

MC 613

IC/Unicamp

Prof Guido Araújo Prof Mario Côrtes

Circuitos combinacionais

IC-UNICAMP

Tópicos

- Circuitos digitais:
 - Níveis e margem de ruído
 - Tri-state
 - Wired AND, Wired OR
- Conceitos básicos de projeto de circuitos combinacionais
 - Tabela verdade
 - Soma de produtos
 - Álgebra Booleana
 - Mintermos e implicantes principais
 - Mapa de Karnaugh e minimização

Níveis Lógicos

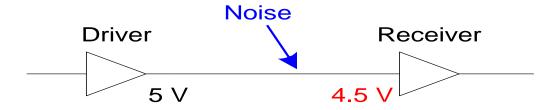
- Define as voltagens para representar o 1 e o
- Exemplo:
 - -0: terra ou 0 volts
 - $-1: V_{DD}$ ou 5 volts
- Qual o valor produzido por uma porta (gate)?
- Se produzir 4.99 volts? Isso é um 0 ou um 1?
- E se 3.2 volts?

Níveis Lógicos

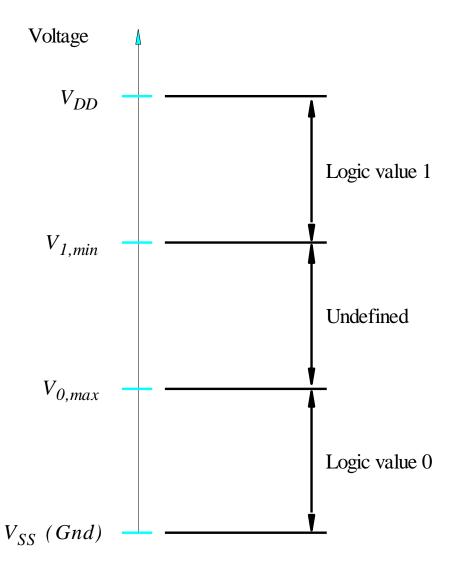
 Definem-se intervalos de voltagens para representar o 1 e o 0

 Define-se diferentes intervalos para saídas e entradas para permitir tolerância a ruídos

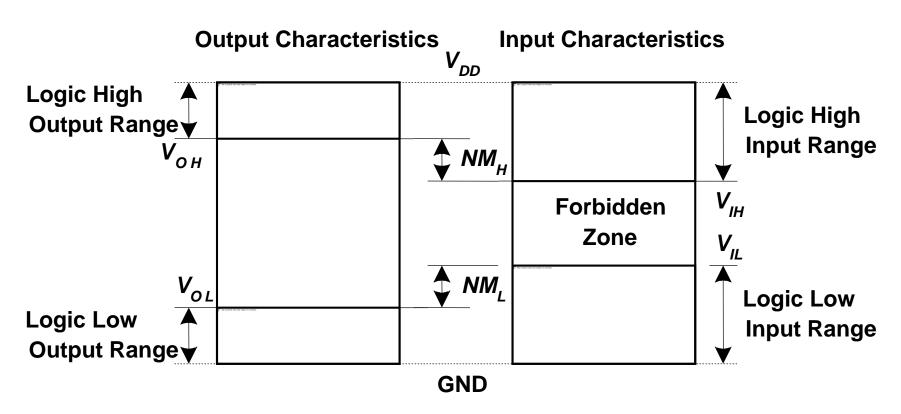
Ruído é qualquer coisa que degrada o sinal



