IC-UNICAMP MO401

|C/Unicamp
2013s1
Prof Mario Cortes

Capitulo 4

Data-Level Parallelism —
Vector, SIMD, GPU

Topicos

IC-UNICAMP

« Vector architectures

« SIMD ISA extensions for multimedia

- GPU

* Detecting and enhancing loop level parallelism
« Crosscutting issues

 putting all together: mobile vs GPU, tesla....

4.1 Introduction

IC-UNICAMP
« SIMD architectures can exploit significant data-level
parallelism for:

— matrix-oriented scientific computing
— media-oriented image and sound processors

« SIMD is more energy efficient than MIMD
— Only needs to fetch one instruction per data operation
— Makes SIMD attractive for personal mobile devices

« SIMD allows programmer to continue to think sequentially

uonoNpPOoJU|

SIMD Parallelism

IC-UNICAMP

 Variations of SIMD

— Vector architectures

» Facil de entender/programar,; era considerado caro para microproc
(area, DRAM bandwitdth)

— SIMD extensions: multimedia 2> MMX, SSE, AVX
— Graphics Processor Units (GPUs) - vector, mani core heterog.

* For x86 processors:
— Expect two additional cores per chip per year
— SIMD width to double every four years
— Potential speedup from SIMD to be twice that from MIMD!

uonoNpPOoJU|

Speedup vs X86

~ MIMD*SIMD (32b)

3¢ MIMD*SIMD (64 b)
SIMD (32b)

—o- SIMD (84b)

= MIMD

IC-UNICAMP 1000

g. 100 A R i SR Sl
5 ==
b :
Q
o
7]
o
©
(33}
o
I
=
o
g 10f
-1 1 1 1 1
2003 2007 2011 2015 2019 2023

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86
computers. This figure assumes that two cores per chip for MIMD will be added every two years and the
number of operations for SIMD will double every four years.

4.2 Vector Architectures

IC-UNICAMP

« Basic idea:
— Read (scattered) sets of data elements into “vector registers”
— Operate on those registers
— Disperse the results back into memory

* Registers are controlled by compiler
— Used to hide memory latency
— Leverage memory bandwidth

— Loads e Stores - deeply pipelined
« High latency, but high hw utilization

S81NJ08)IY2JY JOJOBA

VMIPS

IC-UNICAMP

« Example architecture: VMIPS
— Loosely based on Cray-1
— Vector registers
« Each register holds a 64-element, 64 bits/element vector
» Register file has 16 read ports and 8 write ports
— Vector functional units
» Fully pipelined
« Data and control hazards are detected
— Vector load-store unit
* Fully pipelined
« One word per clock cycle after initial latency
— Scalar registers
« 32 general-purpose registers
» 32 floating-point registers

S81NJ08)IY2JY JOJOBA

Main memory

IC-UNICAMP

VMIPS Archit.

Vector
load/store

FP add/subtract .—»
] FP multiply I—>
= FP divide .—»
| Integer '—>_
] Logical .—-

For a 64 x 64b register file
64 x 64b elements
128 x 32b elements
256 x 16b elements Gutisr
512 x 8b elements reistere

AA

YYYYYY

Vector architecture 1s
attractive both for scientific Scalar

. . registers
and multimedia apps :

Figure 4.2 The basic structure of a vector architecture, VMIPS. This proces s a scalar architecture just like
MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This
chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector

units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes
these units; however, we will not be discussing these units. The vector and scalar registers have a significant
number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick
gray|lines)iconnects these ports to the inputs and outputs of the vector functional units. 8

IC-UNICAMP

Fig 4.3
VMIPS
ISA

ADDVY.D Vi, v¥2,v3 Add elements of VZ and Y3, then put each result in V1.

ADDVS.0 VI, VZ,FO Add FO to each element of V2, then put each result in V1,

SUBVY.D Vi, V2., ¥i Subiract elements of ¥3 from V2, then put each resultin V1.

SUBYS.D V1,V2,F0 Subtract FO from elements of V2, then put each resultin V1.

SUBSY.D V1,FQ, V2 Subtract elements of ¥2 from FO, then put each result in V1,

MULVY.D V1,V Vi3 Multiply elements of V2 and V3, then put each result in V1.

MULYS.D V1,VZ,F0 Multiply each element of ¥2 by FO, then put each result in V1

DIVVY.D V1.V, V3 Divide elements of ¥2 by V3, then put each result in V1.

DIVVS.D V1,v2,F0 Pivide elements of Y2 by FO, then put each result in V1.

DIVSV.D V1,FO, N2 Divide FO by elements of V2, then put each result in V1.

LV V1,Rl Load vector register V1 from memory starting at address R1.

S¥ R1.V1 Store vector register V1 into memory starting at address R1.

LVIWS V1, (R1,R2) Load ¥1 from address at R1 with stride in B2 (e, R1 +1 = R2).

SVW5 (R1,R2),V1 Store V1 10 address at R1 with stride in R (ie., R1 + 1 x RZ).

LY1 V1, (R1+V2) Load V1 with vector whose elements are at B1 4+ V2(i) (i.e., V2 is an index).

5VI (R1+¥2),V1 Store V1 10 vector whose elements are st R1 # V2(1) (.2, V2 is an index).

CVl ¥1,Rl Create an index vector by storing the values 0, 1xR1, 2xR1,...,63 xRl into VL

S--VV.0 V1,ve Compare the elements (EQ, NE, GT, LT. GE, LE) in V1 and V2. If condition is true, puta

S-=¥5.0 V1,F0 | in the corresponding bit vector; otherwise put (), Put resulting bit vector in vector-
mask register (VM) The instruction 5--V5 .0 performs the same compare but using 2
scalar value as one operand.

POP R, VM Count the 1s in vector-mask register VM and store count in RL.

CVM Set the vector-mask register to all [s.

MTC1 VLR,R1 Move contents of B] to vector-length register VL.

MFC1 R1,VLR Move the contents of vector-length register V1 to R1.

MV TM \ VM, FD Move contents of FU to vector-mask register VM.

MVFM F, VM Maove contents of vector-mask register VM to FO,

<
. D
Exmpl p267: VMIPS Instructions &
IC-UNICAMP >
« DAXPY: Double Ax XPlusY > AX+Y g
L.D FO,a - load scalar a o}
LV V1,Rx ; load vector X g
MULVS.D V2, V1,FO ; vector-scalar multiply @
LV V3,Ry ; load vector Y
ADDVV V4.2 V3 ; add
SV Ry,V4 ; store the result

* VMIPS vs MIPS

— Requires 6 instructions vs. almost 600 for MIPS (half is overhead)
— RAW in MIPS: MUL.D - ADD.D - S.D

— Stall in VMIPS: only for 1st vector element, then, smooth flow
through pipeline

10

Vector Execution Time

IC-UNICAMP

« Execution time depends on three factors:
— Length of operand vectors
— Structural hazards
— Data dependencies

« VMIPS functional units consume one element per clock
cycle
— Execution time is approximately the vector length

« Convoy
— Set of vector instructions that could potentially execute together
— nao devem conter hazard estrutural

« Tempo de execucio = # convoys

S81NJ08)IY2JY JOJOBA

11

Chaining and Chimes

IC-UNICAMP

« Sequences with read-after-write dependency hazards can
be in the same convey via chaining

S81NJ08)IY2JY JOJOBA

* Chaining
— Allows a vector operation to start as soon as the individual elements
of its vector source operand become available (similar to forwarding)

 Chime
— Unit of time to execute one convey
— m conveys executes in m chimes
— For vector length of n, requires m x n clock cycles

12

IC-UNICAMP
LV
MULVS.D
LV
ADDVV.D
SV
Convoys:
1 LV
2 LV
3 SV

Exmpl p270: execution time

V1,Rx ;load vector X
V2,V1,FO ;vector-scalar multiply
V3,Ry ‘load vector Y
V4,V2,V3 ;add two vectors
Ry,V4 ;store the sum
MULVS.D
ADDVV.D

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

S81NJ08)IY2JY JOJOBA

13

Challenges

IC-UNICAMP

« Start up time
— Pipeline latency of vector functional unit

— Assume the same as Cray-1
» Floating-point add => 6 clock cycles
* Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
* Vector load => 12 clock cycles

* Improvements:

— > 1 element per clock cycle
— Non-64 wide vectors

— IF statements in vector code (conditional branches)
— Memory system optimizations to support vector processors

— Multiple dimensional matrices
— Sparse matrices
— Programming a vector computer

S81NJ08)IY2JY JOJOBA

14

<
. . ®
Multiple Lanes: beyond 1 element / cycle &
IC-UNICAMP 2
B[F] e (@)
Element n of ara| [sra c%
vector N I =
register A is as1| [ar6) o
“hardwired” to wiot| lsrsy
element n of aal| [sra)
vector TE N ETER
reQISterB Bl[Z] B[] B[d] G[E] AlF] B[3]
Allows for 'y I T I T T
multple REZEEI VAT YT ZE 74
hardware -~ A e I o R o] !
lanes ' il e e s X
ia) e ib}

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction,
C = A + B. The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle.
The vector processor (b) on the right has four add pipelines and can complete four additions per cycle. The
elements within a single vector add instruction are interleaved across the four pipelines. The set of elements that
move through the pipelines together is termed an element group.

