
Introduction to Multithreading, Superthreading and Hyperthreading

by Jon "Hannibal" Stokes

Back in the dual-Celeron days, when symmetric
multiprocessing (SMP) first became cheap enough
to come within reach of the average PC user, many
hardware enthusiasts eager to get in on the SMP
craze were asking what exactly (besides winning
them the admiration and envy of their peers) a dual-
processing rig could do for them. It was in this
context that the PC crowd started seriously talking
about the advantages of multithreading. Years later
when Apple brought dual-processing to its
PowerMac line, SMP was officially mainstream,
and with it multithreading became a concern for the
mainstream user as the ensuing round of
benchmarks brought out the fact you really needed
multithreaded applications to get the full benefits of
two processors.

Even though the PC enthusiast SMP craze has long
since died down and, in an odd twist of fate, Mac
users are now many times more likely to be sporting
an SMP rig than their x86-using peers,
multithreading is once again about to increase in
importance for PC users. Intel's next major IA-32
processor release, codenamed Prescott, will include
a feature called simultaneous multithreading
(SMT), also known as hyper-threading. To take
full advantage of SMT, applications will need to be
multithreaded; and just like with SMP, the higher
the degree of multithreading the more performance
an application can wring out of Prescott's hardware.

Intel actually already uses SMT in a shipping
design: the Pentium 4 Xeon. Near the end of this
article we'll take a look at the way the Xeon
implements hyper-threading; this analysis should
give us a pretty good idea of what's in store for
Prescott. Also, it's rumored that the current crop of
Pentium 4's actually has SMT hardware built-in, it's
just disabled. (If you add this to the rumor about
x86-64 support being present but disabled as well,
then you can get some idea of just how cautious
Intel is when it comes to introducing new features.
I'd kill to get my hands on a 2.8 GHz P4 with both
SMT and x86-64 support turned on.)

SMT, in a nutshell, allows the CPU to do what most
users think it's doing anyway: run more than one

program at the same time. This might sound odd, so
in order to understand how it works this article will
first look at how the current crop of CPUs handles
multitasking. Then, we'll discuss a technique called
superthreading before finally moving on to explain
hyper-threading in the last section. So if you're
looking to understand more about multithreading,
symmetric multiprocessing systems, and hyper-
threading then this article is for you.

As always, if you've read some of my previous tech
articles you'll be well equipped to understand the
discussion that follows. From here on out, I'll
assume you know the basics of pipelined execution
and are familiar with the general architectural
division between a processor's front end and its
execution core. If these terms are mysterious to you,
then you might want to reach way back and check
out my "Into the K7" article, as well as some of my
other work on the P4 and G4e.

Conventional multithreading

Quite a bit of what a CPU does is illusion. For
instance, modern out-of-order processor
architectures don't actually execute code
sequentially in the order in which it was written. I've
covered the topic of out-of-order execution (OOE)
in previous articles, so I won't rehash all that here.
I'll just note that an OOE architecture takes code that
was written and compiled to be executed in a
specific order, reschedules the sequence of
instructions (if possible) so that they make
maximum use of the processor resources, executes
them, and then arranges them back in their original
order so that the results can be written out to
memory. To the programmer and the user, it looks
as if an ordered, sequential stream of instructions
went into the CPU and identically ordered,
sequential stream of computational results emerged.
Only the CPU knows in what order the program's
instructions were actually executed, and in that
respect the processor is like a black box to both the
programmer and the user.

The same kind of sleight-of-hand happens when you
run multiple programs at once, except this time the

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

mailto:hannibal@arstechnica.com
http://www.arstechnica.com/cpu/3q99/k7_theory/k7-one-1.html
http://arstechnica.com/paedia/cpu.html
http://arstechnica.com/paedia/cpu.html
http://arstechnica.com/cpu/01q4/p4andg4e2/p4andg4e2-1.html

operating system is also involved in the scam. To
the end user, it appears as if the processor is
"running" more than one program at the same time,
and indeed, there actually are multiple programs
loaded into memory. But the CPU can execute only
one of these programs at a time. The OS maintains
the illusion of concurrency by rapidly switching
between running programs at a fixed interval, called
a time slice. The time slice has to be small enough
that the user doesn't notice any degradation in the
usability and performance of the running programs,
and it has to be large enough that each program has
a sufficient amount of CPU time in which to get
useful work done. Most modern operating systems
include a way to change the size of an individual
program's time slice. So a program with a larger
time slice gets more actual execution time on the
CPU relative to its lower priority peers, and hence it
runs faster. (On a related note, this brings to mind
one of my favorite .sig file quotes: "A message from
the system administrator: 'I've upped my priority.
Now up yours.'")

