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Abstract—We propose a methodology to locate the most critical
nodes to network robustness in a fully distributed way. Such
critical nodes may be thought of as those most related to the
notion of network centrality. Our proposal relies only on a
localized spectral analysis of a limited neighborhood around
each node in the network. We also present a procedure allowing
the navigation from any node towards a critical node following
only local information computed by the proposed algorithm.
Experimental results confirm the effectiveness of our proposal
considering networks of different scales and topological charac-
teristics.

Index Terms—network connectivity; node criticality; node
centrality; complex networks; network science.

I. INTRODUCTION

Currently, very large technological networks, such as the
Internet, overlay networks, and online social networks, play a
key role in the modern society. From the network management
standpoint, it is of upmost importance to have means to
understand in an efficient way the level of connectivity of these
networks. This directly relates to how robust these networks
are to possible partition as such knowledge is useful to assess
potential security threats and performance bottlenecks.

The study of network robustness receives a lot of atten-
tion in many areas related to network science [1], [2], in
particular research in complex communication networks [3]–
[9]. Network robustness basically relates to the analysis of
topological properties of complex networks to evaluate how
well such networks are connected and how close they are to be
fragmented, thus disrupting their functionality. Although many
previous works evaluate network robustness in general [3]–[9],
only fewer recent studies [10]–[12] address the particular topic
of identifying the most critical nodes to network robustness
in a distributed way. Such critical nodes may be thought of
as those most related to the notion of network centrality,
i.e., the nodes presenting the highest impact on connectivity
in the case of imminent network fragmentation or those the
most important to efficient information spreading in diffusion
networks.

In this paper, we propose a distributed methodology to
assess and locate critical nodes to network robustness based on
spectral analysis [13]–[15] (see Section II for a background).
We also present a complementary procedure that allows one
to navigate from any node towards a critical node following

only local information computed by the proposed method-
ology. We evaluate the proposed methodology in different
networks, ranging from synthetic generated networks to a real-
world network trace. Results confirm the effectiveness of the
proposed methodology in locating the most critical nodes to
network robustness in a distributed manner within networks
with different characteristics and scales.

This paper is organized as follows. In Section II, we review
some theoretical concepts upon which we build our proposal.
We introduce our proposed methodology and navigation pro-
cedure in Section III. Experimental results are presented in
Section IV. In Section V, we analyze related work. Finally, in
Section VI, we conclude and discuss future work.

II. BACKGROUND ON SPECTRAL ANALYSIS

In this section, we provide some basic definitions and
background concerning spectral analysis that are needed for
the development of our work.

A. Graph

Consider a n node network represented as an undirected
graph G = (V,E), with |V | = n vertices and |E| edges. For
a node i ∈ V we denote as di the degree of node i. This
definition is sufficient for representing undirected graphs with
at most one connection between any given pair of different
vertices and no connection from a vertex to itself.

B. Adjacency Matrix

The adjacency matrix A(G) of the graph G is defined as

Aij =

{
1, (i, j) ∈ E,
0, otherwise.

(1)

Since the adjacency matrix is square and symmetric, it follows
that it has a full set of real eigenvalues and orthogonal
eigenvectors and can be decomposed as A = QΛQT , where
Λ is the diagonal matrix of (real) eigenvalues and Q is the
orthogonal matrix of eigenvectors. Further, it should be noticed
that adding all the entries of a row on the adjacency matrix
results in the degree of the node represented by that row. This
same property also holds for adding up the entries of a column.978-1-4577-1792-5/11/$26.00 c©2011 IEEE



C. Diagonal Degree Matrix

The diagonal degree matrix D is the matrix that has the
degree of the nodes at the diagonal and zeros elsewhere. It is
defined as follows:

Dij =

{
dn if i = j = n,

0 otherwise,
(2)

where dn is the degree of node n.

D. Laplacian Matrix

The Laplacian matrix of the graph G, denoted L(G), is
defined as

Lij =


di, i = j,

−1, (i, j) ∈ E,
0, otherwise.