15

<
. D
. @)
Multiple Lanes: beyond 1 element / cycle S
IC-UNICAMP Lane O Lane 1 Lane 2 Lane 3 2
s ™ ™ v N O
* 1 lane - 4 lanes =
. . = . @
—clocks in 1 chime: 64 - *’; @ / FF-@\ ”'; E;\ -"FPa;j\ Q
16 | pipe 0 I"'. / pipe 1 | | pipe 2 ".II / pipe 3 | (i
"II I 1 : I 1 III Illl [I : ['] II' ﬁ
* Multiple lanes: , i , i
_ ||tt|e increase in Vector Vector Vector Vector
registers: registers: reqgisters: registers:
i | ts I 1 [ts | t
complexity 0,45, .. 150 2610, .. a7 0.
—no change in code X 1 y T
1 r 1 J Y L L ¥
» Allows trade-off: area, |] | -' | /
\ FP mul. \ FP mul. \ FP mul. | \ FP mul.
clock rate, voltage, \Ti/ | o= / \ ppe | \ poes
energy B D
— 2 clock & 2x) A A & g
1 i 1 1
lanesesame Speed Vector load-store unit

Figure 4.5 Structure of a vector unit containing four lanes. The vector register storage is divided across the
lanes, with each lane holding every fourth element of each vector register. The figure shows three vector
functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains
four execution pipelines, one per lane, which act in concert to complete a single vector instruction. Note how
each section of the vector register file only needs to provide enough ports for pipelines local to its lane. This
figure does not show the path to provide the scalar operand for vector-scalar instructions, but the scalar
processor (or control processor) broadcasts a scalar value to all lanes.

16

Vector Length Register

IC-UNICAMP
* Vector length not known at compile time?
« Use Vector Length Register (VLR)

* O parametro MVL (max vector length) é usado pelo
compilador -
— nao é necessario mudar ISA quando muda MVL (not in multimedia)

« Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /[*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /"main operation*/
low = low + VL; /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

Value of | 0 1 2 3 - - VL
Range of i 0 m (i MVL) (s 2 MVL) L. ee (n=MVL)

(m-1) (m-1) (m-1) (m-=1) (n-1)
FMVL +2xMVL 43 x MVL

S81NJ08)IY2JY JOJOBA

17

Handling Ifs: Vector Mask Registers

IC-UNICAMP

Consider:
for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] = Y[i];

Use vector mask register to “disable” elements:
LV V1,Rx ‘load vector X into V1
LV V2,Ry ;load vector Y
L.D FO,#0 ;load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=FO0
SUBVV.D VA1, ;subtract under vector mask

SV Rx,V1 the result in X

GFLOPS rate decreases!

— additional instructions executed
anyway (when vect mask reg is used)

Set {NE} Vect x Scalar

S81NJ08)IY2JY JOJOBA

18

Memory Banks

IC-UNICAMP

 Memory system must be designed to support high
bandwidth for vector loads and stores

« LD/ST vector unit: more complicated than arithmetic unit

— Startup time: 1st word - register
« typical penality: 100 cycles (12 cycles no VMIPS)

— Initiation rate: reading rate from memory (could be = 1 cycle)
» for 1/ cycle: multiple memory banks

« Spread accesses across multiple banks
— Control bank addresses independently
— Hability to load or store non sequential words (not interleaving)
— Support multiple vector processors sharing the same memory

S81NJ08)IY2JY JOJOBA

19

IC-UNICAMP

Example

Answer

€ Exmpl p277: # of memory banks of Cray T90

The largest configuration of a Cray T90 (Cray T932) has 32 processors, each
capable of generating 4 loads and 2 stores per clock cycle. The processor clock
cycle is 2.167 ns, while the cycle ume of the SRAMs used in the memory system
is 15 ns, Calculate the minimum number of memory banks required 10 allow all
processors to run at full memory bandwidth.

The maximum number of memory references each cycle is 192: 32 processors
times 6 references per processor. Each SRAM bank is busy for 15/2.167 = 6.92
clock cycles, which we round up to 7 processor clock cycles. Therefore, we
require a minimum of 192 x 7 = 1344 memory banks!

The Cray T932 actually has 1024 memory banks. so the early models could not
sustain full bandwidth to all processors simultaneously. A subsequenl memory
upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchronous
SRAMs that more than halved the memory cycle time, thereby providing suffi-
cient bandwidth.

MO401 - 2013 20

Stride: handling muldimentional arrays

« Consider:
for (i=0;i<100; i=i+1)
for (j = 0;j <100; j=j+1) {
Alilli] = 0.0;
for (k = 0; k < 100; k=k+1)
Alill] = ADOT + BlJ[K] * DIK]OL;

S81NJ08)IY2JY JOJOBA

}

« 3D array stored as linear array in memory (row or column major)

» Must vectorize multiplication of rows of B with columns of D
— D elements separated by RowSize x EntrySize = 100 * 8 = 800 = stride

* Use non-unit stride - separated elements become contiguous in Vect
Register (locality? better than cache?)

« Bank conflict (stall) if same bank is hit faster than bank busy time:

N banks
Min mult comum(Stride, N banks)

< Bank busy time

21

2 Exmpl p 279

IC-UNICAMP

Example Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 17 With a stnde of 327

Answer Since the number of banks is larger than the bank busy time, for a stnde of 1 the
load will take 12 + 64 = 76 clock cycles, or 1.2 clock cycles per element. The
worst possible stnde 15 a value that is a muluple of the number of memory banks,
as in this case with a stride of 32 and E memory banks. Every access 1o memory
(after the first one) will collide with the prévious access and will have to wait for
the 6-clock-cycle bank busy time. The total time will be 124+ 1 + 6 * 63 = 39]
clock cycles, or 6.1 clock cycles per element.

MO401 — 2013 22

Gather-Scatter: Sparse Matrices

IC-UNICAMP

Sparse vectors are usually stored in compacted form
Consider:
for (i=0;1<n;i=i+1)
ALKTi]] = AIK[i]] + CIM[]];
Where K and M designate non-zero elements of Aand C

— K and M: same size

Must be able to

— gather: index vector allows loading to a dense vector
— scatter: store back in memory in the expanded form (not compacted)

HW support to Gather-Scatter: present in all modern vector
processors. In VMIPS:

— LVI (Load Vector Indexed — Gather)

— SVI (Store Vector Indexed — Scatter)

S81NJ08)IY2JY JOJOBA

23

Gather-Scatter: Sparse Matrices (cont)

IC-UNICAMP
 Ra, Rc, Rk, Rm: for (i=0; i < n; i=i+1)
— starting vector addresses ALK = ALK + CIMJ;
» Use index vector:

LV VK, Rk load K
LVI Va, (Ra+Vk) load A[K[]]
LV Vm, Rm load M

LVI Ve, (Rc+Vm) load C[M[]]
ADDVV.D Va, Va, Vc -add them

SVI (Ra+Vk), Va ;store A[K]]]

S81NJ08)IY2JY JOJOBA

Programming Vec. Architectures

IC-UNICAMP
« Compilers can provide feedback to programmers

 Programmers can provide hints to compoiler

Operations executed Operations executed

S8INJ0S8IYDIY JOJOBA

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 04.5% 1.00
FLO52 01.5% 88.7% N/A
ARC3D 91.1% 092.0% 1.01
SPECT7 00.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 6v.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 01.2% 3.02
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when
executed on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectoriza-
tion level obtained with the compiler without hints, while the second column shows
the results after the codes have been improved with hints from a team of Cray Research
programmers.