Clarification of terms: "running" vs.
"executing," and "front end" vs. "execution
core."

For our purposes in this article, "running" does not
equal "executing." I want to set up this
terminological distinction near the outset of the
article for clarity's sake. So for the remainder of this
article, we'll say that a program has been launched
and is "running" when its code (or some portion of
its code) is loaded into main memory, but it isn't
actually executing until that code has been loaded
into the processor. Another way to think of this
would be to say that the OS runs programs, and the
processor executes them.

The other thing that I should clarify before
proceeding is that the way that I divide up the
processor in this and other articles differs from the
way that Intel's literature divides it. Intel will
describe its processors as having an "in-order front
end" and an "out-of-order execution engine." This is
because for Intel, the front-end consists mainly of
the instruction fetcher and decoder, while all of the
register rename logic, out-of-order scheduling logic,
and so on is considered to be part of the "back end"
or "execution core." The way that I and many others
draw the line between front-end and back-end places
all of the out-of-order and register rename logic in

the front end, with the "back end"/"execution core"
containing only the execution units themselves and
the retire logic. So in this article, the front end is the
place where instructions are fetched, decoded, and
re-ordered, and the execution core is where they're
actually executed and retired.

Preemptive multitasking vs. Cooperative
multitasking

While I'm on this topic, I'll go ahead and take a brief
moment to explain preemptive multitasking versus
cooperative multitasking. Back in the bad old days,
which wasn't so long ago for Mac users, the OS
relied on each program to give up voluntarily the
CPU after its time slice was up. This scheme was
called "cooperative multitasking" because it relied
on the running programs to cooperate with each
other and with the OS in order to share the CPU
among themselves in a fair and equitable manner.
Sure, there was a designated time slice in which
each program was supposed to execute, and but the
rules weren't strictly enforced by the OS. In the end,
we all know what happens when you rely on people
and industries to regulate themselves--you wind up
with a small number of ill-behaved parties who don't
play by the rules and who make things miserable for
everyone else. In cooperative multitasking systems,
some programs would monopolize the CPU and not
let it go, with the result that the whole system would
grind to a halt.

Preemptive multi-tasking, in contrast, strictly
enforces the rules and kicks each program off the
CPU once its time slice is up. Coupled with
preemptive multi-tasking is memory protection,
which means that the OS also makes sure that each
program uses the memory space allocated to it and it
alone. In a modern, preemptively multi-tasked and
protected memory OS each program is walled off
from the others so that it believes it's the only
program on the system.

Each program has a mind of its own

The OS and system hardware not only cooperate to
fool the user about the true mechanics of multi-
tasking, but they cooperate to fool each running
program as well. While the user thinks that all of the
currently running programs are being executed
simultaneously, each of those programs thinks that it
has a monopoly on the CPU and memory. As far as

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

a running program is concerned, it's the only
program loaded in RAM and the only program
executing on the CPU. The program believes that it
has complete use of the machine's entire memory
address space and that the CPU is executing it
continuously and without interruption. Of course,
none of this is true. The program actually shares
RAM with all of the other currently running
programs, and it has to wait its turn for a slice of
CPU time in order to execute, just like all of the
other programs on the system.

Single-threaded CPU

In the above diagram, the different colored boxes in
RAM represent instructions for four different
running programs. As you can see, only the
instructions for the red program are actually being
executed right now, while the rest patiently wait
their turn in memory until the CPU can briefly turn
its attention to them.

Also, be sure and notice those empty white boxes in
the pipelines of each of the execution core's
functional units. Those empty pipeline stages, or
pipeline bubbles, represent missed opportunities for
useful work; they're execution slots where, for
whatever reason, the CPU couldn't schedule any
useful code to run, so they propagate down the
pipeline empty.