Níveis Lógicos



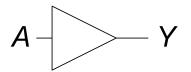
Níveis Lógicos: Margem de Ruído

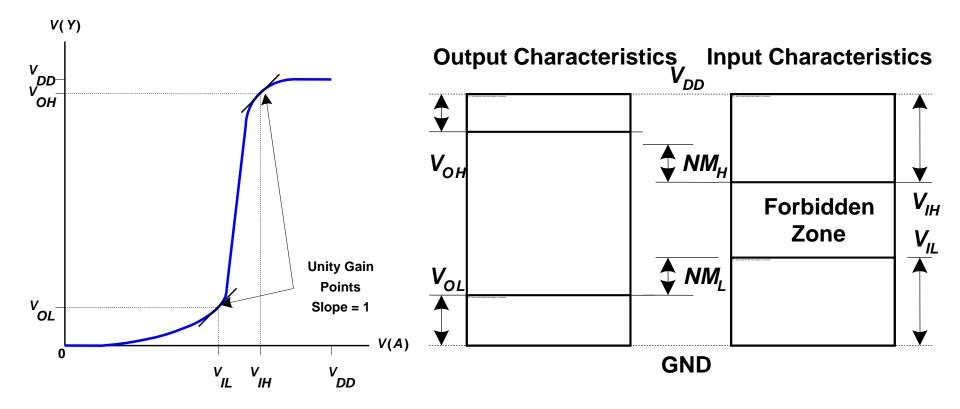


$$NM_{H} = V_{OH} - V_{IH}$$

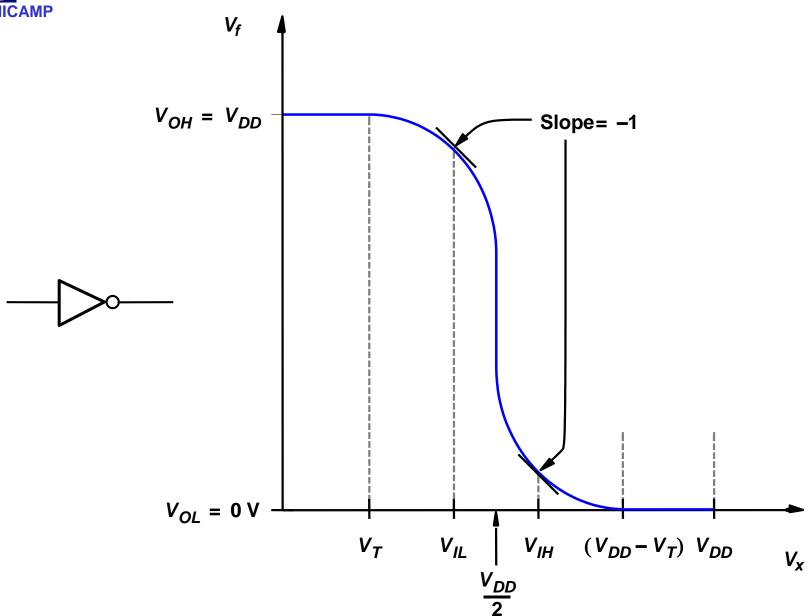
$$NM_{L} = V_{IL} - V_{OL}$$

Característica de Transferência DC

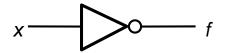


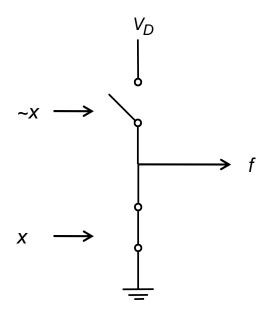


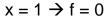
Característica de Transferência DC

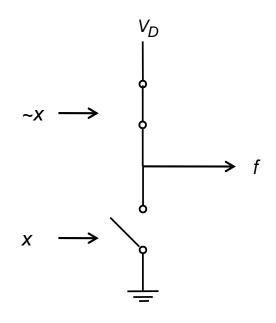


Saída ativa normal inversor CMOS



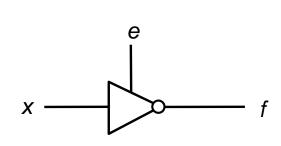






$$x = 0 \rightarrow f = 1$$

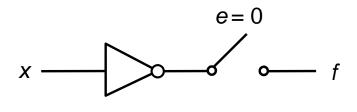
Saída tri-state CMOS

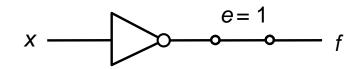


Inversor tri-state

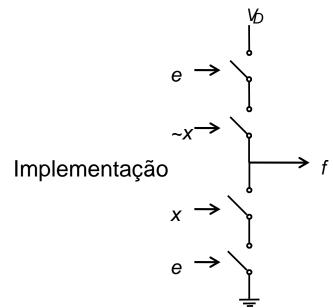
X	f
0	Z
1	Z
0	1
1	0
	0 1 0

Tabela verdade



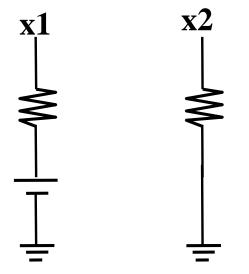


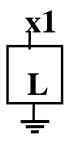
Circuito equivalente

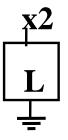


Níveis lógicos fracos

- Quais os valores de x1 e x2?
- As lâmpadas acendem?

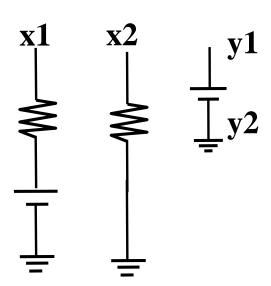






Níveis lógicos fortes e fracos

 Quais os valores de x1, x2, y1 e y2

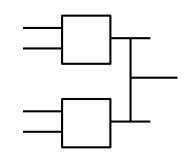


 O que acontece ao ligar

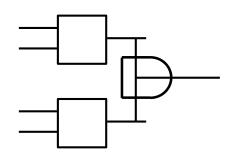
	×1	x2	y1	y2
×1	1			
x 2		1		
y1			1	
y2				_

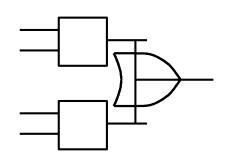
Wired AND, Wired OR

 O que acontece se ligarmos as saídas de circuitos lógicos em curto circuito?



 Dependendo da relação de força dos transitores pullup e pull down





Wired AND

(saída = 0 se alguma entrada for =0)

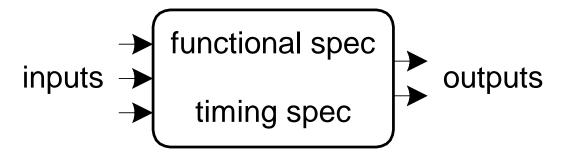
Wired OR

(saída = 1 se alguma entrada for =1)