(3)

The Laplacian of a graph is also often defined in terms of
the adjacency matrix A (Eq. (1)) as L = D−A, where D is
the diagonal degree matrix (Eq. (2)). It should be noted that
the vertex sequence on the representation of D and A needs
to be the same.

From the definition (3) it can be seen that the sum of all
columns of L is the zero vector (~0), as for each line there
is an entry with the degree of the node and a −1 for each
connection on the respective node. Therefore, it follows that
L is singular and that the all ones vector (~1) is in the Nullspace
of L. As a consequence, 0 is an eigenvalue of L and ~1 in an
eigenvector associated to the eigenvalue 0.

The Laplacian matrix is also known as Combinational
Laplacian matrix, and we will from now on refer to it this
way in order to distinguish it from the Normalized Laplacian
matrix defined in the following.

E. Normalized Laplacian Matrix

The normalized Laplacian matrix [16] of the graph G is
defined as Lij(G) = I − D−1/2AD−1/2, where I is the
identity matrix and D is the diagonal degree matrix (2), that
is

Lij(G) =


1, i = j,

− 1√
didj

, (i, j) ∈ E,

0, otherwise.

(4)

Alternatively the Normalized Laplacian matrix can also be
defined as Lij(G) = D−1/2LD−1/2 and is thus closely related
to the Combinational Laplacian matrix. Nevertheless, different
from the Combinational Laplacian, the Normalized Laplacian
matrix L has some key properties that are of particular interest
in this work [13]–[15]: (i) all its eigenvalues are between 0
and 2, i.e., 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) ≤ 2; and
(ii) for networks with a single connected component, λ2(L)
is the smallest non-zero eigenvalue and is less than 1 if the
graph is not complete, reflecting the graph connectivity level
approaching 0 as the graph tends to be less connected. This

particular eigenvalue, λ2(L), also known as the spectral gap,
is extensively used in this work and it will be referred to
simply as λ2 hereafter. The property of having all eigenvalues
normalized between 0 and 2 makes the normalized Laplacian
matrix well suited for comparing the spectrum of graphs with
different sizes.

III. PROPOSED METHODOLOGY

Our goal is a distributed methodology capable of locating
the critical node(s) to network robustness. The rationale behind
our proposal is that if a particular topological characteristic of
the network causes the spectral gap λ2 to be low, this same
characteristic also causes λ2 to be locally low in a relatively
small neighborhood located around such characteristic. This
brings up the concept of assigning a local value for each node
based on λ2 computed for a neighborhood of a given number
h of hops around this node. By doing so in parallel for each
node in the network, every node then has itself attributed with
a local value that can be compared in order to rank the nodes in
terms of their relative local importance to network robustness.

A. Locating the Critical Node(s) of the Network

We observed experimentally that the locally computed λ2

has a bias towards higher values on nodes with higher degrees,
thus causing the local values in principle to be over sensitive
to the presence of high degree nodes. In order to mitigate this
unsuitable effect, the local value κv we assign to each node v
is actually given by

κv =


λv

2

log2(dv)
, dv > 1,

∞, dv = 1,
(5)

where λv
2 is the spectral gap of the h-neighborhood of node v

(i.e., the subnetwork composed by all nodes within h hops
of node v), and dv is the degree of node v. If dv = 1 (i.e.,
node v is a leaf), then log2(dv) = 0 and thus we consider
κv = ∞ since a leaf is indeed the least critical node in the
network. The same radius is used to define the h-neighborhood
around every node. From this definition, we remark that each
node v only requires the knowledge of local information
concerning a h-neighborhood surrounding itself to compute its
κv . Therefore, there is no need for the full network topology
to be known by any particular node and κv can be computed
in a fully distributed way for all nodes within the network.