Related to the empty white boxes are the blank spots
in above CPU's front end. This CPU can issue up to
four instructions per clock cycle to the execution
core, but as you can see it never actually reaches this

four-instruction limit. On most cycles it issues two
instructions, and on one cycle it issues three.

A few terms: process, context, and thread

Before continuing our discussion of
multiprocessing, let's take a moment to unpack the
term "program" a bit more. In most modern
operating systems, what users normally call a
program would be more technically termed a
process. Associated with each process is a context,
"context" being just a catch-all term that
encompasses all the information that completely
describes the process's current state of execution
(e.g. the contents of the CPU registers, the program
counter, the flags, etc.).

Processes are made up of threads, and each process
consists of at least one thread: the main thread of
execution. Processes can be made up of multiple
threads, and each of these threads can have its own
local context in addition to the process's context,
which is shared by all the threads in a process. In
reality, a thread is just a specific type of stripped-
down process, a "lightweight process," and because
of this throughout the rest of this article I'll use the
terms "process" and "thread" pretty much
interchangeably.

Even though threads are bundled together into
processes, they still have a certain amount of
independence. This independence, when combined
with their lightweight nature, gives them both speed
and flexibility. In an SMP system like the ones we'll
discuss in a moment, not only can different
processes run on different processors, but different
threads from the same process can run on different
processors. This is why applications that make use
of multiple threads see performance gains on SMP
systems that single-threaded applications don't.

Fooling the processes: context switches

It takes a decent amount of work to fool a process
into thinking that it's the only game going. First and
foremost, you have to ensure that when the currently
executing process's time slice is up, its context is
saved to memory so that when the process's time
slice comes around again it can be restored to the
exact same state that it was in when its execution
was halted and it was flushed from the CPU to make
room for the next process. When the process begins

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

executing again and its context has been restored
exactly as it was when it left off last, it has no idea
that it ever left the CPU.

This business of saving the currently executing
process's context, flushing the CPU, and loading the
next process's context, is called a context switch. A
context switch for a full-fledged, multithreaded
process will obviously take a lot longer than a
context switch for an individual thread within a
process. So depending on the amount of hardware
support for context switching and the type of
context switch (i.e. a process switch or a thread
switch), a context switch can take a decent amount
of time, thereby wasting a number of CPU cycles.
Cutting back on context switches improves
execution efficiency and reduces waste, as does the
extensive use of multithreading since thread
switches are usually faster than full-sized process
switches.

Single-threaded SMP

In the above diagram, the red program and the
yellow process both happen to be executing
simultaneously, one on each processor. Once their
respective time slices are up, their contexts will be
saved, their code and data will be flushed from the
CPU, and two new processes will be prepared for
execution.

SMP to the rescue?

One way to not only cut down on the number of
context switches but also to provide more CPU
execution time to each process is to build a system
that can actually execute more than one process at
the same time. The conventional way of doing this
on the PC is to add a second CPU. In an SMP
system, the OS can schedule two processes for
execution at the exact same time, with each process
executing on a different CPU. Of course, no process
is allowed to monopolize either CPU (in most
desktop operating systems) so what winds up
happening is that each running process still has to
wait its turn for a time slice. But since there are now
two CPUs serving up time slices the process doesn't
have to wait nearly as long for its chance to execute.
The end result is that there is more total execution
time available to the system so that within a given
time interval each running process spends more time
actually executing and less time waiting around in
memory for a time slice to open up.

One other thing that you might notice about the
preceding diagram is that not only is the number of
processes that can simultaneously execute doubled,
but the number of empty execution slots (the white
boxes) is doubled as well. So in an SMP system,
there's twice as much execution time available to the
running programs, but since SMP doesn't do
anything to make those individual programs more
efficient in the way that they use their time slice
there's about twice as much wasted execution time,
as well.

So while SMP can improve performance by
throwing transistors at the problem of execution
time, the overall lack of increase in the execution
efficiency of the whole system means that SMP can
be quite wasteful.

 Superthreading with a multithreaded
processor

One of the ways that ultra-high-performance
computers eliminate the waste associated with the

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

kind of single-threaded SMP described above is to
use a technique called time-slice multithreading, or
superthreading. A processor that uses this
technique is called a multithreaded processor, and
such processors are capable of executing more than
one thread at a time. If you've followed the
discussion so far, then this diagram should give you
a quick and easy idea of how superthreading works:

Superthreaded CPU

You'll notice that there are fewer wasted execution
slots because the processor is executing instructions
from both threads simultaneously. I've added in
those small arrows on the left to show you that the
processor is limited in how it can mix the
instructions from the two threads. In a multithreaded
CPU, each processor pipeline stage can contain
instructions for one and only one thread, so that the
instructions from each thread move in lockstep
through the CPU.

