Debugging of VHDL Hardware Designs on Altera’s DE1 Boarc

This tutorial presents some basic debugging concepts #mbe helpful in creating VHDL designs for imple-
mentation on Altera’s DE1 boards. It shows how Quartus lig@an help in the debugging task.

The reader is expected to be familiar with the RTL Viewer aigh8l Tap Il Logic Analyzer tools included in
Altera’s Quartus Il software. Also, a basic knowledge of diation is needed.
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Designers of digital systems are innevitably faced withtdek of debugging their imperfect initial designs.
This task becomes more difficult as the system grows in coxitpleThe debugging process requires determina-
tion of possible flaws in the designed circuits. This tutoinéroduces some basic debugging concepts that can
help in designing of circuits specified in VHDL. The tutorfatuses on the debugging of digital hardware. A re-
lated tutorial Debugging of Application Programs on Altera’s DE1 Boards, deals with the debugging of software
programs that are run by Altera’s Nios Il processor impletadmon a DE1 board.

To clarify the concepts used in debugging, we will show hoesthconcepts may be applied to an example
circuit.

1 Example Circuit

To make the tutorial easy to follow, we use a relatively sienghigital circuit. Our circuit is a tester that can be
used to test the reaction time of a person to a visual stimile user initiates the test by pressing and releasing
a pushbutton keyKEY;. After some delay (of at least four seconds) the circuitgwn a light. In response, the
user presses another ké&§EYs, as quickly as possible, which results in turning the ligtitamd displaying the
ellapsed time in hundredths of a second on the 7-segmertagsspn the DE1 board.

A block diagram of the circuit is given in Figure 1. The circig designed in hierarchical manner, where a
number of subcircuits are used to implement the simple taskss is a good design practice and the resulting
circuit is easier to understand and debug.

Since the pushbutton keys on the DE1 board produce a logie waWwhen pressed, we have chosen to create
inverted signals with more meaningful names as follows:

reset = 'KEY,
request_test = IKEY;
stop_test = IKEY;

When therequest_test signal goes to 1, thiun signal is activated, which enables the counter circuit gjeaterates
thestart_test signal after a delay of about four seconds. Ftaet_test signal activates thiest_active signal which
causes the green lightEDG,), to be turned on. At this point the four-digit binary-codgeeimal (BCD) counter
starts counting in one-hundredth of a second. It is enabjed pulse (one clock cycle in duration) produced
every one-hundredth of a second by the counter circuitadaliedredth. The four BCD digits BCDO to BCD3,
are decoded by the BCD-to-7-segment decoder circuits apdagied on the 7-segment displai#gX0 to HEXS.
The clear signal, which is generated when eithreset or stop_test signal is activated by pressing the respective
pushbutton, brings the control signais andtest_active to 0, which freezes the BCD count at its present value.
The VHDL code for the top-level module, which correspondshi® block diagram in Figure 1, is given in
Figure 2. The entity is called thesaction tester. It instantiates modules for each of the subcircuits shawn i
Figure 1. The statements are numbered for ease of referetioe discussion below. The subcircuits are specified
as shown in Figures 3 to 13.
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Figure 1. The reaction-tester circuit.
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LIBRARY ieee;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY reaction_tester IS

PORT (CLOCK_50: IN STD_LOGIC ;

KEY :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
HEX3, HEX2, HEX1, HEXO0 : OUT STD_LOGIC_VECTOR(0 TO 6) ;
LEDG : OUT STD_LOGIC_VECTOR(0 DOWNTO 0) ) ;

END reaction_tester ;

