonic Tables for State Machines
	Additional Considerations

	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Non-Segmented Buffer
	Segmented Buffer

	Using the Storage Qualifier Feature
	Input Port Mode
	Transitional Mode
	Conditional Mode
	Start/Stop Mode
	State-Based
	Showing Data Discontinuities
	Disable Storage Qualifier

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	Custom State-Based Triggering
	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action
	Using the State-Based Storage Qualifier Feature

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Trigger In
	Trigger Out
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for Your Design
	Using Incremental Compilation with the SignalTap II Embedded Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Embedded Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Programming a Single Device
	Programming Multiple Devices to Debug Multiple Designs

	Run the SignalTap II Embedded Logic Analyzer
	Running with a Power-Up Trigger
	Running with Runtime Triggers
	Performing a Force Trigger
	Runtime Reconfigurable Options
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Viewing Captured Data
	Capturing Data Using Segmented Buffers
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Converting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Embedded Logic Analyzer
	Equipment Setup
	Software Setup on the Remote PC
	Software Setup on the Local PC
	SignalTap II Setup on the Local PC

	Using the SignalTap II Embedded Logic Analyzer in Devices with Configuration Bitstream Security
	Backward Compatibility with Previous Versions of Quartus II Software

	SignalTap II Scripting Support
	SignalTap II Command-Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Embedded Logic Analyzers in SOPC Builder Systems
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	Conclusion
	Referenced Documents
	Document Revision History

	16. In-System Debugging Using External Logic Analyzers
	Introduction
	Choosing a Logic Analyzer
	Required Components
	FPGA Device Support

	Debugging Your Design Using the Logic Analyzer Interface
	Creating an LAI File
	Creating a New Logic Analyzer Interface File
	Opening an Existing External Analyzer Interface File
	Saving the External Analyzer Interface File

	Configuring the Logic Analyzer Interface File Core Parameters
	Mapping the Logic Analyzer Interface File Pins to Available I/O Pins
	Mapping Internal Signals to the Logic Analyzer Interface Banks
	Using the Node Finder
	Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project
	Compiling Your Quartus II Project
	Programming Your FPGA Using the Logic Analyzer Interface
	Using the Logic Analyzer Interface with Multiple Devices
	Configuring Banks in the Logic Analyzer Interface File
	Acquiring Data on Your Logic Analyzer

	Advanced Features
	Using the Logic Analyzer Interface with Incremental Compilation
	Creating Multiple Logic Analyzer Interface Instances in One FPGA

	Conclusion
	Referenced Documents
	Document Revision History

	17. In-System Updating of Memory and Constants
	Introduction
	Overview
	Device Megafunction Support
	Updating Memory and Constants in Your Design
	Creating In-System Modifiable Memories and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor Pane
	Importing and Exporting Memory Files
	Viewing Memories and Constants in the Hex Editor Pane
	Scripting Support
	Programming the Device with the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer

	Conclusion
	Referenced Documents
	Document Revision History

	18. Design Debugging Using In-System Sources and Probes
	Introduction
	Overview
	Hardware and Software Requirements

	Design Flow Using the In-System Sources and Probes Editor
	Configuring the ALTSOURCE_PROBE Megafunction
	Instantiating the ALTSOURCE_PROBE Megafunction
	Compiling the Design

	Running the In-System Sources and Probes Editor
	Programming Your Device With JTAG Chain Configuration
	Instance Manager
	In-System Sources and Probes Editor Pane
	Reading Probe Data
	Writing Data
	Organizing Data

	Tcl interface for the In-System Sources and Probes Editor
	Design Example: Dynamic PLL Reconfiguration
	Conclusion
	Referenced Documents
	Document Revision History

	Section V. Formal Verification
	19. Cadence Encounter Conformal Support
	Introduction
	Formal Verification Versus Simulation
	Formal Verification: What You Need to Know

