Two- and Three-dimensional Parametric Packing?

F. K. Miyazawa* Y. Wakabayashi?
July 28, 2005

Abstract

We present approximation algorithms for the two- and three-dimensional bin packing problems
and the three-dimensional strip packing problem. We consider the special case of these problems in
which a parameter m (a positive integer) is given, indicating that each of the dimensions of the items
to be packed is at most % of the corresponding dimension of the recipient. We analyze the asymptotic
performance of these algorithms and exhibit bounds that, to our knowledge, are the best known for this
special case.
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1 Introduction

We present fast asymptotic approximation algorithms for special packing problems, parameterized
by a positive integer m. This parameter indicates that the input list consists of items (rectangles, boxes)
whose each of its dimension is at most 1/m of the respective dimension of the recipient. These problems
have many applications, specially in job scheduling.

We consider the following problems:

1. Two-dimensional Bin Packing (2BP,,) problem: given a list L of rectangles, each rectangle with
dimensions at most 1/m, and rectangles of unit dimensions (1, 1), called bins, pack the rectangles
of L into a minimum number of bins.

2. Three-dimensional Strip Packing (3SP,,,) problem: given a list L of boxes, with bottom dimensions
at most 1/m, and a box B = (1,1, 00), pack the boxes of L into B such that the height of the
packing is minimized.

3. Three-dimensional Bin Packing (3BP,,) problem: given a list L of boxes with dimensions at most
1/m, m > 2, and boxes of dimensions B = (1,1, 1), also called bins, pack the boxes of L into a
minimum number of bins.
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We denote by 1BP,,,, respectively 2SP,,,, the One-dimensional Bin Packing and the Two-dimensional
Strip Packing problems, both parameterized by m and defined analogously to the above problems.

Given an algorithm .4 for one of the previous problems and a list of items L for the respective problem,
we denote by A(L) the height or the number of recipients (depending on which problem is considered) of
the packing generated by the algorithm .4 applied to the list L. We denote by OPT (L) the corresponding
value of an optimum packing. We say that an algorithm A has asymptotic performance bound « if there
exists a constant 7 such that for any instance L we have A(L) < o« OPT(L) + 7. When v = 0, we say
that A has performance bound c.

Although it seems easier to deal with packing of small items (that is, the case m is large), Li and
Cheng [11] showed that: “for any m > 1, there is no polynomial time algorithm for the 2BP,, problem
with performance bound o < 2, unless P=NP”. This result shows that, unless we consider the asymptotic
case, performance bounds close to 1 are not achievable under the hypothesis that P NP. We show that, as
most of the parametric approximation algorithms for packing problems, the algorithms for the problems
we focus here have asymptotic performance bounds that tend to 1 as m increases.

Parametric packing problems have been investigated by many authors. For the 1BP,,, problem, John-
son et al. [9] proved that the asymptotic performance bound of the First Fit (FF) algorithm is (m + 1) /m,
m > 2. Johnson [7, 8] also presented other algorithms with asymptotic performance bound (m+3)/(m+
2). Csirik [5] proved that the First Fit Decreasing (FFD) algorithm has asymptotic performance bound
(m+3)/(m+2)—1/(m(m + 1)(m + 2)), when m is odd, and (m + 3)/(m + 2)—2/(m(m + 1)(m + 2)),
when m is even, m > 5. For the 2SP,,, problem, Coffman e al. [4] obtained an algorithm with asymptotic
performance bound (m + 2)/(m + 1). For the 2BP,, problem, Frenk and Galambos [6] analyzed the
parametric behavior of the HNF (Hybrid Next Fit) algorithm (they did not give an explicit formula). For
this problem, we presented in [19] an on-line algorithm with asymptotic performance bound that can be
made as close to (m+2)/m+1/(m+1)?, as desired. For the 3SP,,, problem, Li and Cheng [10] designed
an algorithm with asymptotic performance bound (m + 1)/(m — 1), m > 2, and in [19], we presented
an on-line algorithm with asymptotic performance bound close to (m + 2)/m + 1/(m + 1)2. In the same
paper, we also presented an on-line algorithm for the 3BP,,, problem with asymptotic performance bound
close to (m + 3)/m + 2/m?* + 1/(m + 1)*.

In this paper, we present approximation algorithms for the 2BP,,,, 3SP,,, and 3BP,,, problems. The
algorithms we describe for the first two problems have asymptotic performance bound
Q< 2mEtBm? 45mt24VOm? $34m3 +41m? +20m+4 Ror the 3BP,, problem, we show an algorithm with asymp-
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totic performance bound f3,,, < Zm+bm=+9m +7m+2+‘/1673m§(7§$1;;141m +142m°+85m"+28m+4 - Both o, and

Bm are decreasing functions of m. These results improve the bound obtained by Li and Cheng [10] and
our previous results in [19].

