To appear in the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 28-July 2, 1998, Puerto Vallarta, Mexico

Lamport Clocks: Verifying a Directory Cache-Coherence Protocol

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, Mark D. Hill
Computer Sciences Department,
University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.
{pl akal , sorin, condon, markhill}@s. w sc. edu

Abstract system still behaves correctly. Currently, industrial product groups

Modern shared-memory multiprocessors use complex memory sysSpend far more time in verifying their system than in actually

tem implementations that include a variety of non-trivial and inter- designing and optimizing the system.

acting optimizations. More time is spent in verifying the A case in pointis the design of large-scale cache-coherent shared-
correctness of such implementations than in designing the systemmemory systems that are built using distributed-memory nodes
In particular, large-scale Distributed Shared Memory (DSM) sys- with private caches that are connected by a general interconnection
tems usually rely on a directory cache-coherence protocol to pro- network. Such hardware Distributed Shared Memory (DSM, [19])
vide the illusion of a sequentially consistent shared address spacesystems operate by sharing memory through a scatdiideletory
Verifying that such a distributed protocol satisfies sequential con- coherence protocolA directory protocol must present a consistent
sistency is a difficult task. Current formal protocol verification view of memory [1, 4] to the processing nodes, with sequential
techniques [18] complement simulation, but are somewhat non-consistency (SC) [11] being a common requirement. The require-
intuitive to system designers and verifiers, and they do not scalements of SC (quoting Lamport [11]) are:

well to practical systems. ‘the result of any execution is the same as

In this paper, we examine a new reasoning technique that is pre-if the operations of all the processors were
cise and (we find) intuitive. Our technique is based on Lamport's executed in some sequential order, and the
logical clocks, which were originally used in distributed systems. operations of each individual processor
We make modest extensions to Lamport’s logical clocking schemeppear in this sequence in the order speci-
to assign timestamps to relevant protocol events to construct afied by its program.’

total ordering of such events. Such total orderings can be used toThe directory itself is a data structure whose entries record, for
verify that the requirements of a particular memory consistency every block of memory, the state (i.e., cache access permission)

model have been satisfied. and the identities of the processors which have cached that block.
We apply Lamport clocks to prove that a non-trivial directory pro- The directory is often distributed along with the memory, as is the

tocol implements sequential consistency. To do this, we describecase in the protocol that we will verify. Nodes exchange messages
an SGI Origin 2000-like protocol [12] in detail, provide a times- with each other and with the directory to coordinate accesses to
tamping scheme that totally orders all protocol events, and then each block of memory.

prove sequential consistency (i.e., a load always returns the value

of the “last” store to the same address in timestamp order). Determining which messages are necessary requires delving into

the subtleties of directory protocols. In our protocol, for example,
1 Introduction a processor's message writing a block back to memory must be
Modern high-performance multiprocessor svstems are becomin acknowledged so that we can distinguish the common case from
. | high-periol P ; Y Yhe race condition where the directory has already given permis-
increasingly complicated. System designers have proposed the usg 2 P

. . : L . ion for the block to another processor and there is a “forwarding
of a variety of complex and interacting optimizations to improve e

X i 2. g message in flight.

performance. This trend ignores the difficulty of verifying that the
This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Cu(;rent pl’OtOCOl Venflcra]'tl?_g IZChmques baSEdbor! mqqlel-checklng
Material Command, USAF, under grant #F33615.94-1-1525 and ARPA order no.2Nd state-space search [18] do not seem to be intuitive to system
B550, National Science Foundation with grants MIP-9225097, MIPS-9625558, ccrRAesigners, and they do not scale well to systems of a practical size.
9257241, and CDA-9623632, a Wisconsin Romnes Fellowship, and donations fromAlternatively, protocol optimizations are sometimes justified with
Sun Microsystems. The U.S. Government is authorized to reproduce and distributﬁnprecise informal arguments and the results of protocol simula-
reprints for Governmental purposes notwithstanding any copyright notation thereon,. We ificati hni hat is both .
The views and conclusions contained herein are those of the authors and should not ins' e propose a new veri |cat|0.n tec nique t at Is both precise
interpreted as necessarily representing the official policies or endorsements, eithdtinlike informal arguments) and intuitive (unlike formal argu-
expressed or implied, of the Wright Laboratory Avionics Directorate or the U.S. Gov-ments). We have applied the technique to a non-trivial directory
ernment protocol that is similar, though not identical, to the protocol used

in the SGI Origin 2000 [12].

Most memory consistency models, including SC, are defined in
terms of a hypothetical ordering of all memory references. We pro-
pose to construct such an ordering by timestamping protocol
events that occur in the system. Our timestamping scheme makes
modest extensions to Lamport’s logical clock scheme [10]. This
scheme was used to maintain global time and implement mutual
exclusion in a distributed system. We attach logical clocks, which
are merely conceptual devices, to various parts of a multiprocessor
system. These logical clocks are used to assign logical timestamps

to the protocol transactiongi.e., actions that cause processors to
change their access permissions to blocks of data)nemdory
operations(loads (LDs), and stores (STs)) that occur while a pro-
tocol operates.

The timestamps are split into three positive integral components:
global time, local time, and processor ID. Such 3-tuple timestamps
can be totally ordered using the usual lexicographic ordering. Glo-
bal timestamps order LD and ST operations relative to transactions
“as intended by the designer.” This is made precise intitwes-
tamping claimdater in our paper. One of these claims is that for
every LD and ST operation on a given block, proper access is
ensured by thenost recentransaction on that block in Lamport
time. (in contrast, in real time, a processor may perform a LD oper-
ation on a block after it has answered a request to relinquish the
block [20]). Roughly, the other claim is that, in logical time, trans-
actions are handled by processors in the order in which they are
received by the block’s directory. (In contrast, in real time, a pro-
cessor may receive transaction-related messages

‘ Niw interface ‘ ‘ Niw lnlerface‘

Interconnection Network

N/w interface ‘

Directory Directory

Memory Memory

N/w interface ‘

FIGURE 1. The Target Multiprocessor System

out of order). Both the caches and the directory are operated by finite-state-

Local timestamps are assigned to LD and ST operations in order tanachine controllers which interact by exchanging messages in

preserve program order in Lamport time among operations thatorder to implement a coherence protocol. Notice that this system

have the same global timestamp. Local timestamps are not neededonfiguration subsumes the case where each directory node is co-
for transactions. They are used to enable an unbounded number dbcated with a processing node and the directory controls access to
LD/ST operations between transactions. Processor ID, the thirdthe local memory owned by that node. We do not assume that the
component of a Lamport timestamp, is used as an arbitrary tie-interconnect guarantees any kind of ordering of messages sent or
breaker between two operations with the same global and localreceived between nodes. We do assume that the network guaran-
timestamps, thus ensuring that all LD and ST operations are totallytees eventual and reliable delivery of all messages.

ordered.

