Using Library Modules in VHDL Designs

This tutorial explains how Altera’s library modules can beluded in VHDL-based designs, which are imple-
mented by using the Quar@ll software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuitkdestich as adders, subtractors, multipliers, decoders,
counters, and shifters. Altera provides efficient impletagons of such blocks in the form of library modules that
can be instantiated in VHDL designs. The compiler may retmgthat a standard function specified in VHDL
code can be realized using a library module, in which casayt automaticallynfer this module. However, many
library modules provide functionality that is too complexite recognized automatically by the compiler. These
modules have to be instantiated in the design explicitiyhsyser.

Quartu@ Il software includes dibrary of parameterized moduldstPM). The modules are general in struc-
ture and they are tailored to a specific application by speujfthe values of general parameters.

Doing this tutorial, the reader will learn about:
e Library of parameterizes modules (LPMs)
e Configuring an LPM for use in a circuit

¢ Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained usiegQbartus Il version 9.0, but other versions of the
software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shawFigure 1. It can add, subtract, and accu-
mulate n-bit numbers using the 2’s complement number representafithe two primary inputs are humbers
A=ay_1an_9---agandB = b, _1b,_o---by, and the primary output i = z,,_12,_2 - - z9. Another input
is theAddSulcontrol signal which causes = A + B to be performed wheAddSub= 0 andZ = A — B when
AddSub= 1. A second control inputSel is used to select the accumulator mode of operatiorgelf= 0, the
operationZ = A + B is performed, but iSel= 1, thenB is added to or subtracted from the current value of
If the addition or subtraction operations result in arittimeverflow, an output signaQverflow is asserted.

To make it easier to deal with asynchronous input signags; #re loaded into flip-flops on a positive edge of
the clock. Thus, inputgl and B will be loaded into register®andBreg, while SelandAddSulwill be loaded
into flip-flops SelRandAddSubRrespectively. The adder/subtractor circuit places thalténto registeZreg

Figure 1. The adder/subtractor circuit.

A= a,_, a, Sel B=1b, ; by AddSub
l e l l l o l l
n-bit register FIF n-bit register FIF
Areg = | areg,_, areg, Breg =| breg,_; breg,
} I AddSubR
o o o ‘ L] ‘ d
n-bit 2-to-1 MUX e
SelR
L
G= 'gn_l oo \ gO H= hn—l LRI hO
Vv
carryout n-bit adder carryin fe——- 1T
M= [m,_; Mg
. hn_l ‘ o e o ‘
l] n-bit register Zreg
over_flow Zreg =| zreg,_, zreg,
F/F o e o
' ,
Overflow 2= Z,_4 Z,

The required circuit is described by the VHDL code in Figurd=ar our example, we use a 16-bit circuit as
specified byn = 16. Implement this circuit as follows:

Create a projecddersubtractor

Include a fileaddersubtractor.vhdvhich corresponds to Figure 2, in the project. For convageethis file is
provided in the directorfDE1_tutorials design_fileswhich is included on the CD-ROM that accompanies
the DE1 board and can also be found on Altera’s DE1 web pages.

Choose the Cyclone Il EP2C20F484C7 device, which is the FEI@\on Altera’s DE1 board.

Compile the design.

Simulate the design by applying some typical inputs.

LIBRARY ieee;
USE ieee.std_logic_1164.all ;

—— Top-level entity
ENTITY addersubtractor IS
GENERIC (n : INTEGER :=16);

PORT (A, B : IN STD_LOGIC_VECTOR(r1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STD_LOGIC;
Z : BUFFER STD_LOGIC_VECTOR(®1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC);

END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor IS
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VEGR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (VW : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0);
Selm : IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO0)) ;
END COMPONENT ;
COMPONENT adderk
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STD_LOGIC;
X, Y . IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC);
END COMPONENT ;
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset="1" THEN
Areg <= (OTHERS => '0’); Breg <= (OTHERS = '0");
Zreg<=(OTHERS =>'0’); SelR <="0"; AddSubR<="0"; Overflow <="0’;
ELSIF ClockEVENT AND Clock ='1" THEN
Areg <=A; Breg<=B; Zreg<=M;
SelR<= Sel; AddSubR<= AddSub; Overflow<= over_flow;
END IF;
END PROCESS;

nbit_adder: adderk
GENERIC MAP (k=>n)
PORT MAP (AddSubR, G, H, M, carryout) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR,G) ;
AddSubR_n<= (OTHERS = AddSubR) ;
H <= Breg XOR AddSubR_n;
over_flow<= carryout XOR G(A-1) XOR H(n—1) XOR M(n-1) ;
Z <=Zreg;
END Behavior;
... continued in Parb