The ideas presented in this paper are general in the sense that they can be extended to other problems
or dimensions. In fact, they can be applied to the 1BP,,, and 2SP,, problems, but they do not lead to
bounds that are better than those given by the specific algorithms that have been designed for these two
problems.

For a survey on approximation algorithms for packing problems and some classic algorithms we men-
tion here, the reader is referred to Coffman, Garey and Johnson [2, 3]. Other recent surveys on two-
dimensional packing problems have been presented by Lodi, Martello and Monaci [12] and also Lodi,
Martello and Vigo [13]. Exact algorithms for the strip packing problem and the two-dimensional bin
packing problem have been proposed by Martello, Monaci and Vigo [14] and Martello and Vigo [16],
respectively. Martello, Pisinger and Vigo [15] also showed lower bounds for the three-dimensional bin
packing problem. For a recent improved typology of cutting and packing problems, the reader is referred
to Wischer, HauBBner and Schumann [21].




An extended abstract mentioning the results of this paper has appeared in [20].

2 Notation

All packings considered here are orthogonal and oriented. This means that the items are packed in such a
way that the edges of the items are orthogonal or parallel to the edges of the recipient; furthermore, each
item is oriented with respect to the x, y, 2 coordinates and the packing into the recipient agrees with this
orientation. We denote by z(e) (respectively y(e), z(e)) the length (respectively width, height) of the item
e. Since the packings are orthogonal and oriented, we assume, without loss of generality, that the limited
dimensions of the recipients have value 1. For the 3SP,,, problem, we assume that all items have height
not greater than a constant Z.

If L is a list of items consisting of rectangles (respectively boxes), given as an input for one of the
problems, then we denote by S(L) the total area of the rectangles (respectively the total bottom area of
the boxes) in L.

If P is a packing, then we denote by #(P) the number of recipients used by P. Given two packings
P’ and P"” for the 3SP,,, problem, we denote by P’||P" the concatenation of the packings P’ and P".

We denote by X[a, b] (respectively V[a, b] and Z[a, b]) the set of items e with a < z(e) < b (respec-
tively a < y(e) < band a < z(e) < b). We also use the following notation.

Cld,b'; " V' = X[d,0]nY[d", "],
Cld',b'; a",b"; d" 0" = X[d,0]nY[a", "N Z[a", "],
Cog = X[0,1/p]NY[0,1/4q],
Cpor = X[0,1/p|NY[0,1/¢] N Z[0,1/7].

We use the symbol X to denote the set of rectangles r = (x, y) such that > y, and the symbol ) for
the set of rectangles r = (x, y) such that z < y.

3 Two-dimensional bin packing problem

In this section we describe an algorithm, which we call A2B,,, for the two-dimensional bin packing
problem. Before that, we present three other algorithms used as subroutines: C2B,,, HNF and A2B, ,.

Let us consider first the algorithm C2B,,, (Combine items in a rectangle). This algorithm is called with
two parameters: a list L 4 and a list Lg. The list L 4 consists of rectangles in C [mLH, Qm ; m+w ¢m| and
Lp is alist that can be partitioned into two lists L’; and L";, defined as follows: L’; contains rectangles in
C [%,pm ) 3= %] N Y, and L' contains rectangles in C [ﬁ, = %,pm] N X, where g,,,, p,, are such
that (7) m+r1 < Gm < %, (i) pm = 1 — mgq,,. See Figure 1 (p and ¢ correspond to p,, and gq,,).

The algorithm C2B,, first generates a packing combining items of L4 and of L';. At each iteration,
the algorithm C2B,, packs items into a new bin. The packing in each bin is obtained by dividing it
into two smaller bins, B4 and Bpg, the first with dimensions (m ¢y, 1) and the second with dimensions
(1 — m ¢y, 1). The algorithm packs up to m? items of L, into the bin B4. Then, it packs the items of
L’y in the bin BY; using the algorithm NFDY (Next Fit Decreasing), that packs the items side by side in
the y-direction in decreasing order of width, until an item cannot be packed anymore. The packing of the
lists L 4 and L’z continues until all items of one of these lists are totally packed (see Figure 2).

When this happens, the algorithm C2B,,, starts packing the remaining items of L4 (if any) and the

items of L'} in an analogous way. In this case, a bin is partitioned into bins B4 and B, the first with



Figure 1: Sets L4, L'y and L. Figure 2: Combining items in L4 and L'5.

dimensions (1, m ¢,,) and the second with dimensions (1,1 — mp,,). The items of L'} are packed in the
bin B}, by the algorithm NFD? (the items are packed side by side in the z-direction in decreasing order
of length). When all items of L 4 or all items of L, U L, have been totally packed, the algorithm C2B,,
returns a pair (Pag, Lag), where Pap is the packing produced and the list L 45 is the set of items packed
in 'PA B-

Before we present a result concerning the area occupied by the packing generated by the algorithm
C2B,,,, we mention a result that will be useful in what follows.

