
Debugging of VHDL Hardware Designs on Altera’s DE1 Boards

This tutorial presents some basic debugging concepts that can be helpful in creating VHDL designs for imple-
mentation on Altera’s DE1 boards. It shows how Quartus II tools can help in the debugging task.

The reader is expected to be familiar with the RTL Viewer and Signal Tap II Logic Analyzer tools included in
Altera’s Quartus II software. Also, a basic knowledge of simulation is needed.

Contents:
Example Circuit
Quartus II Tools for Use in Debugging of Hardware Designs
Debugging Concepts
Sources of Errors in VHDL Designs
Design Procedure

1

Designers of digital systems are innevitably faced with thetask of debugging their imperfect initial designs.
This task becomes more difficult as the system grows in complexity. The debugging process requires determina-
tion of possible flaws in the designed circuits. This tutorial introduces some basic debugging concepts that can
help in designing of circuits specified in VHDL. The tutorialfocuses on the debugging of digital hardware. A re-
lated tutorial,Debugging of Application Programs on Altera’s DE1 Boards, deals with the debugging of software
programs that are run by Altera’s Nios II processor implemented on a DE1 board.

To clarify the concepts used in debugging, we will show how these concepts may be applied to an example
circuit.

1 Example Circuit

To make the tutorial easy to follow, we use a relatively simple digital circuit. Our circuit is a tester that can be
used to test the reaction time of a person to a visual stimulus. The user initiates the test by pressing and releasing
a pushbutton key,KEY1. After some delay (of at least four seconds) the circuit turns on a light. In response, the
user presses another key,KEY3, as quickly as possible, which results in turning the light off and displaying the
ellapsed time in hundredths of a second on the 7-segment displays on the DE1 board.

A block diagram of the circuit is given in Figure 1. The circuit is designed in hierarchical manner, where a
number of subcircuits are used to implement the simple tasks. This is a good design practice and the resulting
circuit is easier to understand and debug.

Since the pushbutton keys on the DE1 board produce a logic value 0 when pressed, we have chosen to create
inverted signals with more meaningful names as follows:

reset = !KEY0

request_test = !KEY1

stop_test = !KEY3

When therequest_test signal goes to 1, therun signal is activated, which enables the counter circuit thatgenerates
thestart_test signal after a delay of about four seconds. Thestart_test signal activates thetest_active signal which
causes the green light,LEDG0, to be turned on. At this point the four-digit binary-coded-decimal (BCD) counter
starts counting in one-hundredth of a second. It is enabled by a pulse (one clock cycle in duration) produced
every one-hundredth of a second by the counter circuit called hundredth. The four BCD digits,BCD0 to BCD3,
are decoded by the BCD-to-7-segment decoder circuits and displayed on the 7-segment displays,HEX0 to HEX3.
The clear signal, which is generated when eitherreset or stop_test signal is activated by pressing the respective
pushbutton, brings the control signalsrun andtest_active to 0, which freezes the BCD count at its present value.

The VHDL code for the top-level module, which corresponds tothe block diagram in Figure 1, is given in
Figure 2. The entity is called thereaction_tester. It instantiates modules for each of the subcircuits shown in
Figure 1. The statements are numbered for ease of reference in the discussion below. The subcircuits are specified
as shown in Figures 3 to 13.

2

Clear

ff_in
Q

control_ff

Clear

ff_in
Q

control_ff

Clear

Enable
Start

delay_counter

KEY 1

KEY 0

KEY 3

run_signal foursec_delay

LEDG0

Clock

Clear

Enable

BCD_counter

bcdcount

Load

pulse_500k

hundredth

hundredth_sec

sec_100th

bcd3 0– display0 6–

bcd7seg

digit0

bcd3 0– display0 6–

bcd7seg

digit1

bcd3 0– display0 6–

bcd7seg

digit2

bcd3 0– display0 6–

bcd7seg

digit3

BCD0

BCD1

BCD2

BCD3

HEX0

HEX2

HEX3

HEX1

test_active

test_signal

clear

run start_test

reset

stop_test

request_test

enable_bcd

Figure 1. The reaction-tester circuit.