Circuitos combinacionais – conceitos básicos

Tipos de Circuitos Lógicos

- Combinacional
 - -Sem memória
 - As saídas são determinadas pelos valores correntes das entradas
- Sequencial
 - -Tem memória
 - As saídas são determinadas pelos valores anteriores e correntes das entradas



Forma Soma-de-Produtos (SOP)

- Toda equação booleana pode ser descrita na forma SOP
- Cada linha da tabela verdade é associada a um mintermo
- Um mintermo é um produto (AND) de literais
- Cada mintermo é TRUE (1) para uma dada linha (e somente para essa linha)
- A função é formada pelo OR dos mintermos para os quais a saída é TRUE (1)
- Assim, a função é a soma (OR) de produtos (termos AND)

Α	В	Y	minterm
0	0	0	$\overline{A} \ \overline{B}$
0	1	1	A B
1	0	0	$\overline{A} \overline{\overline{B}}$
1	1	1	АВ

$$Y = F(A, B, C) = \overline{AB} + AB$$

Terminologia

- Literal Uma variável complementada ou não em um termo produto (ou termo soma)
- Implicante Um termo produto que implementa um ou mais 1´s da função. Exemplo: um míntermo é um implicante; um produto gerado pela simplificação de uma váriável de dois míntermos é um implicante.
- Implicante Principal Um implicante que n\u00e3o pode ser simplificado em outro implicante com menos literais.
- Implicante Essencial Implicante Principal que é imprescindivel na realização da função (existe pelo menos um "1" que só é coberto por ele).
- Cobertura Uma coleção de implicantes que implementam a função (implementam todos os 1´s da função).
- Custo número de portas + número de entradas de todas as portas (assumiremos que as entrads primárias estão disponíveis tanto na forma verdadeira quanto complementada).