ARCHITECTURE top_level OF reaction_tester IS
SIGNAL reset, request_test, stop_test, clear, sech1@®iD_LOGIC ;
SIGNAL run, start_test, test_active, enable_bcd : STOGIC ;
SIGNAL BCD3, BCD2, BCD1, BCDO : STD_LOGIC_VECTOR(3 DOWNT®;
COMPONENT control_ff
PORT ( Clock, ff_in, Clear : IN STD_LOGIC ;
Q: BUFFER STD_LOGIC);
END COMPONENT ;
COMPONENT hundredth
PORT ( Clock, Load : IN STD_LOGIC;
pulse_500k : OUT STD_LOGIC) ;
END COMPONENT ;
COMPONENT delay_counter
PORT ( Clock, Clear, Enable : IN STD_LOGIC;
Start: OUT STD_LOGIC);
END COMPONENT ;
COMPONENT BCD_counter
PORT ( Clock, Clear, Enable : IN STD_LOGIC ;
BCD3, BCD2, BCD1, BCDO : BUFFER STD_LOGIC_VECTOR(3 DOWNTDD) ;
END COMPONENT ;
COMPONENT bcd7seg
PORT (bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
display : OUT STD_LOGIC_VECTOR(0TO®6));
END COMPONENT ;
BEGIN
resetc= NOT (KEY(0)) ;
request_test= NOT (KEY(1)) ;
stop_tesk= NOT (KEY(3)) ;
clear<=reset OR stop_test;
enable_bce:=test_active AND sec_100th ;
LEDG(0)<= test_active ;
run_signal: control_ff PORT MAP(CLOCK_ 50, requestt,tekar, run) ;
test_signal: control_ff PORT MAP(CLOCK_ 50, start_te#tar, test_active) ;
hundredth_sec: hundredth PORT MAP(CLOCK_50, enabli dwc 100th) ;
foursec_delay: delay counter PORT MAP(CLOCK_50, ¢lear, start_test) ;
bcdcount: BCD_counter PORT MAP(CLOCK_50, request, &asible_bcd, BCD3, BCD2, BCD1, BCDO) ;
digit3: bcd7seg PORT MAP(BCD3, HEX3) ;
digit2: bcd7seg PORT MAP(BCD2, HEX2) ;
digit1l: bcd7seg PORT MAP(BCD1, HEX1) ;
digit0: bcd7seg PORT MAP(BCDO, HEXO) ;
END top_level ;

Figure 2. VHDL code for the top-level module of the examplsteyn.



The subcircuit in theontrol_ff modules is defined in Figure 3. It generates an output sifpadigoes high when
the data inpuff_in goes high, and then maintains this signal, evef ih becomes low again, until it is cleared
by a signal on the&lear input. Note that while the inputs may be asynchronous (betmmected to pushbutton

switches), the operation is synchronized by the clock sigAecircuit generated from this code is displayed in
Figure 4.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY control_ff IS
PORT ( Clock, ff_in, Clear : IN STD_LOGIC ;
Q :BUFFER STD_LOGIC);
END control_ff;

ARCHITECTURE control_circuit OF control_ff IS
BEGIN
PROCESS ( Clock)
BEGIN
IF Clock’EVENT AND Clock ='1' THEN
IF Clear =1’ THEN

Q<="0;
ELSE
Q<=ff inORQ;
END IF;
END IF;

END PROCESS ;
END control_circuit ;

Figure 3. Code for theontrol_ff circuit.

Clear
Clock

Figure 4. Thecontrol_ff circuit.

Figure 5 presents the code for the delay counter modelay counter. This is a 28-bit up-counter. Its most-
significant bit,bo7, goes to 1 after about four seconds. It is used asttiré test signal. The code produces the
circuit in Figure 6. Note that the counter is implemented a8-dit register (represented by the flip-flop symbol),
and an adder which increments the contents of the registér by



LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY delay_counter IS
PORT ( Clock, Clear, Enable : IN STD_LOGIC ;
Start: OUT STD_LOGIC) ;
END delay_counter ;

ARCHITECTURE delay_circuit OF delay_counter IS
SIGNAL delay_count: STD_LOGIC_VECTOR(27 DOWNTO 0) ;
BEGIN
PROCESS ( Clock)
BEGIN
IF Clock'EVENT AND Clock ='1' THEN
IF Clear ='1' THEN
delay_counk= (OTHERS = '0’) ;
ELSIF Enable ='1' THEN
delay_counk=delay_count +'1’;
END IF;
END IF;
END PROCESS;;
Start<= delay_count(27) ;
END delay_circuit ;

Figure 5. Code for thdelay_counter circuit.
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Figure 6. Thedelay counter circuit.