Figure 2. VHDL code for the circuit in Figure 1 (Pat

—— k-bit 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (VW :IN STD_LOGIC_VECTOR(k1 DOWNTO 0);
Selm :IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k1 DOWNTOD0));
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm="0" THEN
F<=V;
ELSE
F<=W,;
END IF;
END PROCESS;
END Behavior ;

—— k-bit adder

LIBRARY ieee;

USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adderk IS
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STD_LOGIC;
X,Y :IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(k1 DOWNTO 0);
carryout: OUT STD_LOGIC);
END adderk ;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;
BEGIN

Sum<=('0'& X) + (0’ & Y) + carryin ;

S <=Sum(k-1 DOWNTO 0) ;

carryout<= Sum(k) ;
END Behavior ;

Figure 2. VHDL code for the circuit in Figure 1 (Pdot

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are gemesifucture and they can be configured to suit a spe-
cific application by specifying the values of various partéene SelecHelp > Megafunctions/LPM to see a list-

ing of the available LPMs. One of them is an adder/subtravimdule calledpm_add_sub megafunctioSelect

this module to see its description. The module has a numbeapuofs and outputs, some of which may be omitted
in a given application. Several parameters can be defingoktifg a particular mode of operation. For example,
the number of bits in the operands is specified in the paramh@®_ WIDTH. The LPM_REPRESENTATION
parameter specifies whether the operands are to be ineslpstsigned or unsigned numbers, and so on. Tem-
plates on how an LPM can be instantiated in a hardware déiscrilanguage are given in the description of the
module. Using these templates is somewhat cumbersome,atu@U software provides a wizard that makes the
instantiation of LPMs easy.

We will use thelpm_add_submodule to simplify our adder/subtractor circuit defined igufes 1 and 2.
The augmented circuit is given in Figure 3. Tipen_add_submodule, instantiated under the namegaddsub
replaces the adder circuit as well as the XOR gates thatgedlie inputH to the adder. Since arithmetic overflow
is one of the outputs that the LPM provides, it is not necgstsagenerate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a neaotibry namedutorial_Ipm and then create a project
addersubtractor2 Choose the same Cyclone Il EP2C20F484C7 device, to alloireataomparison of imple-
mented designs.

A= a,_, a, Sel B=1b, ; by AddSub

n-bit register FIF n-bit register FIF
Q
Areg = | areg,_; areg, Breg =| breg,_; breg,
} e o o ‘ e o 0 ‘
n-bit 2-to-1 MUX L)
SelR
| |
G= gn_l e e Y go ' \
dataa datab
megaddsub module add_sul
overflow result ~AddSubR
M= mn—l m0
over_flow ceo
\ \
FIF n-bit register Zreg
Zreg = zreg,_q zreg,
\ \ /
Overflow Z= Z,_4 Z,

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit sfiedias a VHDL component that will be instanti-

ated in the top-level VHDL design entity. The VHDL componémtthe LPM subcircuit is generated by using a
wizard as follows:

1. Selecflools > MegaWizard Plug-in Manager, which leads to a sequence of seven pop-up boxes in which
the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indica&reate a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1] g]

The Mega'wizard Flug-In Manager helps pou create or modify
design files that contain custom variations of megafunctions.

\ ‘which action do you want to perform?

+ Create a new custom megafunction variation
" Edit an existing custom megafunction variation
" Copy an existing custom megafunction variation

Copyright [C] 1991-2009 Altera Corporation

Cancel |

Figure 4. Choose to define an LPM.

MegaWizard Plug-In Manager [page 2a] g|

Wwhich megafunction would you like to customize™? W_hicr; device family will you be Cyclone |1 -
Select a megafunction from the list below B
=[] Inztalled Plug-lns V. ‘which twpe of output file do you want to create?