Lemma 3.1 Let P be a packing of a list L for the 2BP,,, problem, such that in each bin, except perhaps
in C bins, the rectangles have total area at least s. Then #(P) < S(L)/s+ C.

We call the value s, in the lemma above an area guarantee of the packing P. Using this lemma, it is easy
to prove the next result.

Lemma 3.2 If Pap is a packing of Lap C L U Lg generated by the algorithm C2B,,, applied to the
2
sublists Ly and Lg, then #(Pap) < S(LAB)/«m’L) + (m+1)) + 4.

Proof. We consider separately the area occupied by the items of L 4 and the items of Lp, in each bin. In
the packing P 4, each of the bins that were used, contains at least m? items of L 4, except perhaps the last

bin. Thus, we can guarantee an area occupation of at least ( +1) in these bins. Now consider the area
occupied by the items of L'; in one bin of type BY. Since the algorithm NFDY sorts by non-increasing

order of width, the items of width in <ﬁ, i] are packed before the items with width in (0 L] The
1

1 —
3m m—|—1 - 3(m+1)

packing of the items with width in (— —] occupies an area of at least m—— in each bin
of type B (except perhaps one) The packing of the items with width in (0 } occupies an area of

m—+1?
m+1]°

at least (1 — m—+1) % = (m = in each bin of type B'; (except possibly one). So, the area occupation in

2
each bin is at least (mr_'il) + 3(m 1) except perhaps in two bins. The analysis for bins with items of L 4
and items of L'} is analogous. The proof follows from Lemma 3.1. a

Another subroutine used by the algorithm A2B,, is the algorithm HNF (Hybrid Next Fit). Given an
input list L, the algorithm HNF sorts the items in L in non-increasing order of width. Then, it applies
the algorithm NF?® (Next Fit) for the 1BP,,, problem, to pack each item of L into bins of unit length,
considering only the length dimension. Each bin B generated by the algorithm NF' is considered as a
level of width W(B) = max{y(e) : e € B}. Then, the algorithm HNF uses the algorithm NFDY to
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pack the levels into bins of unit width, now considering only the width dimension. We denote by HNF*
(HNFY) the HNF algorithm which generates the application of the NF' algorithm in the length (width)
dimension and the application of the NFD algorithm in the width (length) dimension.

The following result holds for the algorithm HNF.

Lemma 3.3 For any list of rectangles L C C, 4, where p,q > 2, we have

pq
HNF(L) < mS(L) +2.

Proof. Consider the algorithm HNF®. The analysis for the algorithm HNF? is analogous. Let L1, ..., Ly
be the levels generated by the application of the NF* algorithm, where W (L;) > W(L;;1). Since the
length of an item is at least 1/p, each level has a length occupation of at least 1 — 1/p, except perhaps the
last. Therefore,

S(L) S(Ly) + S(Ly) + -+ S(Lg 1)

>
> (1=1/pW(Le) + (1 =1/p)W(Lg) +---+ (1 = 1/p)W (L)

(1-1/p) @W(Lo - W(L1)> . 0

The levels are packed into two-dimensional bins using the algorithm NFDY. Since each level has width at
most 1/q, each bin (except perhaps the last) has a width occupation of at least 1 — 1/¢. Therefore,

k
(1 1/q)(HNF(L) — 1) <Y W(Ly). 2)
i=1
From inequalities (1) and (2), we have

. Pq b
HNF*(L) < (p—1)(q—1)S(L)+q—1+1'

O

In what follows, we present an algorithm which leads to packings with better area guarantee for the
2BP,, problem. It uses list partition and the algorithm HNF.

ALGORITHM A2B, ,

Input: List of items L C C, ,.

Output: Packing of L into unit bins.
1. Partition the list L into sublists

I L0C[Frdi gl Lo Lnc[o g )
Ly + me[ﬁ,i;o,qﬁ], L, + me[o,ﬁ,o,qﬁ].

2. P; + HNF(L;) fori=1,4.
3. Py« HNF?(Ly); Ps + HNFY(L3); P < P1]| - .. ||Ps.
4. Return P.

We are now ready to describe the algorithm A2B,,.

5



ALGORITHM A2B,,
Input: List of items L C Cp, ..
Output: Packing P of L into unit bins.