	Formal Verification Design Flow
	Quartus II Integrated Synthesis
	EDA Tool Support for Quartus II Integrated Synthesis
	Synplify Pro
	EDA Tool Support for Synplify Pro

	RTL Coding Guidelines for Quartus II Integrated Synthesis
	Synthesis Directives and Attributes
	Stuck-at Registers
	ROM, LPM_DIVIDE, and Shift Register Inference
	RAM Inference
	Latch Inference
	Combinational Loops
	Finite State Machine Coding Styles

	Black Boxes in the Encounter Conformal Flow
	Tcl Command
	GUI

	Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files
	The Quartus II Software Generated Files, Formal Verification Scripts, and Directories

	Understanding the Formal Verification Scripts for Encounter Conformal
	The Encounter Conformal Commands within the Quartus II Software-Generated Scripts

	Comparing Designs Using Encounter Conformal
	Running the Encounter Conformal Software from the GUI
	Running the Encounter Conformal Software From a System Command Prompt

	Known Issues and Limitations
	Black Box Models
	Conformal Dofile/Script Example
	Conclusion
	Referenced Documents
	Document Revision History

	Section VI. Device Programming
	20. Quartus II Programmer
	Introduction
	Programming Flow
	Programming and Configuration Modes
	JTAG Mode
	Passive Serial Mode
	Active Serial Mode
	In-Socket Programming Mode

	Programmer Overview
	Tools Menu

	Hardware Setup
	Hardware Settings
	JTAG Settings

	Device Programming and Configuration
	Single Device Programming and Configuration
	Multi-Device Programming and Configuration
	Bypassing an Altera Device
	Bypassing a Non-Altera Device
	Chain Description File
	Design Security Key Programming

	Optional Programming Files
	Types of Programming and Configuration Files
	Generating Optional Programming Files
	Create Programming Files
	Convert Programming Files
	Generating Optional Programming or Configuration Files During Compilation

	Flash Loaders
	Parallel Flash Loader
	Serial Flash Loader

	JTAG Chain Debugger Tool
	JTAG Chain Integrity
	JTAG Chain Integrity Test
	IDCODE Iteration Test

	JTAG Chain Debugging
	Bypassing Devices in the Chain
	JTAG Chain Log

	Other Programming Tools
	Quartus II Stand-Alone Programmer
	jtagconfig Debugging Tool

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Quartus II Handbook Version 9.1 Volume 4: SOPC Builder
	Contents
	Chapter Revision Dates
	Section I. SOPC Builder Features
	1. Introduction to SOPC Builder
	Quick Start Guide
	Overview
	Architecture of SOPC Builder Systems
	SOPC Builder Modules
	Example System
	Available Components
	Custom Components
	Third-Party Components

	Functions of SOPC Builder
	Defining and Generating the System Hardware
	Creating a Memory Map for Software Development
	Creating a Simulation Model and Test Bench

	Visualization of SOPC Builder Systems
	Operating System Support
	Talkback Support
	Document Revision History

	2. System Interconnect Fabric for Memory-Mapped Interfaces
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric
	Address Decoding
	Datapath Multiplexing
	Wait State Insertion
	Pipelined Read Transfers
	Dynamic Bus Sizing and Native Address Alignment
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Native Address Alignment

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbiter Details
	Arbitration Rules
	Setting Arbitration Parameters in SOPC Builder
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers

	Burst Adapters
	Interrupts
	Individual Requests IRQ Scheme
	Priority Encoded Interrupt Scheme
	Assigning IRQs in SOPC Builder

	Reset Distribution
	Document Revision History

	3. System Interconnect Fabric for Streaming Interfaces
	High-Level Description
	Avalon Streaming and Avalon Memory-Mapped Interfaces
	Adapters
	Data Format Adapter
	Timing Adapter
	Channel Adapter
	Error Adapter

	Multiplexer Examples
	Example to Double Clock Frequency
	Example to Double Data Width and Maintain Frequency
	Example to Boost the Frequency

