
Introduction to Multithreading, Superthreading and Hyperthreading 

by Jon "Hannibal" Stokes 

Back in the dual-Celeron days, when symmetric 
multiprocessing (SMP) first became cheap enough 
to come within reach of the average PC user, many 
hardware enthusiasts eager to get in on the SMP 
craze were asking what exactly (besides winning 
them the admiration and envy of their peers) a dual-
processing rig could do for them. It was in this 
context that the PC crowd started seriously talking 
about the advantages of multithreading. Years later 
when Apple brought dual-processing to its 
PowerMac line, SMP was officially mainstream, 
and with it multithreading became a concern for the 
mainstream user as the ensuing round of 
benchmarks brought out the fact you really needed 
multithreaded applications to get the full benefits of 
two processors.   

Even though the PC enthusiast SMP craze has long 
since died down and, in an odd twist of fate, Mac 
users are now many times more likely to be sporting 
an SMP rig than their x86-using peers, 
multithreading is once again about to increase in 
importance for PC users. Intel's next major IA-32 
processor release, codenamed Prescott, will include 
a feature called simultaneous multithreading 
(SMT), also known as hyper-threading. To take 
full advantage of SMT, applications will need to be 
multithreaded; and just like with SMP, the higher 
the degree of multithreading the more performance 
an application can wring out of Prescott's hardware.   

Intel actually already uses SMT in a shipping 
design: the Pentium 4 Xeon. Near the end of this 
article we'll take a look at the way the Xeon 
implements hyper-threading; this analysis should 
give us a pretty good idea of what's in store for 
Prescott. Also, it's rumored that the current crop of 
Pentium 4's actually has SMT hardware built-in, it's 
just disabled. (If you add this to the rumor about 
x86-64 support being present but disabled as well, 
then you can get some idea of just how cautious 
Intel is when it comes to introducing new features. 
I'd kill to get my hands on a 2.8 GHz P4 with both 
SMT and x86-64 support turned on.)  

SMT, in a nutshell, allows the CPU to do what most 
users think it's doing anyway: run more than one 

program at the same time. This might sound odd, so 
in order to understand how it works this article will 
first look at how the current crop of CPUs handles 
multitasking. Then, we'll discuss a technique called 
superthreading before finally moving on to explain 
hyper-threading in the last section. So if you're 
looking to understand more about multithreading, 
symmetric multiprocessing systems, and hyper-
threading then this article is for you.  

As always, if you've read some of my previous tech 
articles you'll be well equipped to understand the 
discussion that follows. From here on out, I'll 
assume you know the basics of pipelined execution 
and are familiar with the general architectural 
division between a processor's front end and its 
execution core. If these terms are mysterious to you, 
then you might want to reach way back and check 
out my "Into the K7" article, as well as some of my 
other work on the P4 and G4e. 

Conventional multithreading 

Quite a bit of what a CPU does is illusion. For 
instance, modern out-of-order processor 
architectures don't actually execute code 
sequentially in the order in which it was written. I've 
covered the topic of out-of-order execution (OOE) 
in previous articles, so I won't rehash all that here. 
I'll just note that an OOE architecture takes code that 
was written and compiled to be executed in a 
specific order, reschedules the sequence of 
instructions (if possible) so that they make 
maximum use of the processor resources, executes 
them, and then arranges them back in their original 
order so that the results can be written out to 
memory. To the programmer and the user, it looks 
as if an ordered, sequential stream of instructions 
went into the CPU and identically ordered, 
sequential stream of computational results emerged. 
Only the CPU knows in what order the program's 
instructions were actually executed, and in that 
respect the processor is like a black box to both the 
programmer and the user.  

The same kind of sleight-of-hand happens when you 
run multiple programs at once, except this time the 
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operating system is also involved in the scam. To 
the end user, it appears as if the processor is 
"running" more than one program at the same time, 
and indeed, there actually are multiple programs 
loaded into memory. But the CPU can execute only 
one of these programs at a time. The OS maintains 
the illusion of concurrency by rapidly switching 
between running programs at a fixed interval, called 
a time slice. The time slice has to be small enough 
that the user doesn't notice any degradation in the 
usability and performance of the running programs, 
and it has to be large enough that each program has 
a sufficient amount of CPU time in which to get 
useful work done. Most modern operating systems 
include a way to change the size of an individual 
program's time slice. So a program with a larger 
time slice gets more actual execution time on the 
CPU relative to its lower priority peers, and hence it 
runs faster. (On a related note, this brings to mind 
one of my favorite .sig file quotes: "A message from 
the system administrator: 'I've upped my priority. 
Now up yours.'")  