L p= plm) ¢ YOS R 2, () L2
2. LA<_LHC|:m+1aQa m+1aQ]
LBFLH(C [3m’p’ 3m’m]UC[%’E’ 3m’p])
3- (PAB: LAB) — CZB (LA7 LB) L — -L \ LAB}
4. IfLA - LAB then
Li=LNC m—H,i; il Pr HNF(Ly);
Ly=LNC[0, 150,21 nY;  Pré A2Bpysm(Lo);

Ly=LNC [0, L0250 Py A2Bni (Ls);

Popt — P1||PAB; Pauz — 7)2”7)37

5. else
Ll me[m—ﬂa%a#ﬂai] L2 me[p’#ﬂ’p’#ﬂ]
Ly=LNC p’m—+17m—+1’i]; Li=LnNC m—-}-l’ﬁ’p’mi—l]
Ly =LNC0,55; 0, 5] nY; Lg=LNC[0,%; 0,55 na;
P; < HNF(L,), i=1,...,4; Ps  A2B3p m(Ls);

PG — A2Bm73m(L6); Popt — P1||PAB; Pau:c — PQ“ s ”Pﬁ

6. P < Poptl|Paua-
7. Return P.
1 1
m m
L
g 1
_1 ] % 1
m+1 Lo m
P
Ls
Ls
1
3m
Ls
1 1 1 1 1
0 m—+1 q m+1 0 3m p m+1 m

Figure 3: List subdivision when L4 C L4p.  Figure 4: List subdivision when Lg C Lyp.

Lemma 3.4 For any list of rectangles L C C, ,, we have

(p+1)(g+1)

A2B,,(L) < o

S(L) + 5.



Proof. The proof follows easily from the fact that for each sublist L; (z = 1,...,4) we have an area
guarantee of at least pg/(p + 1)(q¢ + 1). 0

The next result will be useful in this section and in the others (see [19]).

Lemma 3.5 Suppose X,Y, x,y are real numbers such that x > 0 and 0 < X <Y < 1. Then

T4y <1+1_X
max{z, Xz +Yy} — y

The following result holds for the algorithm A2B,,.

Theorem 3.6 For any list L C Cy, 1, we have

A2B, (L) < am OPT(L) + 18,

where oy, = (2m? + 5m? + 5m + 2 + v/9m?* + 34m3 + 41m? + 20m + 4)/(2m(m + 1)?).

Proof. First, note that the packing P; || P4 is an asymptotic optimum packing for the list L,; := LiUL4p.

It suffices to note that in all bins of Py ||Pp, except perhaps in 2 bins, there are at least m? rectangles of

LncC [L, L. 1 i] in each bin. Moreover, we cannot have more than m? rectangles of this type in
m+1’m '’ m4+1'm

each bin. That is,

#(Popt) < OPT(L) + 2. 3)
From Lemma 3.2, we have that the following inequality holds.
m 2 1
< S(L — — 4. 4
#(Pap) < S( AB)/((m+1) +3(m+1)>+ “®

Now we analyse two cases, according to steps 4 and 5 in the description of the algorithm.
Case 1: L4 C L g (all rectangles of L 4 have been packed in Pp).

We analyze each of the packings P1, Pa, Ps, Pop: and Pg,,,. The packing P; is generated by applying
the algorithm HNF to the list L;. Since each bin of P; has m? rectangles, except perhaps the last, and the
area of each rectangle is at least ¢/(m + 1), the occupied area is at least m? ¢/(m + 1). Thus, by Lemma

3.1 we can conclude that
m+1

#(Py) < 2 S(Ly) + 1. (5)
Since ;Z—iql < <ml+1)2 + m, from (4) and (5) we have
m+1
#(Popt) < TZqS(Lopt) + 5. (6)

For the packings Ps and Ps3, the analysis is also based on the area guarantee obtained in each packing.
From Lemma 3.4, we have

#(P;) < mn—i; 2S(Li) +5, for i=23
Therefore, )
#(Pasa) < "= (L) + 10. Q)



Let H, and #H, be defined as H; := #(Popt) — 5 and Hy := #(Pauz) — 10.
Since OPT(L) > S(L), from (6), (7) and the definition of #; and #,, we have

OPT(L) > S(L)= S(Lopt) + S(Laus)

2
> 4 (8)
m+1 m—+2

From (8) and using the definition of #; in (3) we obtain

m? m-q
OPT(L) > max {’Hl, ol Hi+ 77‘1,2} )

As #(P) = #(Popt) + #(Pauz) = (H1 + H2) + 15, we have

#(P) < i, OPT(L) + 15, (10)

where o!, = (H; + H2)/max {’Hl, p— 4 + m+2’H2}
Case 2: Lg C L,p (all rectangles of L have been packed in Pyp).

In this case, the proof is analogous to the previous case. Thus we omit the details and simply mention
the inequalities that can be obtained.