	Document Revision History

	4. SOPC Builder Components
	Component Providers
	Component Hardware Structure
	Component Instances Inside the SOPC Builder System
	Static HDL Components
	Generated HDL Components
	Composed HDL Components

	Components Outside the SOPC Builder System

	Exported Connection Points—Conduit Interfaces
	SOPC Builder Component Search Path
	Installing Additional Components
	Copy to the IP Root Directory
	Reference Components in an .ipx File
	ip–catalog
	ip-make-ipx

	Understanding IPX File Syntax
	Upgrading from Earlier Versions

	Component Structure
	Component Description File (_hw.tcl)
	Component File Organization

	Classic Components in SOPC Builder
	Document Revision History

	5. Using SOPC Builder with the Quartus II Software
	Quartus II IP File
	Quartus II Incremental Compilation
	TimeQuest Timing Analyzer
	Analyzing PLLs
	Analyzing Slow Asynchronous I/O Paths
	Analyzing Single Data Rate SDRAM and SSRAM
	Analyzing Tristate Bridges and Asynchronous Devices
	Analyzing DDR and DDR2 Memories

	Document Revision History

	6. Component Editor
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Bottom-Up Design
	Top-Down Design

	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Editing a Component
	Software Assignments
	Component Parameterization
	Document Revision History

	7. Component Interface Tcl Reference
	Information in a Hardware Component Description File
	Component Phases
	Writing a Hardware Component Description File
	Providing Basic Information
	Declaring Parameters
	User Parameters
	Derived Parameters
	The SYSTEM_INFO Parameter

	Declaring Interfaces
	Adding Files and Guiding Generation

	Default Behaviors
	Validation Phase Behavior
	Elaboration Phase Behavior
	Automatic Port Widths
	Parameterized Parameter Widths

	Generation Phase Behavior
	Edit Phase Behavior

	Overriding Default Behaviors
	Validation Callback
	Elaboration Callback
	Generation Callback
	Editor Callback

	Hardware Tcl Command Reference
	Module Definition
	package
	get_module_properties
	get_module_property
	set_module_property
	get_module_ports
	get_module_assignments
	get_module_assignment
	set_module_assignment
	get_files
	add_file
	get_file_properties
	get_file_property
	set_file_property
	send_message

	Parameters
	add_parameter
	get_parameter_properties
	get_parameters
	get_parameter_property
	set_parameter_property
	get_parameter_value
	set_parameter_value
	decode_address_map

	Display Items
	add_display_item
	GET_DISPLAY_ITEMS

	Interfaces and Ports
	add_interface
	get_interfaces Lissy
	get_interface_properties
	get_interface_property
	set_interface_property
	add_interface_port
	get_interface_ports
	get_port_properties
	get_port_property
	set_port_property
	get_interface_assignments
	get_interface_assignment
	set_interface_assignment

	Generation
	get_generation_properties
	get_generation_property

	Deprecated Commands and Properties
	Document Revision History

	8. Archiving SOPC Builder Projects
	Limitations
	Required Files
	Document Revision History

	Section II. Building Systems with SOPC Builder
	9. SOPC Builder Memory Subsystem Development Walkthrough
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware and Software Requirements
	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models

	On-Chip RAM and ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency
	Non-Default Memory Initialization
	Enable In-System Memory Content Editor Feature

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDR SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting and Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDR SDRAM

	DDR SDRAM
	DDR2 SDRAM
	Off-Chip SRAM and Flash Memory
	Component-Level Design for SRAM and Flash Memory
	Avalon-MM Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM and Flash Memory
	Simulation for SRAM and Flash Memory
	Quartus II Project-Level Design for SRAM and Flash Memory
	Board-Level Design for SRAM and Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM and Flash Memory
	Adding the Avalon-MM Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	SOPC Builder System Contents Tab
	Connecting and Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board

	Document Revision History

	10. SOPC Builder Component Development Walkthrough
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements
	Component Development Flow
	Typical Design Steps
	Hardware Design