Clarification of terms: "running" vs. 
"executing," and "front end" vs. "execution 
core."  

For our purposes in this article, "running" does not 
equal "executing." I want to set up this 
terminological distinction near the outset of the 
article for clarity's sake. So for the remainder of this 
article, we'll say that a program has been launched 
and is "running" when its code (or some portion of 
its code) is loaded into main memory, but it isn't 
actually executing until that code has been loaded 
into the processor. Another way to think of this 
would be to say that the OS runs programs, and the 
processor executes them.  

The other thing that I should clarify before 
proceeding is that the way that I divide up the 
processor in this and other articles differs from the 
way that Intel's literature divides it. Intel will 
describe its processors as having an "in-order front 
end" and an "out-of-order execution engine." This is 
because for Intel, the front-end consists mainly of 
the instruction fetcher and decoder, while all of the 
register rename logic, out-of-order scheduling logic, 
and so on is considered to be part of the "back end" 
or "execution core." The way that I and many others 
draw the line between front-end and back-end places 
all of the out-of-order and register rename logic in 

the front end, with the "back end"/"execution core" 
containing only the execution units themselves and 
the retire logic. So in this article, the front end is the 
place where instructions are fetched, decoded, and 
re-ordered, and the execution core is where they're 
actually executed and retired.  

Preemptive multitasking vs. Cooperative 
multitasking 

While I'm on this topic, I'll go ahead and take a brief 
moment to explain preemptive multitasking versus 
cooperative multitasking. Back in the bad old days, 
which wasn't so long ago for Mac users, the OS 
relied on each program to give up voluntarily the 
CPU after its time slice was up. This scheme was 
called "cooperative multitasking" because it relied 
on the running programs to cooperate with each 
other and with the OS in order to share the CPU 
among themselves in a fair and equitable manner. 
Sure, there was a designated time slice in which 
each program was supposed to execute, and but the 
rules weren't strictly enforced by the OS. In the end, 
we all know what happens when you rely on people 
and industries to regulate themselves--you wind up 
with a small number of ill-behaved parties who don't 
play by the rules and who make things miserable for 
everyone else. In cooperative multitasking systems, 
some programs would monopolize the CPU and not 
let it go, with the result that the whole system would 
grind to a halt.  

Preemptive multi-tasking, in contrast, strictly 
enforces the rules and kicks each program off the 
CPU once its time slice is up. Coupled with 
preemptive multi-tasking is memory protection, 
which means that the OS also makes sure that each 
program uses the memory space allocated to it and it 
alone. In a modern, preemptively multi-tasked and 
protected memory OS each program is walled off 
from the others so that it believes it's the only 
program on the system.  

Each program has a mind of its own 

The OS and system hardware not only cooperate to 
fool the user about the true mechanics of multi-
tasking, but they cooperate to fool each running 
program as well. While the user thinks that all of the 
currently running programs are being executed 
simultaneously, each of those programs thinks that it 
has a monopoly on the CPU and memory. As far as 
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a running program is concerned, it's the only 
program loaded in RAM and the only program 
executing on the CPU. The program believes that it 
has complete use of the machine's entire memory 
address space and that the CPU is executing it 
continuously and without interruption. Of course, 
none of this is true. The program actually shares 
RAM with all of the other currently running 
programs, and it has to wait its turn for a slice of 
CPU time in order to execute, just like all of the 
other programs on the system.  

 
Single-threaded CPU  

In the above diagram, the different colored boxes in 
RAM represent instructions for four different 
running programs. As you can see, only the 
instructions for the red program are actually being 
executed right now, while the rest patiently wait 
their turn in memory until the CPU can briefly turn 
its attention to them.   