Altera SOPC Builder AHDL
- Adithmetic o~ ”

* YHDL

#] ALTACCUMULATE "
ALTECC " Verilog HDL

ALTFP_ADD_SUB
ALTFP_COMPARE
ALTFP_CONVERT
ALTFP_DIY
ALTFP_MULT
ALTFP_SORT
ALTMEMMULT
ALTMULT_ACCUM [MAC)

what name do you want for the output file? Browse...

[r:Mtutorial_lprmtmegaddsub. vhd

™ Retumn to this page for anather create operation

ALTMULT_ADD
ALTMULT_COMPLER
ALTSORT
LPt_4BS
LPH_aDD_SUB
LPt_COMPARE
LPt_COUMTER
LPH_DIVIDE
LP_MULT
PARALLEL_aDD
ommuhications

SP

Mote: Ta compile a project successfully in the Quartus || software,
your design files must be in the project directory, in the global user
libraries specified in the Dptions dialog box [Tools menu), or a uzer
library specified in the User Libraries page of the Settings dialog
bow [Assignments menu).

“Y'our current user library directories are:

Cancel | < Back | Mest » | |

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs.p&xd the “arithmetic” sublist and select
LPM_ADD_SUB. ChooseVHDL as the type of output file that should be created. The outpubfiist be
given a name; choose the namegaddsub.vhédnd indicate that the file should be placed in the directory
tutorial_Ipmas shown in the figure. Preliext.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 3 of 8]

About Documentation
Currently selected device Family:
megaddsub v = v hs
add_sub [Match project/default

dataa[1s.0
datab[15.0

Hows wide should the 'dataa’ and 'datab’ input buses be? bitz

‘which operating mode do you want For the adder/subtractor?
1 Addition anly
1 Subtraction only

(®! Create an 'add_sub' input port to allow me ta da bath
[1 adds; 0 subtracts)

Resource Uzage
32 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data tsga 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition @dtraction of the input operand, under the
control of theadd_suhbinput. A symbol for the resulting LPM is shown in the top lefroer. Note that if
add_sub= 1 thenresult= A + B; otherwiseresult= A — B. This interpretation of the control input and
the operation performed is different from our original dgsin Figures 1 and 2, which we have to account
for in the modified design. Observe that we have includeddmsge in the circuit in Figure 3. Clidkext.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 4 of 8]

Docurnentation

megaddsub

add_sub

dataa[1s.0
datab[15.0 E

Is the 'dataa’ or 'datab’ input bus value a constant?

&) Mo, both values wvary

! Yes, dataa =
! Yes, datab =

‘which type of additionsubtraction do you want?
) Unsigned
! Signed

Resource Uzage
32 ut

| Cancel ” < Back ” Mext = ” Einish |

Figure 7. Further specification of inputs.

5. In the box in Figure 7, specify that the values of both ispuay vary and sele&igned for the type of
addition/subtraction. Clickext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 5 of B]

Docurnentation

1 Do you want any optional inputs or outputs?

["] Create a carryfborrow-in oukput
M Create an overflow output

Input:
detaa15 0] - "] Create a carryfborrow-out input
resul[1s..0
datab[15,.0 Outputs;
averflow,

Resource Uzage
33 ot

| Cancel ” < Back ” Mext = ” Einish |

Figure 8. Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate opfionauts and outputs that may be specified. Since
we need the overflow signal, make tBecate an overflow output choice and pressext.

10

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 6 of B]

Docurnentation
1~ Do youwant to pipeline the function’? -
dataa[1s .0 Iy - @ Mo
result[15..0 =
datab[15.0 (% Yes, I want an output latency of Clock cycles
averflow,
Resource Usage
33 ot
| Cancel ” < Back ” Mext = ” Einish |

Figure 9. Refuse the pipelining option.
7. In the box in Figure 9 saMo to the pipelining option and clicklext.

