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« Centralized shared-memory architectures

« Performance of symmetric shared-memory architectures

* Distributed shared-memory and directory-based coherence
* Synchronization

 Memory consistency
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« Importance of multiprocessing (from low to high end)

5.1 Introduction
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Power wall, ILP wall: power and silicon costs growed faster than
performance

Growing interest in high-end servers, cloud computing, SaaS
Growth of data-intensive applications, internet, massive data....

Insight: current desktop performance is acceptable, since data-
compute intensive applications run in the cloud

Improved understanding of how to use multiprocessors effectively:
servers, natural parallelism in large data sets or large number of
iIndependent requests

Advantages of replicating a design rather than investing in a unique
design



5.1 Introduction
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* Thread-Level parallelism
— Have multiple program counters
— Uses MIMD model (use of TLP is relatively recent)
— Targeted for tightly-coupled shared-memory multiprocessors

— Explit TLP in two ways
« tightly-coupled threads in single task - parallel processing

» execution of independent tasks or processes -2 request-level parallelism
(multiprogramming is one form)

* In this chapter: 2-32 processors + shared-memory (multicore
+ multithread)
— next chapter: warehouse-scale computers
— not covered: large-scale multicomputer (Culler)
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Multiprocessor architecture: 1ssues/approach
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To use MIMD, n processors, at least n threads are needed

Threads typically identified by programmer or created by OS
(request-level)

Could be many iterations of a single loop, generated by
compiler

Amount of computation assigned to each thread = grain size

— Threads can be used for data-level parallelism, but the overheads
may outweigh the benefit

— Grain size must be sufficiently large to exploit parallelism

» a GPU could be able to parallelize operations on short vectors, but in a
MIMD the overhead could be too large
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Challenges of Parallel Processing
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 Two main problems

— Limited parallelism

« example: to achieve a speedup of 80 with 100 processors we need to
have 99.75% of code able to run in parallel !

— Communication costs: 30-50 cycles between separate cores, 100-
500 cycle between separate chips (next slide)

e Solutions
— Limited parallelism
 better algorithms
» software systems should maximize hardware occupancy
— Communication costs; reducing frequency of remote data access

« HW: caching shared data
« SW: restructuring data to make more accesses local



Example
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Answer

Exmpl p350:
communication
COStS

Suppose we have an application running on a 32-processor multiprocessor, which
has a 200 ns time to handle reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which is slightly optimistic. Processors are stalled on a
remote request, and the processor clock rate is 3.3 GHz. If the base CPI (assum-
ing that all references hit in the cache) is 0.5, how much faster is the multiproces-
sor if there is no communication versus if 0.2% of the instructions involve a
remote communication reference?

It is simpler to first calculate the clock cycles per instruction. The effective CPI
for the multiprocessor with 0.2% remote references is

CPI

Base CPI + Remote request rate X Remote request cost

n

0.5 + 0.2% x Remote request cost

The remote request cost is

Remote access cost _ 200 ns
Cycle time 0.3 ns

= 666 cycles

Hence, we can compute the CPIL:

CPA=05%12=1.7

The multiprocessor with all local references is 1.7/0.5 = 3.4 times faster. In
practice, the performance analysis is much more complex, since some fraction
of the noncommunication references will miss in the local hierarchy and the
remote access time does not have a single constant value. For example, the cost
of a remote reference could be quite a bit worse, since contention caused by
many references trying to use the global interconnect can lead to increased
delays.



5.2 Centralized Shared-Memory Architectures
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* Motivation: large multilevel caches reduce memory BW needs

 Originallly: processors were single core, one board, memory on
a shared bus

* Recently: bus capacity not enough; up directly connected to
memory chip; accessing remote data goes through remote up
memory owner = asymmetric access

— two multicore chips: latency to local memory # remote memory
* Processors cache private and shared data

— private data: ok, as usual
— shared data: new problem - cache coherence
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* Processors may see different values through their caches

Cache Coherence

 Example p352

Time

Event

Cache contents
for processor A

Memory
Cache contents contents for
for processorB  location X

0

I

Processor A reads X

I

(i

Processor B reads X

| |

Processor A stores ()
mnto X

0

| 0

 Informal definition: a memory system is coherent if any read
of a data item returns the most recently written value

$8.1N)09)IYdJy Alows|\-paleys pazijenusd

10



Cache Coherence
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« A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read
by P, always returns the value written by P

— Preserves program order
2. Aread by a processor to location X that follows a write by another

processor to X returns written value if the read and write are sufficiently
separated in time and no other writes to X occur between the two accesses

— if a processor could continuously read old value - incoherent memory

3. Writes to the same location are serialized. Two writes to the same location
by any two processors are seen in the same order by all processors.

$8.1N)09)IYdJy Alows|\-paleys pazijenusd

 Three properties: sufficient conditions for coherence

« But, what if two processors have “simultaneous” accesses to memory
location X, P1 reads X and P2 writes X? What is P1 supposed to read?