. 2.2 Preliminaries
Sequential consistency is established in a sequence of lemmas,

using the concept afoherence epoch#&n epoch is an interval of Our directory protocol is inspired by Culler et al.'s description [4]

logical time during which a node has read-only or read-write of the SGI Origin 2000’s protocol [12]. We would like to empha-

access to a block of data. The life of a block in logical time con- size however, that our protocol differs in several respects from
sists of a sequence of such epochs. One lemma shows that, in Lanthose in the above descriptions. Directory schemes vary in the
port time, operations lie within appropriate epochs. That is, eachmanner in which they organize and allocate storage for the direc-
LD lies within either a read-only or a read-write epoch, and each tory. We will assume that each memory block along with its direc-
ST operation lies within a read-write epoch. Another lemma showstory entry is allocated storage in the local memory of some fixed
that the “correct” value of a block is passed from one node to “home node” for that block. For our purposes, a directory entry

another between epochs. The proofs of these lemmas build in a&onsists of ablock stateand a set CACHED of node IDs. This
modular fashion upon the timestamping claims, thereby localizing entry can encode one of the following 6 states:

arguments based on specification details. In other work [23], we
have proved the correctness of a bus protocol using the same proof
structure; the proofs of the lemmas for the bus protocol are exactly
as for the directory protocol of this paper, and only the proofs of ®
the timestamping claims differ.

The rest of this paper is organized as follows. Section 2 is a specifi-
cation of the directory protocol. In Section 3, we describe the
details of the timestamping scheme and prove that the protocol®
obeys SC. Section 4 discusses related work in protocol verifica-
tion. Section 5 summarizes our contributions and outlines future ,
work that can be done with our verification technique.

2 Specification of a Directory-Based Coherence Protocol
2.1 Our Target Multiprocessor System

Our target multiprocessor system (shown in Figure) consists of a
number of processing nodes and directory nodes connected by am
interconnection network. Each processing node consists of a single
processor, one or more levels of cache, and a network interface.
Each directory node consists ofdaectory that is used to store
protocol state information about a range of blocks of memory.
These memory blocks are also allocated storage at the directory
nodes. Blocks may be present in a processor’s cache in one of three
states: invalid, read-only or read-write.

Idle: No node has a valid cached copy of this block. It is only
valid at the home’s memory.

Shared The block is currently cached at one or more nodes in
the read-only state. CACHED contains a node’s ID if and only
if that node had requested a read-only cached copy of this
block.

Exclusive The block is currently cached in the read-write state
at exactly one node. CACHED contains this node’s ID.

Busy-SharedThe block had been in the Exclusive state and
another node has requested the block in the read-only state.
The directory is now in the process of transferring the block.
CACHED contains the ID of the node requesting the block in
the read-only state. Once $hared CACHED will re-include

the ID of the original owner.

Busy-ExclusiveThis is similar to th&usy-Sharedase above,
with the only differences being that the new requesting node
has requested a read-write copy of the block, and that once in
Exclusive CACHED will contain only the ID of the new
requester.

® Busy-ldle The block is in the process of going from Exlu- 2. Shared The home adds the requesting node’s ID to CACHED
sivestate to thddle state. More information about the need for and sends the block to the requester. The requester loads the
this state can be obtained from the description of the Writeback block in the read-only state into its cache.

requestin Section 2.3. 3. Exclusive The home changes the stat®tesy-Shared

When busy states behave similarly, we will Baesy-Anyto refer removes the current owner’s ID from CACHED and adds the
to a block whose state Busy-SharedBusy-Exclusiveor Busy- requesting node’s ID to CACHED. It then forwards the request
Idle. (along with the identity of the requester) to the current owner

of the block. The owner sends the block directly to the

requester, downgrades the status of the block in its cache to

read-only and sends an update message (with the block) to the

home. The home then stores the block to local memory, adds

® The requestingnode of a block is the node which issues a the former owner’s ID to CACHED and changes the state to
request (to the home node) for obtaining that block in the Shared The requester loads the block into its cache in the read-
shared or exclusive state. only state.

Our protocol is invalidation-based and allows either a single writer
or one or more readers for each block of memory. We will use the
following terms in our protocol description:

®* Theownernode of a block is either the home node (if no node 4. Busy-AnyThe home sends the requester a negative acknowl-
has cached the block with read-write access) or the node with edgment (NACK), indicating that the requester should try
read-write access. again later.
2.3 Protocol Specification Get-Exclusie: Again, the cases depend on the directory state:
. Idle: The directory changes the staté&Ebalusiveclears
CACHED and adds the requesting node 1D to CACHED. It
then sends the block to the requester, which loads the block in
the read-write state in its cache.

We will now informally describe how the protocol is used by a 5
directory controller to handle requests sent to it by requesting
nodes. Note that we have decoupled the generation of coherence
requests from processor events. For instanGeteSharedequest

could be generated even before a processor suffers a read miss i Shared All cached copies must be invalidated. The home

its cache for that block. This may happen, for example, if a pro- makes a list of the nodes corresponding to the node IDs in
cessing node is trying to tolerate memory latencies by prefetching CACHED and then clears CACHED. It then changes the state
blocks into its cache before it references them. The protocol sup- to Exclusiveand adds the requesting node’s ID to CACHED.
ports the requests in Table 1. The home sends invalidations (containing the identity of the
requester) to the nodes in the list it constructed. It then sends
the number of invalidations, along with the block, to the
requester. Each of the sharers invalidates its copy of the block
and sends an acknowledgment to the requester. The requester
waits until it receives all acknowledgments before loading the
block in the read-write state into its cache.

For each request, there are several possiblesactionswhich
depend on the directory state. Including NACKed transactions (of
which there are three), there are 14 distinct transactions (which are
listed below) in total. Transactions 13 and 14 define transactions
that correspond to a pair of requests, where one request is a Write-
back and the other is Get-Shared Get-Exclusive or Upgrade

request. All other transactions involve only one request. 7. Exclusive The home sets the directory statBtsy-Exclusive
removes the current owner’s ID from CACHED and adds the
TABLE 1. Protocol requests requesting node’s ID to CACHED. It then forwards the request
(along with the identity of the requester) to the owner. The
Current Cache | Desired Cache owner invalidates its copy of the block, sends an acknowledg-
Request Permission Permission ment with the block to the requester and sends an update mes-
- - sage to the home. The home then changes the state to
Get-Shared invalid read-only Exclusive The requester loads the block in the read-write state
Get-Exclusive invalid read-write into its cache.
Upgrade read-only read-write 8. Busy-AnyThe request is NACKed.
Writeback read-write invalid Upgrade: As before, the cases depend on the directory state, but we
now have to tackle a number of race conditions:
Transactions:

* |dle: This is impossible. This situation, and three other situa-
Get-Shared: The requester sene&Sharedequest to the home. tions which will be encountered later, will be shown to be

What happens next depends on the state of the block in the home impossible in Appendix B.

directory: . 9. Shared This is handled just like thgharedcase for th&et-

1. Idle: The home clears CACHED and adds the requesting Exclusiverequest, the only difference being that the home does
node’s ID to CACHED. It then sends the block to the requester not need to send the block in its reply to the requester. The
and sets the state hared The requester loads the block in requester then changes the state of the block in its cache from
the read-only state into its cache read-only to read-write.