3

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;
3 USE ieee.std_logic_unsigned.all ;
4 ENTITY reaction_tester IS
5 PORT (CLOCK_50 : IN STD_LOGIC ;
6 KEY : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
7 HEX3, HEX2, HEX1, HEX0 : OUT STD_LOGIC_VECTOR(0 TO 6) ;
8 LEDG : OUT STD_LOGIC_VECTOR(0 DOWNTO 0)) ;
9 END reaction_tester ;

10 ARCHITECTURE top_level OF reaction_tester IS
11 SIGNAL reset, request_test, stop_test, clear, sec_100th : STD_LOGIC ;
12 SIGNAL run, start_test, test_active, enable_bcd : STD_LOGIC ;
13 SIGNAL BCD3, BCD2, BCD1, BCD0 : STD_LOGIC_VECTOR(3 DOWNTO0) ;
14 COMPONENT control_ff
15 PORT (Clock, ff_in, Clear : IN STD_LOGIC ;
16 Q : BUFFER STD_LOGIC) ;
17 END COMPONENT ;
18 COMPONENT hundredth
19 PORT (Clock, Load : IN STD_LOGIC ;
20 pulse_500k : OUT STD_LOGIC) ;
21 END COMPONENT ;
22 COMPONENT delay_counter
23 PORT (Clock, Clear, Enable : IN STD_LOGIC ;
24 Start : OUT STD_LOGIC) ;
25 END COMPONENT ;
26 COMPONENT BCD_counter
27 PORT (Clock, Clear, Enable : IN STD_LOGIC ;
28 BCD3, BCD2, BCD1, BCD0 : BUFFER STD_LOGIC_VECTOR(3 DOWNTO0)) ;
29 END COMPONENT ;
30 COMPONENT bcd7seg
31 PORT (bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
32 display : OUT STD_LOGIC_VECTOR(0 TO 6)) ;
33 END COMPONENT ;
34 BEGIN
35 reset<= NOT (KEY(0)) ;
36 request_test<= NOT (KEY(1)) ;
37 stop_test<= NOT (KEY(3)) ;
38 clear<= reset OR stop_test ;
39 enable_bcd<= test_active AND sec_100th ;
40 LEDG(0)<= test_active ;
41 run_signal: control_ff PORT MAP(CLOCK_50, request_test, clear, run) ;
42 test_signal: control_ff PORT MAP(CLOCK_50, start_test, clear, test_active) ;
43 hundredth_sec: hundredth PORT MAP(CLOCK_50, enable_bcd, sec_100th) ;
44 foursec_delay: delay_counter PORT MAP(CLOCK_50, clear, run, start_test) ;
45 bcdcount: BCD_counter PORT MAP(CLOCK_50, request_test, enable_bcd, BCD3, BCD2, BCD1, BCD0) ;
46 digit3: bcd7seg PORT MAP(BCD3, HEX3) ;
47 digit2: bcd7seg PORT MAP(BCD2, HEX2) ;
48 digit1: bcd7seg PORT MAP(BCD1, HEX1) ;
49 digit0: bcd7seg PORT MAP(BCD0, HEX0) ;
50 END top_level ;

Figure 2. VHDL code for the top-level module of the example system.

4

The subcircuit in thecontrol_ff modules is defined in Figure 3. It generates an output signal that goes high when
the data inputff_in goes high, and then maintains this signal, even ifff_in becomes low again, until it is cleared
by a signal on theClear input. Note that while the inputs may be asynchronous (beingconnected to pushbutton
switches), the operation is synchronized by the clock signal. A circuit generated from this code is displayed in
Figure 4.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY control_ff IS
PORT (Clock, ff_in, Clear : IN STD_LOGIC ;

Q : BUFFER STD_LOGIC) ;
END control_ff ;

ARCHITECTURE control_circuit OF control_ff IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN

Q <= ’0’ ;
ELSE

Q <= ff_in OR Q ;
END IF ;

END IF ;
END PROCESS ;

END control_circuit ;

Figure 3. Code for thecontrol_ff circuit.

D Q

Clock

0

10

Clear

ff_in
Q

Figure 4. Thecontrol_ff circuit.