#(P) < (mntl) L) +1; (1
#(Po) < (m;l) (Lopt) + 5 (12)
#(P) < %S(Lz)+1 for i=23,4; (13)
#£(P) < (3m+317)n(2m+1)5(Li)+5; for i=5,6. (14)
(15)
Since mp < m, from (13) and (14) we obtain
#(Pase) < S (L) + 13 (16)

Defining H; and Hy as H; := #(Popt) — 5 and Hy := #(Pauz) — 13, and proceeding as in case 1, we
have
H(P) < o, OPT(L) + 18, (17)

where o/, = (H1 + Hs)/max {7—[1, <m+1) Hi+ m’Hg}

Now using Lemma 3.5 we can obtain bounds for «, and ¢/, and conclude that both are at most .
This completes the proof of the theorem. We observe that the values of p and ¢ were defined in such a
way that in both cases (1 and 2) we obtain the same asymptotic bound. U



4 Three-dimensional strip packing problem

In this section we use basically the same list subdivisions used in the algorithm A2B,, to obtain an algo-
rithm for the 3SP,,, problem with the same asymptotic performance bound.

We first present the subroutines used by the main algorithm. One of the subroutines is the well-known
algorithm NFDH (Next Fit Decreasing Height), described in [11]. We denote by NFDH? the version of
the NFDH that packs the boxes side by side in the z-direction, and by NFDH? the version that generates
strips in the y-direction.

Now, let us describe the subroutine to pack lists L C C,, 4, which we call PQp,q. This algorithm sorts
the list L in decreasing order of height and partition it into lists L1, . .., L, such that L = L|| ... || Lt and

S(Li) < (22) (%2). fori=1,...,kand S(L;) + S(first(Li1)) > (52) (&) fori=1,...,k—1.
Then it packs each list L; into only one level, using the algorithm HNF. Finally, it returns a packing that
is the concatenation of all the levels that were generated.

In what follows we shall use the next result, that holds for level-oriented packings (see [17, 18]).

Lemma 4.1 Let L be an instance of 3SP,, and P be a packing of L consisting of levels Ny,..., N,
such that min{z(b) : b € N;} > max{z(b) : b € N;y1}, and S(N;) > s for a given constant s > 0,
i=1,...,u—1.Then HP) < V(L)/s+ Z.

The value s in the above lemma is called volume guarantee of the packing P. We are now interested in
the volume guarantee of the packing produced by the algorithm PQ),, ,. To obtain this, we need the next
result, that is an extension of the result presented in [10]. We leave the proof to the reader.

Lemma 4.2 If L C Cygisalistwith0 < S(L) < (&2) (%2), then HNF(L) = 1.

Lemma 4.3 If L C C, , is an instance for the 3SP,, problem, then

pq
PQ, (L) < ——— V(L) + Z.
QL) < 2 — V(L)

Proof. Since the packing is level-oriented, each level with area occupation of at least (1%1) (%) - =,
the result follows by applying Lemma 4.1.

We describe now an algorithm, called COL, that produces an asymptotic optimum packing for items in

alist ' CC [m%q, % ; m%q, %] This algorithm generates a packing consisting of m? columns. Initially,

all these columns are empty. The items are then considered in the order given by L' and packed in a
column of smallest height. The following holds for this algorithm.
Lemmad.d4 IfL CC [ L 1.1 i] then

m+1°m’ m+1l’m

COL(L) < (L“)2 S(L)+Z and COL(L) < OPT(L) + Z.

m

We describe now the algorithm A3S, , to pack lists L C C,, ,.



ALGORITHM A3S,,
Input: List of items L C C, ,.
Output: Packing P of L into a box with unit bottom.

1. Partition the list L into sublists (see Figure 5):

1 1. 1 1 1 1 1
oo InChpignil le ECfg )
L3(— LOC[m,I;,O,ﬁ—l], L4<_ me[oamamaﬁ_l]mx’
1 1 1 . 1 1
Ly = LNC[55 53 0 ma| NV Lo LNC|0, 355 0.75]

2. P; « NFDH*(L;) fori =1,2,4.
3. P, « NFDHY(L;) fori = 3,5.
4. Pﬁ — PQP+2,q+2(L6)‘

s. P(—L1||||P6

6. Return P.

S

L2 Ll
1
q+1
Ly
1
q+2
Ls Ls L;
1 1 1
0 p+2  p+1 P

Figure 5: Partition of the input list performed by algorithm A3S, ,.