	Design Example: Checksum Hardware Accelerator
	Software Design
	Verifying the Component
	System Console
	System-Level Verification

	Sharing Components
	System Information Files (.sopcinfo)
	Document Revision History

	Section III. Interconnect Components
	11. Avalon Memory-Mapped Bridges
	Structure of a Bridge
	Reasons for Using a Bridge
	Address Mapping for Systems with Avalon-MM Bridges
	Tools for Visualizing the Address Map
	Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

	Avalon-MM Pipeline Bridge
	Component Overview
	Functional Description
	Interfaces
	Pipeline Stages and Effects on Latency
	Burst Support
	Example System with Avalon-MM Pipeline Bridges

	Clock Crossing Bridge
	Choosing Clock Crossing Methodology
	Functional Description
	Interfaces
	Clock Crossing Bridge and FIFOs
	Burst Support
	Example System with Avalon-MM Clock-Crossing Bridges

	Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder

	Clock Domain Crossing Logic
	Description of Clock Domain Adapter
	Location of Clock Domain Adapter
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in SOPC Builder

	Avalon-MM DDR Memory Half-Rate Bridge
	Resource Usage and Performance
	Functional Description
	Instantiating the Core in SOPC Builder
	Example System

	Device Support
	Hardware Simulation Considerations
	Software Programming Model
	Document Revision History

	12. Avalon Streaming Interconnect Components
	Interconnect Component Usage
	Address Mapping
	Timing Adapter
	Resource Usage and Performance
	Instantiating the Timing Adapter in SOPC Builder

	Data Format Adapter
	Resource Usage and Performance
	Instantiating the Data Format Adapter in SOPC Builder

	Channel Adapter
	Resource Usage and Performance
	Instantiating the Channel Adapter in SOPC Builder

	Error Adapter
	Instantiating the Error Adapter in SOPC Builder

	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals
	Contents
	Chapter Revision Dates
	Section I. Off-Chip Interface Peripherals
	1. SDRAM Controller Core
	Core Overview
	Functional Description
	Avalon-MM Interface
	Off-Chip SDRAM Interface
	Signal Timing and Electrical Characteristics
	Synchronizing Clock and Data Signals
	Clock Enable (CKE) Not Supported
	Sharing Pins with Other Avalon-MM Tri-State Devices

	Board Layout and Pinout Considerations
	Performance Considerations
	Open Row Management
	Sharing Data and Address Pins
	Hardware Design and Target Device

	Device Support
	Instantiating the Core in SOPC Builder
	Memory Profile Page
	Timing Page

	Hardware Simulation Considerations
	SDRAM Controller Simulation Model
	SDRAM Memory Model
	Using the Generic Memory Model
	Using the SDRAM Manufacturer’s Memory Model

	Example Configurations
	Software Programming Model
	Clock, PLL and Timing Considerations
	Factors Affecting SDRAM Timing
	Symptoms of an Untuned PLL
	Estimating the Valid Signal Window
	Example Calculation

	Referenced Documents
	Document Revision History

	2. CompactFlash Core
	Core Overview
	Functional Description
	Instantiating the Core in SOPC Builder
	Required Connections
	Device Support
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Ide Registers
	Ctl Registers

	Document Revision History

	3. Common Flash Interface Controller Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Attributes Page
	Presets Settings
	Size Settings

	Timing Page

	Software Programming Model
	HAL System Library Support
	Limitations

	Software Files

	Referenced Documents
	Document Revision History

	4. EPCS Device Controller Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	HAL System Library Support
	Software Files

	Referenced Documents
	Document Revision History

	5. JTAG UART Core
	Core Overview
	Functional Description
	Avalon Slave Interface and Registers
	Read and Write FIFOs
	JTAG Interface
	Host-Target Connection

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Configuration Page
	Write FIFO Settings
	Read FIFO Settings