— when a written value must be seen by a reader is defined by a memory
consistency model

11



Memory Consistency

IC-UNICAMP

« Coherence and consistency are complementary

— Cache coherence defines the behavior of reads and writes to the
same memory location

— Memory consistency defines the behavior of reads and writes with respect to
accesses to other memory locations

Consistency model in section 5.6

For now

— a write does not complete (does not allow next write to start) until all
processors have seen the effect of that write (write propagation)

— the processor does not change the order of any write with respect to
any other memory access.

Example
— if one processor writes location A and then location B
— any processor that sees new value of B must also see new value of A

Writes must be completed in program order

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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Enforcing Coherence
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« Coherent caches provide:
— Migration: movement of data to local storage - reduced latency
— Replication: multiple copies of data - reduced latency and contentio

« (Cache coherence protocols

— Directory based
» Sharing status of each block kept in one location, the directory
* In SMP: centralized directory in memory or outermost cache in a multicor
* In DSM: distributed directory (sec 5.4)
— Shooping
« Each core broadcast its memory operations, via bus or other structure

« Each core monitors (snoops) the broadcasting media and tracks sharing
status of each block

« Snooping popular with bus-based multiprocessing

— Multicore architecture changed the picture - all multicores share some
level of cache on chip - some designers switched to directory based
coherence

sainyoayydly Alowa-p3ieys pazijesuad
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Snoopy Coherence Protocols

IC-UNICAMP

* Write invalidate
— On write, invalidate all other copies
— Use bus itself to serialize
» Write cannot complete until bus access is obtained
* Write update
— On write, update all copies
— Consumes more BW

« Which is better? Depends on memory access pattern
— After | write, what is more likely? Others read? | write again?

« Coherence protocols are orthogonal to cache write policies

— Invalidate
 write through?
 write back?

— Update
 write through?
 write back?

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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Contents of Contents of Contents of g_)

Processor activity Bus activity processor A's cache  processor B's cache memory location X )
=

0 L

Processor A reads X Cache miss for X 0 0 |§
Processor B reads X Cache miss for X 0 0 0 CBD
Processor Awritesa | Invalidation for X 1 0 Q
to X <
Processor B reads X Cache miss for X 1 I 1 2
@)

=)

—

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memary is 0. The proces-
sor and memory contents show the value after the processor and bus activity have both completed. A blank indi-
cates no activity or no copy cached. When the second miss by B occurs, processor A responds with the value
canceling the response from memeory. In addition, both the contents of B's cache and the memory contents of X are
updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possi-
ble to track the ownership and force the write-back only if the block is replaced. This requires the introduction of an
additional state called "owner,"” which indicates that a block may be shared, but the owning processor is responsible
for updating any other processors and memory when it changes the block or replaces it. If a multicore uses a shared
cache (e.g., L3}, then all memory is seen through the shared cache; L3 acts like the memory in this example, and
coherency must be handled for the private L1 and L2 for each core. It is this observation that led some designers to
opt for a directory protocol within the multicore. To make this work the L3 cache must be inclusive (see page 397).
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Snoopy Coherence Protocols
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* Bus or broadcasting media acts as write serialization
mechanism: writes to a memory location are in bus order

How to locate an item when a read miss occurs?
— In write through cache, all copies are valid (updated)

— In write-back cache, if a cache has data in dirty state, it sends the
updated value to the requesting processor (bus transaction)

« Cache lines marked as shared or exclusive/modified
— Only writes to shared lines need an invalidate broadcast
« After this, the line is marked as exclusive
» Ha diferentes protocolos de coeréncia
— Para write invalidate: MSI (prox slide), MESI, MOESI

« Snoopy requer adicao de tags de estado a cada bloco da
cache: estado do protocolo usado - shared, modified,
exclusive, invalid

— Como tanto o processador como o snoopy controller devem acessar
os cache tags, normalmente os tags sao duplicados

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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Fig 5.5 Snoopy Coherence Protocols: MSI
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State of
addressed  Type of

Request  Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Nomnal miss  Place read miss on bus.

Read miss Processor Shared REeplacement Address conflict miss: place read miss on bus.

Read miss  Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit  Processor Modified Normal hit Write data in local cache.

Write hit  Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid MNommal miss  Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss  Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence  Attempt to share data: place cache block on bus and change state
to shared.

Invalidate  Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

S2.1N)08)IYdJy AIoWs|\-paleys pazijenuad
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[ Snoonv Coherence Protocols: MSI

CPU read hit
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Write-back cache block
Place wrlte miss on bus
CPU write hit
CPU read hit

Miss para um bloco em estado = invalido -2

estimulo que causou mudanga de estado dado esta 1a mas wrong tag - miss
bus xaction resultante -

Estado
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permitida)
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Snoopy Coherence Protocols

IC-UNICAMP CPU

Write miss for this block

Invalidate for this block

Shared

CPU read (read oniy)

Place read miss on bus

Invalid

CPU
read
miss

CPU write

Place read
miss on bus

Place write miss on bus

Write-back block

Write miss
for block

Exclusive
(read/write)