Once each node v has its assigned κv value, they compare it
to the corresponding values of all nodes in the h-neighborhood
used to compute κv and identify the node with the lowest κv

value. After identifying such a node, they indicate to that node
that it has the lowest κv visible to them. Each node will in
turn account the indications received and use it to calculate a
score Sv defined as

Sv =
NumberOfIndications

|h-neighborhoodv|
, (6)



where NumberOfIndications is the total number of in-
dications received by node v and |h-neighborhoodv| is the
number of nodes in its own h-neighborhood. It follows from
this definition that 0 ≤ Sv ≤ 1 at each node v because
NumberOfIndications can vary from 0 to the number of
nodes within its h-neighborhood (i.e., |h-neighborhoodv|).

Each node v then has its own Sv score; and at least one
node in the whole network has a score Sv = 1.† This happens
because in general there is a minimum κv value for the entire
network and the node v associated to it is thus identified as the
lowest κv by all of the elements of its h-neighborhood. The
nodes with Sv = 1 are defined as the critical nodes of the
network, i.e. the nodes that represent the most fragile points
of the network robustness.

Figure 1 shows an example h-neighborhood established
around the node in black with 4-hops around it. In this particu-
lar h-neighborhood, all nodes in gray perceive the central black
node as the one with the lowest κv in this h-neighborhood. As
a consequence, the black node also perceives itself as having
the lowest κv in its h-neighborhood. This means the black
node has Sv = 1 and therefore is the critical local node of
this h-neighborhood, i.e., it is the node whose removal would
cause the most impact on the robustness of this particular h-
neighborhood.

It is important to remark that the proposed methodology can
be implemented in a fully distributed way. As each node only
needs local knowledge about a h-neighborhood surrounding
it, the proposed methodology can be implemented to analyze
complex undirected networks (not necessarily only techno-
social or communication networks) and locate the fragile
points of these networks in offline mode in multi-core environ-
ments with shared or distributed memory as long as there is
full knowledge of the considered networks. In the case of P2P-
like networks, such as router-level or online social networks
for instance, the proposed methodology can be implemented
in parallel at each node with complexity limited to the needed
local knowledge and thus requiring only partial and limited
knowledge of the network. Dealing with directed networks
(e.g., twitter networks) is left for future work.

B. Navigating towards a Critical Node

Note that in practical networks one may navigate from any
given node to a critical node (i.e., those with Sv = 1) using
the κv and Sv values assigned to each node. This can be
done following Procedure 1. Starting from any node at the
network, proceed to the node it points as having the lowest
visible κv in its h-neighborhood (line 1), i.e. the indicated
node in the process of computing Sv for a h-neighborhood (see
Section III-A). At this point, two possible cases can arise at the
indicated node: either (i) it points to another node as having

†There might be rare scenarios where no node in the network has Sv = 1
if the network is regular enough to have many h-neighborhoods that are iso-
spectral, as for instance a ring, thus yielding equal lowest values to κv in
different nodes composing the h-neighborhood. In these atypical cases, each
node considers the node with the lowest id number as the one with the lowest
κv it sees, thus ensuring at least one node has a score Sv = 1.

Procedure 1 NAVIGATETOCRITICALNODE(currentNode)
Input: currentNode
Output: criticalNode
1: lowKNode← GETLOWESTKNODEVIEWED(currentNode)
2: if lowKNode 6= currentNode then {This is case (i)}
3: return NAVIGATETOCRITICALNODE(lowKNode)
4: else {This is case (ii)}
5: if GETSVALUE(currentNode) = 1 then
6: return currentNode {Navigation finished}
7: else
8: nextNode← GETNODEKNOWSLOWERK(currentNode)
9: return NAVIGATETOCRITICALNODE(nextNode)

10: end if
11: end if

the lowest known κv to it, i.e., the current node indicates
another node as the critical node it sees in its h-neighborhood;
or (ii) it points to itself as the node with the lowest κv in
its h-neighborhood, i.e. the current node is the local critical
node for its h-neighborhood. In case (i), the same procedure
is simply repeated until case (ii) occurs (line 3). This means
one can navigate through the network following nodes with
decreasing κv values until reaching case (ii).