Forma Produto-de-Somas (POS)

- Toda equação booleana pode ser descrita na forma POS
- Cada linha da tabela verdade é associada a um maxtermo
- Um maxtermo é uma soma (OR) de literais
- cada maxtermo é FALSE (0) para uma dada linha (e somente para essa linha)
- A função é formada pelo AND dos maxtermos para os quais a saída é False (0)
- Assim, a função é um produto (AND) de soma (termos OR)

A	В	Y	maxterm
0	0	0	A + B)
0	1	1	$A + \overline{B}$
(1	0	0	$\overline{A} + B$
1	1	1	$\overline{A} + \overline{B}$

$$Y = F(A, B, C) = (A + B)(A + B)$$

Álgebra Booleana

- Conjunto de Axiomas e Teoremas: usados para simplificar equações Booleanas
- Similar à algebra regular, porém mais simples em muitos casos já que as variáveis só podem ter dois valores (1 ou 0)
- Axiomas e Teoremas obedecem aos principios da dualidade:
 - Trocando-se ANDs por Ors (e vice-versa) e0's por 1's (e vice-versa)

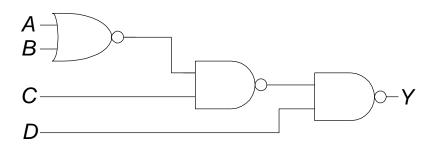
Axiomas e Teoremas

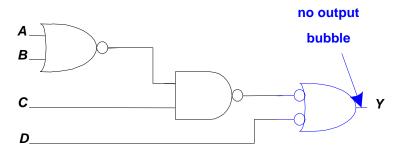
	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR
	Theorem		Dual	Name
T1	Theorem $B \bullet 1 = B$	T1'	$\frac{\mathbf{Dual}}{B+0} = B$	Name Identity
T1 T2		T1'		
	B • 1 = B		B + 0 = B	Identity
T2	$B \bullet 1 = B$ $B \bullet 0 = 0$	T2'	B + 0 = B $B + 1 = 1$	Identity Null Element

Teoremas

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Técnica Bubble Pushing





input and output C D

bubble on

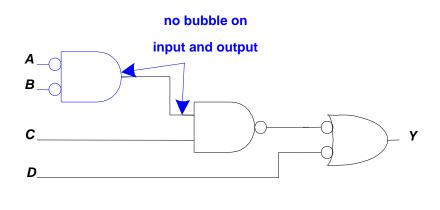
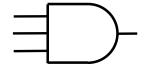


Tabela verdade

- AND e OR de 3 entradas
 - 2³ combinações ou mintermos

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



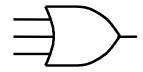


Tabela verdade, mintermos

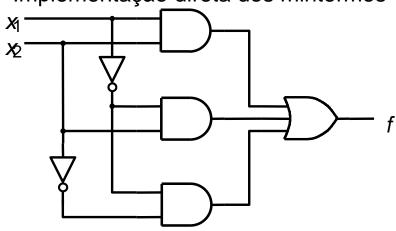
Tabela verdade

x_1	x_2	$f(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Soma de produtos canônica

$$f = \Sigma (0, 1, 3)$$

Implementação direta dos mintermos



Implementação de custo mínimo

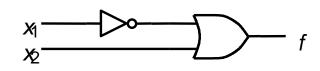
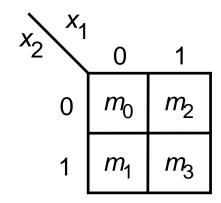