CPU write miss
CPU write hit

CPU read hit

Write-back data
Place write miss on bus
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Figure 5.7 Cache coherence state diagram with the state transitions induced by the local processor shown

in black and by the bus activities shown in gray. Activities on a transition are shown in bold.
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Snoopy Coherence Protocols
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« Complications for the basic MSI protocol:

— Operations are not atomic
« E.g. detect miss, acquire bus, receive a response
» Creates possibility of deadlock and races

* One solution: processor that sends invalidate can hold bus until other
processors receive the invalidate

Extensions:

— Add exclusive state to indicate clean block in only one cache (MESI
protocol)

» Prevents needing to write invalidate on a write, if Exclusive-clean

— Owned state: MOESI
» solves problem: if block in shared state, who should supply a copy in
case a processor misses?
— Before: everybody + memory abort
— Now: owner

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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Limitations of SMP and snooping
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* As numbers of processors grow, any centralized resource
can become a bottleneck

« In a multicore, private L1/L2 and shared L3 (on chip) - ok
up to 8 cores
e Snooping bandwith. Solutions

— duplicate cache tags
— directory at the outermost cache level (Intel i7 and Xeon)

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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e

* To solve bus traffic limitations | 5ocescor

 Use interconnection network

Limitations (2)

@ @

/’

Processor

— crossbars or point-to-point

One ar

networks with banked memory | moe eveis

of private

* Does not scale well cache

Cne or
more levels
of private

cache

One ar

more levels
of private

cache

Qne ar
more levels
of private

cache

Interconnection network

Bank 0
shared
cache

Bank 1
shared
cache

Bank 2
shared
cache

Bank 3
shared
cache

| | |
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Coherence Protocols
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« AMD Opteron:

— Memory directly connected to each multicore chip in NUMA-like
organization

— Implement coherence protocol using point-to-point links
— Use explicit acknowledgements to order operations

S2.1N)08)IYdJy AIoWs|\-paleys pazijenuad
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Evolution
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* Bus + snoop + small scale multiprocessing = ok
As number or processors increase

— multibus: snoopy?
— interconnection network: snoopy?

« Snoopy demands broadcast, ok with bus

— also possible in interconnection network - traffic, latency, write
serialization

 All solutions but single bus lack its easy “bus order” - write
serialization

« Races?

« Directory is more appropriate for implementing cache
coherence protocols in large scale multiprocessors

* (see history, devil in details, textbook)

$8.1N)09)IYdJy Alows|\-paleys pazijenusd
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5.3 Performance of SMP
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« Performance depends on many factors

— overall cache performance = uniprocessor cache miss traffic +
communication traffic

— processor count, cache size, block size

« Coherence influences cache miss rate

— Coherence misses

* True sharing misses
— Write to shared block (transmission of invalidation)
— Read an invalidated block

* False sharing misses
— Read an unmodified word in an invalidated block

sJossaooudiniy Alows-paleys doWWAS JO aduewloLad
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Example Assume that words x| and x2 are in the same cache block, which is in the shared
state in the caches of both Pl and P2. Assuming the following sequence of

v events, identify each miss as a true sharing miss, a false sharing miss, or a hit.
IC-UNICAMP Any miss that would occur if the block size were one word is designated a true

sharing miss.

Time P1 P2

1 Write x1

2 Read x2

3 Write x1

4 Write x2 -
5 Read x2

Answer Here are the classifications by time step:

1. This event is a true sharing miss, since x| was read by P2 and needs to be

invalidated from P2,
EXIIlpl p366 ) 2. This event is a false sharing miss, since x2 was invalidated by the write of x1
miss in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is marked
shared due to the read in P2, but P2 did not read x1. The cache block contain-
ing x1 will be in the shared state after the read by P2; a write miss is required
to obtain exclusive access to the block. In some protocols this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

1dentification

sJossaooudiniy Alows-paleys doWWAS JO aduewloLad

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was written by P2,

N
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4 processor
shared-memory,

Alpha, 4

instructions issue,
1998 (but
structure similar to
modern multicore

chips)

Study on a commercial workload

Cache level Characteristic Alpha 21164 Intel i7

L1 Size 8KBUSKBD 32KBI/32KBD
Associativity Direct mapped 4-way 1/8-way D
Block size 2B 64 B
Miss penalty 7 10

L2 Size 96 KB 256 KB
Associativity 3-way 8-way
Block size 32B 64 B
Miss penalty 21 35

L3 Size 2MB 2MB percore
Associativity Direct mapped 16-way
Block size 64 B 64 B -
Miss penalty 80 ~100

Figure 5.9 The characteristics of the cache hierarchy of the Alpha 21164 used in this
study and the Intel i7. Although the sizes are larger and the associativity is higher on
the i7, the miss penalties are also higher, so the behavior may differ only slightly. For
example, from Appendix B, we can estimate the miss rates of the smaller Alpha L1
cache as 4.9% and 3% for the larger i7 L1 cache, so the average L1 miss penalty per ref-
erence is 0.34 for the Alpha and 0.30 for the i7. Both systems have a high penalty (125
cycles or more) for a transfer required from a private cache. The i7 also shares its L3

among all the cores.
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Study on a commercial workload
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* OLTP: Online transaction-processing workload modeled after TPC-B.
Requests to an Oracle DB