Also, be sure and notice those empty white boxes in 
the pipelines of each of the execution core's 
functional units. Those empty pipeline stages, or 
pipeline bubbles, represent missed opportunities for 
useful work; they're execution slots where, for 
whatever reason, the CPU couldn't schedule any 
useful code to run, so they propagate down the 
pipeline empty.  

Related to the empty white boxes are the blank spots 
in above CPU's front end. This CPU can issue up to 
four instructions per clock cycle to the execution 
core, but as you can see it never actually reaches this 

four-instruction limit. On most cycles it issues two 
instructions, and on one cycle it issues three.   

A few terms: process, context, and thread 

Before continuing our discussion of 
multiprocessing, let's take a moment to unpack the 
term "program" a bit more. In most modern 
operating systems, what users normally call a 
program would be more technically termed a 
process. Associated with each process is a context, 
"context" being just a catch-all term that 
encompasses all the information that completely 
describes the process's current state of execution 
(e.g. the contents of the CPU registers, the program 
counter, the flags, etc.).  

Processes are made up of threads, and each process 
consists of at least one thread: the main thread of 
execution. Processes can be made up of multiple 
threads, and each of these threads can have its own 
local context in addition to the process's context, 
which is shared by all the threads in a process. In 
reality, a thread is just a specific type of stripped-
down process, a "lightweight process," and because 
of this throughout the rest of this article I'll use the 
terms "process" and "thread" pretty much 
interchangeably. 

Even though threads are bundled together into 
processes, they still have a certain amount of 
independence. This independence, when combined 
with their lightweight nature, gives them both speed 
and flexibility. In an SMP system like the ones we'll 
discuss in a moment, not only can different 
processes run on different processors, but different 
threads from the same process can run on different 
processors. This is why applications that make use 
of multiple threads see performance gains on SMP 
systems that single-threaded applications don't. 

Fooling the processes: context switches 

It takes a decent amount of work to fool a process 
into thinking that it's the only game going. First and 
foremost, you have to ensure that when the currently 
executing process's time slice is up, its context is 
saved to memory so that when the process's time 
slice comes around again it can be restored to the 
exact same state that it was in when its execution 
was halted and it was flushed from the CPU to make 
room for the next process. When the process begins 

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html 



 

executing again and its context has been restored 
exactly as it was when it left off last, it has no idea 
that it ever left the CPU.  

This business of saving the currently executing 
process's context, flushing the CPU, and loading the 
next process's context, is called a context switch. A 
context switch for a full-fledged, multithreaded 
process will obviously take a lot longer than a 
context switch for an individual thread within a 
process. So depending on the amount of hardware 
support for context switching and the type of 
context switch (i.e. a process switch or a thread 
switch), a context switch can take a decent amount 
of time, thereby wasting a number of CPU cycles. 
Cutting back on context switches improves 
execution efficiency and reduces waste, as does the 
extensive use of multithreading since thread 
switches are usually faster than full-sized process 
switches. 

Single-threaded SMP 

In the above diagram, the red program and the 
yellow process both happen to be executing 
simultaneously, one on each processor. Once their 
respective time slices are up, their contexts will be 
saved, their code and data will be flushed from the 
CPU, and two new processes will be prepared for 
execution.  

SMP to the rescue? 

One way to not only cut down on the number of 
context switches but also to provide more CPU 
execution time to each process is to build a system 
that can actually execute more than one process at 
the same time. The conventional way of doing this 
on the PC is to add a second CPU. In an SMP 
system, the OS can schedule two processes for 
execution at the exact same time, with each process 
executing on a different CPU. Of course, no process 
is allowed to monopolize either CPU (in most 
desktop operating systems) so what winds up 
happening is that each running process still has to 
wait its turn for a time slice. But since there are now 
two CPUs serving up time slices the process doesn't 
have to wait nearly as long for its chance to execute. 
The end result is that there is more total execution 
time available to the system so that within a given 
time interval each running process spends more time 
actually executing and less time waiting around in 
memory for a time slice to open up.  

One other thing that you might notice about the 
preceding diagram is that not only is the number of 
processes that can simultaneously execute doubled, 
but the number of empty execution slots (the white 
boxes) is doubled as well. So in an SMP system, 
there's twice as much execution time available to the 
running programs, but since SMP doesn't do 
anything to make those individual programs more 
efficient in the way that they use their time slice 
there's about twice as much wasted execution time, 
as well.  