Tabela verdade e Mapa de Karnaugh

<i>x</i> ₁	<i>x</i> ₂	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

(a) Truth table



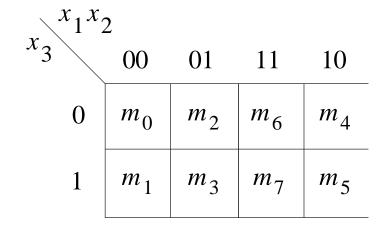
(b) Karnaugh map

Procedimento para minimização

- Tabela verdade → mintermos
- Mapa de Karnaugh
- Identificar os implicantes principais para cobertura de todos os mintermos
- Identificar quais são essenciais e selecionálos
- Verificar quais mintermos não foram cobertos pelos implicantes essenciais
- Selecionar implicantes principais para cobrir esses mintermos não cobertos

Mapa de Karnaugh e 3 variáveis

$\frac{x_1}{1}$	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			I

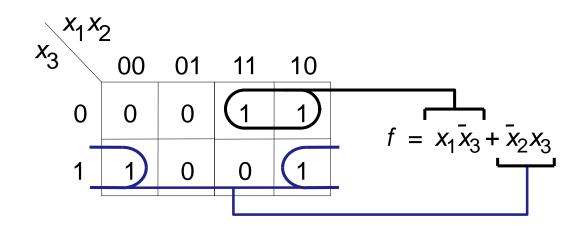


(b) Karnaugh map

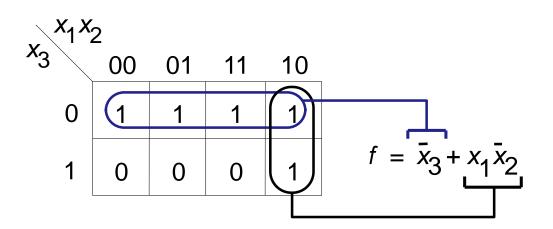
(a) Truth table

Exemplos de funções de 3 variáveis

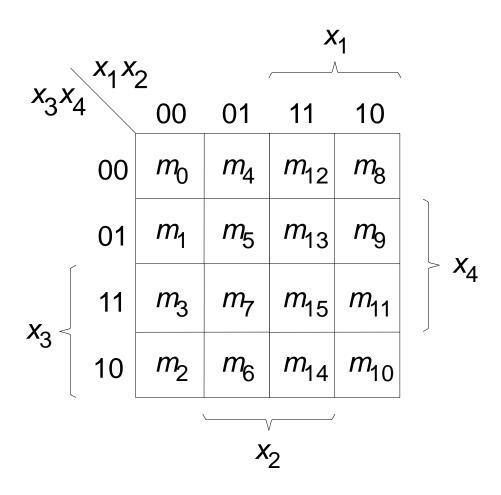
Função da Fig. 2.18



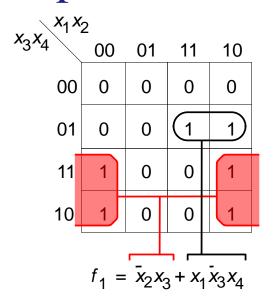