* DSS: Decision Support System based on TPC-D, also with Oracle
« Alta Vista: web search engine

% Time
Benchmark % Timeusermode  %Timekernel  processor idle
OLTP 7 18 3
DSS (average across 87 4 9
all queries) -
AltaVista >08 <l <l

Figure 5.10 The distribution of execution time in the commercial workloads. The
OLTP benchmark has the largest fraction of both OS time and processor idle time
(which is 1/0 wait time). The DSS benchmark shows much less OS time, since it does
less 1/O, but still more than 9% idle time. The extensive tuning of the AltaVista search
engine is clear in these measurements. The data for this workload were collected by
Barroso, Gharachorloo, and Bugnion [1998] on a four-processor AlphaServer 4100,

sJossaooudiniy Alows-paleys doWWAS JO aduewloLad
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Performance
Study:
Commercial
Workload

100% -~
e @ Other stalls
90% - ] MEI’"I"IGI"}I' aAccess
O L3 access
B L2 access

% 80% - ® [nstruction execution |
= 70%-
=]
o 60% -
Q
o)
- 50%
o
&  40% -
o
T
5 30% 4
a

20% 4

10% -

0%

OLTP DSS  AltaVista

Figure 5.11 The execution time breakdown for the three programs (OLTP, DSS, and
AltaVista) in the commercial workload. The DSS numbers are the average across six dif-
ferent queries. The CPI varies widely from a low of 1.3 for AltaVista, to 1.61 for the DSS
queries, to 7.0 for OLTP. (Individually, the DSS queries show a CPI range of 1.3 to 1.9
“Other stalls” includes resource stalls (implemented with replay traps on the 21164),
branch mispredict, memory barrier, and TLB misses. For these benchmarks, resource-
based pipeline stalls are the dominant factor. These data combine the behavior of user
and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the ker-
nel accesses tend to be better behaved than the user accesses! All the measurements
shown in this section were collected by Barroso, Gharachorloo, and Bugnion [1998].
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Performance
Study:
Commercial
Workload

Normalized execution time

100 -
]

90 - @ Idle
o PAL code
80 - O Memory access

m L2/L3 cache access
70 - B |nstruction execution
60

50 -

40 +

30 A
20 A
10 A
0 1 2 4 8

L3 cache size (MB)

Figure 5.12 The relative performance of the OLTP workload as the size of the L3
cache, which is set as two-way set associative, grows from 1 MB to 8 MB. The idle time
also grows as cache size is increased, reducing some of the performance gains. This
growth occurs because, with fewer memory system stalls, more server processes are
needed to cover the I/O latency. The workload could be retuned to increase the compu-
tation/communication balance, holding the idle time in check. The PAL code is a set of
sequences of specialized OS-level instructions executed in privileged mode; an exam-
ple is the TLB miss handler.
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Performance
Study:
Commercial
Workload

Figure 5.13 The contributing causes of memory access cycle shift as the cache size

Memory cycles per instruction

3.25 -

2.75 -
2.5
2.25

1.75 -

1.5 4
1.25 -

0.75 -
0.5 1

0.25 -

@ Instruction

O Capacity/conflict
O Compulsory

W False sharing

B True sharing

2 <

Cache size (MB)

is increased. The L3 cache is simulated as two-way set associative,
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Performance
Study:
Commercial
Workload

Figure 5.14 The contribution to memory access cycles increases as processor count
increases primarily due to increased true sharing. The compulsory misses slightly
increase since each processor must now handle more compulsory misses.

2.5 -

1.5 -

Memory cycles per instruction

0.5

@ Instruction

O Capacity/conflict
O Compulsory

B False sharing

W True sharing
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@ Instruction

O Capacity/conflict
Performance
Study:

13 - O Compulsory
Bl False sharing
12 ~ B True sharing
11 4
10 A
Commercial

Workload N

Misses per 1000 instructions
[0}

32 64 128 256
Block size (bytes)
Figure 5.15 The number of misses per 1000 instructions drops steadily as the block
size of the L3 cache is increased, making a good case for an L3 block size of at least
128 bytes. The L3 cache is 2 MB, two-way set associative,
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Performance Study:
Multiprogramming and OS Workload
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Kernel miss rate

Miss rate
Miss rate

0% .