To visualize how this works, take a look at the front
end of the CPU in the preceding diagram. In this
diagram, the front end can issue four instructions per
clock to any four of the seven functional unit
pipelines that make up the execution core. However,
all four instructions must come from the same
thread. In effect, then, each executing thread is still
confined to a single "time slice," but that time slice
is now one CPU clock cycle. So instead of system
memory containing multiple running threads that the
OS swaps in and out of the CPU each time slice, the
CPU's front end now contains multiple executing
threads and its issuing logic switches back and forth

between them on each clock cycle as it sends
instructions into the execution core.

Multithreaded processors can help alleviate some of
the latency problems brought on by DRAM
memory's slowness relative to the CPU. For
instance, consider the case of a multithreaded
processor executing two threads, red and yellow. If
the red thread requests data from main memory and
this data isn't present in the cache, then this thread
could stall for many CPU cycles while waiting for
the data to arrive. In the meantime, however, the
processor could execute the yellow thread while the
red one is stalled, thereby keeping the pipeline full
and getting useful work out of what would
otherwise be dead cycles.

While superthreading can help immensely in hiding
memory access latencies, it does not, however,
address the waste associated with poor instruction-
level parallelism within individual threads. If the
scheduler can find only two instructions in the red
thread to issue in parallel to the execution unit on a
given cycle, then the other two issue slots will
simply go unused.

Hyper-threading: the next step

Simultaneous multithreading (SMT), a.k.a.
hyper-threading, takes superthreading to the next
level. Hyper-threading is simply superthreading
without the restriction that all the instructions issued
by the front end on each clock be from the same
thread. The following diagram will illustrate the
point:

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

Hyper-threaded CPU

Now, to really get a feel for what's happening here,
let's go back and look at the single-threaded SMP
diagram.

Single-threaded SMP

If you look closely, you can see what I've done in
the hyper-threading diagram is to take the execution
patterns for both the red and the yellow threads in
the SMP diagram and combine them so that they fit
together on the single hyper-threaded processor like
pieces from a puzzle. I rigged the two threads'
execution patterns so that they complemented each
other perfectly (real life isn't so neat) in order to

make this point: the hyper-threaded processor, in
effect, acts like two CPUs in one.

From an OS and user perspective, a simultaneously
multithreaded processor is split into two or more
logical processors, and threads can be scheduled to
execute on any of the logical processors just as they
would on either processor of an SMP system. We'll
talk more about logical processors in a moment,
though, when we discuss hyper-threading's
implementation issues.

Hyper-threading's strength is that it allows the
scheduling logic maximum flexibility to fill
execution slots, thereby making more efficient use
of available execution resources by keeping the
execution core busier. If you compare the SMP
diagram with the hyper-threading diagram, you can
see that the same amount of work gets done in both
systems, but the hyper-threaded system uses a
fraction of the resources and has a fraction of the
waste of the SMP system; note the scarcity of empty
execution slots in the hyper-threaded machine
versus the SMP machine.

To get a better idea of how hyper-threading actually
looks in practice, consider the following example:
Let's say that the OOE logic in our diagram above
has extracted all of the instruction-level parallelism
(ILP) it can from the red thread, with the result that
it will be able to issue two instructions in parallel
from that thread in an upcoming cycle. Note that
this is an exceedingly common scenario, since
research has shown the average ILP that can be
extracted from most code to be about 2.5
instructions per cycle. (Incidentally, this is why the
Pentium 4, like many other processors, is equipped
to issue at most 3 instructions per cycle to the
execution core.) Since the OOE logic in our
example processor knows that it can theoretically
issue up to four instructions per cycle to the
execution core, it would like to find two more
instructions to fill those two empty slots so that none
of the issue bandwidth is wasted. In either a single-
threaded or multithreaded processor design, the two
leftover slots would just have to go unused for the
reasons outlined above. But in the hyper-threaded
design, those two slots can be filled with
instructions from another thread. Hyper-threading,
then, removes the issue bottleneck that has plagued
previous processor designs.