So while SMP can improve performance by 
throwing transistors at the problem of execution 
time, the overall lack of increase in the execution 
efficiency of the whole system means that SMP can 
be quite wasteful.  

  Superthreading with a multithreaded 
processor 

One of the ways that ultra-high-performance 
computers eliminate the waste associated with the 
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kind of single-threaded SMP described above is to 
use a technique called time-slice multithreading, or 
superthreading. A processor that uses this 
technique is called a multithreaded processor, and 
such processors are capable of executing more than 
one thread at a time. If you've followed the 
discussion so far, then this diagram should give you 
a quick and easy idea of how superthreading works:  

 
Superthreaded CPU  

You'll notice that there are fewer wasted execution 
slots because the processor is executing instructions 
from both threads simultaneously. I've added in 
those small arrows on the left to show you that the 
processor is limited in how it can mix the 
instructions from the two threads. In a multithreaded 
CPU, each processor pipeline stage can contain 
instructions for one and only one thread, so that the 
instructions from each thread move in lockstep 
through the CPU.  

To visualize how this works, take a look at the front 
end of the CPU in the preceding diagram. In this 
diagram, the front end can issue four instructions per 
clock to any four of the seven functional unit 
pipelines that make up the execution core. However, 
all four instructions must come from the same 
thread. In effect, then, each executing thread is still 
confined to a single "time slice," but that time slice 
is now one CPU clock cycle. So instead of system 
memory containing multiple running threads that the 
OS swaps in and out of the CPU each time slice, the 
CPU's front end now contains multiple executing 
threads and its issuing logic switches back and forth 

between them on each clock cycle as it sends 
instructions into the execution core.  

Multithreaded processors can help alleviate some of 
the latency problems brought on by DRAM 
memory's slowness relative to the CPU. For 
instance, consider the case of a multithreaded 
processor executing two threads, red and yellow. If 
the red thread requests data from main memory and 
this data isn't present in the cache, then this thread 
could stall for many CPU cycles while waiting for 
the data to arrive. In the meantime, however, the 
processor could execute the yellow thread while the 
red one is stalled, thereby keeping the pipeline full 
and getting useful work out of what would 
otherwise be dead cycles.   

While superthreading can help immensely in hiding 
memory access latencies, it does not, however, 
address the waste associated with poor instruction-
level parallelism within individual threads. If the 
scheduler can find only two instructions in the red 
thread to issue in parallel to the execution unit on a 
given cycle, then the other two issue slots will 
simply go unused.   

Hyper-threading: the next step 

Simultaneous multithreading (SMT), a.k.a. 
hyper-threading, takes superthreading to the next 
level. Hyper-threading is simply superthreading 
without the restriction that all the instructions issued 
by the front end on each clock be from the same 
thread. The following diagram will illustrate the 
point:  
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Hyper-threaded CPU  

Now, to really get a feel for what's happening here, 
let's go back and look at the single-threaded SMP 
diagram.  

 
Single-threaded SMP  

If you look closely, you can see what I've done in 
the hyper-threading diagram is to take the execution 
patterns for both the red and the yellow threads in 
the SMP diagram and combine them so that they fit 
together on the single hyper-threaded processor like 
pieces from a puzzle. I rigged the two threads' 
execution patterns so that they complemented each 
other perfectly (real life isn't so neat) in order to 

make this point: the hyper-threaded processor, in 
effect, acts like two CPUs in one.  

From an OS and user perspective, a simultaneously 
multithreaded processor is split into two or more 
logical processors, and threads can be scheduled to 
execute on any of the logical processors just as they 
would on either processor of an SMP system. We'll 
talk more about logical processors in a moment, 
though, when we discuss hyper-threading's 
implementation issues.  

Hyper-threading's strength is that it allows the 
scheduling logic maximum flexibility to fill 
execution slots, thereby making more efficient use 
of available execution resources by keeping the 
execution core busier. If you compare the SMP 
diagram with the hyper-threading diagram, you can 
see that the same amount of work gets done in both 
systems, but the hyper-threaded system uses a 
fraction of the resources and has a fraction of the 
waste of the SMP system; note the scarcity of empty 
execution slots in the hyper-threaded machine 
versus the SMP machine.  