32 64 128 256 16 32 64 128

Cache size (KB) Block size (bytes)

Figure 5.17 The data miss rates for the user and kernel components behave differently for increases in the L1
data cache size (on the left) versus increases in the L1 data cache block size (on the right). Increasing the L1 data
cache from 32 KB to 256 KB (with a 32-byte block) causes the user miss rate to decrease proportionately more than
the kernel miss rate: the user-level miss rate drops by almost a factor of 3, while the kernel-level miss rate drops only
by a factor of 1.3. The miss rate for both user and kernel components drops steadily as the L1 block size is increased
(while keeping the L1 cache at 32 KB). In contrast to the effects of increasing the cache size, increasing the block size
improves the kernel miss rate more significantly (just under a factor of 4 for the kernel references when going from
16-byte to 128-byte blocks versus just under a factor of 3 for the user references).
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7% remnnnee 10% 1 .
] B Capacity/conflict

6% 9% 1 O Coherence

IC-UNICAMP | 8% 1 &8 * m Compulsory
7%
8% -+
5% -
4131;“ o
3% -
2% 1 -
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Performance Study: ool
Multiprogramming 32 64 128 250 16 32 64 128

Cache size (KB) Block size (bytes)
and OS Workload

Miss rate
B
&~ - &
: 1 4
Miss rate

Figure 5.18 The components of the kernel data miss rate change as the L1 data
cache size is increased from 32 KB to 256 KB, when the multiprogramming workload
is run on eight processors. The compulsory miss rate component stays constant, since
it is unaffected by cache size. The capacity component drops by more than a factor of 2,
while the coherence component nearly doubles. The increase in coherence misses
occurs because the probability of a miss being caused by an invalidation increases with
cache size, since fewer entries are bumped due to capacity. As we would expect, the
increasing block size of the L1 data cache substantially reduces the compulsory miss
rate in the kernel references. It also has a significant impact on the capacity miss rate,
decreasing it by a factor of 2.4 over the range of block sizes. The increased block size
has a small reduction in coherence traffic, which appears to stabilize at 64 bytes, with
no change in the coherence miss rate in going to 128-byte lines. Because there are no
significant reductions in the coherence miss rate as the block size increases, the fraction
of the miss rate due to coherence grows from about 7% to about 15%.
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Performance Study:
Multiprogramming and OS Workload

IC-UNICAMP

35“ ..... S A A

Kernel traffic

w
¥
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-
B 5
29
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Figure 5.19 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this
chart against the data on scientific programs shown in Appendix |.
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5.4 Directory Protocols

-'C'Ul'ﬂfrAeMc';Dtory keeps track of every block

— Which caches have each block
— Dirty status of each block

Implement in shared L3 cache

— Keep bit vector of size = # cores for each block in L3

 indicates which cores may have copies; inval - only to these

* ok if inclusive

— Not scalable beyond shared L3 (centralized directory)
Implement in a distributed fashion (next to memory)

— each memory block has bit vector; total overhead = # memory blocks * # nodes
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Protocolos de cache e de diretorio

IC-UNICAMP
« SA30 coisas diferentes.

« Em um bus, bus transactions fazem a comunicagao (unica)
necessaria para o snooping € a integridade do protocolo

 Em rede, ndo ha broadcasting, podem ser necessarias

multiplas network transactions para completar uma

operacao.

Requestor

Directory node
for block

N
\\\\\

.

é{\ S|

Node with
dirty copy

(a) Read miss to a block in dirty state

Z)

Requestor 1

RdAEX request

to directory

™~

Sharer

Sharer

(b) Write miss to a block with two sharers

Reply with
sharers identity

Directory node
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Directory Protocols
IC-UNICAMP
« For each block, maintain state:
— Shared
« One or more nodes have the block cached, value in memory is up-to-
date
» Set of node IDs
— Uncached
— Modified
« Exactly one node has a copy of the cache block, value in memory is out-
of-date

e Owner node ID

» Directory maintains block states and sends invalidation
messages
* Nodes

— Local = Requestor
— Home = node with directory
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Messages

I<
Message

IC-L Message type Source Destination contents  Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home directory P, A Node P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its

home directory: change the state of A in the
remote cache to shared.

-A10)0841 pue Alows|\ pateys paingulsi

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Homedirectory Local cache D Return a data value from the home memory.

Data write-back Remote cache  Home directory A.D Write-back a data value for address A.

d

Figure 5.21 The possible messages sent among nodes to maintain coherence, along with the source and de5ti~g
nation node, the contents (where P = requesting node number, A = requested address, and D = data contents),)
and the function of the message. The first three messages are requests sent by the local node to the home, The

fourth through sixth messages are messages sent to a remote node by the home when the home needs the data to )
satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the)
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be 'm.rrlt—5
ten back to its home memaory, and also in reply to fetch or fetch/invalidate messages from the home. Writing bacl-ﬂ
the data value whenever the block becomes shared simplifies the number of states in the protocol, since any dirty

block must be exclusive and any shared block is always available in the home memory.
40
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Individual
cache block in a
directory-based
system

CPU read hit
—
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Figure 5.22 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black, and those from the
home directory are shown in gray. The states are identical to those in the snooping
case, and the transactions are very similar, with explicit invalidate and write-back
reguests replacing the write misses that were formerly broadcast on the bus. As we did
for the snooping controller, we assume that an attempt to write a shared cache block is
treated as a miss; in practice, such a transaction can be treated as an ownership request
or upgrade request and can deliver ownership without requiring that the cache block
be fetched.
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Data value reply;