Lemma 4.5 If L C C,y q then A3S, (L) < &) y/(1) 467,

Proof. 1t suffices to note that the packing of each sublist has a volume guarantee of at least pg/((p + 1)(g + 1)).
The additive term 67 comes from the additive terms of the inequalities obtained for the lists L, ..., Lg.
a

The equivalent result for Lemma 3.2 can be obtained using a similar algorithm for C2B,,,, which we
denote by C3S,,. To generate a combined packing, the bin B = (1, 1, o) is divided into smaller bins. In
one case the bin B is divided into bins B’; and B'; and in the other case, the bin is divided in bins B’} and
BY,. The dimensions of these bins are the following

BAZ(mQ’17m)’ BIB:(I_mq7]"OO)’

1"

B = (1,mgq,00), B} =(1,1—mgq,o0).
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The algorithm C3S,, receives as mput two sublists: a list Ly C C [m 145 = +1 , q]

L%||LY, where L'y C C [3m,p i3 NYand Ly C C [3m ol 3m,p] N X. The algorithm first
generates a packing P’ ; combining items of L4 and L, and then, a packing P’ ; combining remaining
items of L4 and items of L%. The final packing is the concatenation of P’ ; and P’ 5

The packing P/, 5 is produced as follows: Start empty packings into boxes B/, and B';. Note that B/,
and B; are parts of the same bin B. The packing in the bin B, is performed by the algorithm COL. To
generate the packing in the bin B, the list L’ is first divided into two sublists L'z, and L’z,. The list
L'y, contains the items with width in ( T m} and the list L5, contains the items with width in (O, m%q] .
Both lists are sorted in decreasing order of height. The list L'y = L's,||L's, is packed by the algorithm
NFY, for the 1BP,,, problem, considering only the width dimension. In this case, each bin leads to a level
of the packing in the bin BY. At each iteration the algorithm choose the packing with smallest height. If
it is the packing in the box B/, it packs the next box of L 4 into the bin B’y using the algorithm COL. If
the chosen packing is in the box B, the algorithm packs a new level of items in L'y using the algorithm
NFY. The algorithm stops when the list L 4 or the list L'y is totally packed. Then, it continues to pack the
remaining items of L4 and the items in L7 in analogous way, in this case with bins B, and B,,.

and a list Lg =

Lemma 4.6 Let Pyp be a packing of Lag C L U L generated by algorithm C3S,,, applied to sublists
Ly and Lg. Then #(Pag) < M%S(LAB) +4Z.

(m—+1)2 3(m+1)

We are now ready to describe the algorithm A3S,, for the 3SP,,, problem. It uses the same list subdi-
vision performed by the algorithm A2B,,, generates partial packings for each sublist, and produces a final
packing that is the concatenation of these partial packings.

ALGORITHM A3S,,(L)
Input: List of boxes L C Cp, .
Output: Packing P of L into a bin B = (1,1, c0).

. p=p(m) + “9m4+34m3;g};"§1§m;;* meSme2s g = g(m) + L
1
2. LA<_LmC|: +17Qa m+1’q]

Lg<+ LN (C [3m,p, 3 m] uc [Lm %; %,p]).
3. (Pap,Lap) < C3S,(La, Lg);

L+ L\ Lyp.
4. If Ly C L4p then (see the subdivision in Figure 3).

Li=LNC[o m%l,i] ., Py + COL(Ly) ;
Ly=LNC|0, 55 0, NY, Py A3Spy1m(Le);
Ly=LNC|0,%; 0,5 NX, P3¢ A3Spmi1(Ls);
Popt — P1||PA37

Pauz < Pal|Ps.
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5. else (see the subdivison in Figure 4)

_ 1 1. 1 1]7. _ 1 ., 1 |.
Ll—LmC[—m+1,m,m+1,m], LQ—LﬂCI:,m+1ap7m+1]7
— _1 .1 1. — _1 1. _1 .
LS_me[p’m—f—l’m—f—l’m]’ L4_me[m+1’m’p’m+1]’
1 . 1 . — 1. 1 .
L5=L0C[O,%,O,E]ﬂy, LG—LHC[O)anaﬁ]m){?
P, + COL(L,); P; < NFDH®(L;), i=2,3,4;
P5 — A3ng,m(L5); PG — A38m,3m(L6);
Popt — P1||PAB; Pauz — P2|| e ||P6;
6. P — Popt||Pauw;
7. Return P.
1 1
m m Z
q 3 2 1 L3 o 2 %3 Ly Ly
7 o  9$
1 1 o 9
m =S -
Ls Ly A2
1 p o 7
m+2 7777777/
777777/
yp _ -Z969 ' _
ogp o
nl -
o
Ls 7 6 1] ..
3mA1
Ls L6
1 1 1 1 1 1
0 w2 mild  m 0 It Pl om

Figure 6: List subdivision when L4 C L4g.  Figure 7: List subdivision when Lg C L 4p.