Função da Fig. 4.1

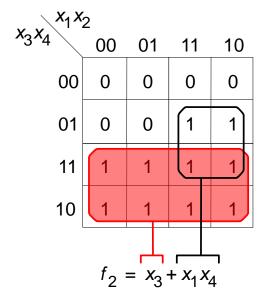


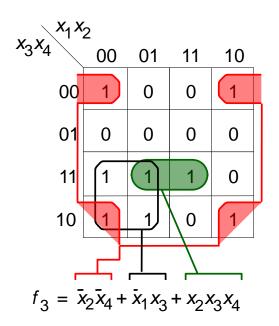
Karnaugh: 4 variáveis

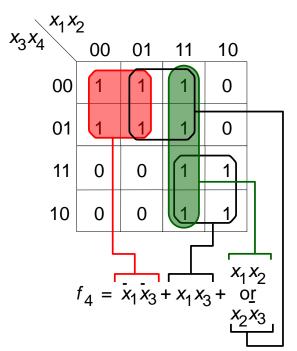


Exemplos de M.K. de 4 variáveis

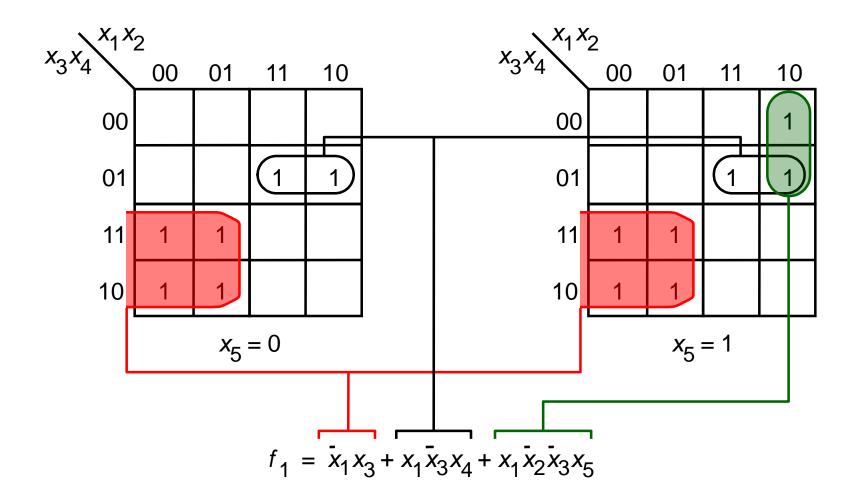






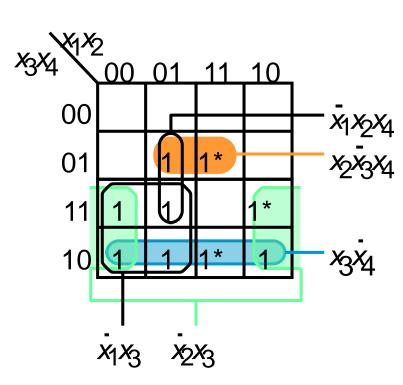


Mapa de Karnaugh de 5 variáveis

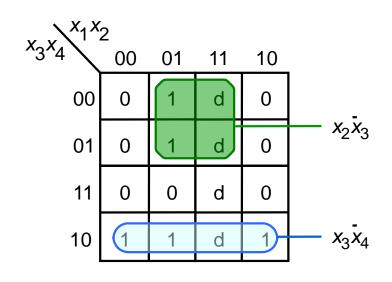


Implicante principal essencial

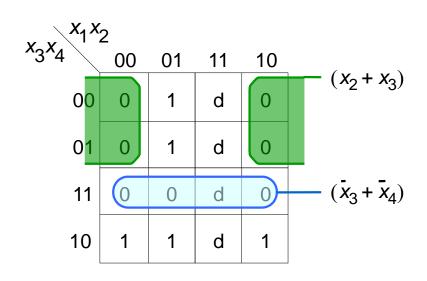
- Implicante principal é essencial se for o único a cobrir algum mintermo
- Exemplo: $f = \Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14)$
 - 5 implicantes principais
 - somente 3 são essenciais*
 - x̄₂x₃ devido a m11
 - $x_3 \overline{x}_4$ devido a m14
 - $x_2\overline{x}_3$ x_4 devido a m13
 - faltou somente cobrir m7, e há 2 impl princ → escolher menor custo
 - $f = \overline{x}_2 x_3 + x_3 \overline{x}_4 + x_2 \overline{x}_3 x_4 + \overline{x}_1 x_3$