IC-UNICAMP Sharers = {P}

Shared
(read only)

Read miss

A
Write miss
ES S
~| g% Data value reply
| o on Sharers = Sharers + {P}
p|28
m
Directory 5125 2%
K
Data
write-back

Exclusive
(read/write)

write \ Fetch/invalidate
miss / Data value reply
LY Sharers = {P}

Figure 5.23 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray
because they are all externally caused. Bold indicates the action taken by the directory
in response to the request.
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Directory Protocols
IC-UNICAMP
 For uncached block:
— Read miss

* Requesting node is sent the requested data and is made the only
sharing node, block is now shared

— Write miss
* The requesting node is sent the requested data and becomes the
sharing node, block is now exclusive

 For shared block:

— Read miss

» The requesting node is sent the requested data from memory, node is
added to sharing set

— Write miss

* The requesting node is sent the value, all nodes in the sharing set are
sent invalidate messages, sharing set only contains requesting node,
block is now exclusive
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Directory Protocols

IC-UNICAMP

* For exclusive block:

— Read miss

» The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written back to
memory, sharers set contains old owner and requestor

— Data write back
» Block becomes uncached, sharer set is empty

— Write miss

* Message is sent to old owner to invalidate and send the value
to the directory, requestor becomes new owner, block remains
exclusive
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5.5 Synchronization

IC-UNICAMP

« Basic building blocks: atomic read-modify-write
— Atomic exchange
« Swaps register with memory location
— Test-and-set
« Sets under condition
— Fetch-and-increment
» Reads original value from memory and increments it in memory
— Requires memory read and write in uninterruptable instruction

UOIBZIUOJYOUAS

— load linked/store conditional

« If the contents of the memory location specified by the load linked are
changed before the store conditional to the same address, the store
conditional fails
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IC-UNICAMP

Atomic exchange in memory location specified by R1:

try:

MOV
LL
SC
BEQZ
MOV

Example LL-SC

UOIBZIUOJYOUAS

R3, R4 ;ymove exchange value
R2,0(R1) ;load linked

R3,0(R1) ;store conditional
R3, try ;branch store fails
R4, R2 ;put load value 1n R4

LL-SC implementing an atomic fetch-and-increment:

try:

LL
DADDUI
SC
BEQZ

R2,0(R1) ;load linked

R3,R2, #1 ;increment

R3, 0 (R1) ;store conditional
R3, try ;branch store fails
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Implementing Locks

IC-UNICAMP

« Spin lock: a processor continuously tries to acquire

UOIBZIUOJYOUAS

If no coherence, lock kept in memory:

DADDUI  R2,RO0, #1

lockit: EXCH R2,0(R1)
BNEZ R2,1lockit

If coherence, cached lock:

lockit: LD R2,0 (R1)
BNEZ R2,1lockit
DADDUI  R2,RO, #1
EXCH R2,0 (R1)
BNEZ R2,1lockit

;atomic exchange

;already locked?

;load of lock

;not available-spin
; load locked wvalue
; sSwap

;branch 1f lock wasn’t 0
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Figure 5.24 Cache coherence steps and bus traffic for three processors, PO, P1, and P2. This figure assumes write
invalidate coherence. PO starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is initially exclusive
and owned by PO before step 1 begins. PO exits and unlocks the lock (step 2). P1 and P2 race to see which reads the
unlocked value during the swap (steps 3 to 5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than 8 clock
ticks, since acquiring the bus and replying to misses take much longer. Once step 8 is reached, the process can repeat

Cached Spin Locks: bus traffic

Coherence state of
Step PO P1 P2 lock at end of step Bus/directory activity
| Has lock Begins spin. testing if  Begins spin, testing Shared Cache misses for P1 and P2
lock =0 if lock =10 satisfied ineither order. Lock
state becomes shared.
2 Setlock to 0 (Invalidate received)  (Invalidate received) Exclusive (PO Write invalidate of lock
variable from PO
3 Cache miss Cache miss Shared Bus/directory services P2
cache miss: write-back
from P0; state shared.
4 {Waits while bus/ Lock =0 test Shared Cache miss for P2 satisfied
directory busy) succeeds
5 Lock=10 Executes swap, gets Shared Cache muiss for P1 satisfied
cache miss
B Executes swap, Completes swap: Exclusive (P2} Bus/directory services P2
cets cache miss returns O and sets cache miss; generates
lock =1 invalidate; lock 15 exclusive.
7 Swap completes and  Enter critical secion  Exclusive (P1y  Bus/directory services Pl
returns |, and sets cache muss; sends invalidate
lock = 1 and generates write-back
from P2.
5 Spins, testing if Mone

lock =10

with P2, eventually getting exclusive access and setting the fock to 0.
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5.6 Models of Memory Consistency

IC-UNICAMP

Processor 1: Processor 2:
A=0 B=0

A=1 BR=1

if (B==0) .. if (A==0)

« Should be impossible for both if-statements to be
evaluated as true
— Delayed write invalidate?