4 .SIMD Extensions

IC-UNICAMP
 Media applications operate on data types narrower than the
native word size
— Many graphics systems: 8b (3 colors) + 8b (transparency)
— Audio samples: 8 ou 16 bit
« Hardware changes (example)
— Disconnect carry chains to “partition” adder: 8, 16, 32 bits

Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, si xtc_e.n 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit_
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four ﬁ4-bilﬂ
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

e . — S — == i

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)
and quad-precision (128-bit) floating-point operations.

eIpawWI}N|A Jo} sSuoisualxg }8S uononisul aiNIs

26

Limitations of SIMD Extensions (vs Vector)

IC-UNICAMP

« Smaller register file

 Number of data operands encoded into op code (no Vector
Length Register) - addition of 100°s of new op codes

* No sophisticated addressing modes (strided, scatter-gather)
— fewer programs can be vectorized in SIMD extension machines

 No mask registers

« =2 increased difficulty of programming in SIMD assembly
language

elpawi)n|A Jo} suoisua)x3 189S uonanasu|] diis

27

SIMD Implementations

IC-UNICAMP

* Implementations:
— Intel MMX (1996)
 Eight 8-bit integer ops or four 16-bit integer ops
— Streaming SIMD Extensions (SSE) (1999)
« Eight 16-bit integer ops
» Four 32-bit integer/fp ops or two 64-bit integer/fp ops
— Advanced Vector Extensions (2010)

» Four 64-bit integer/fp ops
« (Goal: accelerate carefully written libraries (rather than for the
compiler to generate them

« With so many flaws, why are SIMD so popular?
— HW changes: easy, low cost, low area

— No need of high memory BW (Vector)
— Fewer problems with virtual memory and page faults (short vectors)

elpawi)n|A Jo} suoisua)x3 189S uonanasu|] diis

28

. Exmpl p284: SIMD Code

Example To give an idea of what multimedia instructions look like, assume we added
256-bit SIMD multimedia instructions to MIPS. We concentrate on floating-
point in this example. We add the suffix “40” on instructions that operate on
four double-precision operands at once. Like vector architectures, you can
think of a SIMD processor as having lanes, four in this case. MIPS SIMD will
reuse the floating-point registers as operands for 4D instructions, just as double-
precision reused single-precision registers in the original MIPS. This example
shows MIPS SIMD code for the DAXPY loop. Assume that the starting addresses
of X and Y are in Rx and Ry, respectively. Underline the changes to the MIPS
code for SIMD.

Anser (next page)

The changes were replacing every MIPS double-precision instruction with its 4D
equivalent, increasing the increment from 8 to 32, and changing the registers
from F2 and F4 to F4 and F8 to get enough space in the register file for four
sequential double-precision operands. So that each SIMD lane would have its
own copy of the scalar a, we copied the value of F0 into registers F1, F2, and F3.
(Real SIMD instruction extensions have an instruction to broadcast a value to all
other registers in a group.) Thus, the multiply does F4*F0, F5*F1, F6*F2, and
F7*F3. While not as dramatic as the 100x reduction of dynamic instruction band-
width of VMIPS, SIMD MIPS does get a 4x reduction: 149 versus 578 instruc-
tions executed for MIPS.

eIpawWI}N|A Jo} sSuoisualxg }8S uononisul aiNIs

29

IC-UNICAMP

Loop:

L.D
MOV
MOV
MOV
DADDIU
L.4D
MUL.4D
L.4D
ADD 4D
S.4D
DADDIU
DADDIU
DSUBU
BNEZ

SIMD Code — DXPY

FO,a

F1, FO
F2, FO
F3, FO

R4,Rx,#512

F4,0[Rx]
F4,F4,FO
F8,0[Ry]
F8,F8,F4
O[Ry],F8
Rx,Rx,#32
Ry,Ry,#32
R20,R4,Rx
R20,Loop

‘load scalar a

;copy a into F1 for SIMD MUL
;copy a into F2 for SIMD MUL
;copy a into F3 for SIMD MUL
‘last address to load

Jload X[i], X[i+1], X[i+2], X[i+3]
;axX[i],axX[i+1],axX[i+2],axX[i+3]
Jload Y[i], Y[i+1], Y[i+2], Y[i+3]
axX[i+Y]i], ..., axX[i+3]+Y[i+3]
;store into YT[i], Y[i+1], Y[i+2], Y[i+3]
‘increment index to X

‘increment indexto Y

;,compute bound

.check if done

elpawi)n|A Jo} suoisua)x3 189S uonanasu|] diis

30

Roofline Performance Model

IC-UNICAMP

 Basic idea:

— Plot peak floating-point throughput as a function of arithmetic
intensity

— Ties together floating-point performance and memory performance
for a target machine

* Arithmetic intensity
— Peak # Floating-point operations / Peak # data bytes transfered

o Oflog(N)) ON)
R . b g
il ~,
Arithmetic Intensity
ko L4 L s
Spectral
ig?:iie methods Eﬂi?ﬁf N-body
FFTs) (Particle
(SpMY) ; (BLAS3)
Structured | Structured methods)
grids grids

(Stencils, (Lattice
PDEs) methods)

Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run the
program divided by the number of bytes accessed in main memory [Williams et al. 2009]. Some
kernels have an arithmetic intensity that scales with problem size, such as dense matrix, but there are
many kernels with arithmetic intensities independent of problem size.

eIpawWI}N|A Jo} sSuoisualxg }8S uononisul aiNIs

31

Cumieira 1 FLOP/ < B (é

far left or far right? Examoles s = B/sec
_ p FLOP/B g
 Attaina FLOPs/sec = &
(@
—Min(Pea mory BW x Arithmetic Intensity, Peak Flo4ting Point Perf.) &
Intel Core i7/920 8
- \MEE SX-9 CPU _— gl >
o)
GFLOP/s ¢ \ P o 8 128 / -
5 = >
- L 64 66 GFLOP/s @
(] D] >
c 32 / @,
Z 2 =
E 16 h@ﬁ@ o

— 2 4

r 2 = —
1/8 1/4 1/2 1 2 4 B 16 1/8 1/4 1/2 1 2 4 8 16 FLOP/Byte 3
Arithmetic intensity Arithmetic intensity 8
=

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920
multicore computer with SIMD Extensions on the right [Williams et al. 2009]. This Roofline is for unit-stride
memory accesses and double-precision floating-point performance. NEC SX-9 is a vector supercomputer
announced in 2008 that costs millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/sec and a
peak memory bandwidth of 162 GBytes/sec from the Stream benchmark. The Core i7 920 has a peak DP FP
performance of 42.66 GFLOP/sec and a peak memory bandwidth of 16.4 GBytes/sec. The dashed vertical lines
at an arithmetic intensity of 4 FLOP/byte show that both processors operate at peak performance. In this case,
the SX-9 at 102.4 FLOP/sec is 2.4x faster than the Core i7 at 42.66 GFLOP/sec. At an arithmetic intensity of

0.25 FLOP/byte, the SX-9 is 10x faster at 40.5 GFLOP/sec versus 4.1 GFLOP/sec for the Core i7. 39

4.4 Graphical Processing Units

IC-UNICAMP

Given the hardware invested to do graphics well, how can
be supplement it to improve performance of a wider range of
applications?

sjiun buissadoud |eslydels

Basic idea:
— Heterogeneous execution model
« CPU is the host, GPU is the device

— Develop a C-like programming language for GPU
« CUDA: Compute Unified Device Architecture
« C/C++ for host and C/C++ dialect for device (GPU)

— Unify all forms of GPU parallelism as CUDA thread
— Programming model is “Single Instruction Multiple Thread”

33

Threads and Blocks

IC-UNICAMP

* A thread is associated with each data element
« Threads are organized into blocks (32 threads)
* Blocks are organized into a grid

« GPU hardware handles thread management, not
applications or OS

sjiun buissadoud |eslydels

34

IC-UNICAMP

Terminology

MO401 - 2013

Mare descrip- Closest old term Official CUDA/

Type tive name outside of GPUs ~ NVIDIA GPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, exccuted on the GPU, made

= Loop up of one or more Thread Blocks (bodies of

= vectorized loop) that can execute in paraliel.