10. Exclusive This means that another nod€st-Exclusiveor
Upgraderequest must have beaten thijggraderequest to the
home and the home must have sent an invalidation to the cur-

1. Here and later, our intended meaning is that the requester waits rent requester. The home NACKSs the request, forcing the

until the block arrives, after which it loads the block into its cache requester to re-try with Get-Exclusiveequest.

in the appropriate state.

11.

Busy-Any The request is NACKed. °

Writeback: The owner sends \Writeback request to the home
along with the block. One expects that the directory will be in state
Exclusivewith CACHED pointing to the requester. Some of the
subtleties of directory protocols, however, are revealed by the other
cases that race conditions make possible: .

12.

13.

14.

2.4 Processor Behavior Requirements

We also need to specify the behavior of a requester/owner with?
regard to the requests they can generate and the responses th§
need to provide to external requests :

Idle: Impossible. See Appendix B.
Shared Impossible. See Appendix B.

Exclusive The home stores the block to memory, changes the
state tddle and sends an acknowledgment to the (former)
owner. The owner then changes the state of the block inits ®
cache to invalid.

Busy-SharedWe have a race condition here. The requester’s

ID is not present in CACHED (proved in Appendix B).

Instead, another node’s ID is present. This means that this
other requester has madéat-Sharedequest to the home and

the home has forwarded the request to the current owner
(present requester). The forwarded request and the write-back ®
have managed to pass each other in the network. Our protocol
resolves this race condition by combining the two requests.
When the home receives the write-back, it changes the state
from Busy-Sharedb Sharedlt also sends the block returned in

the write-back request to the new requester, as well as a specia|,
“busy” write-back acknowledgment to the former owner which
tells it to ignore the forwarded request. The owner waits for an
acknowledgment from home, buffering any forwarded requests

it receives. When it receives a “busy” acknowledgment, it sets
the state of the block in its cache to invalid and discards the
buffered forwarded request (if any) or remembers to ignore the
first forwarded request it receives (and only after it receives
such a request can it generate a request of its own).

Busy-ExclusiveSimilar to theBusy-Sharedase, but with two
race conditions distinguished by which node’s ID is present in
CACHED:

(a) The requester’s ID is not present. This case is similar to the
race condition in th8usy-Sharedase above.

(b) The requester’s ID is present in CACHED. This means that
the requester had originally mad&at-Exclusiveequest to

the home which caused the former owner to send the block to
the requester and send an update message to the home. Subse-
guently, the requester’s writeback beat the update message to
the home. The home writes the block sent by the requester into
memory, clears CACHED, sends an acknowledgment to the
requester and changes its statBusy-ldle When the update
message finally arrives, the home goes tddleestate. The
requester then sets the state of the block in its cache to invalid.

Busy-Idle Impossible. See Appendix B.

NACKed requests need to be re-tried. The new request needs to
take into account theurrent state of the block and the type of
access to be performed. A re-tried request is equivalent to a
new network transaction and does not continue to use the
resources of the original transaction (which are freed).

Invalidations and forwarded requests for a block should be
buffered until the current outstandiet-SharedGet-Exclu-

sive Upgrade,or Writebacktransaction for that block, if any,

has been completed. For example, a node may have requested a
read-only copy of a block, and it may receive an invalidation
before it receives the reply to its request.

Consider a LD/ST operation to block B, call it OP, of some
fixed processor;plf permission to perform OP was obtained
via transaction T, we say that OFbizundto transaction T. To
ensure forward progress, we require that if transaction T is
issued in order to obtain permission to bind OP, then upon
completion of T (assuming it is not NACKed), OP is bound to
T, even if an invalidation arrived in the meantime.

We assume that in the protocol, if D&ppears before GQRn

pi's program order, then the real time at which, @Fbound is
less than or equal to the real time at whichy @mbound. There

is a discussion in Appendix A about when this real time
requirement can be relaxed.

The following two facts give processor responsibilities. Fact 1
says that a processor must ensure that a load returns the value
of a store it just did (if any) or the value it obtained for the
block otherwise. Fact 2 says that, when a processor sends a
block away, it must send the values of recent processor stores
(if any) or the values it received.

Fact 1: Let LD-OP be a LD from word w of block B at that

is bound to transaction T. Let ST-OP be the last ST to word w
of block B by p (if any) prior to LD-OP in ps program order.

(a) If ST-OP is also bound to transaction T, then the value
loaded by LD-OP equals the result of ST-OP.

(b) Otherwise, the value loaded by LD-OP equals the value of
word w of block B received by, fin response to transaction T.

Fact 2: Suppose that as a result of transactign fof sends
away block B. Let T be the most recent transaction ptipr

to T, (in real time) that caused o receive block B. Then, the
value of word w of block B sent by m response to Jis the
last ST to word w of block B in;s program order that is
bound to T, if any. If no ST to word w of block B is bound to T,
then the value of word w of block B sent byip the value
received by pin response to transaction T.

Note: As long as jpsends the correct value for each word w of
block B, then it is not required to complete all bound LD opera-
tions on block B before invalidating that block. Also, in order that
Facts 1 and 2 apply to the case that T grr@spectively, is a Get-

Shared at a processor other tharwe say that in this case proces-

We assume that a node maintains at most one outstanding

sor p sends the value of block B to itself as well as to the other
rocessor who issued the Get-Shared request. Also, when a pro-
essor does an Upgrade, we consider that it receives a value from
Lelf. Thus, corresponding to every transaction;dbpvhich an
operation is bound, a value is received pgppssibly from itself).

request for each block. Multiple requests for different blocks 2.5 Extending the Protocol to allow Silent Eviction

are allowed.

Most protocols allow a node to silently evict a read-only block

from its cache without notifying the Home. The protocol that we
have described in the previous subsections does not include such

silent evictions, which we shall refer to Rst-Shared The use of We have decided to adopt the first approach in our protocol. The
Put-Sharedcombined with buffering of invalidation messages additions to the protocol are (1)Pait-Sharedaction, (2) the dead-
leads to a rather subtle race condition. Consider the scenaridock detection done by a node (as described above) that requests
depicted in Figure 2. This involves a nodewhich initially had a Exclusive permission for a block from the Home and (3) acknowl-
block in the read-only state in its cache, evicted it silently and thenedgment of all invalidations received for a block that is invalid in
proceeded to issueG@et-Sharedequest for the same block. Mean- the cache. Th&ut-Sharedaction can be performed by any node
while, another node Nhas issued &et-Exclusiverequest for the that has a read-only copy of a block. After performing this action,
same block and this has beaten tet-Sharedrequest to the the block’s state in the cache changes to invalid. Note that we call

Home which proceeds to send an invalidation 1o N this anaction rather than aansaction (such &Set-SharedGet-
Exclusiv@. These terms will be explained further in the next sec-
FIGURE 2. Deadlock produced by allowing Put-Shared tion where we provide a formal proof of correctness of the protocol

which includes these additions.