Upon reaching case (ii), the current node checks its own
Sv score (line 5). If Sv = 1, then a critical node was reached
and the navigation finishes (line 6). If Sv 6= 1, there is at least
one node in the h-neighborhood seen by the current node that
knows another node with a lower κv than the current node.
The current node knows these nodes because they belong to
its h-neighborhood, but they did not indicate it as having the
lowest known κv in their h-neighborhood. Out of these nodes
that know a lower κv , the current node can then randomly
select one node as the next node (line 8) and the navigation
proceeds towards it (line 9). As this next node necessarily
knows another node with a lower κv than itself, this next step
in the procedure falls into case (i) pointing towards another
node having lower κv (line 3), ensuring that the navigation
proceeds following nodes with decreasing κv values until a
critical node is reached (line 6).

Two remarks about the described navigation procedure are
important. First, the navigation procedure allows no loops.
This is because the navigation procedure always progresses
to nodes with lower κv than the current node or at least to a
node that knows another node with lower κv than the current
node. Second, as a consequence of the first remark and as the
network is finite, from any given node one always reaches a
critical node for the entire network, i.e., a node with Sv = 1.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed methodology in different net-
works, ranging from synthetic networks to real-world ones.
The idea is to study the performance and behavior of the
proposed methodology when locating the critical points of
networks with different characteristics and at different scales.

A. Synthetic networks

We first evaluate the proposed methodology on synthetically
generated networks following the Erdös-Rényi (ER) [17] and



Fig. 1. h-neighborhood in which a node (in black) has Sv = 1.

Barabási-Albert (BA) [18] models for random and scale-
free networks, respectively. Such networks have well-known
properties and behavior under certain conditions, thus allowing
proper comparison and analysis of the obtained results and
evaluation on how the proposed methodology performs on
them.

The proposed methodology intends to identify and locate
nodes that are critical to network robustness. Therefore, the
rationale of the evaluation performed here is to use the results
of the proposed methodology as a strategy for identifying
nodes for targeted attacks against the considered networks and
then assess the impact of this on the network robustness as
compared to classical strategic attacks, such as first removing
the highest degree node. Therefore, we use the proposed
methodology to select a critical node to be removed from the
original network and then from a replica of this same network
we remove the highest degree node. Next, we compute and
compare the changes in the spectral gap λ2 caused by the
different attack strategies against the same network. In the
cases where the proposed methodology returns more than
one critical node, just one is randomly chosen for removal.
Likewise, in the strategy of first removing the highest degree
node, if there is more than one node with the same highest
degree, just one is randomly chosen for removal.

1) Barabási-Albert (BA) networks: The BA networks we
use have 1,000 nodes and are generated considering 2 con-
nections generated for each newly attached node. This kind
of scale-free networks are chosen because they are known to
be particularly vulnerable to strategic attacks that first remove
their highest degree node at each step [3] and therefore provide
a suitable basis for comparison.

Figure 2(a) shows a scatter plot of the λ2 variation (rep-
resented by ∆λ2), i.e., the negative impact on the network
connectivity level represented by a decrease in the spectral gap
of each network graph obtained from 50 BA networks when

both attack strategies are applied at the same network. The h-
neighborhood used for running the proposed methodology in
this experiment was empirically set to h = 4. The correlation
between variations in λ2 due to both attack strategies is quite
high (R2 = 0.9976), indicating that both strategies impact BA
networks similarly. This is actually expected as BA networks
are known to be vulnerable to strategic attacks based on first
removing the highest degree nodes because they provide key
network connectivity. The proposed methodology is successful
in identifying such nodes as the critical nodes in the network,
thus rendering quite similar λ2 variations as a consequence,
and hence high correlation between the strategies. This result
stresses the effectiveness of the proposed methodology in
identifying the critical nodes in BA networks.