E Body of Body of a Thread Block A vectorized loop executed on a multithreaded
& Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
§ Vectorized Loop of SIMD instructions. They can communicate via
E Locil Memory.

- E

g Sequence of One iterationof ~ CUDA Thread A vertical cut of a thread of SIMD instructions
5 SIMD Lane a Scalar Lowp corresponding 1o one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register,

o A Thread of Thread of Vector ~ Warp A traditional theead, but it contsins just SIMD
‘_E' SiMD Instructions instructions that are executed on a multithreaded
o Instructions SIMD Processor. Results siored depending on a
.E per-clement mask.

€ smmp Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

Mulithreaded (Mubkithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.,

E Thread Block Scalar Processor~ Giga Thread Asuigns multiple Thread Blocks (bodies of

.E Scheduler Engine vectarized loop) to multithreaded SIMD

= Processors.

é‘ SIMD Thread Thread scheduler Warp Scheduler Hardware unit that schedules and 1ssnes threads

Scheduler in & Multithreaded of SIMD instructions when they are ready o

§ CPU exccute; includes a scoreboard 1o rack SIMD
- — Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane execules the operations in a thresd
of SIMD instructions on a single element. Results
sored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

» SIMD Processors in a GPU.L

% Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD

- Memory Local Storage (008} Lane,

> Local Memaey Local Memory Shared Memory Fastlocal SRAM for one multithreaded SIMD

E Processor, uniavalable 10 other SIMD Processors.
SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectorized loop).

35

NVIDIA GPU vs Vector Architectures

IC-UNICAMP

« Similarities to vector machines:
— Works well with data-level parallel problems
— Scatter-gather transfers
— Mask registers
— Large register files

» Differences:
— No scalar processor
— Uses multithreading to hide memory latency

— Has many functional units, as opposed to a few deeply pipelined
units like a vector processor

sjiun buissadoud |eslydels

Exmpl p291

IC-UNICAMP

« Multiply two vectors of length 8192

Code that works over all elements is the grid

Thread blocks break this down into manageable sizes
» 512 threads per block

SIMD instruction executes 32 elements at a time
Thus grid size = 16 blocks

Block is analogous to a strip-mined vector loop with vector length of
32

Block is assigned to a multithreaded SIMD processor by the thread
block scheduler

Current-generation GPUs (Fermi) have 7-15 multithreaded SIMD
processors

sjiun buissadoud |eslydels

37

IC-UNICAMP

Exmpl p291

MO401 - 2013

Ginid

AL o J=8[0 J*¢c[0
stimip |A[1 J=8[1 J1*C[1]
Theead0 | T —

Al 31 J=8[31 J*C[31)

A[32]=B[32]*c[32)
sMp | Al 33]-8[33]*C[33]

Thesd [hoeedl T O o T e I
Block Al 63]=B[63]*C[63)
0 AL 64 J=8[68]*C[63]

A[ﬁs]-ﬂla{u'g 1*¢l l..'r'!]

Al 480] =8 480] * C[480)
SIMD 1= w

;_" Al 481]=8[@81] *c[1)]

"A[Sii]=B[511]*c[51]

Al s127-8[%12] *c[512]

L 9] < {7678) ~ €1 7479]

Al 76801 =8 [7680] * C[7680) |
siMp | AL 7681) -8 [7681] * C[7681]

g T I |

A[7711 =B (7711] * €[7711]

Al 7712] =B [712] * C[712] |
sMp | AL 7713} =B (7713] * [7713]

Theesdd | _ __ |
Block A[7743] =B [7743] * C[7743] .
15 Al 7748] =B [7788] = C[7744]

AL 8159] = (8159] * [8159]

A[B160) =B [B160 | * C[8160]
S = *cl

| 5‘-':“1 A[2161] =B [8161] * C[8161]
]

.||.-£ EI-N] --.I [Eit;l)| :E[EI;I

——

38

Warp scheduler Seoreboard @
> trustion Warp No. | Address | SIMD instructions | Operands? | §_
cache 1 43 mul.164 No QO
3 95 shl.s32 Ready o
! 3 96 add.s32 No 3
8 11 |d.global.f64 Ready S
8 12 Id.global f64 Ready . @
: i
=
i Q@
Instruction register g
1 1 1 1 1 l ¥ 1 1 L] Y : K [1 1 5,_
: ir SIMD Lanes
S S S A R A [P [5
_ 1 Processors)
Regr- | Reg feg | Reg ' Reg | Reg | Aeg | Rog | Meg | Reg | Reg | Reg | Aeg | Reg | Reg | Reg
siers
1K =32 I[:Ellﬁrﬂ'il:ﬁ e K3 KX 13?12 | TKw32 [T x32 | 1w 32| TR w32 (1K =32 | 1K 32 | 1Kx32
load | Lead | Load Load | Load rLth:l'l:l‘ Load | Load | load | Load | Load | Load | Load | Load | Load | Load
ghare | slore | Slarg | Slofe | Store | Stong | Stong | SSeo | Sione | slose | Elone’ Sione | SO | sioee | slome | siore
uml unit il uni el it el unill wnd umsl | und wind | el el uil umit
0 N 5 5 O
i)) 1
Address coalescing unit Interconnection network
i p 1
v 1 []
To Global
Local Memory
B4KB Memary

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread
MOA401 — ° Scheduler has, say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs. 39

IC-UNICAMP

L2 Cache

Floor plan
of the Fermi
GTX 480
GPU

GigaThread

Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted
on the left. The GTX 480 has 6 GDDRS5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host
Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to
Multiprocessors, each of which has its own SIMD Thread Scheduler.

One more level of detail

IC-UNICAMP

 Threads of SIMD instructions

— Each has its own PC
— Thread scheduler uses scoreboard to dispatch
— No data dependencies between threads!

— Keeps track of up to 48 threads of SIMD instructions
« Hides memory latency

 Thread block scheduler schedules blocks to SIMD
Processors

« Within each SIMD processor:
— 32 SIMD lanes
— Wide and shallow compared to vector processors

sjiun buissadoud |eslydels

41

Example

IC-UNICAMP

 NVIDIA GPU has 32,768 registers
— Divided into lanes
— Each SIMD thread is limited to 64 registers

— SIMD thread has up to:

» 64 vector registers of 32 32-bit elements
« 32 vector registers of 32 64-bit elements

— Fermi has 16 physical SIMD lanes, each containing 2048 registers

sjiun buissadoud |eslydels

42

T o

£)

: 5 §e

5 -

IC-UNICAMP 3 >

E e

g U

£ o)

Q

&

SIMD thread scheduler n.

@

Time cC

| N) R I O A | :_j-

. SIMD thread 8 instruction 11 7
Scheduhngof SEEEASEEEEREREE
threads of SIMD
| N)N R A N I O Y |
inSthtionS SIMD thread 3 instruction 95

EEEEEEEEEEEAEL AL

Figure 4.16. The scheduler selects a ready thread of SIMD instructions and issues an instruction synchronously to
all the SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are independent, the
scheduler may select a different SIMD thread each time. 43

NVIDIA Instruction Set Arch.