Uso de don't care



(a) SOP implementation

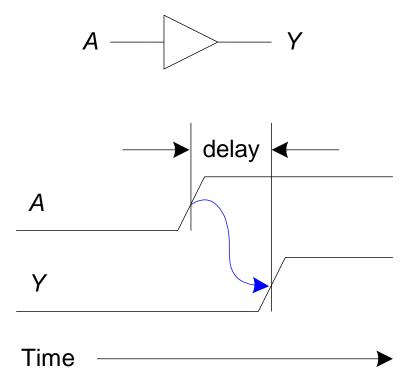


(b) POS implementation

$$f = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$$

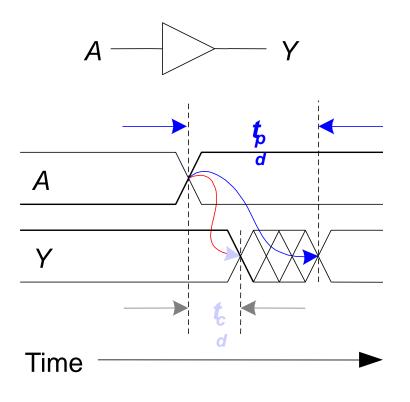
Timing

- Delay: atraso entre a mudança na entrada e na saída
- Um dos maiores desafios em projeto de circuitos: tornar o circuito mais rápido



Delay: Propagação e Contaminação

- Propagation delay: t_{pd} = max delay da entrada à saída
- Contamination delay: t_{cd} = min delay da entrada à saída

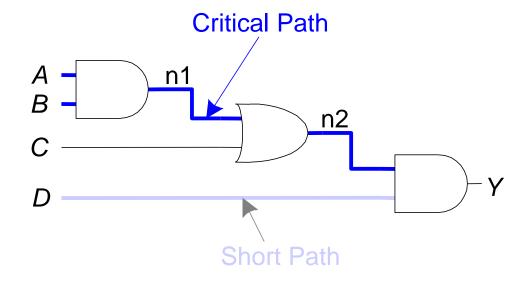


Delay: Propagação e Contaminação

- Os atrasos são causados por
 - Capacitância e
 - Resistências no circuito

- Razões porque t_{pd} and t_{cd} podem ser diferentes:
 - Diferentes tempos de subida (rising) e de descida (falling)
 - Múltiplas entradas e saídas, algumas podem ser mais rápidas do que as outras
 - Circuito mais lento quando quente e mais rápido quando frio

Caminhos: Críticos e Curtos



Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

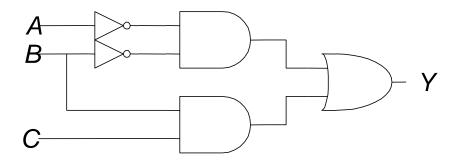
IC-UNICAMP

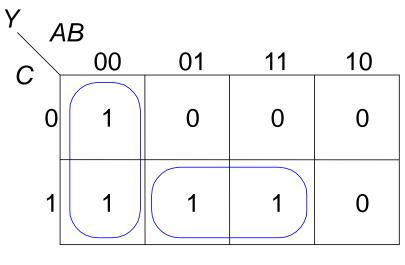
Glitches

 Um glitch ocorre quando uma mudança em uma entrada causa múltiplas mudanças na saída

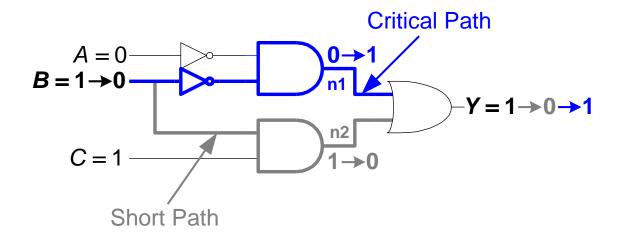
- Glitches não causam problemas se seguirmos as convenções de projetos síncronos
- É importante reconhecer um glitch quando se vê um em uma simulação ou em um osciloscópio