<— bG.deadlock———=
3 A Timestamping Scheme and a Proof of Correctness

3.1 Notation and Basic Properties of the Protocol

2.GETS 4.GE

3NV 1.GETX In this section, we define some notation used to reason about the
protocol. First, we classify all coherence activity that occurs in our
system as being related to eith@msactionsor actions Transac-

tions are “global” events initiated byG@et-SharedGet-Exclusive
Upgrade or Writebackrequest for a block sent by a node, and
The invalidation is buffered and not responded to before a respons&Volve the Home node of that block and perhaps one or more
to Ny's Get-Sharedequest is received. Meanwhile, the Home for- Other nodeséctions are local events that are private to a node and
wards theGet-Sharedrequest to Nwhich buffers the request and ~ Which other nodes do not need to know about. CurrentlyPtte

does not respond to it until it receives an acknowledgment from Sharedaction is the only example of an action in our protocol.

N;. So now, we have deadlock with lnd N, each waiting fora ~ Next, we define the notion of a per-block Address-state, or A-state,
message from the other before they can proceed. of a node. The A-state of a block at a node is used to capture the

The basic problem is that of a node which had a block in the read-Home node’s view of the state of the block at that node after the
only state, silently evicted it and then re-requested it in the read-"0de has performed, or participated in, a sequence of (non-
only state. If an invalidation message now arrives at the node, doeYACKED) transactions. In particular, the A-state of a block at a
the invalidation apply to the previous “incarnation” of the block node will reflect the change in coherence status implied by a mes-
(i.e., before it was silently evicted) or does it apply to the block Sg€ sent from the Home (and possibly other nodes). This change

that will be sent in response to the outstanding request? could have been brought. abqut in response to a request made by
that node, or through an invalidation or forwarded request sent by

There are two possible ways in which we can solve this problem.the Home. A node’s A-state for a block B is defined to be one of
These methods differ in the way they process invalidations A|, Ag, or A¢ (the intended meanings are “invalid”, “shared” and
received for blocks for which a node has an outstanding request«exclusive” respectively). The A-state is set tpwhen the node

The node can either buffer the invalidation (as we do) or apply it receives an invalidation or a forwarddset-Exclusive or an
immediately (as in the SGI Origin 2000 and DASH). These alter- acknowledgment for its owWritebackrequest. The A-state is set
natives are described in [4]. to Ag when the node receives a downgrade, or a response to its
One solution is to still allow messages to be buffered until out- ©WN Get-Sharedequest. Finally, the A-state is set tg when the
standing requests are completed (or NACKed). The deadlock isN0de receives a response to its oupgrade or Get-Exclusive
broken by N which can recognize this situation when it occurs request, a_Iong with all associated invalidation acknowledgments.
i.e., when it receives a forwarded request from the very node from”S @ Special case, when the protocol performs the deadlock detec-
which it is to receive an acknowledgment. In this case, it can treation described in Section 2.5, we define the A-state of the node
the forwarded request as an implicit acknowledgment and proceed©C€iving the invalidation to change frong £ A and then to the

to bind its stores. Ncan then send the data tg rectly, telling it A-state appropriate to its original request, when it receives a block
to ignore any invalidation that has been buffered by M also from its for.mer owner. The directory entry for a blogk also has an
sends an update message to the home, as in the normal operation 8fStaté which is one of AAg or Ay (when the busy bit is not set),

the protocol. In case no invalidation has been received yétadl ~ according as the directory entry staté€iclusive Sharedor Idle

to remember to drop the first invalidation that it sees for that block, €SPectively. This allows us to refer uniformly to the A-state of a
and furthermore it cannot generate any new request for that block0de, where a node could refer to either a processor or a directory.

until it receives this invalidation. Note thatactionsdo not change the A-state. So if a processor’s A-

The other solution is not to buffer invalidation messages until any Stéte for a block is 4 it remains A even after the processor per-
outstanding requests complete, but to apply them immediately,forms aPut-Sharedand the block is invalid in the cache. Hence,
thus treating them as NACKs. The requesting node will also haveth® A-state is not just a synonym for the processor's cache state. It
to remember to drop the reply to its original request, and theniS important to realize that the A-state is a conceptual device that is
make a new request. This is the solution adopted in the SGI Originusfed to reason about the protocol. In a hardware implementation of
2000 and the DASH (as confirmed in [13]). Forward progress Con_thls protocol, the cache controller would use the actual cache state
siderations are met by the use of higher-level mechanisms thaf® detérmine future actions, and not the A-state.
detect a possible lack of progress and take over with correctiveTransactions on a given block are serialized by the block’s direc-
measures. tory. Hence, we can speak about a sequence of transactions on the
same block where the ordering is implied by their serialization at

the directory. For each node N, a sequence of t transactions oimplies an upgrade at node N. At the moment that N's A-state
block B (where the order among transactions is seen at the Homeghanges, N updates its clock to equal

defines a unique sequencgiA),..., Ay of associated A-states
for N, given some initial A-state value at N. IfyAis not equal to
A(i.1) for some & 1, we say that th&litransaction in the sequence
“affects” N and that the transaction “implies that N's A-state for and assigns the updated time to transaction T. By Claim 1, exactly

1 + max{N'’s current clock time, timestamps assigned to T by all
nodes other than N that are affected by T},

block B change from A;) to A;)”. For example, if nodes Nand those nodes other than N that are affected by transaction T send a
N, start with an initial state of y&and the sequence of transactions message to N. The above definition of timestamp is well-defined
at the Home is Ns Get-Shared N,’s Get-Exclusiveand N’s because N does not upgrade its A-state until it has received a mes-
Writeback Then the sequence of A-states farawd N, is A, Ag, sage from all other nodes that are affected by transaction T. We can
A, Apand A, Aj, A, A respectively. Th&et-Exclusiveaffects think of each affected node as sending its timestamp of T along

both nodes as well as the directory node, while Writeback with its message to N. Thus at the moment that N upgrades its A-
affects N and the directory. In the special case that a node is thestate, it has all of the information needed to timestamp transaction
directory, we say that it is also affected by all transactions resultingT.

from Get-Sharedequests, even though no change in the A-state at ~, . . .
the directory may be implied by such a transaction. Claim 3: For a transaction T on block B,
(a) The timestamps of the downgrades associated with T are less

Each transaction implies an “upgrade” of A-state (i.e. change from than or equal to the timestamp of the upgrade associated with T.