* Sequential consistency:
— Result of execution should be the same as long as:

Accesses on each processor were kept in order
Accesses on different processors were arbitrarily interleaved

uononpoJiu| uy :Aouaisisuon) AJOWa|A JO S|I9POIN
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Exmpl p393: sequential consistency

Example

Answer

Suppose we have a processor where a write miss takes 50 cycles to establish
ownership, 10 cycles to issue each invalidate after ownership is established, and
80 cycles for an invalidate to complete and be acknowledged once it is issued.
Assuming that four other processors share a cache block, how long does a write
miss stall the writing processor if the processor is sequentially consistent?
Assume that the invalidates must be explicitly acknowledged before the coher-
ence controller knows they are completed. Suppose we could continue executing
after obtaining ownership for the write miss without waiting for the invalidates;
how long would the write take?

When we wait for invalidates, each write takes the sum of the ownership time plus
the time to complete the invalidates. Since the invalidates can overlap, we need
only worry about the last one, which starts 10 + 10 + 10 + 10 = 40 cycles after
ownership is established. Hence, the total time for the write is 50 + 40 + 80 = 170
cycles. In comparison, the ownership time is only 50 cycles. With appropriate
write buffer implementations, it is even possible to continue before ownership is
established.
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The programmer’s view

IC-UNICAMP

« To implement, delay completion of all memory accesses
until all invalidations caused by the access are completed

— Reduces performance!

» Alternatives: synchronization

— Exmpl: a variable is read and updated by two different processors

» Each processor surrounds the memory operation with lock/unlock
— “Unlock” after write
— “Lock” after read

« Data races
» Programs with synchronization are “data-race free”

* In general, behavior of unsynchronized programs is
unpredictable

uononpoJiu| uy :Aouaisisuon) AJOWa|A JO S|I9POIN

51



Relaxed Consistency Models

IC-UNICAMP

» |dea: performance - allow writes out-of-order, but with
synchronization

* Rules:
- X->Y
» Operation X must complete before operation Y is done

« Sequential consistency requires:
-R-WR-RW-R W->W

— Relax W - R
» “Total store ordering” or “processor consistency”

— Relax W - W
* “Partial store order”

uononpoJiu| uy :Aouaisisuon) AJOWa|A JO S|I9POIN

— RelaxR-Wand R-> R
+ “Weak ordering” and “release consistency”
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5.7 Crosscutting 1ssues

IC-UNICAMP

« Compiler optimization and the consistency model
— Unless sync points are clearly identified, the compiler cannot
interchange a read and a write = could affect semantics
« Using speculation to hide latency in strict consistency
models
— Use delayed commit

— If an invalidation arrives for a result that has not been committed,
use speculation recovery
1. gets most of the advantage of relaxed consistency models
2. implementation has low cost
3. simple programming model
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Inclusion and 1ts implementation

IC-UNICAMP

All blocks present in a higher level cache are also in lower
levels

Problems: different block sizes, replacement, levels of
associativity

Designers are still split on enforcement of inclusion
— Intel i7: inclusion for L3 (directory in L3, no need to snoop in L1/L2)
— AMD Opteron: inclusion on L2 but no inclusion on L3

Example Assume that .2 has a block size four times that of L1. Show how a miss for an
address that causes a replacement in .1 and L2 can lead to violation of the inclu-

sion property.

Answer Assume that L1 and 1.2 are direct mapped and that the block size of L1 is b bytes

and the block size of L2 is 40 bytes. Suppose L1 contains two blocks with starting
addresses x and x + b and that x mod 45 = 0, meaning that x also is the starting

address of a block in L2; then that single block in L2 contains the L1 blocks x, x + b,
x+ 2b, and x + 3b. Suppose the processor generates a reference to block y that maps
to the block containing x in both caches and hence misses. Since L2 missed, it
fetches 45 bytes and replaces the block containing x, x + b, x + 2b, and x + 3b, while
L1 takes b bytes and replaces the block containing x. Since L1 still contains x + b,
but L2 does not, the inclusion property no longer holds.
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Multiprocessing and multithreading

IC-UNICAMP

e Studies

— Sun T1: 4-8 core, fine grain multithreading
— IBM Power 5: dual core, simultaneous multithreading

-
—

genchmark Per-thread CPI Per-core CPl  Effective CPI for eight cores Effective IPC for eight cores
TPC-C 7.2 18 0.225 4.4
SPECIBB 5.6 140 ) 0.175 5.7
SPECWeb99 6.6 .65 0.206 48

——

Figure 5.25 The per-thread CPI, the per-core CP|, the effective eight-core CPI, and the effective IPC (inverse of
CPI) for the eight-core Sun T1 processor.