	Simulation Settings
	Simulated Input Character Stream
	Prepare Interactive Windows

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast vs. Small Implementations
	ioctl() Operations

	Software Files
	Accessing the JTAG UART Core via a Host PC
	Register Map
	Data Register
	Control Register

	Interrupt Behavior

	Referenced Documents
	Document Revision History

	6. UART Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers
	RS-232 Interface
	Transmitter Logic
	Receiver Logic
	Baud Rate Generation

	Device Support
	Instantiating the Core in SOPC Builder
	Configuration Settings
	Baud Rate Options
	Data Bits, Stop Bits, Parity
	Synchronizer Stages
	Flow Control
	Streaming Data (DMA) Control

	Simulation Settings
	Simulated RXD-Input Character Stream
	Prepare Interactive Windows
	Simulated Transmitter Baud Rate

	Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast Versus Small Implementations
	ioctl() Operations
	Limitations

	Software Files
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	divisor Register (Optional)
	endofpacket Register (Optional)

	Interrupt Behavior

	Referenced Documents
	Document Revision History

	7. SPI Core
	Core Overview
	Functional Description
	Example Configurations
	Transmitter Logic
	Receiver Logic
	Master and Slave Modes
	Master Mode Operation
	Slave Mode Operation
	Multi-Slave Environments

	Avalon-MM Interface

	Instantiating the SPI Core in SOPC Builder
	Master/Slave Settings
	Number of Select (SS_n) Signals
	SPI Clock (sclk) Rate
	Specify Delay

	Data Register Settings
	Timing Settings

	Device Support
	Software Programming Model
	Hardware Access Routines
	alt_avalon_spi_command()
	Software Files
	Register Map
	rxdata Register
	txdata Register
	status Register

	control Register
	slaveselect Register

	Referenced Documents
	Document Revision History

	8. Optrex 16207 LCD Controller Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	HAL System Library Support
	Displaying Characters on the LCD
	Software Files
	Register Map
	Interrupt Behavior

	Referenced Documents
	Document Revision History

	9. PIO Core
	Core Overview
	Functional Description
	Data Input and Output
	Edge Capture
	IRQ Generation

	Example Configurations
	Avalon-MM Interface

	Instantiating the PIO Core in SOPC Builder
	Basic Settings
	Width
	Direction
	Output Port Reset Value
	Output Register

	Input Options
	Edge Capture Register
	Interrupt

	Simulation

	Device Support
	Software Programming Model
	Software Files
	Register Map
	data Register
	direction Register
	interruptmask Register
	edgecapture Register
	outset and outclear Registers

	Interrupt Behavior
	Software Files

	Document Revision History

	10. Avalon-ST Serial Peripheral Interface Core
	Core Overview
	Functional Description
	Interfaces
	Operation
	Timing
	Limitations

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	11. PCI Lite Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	PCI-Avalon Bridge Blocks
	Avalon-MM Ports

	Master and Target Performance
	Master Performance
	Target Performance

	PCI-to-Avalon Address Translation
	Avalon-to-PCI Address Translation
	Avalon-To-PCI Read and Write Operation
	Avalon-to-PCI Write Requests
	Avalon-to-PCI Read Requests

	Ordering of Requests
	PCI Interrupt

	Instantiating the Core in SOPC Builder
	PCI Timing Constraint Files
	Additional Tcl Option

	Device Support
	Simulation Considerations
	Features
	Master Transactor (mstr_tranx)
	TASKS Sections
	INITIALIZATION Section
	USER COMMANDS Section

	Simulation Flow

	Referenced Documents
	Document Revision History

	12. Cyclone III Remote Update Controller Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers

	Device Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	Setting the Configuration Offset
	Shifting the Configuration Offset Value
	Setting up the Watchdog Timer
	Triggering a Reconfiguration
	Code Example

	Related Documentation
	Document Revision History

	Section II. On-Chip Storage Peripherals
	13. Avalon-ST Single Clock and Dual Clock FIFO Cores
	Core Overview
	Functional Description
	Interfaces
	Operations