8. Figure 10 shows the simulation model files needed to stmtie generated design. Pré&xt to proceed
to the final page.

11

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 7 of B] -- EDA

' a LPM_ADD_SUB

Docurnentation

- Simulation Libraries

To properly simulate the generated design files, the Following simulation model
files) are needed

megaddsub

averflow,

add_sub

dataa[15.0 Iy
datab[15..0

File | Description
Ipm LP megafunction simulation library

.:. 'I.'il.'ﬁing and .r.esource es“til.'ﬁat.i.on =
Generates a netlist For timing and resource estimation For this megafunction, IF

wou are synthesizing your design with a third-party synthesis tool, using a
timing and resource estimation netlist can allow For better design optimization,

Mot all third-party synthesis tools suppart this feature - check with the toal
wendor for complete support information.

Mote: Metlisk generation can be a time-intensive process, The size of the
design and the speed of your system affect the time it takes For netlist
generation to complete,

["] Generate netlist
Resource Usage

33 It

| Cancel ” < Back ” Mext = ” Einish |

Figure 10. Simulation model files.

9. Figure 11 gives a summary which shows the files that therdiizél create. Pres&inish to complete the
process.

12

MegaWizard Plug-In Manager - LPM_ADD_SUB [page B of B] -- Summary

LPM_ADD _SUB
About

Docurnentation

Surmmary

Turn on the files vou wish to generate, & gray checkmark indicates a file that is
megaddsub automatically generated, and a red checkmark indicates an optional file. Click
ad sub Finish to generate the selected files, The state of each checkbox is maintained in
A subsequent Megawizard Plug-In Manager sessions.
dataa[15.0 Iy
resul[1s..0
datab[15.0 The MegaWwizard Plug-In Manager creates the selected files in the following
(—u direckary:
OxErom; D:itutorial_lpmi

File: J Description

[megaddsub. vhd Wariation file

O megaddsub.ine AHDL Include file

O megaddsub.cmp WHOL component declaration file

O megaddsub. bsf Guartusz || symbaol file

O megaddsub_inzt.vhd |nstantiation template file

B megaddsub_waveforms.hirl Sample waveforms in summary

L..megaddsub_wave® jpg Sample waveform file(z]
Resource Usage
33 It
| Cancel ” < Back | et | Einish |

Figure 11. Files created by the wizard.

10. The box in Figure 12 may pop up. If it does, make sure tosp¥es since adding the newly generated files
to the project is not needed when using VHDL (in fact, this roayse compilation errors).

Quartus Il IP Files

‘When you create an Altera IP variation, a Quartus || IP File is generated. Quartus Il IP Files
are used to represent the Altera P in your design. Do you want to add the Quartus Il IP File
to the project?

™ Automatically add Quartus I IP Files to all projects

[Note: Turning on this option permanently suppresses this dialog box. You can change this
setting in the Options dialog box)

Figure 12. Do not add the new files to the project.

3 Augmented Circuit with an LPM

We will use the filemegaddsub.vhith our modified design. Figure 13 depicts the VHDL code in fifés note that
we have not shown the comments in order to keep the figure small

13

/I Adder/subtractor module created by the MegaWizard
LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY Ipm;

USE Ipm.all;

ENTITY megaddsub IS
PORT (add _sub : IN STD_LOGIC;

dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC);

result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);

END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL sub_wire0 : STD_LOGIC;
SIGNAL sub_wirel : STD_LOGIC_VECTOR (15 DOWNTO 0);

COMPONENT Ipm_add_sub
GENERIC (Ipm_direction : STRING;
Ipm_hint : STRING;
Ipm_representation : STRING;
Ipm_type : STRING;
Ipm_width : NATURAL);
PORT (
:dataa IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC;

datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);
Ipm_add_sub_component : Ipm_add_sub
GENERIC MAP (Ipm_direction > "UNUSED",
Ipm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",
Ipm_representation = "SIGNED",
Ipm_type = "LPM_ADD_SUB",
Ipm_width => 16)
PORT MAP (dataa > dataa,
add_sub > add_sub,
datab = datab,
overflow => sub_wire0,
result => sub_wirel);
END SYN;

Figure 13. VHDL code for the ADD_SUB LPM.