Figure 7 gives the code that defines tHuedredth subcircuit. This is a down-counter which generates an dutpu
pulse whenever the contents reach the value 0. To produastéineal of one hundredth of a second, the counter is
repeatedly loaded with the value (7A120Wwhich corresponds to 500,000. The output of this ciraat, 100th,
allows the BCD counter to be incremented 100 times each seg®tong as the green light is on. The circuit is
shown in Figure 8. This counter is implemented as a 20-bisteg(represented by the flip-flop symbol), and an
adder which decrements the contents of the register by 1.



LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY hundredth IS
PORT ( Clock, Load : INSTD_LOGIC;;
pulse_500k : OUT STD_LOGIC);
END hundredth ;

ARCHITECTURE hundredth_circuit OF hundredth IS
SIGNAL count_500k : STD_LOGIC_VECTOR(19 DOWNTO 0) ;
BEGIN
PROCESS ( Clock)
BEGIN
IF Clock EVENT AND Clock ='1' THEN
IF Load ='1' THEN
count_500k<= X"7A120";
ELSE
count_500k<= count_500k-"1";
END IF;
END IF;
END PROCESS;;
pulse_500k<="1" WHEN (count_500k = X"00000") ELSE "0’ ;
END hundredth_circuit ;

Figure 7. Code for thbundredth circuit.
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Figure 8. Thehundredth circuit.

The BCD counter is specified by the code in Figure 9. The difouieach of the four BCD digits is defined in
the moduleBCD_stage. Four versions of this circuit are instantiated in the med€D_counter. Figures 10 and
11 depict the circuits synthesized from the mod&® counter andBCD_stage, respectively.



LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_counter IS

PORT ( Clock, Clear, Enable : IN STD_LOGIC ;

BCD3, BCD2, BCD1, BCDO : BUFFER STD_LOGIC_VECTOR(3 DOWNTO)Q)

END BCD_counter ;
ARCHITECTURE four_digits OF BCD_counter IS

SIGNAL Carry : STD_LOGIC_VECTOR(4 DOWNTO 1) ;

COMPONENT BCD_stage

PORT ( Clock, Clear, Ecount: IN STD_LOGIC ;
BCDq : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC);

END COMPONENT ;
BEGIN

stage0: BCD_stage PORT MAP(Clock, Clear, Enable, BCDOCH)) ;

stagel: BCD_stage PORT MAP(Clock, Clear, (Carry(1) ANDIiten BCD1, Carry(2)) ;

stage2: BCD_stage PORT MAP(Clock, Clear, (Carry(2) ANDrg@dn) AND Enable), BCD2, Carry(3)) ;

stage3: BCD_stage PORT MAP(Clock, Clear, (Carry(3) ANDrg@) AND Carry(1) AND Enable), BCD3, Carry(4)) ;
END four_digits ;

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_stage IS
PORT ( Clock, Clear, Ecount : IN STD_LOGIC;
BCDq : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC);
END BCD_stage ;
ARCHITECTURE digit OF BCD_stage IS
BEGIN
PROCESS ( Clock)
BEGIN
IF ClockEVENT AND Clock =’1' THEN
IF Clear ="1' THEN BCDg<="0000";
ELSIF Ecount ='1' THEN
IF BCDq ="1001" THEN BCDg<="0000";
ELSE BCDqg<=BCDq+'1’;
END IF;
END IF;
END IF;
END PROCESS ;
PROCESS (BCDq)
BEGIN
IF BCDg ="1001" THEN ValueS="1";
ELSE Value9<='0’;
END IF;
END PROCESS ;
END digit ;

Figure 9. Code for th8CD_counter circuit.
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Figure 11. TheBCD_stage circuit.