2) Erdös-Rényi (ER) networks: The considered ER net-
works have 1,000 nodes and an attachment probability of
0.0045 for each node pair. ER networks are known to be
less sensitive than BA networks to the strategic attack of first
removing the highest degree node [3]. Figure 2(b) shows a
scatter plot of the λ2 variations obtained from 50 ER networks
when both attack strategies are used at the same network. The
h-neighborhood used for running the proposed methodology
in this experiment was empirically set to h = 6. ER networks
are known to be less vulnerable then BA networks to strategic
attacks based on first removing the highest degree node;
indeed the impact in λ2 is significantly smaller in the results
of Figure 2(b) than in those of Figure 2(a). Although ER
networks face a smaller degradation in network connectivity
under a strategic attack of first removing the highest degree
node, this strategy also causes degradation on them and, for
most cases, the highest degree node is rather the critical node
indicated by the proposed methodology. This is also indicated
by a high correlation (R2 = 0.8938)—although not as high
as in the case of BA networks—between the λ2 variations for
both attack strategies. In some cases, the most critical node of
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Fig. 2. Impact on the spectral gap λ2 for both node removal strategies in BA and ER networks.

the network—in the sense of the node whose removal causes
the highest negative impact in the level of network connectivity
measured by λ2—was clearly not the highest degree node.
These are the cases for the four dots found below the main
line in Figure 2(b) that indicate critical nodes identified by the
proposed methodology in certain networks that had a more
significant negative impact in network connectivity by their
removal than the highest degree nodes in these same networks.

Note that the nodes identified by the proposed methodology
typically cause the most negative impact on the network
connectivity level measured by λ2 in the case of their removal,
even if they are not the highest degree node as in certain
networks. This leads to the conclusion that in the considered
networks the methodology correctly identifies and locates the
critical node that would cause the most damage to the network
connectivity in the case of its removal.

B. Fragile networks
As seen in Section IV-A, there are cases where the critical

node to network connectivity is not the highest degree node.
This is the case for the (sub)network topology shown in
Figure 1. Clearly, the critical node is the black one as if it
is removed a major network partition would happen resulting
in two large components. This kind of case represents what we
refer to as fragile network—a network where the removal of
one node causes the fragmentation of a connected network
in two or more connected components while the smaller
components together represent a significant portion of the
original network. In this subsection, we analyze the capacity
of the proposed methodology in locating the critical node in
the case of fragile networks.

To conduct the performance evaluation for fragile networks,
we first generate synthetic networks that have such points
of fragility. To achieve this, we start with networks as those
described in Section IV-A (both BA and ER as explained later
in this subsection) and remove nodes until we get a network
that has a fragility point that fragments the network by the
removal of a single node. The node removal process up to this

point in this case is conducted following a probability for a
node to be chosen for removal proportional to its degree [19].
By analyzing the traces resulting from this process, we can
identify a point where the removal of a chosen network causes
the network to fragment in a significant way. Therefore, taking
the network as it was right before the removal of this node,
we have a fragile network. It is important to notice that this
node whose removal fragments the network is usually not
the highest degree node in the network. As a consequence,
a deterministic attack strategy of first removing the highest
degree node does not select the real critical node of the
network in this case. We also remark that since the sequence
of node removals that leads to the fragility point is random,
although biased by the node degrees, the node found by this
process is not necessarily the one that most severely fragments
the network. We thus expect that the removal of the critical
node identified by the proposed methodology should partition
the network in separate connected components at least as large
as the ones found on the process synthetically generating the
considered fragile networks.

1) Barabási-Albert (BA) fragile networks: Conducting the
experiment on 10 BA fragile networks, the results obtained
show that in all cases at least one critical node is located by
the proposed methodology. In every case, the removal of these
critical nodes led to a fragmentation of the network that was
at least as severe as the one resulting from the process of
generating the fragile network.