	Instantiating the Core in SOPC Builder
	Device Support
	Software Programming Model
	HAL System Library Support
	Register Map

	Referenced Documents
	Document Revision History

	14. On-Chip FIFO Memory Core
	Core Overview
	Functional Description
	Avalon-MM Write Slave to Avalon-MM Read Slave
	Avalon-ST Sink to Avalon-ST Source
	Avalon-MM Write Slave to Avalon-ST Source
	Avalon-ST Sink to Avalon-MM Read Slave
	Status Interface
	Clocking Modes

	Device Support
	Instantiating the Core in SOPC Builder
	FIFO Settings
	Depth
	Clock Settings
	Status Port
	FIFO Implementation

	Interface Parameters
	Input
	Output
	Allow Backpressure
	Avalon-MM Port Settings
	Avalon-ST Port Settings

	Software Programming Model
	HAL System Library Support
	Software Files

	Programming with the On-Chip FIFO Memory
	Software Control
	Software Example

	On-Chip FIFO Memory API
	altera_avalon_fifo_init()
	altera_avalon_fifo_read_status()
	altera_avalon_fifo_read_ienable()
	altera_avalon_fifo_read_almostfull()
	altera_avalon_fifo_read_almostempty()
	altera_avalon_fifo_read_event()
	altera_avalon_fifo_read_level()
	altera_avalon_fifo_clear_event()
	altera_avalon_fifo_write_ienable()
	altera_avalon_fifo_write_almostfull()
	altera_avalon_fifo_write_almostempty()
	altera_avalon_write_fifo()
	altera_avalon_write_other_info()
	altera_avalon_fifo_read_fifo()

	Referenced Documents
	Document Revision History

	15. Avalon-ST Multi-Channel Shared Memory FIFO Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	Interfaces
	Avalon-ST Interfaces
	Avalon-MM Interfaces

	Operation

	Instantiating the Core in SOPC Builder
	Device Support
	Software Programming Model
	HAL System Library Support
	Register Map

	Referenced Documents
	Document Revision History

	Section III. Transport and Communication
	16. SPI Slave/JTAG to Avalon Master Bridge Cores
	Core Overview
	Functional Description
	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	17. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
	Core Overview
	Resource Usage and Performance

	Multiplexer
	Functional Description
	Input Interfaces
	Output Interface

	Instantiating the Multiplexer in SOPC Builder
	Functional Parameters
	Output Interface

	Demultiplexer
	Functional Description
	Input Interface
	Output Interfaces

	Instantiating the Demultiplexer in SOPC Builder
	Functional Parameters
	Input Interface

	Device Support
	Hardware Simulation Considerations
	Software Programming Model
	Document Revision History

	18. Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
	Core Overview
	Functional Description
	Interfaces
	Operation—Avalon-ST Bytes to Packets Converter Core
	Operation—Avalon-ST Packets to Bytes Converter Core

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	19. Avalon Packets to Transactions Converter Core
	Core Overview
	Functional Description
	Interfaces
	Operation
	Packet Formats
	Supported Transactions
	Malformed Packets

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	20. Avalon-ST Round Robin Scheduler Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	Interfaces
	Almost-Full Status Interface
	Request Interface

	Operations

	Instantiating the Core in SOPC Builder
	Device Support
	Document Revision History

	21. Avalon-ST Delay Core
	Core Overview
	Functional Description
	Reset
	Interfaces

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	22. Avalon-ST Splitter Core
	Core Overview
	Functional Description
	Backpressure
	Interfaces

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	Section IV. Peripherals
	23. Scatter-Gather DMA Controller Core
	Core Overview
	Example Systems
	Comparison of SG-DMA Controller Core and DMA Controller Core
	In This Chapter