Figure 5 presents the code for the delay counter module,delay_counter. This is a 28-bit up-counter. Its most-
significant bit,b27, goes to 1 after about four seconds. It is used as thestart_test signal. The code produces the
circuit in Figure 6. Note that the counter is implemented as a28-bit register (represented by the flip-flop symbol),
and an adder which increments the contents of the register by1.

5

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY delay_counter IS
PORT (Clock, Clear, Enable : IN STD_LOGIC ;

Start : OUT STD_LOGIC) ;
END delay_counter ;

ARCHITECTURE delay_circuit OF delay_counter IS
SIGNAL delay_count : STD_LOGIC_VECTOR(27 DOWNTO 0) ;

BEGIN
PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN

delay_count<= (OTHERS => ’0’) ;
ELSIF Enable = ’1’ THEN

delay_count<= delay_count + ’1’ ;
END IF ;

END IF ;
END PROCESS ;
Start<= delay_count(27) ;

END delay_circuit ;

Figure 5. Code for thedelay_counter circuit.

D Q
0

1

0

1
0

Clock

Clear

Enable

1
Register

Adder Start

Figure 6. Thedelay_counter circuit.

Figure 7 gives the code that defines thehundredth subcircuit. This is a down-counter which generates an output
pulse whenever the contents reach the value 0. To produce theinterval of one hundredth of a second, the counter is
repeatedly loaded with the value (7A120)16 which corresponds to 500,000. The output of this circuit,sec_100th,
allows the BCD counter to be incremented 100 times each second as long as the green light is on. The circuit is
shown in Figure 8. This counter is implemented as a 20-bit register (represented by the flip-flop symbol), and an
adder which decrements the contents of the register by 1.

6

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY hundredth IS
PORT (Clock, Load : IN STD_LOGIC ;

pulse_500k : OUT STD_LOGIC) ;
END hundredth ;

ARCHITECTURE hundredth_circuit OF hundredth IS
SIGNAL count_500k : STD_LOGIC_VECTOR(19 DOWNTO 0) ;

BEGIN
PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Load = ’1’ THEN

count_500k<= X"7A120" ;
ELSE

count_500k<= count_500k− ’1’ ;
END IF ;

END IF ;
END PROCESS ;
pulse_500k<= ’1’ WHEN (count_500k = X"00000") ELSE ’0’ ;

END hundredth_circuit ;

Figure 7. Code for thehundredth circuit.

D Q
0

17A120

Clock

1

Register

Adder Compare
to 0

FFFFD

Load

pulse_500k

Figure 8. Thehundredth circuit.

The BCD counter is specified by the code in Figure 9. The circuit for each of the four BCD digits is defined in
the moduleBCD_stage. Four versions of this circuit are instantiated in the module BCD_counter. Figures 10 and
11 depict the circuits synthesized from the modulesBCD_counter andBCD_stage, respectively.

7

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_counter IS

PORT (Clock, Clear, Enable : IN STD_LOGIC ;
BCD3, BCD2, BCD1, BCD0 : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END BCD_counter ;
ARCHITECTURE four_digits OF BCD_counter IS

SIGNAL Carry : STD_LOGIC_VECTOR(4 DOWNTO 1) ;
COMPONENT BCD_stage

PORT (Clock, Clear, Ecount : IN STD_LOGIC ;
BCDq : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN

stage0: BCD_stage PORT MAP(Clock, Clear, Enable, BCD0, Carry(1)) ;
stage1: BCD_stage PORT MAP(Clock, Clear, (Carry(1) AND Enable), BCD1, Carry(2)) ;
stage2: BCD_stage PORT MAP(Clock, Clear, (Carry(2) AND Carry(1) AND Enable), BCD2, Carry(3)) ;
stage3: BCD_stage PORT MAP(Clock, Clear, (Carry(3) AND Carry(2) AND Carry(1) AND Enable), BCD3, Carry(4)) ;

END four_digits ;

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_stage IS

PORT (Clock, Clear, Ecount : IN STD_LOGIC ;
BCDq : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC) ;

END BCD_stage ;
ARCHITECTURE digit OF BCD_stage IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN BCDq<= "0000" ;
ELSIF Ecount = ’1’ THEN

IF BCDq = "1001" THEN BCDq<= "0000" ;
ELSE BCDq<= BCDq + ’1’ ;
END IF ;

END IF ;
END IF ;

END PROCESS ;
PROCESS (BCDq)
BEGIN

IF BCDq = "1001" THEN Value9<= ’1’ ;
ELSE Value9<= ’0’ ;
END IF ;

END PROCESS ;
END digit ;

Figure 9. Code for theBCD_counter circuit.