To get a better idea of how hyper-threading actually 
looks in practice, consider the following example: 
Let's say that the OOE logic in our diagram above 
has extracted all of the instruction-level parallelism 
(ILP) it can from the red thread, with the result that 
it will be able to issue two instructions in parallel 
from that thread in an upcoming cycle. Note that 
this is an exceedingly common scenario, since 
research has shown the average ILP that can be 
extracted from most code to be about 2.5 
instructions per cycle. (Incidentally, this is why the 
Pentium 4, like many other processors, is equipped 
to issue at most 3 instructions per cycle to the 
execution core.) Since the OOE logic in our 
example processor knows that it can theoretically 
issue up to four instructions per cycle to the 
execution core, it would like to find two more 
instructions to fill those two empty slots so that none 
of the issue bandwidth is wasted. In either a single-
threaded or multithreaded processor design, the two 
leftover slots would just have to go unused for the 
reasons outlined above. But in the hyper-threaded 
design, those two slots can be filled with 
instructions from another thread. Hyper-threading, 
then, removes the issue bottleneck that has plagued 
previous processor designs.  
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Replicated resources  Implementing hyper-threading 

There are some resources that you just can't get 
around replicating if you want to maintain two fully 
independent contexts on each logical processor. The 
most obvious of these is the instruction pointer (IP), 
which is the pointer that helps the processor keep 
track of its place in the instruction stream by 
pointing to the next instruction to be fetched. In 
order to run more than one process on the CPU, you 
need as many IPs as there are instruction streams 
keep track of. Or, equivalently, you could say that 
you need one IP for each logical processor. In the 
Xeon's case, the maximum number of instruction 
streams (or logical processors) that it will ever have 
to worry about is 2, so it has 2 IPs.   

Although hyper-threading might seem like a pretty 
large departure from the kind of conventional, 
process-switching multithreading done on a single-
threaded CPU, it actually doesn't add too much 
complexity to the hardware. Intel reports that adding 
hyper-threading to their Xeon processor added only 
%5 to its die area. To understand just how hyper-
threading affects the Pentium 4 Xeon's 
microarchitecture and performance, let's briefly look 
in a bit more detail at the Xeon's SMT 
implementation.   

Intel's Xeon is capable of executing at most two 
threads in parallel on two logical processors. In 
order to present two logical processors to both the 
OS and the user, the Xeon must be able to maintain 
information for two distinct and independent thread 
contexts. This is done by dividing up the processor's 
microarchitectural resources into three types: 
replicated, partitioned, and shared. Let's take a look 
at which resources fall into which categories:  

Similarly, the Xeon has two register allocation 
tables (RATs), each of which handles the mapping 
of one logical processor's eight architectural integer 
registers and eight architectural floating-point 
registers onto a shared pool of 128 GPRs (general 
purpose registers) and 128 FPRs (floating-point 
registers). So the RAT is a replicated resource that 
manages a shared resource (the microarchitectural 
register file).   

Replicated 

• Register renaming 
logic  

• Instruction Pointer  
• ITLB  
• Return stack 

predictor  
• Various other 

architectural 
registers  

Partitioned 

• Re-order buffers 
(ROBs)  

• Load/Store buffers 
• Various queues, 

like the scheduling 
queues, uop 
queue, etc.  

Shared 

• Caches: trace 
cache, L1, L2, L3  

• Microarchitectural 
registers  

• Execution Units  

Partitioned resources  
The Xeon's partitioned resources are mostly to be 
found in the form of queues that decouple the major 
stages of the pipeline from one another. These 
queues are of a type that I would call "statically 
partitioned." By this, I mean that each queue is split 
in half, with half of its entries designated for the sole 
use of one logical processor and the other half 
designated for the sole use of the other. These 
statically partitioned queues look as follows:  

 
   Statically Partitioned Queue 
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The Xeon's fscheduling queue is partitioned in a 
way that I would call "dynamically partitioned." In a 
scheduling queue with 12 entries, instead of 
assigning entries 0 through 5 to logical processor 0 
and entries 6 through 11 to logical processor 1, the 
queue allows any logical processor to use any entry 
but it places a limit on the number of entries that any 
one logical processor can use. So in the case of a 12-
entry scheduling queue, each logical processor can 
use no more than six of the entries.   