Each digit of the BCD counter is converted into a seven-titepa for display on a 7-segment display on the
DE1 board. This is accomplished by using the cirtaii7seg, which is specified by the code in Figure 12. The
comment in the code shows the labeling of the segments thatspmnds to the implementation on the DE1 board.



LIBRARY ieee;
USE ieee.std_logic_1164.all ;

ENTITY bcd7seg IS
PORT (bcd: IN STD_LOGIC_VECTOR(3 downto 0) ;
display : OUT STD_LOGIC_VECTOR(0 TO 6)) ;
END bcd7seg ;

- o]
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-
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ARCHITECTURE seven_seg OF bcd7seg IS
BEGIN
PROCESS ( bcd)
BEGIN
CASE bcd IS
WHEN "0000" =>
display<="0000001";
WHEN "0001" =>
display<="1001111";
WHEN "0010" =>
display<="0010010";
WHEN "0011" =>
display<="0000110";
WHEN "0100" =>
display<="1001100";
WHEN "0101" =>
display <= "0100100";
WHEN "0110" =>
display<="1100000";
WHEN "0111" =>
display<="0001111";
WHEN "1000" =>
display<="0000000" ;
WHEN "1001" =>
display<="0001100";
WHEN OTHERS =
display<="1111111";
END CASE ;
END PROCESS;;
END seven_seg ;

Figure 12. Code for the BCD-to-7-segment decoder circuit.

10



Figure 13 gives a circuit that may result from the code in Fégle. Each segment of the 7-segment display
is driven by a signal generated by a simple decoder from thelits of a BCD digit. The figure shows only a
part used to drive two of the segmendssplay, anddisplays. Each decoder realizes the assignment indicated in
Figure 12. Note that the segments of a 7-segment displaji@rénated when a ground signal, logic 0, is applied
to them. They are turned off when a high-voltage signal,ddgiis applied.

While Figure 13 shows specific decoder circuits, it is impotrta keep in mind that the Quartus Il compiler
may synthesize different looking circuits but with the sanmgctionality.

We will use our example circuit to illustrate the debuggimggess. To get the most out of this tutorial, create
a new Quartus Il project, compile the circuit, and follow tliscussion by performing the various tasks on your
design. All of the files involved in the design are providedhvhis tutorial.

Before starting the discussion of debugging, we will coeasgbme Quartus Il tools that make the debugging
task easier.
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Figure 13. Thebcd7seg circuit.

2 Quartusll Toolsfor Usein Debugging of Hardware Designs

The Quartus Il software includes many tools that are usefuhfvariety of purposes. We will discuss three types
of tools: Netlist Viewers, SignalTap |l Logic Analyzer, andSmulator. While their use is broader, we will restrict

11



our discussion to their utility as debugging aids.

2.1 Netlist Viewers

The Netlist Viewers provide a graphical indication of a $yasized circuit. Aregister transfer level (RTL) view
of a designed circuit, generated after the initial synthesan be seen by using tREL Viewer. A view of the
final implementation, obtained afteschnology mapping, is available through th&echnology Map Viewer. If a
designed circuit involves a finite state machine, a diagrathis FSM can be examined by means of tate
Machine Viewer.

211 RTL Viewer

The RTL Viewer provides a block diagram view of a circuit, laé tlevel of registers, flip-flops and functional

blocks that constitute the design. The displayed imageeisiticuit generated after the analysis and initial synthesi
steps. It is not necessary to wait for the rest of the compitgbrocess to be completed, which includes placing
and routing the designed circuit. Using the project with exaimple circuit, activate the initial synthesis process

by clicking on theStart Analysis and Synthesis icon 7 in the toolbar. Should this icon not be displayed in
the toolbar, it can be found by selectifgocessing > Compiler Tool. Upon performing the synthesis, select
Tools > Netlist Viewers > RTL Viewer to reach the window depicted in Figure 14. This shows a podidhe
designed circuit. The rest of the circuit can be examinedcbglkng through this window. The view of the circuit
can be enlarged or reduced by means of the Zoom Tool. The etenpfcuit is given in Figure 15.
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Figure 14. The RTL Viewer.
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Figure 15. The complete RTL view of theaction-tester circuit.
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Double-clicking on any block of the displayed circuit wiweal a more detailed structure of this block. For
example, doing this on the block labeled "control_ff:rugnal" produces the image in Figure 16. This is the
circuit that we anticipated in Figure 4.
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Figure 16. The RTL Viewer presentation of tbantrol_ff circuit.