8

BCD_stage
Clear

Enable
BCD3 0–

Value9

stage0

BCD_stage
Clear

Enable
BCD3 0–

Value9

stage1

BCD_stage
Clear

Enable
BCD3 0–

Value9

stage2

BCD_stage
Clear

Enable
BCD3 0–

Value9

stage3

Clock

Clear

Enable
BCD0

BCD1

BCD2

BCD3

Figure 10. TheBCD_counter circuit.

D Q
0

1
0

1
0

1

0

0

Clock

Clear

Ecount

1

BCD3 0–

Value9

Register

Adder

Compare
to 9

Figure 11. TheBCD_stage circuit.

Each digit of the BCD counter is converted into a seven-bit pattern for display on a 7-segment display on the
DE1 board. This is accomplished by using the circuitbcd7seg, which is specified by the code in Figure 12. The
comment in the code shows the labeling of the segments that corresponds to the implementation on the DE1 board.

9

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY bcd7seg IS
PORT (bcd : IN STD_LOGIC_VECTOR(3 downto 0) ;

display : OUT STD_LOGIC_VECTOR(0 TO 6)) ;
END bcd7seg ;

– ——–
– | 0 |
– 5 | | 1
– | |
– ——–
– | 6 |
– 4 | | 2
– | |
– ——–
– 3

ARCHITECTURE seven_seg OF bcd7seg IS
BEGIN

PROCESS (bcd)
BEGIN

CASE bcd IS
WHEN "0000" =>

display<= "0000001" ;
WHEN "0001" =>

display<= "1001111" ;
WHEN "0010" =>

display<= "0010010" ;
WHEN "0011" =>

display<= "0000110" ;
WHEN "0100" =>

display<= "1001100" ;
WHEN "0101" =>

display<= "0100100" ;
WHEN "0110" =>

display<= "1100000" ;
WHEN "0111" =>

display<= "0001111" ;
WHEN "1000" =>
display<= "0000000" ;
WHEN "1001" =>

display<= "0001100" ;
WHEN OTHERS =>

display<= "1111111" ;
END CASE ;

END PROCESS ;
END seven_seg ;

Figure 12. Code for the BCD-to-7-segment decoder circuit.

10

Figure 13 gives a circuit that may result from the code in Figure 12. Each segment of the 7-segment display
is driven by a signal generated by a simple decoder from the four bits of a BCD digit. The figure shows only a
part used to drive two of the segments,display0 anddisplay6. Each decoder realizes the assignment indicated in
Figure 12. Note that the segments of a 7-segment display are illuminated when a ground signal, logic 0, is applied
to them. They are turned off when a high-voltage signal, logic 1, is applied.

While Figure 13 shows specific decoder circuits, it is important to keep in mind that the Quartus II compiler
may synthesize different looking circuits but with the samefunctionality.

We will use our example circuit to illustrate the debugging process. To get the most out of this tutorial, create
a new Quartus II project, compile the circuit, and follow thediscussion by performing the various tasks on your
design. All of the files involved in the design are provided with this tutorial.

Before starting the discussion of debugging, we will consider some Quartus II tools that make the debugging
task easier.

BCDq0

BCDq3

BCDq1

BCDq2

display0

display6

Figure 13. Thebcd7seg circuit.

2 Quartus II Tools for Use in Debugging of Hardware Designs

The Quartus II software includes many tools that are useful for a variety of purposes. We will discuss three types
of tools: Netlist Viewers, SignalTap II Logic Analyzer, andSimulator. While their use is broader, we will restrict

11

our discussion to their utility as debugging aids.