To prove the next result on the algorithm A3S,,,, we can use basically the inequalities presented in the
proof of Theorem 3.6 with the additive term multiplied by Z. The only difference is for the two packings
obtained with the algorithm A3S,,. In this case, the additive constant is 6Z (see Lemma 4.5). The
corresponding additive constant for the algorithm A2B, , is 5 (see Lemma 3.4). We leave to the reader
the proof of the next result.

Theorem 4.7 For any list L of boxes, L C Cy, ,,, we have

A3S(L) < am OPT(L) +20 Z,

where 0 = (2m® + 5m? + 5m + 2+ /9m™ + 34m® + 41m? + 20m + 4) /(2m(m + 1)?).

5 Three-dimensional bin packing problem

We describe in this section the algorithm A3B,, for the 3BP,,, problem. This algorithm uses two other
algorithms as subroutines: H3B,, ;. and C3B,,,.

The algorithm H3B, , , is basically the algorithm H3D (Hybrid 3D), described in [19], that uses the
same strategy used by the algorithm HFF (Hybrid First Fit) presented by Chung, Garey and Johnson [1].
The algorithm H3D calls two other algorithms: As, and Ajp,. The algorithm Ajg, can be any level-
oriented algorithm for the 3SP,,, problem and .A;;, can be any algorithm for the 1BP,,, problem. First, it

12



generates a packing of L divided into levels using the algorithm .As,; then it uses the algorithm A, to
pack into bins the levels that were generated. For each choice of the algorithms A3, and A;;,, we obtain a
different algorithm. The algorithm H3B,, , , corresponds to the algorithm H3D, where A3,, = A3S,, ; and
Aiy, = FFD. The following result can be proved using arguments based on minimum area occupation in
each level guaranteed by the algorithm FFD and volume guarantee of the algorithm A3S, ,.

Lemma 5.1 IfL C C,,, then

(p+1)(g+1)(r+1)
pgr

H3B,,,,(L) < V(L) + 14.

The algorithm C3B,, combines two lists, say L4 and Lg. The list L4 consists of items in the

1 . 1 . 1 : _ : 1
set C [m+1,q, s 4 m+1,q]. The list Lp = L'5||L3||L contains boxes b € L such that 5- <
1

min{z(b),y(b), 2(b)} < pm, where —15 < p,, < ;-. The list Ly contains the boxes b € Lp with
z(b) < pp. The list L' contains the boxes b € Lg \ L'y with y(b) < py,, and the list LY} is the list
Lp \ (L'; U L%). The algorithm C3B,, generates combined packings, each one with items of L4 and
items of one of the sublists of Lp.

To pack items of L4 and L's, the algorithm subdivides each bin B = (1,1, 1) into two smaller bins:
By = (mgq,1,1) and By = (1 — mgq,1,1). At each iteration, it packs m?® boxes of L, into a bin B’
and uses the algorithm A2B,, ,, to pack items of L'; into a bin Bj. In this case, it considers each item of
L', and the bin BY; as a two-dimensional item with y- and z-dimensions. This step is repeated until all
items of L4 or all items of L’; are totally packed. The algorithm performs analogous steps to combine
the remaining items of L4 (if any) with items in L’ and in L';. The algorithm C3B,, halts when all items
of L4 or of Lg are packed. It returns a pair (Pag, Lag), Where P,p is the packing produced and the list
L 4p is the set of items packed in P 4. The following result holds for this algorithm.

Lemma 5.2 If Pag is a packing of Lag C Ly U Lg generated by the algorithm C3B,, applied to the
3
sublists Ly and Lp, then #(Pap) < V(Lap) /((725) + ) + 18

m+1)2

Proof. Consider the packing obtained by combining items of L4 and L (into bins of type B’ and BY).

From Lemma 3.4, each bin of type B’; has volume guarantee of at least (miﬂ (considering only the y

and z-dimension), except perhaps 5 of these bins. Thus, each bin of the combined packing (of L 4 and L';)

2
has a volume guarantee of at least ﬁ (mlﬂ) = m except perhaps 6 of them. The same analysis

holds for the packing that combines items of L 4 with items in L%, and in L'}, and this gives us the desired
inequality. g

ALGORITHM A3B,,
Input: List of boxes L C Cpy mm
Output: Packing P of L into bins B = (1,1, 1).

_ V16m8 4+ 76m>3+141m44+142m34-85m2428m+4—2m3—Tm2—Tm—2.
1. Let p=p(m) « m? (@£m’+3m) ;

g =q(m) + L.