The RTL Viewer is a very useful debugging aid. It allows theidaer to quickly see the structure of the
circuit that is being designed. It shows the connectiong/den functional blocks. Names of the signals on the
connecting wires can be seen by hovering the mouse over ttes,wirhich makes it easy to trace the signals.
The displayed diagram includes only those circuit blocla #re driven by valid inputs and produce outputs that
connect to other blocks or pins on the FPGA device. Thus, #xrected block is missing, it is very likely that
the VHDL specification of the corresponding inputs or ousgstincorrect.

Since the RTL Viewer displays the circuit obtained after ithigal synthesis (without needing to perform a
complete compilation), it takes relatively little time teesthe effect of any changes that are made in the design.

2.1.2 Technology Map Viewer

The Technology Map Viewer can be used to examine a circuittha compiled. It displays not only the structure
of the circuit, but it also indicates the details of logiclsehat are used to implement the various parts of the
circuit. It is activated by selectingools > Netlist Viewers > Technology Map Viewer. Figure 17 shows a
portion of the displayed image for our example circuit. Dieatlicking on a particular block displays the details
of the block.

The displayed image indicates how the designed circuit [gé@mented in a specific technology. On the DE1
board this is the technology of the Cyclone Il FPGA.

2.1.3 State Machine Viewer

The State Machine Viewer can be used to examine the impleiemtof FSMs that are a part of a designed
circuit. It is accessed by selectifigols > Netlist Viewers > State Machine Viewer.

The FSM implementation is depicted in both graphical andilwbforms. The encoding of states is also
presented.
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Figure 17. The Technology Map Viewer.

2.2 SignalTap Il Logic Analyzer

A traditional Logic Analyzer is an instrument that can d&pivaveforms that correspond to signals obtained by
connecting probes to various points in an implemented itirétor an FPGA device, it is only possible to gain
such access to external pins. However, Quartus Il softwarledes a software-implemented tool that acts as a
virtual logic analyzer, which allows the user to examinenaig that are going to occur anywhere within a circuit
implemented in an FPGA chip. It is called the SignalTap Il icognalyzer. Its use is described in the tutorial
SgnalTap Il with VHDL Designs.

Figures 18 and 19 indicate how the analyzer may be used orxaoge circuit. We chose to look at several
signals that are affected by tsert_test signal going to 1. As seen in Figure 18, a positive edge ofdigsal is
enabled as the trigger that causes the analyzer to take shaiagh signal activity. Figure 19 shows the waveforms
that occur at trigger time. Observe that teg_active signal goes to 1 in the next clock cycle (as expected). Also,
observe that the contents of thendredth counter, calledcount_500k in Figure 7, are decremented by 1 in each
clock cycle.

It is important to know that the Quartus Il Compiler will noéeessarily preserve the exact names of signals
in combinational logic as defined in a VHDL design file. Alsohem the Node Finder is used to find signals
that the designer wants to include in the Setup window of tigaeé8Tap Il Logic Analyzer, many signals that
are not registered or found on the FPGA pins may not be listad.possible to force the listing of a particular
signal under its original name by means of the "keep" optidrich is invoked by defining the attribukeep. For
example, we can ensure that th& andenable_bcd signals will be preserved and listed by inserting in the code
in Figure 2 the following statements:

ATTRIBUTE keep: BOOLEAN;
ATTRIBUTE keep OF run: SIGNAL IS true ;
ATTRIBUTE keep OF enable_bcd: SIGNAL IS true ;

Using the keep option may result in a slightly different aitdeing synthesized. The circuit will have the same
functionality as the intended circuit, but it may have aldlig different timing behavior. Therefore, upon success-
ful completion of the debugging (or simulation) task, thedifioations inserted to invoke the keep option should
be removed.
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Figure 18. The Setup window of SignalTap Il Logic Analyzer.
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Figure 19. The Data window of SignalTap Il Logic Analyzer.

