

Laboratório 6

1. Rotação binária é uma operação que consiste em, dado uma palavra de n bits, fazer um reposicionamento dos bits na palavra de maneira circular, mantendo a ordem. Isto é, quando o reposicionamento é diferente de um múltiplo de n, o bit mais significativo da palavra rotacionada é aquele de posição anterior, no vetor original, ao bit menos significativo. Ex.: x_3 x_2 x_1 x_0 , rotacionado em 2 é x_1 x_0 x_3 x_2 .

Uma forma de implementar essa operação em *hardware* é através do circuito chamado *barrel shifter*. Dados uma palavra binária $W = w_3 w_2 w_1 w_0$, um valor de rotacionamento $S = s_1 s_0$, a saída $Y = y_3 y_2 y_1 y_0$ será conforme a tabela verdade mostrada abaixo:

S ₁	S 0	y 3	y 2	y 1	y 0
0	0	W 3	W 2	W 1	\mathbf{W}_0
0	1	W 0	W 3	W 2	W 1
1	0	W 1	\mathbf{w}_0	W 3	W_2
1	1	W ₂	W_1	\mathbf{W}_0	W 3

- a) **Implemente em VHDL** um *barrel shifter* de 4 bits a partir da tabela verdade acima. **Simule** seu funcionamento. Dica: utilize multiplexadores 4:1.
- b) Utilizando o demo_setup, **execute** sua implementação na DE1, utilizando as *switches* como entradas e os *leds* como saídas.

2.

- a) Implemente em VHDL um somador carry look-ahead (CLA) de 4 bits. Verifique sua implementação simulando. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com a do laboratório anterior (somador ripple-carry de 4 bits). Qual tem o menor tempo? Utilizando o demo_setup, execute sua implementação na DE1, utilizando as switches como entradas e os leds como saídas.
- b) Implemente em VHDL um somador de 8 bits com CLA parcial, utilizando dois somadores CLA de 4 bits, interconectados em cascata (carry-out o CLA menos significativo conectado ao carry-in do CLA mais significativo. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com a do laboratório anterior (somador *ripple-carry* de 8 bits). Qual tem o menor tempo?
- c) Implemente em VHDL um somador carry look-ahead (CLA puro) 8 bits, sem nenhuma ligação em cascata ou do tipo ripple carry. Para isto, você terá que estender as equações de CLA de 4 bits (dadas em aula) para 8 bits. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com as implementações anteriores de 8 (ripple carry, CLA parcial). Qual tem o menor tempo?