 
Dynamically Partitioned Queue  

Be aware that the above diagram shows only one of 
the Xeon's three scheduling queues.  

From the point of view of each logical processor and 
thread, this kind of dynamic partitioning has the 
same effect as fixed partitioning: it confines each LP 
to half of queue. However, from the point of view of 
the physical processor, there's a crucial difference 
between the two types of partitioning. See, the 
scheduling logic, like the register file and the 
execution units, is a shared resource, a part of the 
Xeon's microarchitecture that is SMT-unaware. The 
scheduler has no idea that it's scheduling code from 
multiple threads. It simply looks at each instruction 
in the scheduling queue on a case-by-case basis, 
evaluates the instruction's dependencies, compares 
the instruction's needs to the physical processor's 
currently available execution resources, and then 
schedules the instruction for execution. To return to 
the example from our hyper-threading diagram, the 
scheduler may issue one red instruction and two 
yellow to the execution core on one cycle, and then 

three red and one yellow on the next cycle. So while 
the scheduling queue is itself aware of the 
differences between instructions from one thread 
and the other, the scheduler in pulling instructions 
from the queue sees the entire queue as holding a 
single instruction stream.  

The Xeon's scheduling queues are dynamically 
partitioned in order to keep one logical processor 
from monopolizing them. If each scheduling queue 
didn't enforce a limit on the number of entries that 
each logical processor can use, then instructions 
from one logical processor might fill up the queue to 
the point where instructions from the other logical 
processor would go unscheduled and unexecuted.   

One final bit of information that should be included 
in a discussion of partitioned resources is the fact 
that when the Xeon is executing only one thread, all 
of its partitioned resources can be combined so that 
the single thread can use them for maximum 
performance. When the Xeon is operating in single-
threaded mode, the dynamically partitioned queues 
stop enforcing any limits on the number of entries 
that can belong to one thread, and the statically 
partitioned queues stop enforcing their boundaries 
as well.   

Shared resources  
Shared resources are at the heart of hyper-threading; 
they're what makes the technique worthwhile. The 
more resources that can be shared between logical 
processors, the more efficient hyper-threading can 
be at squeezing the maximum amount of computing 
power out of the minimum amount of die space. 
One primary class of shared resources consists of 
the execution units: the integer units, floating-point 
units, and load-store unit. These units are not SMT-
aware, meaning that when they execute instructions 
they don't know the difference between one thread 
and the next. An instruction is just an instruction to 
the execution units, regardless of which 
thread/logical processor it belongs to.   

The same can be said for the register file, another 
crucial shared resource. The Xeon's 128 
microarchitectural general purpose registers (GPRs) 
and 128 microarchitectural floating-point registers 
(FPRs) have no idea that the data they're holding 
belongs to more than one thread--it's all just data to 
them, and they, like the execution units, remain 
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unchanged from previous iterations of the Xeon 
core.   

Hyper-threading's greatest strength--shared 
resources--also turns out to be its greatest weakness, 
as well. Problems arise when one thread 
monopolizes a crucial resource, like the floating-
point unit, and in doing so starves the other thread 
and causes it to stall. The problem here is the exact 
same problem that we discussed with cooperative 
multi-tasking: one resource hog can ruin things for 
everyone else. Like a cooperative multitasking OS, 
the Xeon for the most part depends on each thread 
to play nicely and to refrain from monopolizing any 
of its shared resources.   

For example, if two floating-point intensive threads 
are trying to execute a long series of complex, 
multi-cycle floating-point instructions on the same 
physical processor, then depending on the activity of 
the scheduler and the composition of the scheduling 
queue one of the threads could potentially tie up the 
floating-point unit while the other thread stalls until 
one of its instructions can make it out of the 
scheduling queue. On a non-SMT processor, each 
thread would get only its fair share of execution 
time because at the end of its time-slice it would be 
swapped off the CPU and the other thread would be 
swapped onto it. Similarly, with a time-slice 
multithreaded CPU no one thread can tie up an 
execution unit for multiple consecutive pipeline 
stages. The SMT processor, on the other hand, 
would see a significant decline in performance as 
each thread contends for valuable but limited 
execution resources. In such cases, an SMP solution 
would be far superior, and in the worst of such cases 
a non-SMT solution would even give better 
performance.  