2.3 Simulators

The tools discussed above are very useful in determiningheher not a given circuit appears to have the desired
structure and functionality. To test the expected funelaorrectness and performance of the designed circuit it
is useful to simulate the circuit. For example, a circuit tharforms extensive arithmetic operations may appear
to to be designed correctly in terms of the components itainst but a small error in detail (which could be

difficult to detect using either a netlist viewer or the loginalyzer) can cause wrong results to be produced
when a particular operation is performed. Functional satioh provides an excellent vehicle for ascertaining

that the circuit performs correctly as far as its functidyaels concerned. It is also important to ensure that the
timing behavior of the circuit meets the specification regients, which can be determined by means of timing

A complete simulation of our example circuit would requidaime number of clock cycles, making it difficult
to produce an informative display. However, we can performeaningful simulation by scaling down some
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parameters. For example, let us reduced#iay counter circuit to be a 4-bit counter so that tkart_test signal
will go to 1 after a delay of 8 clock cycles. Let us also redunehundredth counter to be a 3-bit counter into
which the value 4 is loaded whenever thaad signal is active. A functional simulation of this scaledadtocircuit

is shown in Figure 20.

We applied the input signals that correspond to the pushibkieys. The observed behavior of the simulated
circuit is correct. The BCD counter evaluates correctly tinenber ofsec_100th pulses that occur before the
KEY; signal goes to 0 (which corresponds to pressing of the puhtju The BCD-to-7-segment decoders also
correctly decode the BCD digits, which is easily verified Egmining the displayed patterns.

The simulation indicates that our circuit produces a shgimaccurate result. Before the test starts, lthe-
dredth counter runs in a counting span of 8 clock cycles, as showihdsget 100th signal in Figure 20. During
the test this span becomes 4 cycles, because this is thereple@tedly loaded into the counter. However, at the
very beginning of the test the counter may contain the vaJuehich means that it will take 8 clock cycles before
the BCD counter starts counting. This means that our tegmricmay be wrong by 1/100th of a second. If we
could not tolerate this inaccuracy, we would have to modify tircuit.

Simulation Waveforms

Simulation mode: Functional
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Figure 20. The result of functional simulation.

Quartus Il software includes the simulation tools. They @scribed in the tutoridQuartus Il Smulation
with VHDL Designs. We encourage the user to use the ModelSim simulator, p&atlg when large circuits are
involved.

3 Debugging Concepts

Debugging of complex logic circuits can be difficult. Thek#és made easier if one uses an organized approach
with the aid of debugging tools. The debugging task invalves

e Observing that there is a problem
¢ |dentifying the source of the problem
e Determining the design changes that have to be made

e Changing and re-implementing the designed circuit
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e Testing the corrected design

3.1 Observing aProblem

Often it is easy to see that there is a problem because thgnaéekcircuit does not match the designer’s expecta-
tions in an obvious way. For example, a graphical image otttoait displayed by the RTL Viewer may indicate
that there are missing logic blocks and/or connections.

Consider an error where line 39 in Figure 2 reads

enable_bcd<= test_active;

Compiling the design and testing the resulting circuit vdsHow that the circuit simply does not work. Examining
the designed circuit with the RTL Viewer gives the image igufe 21. It is apparent that there is no output from
the blockhundredth _sec. The reason is that the Compiler recognized that the sigaeall00th is not used as an
input anywhere in the rest of the circuit, hence it omitted #ignal. Making this observation the designer would
quickly discover the error in line 39.