state A to Ag, from A to Ay, or from Ag to Ay) at exactly one
node. Also, each transaction implies a “downgrade” of A-state (i.e. (b) The timestamp of the upgrade associated with T is less than the
change from & to Ag, from Ay to A, or from Agto A)) at zero or timestamp of the upgrade associated with any transaction T' on
more nodes. In the special case that node N is the directory, we saplock B occurring after T in the serialization order at the directory,
that N's A-state “downgrades” as a result of ev&wgt-Shared so long as one of T or T’ is a Get-Exclusive or Writeback

transaction, even though its A-state may not be changed by theProof: Claim 3 can be proved true for all transactions T by induc-

transaction. On each transaction, exactly one node upgrades a%n the serialization order of the transactions at the block’s
zero or more nodes downgrade.

directory. The proof of Claim 3(b) relies on Claim 2 and the fact
The definitions of “affects” and “implies” in the previous two para- that the Lamport order of transactions (as defined by their global
graphs depend only on the sequence of transactions on block B aimestamps) is the same as their order in real time at the directory
B’s directory. In Claim 2 below, we show that the protocol specifi-

cation ensures that, at every node, the actual sequence of chang s and STs were always performed in program order immedi-

to the A-state for block B occurs in the order implied by the serial- ately after binding, one could simply timestamp an operation by

ization of the transactions at B’s directory, even though Messages, . wurrent time of the processor's global clock at the moment the

on successive transactions may be received out of order by a node, L P -
y y Operation is performed. Our definition is more general, and applies

Claim 1: For each transaction T, a message is sent to every procesalso to cases where a processor may perform operations out of
sor affected by T. Also, if node N upgrades as a result of T, exactlyorder.

those nodes that are affected by transaction T (other than N) send
message to N.

ow, we need to assign timestamps to LD and ST operations. If

Fhe global time stamp of an operation OP (a LD or ST) ist get
to be equal to

Proof: Claim 1 can be proved true for all transactions T by induc-
tion on serialization order of the transactions at the block’s direc-
tory.

max{g’s timestamp of the transaction to which the LD/ST is
bound, global timestamp of last LD or ST airpprogram order}

Claim 2: The sequence of A-state changes on block B at a nooleThe local timestamp of OP is defined to be 1 if OP is the first oper-

occurs in real time in the order implied by the serialization of ation in program order with global timestamp t and is otherwise
transactions on block B at its directory. equal to one plus the local timestamp of the most recent operation

in the program order.
Proof: A case-by-case proof of Claim 2 can be found in Appendix

A We now consider an example which illustrate the timestamping

scheme. Consider first a scenario containing 2 nodesrfdl N)

and 2 blocks of memory (A and B).;Nas block A in the read-

only state, while Mwants to obtain block A in the read-write state.
Imagine that each processor has a global clock that is updated iMN; also is performing stores to block B. Table 2 shows the scenario
real time. In addition, each directory entry has a global clock. The in physical time, while Table 3 shows the scenario in Lamport time
clocks are used to associate global timestamps with LD and STwhere events have been ordered by their timestamps. We assume
operations and with transactions (thus defiriagerence epochs that the global clocks of both processors are initially set to 1.
Distinct nodes may assign distinct timestamps to the same transac-

3.2 Timestamping in a Directory Protocol

tion. We only use global clocks for transactions (i.e., to delineate TABLE 2. 2 nodes, 2 blocks, physical time
epochs); local time will be used to distinguish LD/ST operations

within the same epoch. Note that we do not timestamgPthe Time N, N,
Sharedaction. 1 sendGet-Exclusive store to B
Let us first consider the timestamping of transactions. All of the for A

following applies to a fixed block B. Suppose that a transaction T .
implies a downgrade at node N. At the moment that its A-state bind load from A
changes, N increments its global clock by 1 and assigns the 3 receive invalidate for
updated time to that transaction. Suppose that a transaction T A, send ack

TABLE 2. 2 nodes, 2 blocks, physical time (a) Every LD/ST operation on block B atip contained in some
epoch for block B atjmnd is bound to the transaction that caused

Time N, N, that epoch to start.
4 receive ack for A perform bound load, (b) Furthermore, every ST operation on block B;&s gontained
invalidate from cache in some exclusive epoch for block B agpd is bound to the trans-
5 store to A action that caused that epoch to start.
Lemma 3: If block B is received by node N at the start of epoch
TABLE 3. 2 nodes, 2 blocks, Lamport time [t1,ty), then each word w of block B equals the most recent store to
word w prior to { or the initial value in the directory, if there is no
Timestamp Ny N, store to word w prior to global time.t
1.10.2 store to B The proof of the Main Theorem shows how sequential consistency
follows from the lemmas.
1.11.2 load from A .
o Main Theorem: The value of every load equals the value of the
2 invalidate A, most recent store or the initial value, if there has been no prior
send ack store.
3 receive ack for A Proof: Consider a LD at processqr pet the LD be bound to
3.1.1 store to A transaction T which has timestamp @t processor;pThere are
two cases.

Note that, in this example, the Lamport ordering placgs Nad
from A before N’s store to A even though they may occur out-of-
order in an aggressive implementation of our protocol, which buff-
ers the invalidation to apply it much later while sending the
acknowledgment immediately [20].

The first case is that the most recent ST has global time stamp at
least . In this case, from Lemmas 1 and 2, this ST is also at pro-
cessor pand is bound to transaction.TTherefore, by Fact 1 (a),

the value of the LD equals the value of the most recent ST.

Claim 4: Every LD/ST operation on block B at processpiisp The second case is that the most recent ST has global time stamp

; ; ; less than 4t In this case, by Lemma 2, no ST prior to this LD is
b d to th t t L tt ttal t 1 . ’ !
bIOOl::T(B (t)hateafrfgcc):tsSiFr)ecen (in Lamport time gttm@nsaction on bound to transaction{T Therefore, by Fact 1 (b), the value of the

LD equals the value received byip response to transaction.T
Proof: The proof of Claim 4 uses the fact that binding of opera- By Lemma 3, this value equals the value of the most recent ST or
tions is done in program order in real time (4th bullet of the initial value if there has been no prior store. QED.
Section 2.4). These real-time properties of the protocol can be
relaxed somewhat while maintaining the correctness of this claim.4 Related Work
This issue is discussed and the claim is proved in Appendix A. Most of the related work in coherence protocol verification is
based on formal methods [18] that use state-space search of finite-
3.3 Proof of Sequential Consistency state machines, and theorem-proving techniques. These are rigor-