The shared resource for which these kinds of 
contention problems can have the most serious 
impact on performance is the caching subsystem.   

Caching and SMT  

For a simultaneously multithreaded processor, the 
cache coherency problems associated with SMP all 
but disappear. Both logical processors on an SMT 
system share the same caches as well as the data in 
those caches. So if a thread from logical processor 0 
wants to read some data that's cached by logical 
processor 1, it can grab that data directly from the 

cache without having to snoop another cache located 
some distance away in order to ensure that it has the 
most current copy.  

However, since both logical processors share the 
same cache, the prospect of cache conflicts increase. 
This potential increase in cache conflicts has the 
potential to degrade performance seriously. 

Cache conflicts 
You might think since the Xeon's two logical 
processors share a single cache, this means that the 
cache size is effectively halved for each logical 
processor. If you thought this, though, you'd be 
wrong: it's both much better and much worse. Let 
me explain. 

Each of the Xeon's caches--the trace cache, L1, L2, 
and L3--is SMT-unaware, and each treats all loads 
and stores the same regardless of which logical 
processor issued the request. So none of the caches 
know the difference between one logical processor 
and another, or between code from one thread or 
another. This means that one executing thread can 
monopolize virtually the entire cache if it wants to, 
and the cache, unlike the processor's scheduling 
queue, has no way of forcing that thread to 
cooperate intelligently with the other executing 
thread. The processor itself will continue trying to 
run both threads, though, issuing fetches from each 
one. This means that, in a worst-case scenario where 
the two running threads have two completely 
different memory reference patterns (i.e. they're 
accessing two completely different areas of memory 
and sharing no data at all) the cache will begin 
thrashing as data for each thread is alternately 
swapped in and out and bus and cache bandwidth 
are maxed out.  

It's my suspicion that this kind of cache contention 
is behind the recent round of benchmarks which 
show that for some applications SMT performs 
significantly worse than either SMP or non-SMT 
implementations within the same processor family. 
For instance, these benchmarks show the SMT Xeon 
at a significant disadvantage in the memory-
intensive portion of the reviewer's benchmarking 
suite, which according to our discussion above is to 
be expected if the benchmarks weren't written 
explicitly with SMT in mind.   

http://www.arstechnica.com/paedia/h/hyperthreading/hyperthreading-1.html 

http://www.2cpu.com/Hardware/ht_analysis/
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In sum, resource contention is definitely one of the 
major pitfalls of SMT, and it's the reason why only 
certain types of applications and certain mixes of 
applications truly benefit from the technique. With 
the wrong mix of code, hyper-threading decreases 
performance, just like it can increase performance 
with the right mix of code.  

Conclusions 

Now that you understand the basic theory behind 
hyper-threading, in a future article on Prescott we'll 
be able to delve deeper into the specific 
modifications that Intel made to the Pentium 4's 
architecture in order to accommodate this new 
technique. In the meantime, I'll be watching the 
launch and the subsequent round of benchmarking 
very closely to see just how much real-world 
performance hyper-threading is able to bring to the 
PC. As with SMP, this will ultimately depend on the 
applications themselves, since multithreaded apps 
will benefit more from hyper-threading than single-
threaded ones. Of course, unlike with SMP there 
will be an added twist in that real-world 
performance won't just depend on the applications 
but on the specific mix of applications being used. 
This makes it especially hard to predict performance 
from just looking at the microarchitecture.  

The fact that Intel until now has made use of hyper-
threading only in its SMP Xeon line is telling. With 
hyper-threading's pitfalls, it's perhaps better seen as 
a compliment to SMP than as a replacement for it. 
An SMT-aware OS running on an SMP system 
knows how to schedule processes at least semi-
intelligently between both processors so that 
resource contention is minimized. In such a system 
SMT functions to alleviate some of the waste of a 
single-threaded SMP solution by improving the 
overall execution efficiency of both processors. In 
the end, I expect SMT to shine mostly in SMP 
configurations, while those who use it in a single-
CPU system will see very mixed, very application-
specific results.     
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