In order to illustrate such results, we present in Table I a
simplified result of 5 BA analyzed networks. Each considered
BA fragile network N1 to N5 is presented in two rows ex-
plained in the following. The first row refers to the removal of
the critical node chosen by the process of generating the fragile
network. It is composed by the network id, the critical node
identified on the process of generating the fragile network, and
the set of the distinct connected components represented by
their sizes resulting from removing the chosen critical node.
The second row refers to the removal of the critical node



TABLE I
IMPACT OF REMOVING THE CRITICAL NODE(S) IN FRAGILE NETWORKS.

Net h Critical Resulting Connected Components
BA fragile networks

N1 - 61 429, 7, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
6 61 429, 7, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1

N2 - 17 202, 19, 7, 4, 4, 3, 3, 2, 1, 1
6 17, 84 105, 63, 24, 19, 7, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1

N3 - 22 432, 18, 10, 2, 1, 1, 1, 1, 1
4 22 432, 18, 10, 2, 1, 1, 1, 1, 1

N4 - 18 471, 3, 1, 1, 1, 1, 1, 1, 1
4 65 469, 4, 3, 1, 1, 1, 1, 1

N5 - 710 441, 33
6 6 403, 43, 7, 6, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1

ER fragile networks

N6 - 484 170, 58
9 46 167, 60, 1

N7 - 966 142, 89
4 621, 173 140, 65, 19, 4, 1, 1

N8 - 88 57, 38, 12, 6
4 88 57, 38, 12, 6

N9 - 881 111, 43, 26, 5, 1, 1
7 881 111, 43, 26, 5, 1, 1

N10 - 871 131, 21
4 373, 631 127, 16, 3, 3, 1, 1

identified by the proposed methodology. It consists of the h
values used by the proposed methodology to determine the h-
neighborhoods to be considered around each node, the critical
nodes located by the proposed methodology, and the size of the
connected components resulting from removing these critical
nodes. In the case where more than one critical node is located
by the proposed methodology, they are all removed.

Analyzing the results presented in Table I, we observe that
for networks N1 and N3 both methods indicate the same nodes
as critical to network connectivity. As a consequence, after
removing these critical nodes, the resulting connected compo-
nents in these cases are the same. In the cases for networks
N2 and N5, the proposed methodology locates critical nodes
that fragment the network in a larger number of resulting
components as compared to the removal of the critical node
chosen by the process of generating the fragile network. Note
that, for the fragmentation caused by the removal of the critical
nodes located by the proposed methodology, the fragmented
resulting connected components (i.e., excluding the main
largest resulting component) in these cases are also typically
larger in size. This characterizes a stronger fragmentation of
the network. For example, in the case of network N5, removing
the critical node (#6) located by the proposed methodology
fragments the considered network composed by 475 nodes
into 14 different components, effectively disconnecting 71
nodes from the network. In contrast, removing node #710
only fragments the network into 2 resulting components while
excluding only 33 nodes. Clearly, the critical node pointed
out by the proposed methodology has a higher impact in the
network connectivity. Note that for network N2, the proposed
methodology located an additional critical node (#84) besides
the critical node #17. This allowed a fragmentation of the
network significantly higher when considering the critical

nodes pointed out by the proposed methodology. Network N4
also offers an interesting case: removing the critical node (#65)
located by the proposed methodology actually fragments the
network into fewer resulting connected components. Neverthe-
less, the impact on the network connectivity is still higher as
more nodes are disconnected in this way (12 nodes against 10).

2) Erdös-Rényi (ER) fragile networks: A similar experi-
ment is then repeated for 10 ER fragile networks. Table I
presents a simplified result of 5 ER analyzed networks (iden-
tified as N6 to N10). The analysis of the results achieved by
the proposed methodology for ER fragile networks in Table I
is similar to the one performed for the BA fragile networks.
Likewise, the conclusions also suggest that the critical nodes
pointed out by proposed methodology achieve a fragmentation
at least equivalent (as in the cases of network N8 and N9), if
not stronger (as in the cases of networks N6, N7, and N10)
than the reference for comparison.