IC-UNICAMP

« PTX is an abstraction of HW ISA

— “Parallel Thread Execution (PTX)” stable abstraction in dif. versions
— PTX = instructions for a single CUDA thread

— Uses virtual registers; compiler allocates to physical

— Translation to machine code is performed in software (cf. X86)

 Format
opcode.type d, a, b, c;
where d = destination operand and a, b, ¢ are source operands

Type type Specifier
Untyped bits 8, 16, 32, and 64 bits .b8, .blb, .b32, .b64
Unsigned integer 8, 16, 32, and 64 bits .u8, .ulb, .u32, .ubd
Signed integer 8, 16, 32, and 64 bits .s8, .slb, .s32, .sb4
Floating Point 16, 32, and 64 bits .fl6, .f32, .f64

« All instructions: can have 1-bit predicate register
— equivalent to mask register (see fig 4.21)

s)jun Buisseosold |eaiydels

T arithmetic .type = .s32, .u32, .f32, .s64, .ubd, .f64
add.type add.f32 d, a, b d=a+bh;
sub.type sub.f32 d, a, b d=a-bh;
mul.type mul .32 d, a, b d=a*hb;
mad. type mad.f32 d, a, b, ¢ d=a*b+c; multiply-add
div.type div.f32 d, a, b d =a/b; multiple microinstructions
rem.type rem.u3? d, a, b d=a%hb; integer remainder
Asithenetic abs.type abs,f32 d, a d = |a];
neg.lype neg.f32 d, a d=0- a:
min. type min.f32 d, a, b d = (a <h)? a:b; floating selects non-NaN
max.type max,f32 d, a, b d=(a>hb)? a:b; floating selects non-NaN
setp.cmp. type setp.1t.f32 p, a, b p=({a=<h); compare and set predicate
numeric .cmp = eq, ne, It, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan
mov. Lype mov.b32 d, a d = a; move
selp.type selp.f32 d, a, b, p d =p? a: b; select with predicate
_ cvt.dtype.atype cvt.f32.s32d, a = convert(a); _convert atype to dtype
special .type = .fi2 (some .f64)
rcp. type rep.f32 d, a d = 1/a; reciprocal
sqrt.type sqrt.f32 d, a d = sqrtia); square root
Special rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root
Function ¢44 type sin.f32 d, a d = sin(a); sine
cos.type c0s.f32 d, a d = cos{a); _____cosine
1g92.type 1g2.132 d, a d = log(a) /10g(2) binary logarithm
exZ.type ex2.f32 d, a d =2 * 3. binary exponential _

S}lun buissaoold |eaiydels

45

F—_ -

Group Instruction Example Meaning Comments
- logic.type = .pred,.b32, .b6d
and.type and.b3Z d, a, b d=abb;
or.type or.b32 d, a, b d=al b
Logical xor.type xor.b3Z d, a, b d=a"h
not . type not.b3Z2 d, a, b d = -a; o one's complement
cnot.type cnot.b32 d, a, b d = (a==0)7 1:0; C logical not
shl.type shl.b32 d, a, b d = a << b shift left
- shr.type shr.s32 d, a, b _d=3a3b; shift right

memory.space = .global, .shared, .local, .const; .type = .b8, .uB, .s8, .bl6, .b32, .b64

1d.space.type 1d.global.b32 d, [a+off] d = *{a+toff); load from memory space
Memory st.space.type st.shared.b32 [d+off], a *(d+off) = a; store 1o memory space
Access tex.nd.dtyp.btype tex.2d.vd.f32.f32 d, a, b d = tex?d(a, b); texture lookup
atom.global.add,u32 d,[a], b atomic { d = *a; *a = atomic read-modify-write
atom.spc.op.type atom.global.cas.b32 d,[a], b, cop(*a, b); | operation

atom.op = and, or, xor, add, min, max, exch, cas; .spc = .?'Iubah .type = .b32

branch Gp bra target if (p) goto target; conditional branch -
Control call call (ret), func, (params) ret = func(params); call function
Bl ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit exit exit: terminate thread execution

sjun buissasold |ealydels

46

Example — DAPY loop
IC-UNICAMP

* One iteration
shl.s32 RS, blockldx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx ; R8 =i =my CUDA thread ID
|d.global.f64 RDO, [X+RS8] ; RDO = X][i]
|d.global.f64 RD2, [Y+R8] : RD2 = YIi]
mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (Y]i])
st.global.f64 [Y+R8], RDO ; Y[i] = sum (X[i]*a + YTi])

— One Thread / loop; one unique id # to each threadblock (blockldx)
and one thread within a block (threadldx)

— Creates 8192 CUDA threads; uses unique number to address each
element = no incrementing or branching code

— 3 primeiras instrucdes: calcula o byte offset em R8 que € somado a
base dos arrays

— GPU nao tem instrucoes especiais para transferéncia de dados
sequencial, por stride e gather-scatter. Tudo € gather-scatter

sjiun buissadoud |eslydels

47

Conditional Branching

IC-UNICAMP

 Like vector architectures (vector masks by SW), GPU branch
hardware uses internal masks (and predicate regs by HW)

 Also uses

— Branch synchronization stack
» Entries consist of masks for each SIMD lane
 |.e. which threads commit their results (all threads execute)

— Instruction markers to manage when a branch diverges into multiple
execution paths

» Push on divergent branch
— ...and when paths converge
» Act as barriers
* Pops stack
« Per-thread-lane 1-bit predicate register, specified by
programmer

sjiun buissadoud |eslydels

48

NVIDIA GPU Memory Structures

IC-UNICAMP

« Each SIMD Lane has private section of off-chip DRAM

— “Private memory”
— Contains stack frame, spilling registers, and private variables

Each multithreaded SIMD processor also has local memory
— Shared by SIMD lanes / threads within a block

Memory shared by SIMD processors is GPU Memory
— Host can read and write only toGPU memory
— (exemplo DAPY usou essa memoria)

Em vez de usar “working set” in “large caches” GPU usa

— extensive multithreading to hide long DRAM latencies

— computing resources

— large number or registers

— vector LD/ST amortize latency across many elements, pay for 1st
element and pipeline the rest

Latest GPUs: small caches as BW filters on GPU memory

sjiun buissadoud |eslydels

49

CUDA Thread

IC-UNICAMP Per-CUDA Thread Private Memory

Thread block

P Per-Block

GPU S—%| Local Memory
Memory

sjun Buissaoold |eaiydels

structures i o i
[[C L EECLCECeLie CLLeree L (i
Preccciccccaiif ccccccacccafiifcccccc ooy e TV
AN AAAD EEEEEFErEr A > e FEFF) 22
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
C Cel & Pdaa CCCr P e
= e s] - 3(] - 3
2 EF ¥,)) ERF 2
Y

Figure 4.18. GPU Memory is shared by all Grids (vectorized loops), Local Memory is shared by all threads of
SIMD instructions within a thread block (body of a vectorized loop), and Private Memory is private to a single
CUDA Thread. 50

Fermi Architecture Innovations

IC-UNICAMP

 Much more complicated than previous versions

* Fermi: each SIMD processor has

— Two SIMD thread schedulers, two instruction dispatch units (figure)

— 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

— Thus, two threads of SIMD instructions are scheduled every two
clock cycles

sjiun buissadoud |eslydels

51

> Fermi Dual SIMD Thread Scheduler

IC-UNICAMP
SIMD thread scheduler SIMD thread scheduler
SIMD thread 8 instruction 11 SIMD thread 9 instruction 11

SIMD thread 2 instruction 42 SIMD thread 3 instruction 33

suun Buissaosold |eoaiydels

SIMD thread 14 instruction 95 SIMD thread 15 instruction 95

Time

SIMD thread 8 instruction 12 SIMD thread 9 instruction 12

SIMD thread 14 instruction 96 SIMD thread 3 instruction 34

SIMD thread 2 instruction 43 SIMD thread 15 instruction 96

Figure 4.19 Compare this design to the single SIMD Thread Design in Figure 4.16.

MO401 - 2013 52

| SIMD thread scheduler | | SIMD thread scheduler
|

IC-UNICAMP

Dispatch unit

Dispatch unit

Fermi
Multithreaded
SIMD Proc.

suun Buissaosold |eoaiydels

=

Fermi streaming multiprocessor (SM)

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU. Each SIMD Lane has a
pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these
units, and a queue for holding results. The four Special Function units (SFUs) calculate functions such as square

MO401 — 2013 roots, reciprocals, sines, and cosines. 53

Fermi Architecture Innovations

IC-UNICAMP

Closer to mainstream system processors

Fast double precision (DP): rel SP (1/10 prev = 2 now)
— peak DP performance: 78 GFLOPS (prev) 2 515 GFLOPS (now)

Caches

— L1 instruction and L1 data caches for each SIMD processor, and a L2
cache shared by SIMD processors and GPU memory. Note: GTX
480 has regqister file = 2MB and L1 = (0.25 - 0.75 MB)

64-bit addressing and unified address space
Error correcting codes: memory and registers (MTTF?)