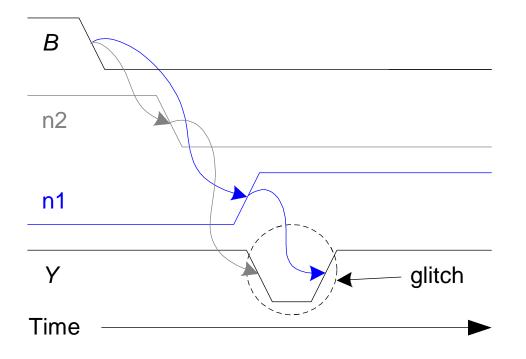
Exemplo de Glitch



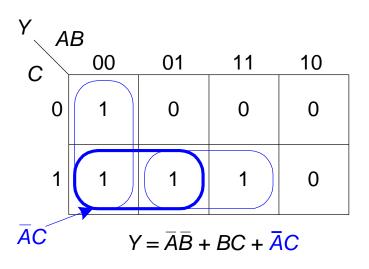


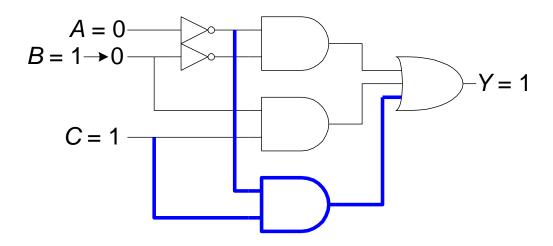
Exemplo de Glitch (cont.)





Exemplo de Glitch (cont.)





VHDL: introdução

- Linguagem de descrição de hardware: suporte para simulação e síntese (padrão IEEE)
- Como representar circuito combinacional simples?

Modelo completo de um circuito

```
Library IEEE;
use IEEE.std logic 1164.all;
Entity exemplo IS
   Port (a, b, c : IN std logic;
         f : OUT std logic);
End exemplo;
Architecture estrutural OF exemplo IS
  signal d, e : std logic;
Begin
   f <= d or e;
   d \le a \text{ and not(b)};
       \leq b and c;
End estrutural
```


Principais blocos

```
Library IEEE;
use IEEE.std_logic_1164.all;
```

Cabeçalho:

bibliotecas em uso

```
Entity exemplo IS
    Port (a, b, c : IN std_logic;
        f : OUT std_logic);
End exemplo;
```

Entity:

- Define o nome
- Define as interfaces
- Ports Inputs/Outputs
- Tipos de sinal

```
Architecture estrutural OF exemplo IS
  signal d, e : std_logic;
Begin
  f <= d or e;
  d <= a and (not b);
  e <= b and c;
End estrutural</pre>
```

Architecture:

- Descreve conteúdo funcional do componente
- Possívei mais de uma
- Definição de sinais internos
- Atribuição de sinais
- Ordem importa??

Conceitos básicos

- Sinais (no exemplo são os sinais: a, b, c, d, e, f)
 - Representam os "fios" do circuito
- -- inicia um comentário Alguns tipos dos sinais type bit is ('0', '1'); type std logic is ('U', -- não iniciado (unitialized) 'X', -- desconhecido (unknow) forte '0', -- zero forte `1', -- um forte `Z', -- alta impedância (tri-state) 'W', -- desconhecido fraco `L', -- zero fraco 'H', -- um fraco '-'); -- indiferente (don't care)

Construções de VHDL vistas nesta aula

- Cabeçalho e bibliotecas
- Entity: significado, ports, tipo de sinais
- Architecture
- Definição de sinais internos (não fazem parte da interface)
- Atribuição de sinais
- Alguns operadores booleanos
- Comandos concorrentes
- Tipos de sinal: bit e std_logic
- Convenção para comentário (--)