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

Replicated resources Implementing hyper-threading

There are some resources that you just can't get
around replicating if you want to maintain two fully
independent contexts on each logical processor. The
most obvious of these is the instruction pointer (IP),
which is the pointer that helps the processor keep
track of its place in the instruction stream by
pointing to the next instruction to be fetched. In
order to run more than one process on the CPU, you
need as many IPs as there are instruction streams
keep track of. Or, equivalently, you could say that
you need one IP for each logical processor. In the
Xeon's case, the maximum number of instruction
streams (or logical processors) that it will ever have
to worry about is 2, so it has 2 IPs.

Although hyper-threading might seem like a pretty
large departure from the kind of conventional,
process-switching multithreading done on a single-
threaded CPU, it actually doesn't add too much
complexity to the hardware. Intel reports that adding
hyper-threading to their Xeon processor added only
%5 to its die area. To understand just how hyper-
threading affects the Pentium 4 Xeon's
microarchitecture and performance, let's briefly look
in a bit more detail at the Xeon's SMT
implementation.

Intel's Xeon is capable of executing at most two
threads in parallel on two logical processors. In
order to present two logical processors to both the
OS and the user, the Xeon must be able to maintain
information for two distinct and independent thread
contexts. This is done by dividing up the processor's
microarchitectural resources into three types:
replicated, partitioned, and shared. Let's take a look
at which resources fall into which categories:

Similarly, the Xeon has two register allocation
tables (RATs), each of which handles the mapping
of one logical processor's eight architectural integer
registers and eight architectural floating-point
registers onto a shared pool of 128 GPRs (general
purpose registers) and 128 FPRs (floating-point
registers). So the RAT is a replicated resource that
manages a shared resource (the microarchitectural
register file).

Replicated

• Register renaming
logic

• Instruction Pointer
• ITLB
• Return stack

predictor
• Various other

architectural
registers

Partitioned

• Re-order buffers
(ROBs)

• Load/Store buffers
• Various queues,

like the scheduling
queues, uop
queue, etc.

Shared

• Caches: trace
cache, L1, L2, L3

• Microarchitectural
registers

• Execution Units

Partitioned resources
The Xeon's partitioned resources are mostly to be
found in the form of queues that decouple the major
stages of the pipeline from one another. These
queues are of a type that I would call "statically
partitioned." By this, I mean that each queue is split
in half, with half of its entries designated for the sole
use of one logical processor and the other half
designated for the sole use of the other. These
statically partitioned queues look as follows:

 Statically Partitioned Queue

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

The Xeon's fscheduling queue is partitioned in a
way that I would call "dynamically partitioned." In a
scheduling queue with 12 entries, instead of
assigning entries 0 through 5 to logical processor 0
and entries 6 through 11 to logical processor 1, the
queue allows any logical processor to use any entry
but it places a limit on the number of entries that any
one logical processor can use. So in the case of a 12-
entry scheduling queue, each logical processor can
use no more than six of the entries.

Dynamically Partitioned Queue

Be aware that the above diagram shows only one of
the Xeon's three scheduling queues.

From the point of view of each logical processor and
thread, this kind of dynamic partitioning has the
same effect as fixed partitioning: it confines each LP
to half of queue. However, from the point of view of
the physical processor, there's a crucial difference
between the two types of partitioning. See, the
scheduling logic, like the register file and the
execution units, is a shared resource, a part of the
Xeon's microarchitecture that is SMT-unaware. The
scheduler has no idea that it's scheduling code from
multiple threads. It simply looks at each instruction
in the scheduling queue on a case-by-case basis,
evaluates the instruction's dependencies, compares
the instruction's needs to the physical processor's
currently available execution resources, and then
schedules the instruction for execution. To return to
the example from our hyper-threading diagram, the
scheduler may issue one red instruction and two
yellow to the execution core on one cycle, and then

three red and one yellow on the next cycle. So while
the scheduling queue is itself aware of the
differences between instructions from one thread
and the other, the scheduler in pulling instructions
from the queue sees the entire queue as holding a
single instruction stream.