Faster context switching: about 25 us = 10x faster than in
previous versions

Faster atomic instructions: (5-20)x faster than in previous
versions

Buissaoold |eolydelo

S

54

Vector Architectures vs GPU

IC-UNICAMP

Many similarities + jargon - confusion: how novel?
A SIMD Processor is similar to a vector processor

1 GPU has multiple SIMD Processors (act as independent
MIMD cores)

NVIDIA GTX 480 is a 15-core machine with hw support for
TLP, each core has 16 lanes

Biggest difference: multithreading (missing for most vector
pProcessors)

Registers:

— VMIPS: register file holds contiguous entire vectors (8 vectors of 64
elements = 512 elements)

— GPU: a single vector is distributed across registers of SIMD lanes (1
GPU thread has 64 vectors of 32 elements = 2048 elements -
strong support to multithreading)

sjiun buissadoud |eslydels

55

Vector Archltectures vs GPU: terminology

:ﬁumr.mmmm
Vector térm GPU term Comment
Veorized Loop (Gnid Concepts are similsr, with the GPU using e bess
- deacnplive wErm —
me - Simce 1 vecsor instnactson (PTX Instraction) takes
Just iwo cycles on Fermid and four cveles on Tesls
to complete, & chime is short in GPUs
Vector |I'|-I1I'I.h1l-l:ll:i PTX [nstruction A PTX instruction of o SIMD thread s brosdcast
b all SIMD Eanes, 40 i i domakar (o a vector
B (1511w 7! _ -
GathesScaner Crkobnal foadfsine Mliﬂﬂjkﬂﬂﬂm-tphr:ﬂﬂu_h
{14 global'st plobal) that each SIMD Lane sends 3 umigoe sddsese 1
up o the GPLU Coalescing Unit 10 ges unil-stride
performance when addresses from the SIMD
) Lanes allow i
Mask Regrsters Predicate Regmsters and Vectar mask registens are expheatly part of the
Insernal Mask Registers archisectural state, while OPLU mask repisters are
imfernal to the hardware, The GPU condifional
hardware sdds 5 new feature beyond predicate
negrient 1o manage masks dymumically
Veotor Procesuos Muhithseaded SIMD These ave similar, but SIMD Processors tend 10
Processor have many lanes, taking o few chock cycles per

bane 1o complete 8 vecior, while vecior
archiptectures have fevw lanes and take many
evehes to comiplete a vector, They are slio
multithresded where vectors usually zre nol

MO401 - 2013 56

IC-UNICAMP

Type Vector term

© Vector Architectures vs GPU: terminology

Closest CUDA/NVIDIA
GPU term

Comment

Viecior Prooes oor

SMulinbhsesded STRTD
Procetaor

These sre samvilar, bat STMD Processors 1ond 10
hsve many lanes, taking & few chock oycles per
tane 1o compicte a vecior, while vecior
archutectures have few lanct ond take mamy
cwvaoles 1o complete a veolor, They are elso
multiihresded where vectors usoally =re not

_l'.'rmlrl:ll Froocessasd

Thread Biock Scheduler

suun Buissaosold |eoaiydels

The closest 15 the Theesd Block Scheduler that
msmiEns T hread Hilocks &0 3 multitbreadsd 516D
Processor. Bat G have mo sciisr-vachor
operaiion and oo whil-aride of sitided data
transber instractions, whsch Control Proocssors
cllen pronvide.

‘_Sﬂllur Processor

Svstem Processor

Becase of the lack of shared memory and the
Bigh latency o communesnte over 8 PCT bas

(1000s of clock cycles), the system processor in o
GPU rarely takes on the same tasks that a scalar
processor does ™ 8 vector archisecfure

Yeoour Lane

Bamh e eisentzally functieons] unms soath
regriteTs.

Processing and memory hardware

_"'l.-'n-rl.-ur H.II:'El'.-'-I-Z-EI'S

SIMD Lane Regusiers

The cguivalest of a wector rcgister 15 the same
register i all 37 SIMID Lanes of & multithreaded
STMD Processor minaing a thread of SIMD
instrecions. The mumber of regisiers per SIMD
thread s flexible, but the maximum 5 64, so tha
muimum nurmber of vector registerns s &4

Mimnm Bl mwoay

m?hﬂhimﬁmmm
w5

MO401 - 2013

57

A vector processor with four lanes A multithreaded SIMD Processor | @
: of a GPU with four SIMD Lanes 5
>
IC-UNICAM | S
[rc SIMD Thread Scheduler Q)
Instruction PC Instruction I —
[PC}H " cache PC cache | Dispatch unit | Y
[P] . &
Instruction register Instruction register §
v askh Mask| [Mask = | [Maskl [Mask K =R S
cova| gl] gl) Faltal =
1) gz o 1 = () y R) ke) C
e L - |l | IE I v I I l =3
. 0 1 2 3 0 0 0 0 =
= 4 5 6 7 1 1 1 1
-.{'I—_": - E ™ » ™ -
=) Z
E - w - " " -
I5 ™ - E L] L L -
B o
§ &0 61 62 63 1023 1023 1023 1023
v4 v4 v4 v4 vt ve vé v4
Vector load/store unit SIMD Load/store unit
» vh vd v4 vd
Address coalescing unit
. v vt
Flg 4.22 Memﬂrﬂrl“r:!eﬂace Memory interface unit
o v

(GPUs typically have 8 to 16 SIMD Lanes.) The control processor supplies scalar operands for scalar-vector
operations, increments addressing for unit and non-unit stride accesses to memory, and performs other
accounting-type operations. Peak memory performance only occurs in a GPU when the Address Coalescing unit
can discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits
are set identically. Note that the SIMD Processor has one PC per SIMD thread to help with multithreading. 58

Multimedia SIMD computers vs GPU

IC-UNICAMP

Both are multiprocessors with multiple SIMD lanes, but GPU
has more processors and lanes

Both use multithreading, but GPU has hw support
Both use cache, but in GPU they are smaller
Both use 64-bit address, but GPU has smaller main memory

Scalar processor:

— tightly integrated in SIMD multimedia extensions (as in general)
— separated by I/O bus in GPU

Support to gather — scatter

— Multimedia extensions: yes
— GPU: no

syun buissaooud |eaiydelo

59

Multicore multimedia SIMD extension vs GPU

IC-UNICAMP

900l |eaiydelo

i

Feature Multicore with SIMD GPU

SIMD processors 4108 Btol6
SIMD lanes/processor 2104 Bol6
Multithreading hardware suppont for SIMD threads 204 161032
Typical ratio of single-precision to double-precision performance 21 2:1 s
Largest cache size 8§ MB 0.75MB
Size of memory address 64-bit 64-bit R
Size of main memory 8 GB to 256 GB 4106GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD processor Yes No =
Cache coherent Yes No

d
Figure 4.23 Similarities and differences between multicore with Multimedia SIMD extensions and recent GPUS.

60

4.5 Loop-Level Parallelism

IC-UNICAMP

Focuses on determining whether data accesses in later
iterations are dependent on data values produced in earlier
iterations

— Loop-carried dependence

Analyzed (close) at HLL. (ILP usually at Assembly level)

Example 1:
for (i=999; i>=0; i=i-1)
X[i] = x[i] + s;

wsl|a||eted |aaa1-doo buloueyug pue bunosle

No loop-carried dependence

— Only within a loop (induction variable): could be eliminated thru loop
unrolling

61

Exmpl p316: Loop-Level Parallelism

IC-UNICAMP

 Ex2: what are data dependences between S1 and S27?
for (i=0; i<100; i=i+1) {
Ali+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */
}
« Assumes non overlapping arrays

 S1 and S2 use values computed in previous iteration
— loop carried - successive iterations forced to execute in series

« S2 uses value computed by S1 in same iteration
— does not prevent different iterations to be executed in parallel
— could be treated by loop unrolling

wsl|a||eted |aaa1-doo buloueyug pue bunosle

62

Exmpl p 317: Loop-Level Parallelism

IC-UNICAMP

 Ex 3: what are data dependences between S1 and S27?
for (i=0; i<100; i=i+1) {
Ali] = A[i] + BJ[i]; /* S1 */
Bli+1] = C[i] + D[i]; /* S2 */
}

« S1 uses value computed by S2 in previous iteration (loop
carried)

— but dependence is not circular so loop is parallel

* Loop is parallel if can be written without circular dependence
—> partial order exists