2.1 Netlist Viewers

The Netlist Viewers provide a graphical indication of a synthesized circuit. Aregister transfer level (RTL) view
of a designed circuit, generated after the initial synthesis, can be seen by using theRTL Viewer. A view of the
final implementation, obtained aftertechnology mapping, is available through theTechnology Map Viewer. If a
designed circuit involves a finite state machine, a diagram of this FSM can be examined by means of theState
Machine Viewer.

2.1.1 RTL Viewer

The RTL Viewer provides a block diagram view of a circuit, at the level of registers, flip-flops and functional
blocks that constitute the design. The displayed image is the circuit generated after the analysis and initial synthesis
steps. It is not necessary to wait for the rest of the compilation process to be completed, which includes placing
and routing the designed circuit. Using the project with ourexample circuit, activate the initial synthesis process

by clicking on theStart Analysis and Synthesis icon in the toolbar. Should this icon not be displayed in
the toolbar, it can be found by selectingProcessing > Compiler Tool. Upon performing the synthesis, select
Tools > Netlist Viewers > RTL Viewer to reach the window depicted in Figure 14. This shows a portion of the
designed circuit. The rest of the circuit can be examined by scrolling through this window. The view of the circuit
can be enlarged or reduced by means of the Zoom Tool. The complete circuit is given in Figure 15.

Figure 14. The RTL Viewer.

Figure 15. The complete RTL view of thereaction-tester circuit.

12

Double-clicking on any block of the displayed circuit will reveal a more detailed structure of this block. For
example, doing this on the block labeled "control_ff:run_signal" produces the image in Figure 16. This is the
circuit that we anticipated in Figure 4.

Figure 16. The RTL Viewer presentation of thecontrol_ff circuit.

The RTL Viewer is a very useful debugging aid. It allows the designer to quickly see the structure of the
circuit that is being designed. It shows the connections between functional blocks. Names of the signals on the
connecting wires can be seen by hovering the mouse over the wires, which makes it easy to trace the signals.
The displayed diagram includes only those circuit blocks that are driven by valid inputs and produce outputs that
connect to other blocks or pins on the FPGA device. Thus, if anexpected block is missing, it is very likely that
the VHDL specification of the corresponding inputs or outputs is incorrect.

Since the RTL Viewer displays the circuit obtained after theinitial synthesis (without needing to perform a
complete compilation), it takes relatively little time to see the effect of any changes that are made in the design.

2.1.2 Technology Map Viewer

The Technology Map Viewer can be used to examine a circuit that was compiled. It displays not only the structure
of the circuit, but it also indicates the details of logic cells that are used to implement the various parts of the
circuit. It is activated by selectingTools > Netlist Viewers > Technology Map Viewer. Figure 17 shows a
portion of the displayed image for our example circuit. Double-clicking on a particular block displays the details
of the block.

The displayed image indicates how the designed circuit is implemented in a specific technology. On the DE1
board this is the technology of the Cyclone II FPGA.

2.1.3 State Machine Viewer

The State Machine Viewer can be used to examine the implementation of FSMs that are a part of a designed
circuit. It is accessed by selectingTools > Netlist Viewers > State Machine Viewer.

The FSM implementation is depicted in both graphical and tabular forms. The encoding of states is also
presented.

13

Figure 17. The Technology Map Viewer.

2.2 SignalTap II Logic Analyzer

A traditional Logic Analyzer is an instrument that can display waveforms that correspond to signals obtained by
connecting probes to various points in an implemented circuit. For an FPGA device, it is only possible to gain
such access to external pins. However, Quartus II software includes a software-implemented tool that acts as a
virtual logic analyzer, which allows the user to examine signals that are going to occur anywhere within a circuit
implemented in an FPGA chip. It is called the SignalTap II Logic Analyzer. Its use is described in the tutorial
SignalTap II with VHDL Designs.

Figures 18 and 19 indicate how the analyzer may be used on our example circuit. We chose to look at several
signals that are affected by thestart_test signal going to 1. As seen in Figure 18, a positive edge of thissignal is
enabled as the trigger that causes the analyzer to take a snapshot of signal activity. Figure 19 shows the waveforms
that occur at trigger time. Observe that thetest_active signal goes to 1 in the next clock cycle (as expected). Also,
observe that the contents of thehundredth counter, calledcount_500k in Figure 7, are decremented by 1 in each
clock cycle.