By construction, the Lamport ordering of LDs and STs within any ©US methods that can capture subtle errors but they are currently
processor is consistent with program order. Therefore, to provel'm'ted to small systems because of the state space explosion for

sequential consistency, it is sufficient to show that the value of gﬁ:}e(r:]cér;pgfoigiilsi)/sSt\?g:;i.egofr()re);arzp(,!leu’sigf s?/(s;tlsr?r?vli?h zgr?eo
every load equals the value of the most recent store. cache block in [6], the memory subsystem of the Sun S3.mp
We frame the proof of sequential consistency in terms of coher-cache-coherent multiprocessor system is verified for one cache
ence epochs. Aoherence epocis simply a Lamport time interval ~ block in [17], the correctness of the Stanford FLASH coherence
[t1,t2) during which a node has access to a block. All LDs and STsprotocol is verified for small test programs and small configura-
that have global timestamp t wherestt < t, are contained in tions in [16], and the SPARC Relaxed Memory Order (RMO)
epoch [{,t;). A shared or exclusive epoch for block B at node N memory consistency model is verified for small test programs in
starts at timeqtif a transaction with timestamp €at N) implies [15]. In contrast, our approach can precisely verify the operation of
that N’s A-state for block B changes tg Ar Ay respectively. The a protocol in a system consisting of any number of nodes and
epoch ends at timg,twhere $ is N's timestamp of the next trans- memory blocks.

action on block B that implies a change in A-state at N. In the
example from the previous section, the shared epoch of A at N
ended at global time 2 while A's exclusive epoch atshrted at
global time 3. We build up to the proof of sequential consistency
using the two timestamping claims of Section 3.2.

A formal approach devised by Shen and Arvind uses term rewrit-
ing to specify and prove the correctness of coherence protocols
[22]. Their technique involves showing that a system with caches
and a system without caches can simulate each other. This
approach lends itself to highly succinct formal proofs. We find
Lemma 1 shows that two processors cannot have “conflicting” per-Lamport clocks easier to grasp, while not lacking expressive
mission to the same block at the same (Lamport) time. Lemma 2power. It is not clear whether or how the two techniques comple-
states that processors do LDs and STs within appropriate epochsment each other. Term rewriting relies on an ordering of rewrite
Finally, Lemma 3 shows that the “correct” block value is passed rules (each of which corresponds to an event) and, as such, may
among processors and the directory between epochs. Proofs of theenefit from the Lamport clock technique which can order events

lemmas can be found in Appendix A. in logical time.
Lemma 1: Exclusive epochs for block B do not overlap with either There is another body of work that delves into memory consis-
exclusive or shared epochs for block B in Lamport time. tency models that are more aggressive than sequential consistency

Lemma 2: [1, 2, 3,5, 7,8, 9, 21]. Handling more aggressive models leads to

formalisms that are more powerful but more complex than we [5]
require (e.g., they must handle non-atomic stores). Furthermore,
much of this work seeks to characterize when programs will
appear sequentially consistent even when running on the more
aggressive hardware, an issue that is moot for us. [6]

Informal intuitive reasoning is more tractable and easier to under-
stand than formal analysis, but it becomes less convincing as it
becomes more informal. Moreover, the flaws in memory system
designs are generally the subtle types of flaws that would bem
missed by high-level intuitive reasoning. Informal reasoning is
often combined with extensive simulation in an effort to explore
the state space for bugs in the protocol, but simulation is expensive
and cannot be guaranteed to uncover every obscure bug in a prot({g]
col. In other work [23], we show that Lamport clocks also offer the
opportunity to analyze, formally or semi-formally, specific parts of
the protocol to prove the validity of an optimization, whereas other
verification techniques often require complete analysis of the sys-
tem before any optimization can be validated. Lamport clocks havejg
also been used in other research, including a paper by Neiger and
Toueg [14] that uses the clocks to determine what knowledge is
available to each processor in a distributed algorithm.

[10]
5 Conclusions and Future Work
Shared-memory systems are becoming increasingly complex and
the need of the hour is for better verification tools that are intuitive, 11]
precise and scalable. We propose a verification framework basecg
on Lamport’s logical clock scheme that creates a total order of rel-
evant protocol events. This order is a constructive realization of the[lz]
ordering hypothesized in the definitions of various memory consis-
tency models. We can then construct proofs that show that the
requirements of a particular memory consistency model are met in
this total order. The notion of coherence epochs arises naturally[la]
from such a logical ordering of events, and this notion clarifies the
operation of the protocol as well as its proof of correctness. We (14
have presented our technique and then successfully applied this
technique to the proof of a non-trivial directory cache-coherence
protocol. We expect the technique to apply equally well to any
other directory protocol, or a bus-based protocol (as shown inl15]
[23]).

Future work with Lamport clocks will extend the range of systems

to which our analysis can be applied, and we plan on devising a
generic proof that can be easily tailored to new systems. The newie)
systems that will be analyzed may include: clusters of SMPs, sys-
tems with consistent 1/0, and systems that obey consistency mod-
els other than sequential consistency. We also believe that Lamport
clocks are a useful tool for reasoning about the possibilities of
deadlock, livelock, and starvation in a directory protocol, and we [17]
intend to explore this area of research.

6 References

[1] SaritaV. Adve and Mark D. Hill. Weak Ordering—A New [18]
Definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecturpages 2-14, Seattle,
Washington, May 28-31, 1990.

19
[2] Hagit Attiya and Roy Friedman. A Correctness Condition for 9]
High-performance Multiprocessors. FProceedings of the 24th
Annual ACM Symposium on the Theory of Compufiages 679— 20
690, May 1992. [20]
[3] William W. Collier. Reasoning About Parallel Architectures
Prentice-Hall, Inc., 1992. [21]

[4] David Culler, Jaswinder Pal Singh, and Anoop Gupraft of
Parallel Computer Architecture: A Hardware/Software Apprgach
chapter 8: Directory-based Cache Coherence. Morgan Kaufmann,
1997.

Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory
Access Buffering in Multiprocessors. Rroceedings of the 13th
Annual International Symposium on Computer Atchitecipaiges
434-442, June 1986.

Asgeir Th. Eiriksson and KenL. McMillan. Using Formal

Verification/Analysis Methods on the Critical Path in Systems
Design: A Case Study. IRroceedings of the Computer Aided

Verification Conferenceliege, Belgium, 1995. appears as LNCS
939, Springer Verlag.

Kourosh Gharachorloo, SaritaV. Adve, Anoop Gupta, John L.
Hennessy, and Mark D. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-1199,
University of Wisconsin — Madison, December 1993.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecturgpages 15-26, May 1990.

Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo.
Proving Sequential Consistency of High-Performance Shared
Memories. In Symposium on Parallel Algorithms and
Architectures pages 292-303, July 1991.

Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed SystemCommunications of the AGN1(7):558-565,
July 1978.

Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess progratBEE Transactions on
ComputersC-28(9):241-248, September 1979.

James P. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. IProceedings of the 24th
International Symposium on Computer Architectienver, CO,
June 1997.

Daniel Lenoski. Personal communication, March 1998.

Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and
Common Knowledge in Distributed System¥ournal of the
Association for Computing Machinerny/0(2):334-367, April
1993.

Seungjoon Park and David L. Dill. An Executable Specification,
Analyzer and Verifier for RMO (Relaxed Memory Order). In

Proceedings of the 7th Annual ACM Symposium on Parallel
Algorithms and Architecturespages 34-41, Santa Barbara,

California, July 17-19, 1995.