C. Real-world network trace

In this subsection, we evaluate the proposed methodology
in locating critical nodes using a real-world network trace.
The connected network extracted from this real-world trace
is composed of 190,914 nodes representing a router-level
network topology collected by CAIDA.1 This network has
a diameter of 26 as well as an average and maximum node
degrees of 6.34 and 1071, respectively. Executing the proposed
methodology using an experimentally set h = 4 indicates
node 40412 as the single most critical node for the whole
network. The removal of this single critical node fragments
the network into three relatively large connected components
having 189608, 1184, and 121 nodes, characterizing a major
disruption in the network.

1http://www.caida.org/tools/measurement/skitter/router topology/



The main point of evaluating the proposed methodology
for this real-world network trace is rather checking out the
feasibility of applying it on a large scale network. Despite
having over 190 thousand nodes, our proposed methodology
can locate the critical nodes considering only localized in-
formation of the h-neighborhoods around each node (here
with h = 4) in a fully distributed way. The smallest and the
largest considered h-neighborhoods have 5 and 123451 nodes,
respectively. Moreover, the average size of the considered h-
neighborhoods is 9023 nodes, thus limiting the complexity of
computing κv for each node.

V. RELATED WORK

Network robustness is an important property derived from
the connectivity level that directly impacts network reliability.
There are many studies investigating network robustness in
general and methods to evaluate network connectivity level [3],
[4], [6]. Nevertheless, to the best of our knowledge, only a few
recent works target the distributed evaluation and location of
the most critical nodes to network robustness, thus assessing
node centrality [10]–[12] in a distributed way.

Nanda and Kotz [10] propose a new centrality metric called
Localized Bridging Centrality (LBC). LBC is evaluated using
only one hop neighborhood around each node for which
it is calculated. The proposed use of this method is on
relatively small scale wireless mesh networks. It can to a
certain extent perceived as a specialization of the general
method we propose, restricting the h-neighborhood to h = 1.
One of the main motivations for the work of Nanda and
Kotz was a paper published in 2002 by Marsden [20], which
shows empirical evidence that localized centrality measures
calculated for one hop radius neighborhood are highly corre-
lated to the global centrality measure. Kermarrec et al. [11]
propose a new centrality measure, called second order cen-
trality. The second order centrality is defined in terms of the
standard deviation of the time between visits of a perpetual
random walk to each node. This method has the same goal
as ours in identifying the critical nodes in the network in
a distributed way without requiring full knowledge network
topology. Nevertheless, relying on perpetual random walks has
a potentially long and indeterminated convergence time, while
our approach offers a faster and deterministic convergence
time. Both Jorgić et al. [21] and Sheng and Li [22] propose
localized and distributed methods for for critical node detec-
tion in mobile ad hoc networks. These methods are specific
for wireless ad hoc networks and use both topological and
spacial properties of the network. Dinh et al. [12] propose a
new model to assess network vulnerabilities formulating it as
an optimization problem that can render approximate solutions
with provable performance bounding. This method uses full
knowledge of network topology, hindering its applicability to
large scale networks where such an information may not be
available and distributed implementation is required.

Spectral analysis [14] has been previously used for network
analysis in different ways. Jamakovic and Uhlig [23] study
the relation between the algebraic connectivity [24]and the

network robustness to node and link failures. The algebraic
connectivity, i.e. the second smallest eigenvalue of the Lapla-
cian matrix, is a spectral property of a graph, which is an
important parameter in the analysis of various robustness-
related problems. Network robustness is quantified with the
node and the link connectivity, two topological metrics that
give the number of nodes and links that have to be removed
in order to disconnect a graph. The conclusion reached is that
there is a non trivial relation between algebraic connectivity
and node/link connectivity. The algebraic connectivity is thus
equivalent to the notion of spectral gap adopted in our work.
Bigdeli et al. [25] report on an effort to compare different
network topologies according to their algebraic connectivity,
network criticality, average node degree, and average node
betweenness, showing that each one of them captures different
characteristics of the network and is better suited to a certain
class of problems. Gkantsidis et al. [26] analyze the Internet
structure using spectral analysis. Based on spectral analysis,
Fay et al. [27] have recently derived a new metric called
weighted spectral distribution to perform structural comparison
of different networks. These efforts concentrate their analysis
on the relation between network robustness and the spectral
gap (or related and derived metrics) for the whole network,
while we use the notion of localized spectral gap (limited to
a given neighborhood of each node) to perform a distributed
assessment of network centrality as well as location of the
critical nodes.