The modified VHDL code for the adder/subtractor design iggiwn Figure 14. It incorporates the code in Figure
13 as a component. Put this code into a éitllersubtractor2.vhdinder the directoryutorial_Ipm For conve-

14

nience, the required filaddersubtractor2.vhés provided in the directorfDE1_tutorials,design_fileswhich is
included on the CD-ROM that accompanies the DE1 board andlsanbe found on Altera’s DE1 web pages.
The key differences between this code and Figure 2 are:

e The statements that define theer_flowsignal and the XOR gates (along with the signal H) are no longe
needed.

e Theadderkentity, which specifies the adder circuit, is replacedhigaddsulentity. Note that thelataa
anddatabinputs shown in Figure 6 are driven by theandBregvectors, respectively.

e AddSubRsignal is specified to be the inverted version of At Subsignal to conform with the usage of
this control signal in the LPM.

15

LIBRARY ieee;
USE ieee.std_logic_1164.all ;

—— Top-level entity
ENTITY addersubtractor2 1S
GENERIC (n : INTEGER :=16);

PORT (A, B : IN STD_LOGIC_VECTOR(R1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STD_LOGIC;
VA : BUFFER STD_LOGIC_VECTOR(®1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC);

END addersubtractor? ;

ARCHITECTURE Behavior OF addersubtractor2 1S
SIGNAL G, M, Areq, Breg, Zreg, : STD_LOGIC_VECTOR(n-1 DOWNT®;
SIGNAL SelR, AddSubR, over_flow : STD LOGIC;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (V,W : IN STD_LOGIC VECTOR(k-1 DOWNTO 0);
Selm : IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO0)) ;
END COMPONENT ;
COMPONENT megaddsub

PORT (add_sub : IN STD_LOGIC;
dataa, datab : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
result : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;

overflow : OUT STD_LOGIC);
END COMPONENT ;

BEGIN
—— Define flip-flops and registers
PROCESS (Reset, Clock)
BEGIN
IF Reset="1" THEN
Areg <= (OTHERS =>'0"); Breg <= (OTHERS = '0");
Zreg<= (OTHERS =>'0’); SelR <='0"; AddSubR<="0"; Overflow <="0’;
ELSIF ClockkEVENT AND Clock ='1" THEN
Areg <= A; Breg<=B; Zreg<=M,;
SelR<= Sel; AddSubR<= NOT AddSub; Overflowk= over_flow;
END IF;
END PROCESS;

... continued in Park

Figure 14. VHDL code for the circuit in Figure 3 (Pait

16

—— Define combinational circuit
nbit_addsub: megaddsub
PORT MAP (AddSubR, G, Breg, M, over_flow) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR, G) ;
Z <=Zreg;
END Behavior;

—— k-bit 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (VW :IN STD_LOGIC_VECTOR(k1 DOWNTO 0);
Selm :IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k1 DOWNTOO0));
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm="0" THEN
F<=V;
ELSE
F<=W;
END IF;
END PROCESS;
END Behavior ;

—— 16-bit adder/subtractor LPM created by the MegaWizard
LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY Ipm;

USE Ipm.Ipm_components.all;

ENTITY megaddsub IS
PORT (add _sub : IN STD_LOGIC;

dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STD_LOGIC);
END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL sub_wire0 : STD_LOGIC;
SIGNAL sub_wirel : STD_LOGIC_VECTOR (15 DOWNTO 0);

... continued in Part

Figure 14. VHDL code for the circuit in Figure 3 (Pt

17

COMPONENT Ipm_add_sub

GENERIC (Ipm_width : NATURAL;
Ipm_direction : STRING;
Ipm_type : STRING;
Ipm_hint : STRING);

PORT (dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC;
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);

Ipm_add_sub_component :lpm_add_sub
GENERIC MAP (Ipm_width = 16,
Ipm_direction = "UNUSED",
lpm_type = "LPM_ADD_SUB",
Ipm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")
PORT MAP (dataa > dataa,
add_sub = add_sub,
datab = datab,
overflow => sub_wireO,
result => sub_wirel);
END SYN;

Figure 14. VHDL code for the circuit in Figure 3 (Pa&ijt

18

If you copied the fileaddersubtractor2.vhétom theDE1_tutorials,design_fileglirectory, you have to include
this file in the project. To do so, seleetoject > Add/Remove Files in Project to reach the window in Figure
15. Browse for the available files by clicking the buttéife name: ... to reach the window in Figure 16. Select
the fileaddersubtractor2.vhdnd click Open, which returns to the window in Figure 15. Cliédd to include
the file and then cliclOK. Now, the modified design can be compiled and simulated insoal way.