Seungjoon Park and David L. Dill. Verification of FLASH Cache
Coherence Protocol by Aggregation of Distributed Transactions.
In Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architecturepages 288-296, Padua, Italy, June
24-26, 1996.

Fong Pong, Michael Browne, Andreas Nowatzyk, and Michel
Dubois. Design Verification of the S3.mp Cache-Coherent Shared-
Memory SystemlEEE Transactions on Computeré7(1):135—
140, January 1998.

Fong Pong and Michel Dubois. Verification Techniques for Cache
Coherence ProtocolACM Computing Survey29(1):82-126,
March 1997.

J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared
Memory: Concepts and SystemEEE Parallel and Distributed
Technologypages 63—79, 1996.

Christoph Scheurich. Access Ordering and Coherence in Shared
Memory Multiprocessors. Ph.D. Dissertation CENG 89-19,
University of Southern California, May 1989.

Dennis Shasha and Marc Snir. Efficient and Correct Execution of
Parallel Programs that Share MemoACM Transactions on
Programming Languages and System$(2):282-312, April
1988.

[22] Xiaowei Shen and Arvind. Specification of Memory Models and Proof: Let OB be a LD or ST operation on block B with global
Design of Provably Correct Cache Coherence Protocols. Group timestamp 4. Since OB's timestamp is4 OP, cannot be bound to
Memo 398, Massachusetts Institute of Technology, June 1997. 4 transaction with timestamp greater thar_et T, be the transac-

[23] Daniel J. Sorin, Manoj Plakal, Mark D. Hill, and Anne E. Condon. tion on block B with the largest timestamp, sgyat g such that
Lamport Clocks: Reasoning About Shared-Memory Correctness. <t,. We need to show that @B not bound to a transaction occur-

Technical Report CS-TR-1367, University of Wisconsin-Madison, ring earlier than T, hence OP must be bound to4T
March 1998.
Let OP, be the earliest LD/ST operation (not necessarily to block

Appendix A: Proofs of Claim 2, Claim 4, and the Lemmas B) in p’s program order with the global time stamp Note that

Claim 2: The sequence of A-state changes on block B at a node©QP1 may equal OF Also, since OPis the first OP with global
occurs in real time in the order implied by the serialization of timestamp 4 OP; must be bound to the transaction with times-
transactions on block B at its directory. tamp % at p. By the fact that the Lamport order gteguals the

])]) real-time order of changes of A-state at the order in which
Proof: Claim 2 is easily seen to be true for block B's directory changes in A-state at a processor are written in real time is the
entry since the directory processes transactions in order. Now, supsame as the Lamport ordering of the corresponding transactions at
pose that Tand T, are two transactions affecting block B of p that processor. Hence, the value of the A-state for block B at the
where T, occurs before Jin the transaction serialization order at rea| time that OPis bound must be the value implied by a transac-

the directory, and that,Tis the first transaction aften Bn block B tion on block B occurring no earlier thag. Bince ORis bound in
that affects p From Claim 1, a message is sent fd@th as a real time no later than QRs bound, it cannot be bound to a trans-
result of T and T, (although these may not arrive atip order). action occurring earlier than, Tas required. QED.

We need to show that the change in A-state resulting frpat f .
occurs before the change in A-state resulting from\ie consider ~ <omment: the proof of Claim 4 uses two facts about the protocol
two cases. relating real time to Lamport time: (a) the order in which changes

)) in A-state at a processor are written in real time is the same as the
* Case 1:p requests transactionT If p; receives messages | amport ordering of the corresponding transactions at that proces-
relating to transactionlbefore phas changed its A-state cor- sor, and (b) binding occurs sequentially in real time. However, the
responding to { (transactions 3,6,7,9 from Section 2.3), then protocol can be relaxed while maintaining the correctness of Claim
pi buffers such messages until all processing of transaction T 4. For example, suppose that the A-states are updated periodically
has been completed (refer to the 3rd bullet in Section 2.4). Oth-(using queues to order pending updates) and that during an update
erwise (transactions 1,2,5,9,12,13,14), there is no that ¥8ay p of transactions with timestamps in the ranget,jt the binding

A-state could change due tg Before finishing T. process is suspended. The order in which the A-states are updated
* Case 2p; does not request transaction. First, suppose that need not agree with the order of the Qorrespondlng transactions, as
T, implies that ps A-state changes fromAto Ag or A. long as at the end of the update period, the A-state value of each

Therefore, T must result from &et-Sharecr Get-Exclusive block equals that implied by the most recent transaction prior to
request from a processof, pther than p In these cases (trans- that with timestamp,t Once the A-states are up to date, binding of
actions 3 and 7 from Section 2.3), the directory enters the busy-D/STS can be resumed. Binds of the next contiguous block of
state and remains in that state until it receives a response front-D/ST operations on blocks for which the A-state is set appropri-

pi, at which point ps state has been changed tg @ A, as ately can be performed out of order, thus relaxing the real time
ajppropriate. Therefore, the change in A-state, @mplied by ordering assumption for blnd_s, as Iong as potential c_hanges in A-
T, occurs before the directory leaves the busy statés fot state are being queued until the binding process is again sus-

NACKed, and so the directory does not send a message to pPended.

regarding transaction,Tuntil after leaving the busy state for | emma 1: Exclusive epochs for block B do not overlap with either

T,. Furthermore, jdoes not change its A-state as a resultof T exclusive or shared epochs for block in Lamport time.
until it receives a message from the directory regarding T

Therefore, the change in A-state corresponding t@durs Proof: Let [4,t5) be an exclusive epoch for block B at node N. Let
after the change in A-state corresponding {o T transaction T cause the epoch to begin. We claim that no node has
The only other possible case is thatiplies that ps state ~ @n epoch for block B that overlaps with,{§).

changes from Ato A. Hence, T must result from &Get- We first argue that no epoch for block B that starts prior to jme t
Exclusiveor Upgraderequest from a processoy, pther than gverlaps with [1,t,). By Claim 3 (b), such an epoch E would have
pi. In this case, the only way thap Tan affect pis if T is to result from a transaction occurring beforgimthe serialization
requested by;pT, could be &Get-Shareda Get-Exclusiveor order. Therefore, the end of epoch E would have to result from
anUpgrade since the actual state of the block B jis pache some transactionglon block B occurring no later than {possi-
could be either read-only, or invalid due tBt-Sharedaction bly To = Ty). Claim 3 (a) ensures that the end of epoch E must be
which does not affect the A-state. E iB aGet-Sharedr Get- less than or equal to the timestamp Qfa'fa unique node, sayN

Exclusivethen, by the definition of A-state in Section 3.1, the that upgrades its A-state as a result gf Also, by Claim 3 (b)

A-state at pchanges from Ato A, (due to) and then imme- again, the timestamp ofyby N, must be less than the timestamp

diately to Ag or Ay (due to), as appropriate. If JTis an of T, by N. Hence E ends in Lamport time befoket}) starts.