	Resource Usage and Performance
	Functional Description
	Functional Blocks and Configurations
	Descriptor Processor
	DMA Read Block
	DMA Write Block
	Memory-to-Memory Configuration
	Memory-to-Stream Configuration
	Stream-to-Memory Configuration

	DMA Descriptors
	Descriptor Processing
	Building and Updating Descriptor List

	Error Conditions

	Device Support
	Instantiating the Core in SOPC Builder
	Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	DMA Descriptors
	Timeouts

	Programming with SG-DMA Controller
	Data Structure
	SG-DMA API
	alt_avalon_sgdma_do_async_transfer()
	alt_avalon_sgdma_do_sync_transfer()
	alt_avalon_sgdma_construct_mem_to_mem_desc()
	alt_avalon_sgdma_construct_stream_to_mem_desc()
	alt_avalon_sgdma_construct_mem_to_stream_desc()
	alt_avalon_sgdma_check_descriptor_status()
	alt_avalon_sgdma_register_callback()
	alt_avalon_sgdma_start()
	alt_avalon_sgdma_stop()
	alt_avalon_sgdma_open()

	Referenced Documents
	Document Revision History

	24. DMA Controller Core
	Core Overview
	Functional Description
	Setting Up DMA Transactions
	The Master Read and Write Ports
	Addressing and Address Incrementing

	Instantiating the Core in SOPC Builder
	DMA Parameters (Basic)
	Transfer Size
	Burst Transactions
	FIFO Implementation

	Advanced Options
	Allowed Transactions

	Device Support
	Software Programming Model
	HAL System Library Support
	ioctl() Operations
	Limitations

	Software Files
	Register Map
	status Register
	readaddress Register
	writeaddress Register
	length Register
	control Register

	Interrupt Behavior

	Referenced Documents
	Document Revision History

	25. Video Sync Generator and Pixel Converter Cores
	Core Overview
	Video Sync Generator
	Functional Description
	Instantiating the Core in SOPC Builder
	Signals
	Timing Diagrams

	Pixel Converter
	Functional Description
	Instantiating the Core in SOPC Builder
	Signals

	Device Support
	Hardware Simulation Considerations
	Referenced Documents
	Document Revision History

	26. Interval Timer Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface

	Device Support
	Instantiating the Core in SOPC Builder
	Timeout Period
	Counter Size
	Hardware Options
	Register Options
	Output Signal Options

	Configuring the Timer as a Watchdog Timer

	Software Programming Model
	HAL System Library Support
	System Clock Driver
	Timestamp Driver
	Limitations

	Software Files
	Register Map
	status Register
	control Register
	period_n Registers
	snap_n Registers

	Interrupt Behavior

	Referenced Documents
	Document Revision History

	27. Mutex Core
	Core Overview
	Functional Description
	Device Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	Software Files
	Hardware Access Routines

	Mutex API
	altera_avalon_mutex_is_mine()
	altera_avalon_mutex_first_lock()
	altera_avalon_mutex_lock()
	altera_avalon_mutex_open()
	altera_avalon_mutex_trylock()
	altera_avalon_mutex_unlock()

	Document Revision History

	28. Mailbox Core
	Core Overview
	Functional Description
	Device Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	Software Files
	Programming with the Mailbox Core

	Mailbox API
	altera_avalon_mailbox_close()
	altera_avalon_mailbox_get()
	altera_avalon_mailbox_open()
	altera_avalon_mailbox_pend()
	altera_avalon_mailbox_post()

	Document Revision History

	29. Vectored Interrupt Controller Core
	Core Overview
	Functional Description
	External Interfaces
	clk
	irq_input
	interrupt_controller_out
	interrupt_controller_in
	csr_access

	Functional Blocks
	Interrupt Request Block
	Priority Processing Block
	Vector Generation Block

	Daisy Chaining VIC Cores
	Latency Information

	Register Maps
	Device Support
	Instantiating the Core in SOPC Builder
	Altera HAL Software Programming Model
	Software Files
	Macros
	Data Structure
	VIC API
	alt_vic_sw_interrupt_set()
	alt_vic_sw_interrupt_clear()
	alt_vic_sw_interrupt_status()
	alt_vic_irq_set_level()