uononpoau| Uy :Aous)sisuo)) Alows|y JO S[8PON

55



wupwise
swim

X mgrid
IC-UNICAMP applu

mesa
galgel
art
equake
facerec
ammp
lucas
fma3d
sixtrack

Fig 5.26:
SMT vs ST
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A comparison of SMT and single-thread (ST) performance on the eight-processor IBM eServer p5 575.
Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Power5 core is
active, which should slightly improve the results from SMT by decreasing destructive interference in the memory
system. The SMT results are obtained by creating 16 user threads, while the ST results use only eight threads;
with only one thread per processor, the Power5 is switched to single-threaded mode by the OS. These results
were collected by John McCalpin of IBM. As we can see from the data, the standard deviation of the results for
the SPECfpRate is higher than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP
programs is likely to vary widely. 56
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Feature AMD Opteron 8439 IBM Power 7 Intel Xenon 7560 SunT2

m—

% Transistors 904 M 1200 M 2300 M 500 M
IC-UNICAMP Power (nominal) 137 W 140 W 130 W 95 W
‘Max. cores/chip 6 8 8 8
Multithreading No SMT SMT Fine-grained
Threads/core ] 4 2 8
Instruction issue/clock 3 from oné thread 6 from one thread 4 from one thread 2 from 2 threads
Clock rate 2.8 GHz 4.| GHz 2.7 GHz 1.6 GHz
Outermost cache L3; 6 MB; shared L3; 32 MB (using L3; 24 MB; shared L2; 4 MB; shared
embedded DRAM);
5.8 Puttlng shared or private/core
Inclusion No, although L2 is Yes, L3 superset Yes, L3 superset Yes
all togethel‘: superset of L1
. Multicore coherence MOESI Extended MESI with MESIF MOESI
multlcores protocol behavioral and locality
hints (13-state
protocol)
Multicore coherence Snooping Directory at L3 Directory at L3 Directory at L2
implementation
Extended coherence Up to 8 processor Up to 32 processor Up to 8 processor ~ Implemented viafour
support chips can be chips can be connected cores can be coherence links per
connected with with the SMP links. implemented via  processor that can be
HyperTransportina  Dynamic distributed Quickpath used to snoop. Up to
ring, using directory  directory structure. Interconnect. Support  two chips directly
or snooping. System Memory access is for directories with connect, and up to
1Is NUMA, symmetric outside of an external logic. four connect using
8-core chip. external ASICs.

Figure 5.27 Summary of the characteristics of four recent high-end multicore processors (2010 releases)
designed for servers. The table includes the highest core count versions of these processors; there are versions with
lower core counts and higher clock rates for several of these processors. The L3 in the IBM Power7 can be all shared
or partitioned into faster private regions dedicated to individual cores. We include only single-chip implementations
of multicores.
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Performance vs # cores: SPECrate >
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Figure 5.28 The performance on the SPECRate benchmarks for three multicore processors as
the number of processor chips is increased. Notice for this highly parallel benchmark, nearly
linear speedup is achieved. Both plots are on a log-log scale, so linear speedup is a straight line.
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Performance vs # cores: SPECjbb2005
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Figure 5.29 The performance on the SPECjbb2005 benchmark for three multicore processors as
the number of processor chips is increased. Notice for this parallel benchmark, nearly linear speedup
is achieved.
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Intel 17: Energy efficiency vs SMT
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Figure 5.30 This chart shows the speedup for two- and four-core executions of the parallel
Java and PARSEC workloads without SMT. These data were collected by Esmaeilzadeh et al.
[2011] using the same setup as described in Chapter 3. Turbo Boost is turned off. The speedup and
energy efficiency are summarized using harmonic mean, implying a workload where the total time
spent running each 2p benchmark is equivalent.



Intel 17: processor count and SMT
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Figure 5.31 This chart shows the speedup for two- and four-core executions of the parallel Java and
PARSEC workloads both with and without SMT. Remember that the results above vary in the number of
threads from two to eight, and reflect both architectural effects and application characteristics. Harmonic
mean is used to summarize results, as discussed in the caption of Figure 5.30. 61
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Figure 5.32 Speedup for three benchmarks on an IBM eServer p5 multiprocessor when
configured with 4, 8, 16, 32, and 64 processors. The dashed line shows linear speedup.
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Figure 5.33 The performance/cost relative to a 4-processor system for three benchmarks run on an IBM eServer
p5 multiprocessor containing from 4 to 64 processors shows that the larger processor counts can be as cost
effective as the 4-processor configuration. For TPC-C the configurations are those used in the official runs, which
means that disk and memory scale nearly linearly with processor count, and a 64-processor machine is approximately
twice as expensive as a 32-processor version. In contrast, the disk and memory are scaled more slowly (although still
faster than necessary to achieve the best SPECRate at 64 processors). In particular, the disk configurations go from
one drive for the 4-processor version to four drives (140 GB) for the 64-processor version. Memory is scaled from 8 GB
for the 4-processor system to 20 GB for the 64-p-rocessor system.

63



IC-UNICAMP

MO401 - 2013

XXXXXXXXXX

64



IC-UNICAMP

MO401 - 2013

XXXXXXXXXX

65



IC-UNICAMP

MO401 - 2013

XXXXXXXXXX

66



IC-UNICAMP

MO401 - 2013

XXXXXXXXXX

67