* RTL Viewer
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Figure 21. The erroneous circuit displayed by the RTL Viewer

As another example, suppose that the designer assumesaushythat the elements of a VHDL vector that
refers to the segments of a 7-segment display are labeledirg fjom 6 to 0, which would mean that line 7 in
Figure 2 would read

HEX3, HEX2, HEX1, HEXO : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

Compiling the design would result in a circuit that seemsetgpond properly to pressing of the input keys, but
generates a strange-looking output on the 7-segment gésplbserving this behavior, the designer may suspect
that there is something wrong with the display of BCD dighkgossible test is to see if the BCD counter generates
a plausible result, which is easily accomplished by usirggSkgnalTap Il Logic Analyzer. Figure 22 shows an
image that we obtained by triggering on tbear signal’s rising edge (going from 0 to 1), which happens in
response t&KEY; being pressed causing the timer to stop counting. The logityaer display indicates that the
BCD value should be 0025. However, the 7-segment displaggdihe two least-significant digits as 52 and
the two most-significant digits as upside-down letters AAeTatter fact provides an immediate clue because
the difference between the inverted A and the expected 0segments labeled 0 and 6 in Figure 12, which are
reversed. This should lead to a quick detection of the ehairwe created.
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Note also that Figure 22 indicates that the control signaieear to work correctly. One clock cycle after the
active edge of thelear signal, thestart_test andtest_active signals go to 0. Theec_100th andenable_bcd signals
are both equal to 0, because they are equal to 1 only duringlook cycle in a 1/100 second period.

& "] | -® =8 &
Instance Manager: ’Q LY |F|eady to acquire @ X | JTAG Chain Configuration: JTAG ready @ X
Instance | Status | LEs 617 | Memory: 2588]
auto_signaltap_0 Not running 617 cells 2688 bits Hardware: IUSB-BIas!er [USE-0] j Setup...
Device: I@‘I: EP2C15/20 (0x020B30DD) _'J Scan Chain
< 5 i] SOF Manager: J
log: 2009/04/28 10:41:33 #0 click to insert time bar
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< >
[®] Data | & Setup

Figure 22. Using the SignalTap Il Logic Analyzer to obseitve dutput of the BCD counter.

A complex circuit may be difficult to debug. The circuit implentation may appear to contain all necessary
components, it may appear to function properly, but thelte#yproduces do not exhibit the expected behavior.
In such cases, the first task is to identify the source of thblpm.

3.2 Identifying the Problem

Designer’s intuition (which improves greatly with experée) may suggest some tests that could be tried. Other-
wise, it is necessary to adopt an organized procedure. Aegaldle is to first test small portions of the circuit,
which should be easy to do if the circuit is designed in modfdahion. This is referred to as the divide-and-
conquer approach.

Our example circuit is constructed in modular fashion. Eacldule in Figure 1 can be tested separately by
using the SignalTap Il Logic Analyzer. It is also useful taxqule, simulate and test each module on its own,
before it is included in the bigger circuit.

It may be helpful to functionally exercise only a portion oflasigned circuit, which can show whether or
not this portion is working correctly. For example, we cast tthe BCD counter and the 7-segment displays by
isolating this part from the rest of the circuit and provigliseparately-controlled inputs to this subcircuit. One
way of doing this is to use a manual clock instead of the sysfeck, which would allow us to see the changes
(on the 7-segment displays) that take place during the awyptocess. To accomplish this, we can change line
45 in Figure 2 to read

bcdcount: BCD_counter PORT MAP(KEY(2), request_test, BCD3, BCD2, BCD1, BCDO);

Now, KEY; is used as a manual clock and the counter is enabled at all {llgeconnecting 1 to the enable input).
Then, pressingCEY, repeatedly will step the counter in the upward directioncltshould be observable on the
displays. Note that the BCD counter can be cleared by prg&diiY;, but only when an active clock signal edge
arrives (as a result of pressikdeY,) because thBCD_counter module uses synchronous clear.

4 Sourcesof Errorsin VHDL Designs

The Quartus Il Compiler can detect many errors in VHDL filest tbpecify a given circuit. Typical errors include
incorrect syntax, undeclared inputs or outputs, improger of variables and incorrect sizes of vectors. The
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compiler stops compilation and displays an error messageh 8rrors are usually easy to find and correct. It is
much more difficult to find errors in a circuit that appears éodorrectly specified but the specification does not
result in a circuit that the designer hoped to achieve. Is $leiction we will consider some typical errors of this
type.