VI. SUMMARY AND OUTLOOK

We propose a localized and distributed methodology capable
of locating critical nodes to network robustness based on the
analysis of the spectral gap of a h-neighborhood around each
node. Such critical nodes may be thought of as those the
most related to the notion of network centrality. The proposed
methodology is shown to be well suited for distributed im-
plementation and it does not require knowledge of the full
network topology. We also propose a procedure that allows one
to navigate from any node towards a critical node following
only local information computed by the proposed method-
ology. Results obtained for different kinds of networks and
at different scales confirm the effectiveness of the proposed
methodology in locating the most critical nodes to network
robustness.

The encouraging results obtained using the proposed
methodology lead to interesting perspectives for future work:
• h-neighborhood determination – during the experimental

evaluation of the proposed methodology we could ob-
serve that the adopted radius to build the h-neighborhoods
around each node influences the obtained results. On the
one hand, If the considered h is too small, the resulting
h-neighborhoods can also be relatively small and might
lead to critical nodes of restricted local concern, thereby
not representing the topological features in terms of
robustness of the whole network. On the other hand, if h
is set too large, the resulting h-neighborhoods can also be
too large, rendering excessively high the computational



cost of determining the local value κv for each node
v to still point out the same critical nodes that would
be found using a smaller radius. Yet larger h values
may eventually lead to many or all h-neighborhoods in
fact comprising the whole network, thus degrading the
methodology since all these would yield the same value
for their local κv values. For the presented results in this
paper, the most suitable h value for each network has
been set experimentally. To overcome this limitation, we
intend as future work to address the issue of defining
a solution to (at least approximatively) determining the
most suitable h to be adopted in each network case.

• Other metrics to assess local robustness – in this paper,
the local κv value representing the relative importance
of each node v to the (local) network robustness is
computed based on the spectral gap of a h-neighborhood
around each node v. However, we understand that other
metrics besides the spectral gap may be considered to
determine κv . This would lead to different alternative
ways of determining κv , eventually being less costly
than using the spectral gap or generating better results.
Further, we may possibly use alternative metrics that
are specific to certain kinds of networks (e.g., ad-hoc
wireless networks), lending to better results for particular
networks. Hence, we intend to investigate alternative
metrics to determine the local κv value at each node.

• Network partitioning technique – considering the pro-
posed navigation procedure, each node in the network is
associated to one and only one critical node. This 1-to-
1 association relationship may be thought of as creating
a network partition where each critical node determines
an equivalence class. Exploring the possibility of using
the proposed methodology as a network partitioning
technique and studying the properties of the resulting
network partitions is left for future work.
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[17] P. Erdös and A. Rényi, “On Random Graphs,” Publicationes Mathemat-
icae, vol. 6, pp. 290–297, 1959.

[18] A. Barabási and R. Albert, “Emergence of Scaling in Random Net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[19] K. Wehmuth, A. T. A. Gomes, A. Ziviani, and A. P. C. Silva, “On
the Joint Dynamics of Network Diameter and Spectral Gap under
Node Removal,” in Proc. of the Latin-American Workshop on Dynamic
Networks – LAWDN, 2010.

[20] P. Marsden, “Egocentric and Sociocentric Measures of Network Cen-
trality,” Social Networks, vol. 24, no. 4, pp. 407–422, Oct. 2002.
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