The Xeon's scheduling queues are dynamically
partitioned in order to keep one logical processor
from monopolizing them. If each scheduling queue
didn't enforce a limit on the number of entries that
each logical processor can use, then instructions
from one logical processor might fill up the queue to
the point where instructions from the other logical
processor would go unscheduled and unexecuted.

One final bit of information that should be included
in a discussion of partitioned resources is the fact
that when the Xeon is executing only one thread, all
of its partitioned resources can be combined so that
the single thread can use them for maximum
performance. When the Xeon is operating in single-
threaded mode, the dynamically partitioned queues
stop enforcing any limits on the number of entries
that can belong to one thread, and the statically
partitioned queues stop enforcing their boundaries
as well.

Shared resources
Shared resources are at the heart of hyper-threading;
they're what makes the technique worthwhile. The
more resources that can be shared between logical
processors, the more efficient hyper-threading can
be at squeezing the maximum amount of computing
power out of the minimum amount of die space.
One primary class of shared resources consists of
the execution units: the integer units, floating-point
units, and load-store unit. These units are not SMT-
aware, meaning that when they execute instructions
they don't know the difference between one thread
and the next. An instruction is just an instruction to
the execution units, regardless of which
thread/logical processor it belongs to.

The same can be said for the register file, another
crucial shared resource. The Xeon's 128
microarchitectural general purpose registers (GPRs)
and 128 microarchitectural floating-point registers
(FPRs) have no idea that the data they're holding
belongs to more than one thread--it's all just data to
them, and they, like the execution units, remain

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

unchanged from previous iterations of the Xeon
core.

Hyper-threading's greatest strength--shared
resources--also turns out to be its greatest weakness,
as well. Problems arise when one thread
monopolizes a crucial resource, like the floating-
point unit, and in doing so starves the other thread
and causes it to stall. The problem here is the exact
same problem that we discussed with cooperative
multi-tasking: one resource hog can ruin things for
everyone else. Like a cooperative multitasking OS,
the Xeon for the most part depends on each thread
to play nicely and to refrain from monopolizing any
of its shared resources.

For example, if two floating-point intensive threads
are trying to execute a long series of complex,
multi-cycle floating-point instructions on the same
physical processor, then depending on the activity of
the scheduler and the composition of the scheduling
queue one of the threads could potentially tie up the
floating-point unit while the other thread stalls until
one of its instructions can make it out of the
scheduling queue. On a non-SMT processor, each
thread would get only its fair share of execution
time because at the end of its time-slice it would be
swapped off the CPU and the other thread would be
swapped onto it. Similarly, with a time-slice
multithreaded CPU no one thread can tie up an
execution unit for multiple consecutive pipeline
stages. The SMT processor, on the other hand,
would see a significant decline in performance as
each thread contends for valuable but limited
execution resources. In such cases, an SMP solution
would be far superior, and in the worst of such cases
a non-SMT solution would even give better
performance.

The shared resource for which these kinds of
contention problems can have the most serious
impact on performance is the caching subsystem.

Caching and SMT

For a simultaneously multithreaded processor, the
cache coherency problems associated with SMP all
but disappear. Both logical processors on an SMT
system share the same caches as well as the data in
those caches. So if a thread from logical processor 0
wants to read some data that's cached by logical
processor 1, it can grab that data directly from the

cache without having to snoop another cache located
some distance away in order to ensure that it has the
most current copy.

However, since both logical processors share the
same cache, the prospect of cache conflicts increase.
This potential increase in cache conflicts has the
potential to degrade performance seriously.

Cache conflicts
You might think since the Xeon's two logical
processors share a single cache, this means that the
cache size is effectively halved for each logical
processor. If you thought this, though, you'd be
wrong: it's both much better and much worse. Let
me explain.

Each of the Xeon's caches--the trace cache, L1, L2,
and L3--is SMT-unaware, and each treats all loads
and stores the same regardless of which logical
processor issued the request. So none of the caches
know the difference between one logical processor
and another, or between code from one thread or
another. This means that one executing thread can
monopolize virtually the entire cache if it wants to,
and the cache, unlike the processor's scheduling
queue, has no way of forcing that thread to
cooperate intelligently with the other executing
thread. The processor itself will continue trying to
run both threads, though, issuing fetches from each
one. This means that, in a worst-case scenario where
the two running threads have two completely
different memory reference patterns (i.e. they're
accessing two completely different areas of memory
and sharing no data at all) the cache will begin
thrashing as data for each thread is alternately
swapped in and out and bus and cache bandwidth
are maxed out.