It is important to know that the Quartus II Compiler will not necessarily preserve the exact names of signals
in combinational logic as defined in a VHDL design file. Also, when the Node Finder is used to find signals
that the designer wants to include in the Setup window of the SignalTap II Logic Analyzer, many signals that
are not registered or found on the FPGA pins may not be listed.It is possible to force the listing of a particular
signal under its original name by means of the "keep" option,which is invoked by defining the attributekeep. For
example, we can ensure that therun andenable_bcd signals will be preserved and listed by inserting in the code
in Figure 2 the following statements:

ATTRIBUTE keep: BOOLEAN ;
ATTRIBUTE keep OF run: SIGNAL IS true ;
ATTRIBUTE keep OF enable_bcd: SIGNAL IS true ;

Using the keep option may result in a slightly different circuit being synthesized. The circuit will have the same
functionality as the intended circuit, but it may have a slightly different timing behavior. Therefore, upon success-
ful completion of the debugging (or simulation) task, the modifications inserted to invoke the keep option should
be removed.

14

Figure 18. The Setup window of SignalTap II Logic Analyzer.

Figure 19. The Data window of SignalTap II Logic Analyzer.

2.3 Simulators

The tools discussed above are very useful in determining whether or not a given circuit appears to have the desired
structure and functionality. To test the expected functional correctness and performance of the designed circuit it
is useful to simulate the circuit. For example, a circuit that performs extensive arithmetic operations may appear
to to be designed correctly in terms of the components it contains, but a small error in detail (which could be
difficult to detect using either a netlist viewer or the logicanalyzer) can cause wrong results to be produced
when a particular operation is performed. Functional simulation provides an excellent vehicle for ascertaining
that the circuit performs correctly as far as its functionality is concerned. It is also important to ensure that the
timing behavior of the circuit meets the specification requirements, which can be determined by means of timing
simulation.

A complete simulation of our example circuit would require alarge number of clock cycles, making it difficult
to produce an informative display. However, we can perform ameaningful simulation by scaling down some

15

parameters. For example, let us reduce thedelay_counter circuit to be a 4-bit counter so that thestart_test signal
will go to 1 after a delay of 8 clock cycles. Let us also reduce the hundredth counter to be a 3-bit counter into
which the value 4 is loaded whenever theLoad signal is active. A functional simulation of this scaled-down circuit
is shown in Figure 20.

We applied the input signals that correspond to the pushbutton keys. The observed behavior of the simulated
circuit is correct. The BCD counter evaluates correctly thenumber ofsec_100th pulses that occur before the
KEY3 signal goes to 0 (which corresponds to pressing of the pushbutton). The BCD-to-7-segment decoders also
correctly decode the BCD digits, which is easily verified by examining the displayed patterns.

The simulation indicates that our circuit produces a slightly inaccurate result. Before the test starts, thehun-
dredth counter runs in a counting span of 8 clock cycles, as shown by thesec_100th signal in Figure 20. During
the test this span becomes 4 cycles, because this is the valuerepeatedly loaded into the counter. However, at the
very beginning of the test the counter may contain the value 7, which means that it will take 8 clock cycles before
the BCD counter starts counting. This means that our tester circuit may be wrong by 1/100th of a second. If we
could not tolerate this inaccuracy, we would have to modify the circuit.

Figure 20. The result of functional simulation.

Quartus II software includes the simulation tools. They aredescribed in the tutorialQuartus II Simulation
with VHDL Designs. We encourage the user to use the ModelSim simulator, particularly when large circuits are
involved.

3 Debugging Concepts

Debugging of complex logic circuits can be difficult. The task is made easier if one uses an organized approach
with the aid of debugging tools. The debugging task involves:

• Observing that there is a problem

• Identifying the source of the problem

• Determining the design changes that have to be made

• Changing and re-implementing the designed circuit

16

• Testing the corrected design

3.1 Observing a Problem

Often it is easy to see that there is a problem because the designed circuit does not match the designer’s expecta-
tions in an obvious way. For example, a graphical image of thecircuit displayed by the RTL Viewer may indicate
that there are missing logic blocks and/or connections.