 No dependence S1->S2; statements can be interchanged

« On 1stiteration, S1 (erro no livro) depends on B[0],
calculated prior to initiating the loop

wsl|a||eted |aaa1-doo buloueyug pue bunosle

63

Exmpl p 317: Loop-Level Parallelism

IC-UNICAMP

* Transform to:
A[0] = A[O] + BIO];
for (i=0; i<99; i=i+1) {
Bli+1] = C[i] + DIiJ;
A[i+1] = A[i+1] + BJ[i+1];
}
B[100] = C[99] + D[99];

 No more loop carried dependences
— iterations can be overlapped, provided statements kept in order

wsl|a||eted |aaa1-doo buloueyug pue bunosle

64

Exmpl p 317: Loop-Level Parallelism

IC-UNICAMP
* Ex 4: dependence information could be inexact
for (i=0;i<100;i=i+1) {
Ali] = B[i] + C[i];
DIi] = Ali] ™ E[i];
}

« Second reference to A =2 no need to load, since value
already in register

« Aqui é facil chegar a esta conclusao = ambas referéncia a
A[i] acessariam o mesmo dado na posicao de memoria =2
nao ha intervening access a A[i]

 Em cdodigo mais complicado, nem sempre é simples fazer
esta analise

wsl|a||eted |aaa1-doo buloueyug pue bunosle

65

Exmpl p 318: Loop-Level Parallelism

IC-UNICAMP
 Example 5: dependéncia na forma de recorréncia
for (i=1;i<100;i=i+1) {
Y[i] = Y[i-1] + Yi];

» Detectar recorréncia pode ser importante

— algumas arquiteturas (vector computers) tem suporte especial para
recorréncia

— possivel explorar paralelismo ainda no ambito de ILP

wsl|a||eted |aaa1-doo buloueyug pue bunosle

66

Finding dependencies

IC-UNICAMP

« Dependence analysis complex when: C pointers or Fortran
pass by reference. Indices are not affine 2 x[y[i]]

« Assume indices are affine:
— axi+ b (iisloop index)
« Determining dependence in two references to same array =

determining whether two affine functions can have same
value for different indices within loop bounds

 Assume:
— Storetoax i+ b, then
— Load fromexi+ d
— fruns frommto n

— Dependence exists if:
 Givenj,ksuchthatm<j<n m<k<n
« Storetoaxj+b,loadfromaxk+d,andaxj+b=cxk+d

wsl|a||eted |aaa1-doo buloueyug pue bunosle

67

for (i=0; i<100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;
}
e a=2,b=3;c=2;d=0
— GCD (a, ¢) = 2; (d-b) = -3
— como -3 nao e divisivel por 2 - nao ha dependéncia possivel
« O teste de GCD ¢é seguro no resultado negativo mas pode
resultar em falso positivo

O

. . . ®

Finding dependencies &
IC-UNICAMP =
[] [] [] @

« (Generally cannot determine at compile time (a, b, c, d S
o

unknown) m

» Test for absence of a dependence: af
— GCD test: Q.

« para que uma dependéncia exista, (d-b) deve ser divisivel por GCD(c,a) E

- Example: S
i

®

<

@

Y

Q

o

)

=

3

68

Exmpl p 320: Finding dependencies

IC-UNICAMP

« Ex 2: find all dependencies, eliminate WAW and WAR by

renaming

for (1=0; 1<100; 1=1i+1)

i] = X[1i] /

« True dependences: S1 2> S3, S4 (Y]i]). Not loop carried, but

S3 and S4 must wait S1

« Antidependence: S1 -2 S2 (X]i]), S3 =2 S4 (Y[i])

.- WAW: S1 > S4 (Y[i])

/*
/*
/*
/*

{
S1

S2
S3
S4

*/
*/
*/
*/

wsl|a||eted |aaa1-doo buloueyug pue bunosle

69

IC-UNICAMP

Finding dependencies (cont)

« Code with renaming:

fo

}

r (1=0; 1<100; 1i=1+1)
T[i] = X[1] / c; /*
X1[i] = X[1] + ¢c; /%
Z[1] = T[1] + c; /*
Y[1] = c - T[1]; /*

» After the loop

X renamed to X1
compiler could fix this

=0,; 1<100; i=i+1) {

= X[i] / c; /* S1 */
= X[1] + ¢c; /* S2 */
= Y[i] + ¢c; /* S3 */
= c - Y[i]; /* sS4 */

solve WAWs */
solve WAR */
solve WAR */

wsl|a||eted |ana1-doo1 buloueyug pue bunosle

70

Dependence Analysis

IC-UNICAMP

 Critical for exploiting parallelism
* Loop level parallelism: dependence analysis is the basic tool

« Drawback
— applies only under a limited set of circumstances, within a loop

« Many situations: very difficult

— example: referencing arrays with pointer rather than with indices

» This is one reason why Fortran is still preferred over C and C++ for
scientific applications designed for parallel computers

— example: analyzing references across procedure calls

wsl|a||eted |aaa1-doo buloueyug pue bunosle

71

Reductions

IC-UNICAMP

Reduction Operation: example dot matrix
for (i=9999; i>=0; i=i-1)
sum = sum + X[i] * y[i;
Not parallel: loop-carried dependence on variable sum

Can be transformed into 2 loops, one parallel and other partially paral.
for (1=9999; 1>=0,;, 1=1-1)

sum [1] = x[1] * yI[i];
for (1=9999; 1i>=0; 1i=1-1)
finalsum = finalsum + sum[i];

Second loop = reduction (used also in MapReduce) = hw support in
vector computers

Do on p processors, p ranging from 0 to 9
for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];

Note: assumes associativity! Finally, a simple scalar loop adds the 10
sums

wsl|a||eted |aaa1-doo buloueyug pue bunosle

72

4.6 Crosscutting Issues

IC-UNICAMP

 Energy and DLP

— Many FUs, many parallel vector elements, many lanes = high
performance with lower clock frequency

— Compared to out-of-order processors: DLP processors have simpler
control logic, no speculation, easier to turn off unused portions of chiy
« Banked Memory and Graphics Memory
— GDRAM: higher bandwidth than conventional DRAM
— Soldered directly onto GPU board (no DIMM modules)
— Memory banks = higher bandwith

« Strided access and TLB misses (VM translations)

— Problem

— Depending on TLB organization, array size and striding
» possible to get one TLB miss for every access to an array element

wsl|a||eted |aaa1-doo buloueyug pue bunosle

73

4.7 Putting all together: comparisons

IC-UNICAMP

* Mobile versus Server GPUs
— Mobile: NVIDIA Tegra 2 - cell phone LG Optimus 2X (Android)

— Fermi GPU for servers

« Meta dos engenheiros: animagao no servidor 5 anos depois do
lancamento do filme; e cinco anos depois no celular

« Avatar no Servidor GPU em 2015 e no celular em 2020

 Servers: non GPU vs GPU
— non GPU: Intel i7 960
— GPU Server: Fermi GTX 280 and GTX 480

wsl|a||eted |aaa1-doo buloueyug pue bunosle

74

IC-UNICAMP

Fig 4.26: Tegra 2 vs Fermi1 GTX 480

NVIDIA Tegra 2

NVIDIA Fermi GTX 480

Market

Mohbile clhient

Desktop, server

System processor

Dual-Core ARM Cortex-AY

Not applicable

System interfuce

Not applicable

PCl Express 2.0 16

System interface

6 GBytes/sec (each

bandwidth Not applicable direction), 12 GBytes/sec
{total)

Clock rate Upto | GHz 1.4 GHz

SIMD muluprocessors Ungvniiablc 15

iﬁﬂ::;‘:ﬂ”n Unavailable 32

Memory interface 32-bit LP-DDR2/DDR2 384-bit GDDRS

Memory bandwidth 2.7 GBytes/sec 177 GBytes/sec

Memory capacity I GByte 1.5 GBytes

Transistors 242 M 3030 M

Process 40 nm TSMC process G 40 nm TSMC process G

El—in: area 57 mm* 520 mm*

Power 1.5 walts 167 watts

Figure 4.26 Key features of the GPUs for mobile clients and servers. The Tegra 2 is
the reference platform for Android OS and is found in the LG Optimus 2X cell phone.