Settings - addersubtractor2

Category:

o General
- Files

- Libraries Select the design files you want to include in the project. Click &dd &l to add all design files in the:
- Device project directory to the project.

|

Operating Settings and Conditions

- Waltage ;) i

= Temperature LS ,_J Q
Coifplation Pracees Setings File hame | Tupe | Library | Designentry/s... | HDL versior Add Al

- Early Timing E stimate

- Incremental Compilation
EDA, Tool Settings

a Design Entry/Synthesiz g
- Simulation
- Timing Analysiz [

- Formal Yerfication

+ Phyzical Synthesis

- Board-Level
- Analyziz & Synthesis Settings

- WHDL Input

~Werilog HOL Input

- Default Parameters

= Synthesiz Metlist Optimizations
- Fitter Settings
© - Physical Synthesis Optimization
=] Timing &nalysiz Settings
oo TimeQuest Timing Analyzer
=1 Classic Timing &nalyzer Setting
: " Classic Timing Analyzer Re
- fssembler
- Design Assistant X5 | i
: SignalTap Il Logic Analyzer
; Logic Analyzer Interface

1 i abar € abbinnn
|

|

ok | Cancel

|A
™

Figure 15. Inclusion of the new file in the project.

Select File X

Look in: |D tutarial_lpm ‘:] - I‘j‘ B
'E Ddb
. |_!] addersubtractor2.vhd

My Recent m megaddsub.vhd
Documents

[esklop

My Documents
My Computer
.

My Nebwork File name: |addersubtractor2.vhd _'_J Open
Flaces
Files of type: |Design Files [".tdf;".vhd;".vhdl;".v;".vlg;".verilog_v_j Cancel

Figure 16. Specify thaddersubtractor2.vhile.

19

4 Resultsfor the Augmented Design

Compile the design and look at the summary, which is depicté&dgure 17. Observe that the modified design is
implemented with a similar number of logic elements comgaoeusing the code in Figure 2.

File Edit Yiew Tools Window
& B Legal Notice
ST Flow Summary
é% Flow Settings Flow Status Successful - Thu Apr 23 09:44:35 2003
B Flow Non-Default Global Settiny Quartus |l Version 9.0 Build 132 02/25/2009 SJ Full Version
B Flow Elapsed Time Revision Name addersubtractor2
g E:za LOOSgSummary Top-level Entity Name addersubtractor2
+- & Analysis & Synthesis Fam?ly Cyclone
+ G Fitter Device EP2C20F484C7
+ &1 Assembler Timing Models Final
+ &1 Timing Analyzer Met timing requirements Yes
Total logic elements 52/18752(<1%)
Total combinational functions 51/18752(<1%)
Dedicated logic registers 51/18752(<1%)
Total registers 51
Total pins 53/315(17%)
Total virtual pins 0
Total memory bits 0/239616(0%)
Embedded Multiplier 9-bit elements 0/52(0%)
Total PLLs 0/4(0%)
< be
For Help, press F1 MNUM

Figure 17. Compilation Results for the Augmented Circuit.

Copyright(©2009 Altera Corporation. All rights reserved. Altera, Th®dtrammable Solutions Company, the
stylized Altera logo, specific device designations, ana#iler words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, theniatts and service marks of Altera Corporation in the
U.S. and other countries. All other product or service naareshe property of their respective holders. Altera
products are protected under numerous U.S. and foreignigaded pending applications, mask work rights, and
copyrights. Altera warrants performance of its semicomgluproducts to current specifications in accordance
with Altera’s standard warranty, but reserves the right tkenchanges to any products and services at any time
without notice. Altera assumes no responsibility or lispiarising out of the application or use of any informa-
tion, product, or service described herein except as esfyragreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of deyieeifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether expregdiguinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithessd particular purpose, are specifically disclaimed.

20