Consider an error where line 39 in Figure 2 reads

enable_bcd<= test_active;

Compiling the design and testing the resulting circuit would show that the circuit simply does not work. Examining
the designed circuit with the RTL Viewer gives the image in Figure 21. It is apparent that there is no output from
the blockhundredth_sec. The reason is that the Compiler recognized that the signalsec_100th is not used as an
input anywhere in the rest of the circuit, hence it omitted this signal. Making this observation the designer would
quickly discover the error in line 39.

Figure 21. The erroneous circuit displayed by the RTL Viewer.

As another example, suppose that the designer assumes erroneously that the elements of a VHDL vector that
refers to the segments of a 7-segment display are labeled as going from 6 to 0, which would mean that line 7 in
Figure 2 would read

HEX3, HEX2, HEX1, HEX0 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

Compiling the design would result in a circuit that seems to respond properly to pressing of the input keys, but
generates a strange-looking output on the 7-segment displays. Observing this behavior, the designer may suspect
that there is something wrong with the display of BCD digits.A possible test is to see if the BCD counter generates
a plausible result, which is easily accomplished by using the SignalTap II Logic Analyzer. Figure 22 shows an
image that we obtained by triggering on theclear signal’s rising edge (going from 0 to 1), which happens in
response toKEY3 being pressed causing the timer to stop counting. The logic analyzer display indicates that the
BCD value should be 0025. However, the 7-segment displays depict the two least-significant digits as 52 and
the two most-significant digits as upside-down letters AA. The latter fact provides an immediate clue because
the difference between the inverted A and the expected 0 is insegments labeled 0 and 6 in Figure 12, which are
reversed. This should lead to a quick detection of the error that we created.

17

Note also that Figure 22 indicates that the control signals appear to work correctly. One clock cycle after the
active edge of theclear signal, thestart_test andtest_active signals go to 0. Thesec_100th andenable_bcd signals
are both equal to 0, because they are equal to 1 only during oneclock cycle in a 1/100 second period.

Figure 22. Using the SignalTap II Logic Analyzer to observe the output of the BCD counter.

A complex circuit may be difficult to debug. The circuit implementation may appear to contain all necessary
components, it may appear to function properly, but the results it produces do not exhibit the expected behavior.
In such cases, the first task is to identify the source of the problem.

3.2 Identifying the Problem

Designer’s intuition (which improves greatly with experience) may suggest some tests that could be tried. Other-
wise, it is necessary to adopt an organized procedure. A golden rule is to first test small portions of the circuit,
which should be easy to do if the circuit is designed in modular fashion. This is referred to as the divide-and-
conquer approach.

Our example circuit is constructed in modular fashion. Eachmodule in Figure 1 can be tested separately by
using the SignalTap II Logic Analyzer. It is also useful to compile, simulate and test each module on its own,
before it is included in the bigger circuit.

It may be helpful to functionally exercise only a portion of adesigned circuit, which can show whether or
not this portion is working correctly. For example, we can test the BCD counter and the 7-segment displays by
isolating this part from the rest of the circuit and providing separately-controlled inputs to this subcircuit. One
way of doing this is to use a manual clock instead of the systemclock, which would allow us to see the changes
(on the 7-segment displays) that take place during the counting process. To accomplish this, we can change line
45 in Figure 2 to read

bcdcount: BCD_counter PORT MAP(KEY(2), request_test, ’1’, BCD3, BCD2, BCD1, BCD0);

Now, KEY2 is used as a manual clock and the counter is enabled at all times (by connecting 1 to the enable input).
Then, pressingKEY2 repeatedly will step the counter in the upward direction which should be observable on the
displays. Note that the BCD counter can be cleared by pressing KEY1, but only when an active clock signal edge
arrives (as a result of pressingKEY2) because theBCD_counter module uses synchronous clear.