It's my suspicion that this kind of cache contention
is behind the recent round of benchmarks which
show that for some applications SMT performs
significantly worse than either SMP or non-SMT
implementations within the same processor family.
For instance, these benchmarks show the SMT Xeon
at a significant disadvantage in the memory-
intensive portion of the reviewer's benchmarking
suite, which according to our discussion above is to
be expected if the benchmarks weren't written
explicitly with SMT in mind.

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

http://www.2cpu.com/Hardware/ht_analysis/

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html

In sum, resource contention is definitely one of the
major pitfalls of SMT, and it's the reason why only
certain types of applications and certain mixes of
applications truly benefit from the technique. With
the wrong mix of code, hyper-threading decreases
performance, just like it can increase performance
with the right mix of code.

Conclusions

Now that you understand the basic theory behind
hyper-threading, in a future article on Prescott we'll
be able to delve deeper into the specific
modifications that Intel made to the Pentium 4's
architecture in order to accommodate this new
technique. In the meantime, I'll be watching the
launch and the subsequent round of benchmarking
very closely to see just how much real-world
performance hyper-threading is able to bring to the
PC. As with SMP, this will ultimately depend on the
applications themselves, since multithreaded apps
will benefit more from hyper-threading than single-
threaded ones. Of course, unlike with SMP there
will be an added twist in that real-world
performance won't just depend on the applications
but on the specific mix of applications being used.
This makes it especially hard to predict performance
from just looking at the microarchitecture.

The fact that Intel until now has made use of hyper-
threading only in its SMP Xeon line is telling. With
hyper-threading's pitfalls, it's perhaps better seen as
a compliment to SMP than as a replacement for it.
An SMT-aware OS running on an SMP system
knows how to schedule processes at least semi-
intelligently between both processors so that
resource contention is minimized. In such a system
SMT functions to alleviate some of the waste of a
single-threaded SMP solution by improving the
overall execution efficiency of both processors. In
the end, I expect SMT to shine mostly in SMP
configurations, while those who use it in a single-
CPU system will see very mixed, very application-
specific results.

Bibliography

• Susan Eggers, Hank Levy, Steve Gribble.
Simultaneous Multithreading Project.
University of Washington

• Susan Eggers, Joel Emer, Henry Levy, Jack
Lo, Rebecca Stamm, and Dean Tullsen.
"Simultaneous Multithreading: A Platform
for Next-generation Processors." IEEE
Micro, September/October 1997, pages 12-
18.

• Jack Lo, Susan Eggers, Joel Emer, Henry
Levy, Rebecca Stamm, and Dean Tullsen.
"Converting Thread-Level Parallelism Into
Instruction-Level Parallelism via
Simultaneous Multithreading." ACM
Transactions on Computer Systems, August
1997, pages 322-354.

• "Hyper-Threading Technology.",
http://www.intel.com/technology/hyperthre
ad/index.htm, Intel.

• Deborah T. Marr, Frank Binns, David L.
Hill, Glenn Hinton, David A. Koufaty, J.
Alan Miller, Michael Upton. "Hyper-
Threading Technology Architecture and
Microarchitecture.",
http://www.intel.com/technology/itj/2002/v
olume06issue01/art01_hyper/p01_abstract.
htm, Intel.

Revision History

Date Version Changes
10/02/2002 1.0 Release

http://www.cs.washington.edu/research/smt/
http://www.intel.com/technology/hyperthread/index.htm
http://www.intel.com/technology/hyperthread/index.htm
http://www.intel.com/technology/hyperthread/index.htm
http://www.intel.com/technology/itj/2002/volume06issue01/art01_hyper/p01_abstract.htm
http://www.intel.com/technology/itj/2002/volume06issue01/art01_hyper/p01_abstract.htm
http://www.intel.com/technology/itj/2002/volume06issue01/art01_hyper/p01_abstract.htm

	 Superthreading with a multithreaded processor
	Implementing hyper-threading
	Replicated resources
	Partitioned resources
	Shared resources

	Caching and SMT
	Cache conflicts

	Conclusions
	Bibliography
	Revision History

