The Road to Exascale

Andreas Bechtolsheim Arista Networks

Top500 Projected Performance

Top 500 List Observations

- It took I I years to get from I TF to I PF
- Performance doubled approximately every year
- Assuming the trend continues, I EF by 2020
- Question can this be achieved?
- Moore's law predicts 2X Transistors every 2 years
- Need to double every year to achieve EF in 2020

Moore's Law 1970-2010

Semiconductor Technology Roadmap

Semiconductor Technology Roadmap

What can one do with 100 Billion Transistors/chip?

More CPU Cores!

More Floating Point Units!

More Cache!

More Memory Bandwidth!

More I/O

Constraint: Power per Core

Source: D. Frank, C. Tyberg, IBM Research

Power Efficiency (Power per Throughput)

Power = Clock * Capacitance * Vdd^2
Higher-frequency designs consume much more power

The Basic Math: "More than Moore"

Aggregate Performance = C * F * I * N

	Element	Increase
С	Cores per Module	40% /Y
F	Frequency	5% /Y
I	Instruction Efficiency	15% /Y
N	Number of CPUs	20% /Y
	TOTAL	100% /Y

Primary increase is in the number of cores

TeraFlops/CPU Socket over Time

Throughput (TF/S)

Comments on GP-GPU

- Technology Constraints are the same for all architectures
 - Number of Transistors per die
 - Number of Memory channels
 - Number of I/O pins
 - Maximum Power per Chip
- Difference is how the Transistors are Used
 - CPUs are optimized for general purpose throughput
 - GPUs are optimized for number of floating point units
- CPU and GPU architectures will merge going forward
 - General purpose CPUs with vector extensions and lots of FPUs
 - GP-GPUs will add support for much larger memory

General Purpose CPU 2010 => 2020

Year	2010	2020	Ratio
Clock Rate	2.5 GHz	4 GHz	5%/Y
FLOPS/Clock	4	16	4X
FLOPS/Core	10 GF	64 GF	6.4X
Cores/Module	16	160	10X
FLOPS/Module	160 GF	10 TF	64X
Mem Bandwidth	30 GB/s	2 TB/s	64X
M Bandwidth/F	0.2 B/F	0.2 B/F	Ш
IO Bandwidth	3 GB/s	192 GB/s	64X
IO Bandwidth/F	0.02 B/F	0.02 B/F	Ш
Power / Module	250W	250W	Ш
Power Efficiency	0.6 GF/W	40 GF/W	64X

Scaling the CPU Throughput

- Three Dimensions of Scalability
 - Frequency, Cores, FLOPS/Core
- Increasing Frequency is most difficult
 - Limited by power consumption per core
- Increasing the Number of Cores
 - Moore's Law predicts doubling every 2 years
- Increasing FLOPS per Core
 - Increase functional units, SIMD instructions
- Throughput will Double every year
 - Combination of number of cores and efficiency gains

Challenge #1: Memory Bandwidth

- Memory bandwidth must grow with throughput
- 2020 CPU needs > 64X the memory bandwidth
- Traditional Package I/O pins are basically fixed
- Electrical signaling at the speed limit
- How to scale memory bandwidth?
- Solution: Multi-Chip 3D Packaging

Multi-Chip 3D Packaging

Wire bonded stacked die

Thru-Si via Stacking

Need to combine CPU + Memory on one Module with lots and lots of memory channels

Challenge #2: I/O Bandwidth

- I/O bandwidth must grow with throughput
- 2020 CPU needs > 64X the I/O bandwidth
- Electrical signaling at the speed limit
- How to scale I/O bandwidth?
- Solution: Integrate NIC in CPU
- High-speed SERDES with MCM Optics

SERDES Speed / Channel

SERDES Gbps

Expected Serdes Data Rate per Channel

Improving with transistor speed, not Moore's law

Parallel Optical Interface with fiber pig-tail

Parallel Optics Power Outlook

Challenge #3: Power

- Integrating memory and I/O on one MCM is very power efficient, but nevertheless increases power per MCM module
- How to cool?
- Solution: Microchannel Fluid Heatsinks

Microchannel Fluidic Heatsinks

Benefits of MCM Packaging

- Only way to achieve memory and I/O bandwidth
- Greatly reduces overall power consumption
- Enables denser packaging and better cooling

Future CPUs will look very different than todays

Three HPC Fabrics

Ethernet

Infiniband

Proprietary

Ethernet

- Quite popular in HPC
 - 50% of Top 500 List
 - In particular Oil&Gas
- Advantages
 - Very easy to use
 - Low cost (Gigabit Ethernet)
- Disadvantages
 - 10 Gbps has been expensive (so far)
 - Limited Switch Scalability (until now)

Large Flat Fabric Design

- Core Switch
 - Hundred of IOG ports
 - Wire-speed architecture
- Leaf Switch
 - 48 I or IOG ports
 - 4 or more I0G uplinks
- Overall Capacity
 - >10,000 ports
 - >I0Tbps throughput

Arista Networks Confidential

Ethernet Roadmap

High-speed Ethernet (Gbps)

Infiniband

- Quite popular in HPC
 - 30% of Top 500 List
 - Particularly good for MPI
- Advantages
 - Latency (I- 2 usec)
 - Scalability (1000s of nodes)
- Disadvantages
 - Difficult to manage
 - Multi-stage CLOS Fabric effects

Infiniband Roadmap

4X Infiniband datarate (Gbps)

E/IB Speed Convergence

Ethernet / IB Convergence

- Speed is converging
 - Because both will use same physical layer
- HCA is converging
 - Same Mellanox HCA will support both
- Protocols are converging
 - "Infiniband over Ethernet"

Remaining delta is packet header and switch architecture / design

Arista Networks Confidential

34

Proprietary Fabrics

- Quite popular in Top 50
 - Highest performance
 - Support shared memory
- Advantages
 - Not constrained by existing standards
 - Lower latency / more bandwidth
- Disadvantages
 - Custom design, not standards based
 - Needs to be tightly coupled to CPU

Arista Networks Confidential

Fabric Summary

Choice of Fabric Depends on Application

- Proprietary Fabrics at the very high-end
- Infiniband for high I/O intensive workloads
- Ethernet for all other workloads

Fabric Protocols are Converging

- RDMA over Ethernet
- "Infiniband over Ethernet"

Physical Layer is Converging

- All fabrics will use same fiber optics and fiber cabling
- Speed and cost of physical layer will become same

Road to Exascale Summary

- Cluster Throughput Doubling every year
 - Increasing Nodes, Cores, Frequency and FLOPS/Core
- Memory and I/O Bandwidth challenging
 - Requires MCM multi-chip packaging
- Fabric scaling quite challenging
 - More bandwidth, lower latency, larger switches needed
- ExaFlop looks feasible by 2020
 - Key issue is power efficiency and system size
- Writing software is most difficult
 - O (10M) Parallelism