4 Sources of Errors in VHDL Designs

The Quartus II Compiler can detect many errors in VHDL files that specify a given circuit. Typical errors include
incorrect syntax, undeclared inputs or outputs, improper use of variables and incorrect sizes of vectors. The

18

compiler stops compilation and displays an error message. Such errors are usually easy to find and correct. It is
much more difficult to find errors in a circuit that appears to be correctly specified but the specification does not
result in a circuit that the designer hoped to achieve. In this section we will consider some typical errors of this
type.

Some common errors in VHDL designs are:

• Inadvertent creation of latches

• Omission of signals

• Not assigning a value to a wire

• Assigning a value to a wire more than once

• Incorrect specification of PORT MAP signals

• Wrong definition of a signal vector

• Incorrectly specified FSM (e.g. wrong or invalid next state)

• Incorrect timing where the output signal of a given circuit is off by one clock cycle

• Careless use of clocks

Inadvertent latches are created by the Compiler if the designer fails to specify the action needed for all cases in
constructs where a certain number of cases are expected to bespecified in what is supposed to be a combinational
circuit (e.g. in IF-ELSE and CASE statements).

If the designer fails to use some signals in a VHDL design file,the Compiler will ignore these signals com-
pletely and may even omit the circuitry associated with these signals.

Incorrect definitions of signal vectors lead to problems, asillustrated in section 3.1.
Errors in the specification of an FSM may lead to a variety of undesirable consequences. They can cause

wrong functional behavior by reaching wrong states, as wellas wrong timing behavior by producing incorrect
output signals. A common error results in an output signal that is off by one clock cycle.

It is particularly important to use clocks carefully. For example, a slower clock may be derived by using a
counter to divide down the main system clock. Timing problems may arise when signals generated in a circuit
controlled by one clock are used as inputs to a circuit controlled by a different clock. Whenever possible, all
flip-flops should be driven by the same clock. For instance, ifa given counter has to be incremented/decremented
at a rate that is slower than the system clock rate, it is best to drive the counter with the system clock and use a
slower changingenable signal to make the counter count at a slower rate. We used thisapproach in our example
circuit to control the BCD counter.

5 Errors Due to Wrong Interpretation of DE1 Board Characteristics

Inadequate understanding of the DE1 board can lead to designerrors. Typical examples include:

• Wrong pin assignment

• Wrong interpretation of the polarity of pushbutton keys and toggle switches

• Timing issues when accessing various chips on the board, such as the SDRAM memory

If pins are not assigned correctly, the circuit will not exhibit the desired behavior. This may be easy to detect
when obviously observable input and output signals are involved. If the designer specifies a wrong assignment for
a pushbutton key, then pressing this key will probably have no effect. If the connection to a 7-segment display is
not made at all, the display will show the pattern 8. This means that all seven segments are driven by a logic 0
signal, because a segment lights up when connected to groundvoltage. The Quartus II Compiler causes all unused
pins to be driven to ground by default. (Of course, this default choice can be changed (in the Quartus II project) by
specifying a different option for the unused pins.) The easiest way of ensuring that the pins are correctly assigned
for the DE1 board is to import the pin-assignment fileDE1_pin_assignments.csv.

19

Pushbutton switches produce logic 0 when pressed. Toggle switches generate logic 1 when in the up position
(towards the middle of the board).

If the design involves access to the SDRAM chip, it is necessary to adhere to strict timing requirements, as
explained in the tutorialUsing the SDRAM Memory on Altera’s DE1 Board with VHDL Design.

6 Design Procedure

It is prudent to follow a design procedure that tends to minimize the number of design errors and simplifies the
debugging task. Here are some suggestions that are likely tohelp:

• Design the circuit in a modular, hierarchical manner.

• Use well-understood and commonly-used constructs to definecircuits.

• Test each module, by simulating it, before it is incorporated into the larger circuit.

• Define and test portions of the final circuit by connecting twoor more modules.

• Construct the complete circuit and test it through simulation. Both functional and timing simulation should
be done.

• Download the compiled circuit into the FPGA on the DE1 board and test it.

It is prudent to write VHDL code in a style that allows one to easily visualize the circuit specified by the code.
It is also useful to make the code easily understandable for other people.

Copyright c©2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and allother words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of itssemiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version ofdevice specifications before relying on any published
information and before placing orders for products or services.
This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

20