2. La+ LNX[ 5, d N Y04 N 2l 4l
Lp <+ {be L: 5 <min{z(b),y(b),z(b)} < p}.
4. (Pap,Lap) < C3By(La, Lp).

®
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5. L+ L\ Lagp.
6. If Ly C Lp then

leLﬁC[ L 1. 1 1. 1_ -1 ) Ly, = Lﬂcm-i—lmma

m+1’m?’ m+1’m ? m+1’m

Ly =LNChnm+tm \ L1; Ly =LNCpmmy1 \ (L1 U Ly);
Py + HNF(L,) ; P2 < H3Bi1,mm(L2) ;
Pg — H3Bm7m+1,m(L3) ; P4 — H3Bm,m,m+1(L4) )
Popt — P1||PAB ; Pauw — P2|| cee ||P4 .
7. else

Ll :me[mi—l’rln; m}l—l’T}z; mi—l’l] )
L2 Lﬂ.)([p +1]my[m+17m]ﬂz[m+1’ﬁ ’
L3 m+1’ ]ﬂy[pa m+1]ﬂz[m—+17_ )
Ly= LmX[m-l—l’ ]ﬂy[m-l—l’ 1]mz[p’m+1]
Ls = LmX[m+1, ]ﬂy[pml]ﬂZ[p m+1]
L6 LﬂX[p’ m+1]ny[m+1’m]mz[p’ m—|—1]
Ly = LN X]p, m+1]ﬂy[p’ m—l—l]mz[m—H’ ml
Lg = LﬂX[p, m+1]ﬂy[p, m+1]ﬂ2[p, m+1];

Lg =LN Cgm,m,m ; LlO =LN Cm,3m,m \ L9 )

Ly :LﬂCm,mgm\ (LgULlo) ; Pz — HNF(LZ), 1=1,...,8;
Py H?)Bgm’m,m(Lg) ; Py HSBm,?:m,m (LIO) )

P11 < H3Brm3m(L11) ; Popt < P1l|Pas ;

,Paum — PQ” e ||P11 ;

8. Let P — Popt||Pauw-
9. Return P.

The proof of the next result is analogous to the proof for the algorithm A2B,,. Therefore, we omit
the details and present the inequalities with which we can prove the desired result. We note that m+L2 <
p(m) < —= and that the values of p(m) and g(m) in step 1 are chosen so as to obtain the same asymptotic
performance bound for both the cases 1 and 2 analysed in the proof (corresponding to steps 6 and 7 of the
algorithm).

Theorem 5.3 For any list L of boxes, where L C Cp, . m, we have

A3By,(L) < B OPT(L) + 70,

2mA4+6m3+9m? +7m+2+\/16m6+76m5+141m4+142m3+85m2+28m+4
2m?2(m+1)2

where B, =

Proof. Let us consider the two possibilities corresponding to steps 6 and 7 of the algorithm.
Casel: Ly, C Lyp

In this case, the packings P; and P4 have volume guarantee of at least (CInE +1) >q. Note that P; has m3

boxes in each bin (each box with a volume of at least ¢ —— except perhaps the last). From Lemma 5.2

m+1 m—|—1 ?
3
we can conclude that the packing P4 g has a volume guarantee of 1 / ((m +1) + 3t +1)2) Thus,

#(POPt) < OPT(LOPt) + Z;
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and

(m +1)*
The other packings (P,, P3 and P,) have volume guarantee of at least % Hence, the following

inequality can be proved for the packing P :

(m +1)*(m +2)

#(Paum) S m2(m+ 1)

V (Laus) + 422.

Proceeding as in the proof of Theorem 3.6, we can show that
#(P) < B, OPT(L) + 617, (18)

where ﬁ’ (7—[1 + Hg)/max {Hl, (( ] 2(]) Hl + ﬁ Hg}

Case2: Ly C Lyp.
In this case, we have a volume guarantee of at least CFE ) for the packing P; ||P4s. That is,

#(Popt) S OPT(Lopt) + Z:

and ( X
m+1
#(Popt) S TV(LOP"') + 19 Z.
For the remaining packings, we obtain a volume guarantee of m( (:’EJ{)UP Therefore,
(m+1)?
Paus) < —57——V(Laus) +49Z.
#(Pawe) < g5V (L) +

Analogously to the previous case, we can prove that
#(P) < B OPT(L) + 61 Z, (19)

where 3! = (’Hl + 7{2) /max {7—[1, ( m:l)g) Hi+ %T_T_—TIL%Q

Using Lemma 3.5, we can obtain bounds for 3/, and 3]/, and conclude that both are at most f3,,,. Using
this, the result follows from the inequalities (18) and (19). a

6 Final Remarks

Table 1 shows the asymptotic performance bounds (correspondly «,, or 3,,) of each algorithm, for m =
1,...,9. The algorithms presented in this paper are marked with a x. As a final remark we observe that all
ideas applied for the problems presented here can be extended for packing problems of higher dimensions.
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