Upgrade it is NACKed by the directory (due tg,Tiransaction . o .)

10 from Section 2.3). Since ,Taffects p it cannot be a Clearly, the only epoch starting at timeig at node N, since N is

NACKed request, and therefore it must be requestegl &iyep the only processor whose A-state is npfer transaction To

p; has changed its state tg. ED. complete the proof, we note that the next transaction, sagnt

))] block B after T, must be assigned timestampby N. If node N
Claim 4: Every LD/ST operation on block B at processpiisp ypgrades its A-state as a result ¢f Claim 3 (a) ensures thab

bound to the most recent (in Lamport time gttpansaction on timestamp of § must be greater thap Hence, by Claim 3 (b), if
block B that affects;p

an epoch E starts as a result of transactiparT transaction later
than T,, E must start at a time greater thgraes required. QED.

Lemma 2: (a) Every LD/ST operation on block B atip con-
tained in some epoch for block B aipd is bound to the transac-

tion that caused that epoch to start. (b) Furthermore, every ST

operation on block B afj [contained in some exclusive epoch for

block B at pand is bound to the transaction that caused that epoch{E’1

to start.

Proof: Let OP be a LD/ST on block B with global timestagBy
Claim 4, OP is bound to the most recent transaction =t fater
than b, say T, that affects block B ofjpLet t; be p's timestamp

of T,. Part (a) of Lemma 2 then follows for the following reasons:
Since OP is bound to;TT; must imply that ps A-state for block

B changes to Aor Ay and so an epoch for block B agtgparts at
time t;. Moreover, since Tis the most recent transaction no later
than b that affects block B of;pthe epoch starting at inust end

at some time later thanp.tTherefore, OP is contained in some
epoch for block B atj@nd is bound to the transaction that caused
that epoch to start. Part (b) follows from the further observation
that if OP is a ST then;Tmust cause an exclusive epoch to start at
pi- QED.

Lemma 3: If block B is received by node N at the start of epoch

[t1,tp), then each word w of block B equals the most recent store to

word w prior to { or the initial value in the directory, if there is no
store to word w prior to global time.t

Proof: We prove the claim for all nodes by induction on epoch

starting time {. The basis case is the first action that causes block
B to be sent. In this case the block is sent from the directory and

equals the initial value of the block in the directory.

Suppose that the claim is true for all epochs with starting time less

than g, and suppose that block B is sent from noge¢d\node N

in response to transaction, which has timestamp &t N;. First,
suppose that §is not equal to N Let transaction J'be the most
recent action on block B prior to, Th serialization order. SincegN
sends block B in response tq, Ty must be cause an exclusive
epoch to start at fNand therefore affectsgNLet Ty have times-
tamp § at Ny. From Claim 3, Iy's exclusive epoch for block B
starting at timegmust end prior to timg tMoreover, since Jand

T, are consecutive transactions on block B in serialization order,

there is no epoch at any processor between the time §mt N
epoch ends and$ epoch begins at timg.t

We consider two cases. The first case is that the last ST to word w

of block B prior to time {is actually prior tod Therefore, no STs

to word w of block B are bound to, TBy Fact 2, the value Wof
word w of block B sent by pis the value received by Nn
response to d By the induction hypothesis, y¥quals the value

of the most recent store to word w of block B prior to tigertthe
initial value of word w in the directory, if no prior store. Therefore,
the value sent by fNequals the value of the most recent store or the
initial value in the directory, if no prior store.

The second case is that the last ST to word w of block B prior to

time t, occurs after timeyt By Claim 4 and Lemma 2 (b), such STs
must be done by nodgyNBy Fact 2, in this case the value of word
w of block B sent by jlin response to {lis the last ST to word w

of block B in g's program order that is bound tg. Moreover, the
last ST bound to Jhas global time stamp less thanTherefore,
the value sent by fNequals the value of the most recent store to
word w of block B. This completes the proof of Lemma 3 in the
case that, in response tg, Block B is sent by a node other than p

10

The situation in which jEN;, (i.e., in response to,Tthe value of
block B is sent from jpto itself) is similar, but only the first case
above can arise. QED.

Appendix B: Impossible Transactions

Upgrade with Directory being Idle: Assume thaisghe processor
erforming theUpgradeon block B and that it obtained read-only

ccess with transaction T. Some other processor must have per-
formed aGet-Exclusiveor Upgradeand then aVritebackbefore
pi's Upgradereached the directory. Let transaction T’ be the first
Get-Exclusiveor Upgrade transaction on block B after T in the
serialization order, and assume that it occurs at processdr p
(via transactions 6 or 9 foBet-Exclusiveor Upgrade respec-
tively) ensures that;pnust wait for an acknowledgment from p
before obtaining read-write access. In turp,cannot send an
acknowledgment until it¥)pgradeis processed by the directory.
Until then, p cannot do &Vriteback and thus the Directory cannot
beldle.

Writeback: Assume that; 5 the processor performing thérite-
backon block B and that it obtained read-write access with trans-
action T.

® Directory is Idle Some other processor must have performed a
Get-Exclusiveand then aWriteback before ps Writeback
reached the directory. Let transaction T’ be the Gest-Exclu-
sive transaction on block B after T in the serialization order
and assume that it occurs at procesgdi@vever, T' (transac-
tion 7) ensures that the directory will go irBaisy-Exclusive
until it receives a message from plence, pcannot obtain
read-write access beforgspWritebackhas been processed by
the directory, becausg pannot receive a reply from the Home
until pi's Writebackrequest is received and processed by the
directory.

® Directory is SharedFor the directory to b8hared some other
processor must have performe@Get-Sharedefore gs Write-
backreached the directory. Let transaction T' be the Gt
Sharedtransaction on block B after T in the serialization order
and assume it occurs at processoHpwever, T’ (transaction
3) ensures that the directory will go inBusy-Sharedintil it
receives a message from pherefore, ps Writebackcannot
see &Shareddirectory.

® Directory is Busy-SharedSome other processor must have
performed aGet-Sharedbefore ps Writeback reached the
directory. Let transaction T’ be the fiGet-Sharedransaction

on block B after T in the serialization order and assume it
occurs at processo[. " (transaction 3) ensures that the direc-
tory will go into Busy-Sharedintil it receives a message from
pi. Once the directory enteBusy-SharedCACHED only con-
tains 9’3 ID. Therefore, ps ID cannot be in CACHED.

Directory is Busy-ldle Some other processor; pust have
performed aGet-Exclusive received the block from;pand
performed aWritebackthat beat g5 update message to the
directory. At this point, any processor that mak&esShared
Get-Exclusive or Upgrade request for B will get NACKed
(transactions 4, 8, and 11). Onlygan change the state out of
Busy-Idle and this will happen when its update message
arrives at the directory. N&/ritebackcan occur while ilBusy-

Idle because no processor has read-write access gjready

in the invalid state once it has sent the block}o p