wsl|a||eted |aAa1-doo1 Buioueyug pue bunossyeq

75

Core i7- Ratio Ratio
960 GTX 280 GTX 480 280/i7 480/i7
' ﬁu-n_lbﬂf nf-pmc:essing elements (cores or SMs) 4 30 15 15 3.8
Clock frequency (GHz) | 32 13 1.4 041 044
Die size 263 576 520 22 20
Technology Intel 45nm TSMC 65nm TSMC40nm 1.6 1.0
power (chip, not module) F 130 130 167 1.0 1.3
Transistors 700M 1400M 3030 M 20 44
Memory bandwidth (GBytes/sec)) 141 177 44 55
Single-precision SIMD width | 4 3 2 20 80
Double-precision SIMD width 2 1 16 0.5 8.0
Peak single-precision scalar FLOPS (GFLOP/Sec) 26 117 63 46 2.5
Peak single-precision SIMD FLOPS (GFLOP/Sec) 102 10933 SlSor1344 3.0-9.1 6.6-13.]
(SP 1 add or multiply) N.A, (311) (515) (3.0) (6.6)
(SP 1 instruction fused multiply-adds) N.A. (622) (1344) 6.1) (13.1)
{Rare SF'EI.IIII issue fused multiply-add and multiply) N.A. (933) N.A. (9.1) --
Peak double-precision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

Figure 4.27 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the
ratios of GTX 280 and GTX 480 to Core i7. For single-precision SIMD FLOPS on the GTX 280, the higher speed (933)
comes from a very rare case of dual issuing of fused multiply-add and multiply. More reasonable is 622 for single
fused multiply-adds. Although the case study is between the 280 and i7, we include the 480 to show its relationship
to the 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 4.28
because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark
program. (From Table 2 in Lee et al. [2010].)

wsl|a||eted |aAa1-doo1 Buioueyug pue bunossyeq

76

108 A | ?ﬂ;ﬂh ;TE?:;’ : 128 A NVIDIA GTX280 errcﬂ C?
~
§ o4 [']ﬁ'r]-k 42 ﬁE-"\ GF | OP/s . & o4 1 8'_
IC-UNICAMP T a0 : o ; 5
Q | Q .
Flgure 4 o 2 8 g - i LtB i E 78 GF/sec g
Roofli del i : o1 1 2
ool111Inc Mmodce g s . i 2 8 \q:\"—? | -
() | i =8 5 |
8 | | 8 |7 | o
2 i ; 2 i >
| i | 0.
11;3 1/4 1;2 12 z:z 8 125; Twa 14 12 1 2 zlz 8 1».23; (8
These rooflines show double- Arithmatic intensity Arithmetic intensity —
precision roatlng-po_lnt perforr_n_ance 8
in the top row and single-precision , Core 17 920 , | o
performance in the bottom row. (The 10247 | (Nehalem) 1024 % NVIDIA GTX260 ——— —
DP FP performance ceilingis alsoin 1| | 1o gea Bhises 2
the bottom row to give perspective.) o Q o)
The Core i7 920 on the left has a T 258 5 o056 —
peak DP FP performance of 42.66 g g ;.\)U
GFLOP/sec, a SP FP peak of 85.33 © 128 e I R
GFLOP/sec, and a peak memory S ' 2 . =
bandwidth of 16.4 GBytes/sec. The § 64 3 o4 ; @
NVIDIA GTX 280 has a DP FP peak 3 iy 5 w
of 78 GFLOP/sec, SP FP peak of 2 % T = ; 3
624 GFLOP/sec, and 127 - 5 * g |
GBytes/sec of memory bandwidth. / . ;
The dashed vertical line on the left 8 ' > 8 : 1 >
represents an arithmetic intensity of 8 14 2 i 2 4 8 16 18 14 12 1 2 4 8 18
0.5 FLOP/byte. Arithmetic intensity Arithmetic intensitv

It is limited by memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. The dashed vertical line to
the right has an arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/sec and 64 SP GFLOP/sec
on the Core i7 and 78 DP GFLOP/sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7
you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use
fused multiply-add instructions on all multithreaded SIMD processors.

Kernel Application SIMD

TLP

Characteristics

SGEMM (SGEMM) Linear algebra Regular

Across 2D tiles

Compute bound after tiling

Monte Carlo (MC) Computational Regular Across paths Compute bound
finance

Convolution (Conv) Image analysis Regular Across pixels Compute bound; BW bound for
small filters

FFT (FFT) Signal processing Regular Across smaller Compute bound or BW bound

FFTs depending on size

SAXPY (SAXPY) Dot product Regular ACross vector BW bound for large vectors

LBM (LBM) Time migration Regular Across cells BW bound

Constraint solver (Solv) Rigid body physics Gather/Scatter Across constraints Synchronization bound

SpMV (SpMV) Sparse solver Gather Across non-zero BW bound for typical large
matrices

GIK (GJK) Collision detection Gather/Scatter Across objects Compute bound

Sort (Sort) Database Gather/Scatter Across elements Compute bound

Ray casting (RC) Volume rendering Gather Across rays 4-8 MB first level working set;
over 500 MB last level working
set

Search (Search) Database Gather/Scatter Across gueries Compute bound for small tree,
BW bound at bottom of tree for
large tree

Histogram (Hist) Image analysis Requires conflict Across pixels Reduction/synchronization

detection

bound

Figure 4.29 Throughput computing kernel characteristics (from Table 1 in Lee et al. [2010).) The name in paren-
theses identifies the benchmark name in this section. The authors suggest that code for both machines had equal

optimization effort.

IC-UNICAMP

O

L

@

T\

GTX 280/ 5

Kernel Units Corei7-960 GTX 280 i7-960 Q

e Q

SGEMM GFLOP/sec 94 364 39 =

MC Billion paths/sec 0.8 1.4 1.8 g'l

Conv Million pixels/sec 1250 3500 2.8 Q:;-

FFT GFLOP/sec 71.4 213 30 o

SAXPY GBytes/sec 16.8 88.8 53 Q@

LBM Million lookups/sec 85 426 50 -

Solv Frames/sec 103 52 0.5 '8

SpMV GFLOP/sec 4.9 9.1 1.9 b

<

(E K Frames/sec 67 1020 15.2 @

Sort Million elemenis/sec 250 198 0.8 ;,U

RC Frames/sec 5 8.1 1.6 o

Search Million queries/sec 50 90 1.8 %

Hist Million pixels/sec 1517 2583 1.7 3
Bilat Million pixels/sec 83 475 5.1

Figure 4.30 Raw and relative performance measured for the two platforms. In this
study, SAXPY is just used as a measure of memory bandwidth, so the right unit is
GBytes/sec and not GFLOP/sec. (Based on Table 3 in [Lee et al. 2010].)

79

Comparacao feita pelos engenheiros da Intel

IC-UNICAMP

« Memory BW:

— GPU has 4,4x - LBM (5.0x), SAXPY (5.3x). Working sets too big do not fit into i7
caches. See roofline slopes

 Compute BW

— 5 benchmarks are compute bound: SGEMM, Conv, FFT, MC, Bilat. 1st three: single
precision arith., GPU is 3-6x. MC double precision, GPU only 1.5x. Bilat uses
transcendental functions, i7 spends 2/3 of time calculating, GPU 5.7x.

« Cache benefits
— Ray casting is only 1.6x = cache blocking in i7 prevents it to be memory BW bound

o (Gather-Scatter

— i7 SIMD extension - no benefit if data is scattered. Optimal performance when data is
aligned. Biggest difference in GJK = 15.2x

e Synchronization

— ini7, atomic updates take 28% of total runtime. GTX280 has slow rmw instructions.
Synchronization performance can be important for some data parallel problems

wsl|a||eted |aaa1-doo buloueyug pue bunosle

80

4.9 Conclusoes
IC-UNICAMP
 DLP: aumento de importancia mesmo em PMD -
multimedia
* Previsao:

— renascimento de DLP na proxima década
— processadores convencionais (system processors) terao mais
caracteristicas de GPU e vice-versa
* Melhorias esperadas em GPUs
— Suporte a virtualizacao
— Maior capacidade de memoria

— Hoje: I/O = System Memory - GPU Memory. Workloads com muita
atividade de 1/O se beneficiarao com acesso mais direto

— Unificacao do sistema de memoria: alternativa ao bullet anterior

wsl|a||eted |aaa1-doo buloueyug pue bunosle

81