	Run-time Initialization
	Board Support Package
	VIC BSP Settings
	Default Settings for RRS and RIL
	VIC BSP Design Rules for Altera Hal Implementation
	RTOS Considerations

	Referenced Documents
	Document Revision History

	Section V. Test and Debug Peripherals
	30. Avalon-ST JTAG Interface Core
	Core Overview
	Functional Description
	Interfaces
	Special characters
	Operation

	Instantiating the Core in SOPC Builder
	Device Support
	Referenced Documents
	Document Revision History

	31. System ID Core
	Core Overview
	Functional Description
	Device Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	alt_avalon_sysid_test()

	Document Revision History

	32. Performance Counter Core
	Core Overview
	Functional Description
	Section Counters
	Global Counter
	Register Map
	System Reset Considerations

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Define Counters
	Multiple Clock Domain Considerations

	Hardware Simulation Considerations
	Software Programming Model
	Software Files
	Using the Performance Counter
	API Summary
	Startup
	Global Counter Usage
	Section Counter Usage
	Viewing Counter Values

	Interrupt Behavior

	Performance Counter API
	PERF_RESET()
	PERF_START_MEASURING()
	PERF_STOP_MEASURING()
	PERF_BEGIN()
	PERF_END()
	perf_print_formatted_report()
	perf_get_total_time()
	perf_get_section_time()
	perf_get_num_starts()
	alt_get_cpu_freq()

	Referenced Documents
	Document Revision History

	33. Avalon Streaming Test Pattern Generator and Checker Cores
	Core Overview
	Resource Utilization and Performance
	Test Pattern Generator
	Functional Description
	Command Interface
	Control and Status Interface
	Output Interface

	Instantiating the Test Pattern Generator in SOPC Builder
	Functional Parameter
	Output Interface

	Test Pattern Checker
	Functional Description
	Input Interface
	Control and Status Interface

	Instantiating the Test Pattern Checker in SOPC Builder
	Functional Parameter
	Input Parameters

	Device Support
	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers

	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_set_enable()
	data_source_get_enable()
	data_source_set_throttle()
	data_source_get_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_set enable()
	data_sink_get_enable()
	data_sink_set_throttle()
	data_sink_get_throttle()
	data_sink_get_packet_count()
	data_sink_get_symbol_count()
	data_sink_get_error_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()

	Document Revision History

	34. Avalon Streaming Data Pattern Generator and Checker Cores
	Core Overview
	Data Pattern Generator
	Functional Description
	Control and Status Interface
	Output Interface
	Supported Data Patterns
	Inject Error
	Preamble Mode

	Instantiating the Data Pattern Generator in SOPC Builder
	Output Parameter

	Data Pattern Checker
	Functional Description
	Control and Status Interface
	Input Interface
	Supported Data Patterns
	Lock
	Bit and Error Counters

	Instantiating the Data Pattern Checker in SOPC Builder
	Input Parameter

	Device Support
	Hardware Simulation Considerations
	Software Programming Model
	Register Maps
	Data Pattern Generator Control Registers
	Data Pattern Checker Control and Status Registers

	Referenced Documents
	Document Revision History

	Section VI. Clock Control Peripherals
	35. PLL Cores
	Core Overview
	Functional Description
	ALTPLL Megafunction
	Clock Outputs
	PLL Status and Control Signals
	System Reset Considerations

	Device Support
	Instantiating the Cores in SOPC Builder
	Instantiating the Avalon ALTPLL Core
	Instantiating the PLL Core
	PLL Settings Page
	Interface Page
	Finish

	Hardware Simulation Considerations
	Register Definitions and Bit List
	Status Register
	Control Register
	Phase Reconfig Control Register

	Referenced Documents
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