Some common errors in VHDL designs are:

e Inadvertent creation of latches

e Omission of signals

e Not assigning a value to a wire

¢ Assigning a value to a wire more than once

¢ Incorrect specification of PORT MAP signals

e Wrong definition of a signal vector

¢ Incorrectly specified FSM (e.g. wrong or invalid next state)

e Incorrect timing where the output signal of a given circaibif by one clock cycle
e Careless use of clocks

Inadvertent latches are created by the Compiler if the desifails to specify the action needed for all cases in
constructs where a certain number of cases are expectedspebiied in what is supposed to be a combinational
circuit (e.g. in IF-ELSE and CASE statements).

If the designer fails to use some signals in a VHDL design file, Compiler will ignore these signals com-
pletely and may even omit the circuitry associated with ¢regnals.

Incorrect definitions of signal vectors lead to problems|lastrated in section 3.1.

Errors in the specification of an FSM may lead to a variety alasirable consequences. They can cause
wrong functional behavior by reaching wrong states, as a®Nvrong timing behavior by producing incorrect
output signals. A common error results in an output sigret ioff by one clock cycle.

It is particularly important to use clocks carefully. Foraexple, a slower clock may be derived by using a
counter to divide down the main system clock. Timing proldemay arise when signals generated in a circuit
controlled by one clock are used as inputs to a circuit cdlettdoy a different clock. Whenever possible, all
flip-flops should be driven by the same clock. For instanca given counter has to be incremented/decremented
at a rate that is slower than the system clock rate, it is lmedtive the counter with the system clock and use a
slower changingnable signal to make the counter count at a slower rate. We useajpipisoach in our example
circuit to control the BCD counter.

5 ErrorsDuetoWrong Interpretation of DE1 Board Characteristics

Inadequate understanding of the DE1 board can lead to desigrs. Typical examples include:
¢ Wrong pin assignment
e Wrong interpretation of the polarity of pushbutton keys aoghle switches
e Timing issues when accessing various chips on the boarl,asithe SDRAM memory

If pins are not assigned correctly, the circuit will not exihihe desired behavior. This may be easy to detect
when obviously observable input and output signals areveeb If the designer specifies a wrong assignment for
a pushbutton key, then pressing this key will probably haveffect. If the connection to a 7-segment display is
not made at all, the display will show the pattern 8. This nsethiat all seven segments are driven by a logic 0
signal, because a segment lights up when connected to gvoltade. The Quartus Il Compiler causes all unused
pins to be driven to ground by default. (Of course, this diéfzhoice can be changed (in the Quartus Il project) by
specifying a different option for the unused pins.) The estsivay of ensuring that the pins are correctly assigned
for the DE1 board is to import the pin-assignment BIEL pin_assignments.csv.
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Pushbutton switches produce logic 0 when pressed. Toggleh®s generate logic 1 when in the up position
(towards the middle of the board).

If the design involves access to the SDRAM chip, it is neagssaadhere to strict timing requirements, as
explained in the tutoridlsing the SDRAM Memory on Altera’s DE1 Board with VHDL Design.

6 Design Procedure

It is prudent to follow a design procedure that tends to minéthe number of design errors and simplifies the
debugging task. Here are some suggestions that are likalgipo

e Design the circuit in a modular, hierarchical manner.
¢ Use well-understood and commonly-used constructs to defiioeits.
e Test each module, by simulating it, before it is incorpaddteo the larger circuit.

Define and test portions of the final circuit by connecting twonore modules.

Construct the complete circuit and test it through simatatBoth functional and timing simulation should
be done.

e Download the compiled circuit into the FPGA on the DE1 board test it.

Itis prudent to write VHDL code in a style that allows one tgiBavisualize the circuit specified by the code.
It is also useful to make the code easily understandabletifi@r @eople.
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